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Abstract

An adaptive algorithm for ray tracing scenes of varying local complexity is presented.
Scenes are subdivided by an hierarchical 1D grid structure, and a fast traversal algorithm
is used to trace rays through the scene. A cost function is used to determine the
subdivision granularity at each level.

Results illustrating the relative performance of this algorithm, the octree approach,
uniform space subdivision, and adaptive 3D grid subdivision are presented.
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1 Introduction

Ray tracing [Whitted 80] [Kajiya 86] [Ward 88] is an elegant solution to realistic image
synthesis which is becoming more widely used as a rendering technique as the demand for
realistic images increases. It is also used in conjunction with radiosity methods for photo-
realistic rendering [Wallace 87] [Wallace 89] [Sillion 89]. Ray tracing is a computationally
expensive procedure often requiring hours of rendering time to produce a single image. The
speeding up of ray tracing has been an important research issue since its inception. The
two prime methods for speeding up ray tracing are a reduction in the number of rays traced
[Heckbert 84] [Amanatides 84] [Shinya 87], and a reduction in the number of ray/object
intersections performed. This paper presents a new spatial subdivision method for reducing
the number of ray/object intersections.



1.1 Motivation

Ray tracing algorithms must perform well for the variety of scenes that they may encounter,
and must also be able to efficiently render scenes containing areas of greatly varying local
complexity. These types of scenes are the mainstay of computer animation, where there are
often small and complex foreground objects placed in larger, less complex surroundings.

Adaptive algorithms are well suited to the rendering of these scenes, but the overhead
incurred by traversing the data structures can often lead to poor performance. This pa-
per details a spatial subdivision algorithm which can better adapt to local variations in
scene complexity than previous 3D grid methods, yet does not incur the cost of deep tree
traversal. A cost function which balances preprocessing and rendering time to determine
the granularity of grid subdivision is described.

2 Previous Work

Rubin and Whitted [Rubin 80] determined that the majority of time in ray tracing was
spent performing ray/object intersections. They proposed the use of bounding rectangular
parallelepipeds around objects because rays can be more quickly intersected with bounding
volumes than with the objects that they contain. If a ray does not intersect the bounding
volume then the more expensive ray/object intersection tests need not be performed. Kay
and Kajia [Kay 86] refined the idea of bounding object hierarchies to include arbitrarily
tight fitting bounding volumes.

Spatial subdivision is alternative technique for reducing the number of ray/object inter-
sections. Objects are sorted into areas of subdivided space through which rays are traced.
Intersection calculations are performed for objects inside only those areas through which a
ray passes.

The octree [Glassner 84] was presented as an adaptive method for subdividing scenes
of varying local complexity. Complex scenes often require octrees of significant depth, and
costly vertical tree traversal limits the speedup attainable.

Uniform subdivision was presented as an attempt to speed up the traversal process
[Vatti 85] [Fujimoto 86] [Arnaldi 87] [Amanatides 87] [Scherson 87] [Cleary 88]. A scene is
subdivided into a uniform 3D grid. Rays are traversed through the grid with an algorithm
similar to a line drawing routine. This leads to very fast traversal, but the algorithm
performs poorly with scenes of varying object density, as these scenes cannot be subdivided
adequately due to memory restrictions and the increasing cost of traversing rays through
empty voxels.

The adaptive 3D grid algorithm combines the octree and uniform subdivision approaches
and outperforms them in many cases [Jevans 89]. Tree depth is minimal, usually less than
4, and horizontal traversal is fast due to the uniform grids. It is difficult to choose the



correct subdivision granularity at each node, however, and limiting the depth of the tree is
often the key to obtaining good performance.

3 Overview

Subdividing along a single axis at a time has several advantages over the 3D grid approach.
Firstly, a 3D subdivision is not imposed on the entire scene or subscene. Secondly, it is
easier to develop a cost function to determine the granularity of subdivision and to limit
the depth of the tree. Thirdly, there can be a memory and traversal cost savings in scenes
which are large and sparse, but which contain small areas of densely clustered ob jects.

The algorithm presented in this paper utilizes a 1D cost function for determining the
subdivision granularity at each level. The traversal algorithm is similar to the uniform grid
traversal algorithm, and vertical traversal costs have been minimized.

4 Subdivision

The scene’s bounding box serves as the root voxel for the subdivision process. At each
level of the subdivision, the current voxel may be subdivided along the x, y, or z axis. The
implementation detailed in this paper alternates between the three axes according to tree
depth, in much the same way as Kaplan’s bintree algorithm [Kaplan 85]. The granularity
of subdivision at each voxel is determined by a cost function (see section 6). An example
of spatial subdivision is presented in figure 1.

4.1 Data Structures

When a voxel is subdivided, a 1D array of voxel pointers of size granularity is created,
and all objects in the voxel are sorted into this array. The voxel also stores pointers to the
lowest voxels above it in each of the x, y, and z directions.

Each subdivided voxel contains a pointer to a traversal state, which maintains the state
of the variables used for horizontal voxel traversal. Voxels which are subdivided along the
same axis at the same absolute granularity, determined by multiplying the granularities
of the current and all parent voxels which are subdivided along this axis, share the same
traversal state. See figure 2.

An array of traversal state pointers for all possible absolute granularities is maintained
for each of the x, y, and z axes. When a voxel is subdivided, the traversal state table for its
axis is consulted. If a traversal state for its absolute granularity has already been created,
the voxel receives a pointer to it. If not, a new traversal state is created, and both the voxel
and the traversal state table receive pointers to it.
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Figure 1: Subdivision
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Figure 3: Cleary algorithm

The traversal state tables must be maz_granularity™es-tree-derth iy size to accom-
modate all possible absolute granularities. If an implementation does not specify a limit
on max_granularity or max-tree_depth, a hashtable could be used as a traversal state
table instead of a large array.

Sharing traversal states typically reduces the number of states created by as much as
99%, and, as detailed in section 5.2.2, is used to significantly speed up the traversal process.

In order to ensure that only areas of a scene which are visible are subdivided, voxels are
subdivided as they are first traversed by a ray, rather than in a preprocessing stage.

5 Traversal

The traversal of a ray through a scene entails horizontal and vertical traversal of the sub-
division data structure.

5.1 Uniform Grid Horizontal Traversal

Horizontal traversal of the data structure is similar to the uniform grid method developed
by Cleary. A brief description of the Cleary algorithm follows.

The distance of a ray to the first interception of a voxel in each of the x, y, and z axes
is stored in dist[3]. The distance along a ray between voxel intercepts in each direction is
stored in A[3]. The three grid indices of the ray’s starting voxel are stored in index|[3]. A
2D example is illustrated in figure 3.

At each iteration of the algorithm, the distances to the next voxel intercept are compared.
The index to the smallest of these, stored in small, indicates the direction of the ray’s travel.
Alsmall] is added to dist[small], and index[small] is incremented or decremented by 1,
depending on the sign of the ray’s direction. Intersection tests are performed against the
ray and any objects that lie inside the new voxel.
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small is set to x.
The new voxel is subdivided along the y axis.
int_pnt[y] = ray_ori[y] + dist[small] * ray_dir(y]

Figure 4: Intersection of ray and voxel

Traversal of the 1D grids takes place as in the 3D grid algorithm, but the dist, A, and
index variables for each dimension are accessed through the traversal states of the current
X, ¥, and z subdivided voxels.

5.2 Vertical Traversal

Before horizontal traversal can take place, the data structure must be traversed vertically
to its lowest subdivided level. If the current voxel is subdivided, the subvoxel in which the
ray originates is determined. If this subvoxel is itself subdivided, the current voxel is set to
point to it, and the algorithm repeats.

5.2.1 Determining the Initial Subvoxel

When a ray enters a subdivided voxel, the subvoxel in which it originates must be found
before traversal can begin. The originating subvoxel’s index is found by subtracting the
voxel’s minimum extents from the intersection point of the ray and the voxel, and dividing
by the size of a subvoxel.

If the ray’s origin lies inside the voxel, this becomes its intersection point. If not, an
intersection point with the ray and the voxel must be found. The side of the voxel which
the ray first intersects is known from the small term of the horizontal traversal. The
intersection point with this side is calculated from the distance that the ray has traveled
(figure 4).

5.2.2 Initialization of Traversal States

Whenever a ray enters a voxel, its traversal state must be initialized. Rays are identified
by a unique ray_id, and the ray_id of the last ray through a voxel is stored in its state. If
the ray_id of a ray matches the ray_id of a voxel’s traversal state, then the ray has already
been through the state, and only the index and dist variables need to be recalculated.
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A further optimization can be had by keeping a pointer to the previous current voxel
in which horizontal traversal took place. This previous current voxel will be at the deepest
part of the tree where horizontal traversal last took place. If the previous current voxel is
subdivided in the same axis as the current voxel, then the comparison vozel points to the
previous current voxel. If not, the the lower-most voxel above the previous current voxel
which is subdivided in the axis direction, becomes the comparison voxel.

If the comparison voxel’s state is the same as the current voxel’s state, and the minimum
voxel extents in the axis direction are the same for the two voxels, then the special case of
a uniform subdivision has occurred, and no initialization needs to be done (figure 5).

If the current and comparison voxel’s states are the same, but their minimum voxel
extents differ, then the index of the ray must be computed (figure 6). This can be further
optimized by noting that if the minimum extent of one voxel is equal to the maximum
extent of the other (figure 7), the ray’s index can be quickly calculated:
if (comparison_voxel—min_extent == current_voxel—max_extent)

index = current_voxel—state—granularity - 1;
else if (comparison_voxel—»max_extent == current_voxel—min_extent)
index = 0;




Figure 7: Minimum extent = maximum extent.

5.3 1D Horizontal Traversal

Whenever a new horizontal traversal is about to begin, the current traversal states, one for
each of the x, y, and z, axes, must be found. The current states are those of the current
voxel and the two voxels above it in the two other axes.

When a ray moves to a new subvoxel, one of three things may occur:

¢ The movement occurred at the lowest level of the tree (figure 8). If there are objects in
the subvoxel, test for intersection. If not, and the subvoxel is subdivided, it becomes
the current voxel.

¢ The movement occurred at a higher level of the tree (figure 9). Set the current voxel
to be the one in which the movement occurred. If there are objects in the subvoxel,
test for intersection. If not, and the subvoxel is subdivided, it becomes the current
voxel.

o The ray exited a voxel grid (figure 10). Set the current voxel to the previous voxel in
the direction of travel. If this is NULL, then the ray has left the scene entirely. If
not, move the ray along one in the new voxel.

6 Cost Function

Arvo and Kirk [Arvo 89] note that “self-tuning” algorithms are necessary to efficiently
render scenes with areas of varying local complexity. Previous methods have utilized non-
intuitive user-defined parameters or incomplete sets of heuristics to control adaptive subdi-
vision [MacDonald 89]. This section presents a cost function which is used to more intelli-
gently control the subdivision.
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Figure 11: Rays through a subdivided voxel

6.1 Assumptions

Entire scenes are rarely uniformly subdivided, although small areas of scenes often are.
Examples of this are tessellated surfaces, etc. We wish to develop a cost function which will
quickly subdivide a scene into areas of uniform object distribution so that the uniform grid
nature of the horizontal traversal algorithm can be made best use of.

In order to simplify the cost function, several assumptions are made:

¢ Assume uniform flux of rays through a voxel. The number of rays entering a voxel
from a given side will be proportional to the surface area of the voxel’s side [Stone 75)
[Goldsmith 87].

¢ Assume that rays travel perpendicular to their plane of entry.
¢ Assume uniform distribution of objects.

¢ Assume rays pass through the entire voxel.

Since subdivision is along a single axis, and it is assumed that rays travel perpendicular
to their plane of entry, only rays traveling perpendicular to the axis of subdivision will
benefit from reduced ray/object intersections. Rays traveling along the axis of subdivision
will pass through all the subdivisions, and will be intersected with all the objects.

In figure 11 the x axis has been subdivided. This example will be used in the following
sections.

6.2 Code Timings

In order to develop a useful cost function, estimates of execution time for several operations
must be found:

Intcost The cost of performing a ray/object intersection calculation.
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Repcost The cost of repeating a ray/object intersection calculation.
Travcost The cost of iterating a ray through a subvoxel.
Vertcost The cost of initializing a ray to traverse through a subdivided voxel.

Subcost The cost of sorting an object into a subdivided voxel.

6.3 Cost Function for No Subdivision

Before the cost function can be evaluated, the number and mean size of the objects in the
candidate voxel are determined. The size of an object must be truncated to the size of
the voxel if the object is larger than the voxel, or the mean size of objects can be unfairly
skewed.

Since the number of objects intersected by rays entering from the yz plane is constant,
it is eliminated from the cost function.

The cost of traversing a ray through an unsubdivided voxel is proportional to the area
of the xy and xz sides and the number of objects in the voxel:

int_cost = Intcost * (area_xy + area.xz) * num_.objects

6.4 Cost Function for Subdivision

The cost of traversing a ray through a subdivided voxel is proportional to the area of the
xy and xz sides and the number of objects per unit area:

int_cost = Intcost * (areaxy + area_xz) * num_per_unit
where:

num_per_unit = (num_objects * num_voxels_into) / num_subvoxels
num._voxels_into = (int)ceil(mean_object_size / subvoxel_size)

As the granularity of the subdivision increases, the objects become more tightly bound
by the subvoxels, and the number of objects per unit area decreases to the minimum:

minimum_num_per_unit = num_objects * mean_ob ject_size

As subdivision granularity increases, there is an increasing cost to rays traveling along
the subdivision axis. This cost is made up of the time to iterate rays through the subdi-
visions, and the cost of repeatedly intersecting with objects that fall into more than one
subvoxel. This cost is small due to the use of ray signatures (ray-id) which prevent per-
forming a full intersection calculation of a ray with an object more than once [Arnaldi 87].
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trav_cost = Travcost * area_yz * (num_subvoxels-1)
rep_cost = Repcost * area_yz * (num_voxels.into-1) * num_ob jects

All rays which pass through a subdivided voxel are subject to the cost of initialization:
ver_cost = Vertcost * (area_xy + area_xz + area.yz)
The total cost of traversing a ray through a voxel is:

total_cost = int_cost + trav_cost + rep_cost 4 ver_cost

6.5 Using the Cost Function

When a voxel is a candidate for subdivision, the cost function is calculated for the range
of granularities 0 through maximum granularity. The granularity which results in the
least cost is the one chosen for the subdivision level. Note that a maximum granularity
is specified in order to limit the amount of memory required, and to encourage recursive
subdivision at higher levels of the tree, where scene distribution is unlikely to be uniform.
For this implementation a maximum granularity of 20 was used.

This cost function can suffer from the problem of over subdivision. If the number of
rays passing through a voxel is small, and the time to do the subdivision is large, it is often
better to leave the voxel unsubdivided. A breadth first traversal of a small sampling of rays
before the full image is rendered provides a good estimate of the number of rays that will
travel through a voxel.

The cost function is updated to be:

new_cost = Subcost * num_objects + estimated_num_rays * total_cost

Due to a generally good match between granularity and object size, the cost of sorting an
object into a voxel grid is virtually independent of its size. If, however, the deviation of
object sizes from the mean becomes very large, it may be necessary to take the size of
objects into account when calculating the subdivision cost.

If a voxel is encountered during the ray tracing that was not traversed by the first
sampling of rays, the number of rays through the voxel is estimated. The number of rays is
estimated to be proportional to the surface area of the subvoxel relative to the surface area
of its parent.

7 Results

A number scenes of varying complexity were rendered with similar implementations of
several different space subdivision techniques.
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L. Uniform subdivision. Grid granularity per side is set to /num_objects.
2. Octree.

3. Adaptive 3D grid subdivision.

4. Adaptive 1D grid subdivision.

The baseline for comparison is the zero overhead method. A scene is ray traced, and a
file containing the identifier of the object intersected by each ray is generated. If a ray exits
the scene, a NULL entry is recorded. The scene is then re-rendered using this information.
A single intersection test, and any shading, is performed for each ray with a non-NULL
entry. The time taken to do this rendering is the minimum possible, barring the use of ray
coherence methods.

This implementation is written in C++, compiled with Gnu g++, and run on a SUN4/280
with 32 megabytes of real memory. All images were rendered at 512 by 512 resolution, with
one ray per pixel. The graph in figure 12 illustrates the relative performance of these
algorithms.

Note to referees: a performance increase of 30% to 50% is expected with the new
release of the AT&T C++2.0 compiler, which is presently being installed at our site. Should
this paper be accepted, the renderers will be re-compiled and the timings re-computed. The
relative performance of the algorithms is expected to remain the same.

7.1 Discussion

pyramid This database is similar to that seen in previous papers. The performance of the four
algorithms is similar due to the small number of polygons and the visibility of the
entire scene.

lumpy A scene from a recent University of Calgary short film. The extents of the scene are
large, but the majority of the polygons are clustered in a small area. The uniform sub-
division method performs poorly due inadequate subdivision, and the octree method
suffers due to the depth of the tree. The 1D method outperforms the adaptive 3D
grid method owing to non-uniformity in the size of the x, y, and z extents of the areas
of complexity.

drum Uniform subdivision yields poor performance due to the clustering of polygons. The
octree method performs acceptably since the scene’s extents are not large, resulting
in a tree that is not overly deep. A drawback, however, is that memory usage is
much higher than for the 3D and 1D grid methods. The 1D method outperforms the
adaptive 3D grid method because it can better adapt to varying complexity, resulting
in a subdivision tree of smaller depth.

13
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trike Uniform subdivision performs poorly because of the polygon clustering. The octree
method performs well because the scene extents are not large. 1D subdivision out-
performs adaptive 3D subdivision because the extents of the areas of complexity are
irregular.

car Uniform subdivision performs poorly due to the complexity of the central object. The
octree method performs reasonably well because the scene extents are not overly large
compared to the central object. The adaptive 3D and 1D grid methods’ performance
are comparable because the scene extents are fairly regular, as are the extents of the
complex object.

From these results, some characterizations of the four spatial subdivision methods com-
pared in this paper can be made. Uniform subdivision performs poorly for scenes containing
areas of local complexity, due to its inability to adequately subdivide space in these areas.
Hybrid methods, such as that proposed by Snyder and Barr {Snyder 87], are required.

Octree subdivision performs well if the areas of local complexity are similar in size to
the extents of the scene. If the extents of the scene are large and the complex areas are
small, the octrees become deep, and vertical traversal limits the performance.

The adaptive 3D grid method performs well for a variety of scenes. It is fairly insensitive
to the relative size of the scene extents and areas of complexity, but user intervention is
sometimes required to set the max_tree_depth for a given scene. The 1D method has
similar performance characteristics, but can better adapt to complex areas of irregular
shape. It maintains a more constant level of performance for a variety of scenes with areas
of local complexity. The cost function takes the number and size of ob jects into consideration
when determining grid granularity, and effectively limits the depth of the subdivision tree.

8 Future Work

The introduction of this new algorithm and data structure opens many avenues of further
research.

¢ Methods for determining axes of subdivision at each level.
o Cost functions which examine estimates of object distribution.
o Cost functions which examine combinations of recursive subdivisions.

¢ Balancing memory and rendering time for machines with restricted amounts of mem-
ory.

¢ Hybridizing with other methods.
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o Applying shared traversal states to other spatial subdivision methods such as the
octree.

9 Conclusion

A new algorithm for reducing the number of ray/object intersections has been introduced.
The algorithm is adaptive in nature, yet traversal is fast. A cost function is used to intel-
ligently control the subdivision. The algorithm is shown to perform well on a variety of
scenes.
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