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Abstract 

The thesis presented here is focused on plant mechanics and structural 

optimization; the major finding of the work is that the micro-structure of the Arabidopsis 

root does sense and show reactions to external mechanical stresses; such reactions 

involve re-orientation of the microtubule (MT) cytoskeleton closer to the maximum 

principal tensile stress direction after a significant bending moment is applied. If the root 

is free of external mechanical stresses (only having internal turgor pressure) then there 

are two scenarios: in the first scenario, within the cell division zone, the microtubules 

direction is perpendicular to the main axis of the cell (along maximum principal tensile 

stress direction and aligned with hoop stress).In the second scenario, within the cell 

elongation zone, microtubules make a 45 degree angle with the main axis of the cell 

(possibly due to maximum shear stress).  

Another focus of the work presented here is to draw inspiration from nature and 

apply the “self-optimizing” rules found in natural tissues to engineering frame structural 

design. This was achieved by simulating frame structures based on two different theories: 

Wolff’s theory (for natural tissues) and Michell’s theory (for engineering comparative 

analysis). The performance of the two frame structures studied was evaluated against 

each other, and it was shown that, for an example of a cantilever beam, structures created 

based on Wolff’s theory are easier to generate under dimensional restrictions and have 

greater strength than analogous frame structures modeled based on Michell’s theory.  

In order to observe microtubule re-orientation, Arabidopsis root cells were 

observed by means of a confocal microscope, and the data were analyzed using image 
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processing to find the dominant pattern of microtubules. The influence of gravity on 

microtubules direction was also studied by rotating control samples in different 

directions; gravity was found to have negligible impact on microtubule orientation. The 

root cell was then simulated numerically to study the direction of principal stresses, and 

confirm the re-orientation of the microtubules closer to the maximum principal tensile 

stress direction.  

For the strength comparison of the frame structures based on the two theories 

(Wolff and Michell), a cantilever domain was defined, and the curves were then 

generated for a computer programming environment, and results were later exported for 

finite element analysis.  
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 1 

Chapter One: Introduction 

 

Structural behavior of a plant segment (in the case of this thesis, the Arabidopsis 

root cells) at the sub-cellular level can be studied more capably and in depth with the 

advent of micro visualization technologies. Understanding nature’s structural 

performance (at the micro scale) and replicating similar situations in engineering frame 

structural design, is the focus of this thesis. 

Mechanical engineering and biology seem to be different disciplines with little 

overlap in the fields of study. The foundation of an engineering analysis is relatively 

based on mathematics and physics rules and formulations, while in biology such a 

foundation is more dynamic and involves often not very controllable parameters. This 

affects results which cannot be easily predicted except by empirical observations.  

Conducting the type of research presented in this thesis (performing experimental tests on 

plants and interpreting the behavior by engineering formulas and simulation) highlights 

the importance of studying such relatively new area of research, since so many valuable 

findings were uncovered. The work presented bridges disciplines (mechanical 

engineering and bio-science) with the result being a more in depth and broad analysis.  

The role of different agents like light, chemicals, water, and hormones on a 

plant’s micro-structural activities has been extensively studied in literature with little 

attention given to mechanical forces. There is no doubt that all such agents are either 

individually, or in a group, contributing to a plant’s micro-structural reaction; however, 

for some reason the key role of external mechanical forces is not considerably studied 

often in depth as shown in Chapters Four and Five of this thesis.  
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There are some challenges involved with regards to bridging the two areas of 

study which were the focus of the thesis. For instance, when it comes to simulating a 

plant tissue with an engineering software, there is tangible difficulty in mimicking the 

material behavior and mechanical properties of tissue at cellular or sub-cellular level.  

On the other hand, a natural tissue like plant tissue, is considered to have built-in 

self-optimizing capabilities which is, in part, what inspired the study of structural 

optimization in some engineering frame structures. There are two main categories of 

theories in this structural optimization realm; those related to nature (based on Wolff’s 

theory) and those that are purely mathematical (based on Michell theory). No matter how 

these theories are driven (purely mathematical or from nature), they all date back to more 

than a hundred years ago. In this thesis, the two aforementioned prominent theories 

(Michell’s and Wolff’s) will be considered.. It will be shown that the performance of 

frame structures modeled based on the theory of combining nature’s behavior with 

mathematical rules (Wolff) gives better results given the problem constraints when 

compared with analogous results for when applying Michell’s theory.  

1.1 Main thesis objectives 

One of the main objectives of the thesis is to contribute in better understanding 

the interaction between mechanical forces and a plant’s micro-structure response. 

Attention is more specifically given to the reorientation of microtubules (MT) in 

Arabidopsis root cells due to the mechanical stresses applied.  

Expanding the main concepts and fundamentals of Wolff’s theory, from bone 

micro-structure to encompass plants micro-structure, and verifying the theory is also a 
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major area of interest. Successfully doing this would endorse Wolff’s theory, given 

various interpretations and appraisals of this theory.  

Another objective of the thesis is to employ the self-optimizing property of a 

natural tissue’s micro-structure (e.g. bone or plant) in engineering frame structure design. 

Such “self-optimizing” ability of these natural tissues is described within Wolff’s 

theorem. This was the motivation to employ Wolff’s theory in frame structure design, as 

any structural optimization leads to time and cost reduction and savings in engineering 

designs. Performance of frame structures (based on Wolff’s theory) was then compared 

to similar structures based on Michell theory. The compared frame structures were 

evaluated based on a desirable optimized performance with given constraints. In the 

presented work, the strength of each model based on the two aforementioned theories, 

Wolff’s and Michell’s, is compared. 

1.2 Novel thesis contribution 

The major novel contribution for the research carried out here was the fact that the 

effect of external mechanical stresses on microtubules reorientation has never been 

investigated on the Arabidopsis root cells. It was found for the case of root cells studied 

that microtubules do move to try to orient themselves closer to principal stress directions 

when a large mechanical load is applied; this was verified using both experimental data 

(in Chapter 4) and numerical simulation (in Chapter 5). The lack of study of this topic  

might be due to the fact that the Arabidopsis root is a very fragile and difficult to handle 

specimen, which can easily become damaged while performing the empirical 

observations or operations. As well, the root is an organ that continuously grows 

lengthwise, and the experiment has to be performed in a strictly limited time before the 
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relevant zone of the root sample grows other lateral roots or root hairs, or even before the 

root gets too long for the Petri dish (which also makes it impossible to move the root and 

visualize).  

1.3 Chapter overview 

There are a total of six chapters in this thesis. Chapter 2 is a literature review and 

the introduction. Chapter 3 focuses on developing engineering frame structures based on 

Wolff and Michell’s theory, and then performance analysis for such structures is 

undertaken.  Chapter 4 contains biological preliminaries for engineers (as non-biologists) 

as well as the empirical observations and data collection for the plant or interest. This is 

followed by Chapter 5, where simulations of empirical observations are carried out using 

engineering software and programming. Chapter 6 is the final and closing chapter, which 

comprises the conclusion and discussion of the thesis. In the following few paragraphs, 

the chapter contents introduced in this paragraph are explained in more detail. 

Chapter 2, as mentioned above, is a literature review for the research carried out 

here. It starts with introducing “Wolff’s law” as the prominent theory in the field, which 

was developed based on both scientific and engineering observations and calculations. 

Such observations were based on studying bone’s microstructure. Then Michell theory of 

structural optimization is introduced which has a mathematical foundation. These two 

theories are outlined in more details in the next chapter (Chapter 3). Then Wolff’s theory 

is extended from bone micro-structure to plant micro-structure by focusing on the role of 

mechanical stresses in changing the orientation of the microtubules in the plants (there is 

also a brief history of similar investigations included in this chapter).  
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Chapter 3 clarifies in more details the role of principal stresses and the stress 

trajectories as well as the methodology of how to build engineering frame structures 

based on Wolff’s and Michell’s theories. More aspects of Wolff’s hypothesis are 

reviewed, and then steps of constructing a frame structure (cantilever beam) based on 

such a theory are discussed; followed by a finite element model taking into account the 

role of stress concentration. After this, features of Michell theory are introduced, along 

with the formulation and steps to generate a frame structure (a cantilever beam) based on 

this theory. The two evaluated types of cantilever beams (one produced from Wolff and 

the other produced from Michell’s theory) are compared to each other for performance 

analysis, and Wolff’s law is generally found to produce better results than Michell’s 

theory when loads are applied to structures designed with the two theories in mind. 

Chapter 4 describes some biological concepts and terminologies for non-

biologists along with the details of the experiment performed on the Arabidopsis root and 

the visualization techniques. Results of such observations on the root cells are described, 

and then analyzed with appropriate image processing programs. The main result shown is 

that microtubules do move to try to orient themselves closer to principal stress directions 

when a large mechanical load is applied. Other important findings are that microtubules 

align themselves transversely to the cell main axis in the cell division zone, and at a 45 

degree angle to the cell main axis in the cell elongation zone, in the case of no external 

applied mechanical load (only internal turgor pressure exist). As well, gravity was found 

to have a negligible impact on microtubule orientation. The noted alterations in 

microtubule direction due to load are documented to be later compared with the results of 
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simulation in the next chapter (chapter 5) to find the possible rationale behind the 

changes observed. 

Chapter 5 of this thesis includes the simulation performed in a finite element 

program (Ansys) to replicate the empirical test carried out in the previous chapter 

(Chapter 4) by applying the mechanical bending stress to an Arabidopsis root cell. This 

chapter starts with the challenges involved in achieving such a simulation. A simulation 

shown in the chapter beginning is for determining the modulus of elasticity of the cell 

wall with an Atomic Force Microscopy (AFM) technique. Then the simulation of the 

Arabidopsis root cell, undergoing a large bending deformation, is carried out using finite 

element software (Ansys) followed by the stress analysis of the outcome. Such finite 

element analysis in Ansys is closely assessed against the empirical results achieved in the 

previous chapter (Chapter 4) to illuminate the underlying principle governing 

microtubules orientation.  

Chapter 6 concludes the research carried out in this thesis. Achieved objectives 

are discussed more in detail. As well, future work and recommendations on how to 

improve some features of the research investigations are described.  
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Chapter Two: Introduction and Literature Review 

 

This chapter is principally concerned with a literature review of Wolff’s law, 

Michell theory and expanded concept of Wolff’s theorem in plants. The two mentioned 

areas of inquiry (Wolff’s law and Michell theory) are fundamental to this thesis, and are 

utilized in Chapter 3 when engineering frame structures are evaluated based on these 

topics, Chapter 4 when experimentation is carried out to validate Wolff’s law as it applies 

to plants, and Chapter 5 when simulation are carried out to better understand empirical 

data from Chapter 4. 

Maximizing efficiency and load bearing capabilities while minimizing design 

time and monetary expenditures has always been an essential target for structural 

engineering designs. Determining the best values for a set of influencing variables in 

design does not always have an easy solution.  

Nature has consistently been an influential source of inspiration for researchers. 

Algorithms inspired from nature have been studied from decades ago and are getting 

renewed attraction in the recent years since the simulation problems are becoming more 

dynamic and intricate. Such algorithms have resulted in competitive advantages and 

benefits across a range of disciplines from engineering to social sciences. Although 

finding the best solution is not necessarily guaranteed, adopting structural desings from 

biological and natural science can provide state-of-the-art solutions for different areas of 

optimization [1]. 

In this thesis, the main objective is to bring together the two seemingly different 

areas of engineering and bio-science. This is achieved by studying the influence of 
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mechanical forces on the structural re-patterning of plant tissue in sub-cellular level. Such 

study will facilitate in better understanding a natural tissue’s response to its surrounding 

environment, which could be employed as a template for structural optimization 

purposes. First and foremost, Wolff’s premise will be introduced as one of the most 

prominent theories relating effects of environmental forces on a natural tissue’s (bone) 

micro-structural behavior. Subsequently, one of the most eminent theories in structural 

optimization, Michell’s theorem, will be presented. Michell’s theory is an entirely 

mathematically driven theory, unlike Wolff’s. In the following chapters, performance of 

structures generated based on Wolff’s theory will be evaluated against those generated 

based on Michell’s. Wolff’s hypothesis will be then expanded to investigate plant’s 

micro-structural response to mechanical forces, and the hypothesis will be verified and 

validated by performing some empirical experiments followed by finite element 

simulation. 

2.1 “Wolff’s law” and a brief history  

Before presenting Wolff’s law, it’s essential to point out that this theory was 

originally developed based on femur bone microstructure which is not the main focus of 

this research. Instead, this theory was considered as a source of inspiration from nature 

(bone microstructure) and to be applied to a plant microstructure. 

Historically, Wolff’s law is a reputable classical example of there being a close 

correspondence between a natural tissue (bone trabeculae) and an engineering structure 

(crane-like cantilever).  In 1892, a German anatomist named Julius Wolff, after around 25 

years of experience in orthopedics and skeleton anatomy, proposed the analogy between 

the cancellous bone pattern and stress trajectories of a curved crane-like cantilever 
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resembling a human bone femur. In his seminal work, Wolff revealed that the 

microstructure of a bone femur, in a self-repair process, adapts to the applied mechanical 

loading, resulting in an arrangement of the trabeculae with the principal stress 

trajectories. 

Wolff's premise formulating microstructure of the femur bone’s morphology has 

led to the development of Wolff’s principle or “Wolff's law” [2]. Among various types of 

bones containing trabeculae, Wolff allotted his observations to the human proximal 

femur. In general, there are more extensive and in-depth studies concerning femur than 

any other types of bone structure. The reason for this is because of the significant role 

and importance of this bone in daily activities, as well as the large size of the femur bone, 

as well as the complexity of interior spongy portion of the bone [3, 4, 5, 6]. 

Despite different interpretations of Wolff’s work and disputes about his theory [2, 

7], many researchers credit his hypothesis as a seminal work declaring that a bone adopts 

its microstructure by undergoing morphogenesis in response to average dominant loading 

environment in a way that a minimal weight structure is achieved [2, 7]. Most disputes 

about Wolff’s principle, originated based on the observations of various bones which led 

to questioning the orthogonality of the tension-compression trajectories intersections  [2]. 

Regardless of disputes raised about Wolff’s work, a noticeable publication in 1917 by an 

anatomist named J.C. Koch, which has been cited by many contemporary authors  has 

constituted a strong mathematical validation basis [2, 3] for Wolff’s law. Koch has 

declared clearly “the structure of the femur is based upon exact mathematical laws” based 

on making comparison between a femur and a similar structure having the same external 

shape and physical properties while sustaining same magnitude and type of loading [3]. 
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Furthermore, he acknowledged that not only the internal architecture of the femur is 

adapted to its function, but the external shape is also adapted; and any alteration in the 

load exerted on the bone is followed by the corresponding changes (in both internal and 

external structure). Some recent studies have also predicted the external geometry and 

internal density distribution of the proximal femur by engineering optimization methods 

[8, 9].  

Wolff’s theory’s foundation also rests on the analysis made by an engineer and 

mathematician named Karl Culmann. Culmann attended a talk presented by an anatomist 

named Hermann von Meyer regarding the role and significance of cancelli arrangement 

in a collection of different bones. Culmann realized that such arrangement is very much 

analogous to his own drawings of structures with similar shape or load. Thus, Culmann 

depicted his work to von Meyer that the trabecular patterns in a bone seem to be aligned 

along the principal stress trajectories caused by the external loading that he had 

calculated [2, 3, 10].  

Culmann approximated the upper part of the femur bone with a Fairbairn crane 

which was similar in the external shape and form. He derived the principal stress 

trajectories in the crane and concluded that such trajectories are along the trabecular arch 

as he observed in the frontally sectioned femur. This proved the ability of femur to adopt 

as a natural structure in supporting a maximum load with a minimum material. 

Subsequently, this formed the mathematical foundation of modern theory of the bone 

adaptation today [3]. Von Meyer investigated different types of bones and illustrated his 

work in a paper along with Culmann’s results. However, his drawings were incorrectly 

indicating the non-perpendicular angles of the intersecting curves. Eventually, Wolff 
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developed a more accurate and detailed drawing by using more rigorous tools. His 

conclusions were highlighting the importance of orthogonal intersections where 

cancellous bone arch met in the femur head [3]. He cited Culmann’s analysis as a 

mathematical proof declaring that the shape and internal structure of a normal or 

pathologic bone is regulated by the average static external forces present in the 

environment [3]. Since then, a large amount of attention was drawn towards Wolff’s 

theory either challenging or accrediting his opinion.  

Different applications of Wolff’s law can be classified in the following three main 

aspects [2]:  

1- Strength optimization of a structure considering the total mass as constraint,  

2- Alignment of the trabecular trajectories along the principal stress trajectories 

and  

3- Self-adjustment of bone microstructure (considering that the tissue cells 

respond to a mechanical stress)  

The first two are the main focus of this research, and part (2) will be extended to 

plants microstructure. 

2.1.1 Principal (maximum-minimum) stress trajectories 

Principal stress trajectories are families of curves which are orthogonal to each 

other; Figure 2-1  shows the principal stress directions and magnitude in each node of a 

discrete mesh for a cantilever beam with a transverse load at its free end.  

 

 

 

http://thesaurus.com/browse/rigorous
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Figure 2-1: A vector field indicating the directions of the principal stresses at nodal 

points 

The method of how these directions are extracted will be explained in the next 

chapters. 

2.1.2 Wolff’s hypothesis was more investigated afterwards 

Wolff’s theory has extensively studied from the time it was first proposed up to 

the present time. B. Chen et al. conducted an experiment which validated Wolf’s law; 

namely, that bone remodeling is caused by principally mechanical loading and that 

trabecular trajectories follow the principal stress directions. This was validated by 

conducting a simulation using a mechanical stimulus, strain energy density, and observed 

the effect on bone remodeling [11]. 

Pauwels also increased the understanding of stress distributions within bones in 

the scientific community with reference to some of the work carried out by Mattheck. 

Pauwels noted that the arrangement of trabecular bone removes local bending tendencies 

so that only tension and compression exist. This in turn results in shear stress being 

minimized and material utilization optimized. In Pauwels work, radiographs were utilized 

to examine human femur trabecula. He noted that within the femur, the arrangement of 
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spongiosa provided an optimal average service load. Mattheck had also noted that 

biological structures tend to provide minimum weight and optimal mechanical strength, 

and that Von Mises stress tends to be evenly distributed on biological component 

surfaces. These factors, in turn, reduce mechanical failures in biological structures. 

Mattheck points out that it may be good to adopt some design principles from nature in 

man-made designs, since structures in nature offer a unique favorable stress distributions 

[12]. 

Huiskes has carried out an innovative research with his colleagues about the 

effects of mechanical loads on the microstructure of the bone. Mullender and Huiskes 

performed a computer-simulation for bone remodeling and Wolff’s law to see if local 

controlling processes may explain some of the observed phenomena. Their computer 

model created structural arrangements similar to trabecular pattern. They found that 

external loads did cause physical changes in bones by realizing that the trabecular 

arrangement altered when the load varied. Furthermore, they determined that, as 

Wolff’s law would have predicted, trabecular trajectories did align with principal 

stress directions, and that this phenomenon could be modeled using an easy regulatory 

process [13]. Huiskes published a paper in Nature magazine about the influence of 

mechanical loads on the trabecular bone [14].  He elegantly expressed that trabecular 

bone configures to facilitate optimal load bearing, in a mathematical sense. 

Specifically, high stiffness and strength criteria are combined with minimal weight 

criteria. The trabecular bone that was the focus of the work tends to be porous and it 

is commonly found in articulating joints and in the spine. He also created a 
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computational model which was focused on the metabolic processes internal to bone 

material. This model was used to verify that a feedback exists within the cells' internal 

processes and mechanical load transfer. The model that was used went a long way 

towards providing and understanding of how cells maintain a particular trabecular 

structure which is, in a sense, optimal [14].  

However, in his other work he criticized some interpretations of Wolff’s law. One 

of his main criticisms centered on the fact that Wolff's Law was formulated in such a way 

that it did not take into account, directly, how biological processes function. Biological 

regulatory processes do not directly follow rules for mathematical optimization when it 

comes to creating bone material. Even though the bone material has its trabecular 

trajectories lying along principle stress directions, this is an observed phenomenon which 

has been confirmed many times (in recent times this confirmation was carried out using 

FE analysis).It is not, however, a fundamental governing phenomenon the way that 

Newton’s Law of universal gravitation is [15]. 

2.2 Structural design from mathematical (non-biological) point of view: Michell 

theory 

In this thesis, part of the research work has been dedicated to optimal structural 

design. Wolff’s principle has been a major focus along with Michell theory. A lot of early 

work on structural optimization was carried out by Maxwell (1869) and later continued 

by Michell (1904). There are many branches of study in structural optimization, and it 

can be generally classified into four areas of study. Sizing and material are two areas of 

focus which tend to be less theoretically mathematical; in contrast, shape optimization 
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and topology optimization are two areas of focus which tend to involve a lot of 

mathematical theoretical work. 

2.2.1 Shape optimization: 

Shape optimization is focused on the shape of material which can be removed 

from a structure to reduce weight and material usage without significantly affecting the 

strength and stiffness of the structure undergoing optimization. Some material removal 

can cause stress concentrations within a structure, and this can have a negative impact on 

the strength and stiffness of the structure; as such, a key goal while undergoing shape 

optimization is to avoid stress concentrations. In Figure 2-2 below, circular holes are 

converted into other shapes which can more readily maintain structural strength and 

stiffness. 

       

Figure 2-2: A model indicating steps of shape optimization 

2.2.2 Topology optimization 

The goal of topology optimization is to take a design volume, which is given, and 

design the stiffest structure possible which occupies a given fraction of the design volume 

under a certain mechanical loading condition [16, 17]. Another variation of this goal is to 

find a structure which satisfies a desired function and occupies a given fraction of the 

design volume specified. Topology optimization is often used in advance of shape and 

sizing optimization to obtain a template structure upon which a more elaborate design can 

be configured. Figure 2-3 shows a structural design process using topology optimization 

[16].  
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Figure 2-3: An illustration of topology optimization 

A great deal of the history of topology optimization can be found in the works of 

Vanderplaats [18], Sigmund [19] and Rozvany [20]. As well, many researchers have 

devoted their work for analyzing bone micro-structural adaptation by means of topology 

optimization [21, 22]. 

2.2.3 A brief history of Michell theory highlighting its restriction 

As will be explained in the following chapters of this thesis, engineering frame 

structures were modeled based on the Wolff’s law and discrete Michell model theory and 

compared to find the yielding strength of the structures under examination. As mentioned 

above, in 1904, Michell demonstrated his renowned theory which was a mathematically 

driven hypothesis, unlike the Wolff’s law. He established in his theory the basic 

requirements for a structure to support a pre-defined set of external loads while having a 

minimum weight. Michell’s work became much more popular in the nineteen fifties, and 

in 1973 Hemp extended Michell truss theory to make it more rigorous. In his work, 

Hemp utilized a theoretical development of slip-lines for specified conditions (perfectly 

plastic solids within a plane). Slip-lines theory is also known as the theoretical 

development of Hencky-Prandtl nets) [23].  In his classical theory, Michell demonstrated 

that for an engineering structure to have a minimum mass (and of course volume) under a 

given mechanical loading situation, all the structural members must be strained by the 

same strain magnitude, while each element is in simple tension or compression [24, 25].  
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Since then, Michell’e theorem was employed for different purposes such as elastic 

design problem and Limit State Design (LSD), two problems that are known to be 

mathematically related [26]. The research presented in this thesis is focused on the elastic 

design problem only. Michell’s theory was developed for a system composed for 

extremely thin tension and compression elements with a continuous mass distribution. In 

contrast, real world applications for designing engineering structures generally require a 

finite number of discrete elements each with cross section area proportional to the force 

magnitude [24, 25]. 

 

Figure 2-4: A 3D reconstruction of Michell topology (taken from [24]) 

In this thesis, the discrete approximation to the Michell model was employed. The 

use of Michell’s theorem to obtain an optimal layout was not practical enough for many 

applications, and as a result Prager and Rozvany (1977) pioneered a more general idea of 

Michell’s optimum layout theory [27, 28].  

For an optimal frame structure design, if the objective function is the minimum 

mass or the ultimate strength of the structure, then an arrangement of structural members 

(e.g. rods) is sought to equilibrate a given set of external loads. Most of the research 
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around the optimum layout theory can be classified in two major types: continuum 

structures and skeletal structures (e.g. trusses, grillages, beams, etc.) [27]. The latter is the 

main interest of the present research work in this thesis.  

In 1974, Prager proved that the solutions for the problem of optimum layout 

designs of a Michell truss can be non unique [29]. Michell truss is a truss structure with a 

stress constraint and having the minimum mass. Rozvany showed the validity of Prager's 

arguments of the non-uniqueness of solutions for the Michell truss structures. He 

believed that Prager's example was accurate if the truss members were confined to a 

smaller portion of the design plane [30]. He later addressed various weak points of the 

Michell's truss theory and mentioned some limitations and the classes of problems in 

which this theory is applicable. Rozvany showed that Michell’s work (1904) only 

provided optimal layout information for a small number of cases, when   
    

 . In 

many cases, Hemp’s ideas are more suited to a larger number of cases for optimal design 

[31]. Rozvany, in his other work revealed some more exceptions for the orthogonality in 

the case of intersecting compression and tensile trajectories [23]. 

Rossow and Taylor postulated the idea of topology optimization which utilized a 

continuum approach in 1973. When utilizing this topology optimization strategy, the 

design area of significance could be either a truss or frame based design area, or a design 

area composed of continuum elements such as cubes, triangles and quadrilaterals (the 

truss or frame based design areas utilize discrete elements). When discrete elements are 

utilized, design criteria for structural members include the position and number of 

elements as well as their connectivity. When continuum structures are utilized, design 
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criteria for the internal and external shape of boundaries, as well as the selection of inner 

gap spaces, are used to try to satisfy predetermined criteria for the design [16]. 

Most often, Michell’s defined structures, which are idealized (such as trusses), are 

not realistic for many potential designs. However, a simplification of these idealizations 

(such as what is displayed in Figure 2-5) may produce a realistic design. 

              

Figure 2-5: Left) a Michell structure Right) similar structure when made simpler 

What is given above shows that even though Michell’s methodology was, in 

many cases, not realistic, simplified versions of the methodology he outlined were 

effective in some cases. One of these cases where the simplified methodology was 

usually effective involved steel pipes which are welded to form a normal trellis. Even 

though constructing a trellis in this manner is very cost effective, such structures are not 

generally visually pleasing [32]. 

2.3 Extending Wolff’s theory from bone to plant tissue 

As mentioned above, Wolff’s theory was originated based on the observation 

carried out on femur bone. It is valuable to expand the notion of such theory to plants and 

to verify it by performing empirical methodology. Below is a brief summary of the 

research works studying the effects of mechanical stresses on the plants morphology in 

sub-cellular level. 
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2.3.1 The role of mechanical forces in botany 

Despite the fact that a great deal of effort has been continuously devoted to the 

understanding of remodeling of biological tissues such as bone, cartilage and muscle, 

much less work has been given to the interaction between mechanics and botany. In this 

research, Wolff’s law was adapted and extended from bone research to study plants 

micro-structural behavior.  

2.3.2 The rationale behind selecting plants 

Animals are more dynamic and more difficult to constraint under a specific given 

laboratory condition. Plants are known to respond to their mechanical environment in 

ways that are perhaps more drastic, more rapid and more significant than animals; at the 

same time plants are more accurately tracked and measured as changes occur. Animals 

are more complicated in terms of their internal chemical interactions, and it is also harder 

to control their daily activities that might affect the average mechanical load applied to 

their bones. This was one of the motivations for selecting plants as they seemed more 

promising for the present research and it was determined they would likely produce data 

with  significantly less noise. Although Wolff’s theory is dedicated to animals bone 

structure in a macro-scale, in this research this theory is tailored for plants in a micro-

scale [33, 34, 35]. 

2.3.3 Central role of mechanical stresses versus other cues  

It is believed that plants adapt their micro-structural components in such a manner 

as to optimize their structural efficiency for the environment in which they reside. Such 

adaptation normally occurs as feedback to the environmental cues such as light, chemical 

substances, gravity, drought, electrical field, hormones and other features in the 
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surroundings of a plant [36, 37]; many of the abovementioned environmental impacts 

have been thoroughly characterized and investigated for several years. However, likely 

the central influencing factors affecting plant microstructures are mechanical stresses [38, 

39]; furthermore, the role of such mechanical stresses has not been as comprehensively 

studied.  

2.3.4 Microtubules 

When it comes to plants microstructure, typically the roles of Cortical 

Microtubules (CMT), Cellulose Synthase or Cellulose Microfibrils (MFs) are the main 

features of most research works (Cellulose is the structural element of the cell wall in 

green plants - more biological terminologies are detailed in Chapter 4). For the work 

presented in this thesis, the main focus is cortical microtubules. One reason is due to the 

experimental restrictions since with the current tools and the available plant type, 

microtubules were the most visible candidate structures given the facilities and tools 

available. Another reason for the choice of plant structure chosen is that cortical MTs are 

used by most cells when maintaining the orientation of cellulose MFs which are recently 

synthesized; this is verified by a large array of data analysis from experimental work.  

MTs have many roles within plants. Cyr cited Wymer’s work as evidence that 

cortical MTs are capable of behaving as sensors and transducers; in the former case they 

monitor force, and in the later they communicate to cellulose synthase important spatial 

data [40, 41]. Considering the small size of the microtubules, what we see under the 

microscope is mostly a bundle of MTs not a single MT. 

Microtubules are one of the elements of cytoskeleton (CSK) in plant cells and act 

as cells structural components. The cytoskeleton, which is made of protein, acts as 
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"scaffold" or "skeleton" for cells contained inside the cytoplasm. The cytoskeleton is a 

dynamic three dimensional structure that maintains the cells shape. Microtubules are 

involved in two essential roles in the plant morphogenesis; one is the orientation of 

cellulose microfibrils and the other one is defining the division plane. 

2.3.5 History of plants micro-structural adaptation to mechanical forces 

In this section, a brief history of research highlighting plants response (at the 

micro-structural level) to environmental stresses will be discussed. 

There are various studies analyzing a plant’s reaction to mechanical loads from 

different points of views having different objectives [42- 55]; here the focus will be given 

to the “mechano-sensory” feature of microtubules [56]. The term mechano-transduction 

refers to the mechanism of converting biophysical force (e.g. mechanical energy) to a 

biochemical response [65, 66]. 

In 1938 Castle for the first time presented that mechanical stress signals might 

provide directional information for individual plant cells to align their cellulose fibers 

[43]. Green and King later investigated the effect of stress on the orientation of 

microtubules specifically [57]. Williamson showed that microtubules can affect the 

direction of future cell expansion and morphogenesis. He also acknowledged the fact that 

the microtubules orientation arrangement is proportional to changes in a source providing 

directional information to the cell. He also believed that in the presence of the chemical 

and electrical gradient, mechanical stresses have relatively a more direct impact on the 

cell morphogenesis in comparison to chemical and electrical factors; one example of 

mechanical stimuli is turgor pressure which is the driving force for all cells during the 

growth stage [58]. Turgor pressure is defined as the pressure applied on the cell wall by 
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the water inside the cell. Preston also studied the orientation of cellulose as a result of 

mechanical forces and electrical fields [58]. He predicted that microfibrils orientation is 

affected by the transverse and longitudinal loads. Turgor pressure in most plant cells 

(with non-spherical shape) causes the cell wall to experience anisotropic mechanical 

forces. The minor and major axes of a cell are influenced by such mechanical forces. He 

proposed that cortical microtubules could orient themselves when force was transmitted 

through the plasma membrane. When turgor pressure is applied to a cell, the cell will 

tend to lengthen. The cell remains cylindrical, as its walls become reinforced in a manner 

that limits growth in a circumferential direction. He originally proposed the possibility of 

microtubules not getting directional information for re-orientation; however he was 

convinced that microtubules do get directional information to adjust their orientation. He 

outlined that in addition to the fact that chemical, electrical or other signals could affect 

microtubules orientation, mechanical forces could have a large impact. Mechanical forces 

stem directly from turgor pressure, which drives growth in cells, and thus such pressure 

directly impacts morphogenesis in plants; also, electrical and chemical influences are less 

direct and not as significant for plant growth.  
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Figure 2-6: A picture demonstrating the cell wall (W), Microtubules (MT), 

Microfibrils (MF) and Plasma Membrane (PM) [taken from 43] 

Williamson determined that the directional information source MTs use for their 

alignment is outside of the cell; this is contrary to many of the previous theories based on 

MT self-organization. The mechanism that was postulated is based on wall information 

transfer towards the cortical cytoplasm [43].  

In other similar research carried out by J. Lucas and S.L. Shaw, which is more 

recent (2008), they explained that the microtubules pattern can be represented as a model 

for cellulose microfibril extrusion. However, as outlined in other research, they believed 

that the mechanism behind how the microtubules are oriented into specific patterns still 

remains a mystery [59]. 

Figure 2-6 shows the relative location of microtubules, microfibrils and plasma 

membrane in the cell wall, while Figure 2-7 helps to better demonstrate the arrangement 

and pattern of the microtubules, microtubules bundles, cellulose synthase and cellulose 

microfibrils with respect to each other.  
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Figure 2-7: Arabidopsis Hypocotyl cells with cellulose synthase complexes shown; 

these complexes are aligned with cortical microtubule bundles (taken from [59]). 

Hejnowicz has a paper which is somewhat different from most other research 

from an analytical point of view. He determined an angle  , which was defined between 

the cortical microtubules direction and the longitudinal direction of the cell. He studied 

the epidermal cells of Helianthus annuus (a kind of sunflower) hypocotyls. 

He unveiled that there exists a periodic change in an angle   with respect to time 

meaning that   angles have a cyclic change. 
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Figure 2-8: Different   angles in neighboring cells (taken from [60]) 

He determined that the fact that there exists symmetry in such rotating cycle, with 

regards to the morphological directions, delineates the principal directions of a tensor 

quantity, which is possibly in charge of controlling the cycling [60, 61].   

Hejnowicz has other motivating research showing the influence of tensile stress 

on the orientation of cortical microtubules that makes MTs align along the maximum 

stress in cell walls. [62, 63]. Bichet gave details on cortical microtubule patterns with a 

perpendicular orientation to the elongation axis of the cell while having same orientation 
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as cellulose microfibrils. The research conclusion for this work was that the reorientation 

of cortical microtubules is associated with growth [45]. 

In a scope from a micro-to-macro (cell level-to-the entire plant) structural point of 

view, Dumais described how the growth of a plant requires shape forming. He outlined 

that the existence of the aptitude in plants in sensing and transferring mechanical signals 

implies the potential interaction between chemistry and physics of the plant. For a more 

comprehensive understanding from the process of growth and development in plants, he 

believed that it is essential to synthesize the fundamentals of mechanics with molecular 

science; emphasizing that mechanical forces might have a key and central role in 

conducting some biological phenomena. In a research paper he investigated plant tissue 

shape forming under the effect of mechanical buckling and was convinced that the 

rippling shape of a grass leaf is an example of patterning by means of mechanical forces 

(more specifically buckling) [64]. The comparison made between the wavy looking grass 

blade and a knitting sample is illustrated in Figure 2-9. This proves that mechanical 

buckling has influenced the plant tissue.  
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Figure 2-9: Mechanical buckling deformations influence on the plant tissue (a) wavy 

looking grass blade (b) A knitting sample with rippling in the center (taken from 

[64]) 

Dumais’s research shows that mechanical forces are substantial aspects in the 

development of plants [64]. 

There are some research works studying the effects of gravity on the micro-

structure of the plant. A clinostat is a device which is used to reduce or even negate the 

effects of gravity on the growth and development of plants.  The terms “gravitropism” 

and “gravimorphism” are used to describe the effects of gravity on growth and 

development respectively. M. Saiki et al used a clinostat to study the effects of gravity on 

plant growth. When rice seedlings were taken from a “normal” gravitational environment 

and moved to a clinostat, a change was noticed in the epidermal cells. More specifically, 

within half an hour the cortical microtubules were oriented more transversely [67].  

Ranjeva et al. as well studied gravity effects on microtubules orientation. One 

finding was that the cortical microtubule may help act as a stabilizer by sensing strain and 

helping to counter some of the gravitational effects acting on plants. If gravity vector is 

considered as an external force applied to the plant, microtubules act as a strain-gauge; 
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thus changing the direction of the gravity will be followed by the re-orientation of the 

plant’s growth which involves microtubules in the sensation mechanism [68].  

Hardham et al. have also accomplished research proving the alterations in 

microtubules arrangement in Arabidopsis epidermal cells by utilizing a micro needle 

[69]. 

In another recent paper (2007), Elsner studied cortical microtubules (CMTs) when 

subjected to chiral mechanical load. Specifically, the consequence of applying a 

mechanical torque to hypocotyls was observed by tracking the orientation of CMTs.  

 

Figure 2-10: Hypocotyl of sunflower under rotational torque examine. (taken from 

[70]). 

When compared to the cell’s long axis direction, control (untouched) and 

immobilized (but untwisted) specimens had cMTs that were generally transverse whereas 

twisted specimens had cMTs that were generally oblique.  
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Figure 2-11: Cortical microtubules orientation in a sunflower hypocotyls being (A) 

transverse and (B-C) oblique (taken from [70]). 

Such data suggest that cortical microtubules are directly related to the changes in tissue 

stress [70]. 

The effects of electrical fields and mechanical fields were studied by J. M. Hush 

and R. L. Overall in 1991; these fields were not so strong as to cause injuries to the 

plants. Reorientation of cortical microtubules was observed in pea roots such that the new 

orientation of the microtubules was in a plane generally perpendicular to the field applied 

[71].  

Fisher and Cyr examined the cytoplasm of cells when changes in gravity were 

applied. Specifically, tension and compression forces were applied to plants and the 

changes to protoplasts were observed (Protoplasm is a colorless material that contains 

and surrounds other parts of a cell. Protoplasts are living parts of a cell -including 

protoplasm- that had their cell walls removed.). The “protoplasts” generally become 

longer in the direction of the force applied or perpendicular to the force applied. The 

authors (Fisher and Cyr) came to the conclusion that plants acted in a manner such as to 

ensure optimal growth [72]. 
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In 1974, Philip M. Lintilhac examined cell plate orientation when axial load was 

applied. Given a certain stress environment, he found a preferred orientation of cells 

during their attempt to maximize the ability of a cell to manage shear stress based on a 

unique orientation of a cell free from shear stress. Lintilhac found a relationship relating 

the principal stress trajectories and cell wall arrangement [73].  

Hamant and his colleagues inspected microtubules in the shoot apex of a plant 

and its influence on morphogenesis. They showed that microtubules align themselves 

along the principal stresses as anticipated. They identified (by measuring the “average” of 

wall stresses) that a feedback mechanism is mainly responsible for aligning microtubule 

directions along the axis of maximum stress. They studied the shoot apex to determine 

that the principal stress directions have the same arrangement with orientations of cortical 

microtubules [74]. 

 

 

Figure 2-12: Proposed stress patterns for the meristem. a) Stresses in a pressure 

vessel b) Microtubules orientations (taken from [74]). 
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Hamant, in another paper with J. Trass, underlined the importance of interaction 

between biochemistry and mechanics and discovered the role of mechanical signals. This 

further strengthened the undeniable contribution of stress patterns in the future cell shape 

and divisionl although it is not clear yet whether the cell wall or maybe plasma 

membrane is involved in the signaling mechanism [57].  

Uyttewaal et al studied the role of biochemistry and biophysics in morphogenesis, 

and a couple of different patterning mechanisms were explained. Both of these two 

mechanisms are integrated together inside a plant, even though they are sometimes not 

coupled. The first mechanism keeps growth rates under control using mostly auxin-based 

signaling. The second mechanism keeps anisotropic growth rates under control (and 

possibly contributes to patterning growth rates) using mechanical-based signaling while 

utilizing microtubules [75]. 

Dumais showed that a “mechanical signal” could be involved as part of a 

morphogenetic feedback mechanism to regulate the alignment of cortical microtubules 

[76]. 

 

Figure 2-13: A shoot apical meristem (SAM) showing the directions of cell 

expansion, principal stresses, and microtubules (Taken from [76]). 
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Zhou and his colleagues similarly proved that alterations in microstructural 

growth were often due to applied mechanical forces. There was a greater tendency for 

cells under induced mechanical load to divide and elongate in a direction at right angles 

to applied principal stresses [77].   

Many researchers believe that cell wall strain produces stress, which is what 

causes cortical microtubules to become oriented (along the direction of maximum stress) 

[74, 40]. Cyr stated that turgor pressure, although hydrostatic and therefor isotropic, 

generates vectored stress transmission in plant cells because of cell geometry and 

mechanically anisotropic cell walls. As a result of force transfer between plant cells, 

structurally important information can be transferred from cell to cell [40]. MT-cuing 

mechanisms have been studied in different research works. In one experimental study 

conducted by Hush and Overal, plant root cell MTs changed orientation to be orthogonal 

to forces applied after having been exposed to lateral compressing load. Another similar 

study was carried out by Clearly and Hardham, who utilized 5 to 20 minutes of pressure 

at 50 MPa on Lalium leaves; cellular cortical arrays generally reoriented. It is clear from 

the studies conducted that MT are not only influenced by mechanical loads but also their 

arrays can reorient themselves partly due to the influence of mechanical forces. Wymer et 

al. conducted multidisciplinary research between biologists and mechanical engineers in 

1996. They studied the effect of centrifugal forces on the orientation of microtubules in 

protoplasts and concluded that microtubules orientation become aligned with the vectors 

of such forces. They were convinced that microtubules act like biophysical sensors [78, 

40, 79, 80]. 
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Figure 2-14: Schematic picture showing apparatus employed to apply force to the 

pea roots [taken from 79] 

In 1997, Fischer and Schopfer investigated multiple effects of mechanical forces 

along with light and auxin treatment in the maize coleoptiles. They applied bending stress 

to Coleoptile segments, which was achieved by bending them over stainless steel pins 

that were curved 60
0
 and mounted vertically; same segments were used as control sample 

and were placed on straight pins. Mechanical bending stresses, auxin, as well as red and 

blue light were used to investigate cortical microtubule re-orientation (in longitudinal and 

transverse direction); this re-orientation was observed for maize celeoptile specimens at 

their outer epidermal wall. Mechanical loading was in the form of cell extension or 

compression triggered by bending. The researchers outlined in their results that change in 

growth caused by either mechanical forces, auxin or light will affect MT orientation. In 
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their research they were convinced that MT’s change in orientation was a result of 

mechanical stress or rate of growth fluctuations [81].  

Effects of wounds on the cell polarity and as a result on the microtubules 

orientation was studied by Hush et al. The research they conducted showed that plant 

tissue cell polarity changes could be anticipated from MT changes in orientation. They 

proposed that the mechanism behind such significant change might be the electric field 

produced by the ionic wound current and also change of mechanical stress field. After 

observing MT orientation five hours after wounding the plants, the researchers found a 

few patterns in the wounds; those cells located near the wound tip had longitudinal MTs, 

nearby cells located within the wound corner had oblique MTs, cells located at wound 

edges had transverse MTs, and cells at the junction of the stele and cortex had 

longitudinal MTs. These junctions were located near the edge of the wound [82]. 

2.4 Chapter Conclusion 

Wolff’s law and Michell theory have been thoroughly explored, and the manner 

in which they relate to plant microstructure has also been evaluated in detail in this 

chapter. This knowledge will be used in subsequent thesis chapters to develop the body 

of the thesis around how these theories are applicable to various areas of study; 

specifically, in a structural engineering and biological context. 

In the next Chapter of this thesis, Wolff’s law and Michell theory are used in 

engineering frame structural design. A goal of this chapter is to demonstrate how 

biologically inspired theories can apply to engineering to help achieve material and cost 

savings. This extends the applicability of the research presented from only the biological 

realm into the structural design realm as well. 
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Chapter Three: Engineering Frame Structures and Principal Stresses 

 

This chapter is largely concerned with how the internal arrangement within 

structures influence the relative magnitude of the stresses developed internally. This 

chapter helps to demonstrate how biologically inspired theories can be applicable to other 

areas of study (in the case outlined in this chapter, structural engineering). Principal 

stresses and their trajectories will be explained more in detail, along with how to derive 

such trajectories for a given condition. The two major theories mentioned in Chapter 1 of 

this thesis “Wolff’s law” and the “Michell Theory” will be explained in detail and 

compared to one another performance wise.  

Getting the most optimized and best performance from a structure is a mixture of 

engineering, technology, mathematics and science. There are many different theories 

focusing on the structural optimization when it comes to engineering and bio-science. 

Among these theories, Wolff (science related) and Michell (engineering related) were 

among the most prominent. This is the main reason that these two theories were of 

interest in this research. Bringing together these two seemingly different theories form 

bioscience and engineering will allow for more research focus on this topic, which is not 

described in literature sufficiently. Although, utilizing natural structures as a starting 

point for engineering design has been closely studied since more than a century ago, there 

has been many different opinions and hypotheses developed with different interpretations 

giving credit or challenging an idea, and in this thesis there is a more thorough discussion 

about this topic to help better understand it.   
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3.1 What is Wolff’s premise known as “Wolff’s law?” 

Before introducing Wolff and his influential theory, a frontally sectioned femur 

bone is illustrated for a better understanding of bone’s internal structure for engineers as 

per Figure 3-1. Trabecular bone is the spongy part of the interior bone tissue which 

resembles a network of fibers. The exterior surrounding of the femur bone is denser and 

called cortical bone.  Such design of the bone provides a strong structure with the 

advantage of keeping the weight as small as possible.  

 

Figure 3-1: A frontally sectioned view of a femur bone.  The spongy looking part is 

called trabecular bone and the more dense peripheral area is called cortical bone.  

Such design has both benefits of reducing the bone’s weight while maintaining the 

maximum strength for load tolerance [taken from 

http://www.answersingenesis.org/articles/am/v4/n4/architects and modified]. 
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In simple words, Wolff’s law is one of the most distinguished theories 

highlighting similarities between a natural tissue (bone microstructure) and an 

engineering structure (crane-like beam). Julius Wolff was an anatomist and surgeon, and 

his works were one of the milestones in skeleton anatomy and orthopedics. He suggested 

the analogy between the trabecular bone pattern in a femur bone and the principal stress 

trajectories of a crane-like cantilever. He showed that the micro-structural elements in a 

femur bone (known as trabecula) adapt their arrangements with respect to the principal 

mechanical stresses (compression or tension) trajectories as shown in Figure 3-2. 

 

Figure 3-2: A human femur bone frontally sectioned. This was as a standard sample 

in most of Wolff’s observations (taken from [2]). 

Wolff’s theory was in fact originated from K. Culmann and Von Meyer’s studies 

in 1866. Culmann was a notable engineer and evaluated the analogy between the 

trabecular bone arrangement in a human first metatarsal bone and the principal stress 

trajectories of a cantilever beam [83]. Since he was an engineer, he suggested the 
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outcome of his observations to Von Meyer who was an anatomist. These two researchers 

also made the same comparison between the human proximal femur bone and a crane-

like beam. There was a main difference between Culmann’s and Von Meyer’r drawings: 

Von Meyer’s drawings of femur bone trabecular trajectory lines do not form orthogonal 

intersections while Culmann’s drawings of such trajectory lines obviously meet with 90 

degree angles. However, Von Meyer hasn’t clearly entailed the non-orthogonality of the 

intersecting curves.  

 

Figure 3-3: Culmann and von Meyer’s drawings illustrating trabecular patterns for 

different specimens of human bones. Stress trajectory lines on an arched beam are 

also shown (taken from [2]). 

 

Later on, when Wolff made more observations and studied more in detail, he was 

convinced that such analogy between the pattern of stress trajectories in Culmann’s 
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crane-like beam and the trabecular arrangement in the human femur bone cannot be just a 

coincidence. In 1870, he expanded his theory known as “Wolff’s law” and also 

demonstrated that these trajectories intersect at right angles [2]. 

 

 

Figure 3-4: Wolff’s drawings comparing femur bone trabecular arrangement with 

an arched beam based on Culmann’s original work (taken from [2]). 

 

Wolff was also aware of the fact that such geometric arrangements (curves 

meeting at right angles) could be only a rough approximation for real world scenarios. 
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This means that since a bone is a live dynamic tissue experiencing a variety of loading 

pattern, the trabecular bone arrangement could be reflecting the effect of “average” load 

system.  

Since then Wolff’s hypothesis has been accredited or challenged by many 

researchers as more detailed in Chapter 2 of this thesis. Most of the disputes that Wolff’s 

theory was facing were those questioning the orthogonality of the intersecting curves. 

Apart from of all such disagreements about Wolff’s view, a prominent  research work in 

1917 by an anatomist named J.C. Koch appears to have established a sturdy mathematical 

validation foundation for Wolff’s hypothesis [2, 3]. Koch made a comparison between a 

femur bone and an equivalent structure having the same external shape. He stated that 

“the structure of the femur is based upon exact mathematical laws” [3]. He even went one 

step further and stated that not only the internal architecture of the femur bone, but also 

the external profile, is adapted to the functional loading. This means that any variation in 

the exerted mechanical stresses on the bone is closely followed by an equivalent change 

in both internal and external structure. 
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Figure 3-5: Koch’s mathematical analysis illustrating the stress trajectories (tension/ 

compression) in the femur bone (taken from [3]). 

 

3.2 Principal stress trajectories  

3.2.1  Principal stresses 

Consider a continuum body experiencing a system of external forces having stress 

distribution in a given point as per Figure 3-6. The state of stress in this point will be 

defined by the stress tensor in Cartesian coordinate system.  



 43 

 

Figure 3-6: State of stress in a selected point of a continuum body under a system of 

external forces 

 

The stress tensor has nine components; three of which are the normal stresses and 

the other six components are shear stresses.  

  [
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Equation 3-1 

Eigenvalues of a tensor are actually invariants that their values do not depend on 

the coordinate system selected. The eigenvalues of a stress tensor are called the principal 

stresses. Mohr's circle is a graphical method representing the state of stress at a point. 

Mohr’s circle also assists in finding the principal (maximum-minimum) stresses values 

along with their directions as briefly explained here. The derivation for the principal 

stresses is undertaken here by using the proper equation and illustrating it in Mohr’s 

circle in 2D only.  
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As is common engineering knowledge from the fundamentals of Mechanics of 

Materials, for a given state of plane stress 








yxy

xyx


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in a selected point, the principal 

stresses will be defined as Equation 3-2: 
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Equation 3-2 

Utilizing the above equations, one can find the “value” of the principal stresses. 

The “direction” of such stresses is defined as per Equation 3-3: 

   
 

 
                     

 

   
 

 
                        

Equation 3-3 

   is the angle that the maximum “normal stress” plane forms with the X axis and 

   is the angle that the maximum “shear stress” plane makes with the X axis. Note that 

         . 

The presented mathematics are better facilitated and understood by employing 

Mohr’s circle as a graphical tool as shown in Figure 3-7. 
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Figure 3-7: Mohr's circle for a given stress condition at a point. By defining points A 

and B, maximum and minimum stresses will be identified as Points C and D on the 

circle. 

 

A transformation from a regular coordinate system to the principal directions is 

demonstrated in Figure 3-8: 
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Figure 3-8: Normal and shear stresses being transformed from a given coordinate 

system to the principal directions 

 

3.2.2 Principal stress curves known as stress “trajectories” 

Principal stress “trajectories” are in reality a system of curves which are 

intersecting each other with a 90 degree angle as shown in Figure 3-9. Each family of 

curves representing tension and compression in the beam along with the neutral axis are 

also recognizable in this figure. Every point of a “solid line” represents the direction of 

the principal tensile stresses, while “dashed lines” identify the direction of the principal 

compressive stresses.  
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Figure 3-9: Stress trajectories illustrated in a continuum cantilever beam having a 

concentrated load at the free end. Each point on a solid line defines direction of the 

principal tensile stress, whereas dashed lines identify the direction of the principal 

compressive stress. 

 

Following is a brief description of the rationale behind creating principal stress 

trajectories, which will be pursued more in details in the following sections through the 

use of relevant equations and Matlab code showing how to construct them.  

Consider the element in Figure 3-10, which is in an arbitrary point of a cantilever 

beam in XY plane. The cantilever has a concentrated transverse force (F) at the free end 

of the beam with a rigid support at the other end. Dimensions of the beam are as follow: 

length L, depth 2h, width w, cross section area A0 and moment of inertia of the section I. 

 

Figure 3-10: An arbitrary element in the XY plane of a cantilever beam under a 

concentrated transverse force. 
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The state of the stress in the element shown in Figure 3-10 will be as follows: 
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  Equation 3-4 

Principal stresses can be calculated by employing sets of Equation 3-2 and 

Equation 3-3. One can determine the numerical amount of    and     since the values of 

the other parameters in Equation 3-4 are known. However, it is preferred to provide a 

solution parametrically (to be more generalized) by introducing    
  

 
 where M is the 

bending moment acting at a point. Figure 3-11 gives details of calculation performed for 

finding the ratio         and         in two different sections A and B of the beam. 
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 Section A Section B 

y/h                                   

1 

0.8 

0.6 

 

0.4 

 

0.2 

 

0.0 

0.0 

-0.01 

-0.04 

 

-0.09 

 

-0.16 

 

-0.25 

 

1.0 

0.81 

0.64 

 

0.5 

 

0.36 

 

0.25 

0.16 

0.09 

 

0.04 

0.01 

0.0 

0.0 

-0.001 

-0.003 

 

-0.007 

 

-0.017 

 

-0.063 

-0.22 

-0.41 

 

-0.60 

-0.80 

-1.00 

 

1.00 

0.80 

0.60 

 

0.41 

 

0.22 

 

0.063 

0.017 

0.007 

 

0.003 

0.001 

0.0 

-0.2 

 

-0.4 

 

-0.6 

-0.8 

-1.0 

-0.36 

 

-0.5 

 

-0.64 

-0.81 

-1.0 

  

 

 

Figure 3-11: Top-Principal stresses distribution for section A and B of the beam. 

Bottom- A cantilever beam having a transverse single load at its free end. Principal 

stresses have been measured for 11 points on each section A and B. 
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As described in the table in the previous figure, the presented ratios, along with 

the principal directions have been computed for 11 different elements all located in each 

of the two cross sections (A or B). If such analysis is expanded to include more elements 

in each cross section, as well as more cross sections across the whole beam, then stress 

trajectories will be found as shown in Figure 3-9. One set of such stress trajectories are 

tangent to the principal axes and correspond to      and the other set of stress trajectories 

are tangent to the principal axes and correspond to     .  

3.2.3 Building stress trajectories in Matlab  

As described using Equation 3-4, a stress tensor in an arbitrary element for what 

is shown in Figure 3-10 will be as per Equation 3-5: 
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Thus, principal stresses are the eigenvalues of the above stress matrix which are defined 

as follows: 




























22222

22222

3

2

1

)(0

0)(

4

3

0

0

yxyhxy

yxyhxy

wh

F




 

Equation 3-6 

And the eigenvectors will be given as follows: 
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Equation 3-7 

 

It is important to mention that the eigenvectors in Equation 3-7 depend only on x, 

y and h, and they are independent of the force applied (F). As mentioned before, stress 
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trajectories are tangent to the eigenvectors of the aforementioned matrix in Equation 3-5; 

thus they are determined by the following differential equations [84]: 

22

22222 )(
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

 

Equation 3-8 

The explicit form of the solutions for such differential equations (Equation 3-8) 

can be obtained in reference [84]. Once again, the stress trajectories only depend on the 

direction of the principle stresses and not on the magnitude. These trajectories are 

orthogonal to each other and by taking either the plus sign or the minus sign in Equation 

3-8, the two sets of curves representing tensile or compressive principal stresses will be 

achieved. Furthermore, for every element chosen on the beam, there exists a pair of these 

curves, and if they were all depicted, then instead of having Figure 3-9, an entirely black 

cantilever due to so many lines being drawn on the figure would be depicted (so as to 

obfuscate the view of any individual line).  

The differential equations in Equation 3-8 were utilized in a numerical iterating 

algorithm with the initial conditions starting on a given point on the neutral axis of the 

beam and terminating on the cantilever’s boundaries. The stress trajectories were 

produced by using a program in the Matlab programming environment and then results 

were exported to a Finite Element software (Ansys) for optimization analysis, which will 

be more explained in the following sections. Appendix A has the context of the Matlab 

program to create the compressive and tensile stress trajectories. This program is called 

“Matlab Program #1”.  
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Figure 3-12 has a sample output of the aforementioned Matlab program (for 

tensile and compressive stress trajectories) for the input value of cantilever dimensions 

L=100 and 2h=30; this program ran for 300 iterations: 

 

Figure 3-12: Tensile (red) and compressive (black) stress trajectories for a cantilever 

beam with single transverse force at the free end of the beam; built in the Matlab 

programming environment. 

 

As previously described, for each point on the cantilever beam, there is a pair of 

stress curves. Those illustrated in Figure 3-12 are ones selected to go through some 

designated points on the neutral axis of the beam. This figure could show a different set 

of trajectories if other arbitrary points were selected on the beam. The criterion for 

choosing these points is based on having equal distances between the points on the 

neutral axis.  
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The achieved data in the previous figure are now set to be exported to a CAD 

software for further analysis. Thus, after constructing these stress trajectories in Matlab, 

they were exported to Solidworks software for illustration and future structural 

performance analysis. As described in the appendix for Matlab program #1, each curve 

point obtained from this program is saved in a separate data file, which will be readable 

by SolidWorks program. Figure 3-13 illustrates the 2D and 3D reconstructed model 

obtained: 

 

  

Figure 3-13: Generating stress trajectories in SolidWorks software in 2D and 3D by 

means of Matlab program producing the curve points. 

 

3.2.4 Role of stress concentration 

From a stress analysis point of view, one of the most significant distinctions 

between a real world phenomena and a mathematical simulation is stress concentration. 

In the previous section, stress trajectories were constructed mathematically based on a 

Matlab program; however in reality, such trajectories are affected by stress concentration 

in the system under the influence of a concentrated load, a given support condition, 

manufacturing imperfections, geometry, etc. Extracting the stress trajectories for a 

relatively more complicated system (as opposed to what was outlined for the previous 

section) acted upon by a given system of forces (rather than a single load) on a beam 
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having an arbitrary structural shape or support condition will only be achievable by 

means of Finite Element Analysis.  

In this section, the procedure of how to derive the principal stress trajectories 

from a finite element analysis is discussed, which is dissimilar to the process explained in 

the aforementioned section and is more intricate. Stress trajectories are created by means 

of isoparametric interpolation among the nodal quantities obtained from a Finite Element 

Analysis in Ansys software.  

 

3.2.4.1 Isoparametric interpolation: 

As is common engineering knowledge, a shape function is a mathematical 

formula which assists to interpolate data outside a mesh grid where there is no given 

point to identify the mesh. An isoparametric element, coming from its name (iso=same), 

utilizes a similar set of shape functions to describe both the element geometry and 

displacement interpolations; more specifically, displacement functions are utilized to 

describe the element geometry.  

There are advantages and limitations in employing an isoparametric formulation 

when it comes to structural mechanics. One advantage is that same steps for all the 

isoparametric elements are applied and the shape functions are very quickly created. As 

well, it’s not required to separate or categorize elements with a straight or curved side. 

Limitations of this technique will consist of weak performance (being overly-stiff) of 

low-order isoparametric elements. As well, the method is not extendable to problems 

with index variation more than 1 (for example plate bending or shells) which is not a 

concern in this thesis. 
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Assume a two dimensional (2D) element having n nodes in a plane stress 

condition. Isoparametric representation of such an element will be described as follows. 

Equation 3-9 and Equation 3-10 describe an element geometry and displacement 

interpolation respectively: 
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Equation 3-10 

Where   ̂   ̂   defines the location of each node. 

This will be as follows in a matrix form: 
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Equation 3-11 

Where Ni are shape functions, ui displacement and ( ̂,   ̂) are the natural coordinate 

system.  

The above equations for a 4-Node bilinear quadrilateral element after equalizing 

geometry and displacement will be as follows: 
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Equation 3-12 

Where       is the element curvilinear coordinate system.   

Consider two bordering elements; for the isoparametric element to satisfy 

continuity along the boundary, the displacement functions should satisfy the 
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compatibility in their common boundary [85]. Now consider an element having total 

eight Degrees Of Freedom (DOF) two at each node as shown below:  

 

Figure 3-14: A linear square element shown in natural coordinates system ( x̂ , ŷ ). 

The displacement functions are identified as follows: 

       
yxayaxaayxu ˆˆˆˆ)ˆ,ˆ( 4321 

 

yxayaxaayxv ˆˆˆˆ)ˆ,ˆ( 4321   Equation 3-13 

Details of extracting and developing of all these equations in this section are well 

explained in reference [85].  

All the constants    in Equation 3-13 can be found by substituting the nodal 

values. By such substitution, Equation 3-14 will be achieved: 

   44332211
ˆ)ˆ,ˆ(ˆ)ˆ,ˆ(ˆ)ˆ,ˆ(ˆ)ˆ,ˆ()ˆ,ˆ( uyxNuyxNuyxNuyxNyxu 
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Where  
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Equation 3-15 

Equation 3-15 denotes the non-dimensional shape functions or Ni. The value of Ni 

becomes unity at the i
th

 grid point in the system, and becomes zero at the other three 

points. 

Consider a quadrilateral element with its four nodes defined in the global coordinates 

system (x,y) as shown in Figure 3-15. This element is hereby examined by utilizing the 

curvilinear coordinates system ),(  . 

  

Figure 3-15: A square element mapped into quadrilateral in the curvilinear 

coordinate system ),(   

The shape functions will be employed to map the square element shown in Figure 

3-14 in isoparametric coordinates ),(  to the quadrilateral shown in Figure 3-15 in the 

same form to identify the following: 
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 4321),( ccccx 

 

 4321),( ccccy 
 

Equation 3-16 

As well: 

           44332211 ),(),(),(),(),( xNxNxNxNx  
 

44332211 ),(),(),(),(),( xNxNxNxNy  
 

Equation 3-17 

These equations will be employed in the following section of the thesis to create principal 

stress curves in Matlab programming environment by utilizing nodal data outputs in 

Ansys software. 

 

3.2.4.2 Generating stress trajectories in Matlab via Ansys output 

Consider the following cantilever beam created in XY global coordinate system: 

 

Figure 3-16: A cantilever beam in global coordinate system. 

 

The above figure and Equation 3-14 to Equation 3-17 are the basis of Matlab 

programs #2 and #3 (detailed in Appendix A) to generate the stress trajectories based on 

a Finite Element model created in Ansys software.  

The first program (Matlab program #2) will take the dimensions of the beam 

(XL,YL) in XY plane, along with the desired refinement of the mesh in each direction 
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       . This program will sort and classify the nodes and their corresponding nodal 

output for almost any Ansys post-processing data to be useable to develop stress 

trajectories in the other program (#3). As detailed in Matlab program #2, Ansys post-

processing nodal solutions to be sent to the Matlab program will include XYZ 

components of the node, principal stresses components of the nodes and normal and shear 

stresses components of the nodes. Refer to Appendix A for more details about this.  

The third program (Matlab program #3) is user friendly and will produce stress 

trajectories after asking the user of how many trajectories they desire to obtain. Appendix 

A has more details of this program (program #3), which only generates compressive 

stress trajectories. For tensile stress trajectories, the same program was utilized with a 

different indexing.  

Below is a sample output to draw 6 stress trajectories for the following data input 

to both Ansys and Matlab programs as per Figure 3-16: XL=120, YL=40,          

   

The depth of the depicted cantilever does not affect the results, and the value of 

depth was chosen as 60 units for this specific example.       
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Figure 3-17: Stress trajectories illustrated by means of Matlab program for a 

sample beam analyzed in Ansys software. Nodal quantities were imported to Matlab 

from Ansys. 

 

By having the stress trajectories curve points produced in the Matlab program #3, 

all the data will be exported to SolidWorks software first. Then the resultant output will 

be exported to Ansys after removing the undesirable points outside the cantilever’s 

domain.  Figure 3-18 illustrates a sample 2D model obtained. Effects of stress 

concentration are noticeable where the single load F was applied as per Figure 3-10. As is 

observable in both Figure 3-17and Figure 3-18, the tensile and compressive stress curves 

are slightly distorted (especially where the force F is applied) and they are not completely 

symmetrical as a result of stress concentrations and boundary conditions. 

 

Figure 3-18: Stress trajectories generated in Ansys  by means of Matlab and 

SolidWorks software. Effects of stress concentration and boundary conditions are 

noticeable. 
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While comparing Figure 3-13 with Figure 3-18, it is evident that there is an 

obvious difference in the results when the principal stress trajectories derived from the 

mathematical technique and principal stress trajectories extracted from the finite element 

analysis are compared. Frame structures constructed based on Figure 3-18 (finite element 

analysis) have less strength than those constructed based on Figure 3-13 (mathematical 

analysis) due to the distortion in the curves caused by the stress concentration. Therefore, 

the frame structures extracted from the finite element analysis (Figure 3-18) will not be 

compared in the future with frame structures modeled based on the Michell theory. This 

is because the frame structures constructed based on the mathematical techniques (Figure 

3-13) are better candidates with higher strength. 

The capabilities of the previously noted algorithm, detailed in Matlab program #3, 

have to be validated for another cantilever beam with a rectangular hole inside of it. The 

same steps in the previous analysis are taken, and the results are depicted in Figure 3-19. 

The curves acquired from the algorithm in Matlab program #3 oscillate near the hollow 

section of the beam, and in doing so they generate some undesirable curve points. 

However there are only very few minor modifications necessary to the above algorithm 

to make it feasible to develop the principal stress trajectories, which are depicted in 

Figure 3-19: 
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Figure 3-19: Principal stress trajectories of a cantilever with a rectangular opening 

in the middle of the beam, rigid support and a concentrated force at the free end of 

the beam. Effectiveness of the algorithm is demonstrated as the stress curves react 

to the stress distribution around the hole. 

 

These results reveal the effectiveness of the above algorithm to determine the 

principal stress trajectories after the geometry of the beam was altered [86]. 

In the following section, Michell theory will be introduced and some frame 

structures will be generated based on this theory and compared to some of the above 

structures (which were based on Wolff’s theory). 

3.3 Michell theory 

As briefly described in Chapter 2, Michell was a distinguished engineer and his 

theory was mathematically driven, as opposed to the Wolff’s law which was mostly 

based on experimental observations. Michell established the requirements for a structure 

to carry a pre-defined set of external forces while maintaining a minimum weight. His 

calculations revealed that under a specified set of mechanical forces, the structure will 

have the minimum mass if all the structural elements have exactly the same amount of 

strain magnitude; either taking compression or tension strain [24, 25].  

Michell theory was developed for a system of extremely dense and infinitesimal 

tension and compression elements having a very compact mass distribution of the 

structural members. It is important to note that the real world applications of such theory 
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should be based on a restricted number of discrete members, especially when it comes to 

designing of engineering frame structures. This is the main reason that a discrete 

approximation to the Michell was considered [27, 28]. The material utilized for such 

analysis should perform the same stress–strain relationship for tension and compression 

stresses. This would allow an equal strain magnitude to be maintained under load 

alterations. Thus the cross section of the elements should be proportional to the forces 

applied to them to satisfy having equal strain condition. 

The majority of the contemporary research in structural optimization can be 

classified in two main categories: continuum structures and skeletal structures (like 

beams, trusses and grillages) [28]. The second is of central interest for this thesis work. 

Consider designing an optimal frame structure, with the objective function to be 

minimizing the overall mass or the ultimate strength of the structure. In this case, the goal 

will be acquiring the best arrangement of the structural elements (e.g. rods) to equilibrate 

a specified set of external forces.  

3.3.1 Michell’s theory formulation  

Consider a frame structure represented as   to be optimized in a defined region of 

space  , under a given set of forces. Presume that there is a frame structure represented 

as    which satisfies these conditions:  

a) If σ is the material “allowable stress” for tension and compression, the stresses 

in all of the structure’s elements are equivalent to ±σ. 

b) There is a “virtual deformation” of the region   with zero displacement on 

the support, and having strains value of ±  for all the   elements, where   is a 

small positive number and none of the strains in   exceed  . 
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Michell’s theory stipulates that the total mass (or volume) of the structure    is 

less than or equal to that of any other frame structure   in the region   having same set 

of external forces [26]. Details of the proof of such theorem can be found in references 

[87] and [88]. 

It is obvious that the components of the optimum structure    must be along the 

principal strain curves in the virtual deformation; otherwise, a direction could be defined 

for which the strain magnitude will be greater than   thus contradicting the condition (b) 

above. As well, each pair of tension and compression intersects orthogonally at a node. 

3.3.1.1 Virtual deformation 

Consider a frame structure in 2D plane, where the Cartesian coordinate system is 

denoted as      , the curvilinear coordinate system       and the components of virtual 

displacement defined as       as per Figure 3-20. Also,   is the rotation at point      .  

 

 

Figure 3-20: Cartesian and curvilinear coordinate system (Taken from: [26]) 
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Michell curves (or the principal strain curves) outline a family of orthogonal 

curves defined with an infinitesimal segment of the curve    as below: 

                Equation 3-18 

Where A and B are functions of         having positive value known as Lame’s 

Parameters. Strains along   axis are tensile thus will be indicated as +  and along   axis 

are compressive and defined as –  , and shear strain is also zero. 

The following equations relate the displacement components, strains and rotation 

in the curvilinear coordinate system: 

 

 

  

  
 

 

  

  

  
   

 

 

  

  
 

 

  

  

  
    

 

 

 

  
 
 

 
  

 

 

 

  
 
 

 
    

                                                  
 

  
 

 

  
     

 

  
         Equation 3-19 

By introducing the parameter   as being the angle between the positive direction 

of    axis and a fixed reference axis (  axis of Cartesian coordinate system in this case), 

Equation 3-19 will be simplified as below: 

  

  
  

 

 

  

  
      

  

  
 

 

 

  

  
 Equation 3-20 

By solving the sets of Equation ‎3-19 for u and v derivatives  
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), and also 

cancelling A and B derivatives  
  

  
 
  

  
  as per Equation 3-20, the following is resultant: 
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 Equation 3-21 

Finally, by eliminating   and   between the two sets of equations in Equation 3-21, and 

then removing   in the achieved equation, Equation 3-22 will be obtained: 

   

    
   

Equation 3-22 

The above Equation 3-22 denotes the geometrical restraint on the Michell layout curves 

which is known as the “compatibility equation” for the Michell virtual strain system.  

3.3.1.2 Developing Michell curves  

Michell curves could be generated by either analytical or graphical techniques. 

Below is a brief summary of how to construct such curves by analytical method and then 

graphical method will be explained followed by the appropriate Matlab program to build 

the curves. Details of how to derive the equations in this section can be found in 

reference [26]. 

As shown in Figure 3-21, there exist four different arrangements of Michell 

layouts, depending on the angle between the tensile and compressive curves. 
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Figure 3-21: Angles between compressive and tensile strain curves could lead to four 

different arrangements of Michell curves.         where a and b are equal to 

±1  (Taken from: [26]). 

 

Following from Equation 3-18, and knowing that the angle   was formed 

between the tangent lines of the two coordinate systems (Cartesian and Curvilinear), 

following equations will lead to layout curves [26]:  

      
 

 
 
  

  
  

 

 
 
  

  
 

                                                           
 

 
 
  

  
   

 

 
 
  

  
 Equation 3-23 
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By integrating the above equations for Cartesian coordinate components      , the 

following equations will be obtained: 

  ∫                     
     

 

                                          ∫                     
     

 Equation 3-24 

If the values of   and   are determined, then the above Equation 3-24 will lead to 

the Michell layout curves. Below is a brief note on determining such values and more 

details can be acquired in reference [26].  One technique used for finding   and   values 

is by integrating the equation below and employing Riemann’s method.  

   

    
                          

Equation 3-25 

Riemann’s method is a solution to the Problem of Cauchy which is applicable to 

linear, hyperbolic, PDE (Partial Differential Equations) of the second order for an 

unknown function of two independent variables like  ̅     . 

According to Riemann’s method, if the value of   and one of its derivatives (e.g. 

  

  
) are defined along the curve   in Figure 3-22, then the other derivative (e.g. 

  

  
) will 

be known on this curve ( ). Thus the value of   at an arbitrary point like         will be 

defined as in Equation 3-26. 
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Figure 3-22: An arbitrary point         in the curvilinear coordinate system (     
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 Equation 3-26 

Where G is a Green Function defined as follows:  

       √             when       

                                    √             when       Equation 3-27 

In which J0 and I0 are Bessel and Modified Bessel functions of order zero respectively. 

If the boundary value of   is given at the origin,    ), then the value at point S will be 

defined as follows: 

             ( √     )  ∫      √         
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Equation 3-28 
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As shown in the above equations (Equation 3-23 to Equation 3-28) for the analytical 

method, it is apparent that it’s not always practical to solve these equations and 

integrations to draw the Michell curves; thus the graphical method (as described below) 

will be a preferred technique in this research.  

For constructing Michel curves using the graphical method, recall Equation 3-22. 

This equation implies that   is a function of   and  : 

             Equation 3-29 

Equation 3-29 could be interpreted as showing that a change in angle   for a 

finite change of   along    axis (e.g. 
  

  
) is independent of  , and a change in angle   for 

a finite change of   along   axis (e.g. 
  

  
) is independent of  . This means, in simple 

words, that given any of the two coordinate axes of one family (e.g.   axis), the 

coordinate axes of the other family (e.g.   axis), are related using a constant angle of   . 

Figure 3-23 illustrates this statement known as Hencky’s theory: 

 

Figure 3-23: Family of   lines intersecting family of   lines at a constant angle (  ) 

 



 71 

This illustrated property makes it possible to depict Michell curves graphically 

once the boundary conditions are defined.  

Consider point         in the curvilinear coordinate system       as illustrated 

in Figure 3-24. 

 

Figure 3-24: An arbitrary point in the curvilinear coordinate system       

 

Based on Hencky’s theory stated and previously mentioned (for having constant 

  ), and considering the   and   lines intersecting at point         in Figure 3-24, the 

following can be stated: 

                            Equation 3-30 

If the fixed Cartesian coordinate system       is selected in a way to be tangential 

to the curvilinear coordinate system       then the angle          and Equation 3-30 

will be simplified to: 

                     Equation 3-31 
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The above equation will give the value of        at any point since the values of 

                  angles are known.  

Figure 3-25 left, illustrates an example of creating Michell curves step by step 

using points defined as (0,0), (1,0), (2,0) and (0,1), (1,1), (2,1) as per Equation 3-31. 

  

Figure 3-25: Producing Michell curves step by step 

 

As shown in Figure 3-24, if the curvilinear coordinate axes   and   are divided in 

a way that the value of    between the points (0,0), (0,1), …, (0,n) and (0,0), (1,0), …, 

(m,0) will be constant, then the change of angle along any of these layout curves at any 

intersecting point will be a constant (   , as per Hencky’s aforementioned theory. 

Therefore, Michell’s layout can be built without calculating the value of   at every 

intersection. Figure 3-25 right, demonstrates this graphically. 

Appendix A has the details of a Matlab program written to produce Michell 

layout based on the graphical method explained. This program is self-explanatory and 

utilizes what is graphically depicted in Figure 3-24 to Figure 3-26 for the users to 

understand the steps. 
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Figure 3-26: First step used to create Michell layouts by means of the Matlab 

program #4 (Appendix A). 

Below is an example for an output of the Matlab program #4 (detailed in 

Appendix A) for different input parameters. This program is utilized for the following 

values:  

Angle    = 15⁰, distance   ̅̅ ̅̅ ̅ on Alpha axis=40, distance   ̅̅ ̅̅  on Beta axis= 40, desired 

number of nodes along Alpha axis, m=10, desired number of nodes along Beta axis, n= 

10. 

Figure 3-27 is the outcome of Matlab program #4 (detailed in Appendix A) using 

the abovementioned parameters as input: 
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Figure 3-27: Michell layout generated in Matlab programming environment by 

means of graphical method for the following parameters input to the program:    

=    ,   ̅̅ ̅̅ ̅ =40,   ̅̅ ̅̅  = 40, m=10, n= 10. 

 

A second program is performed for the following values:  

Angle    = 5⁰, distance   ̅̅ ̅̅ ̅ on Alpha axis=40, distance   ̅̅ ̅̅  on Beta axis= 40, desired 

number of nodes along Alpha axis, m=10, desired number of nodes along Beta axis, n= 

10. 
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Figure 3-28: Michell layout generated in Matlab programming environment by 

means of graphical method for the following parameters input to the program:    

=   ,   ̅̅ ̅̅ ̅ =40,   ̅̅ ̅̅  = 40, m=10, n= 10. 

As shown in these two figures, the effects of changing the parameters are 

noticeable in the resultant Michell layout. Especially when it comes to generating a 

cantilever frame structure whose components follow Michell’s curves layout, various 

trials and error sets should be performed to obtain the desired beam’s geometrical 

properties (like aspect ratio).  

For performance comparison analysis of the frame structures produced based on 

Michell layout, the produced structures were transferred to SolidWorks software after the 

nodal points were created in the Matlab program #4 detailed in Appendix A. Each node’s 

XY component was created in this Matlab program and then exported to SolidWorks 

software, and finally the model was transferred to Ansys for further analysis.  
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The next step in the analysis uses Michell trusses obtained in this section to be 

compared to the frame structures generated based on Wolff’s theory (section 3.2.3 of this 

thesis). The following section gives more detail for such a comparison. 

3.4 Strength assessment of frame structures modeled based on Michell and Wolff 

theories  

In this section, a performance comparison will be carried out between two 

different types of frame structures: structures modeled based on principal stress 

trajectories and Wolff’s theory as described in section 3.2 of this thesis, and frame 

structures modeled based on Michell’s theorem as described in section 3.3 of this thesis.  

All these frame structures are in plane, and the cantilever elemental members are 

composed of identical rods all joined together. At the free end of the cantilever, there is a 

single transverse force applied, and the other end of the beam has a rigid support with 

zero degree of freedom. A static equilibrium condition without a pre-stress loading is 

considered for analysis.  

In order to have a consistent performance comparison of the cantilevers produced 

based on Wolff’s and Michell’s theories, each of these two pairs of beam models should 

have the same geometry, aspect ratio, total mass and also relatively the same mass 

distribution. 

For the Ansys software simulation, the material for each cantilever is 

homogeneous, isotropic and linear elastic. Modulus of elasticity for each of these models 

is E=200 Gpa with a Poison ratio of      . Element type was chosen as “BEAM3” 

with equal real constant values for both models. BEAM3 has 3 DOF at each node and is a 

uni-axial element having compression, tension, and bending simulation abilities.  
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Several cantilever models were generated based on Wolff and Michell’s theory 

and each set of corresponding models were compared together. Those frame structure 

modeled based on the Wolff’s law had in average slightly larger total mass (by 6.5%) and 

a very negligible higher aspect ratio (by 1%) as compared to their peer Michell 

cantilevers (mass and aspect ratio are supposed to be close to identical for comparison).  

An example of a cantilever modeled based on the Wolff’s hypothesis (where 

beam elements follow principal stress trajectories), is shown in left hand side of Figure 

3-29 and a cantilever based on Michell analysis is on the right: 

 

Figure 3-29:     - example of a cantilever beam generated based on the Wolff’s 

premise (beam elements follow principal stress trajectories),       - an example of 

a model of a cantilever obtained based on Michell’s theorem having identical aspect 

ratio, total mass and fairly the same mass distribution 

 

The analogous Michell frame structure for the comparison is created by 

performing several iterative trial and error approaches and by adjusting the parameters 

(                ) shown in Figure 3-24 and Figure 3-25. The resultant beam is 

similar to the one illustrated in the right hand side of Figure 3-29. As mentioned above, 

mass distribution (per unit area) has to be relatively the same for both of the models. A 

constraint for such comparison between the two cantilevers performance is the material 

yield strength.  
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Final results of the comparison made between the two aforementioned models 

confirms that when the cantilever model based on the Wolff’s premise is compared to the 

corresponding cantilever model based on the Michell’s theory, enhanced performance is 

achieved by Wolff’s theory (element members arrangement follow the principal stress 

trajectories). This means that the value of the maximum allowable strength of the beam 

increases around 10% to 18% for a cantilever modeled based on the Wolff’s hypothesis. 

In addition, there is another significant challenge while drawing the cantilever models 

based on Michell’s theory. Given Equation 3-31 and Figure 3-25 to extract Michell frame 

structure graphically, and the fact that the nature of constructing such cantilever is trial 

and error based using five parameters (                ), it is obvious that it’s very 

tedious to obtain the desired geometry and aspect ratio of a beam. These five parameters 

are independent, which applies a great deal of restrictions for obtaining the preferred 

displacement, aspect ratio and as a resultant total mass of the structure. Thus by 

modifying these five independent parameters, a variety of cantilevers are obtained with 

hard to predict aspect ratios as shown in Figure 3-30. 

 

Figure 3-30: Changing the five independent parameters                 , will 

result in multiple cantilever models with unpredictable aspect ratios 
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For this reason, satisfying dimensional borders and restrictions is somewhat 

impractical or considerably time consuming given the trial and error nature of 

constructing Michell layouts as per the methodology employed here. As also mentioned 

in chapter 1, there are some other limitations in employing Michell’s theory, like the non-

uniqueness of the solutions for optimal layout designs of a Michell truss [29]. Therefore, 

creating the cantilever models based on the Wolff’s hypothesis will provide us with a 

more extensive design domain without almost any concern regarding the predefined 

dimensional or mass restrictions. As well, by employing Wolff’s theory in designing the 

abovementioned cantilevers, a more economical and time efficient procedure will be 

gained [89, 90]. In simple words, when it comes to an optimization problem with the 

objective function of increasing the yield strength of a frame structure (in this case 

cantilever beam), those structures whose elemental members’ arrangement follow the 

principal stress trajectories (constructed based on Wolff’s method explained in section 

3.2) are a preferred option to structures created based on Michell’s theory (detailed in 

section 3.3).   

3.5 Some Notes about How Thesis Chapter 3 is Associated to Chapter 4 and 5 

Here is a brief description on how Wolff’s theory, Michell theory (structural 

optimization) and plants microstructures are associated together: 

 Michell theory is mathematically driven and it is one of the most 

prominent theories in structural optimization. On the other hand, Wolff’s 

theory is one of the most distinguished theories which originated from 

both experimentation and mathematical studies. The effort to bring bio-

science and engineering more closely together is the reason why these two 



 80 

prominent theories were selected to be compared against each other. The 

main relationship between the experimentation conducted and these two 

theories is that in all three cases, some attempts are being made to achieve 

structural efficiency. For Wolff’s law, the structural efficiency stems from 

the fact that a bone self-optimizes according to its loading environment. 

This has a close correspondence with the thesis experimentation, which 

demonstrates a similar phenomenon for plants. Michell theory represents 

another avenue, based on mathematics, for determining the most optimal 

structural efficiency.  

 The fundamentals of Wolff’s theory are based on bone’s micro-structure. 

As mentioned in this chapter (Chapter 3), Wolff’s theory is details the 

effects of mechanical loading on the micro-structure of the bone. As 

mentioned in section 1.1 of this thesis (main thesis objectives), one of the 

objectives is to expand Wolff’s theory to the domain of plant micro-

structure. Following, the effect of external mechanical forces on the 

micro-structure of a plant will be studied (Chapter 4 and 5). The 

experimental results will be used to validate the use of Wolff’s theory in 

the domain of plant micro-structural behavior. 

 As will be shown in Chapters 4 and 5, the effects of external mechanical 

forces on the micro-structure of a plant will be studied. A common 

investigative question is: after finding how the mechanical loads interact 

with plant micro-structure, then what are the benefits/ applications of such 

study, and where can the findings of this study be employed? The main 
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answer is that by employing such results one can improve the strength of 

frame structures in engineering applications, once an appropriate internal 

arrangement of the elements is selected (which is the core idea in Chapter 

3). 
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Chapter Four: Biological Preliminaries and Experimental Tests 

 

In this chapter, at the beginning, some biological fundamentals and terminologies 

will be described for engineers. Then details of the experimental tests performed to track 

and record Microtubule direction in the Arabidopsis root cell when mechanical loads is 

applied will be explained. In these experimental tests, Microtubule orientation was 

defined in different sections of the root cell, when the root was free of any external 

mechanical forces (still having internal turgor pressure). As well, the effect of gravity is 

studied followed by studying the influence of an external mechanical bending moment on 

the Microtubules orientation.  

One might ask:  why study plants and their behavior when responding to external 

environmental factors? As mentioned earlier in Chapter 2, one reason is that plants are 

inactive, which makes it easier to control the desired lab test environment and 

parameters. As well, plants have more prompt reaction to environmental loadings (in the 

range of few hours) while other tissues like bones need days and maybe months to adapt 

their microstructure and react to external loading. Thus plants are ideal specimens to 

model and investigate their form-function interaction.      

Investigating a plant’s micro-structural behavior from an engineering point of 

view is not a very simple task. When it comes to biology, there are very many 

unpredicted or unknown parameters involved in the plant response to certain stimuli, 

which are not necessarily very understandable for biologists or engineers. As well, some 

engineering theories and hypotheses might not be very obvious to biologists or practical 

enough to be applied in the field of biology. This makes the process of understanding 
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plant behavior from and engineering point of view somewhat difficult. More specifically, 

for the purpose of simulating a plant (or plant cell) with software to investigate 

mechanical loading effects, various simplifications and assumptions are involved to 

approximate a real world scenario.  

The key point is that plants and their behavior, as many other living tissues, can’t 

infringe basic chemistry or physics laws [91]. The effect of mechanical forces has always 

been observed in a macro scale, e.g. the wind load bending a tree stem in the direction of 

the wind blow as shown in Figure 4-1. As observed in this figure, the roots tend to be 

longer and thicker on the right hand side of the root (bearing tension stress) which adds 

more reinforcement to the surrounding soil. On the contrary, the compression side (left 

hand side) has roots which tend to be smaller and shorter [92]. 

 

 

 

 

Figure 4-1: A tree trunk deformed under the strong 

wind condition. Based on the main wind direction 

(right to left arrow), the roots tend to be longer and 

thicker as they undergo the tension stress which 

causes more reinforcement to the surrounding soil. 

On the compression side the roots tend to be smaller 

and shorter (taken from [92]). 

 

Seemingly, such effects (like adaption to wind 

loading) in a micro scale are conceivable and need to be verified.  
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Material properties of biological tissues could be altered depending on their age or 

function. This could be directly related to the cell walls. Newly born and younger plant 

cells tend to be more elastic, while older cells are less elastic. Material properties of each 

organ in the same plant are different. Even for a particular part of a plant, material 

properties could change during the growth stages or if subjected to variable amount of 

force applied [91]. Interestingly, there is evidence that the tensile strength of Cellulose 

Micro-Fibril is comparable to that of structural steel [93]. 

Some researchers believe that studied plants response to mechanical forces dates 

back to even before 1938 Castle’s investigations (please refer to Chapter 2 section 2.3.5). 

It is believed that in 1878 Vochting was the first who discovered such relation. He 

realized that by hanging his experimental specimen fruits from a fence, stems of such 

fruit will have more vascular tissues than the normally grown fruit on the ground. As 

mentioned in Chapter 2 of this thesis, many similar attempts have been repeated to study 

the relation between mechanical forces and the equivalent plant reaction. Some 

researchers indorsed such direct relation and other refuted this. Niklas [91] believed that 

one reason that some similar experiments had different outcomes was the fact that 

researchers didn’t consider normalizing the mechanical forces utilized in their 

experiment; this means that experiments having similar force magnitudes, material 

properties but different plant dimensions would have different mechanical outcomes.  

In addition, many plant materials cannot be clearly identified as an ideal solid or 

ideal fluid; although engineering materials themselves are not theoretically ideal. The fact 

that material properties of biological tissues (including plant cells) alter during growth 

and developmental stages, highlights their difference with classical engineering structures 
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and analysis method. Thus, understanding how engineering fundamentals are extendable 

to biological science is an important asset in this area of research.  

In the presented research for material simulations, ideal solids are assumed. 

Another approach is to perform simulations by means of utilizing visco-elasto-plastic 

materials, but this other approach is unproven and needs to be further investigated [91].  

4.1 Microtubules 

Inside each plant cell there exists an aqueous solution named the Cytoplasm. The 

Cytoplasm is jelly-like and has the role of holding most of the sub-cellular organs 

together. The cytoskeleton is a structure inside the Cytoplasm which is considered to be 

cell’s “scaffolding” or “skeleton”. Microtubules are hollow tubes which are one of the 

elements of Cytoskeleton and have important role in sustaining cell’s structure. Each 

Microtubule itself is made of a protein called tubulin as shown in Figure 4-2: 

 

Figure 4-2: Microtubule schematic structure- each Microtubule is made of protein 

called tubulin (taken from 

[http://www.google.ca/imgres?imgurl=http://www.cytoskeleton.com/media/wysiwyg/

MT_schematic_2.jpg&imgrefurl=http://www.cytoskeleton.com/tubulins&h=1712&

w=1944&sz=395&tbnid=c7bP9iUIuSQhbM:&tbnh=90&tbnw=102&prev=/search%

3Fq%3Dmicrotubule%2Btubulin%26tbm%3Disch%26tbo%3Du&zoom=1&q=mic

rotubule+tubulin&usg=__fUa2AmH9pJDXHMErPlanHIkLwcI=&docid=IYk94oH

PiIQUIM&sa=X&ei=_f4QUqqaBoPHiwK31YGQCg&ved=0CEwQ9QEwBA&dur=

706]) 
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Microtubules are highly dynamic, their diameter is around 25 nanometers and 

their length is in micrometer order, which could reach as high as 25 µm. Microtubules 

length can vary as required by the cell (e.g. adjusting to spatial positioning or performing 

mechanical work) [94]. In simple words, such variation in the Microtubules length is 

called polymerization if it’s an assembly process (Microtubule growing in length) and is 

called de-polymerization if it’s a disassembly process (Microtubules shrinking in length), 

as demonstrated in Figure 4-3. Such growth and shrinking is driven by losing and 

receiving tubulins from each end of the Microtubules. 

 

Figure 4-3: Microtubule polymerization and de-polymerization process [taken from 

http://www.nature.com/nrm/journal/v9/n4/box/nrm2369_BX1.html] 
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The Microfibrils (MF), as shown in Figure 2-6 in Chapter 2, is composed of very 

fine fibers in the cell wall with diameter in the range of nanometers. This figure also 

shows the location of both the Microfibrils and the Microtubules in the cell wall. As 

mentioned before, Microtubules influence Microfibrils deposition and this doesn’t affect 

the shape of a cell instantly [95, 96]. The shape of a plant cell is typically imposed by the 

cell wall [97, 98, 99]. 

4.1.1 Why Microtubule and why orientation of Microtubule? 

One might ask  why the orientation of the Microtubules might be of interest 

among other seemingly analogous organs inside a cell (e.g. Microfibrils or Cellulose 

Synthase). As mentioned in the Chapter 2 of this thesis, Lucas and Shaw in their research 

showed the arrangement and pattern of the Microtubules, Microtubules bundles, 

Cellulose Synthase and Cellulose Microfibrils with respect to each other, all together in 

one schematic as shown in Figure 4-4:  

 

Figure 4-4: Cellulose Synthase and Microfibrils, along with Microtubules in a newly 

born (left) and mature (right) cell. Cellulose Synthase (dotted lines) have the same 

arrangement as Microtubules (solid lines). Most likely, the direction in which 

Microfibrils are deposited is defined by the Microtubules orientation. Individual 

Microtubules form bundles of Microtubules (taken from [59]). 



 88 

 

As seen above, Cellulose Synthase, Microfibrils and Microtubules have the same 

orientation. It is believed that Microtubules are the key factors in directing the orientation 

of the Microfibrils and Cellulose Synthase; however the mechanism is not very well 

understood [100]. For this reason, the study of Microtubules was chosen for the research.  

Another point about Microtubules is that what one sees under the microscope is not 

actually an individual Microtubule, it’s in fact a bundle of them. Each individual 

Microtubule is bound to its peers to form a bundle. 

Figure 4-5 is a schematic drawing of a plant cell wall showing the local spatial 

arrangement of Microtubules, Microfibrils and Cellulose Synthase with respect to the 

plasma membrane. The plasma membrane, also known as cell membrane, is a biological 

lipid bi-layer which separates the internal part of the cell from the external surroundings. 

The plasma membrane is distinct from a cell wall and its relative position is between the 

cell wall and center of a cell, as shown in Figure 4-6. 
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Figure 4-5: Positional location of Microtubules with respect to Plasma Membrane. It 

is believed that the orientation of Cortical Microtubules might direct the orientation 

of Cellulose Microfibrils. (Top: taken from  

http://www.nature.com/ncb/journal/v7/n10/full/ncb1005-927.html  

Bottom: taken from  http://www.ncbi.nlm.nih.gov/books/NBK26928/) 
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Figure 4-6: A general outline of a typical plant cell. Position of Plasma Membrane is 

shown relative to the cell wall (taken from 

http://www.odec.ca/projects/2004/mcgo4s0/public_html/t4/Analogies.html, 

http://www.ccrc.uga.edu/~mao/intro/ouline.htm and 

http://library.thinkquest.org/C004535/cell_membranes.html  
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Figure 4-7: Microtubules positions versus Cortical Microtubules 

 

4.2 Arabidopsis plant 

The plant considered in this research is called Arabidopsis Thaliana. Arabidopsis 

is a very delicate and tiny flowering plant which is extensively used as a model in plant 

biology. The Arabidopsis plant provides essential advantages for a variety of research in 

the area related to genetics or molecular biology.  
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Figure 4-8: Arabidopsis Thaliana plant 

 

The specimen studied in this research specifically is a transgenic Arabidopsis. 

This means that the Arabidopsis under investigation is genetically modified in a way that 

when placed under microscope laser light, Microtubules will be tracked by the green 

fluorescent light emission. Such emissions are emitted from another protein (called 

MBD-GFP) that binds to Microtubules [101]. MBD-GFP stands for Microtubule-Binding 

Domain-Green Fluorescent Protein. Such green fluorescent reflection is not found in the 

wild plant varieties, and it is very convenient to have a fluorescent “marker” on 

Microtubules for tracking the changes in orientation. Microtubule-Binding Domain-

Green Fluorescent Proteins (MBD-GFP) show a bright green fluorescence reflection 

when subjected to blue light. 
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Figure 4-9: Microtubule bundles in Arabidopsis cell. The thin and transverse green 

lines represent Microtubules, and the thicker vertical ones are the cell wall. 

 

4.2.1 Why Arabidopsis and why Arabidopsis root? 

There are quite a few advantages that make Arabidopsis a popular specimen for 

study in cell biology. One of such advantages is the life cycle. It only takes three to four 

days from cultivation to germination and around six weeks from germination to a mature 

plant. Easy and convenient access to the seeds in stock is another advantage, along with 

the easy method of cultivation in relatively limited facilities and space. In addition, since 

the mutant Arabidopsis reflects fluorescent light emission from a laser beam, our 

specimen studies does not need dyeing, which is a significant noise avoiding factor in the 

experiment.  

The plant roots’ main role is providing nutrition for the plant, as well as holding 

up the physical structure of the plant. The Arabidopsis root is a very suitable candidate to 

study the plant behavior, as it has a simple structure even though it’s a very hard to 

handle organ. Figure 4-10 shows the simple structure of an Arabidopsis root cross-

section. The focus in this research is only on the epidermal layer of cells as shown below.  

Epidermal layer is the outermost layer in the cross section of a root.  
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Figure 4-10: Cross-sectional view of an Arabidopsis root. [taken from 

http://www.mcdb.lsa.umich.edu/labs/schiefel/research/index.html and modified] 

 

One reason for considering the epidermal layer is the efficiency of image taking 

procedure as the interior tissues can often not be accessed. For a confocal microscope, 

images are taken as two dimensional (2D) slices in planes approximately perpendicular to 

the laser beam. A three dimensional (3D) model is constructed by combining the 2D 

slices. Epidermal cells are only sharing sides with neighboring cells directly next to them. 

For this reason, any possible undesired noise from other cells around will be a minimum.  

There are a lot of research works performed on the upper portion of Arabidopsis 

denoted theShoot Apical Meristem (SAM) compared to Root Apical Meristem (RAM) 

(bottom portion of the plant). Figure 4-11 shows the location of SAM and RAM sections 

of the plant: 
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Figure 4-11: Root Apical Meristem (RAM) versus Shoot Apical Meristem (SAM) 

position in a plant [taken from 

http://www.britannica.com/EBchecked/media/376/Apical-meristems] 

 

RAM growth is relatively more controlled than SAM in terms of dimensional 

increase (specially length of the root), and SAM cells are generated in two directions. 

This means that cells divisions in root, which are quite predictable and lateral, are not 

generated for SAM growth. 

 

4.2.2  More about Arabidopsis in this research 

In this research, we preferred the Arabidopsis species aged between about seven 

to fifteen days for experimentation. The reason was mostly the length of the Arabidopsis 

root to be easier to handle under the microscope when aged between seven to fifteen 

days, given the size of petri dish and the area under the microscope lens. Older and more 
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mature Arabidopsis plants could also be studied as well, but since the focus of our 

research was on  roots, and the roots keeps elongating while growing, it would be very 

difficult to visualize longer specimens under a microscope. As mentioned earlier, the 

Arabidopsis root is a very tender and difficult to handle organ; thus a long root when 

reaching the edges of a petri dish, would start bending along the shaped edges. In this 

case, to make it possible to observe the root under the microscope, the root should be 

pulled towards the center of the petri dish (with forceps), and the root should be, at the 

same time, rotated on the surface of media. This reduces the accuracy of the data 

collected as the cells can no longer be in the same orientation as they had naturally grown 

and will rotate and bend in 3D space. Using younger specimens, as mentioned, avoids 

this problem. 

Figure 4-12 illustrates different sections of a mature root.  
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Figure 4-12: Left- a typical Arabidopsis root Right- a close-up view of the root  

 

As shown in the previous figure, it can be seen that in the area defined as “C” 

there are a lot of lateral roots grown on the main root itself. All of these lateral roots are 

initiated at postembryonic stages of the plants growth. When such an area was observed 

under the microscope, there was not in fact a dominant pattern of Microtubules 

orientation in this area. Given the existence of this many lateral roots, it would also not be 

easy to visualize the main root itself. The area defined as “B” was also not favored for 

study due to the existence of root hairs. The difference between the lateral roots and root 

hairs is that each lateral root is an organ, in some cases with sub-roots branching from the 

lateral root that themselves have Microtubules inside. In contrast, a root hair is just a 

single cellular structure.   
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For investigating and tracking the Cortical Microtubules orientation, a region 

from between 1or 2 mm off the root tip (Area “A”) up to maximum 10 or 15 mm off the 

root tip was selected, as illustrated in Figure 4-12. Length of area “A” was on average 5 

to 7 millimeters, and if the media had enough water it could be as long as 15 millimeters. 

This is because the more watery media (or a media with higher nutrient concentration) 

would have fewer root hairs produced. Another rationale behind the preference of such 

region (around cell elongation and maturation zone) over the rest of the root is that 

approximately the first 0.5 to maximum 2 mm of the root tip is the meristematic zone of 

the root where the cell division occurs.. The cells in this zone are still in the early stages 

of growth and cell development.    

The maturation zone, as mentioned, is not a much desired region to study the epidermal 

cells, due to existence of root hair. 

In the root regions with lateral roots, or even sometimes in the maturation zone 

where cells are relatively more mature or aged (Area “B” or “C”), turgor pressure loss is 

almost inevitable; refer to Figure 4-12 and Figure 4-13. A reduction in the water content 

of the medium or the cell tissue also occurs after a certain elapsed time. This also results 

in the diminishing of the cell wall’s elasticity, which results in the erect shape of the cell 

no longer being maintained [91]. Accordingly such regions are not ideal to study the 

CMT’s reorientation for two reasons. Firstly, there is a lack of a dominant pattern and in 

contrast a randomness for the CMT’s orientations. Secondly, when the bending stress is 

applied to such regions, there doesn’t seem an immense resistance to the applied stress, 

and the root very slowly and hesitantly proceeds towards the essentially erect non-

stressed position, unlike the younger cells with higher turgidity which are more stiff.  
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Figure 4-13: Typical expected Microtubules arrangement in region B or C. There 

exists no dominant pattern in the orientation. 

 

 

Figure 4-14 depicts a typical dominant pattern observed in different sections of a root: 
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Figure 4-14: dominant Microtubules pattern observed in different sections of a root 

 

Figure 4-15 shows both a real and a schematic depiction of the length of Arabidopsis root 

grown in a vertical petri dish over time.  
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Figure 4-15- a: Schematic 

illustration of Arabidopsis 

length and growth rate over 

time (taken from [91]) 

 

 

 

 

 

 

 

Figure 4-15-b:  Real world 

images of mature Arabidopsis 

seedlings grown vertically in 

agar media  

 

 

Arabidopsis root growth rate varies in different sections of the root  which are 

depicted in Figure 4-12. However on average the total length of the root will grow 

between 5 to 9 mm per day.  
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4.3 Materials and methods 

In this section some details of how the experiment was performed are explained. 

The following procedure (in the next three paragraphs) is a common practice in 

biological science. 

Transgenic Arabidopsis seedlings were sterilized with 1 ml of a solution 

composed of 440 mg of Dichlor (Dichloro- isocyanuric acid, Sigma D-2536), 5 ml H2O 

and 45 ml Ethanol 95% for 5 to 10 minutes. After decanting the sterilization solution and 

washing the seeds with 1 ml of Ethanol 95% and repeating all these steps for one more 

time, seeds were dried out under the hood and could be used a day after. This entire 

process had to be performed under a controlled sterilized chamber to avoid any unwanted 

dirt that might contaminate the seedlings. The sterilization process is necessary to avoid 

any future mold growth in the Petri dish, and if such process is not performed properly 

the seedlings may be either killed or not sterilized so as to be suitable for 

experimentation.  

Arabidopsis seeds were then cultivated in a half-MS (Murashige and Skoog) 

medium, and were grown in a Sanyo growth chamber. The growth chamber had an 

average temperature of 24 ⁰C, relative humidity of 44% with 16 hours of illumination and 

8 hours of darkness. The chamber consisted of 7 neon lamps with 5 (50 μmol m−2 s−1) 

light intensity. Five of the neon lamps (Osram Biolux L36W/72-965) were for the 

purpose of simulating the natural sun light and the other two (Sylvania GRO LUX 

F36W/GRO-T8) were for promoting photosynthesis process in the plant. 
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The Petri dishes in which Arabidopsis seeds were cultivated were maintained 

vertically the whole time in the growth chamber so that the Arabidopsis roots would grow 

on the outer surface of the agar medium. 

4.3.1 Visualizing preparation 

To observe a sample root under the confocal microscope, the Petri dish containing 

the Arabidopsis root was transferred under the lens without any need for dying or major 

change. The only thing is that a confocal microscope requires is a few drops of water (or 

in some cases oil) under the lens so that the object would be visible. However since 

Arabidopsis root is very delicate, and as a result a very light organ, a few drop of water 

can easily make the root lose its surface contact with the agar media upon which it is 

sitting. Direct water drops cause the root to hover around the Petri dish. To solve this 

problem, a cover slip had to be directly applied on the root. The friction between the 

cover slip and the agar media would keep the root relatively fixed in its position. 

Although this is the only practical method to avoid the root from moving around, there 

are two significant challenges for this method. One challenge is that when covering the 

root with a cover slip, the surface of the cover slip has to be perfectly bonded to the root 

(at least in the area of interest). A small amount of air (like an air bubble) stuck between 

the cover slip and agar media would create a large amount of visual noise that blocked 

the whole process of visualization, as shown in Figure 4-16. A second challenge is that 

since the root is in direct contact with the dry surface of the cover slip, there is a short 

limited time span in which visualization should be performed, otherwise the vulnerable 

root cells might die due to drought.  
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Figure 4-16: Air bubbles trapped between the cover slip surface and agar media. 

 

This vital and limited time was especially of importance when the tracking of the 

Microtubules orientation had to be performed repeatedly after certain hours; since the risk 

of destroying the cells with the dryness caused by cover slip would be higher given the 

repeated nature and long time span of the experiment.  

Once the cover slip is fixed properly holding the root on agar media, then water 

droplets can be applied on the cover slip.  

 

4.3.2 Applying mechanical bending stress 

For the purpose of applying mechanical loadings, very thin rods with about 0.3 

mm thickness and 3 to 7 mm length were employed. These very fine rods, which have 

almost the same cross section diameter of the Arabidopsis root, make it possible to apply 

mechanical stresses to the root, while assuring that the plant is handled properly with no 

damage to the cells. To apply the mechanical bending stress to the root, a few small 
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pieces of thin rods were utilized as scaffolds around the root to keep the final bent shape 

of the root for about six to seven hours. The thin rods are touching the cells which are 

around a few cells away from the one which is bent and studied. Based on this, any 

possible signal transmission from the cells attached to the thin rods to the bent cell is 

negligible and does not affect microtubules orientation at all. The required time of 6 to 7 

hours noted was selected based on the experiment itself, as well as what found in 

literature [102- 105]. These thin rods are slowly inserted inside the agar media in a 

perpendicular direction to the media surface around the root to prevent the root from 

sliding on the slippery surface of the media.  

It is preferred that the intact root does not have a wave shape in the area of 

interest to avoid any possible miscalculation in the orientation of Microtubules. These 

natural wavy patterns in the Arabidopsis root are quite common which may sometimes 

occur due to obstacle touching, gravity direction alteration, or other environmental 

stimuli.   

Bending stress was applied evenly by moving the sub-apical region of the root tip 

on the flat surface of the half-MS media by means of steel pins, as shown in Figure 4-17. 

Application of such bending force continued until the root would form an arch with about 

200 to 600 μm radius of curvature. Maximum bending load could not be easily measured, 

as it was reached by trial and error. The role of such thin rods might be comparable to the 

supports of a beam in a three or four point bending test, as illustrated in Figure 4-17, 

except that in this experiment, high deformations are experienced.  
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Figure 4-17: a sample Arabidopsis root under 

mechanical bending stress applied by three surrounding 

thin rods. Such thin rods act like scaffolding elements 

ensuring the root will not move on the agar media 

surface.  

 

 

If such scaffolds are not placed around the root, then the Arabidopsis root will 

have a tendency to return back to its original straight shape. As explained before, such a 

tendency is specific of younger and newly born cells. Older cells will either not return to 
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the original shape, or very hesitantly and slowly move back towards the original shape 

without fully returning.   

It is very important to make sure that after applying the bending stress, the root is 

still healthy and growing as in a normal condition. For tracking Microtubules orientation 

after applying mechanical load, the images were taken after around 6 to 7 hours after the 

stress was applied so that Microtubules would have enough time to rearrange. Figure 

4-18 shows the observations made right after applying the bending force and 6 to 7 hours 

after applying the load: 

 

Figure 4-18: Tracking Arabidopsis root appearance after applying the bending load 

Left- root immediately after the bending stress is applied right- six to seven hours 

after bending stress is applied. 

 

As shown in Figure 4-18, the Arabidopsis root kept a normal growth pattern even 

though the root was undertaking the bending force. As well, root hairs were slowly 

growing on the outer surface of the root in the area where external load was applied. This 

confirms that Arabidopsis root was healthy and in a normal growing condition. 
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It is worthwhile to mention that there are some studies focusing on the role of 

mechanical bending on the lateral root initiation (somewhat comparable to Figure 4-18) 

which is not included in the scope of this research [105, 104]. 

While applying mechanical bending loading to the root, it is also very crucial not 

to destroy the vulnerable cells of the root in the area where load is applied. More 

specifically, when the root is undergoing bending stress, the region with the lowest radius 

of curvature has got the highest deflection and can be the first place to get injured under 

the load. As well, it is always essential to know that the cells under investigation are 

healthy and normal cells. Fortunately, it is quite simple to recognize a healthy cell in 

Arabidopsis root from a destroyed or unhealthy one. As illustrated in Figure 4-19, 

Microtubules in a damaged cell will not be visible within the area where it is smashed or 

destroyed.  

 

Figure 4-19: Arabidopsis root destroyed under the excessive bending load applied. 

Microtubules in such area are not visible anymore.  
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4.3.3 Some details of imaging process 

Micrographs in this research were captured via a laser confocal microscope. 

Principles of how a confocal microscope functions is very simple as illustrated in Figure 

4-20.  Confocal microscopy was developed to overcome some of the restrictions in 

fluorescence microscopy. In fluorescence microscopy, the light (from the light source) is 

uniformly distributed over the whole specimen. In contrast, confocal microscopy utilizes 

“point illumination”. It means that a small breach in a plane in front of the light detector 

removes the out-of-focus signals (Figure 4-20). Since only light caused by fluorescence 

near the focal plane (Figure 4-20) is detectable, the resolution of images is quite better 

than that of fluorescence microscopy.  

 

Figure 4-20: Basics of how a confocal microscope works. 

 

Observations in this research were performed by using a Zeiss LSM upright laser-

scanning confocal microscope. This microscope was equipped with a 40×water-corrected 

objective and appropriate filters for the detection of fluorescence signal of Green 

Fluorescent Proteins (GFPs).  The settings were as follow: an Argon laser beam with 
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wavelength of 488 nm (maximum power 30 mW, output of 50%, transmission set 

between 35 to maximum 55%) and emission filter LP 505 was utilized in this experiment.  

Images from confocal microscopy were quantitatively assessed by an image-processing 

program named “ImageJ” (http://rsb.info.nih.gov//ij/) to investigate the orientation of 

Microtubules. Since ImageJ has an open architecture, Dr. A. Boudaoud has written a 

code as a plug-in to this software that makes it possible to extend some of the desired 

abilities of ImageJ for the research conducted [106]. This coded ability was measuring 

the dominant orientation of a group of Cortical Microtubules by defining the area of 

interest in the images. This capability was employed in this thesis. 

After drawing a polygon around the preferred region of study on the image 

(Figure 4-21), and subsequently initiating the mentioned Microtubules tool, a log output 

will provide some information that includes the overall average orientation of the region, 

in angles from -90 to 90 degrees. The quality of the Cortical Microtubules orientation 

based on a score from zero to one is also output. All obtained results were quantitatively 

studied, and the obtained numerical data were processed using Microsoft Excel, as 

explained in the following sections of this thesis. 

 

Figure 4-21: ImageJ software utilized in measuring the dominant orientation of 

Microtubules in the area of interest (inter part of the yellow polygon) 

 

http://rsb.info.nih.gov/ij/
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4.3.4 Measuring radius of curvature for each cell 

As will be explained in the following sections, for analyzing Microtubules 

arrangement, one of the parameters to measure is the radius of curvature of each 

individual cell after the bending load is applied. Given the vulnerable nature of the 

Arabidopsis root, measuring the magnitude of the force applied is quite challenging; as an 

alternative, studying the radius of curvature was more practical.  

To achieve this, images from ImageJ were transferred to SolidWoks software. 

Since the real size of the cell will look unrealistic after being transferred to SolidWoks, 

each image should have a proper scale bar. This yellow scale bar, as shown in Figure 

4-22, is created and marked in ImageJ. In SolidWoks software, three arches will be curve 

fitted by means of ‘3 Point Arc’ on the inner surface (R1), mid surface (R2) and outer 

surface (R3) of a cell image as shown below.  

 

 

Figure 4-22: Measuring the radius of curvature in each individual cell by means of 

SolidWorks software. 
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The radius of curvature of the cell will be the average value of these three radii of 

curvature. This ensures the accuracy of the radius of curvature measurements.  

4.3.5 Effect of gravity on the Cortical Microtubules orientation 

One of the very first tests performed on the Arabidopsis root was to verify if 

gravity (as a natural force) affects the orientation of the Cortical Microtubules or not. 

Possible influence of gravity on Cortical Microtubules orientation had to be validated 

before any other mechanical stress were applied so that if there was any gravity induced 

re-orientation, possible interference or superimposition with mechanical load could be 

taken into account.  

To achieve this, Arabidopsis roots were grown vertically in a normal condition as 

explained above. After they reached the desired age of 7 to 15 days, Petri dishes were 

rotated 90 degrees either clockwise or counter clockwise and then visualized after 6 to 7 

hours for the two zones of interest in area A, as shown in Figure 4-12: the cell division 

and cell elongation zone. In both areas, there wasn’t any noticeable alteration in the 

orientation of the Microtubules.  

The same experiment was repeated while rotating the Petri dishes 180 degrees 

relative to the original position as shown in Figure 4-23. Once again, Microtubule 

orientation was investigated around 6 to 7 hours after rotation was applied.   
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Figure 4-23: Gravity direction alteration of 90 degrees and 180 degrees for a period 

of six to seven hours 

 

Again, the same results were obtained as there wasn’t any tangible change in the 

Microtubules orientation.  

While measuring the average angle of a bundle of Microtubules as explained in 

Figure 4-21, there is about a ±5 degrees error margin in the measurement (which is a 

limitation for all such experimentation). This may partially explain the reason why there 

isn’t a noticeable change in Microtubules orientation. In fact, gravity did not significantly 

alter Microtubule orientation relative to later results obtained in this research. As S. 

Matsumoto et al. examined the effects of hyper-gravity (300g) and noticed a significant 

change in the orientation of epidermal cells, it is probable that hyper-gravity might also 

affect Microtubules orientation [107]. This needs to be further investigated, but this 

referenced study did not contradict any results here.  

g g 



 114 

Figure 4-24 illustrates Microtubules orientation in the cell division and cell 

elongation zones (area A) section of the root. It is obvious that in the cell division zone, 

Microtubules are perpendicular to the cell main axis while in the cell elongation zone 

they are angled about 40 to 45 degrees with respect to the main axis; this same result is 

obtained with or without gravity direction change.  

 

 

Figure 4-24: Gravity direction changed 90 degrees and 180 degrees to the original 

direction. Left- Microtubules orientation is perpendicular to the main axis in cell 

division zone right- Microtubules orientation is about forty or forty five degrees with 

respect to the main axis for the cell elongation zone. Such results are identical to the 

observations with no gravity direction change. 
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4.4 Observation results 

4.4.1 Sample controls with no external mechanical loading 

As explained above, Microtubules orientation was first investigated for control 

samples. Control samples were those samples naturally grown in a vertical position in 

Petri dishes free of any external loading environment. After studying around a hundred 

different control samples, there were three different dominant pattern of Microtubules 

orientation observed in each root.  These three different arrangements were observed in 

Area “A” cell division zone, Area “A” cell elongation zone and areas “B/C” (refer to 

Figure 4-12).  

In part of area A which includes root tip and cell division zone, the prevailing 

orientation of Microtubules is transverse with respect to the main axis of the cell. This 

means that Microtubules orientation is perpendicular to the cell growth direction. Figure 

4-25 illustrates this. 
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Figure 4-25: Some selected samples indicating transverse arrangement of 

Microtubules in the root tip and cell division zone. 

 

In the cell elongation zone, the cells’ overall length is longer (compared to cell 

division zone), and since they are fully mature cells, their lengths do not tend to increase 

any further. In this area, as observation confirmed, the prevailing arrangement direction 

of Microtubules had an angle of about 45 degrees with respect to the main axis of the 

root. This angle is in very good agreement with similar experimentation found in 

literature [108, 109]. Below are some examples from control samples showing the 

orientation of Microtubules: 
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Figure 4-26: Observations in cell elongation zone confirm the existence of a 

dominant arrangement of Microtubules angled about 45 degrees relative to the cell 

main axis 

 

However it is essential to mention that these results collected from cell division 

and cell elongation zone are not necessarily a hundred percent analogous in all cases 

using the most stringent criteria. Since cell zones slowly transitions from cell division to 

cell elongation and then maturation zone (when moving along the length of the cell), 

there isn’t a rigid boundary limit defining such zones. Consequently, in the sections 

where each of these three zones are transitioning from one to another, there are always 

numbers of cells that have got a combination of Microtubules orientation pattern. For 

instance, in the area where transitioning from cell division to cell elongation, 

Microtubules in different neighboring cells could have transverse orientation as well as a 

45 degree angle orientation. In the cell division zone, even though it is not very likely, 
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there have been some other exceptions noticed; an individual cell was observed having 

both transverse and inclined orientation of Microtubules at the same time in the opposite 

sides of a cell. Some of these exceptions are noted in Figure 4-27.  

 

 

Figure 4-27: Top: an individual cell shows different orientation of Microtubules 

while transitioning from division to elongation zone. Bottom: three neighboring cells 

having different orientation of Microtubules 

 

As illustrated in Figure 4-27, an individual cell while transitioning from division 

to elongation zone, can have both patterns of transverse and angled orientation for 

Microtubules. As well, in cells tagged with number 1 to 3, it is shown that cell 1 has a 

transverse orientation of Microtubules; cell 2 has slightly angled Microtubules orientation 

and cell 3 has got a combination of orientations for its Microtubules.  

When the cell elongation zone is transitioning to the maturation zone in a control 

sample, it is possible to witness cells having Microtubules aligned around 45 degree in 

the vicinity of another cell not having a recognizable arrangement of Microtubules.  
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As mentioned earlier, the maturation zone was the area in which root hairs or 

lateral roots had started to grow. This zone started around 10 to 15 mm off the root tip. 

However, in some cases, when Arabidopsis root was slightly growing under the surface 

of MS-media, the maturation zone starting point could be as far as 15 to 20 mm from the 

root tip. Thus, if there isn’t a root hair or lateral root in the vicinity of cells in this zone, 

Microtubules angles in this area could still be 45 degrees relative to the cell main axis.  

4.4.2 Effect of mechanical bending force on MT orientation  

Following the application of bending load, for a subset of samples, Microtubules 

were studied immediately after the load was first applied (literally minutes after samples 

were first bent). All samples were studied after 6 to 7 hours of continuous bending load 

exertion.  

Below are some examples of the Microtubules arrangement visualized after 6 to 7 

hours after the bending load was first applied. Red lines in the Figures display the 

dominant pattern of Microtubules measured by ImageJ software.  
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Figure 4-28 ((a) - page 1 of 3): Microtubules orientation along the root cell 

visualized after 6 to 7 hours after the bending moment was applied to the root. 
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Figure 4-28 ((b) - page 2 of 3): Microtubules orientation along the root cell 

visualized after 6 to 7 hours after the bending moment was applied to the root. 
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Figure 4-28 ((c) - page 3 of 3):  Microtubules orientation along the root cell 

visualized after 6 to 7 hours after the bending moment was applied to the root. 
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Below is another series of images taken from a different sample and shows the re-

oriented Microtubules tracked directly after 6 to 7 hours of continuous load application: 

 

 

Figure 4-29 ((a) – page 1 of 3): Another sample showing Microtubules orientation 

along the root cell visualized after 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure 4-29 ((b) – page 2 of 3): Another sample showing Microtubules orientation 

along the root cell visualized after 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure 4-29 ((c) – page 3 of 3): Another sample showing Microtubules orientation 

along the root cell visualized after 6 to 7 hours after the bending moment was 

applied to the root. 

 

As shown in Figures 4-28 and 4-29, smaller angles are seen closer to the tail end 

of the cell (T potion in Figure 4-31) and bigger angles are seen in the middle of the cell 

(M portion in Figure 4-31). 

More figures similar to Figure 4-28 and observations can be found in Appendix B 

of this thesis.   
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Another important detail captured in these images is the root hairs undesirable 

growth in the area of interest. As mentioned before, such root hairs can cause noise in 

collecting data and even it might be one of the reasons for a disorganized Microtubules 

arrangement. The following two images in the next figure are taken from the same 

section of a chosen root: 

 

 

Figure 4-30: Microtubules have lost their arrangement in one of the cells (right) 

after being under the bending load for 7 hours. The left image displays more of a 

typical Microtubule arrangement for when bending load was first applied. 

 

As shown in Figure 4-30, Microtubules in one of the cells had a clear oblique 

pattern directly after the bending load was first applied (highlighted in the left image) but 
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after being exposed to the load for around 7 hours, this same cell lost a clear arrangement 

of its Microtubules (highlighted in the right image). It is hypothesized that such loss of 

arrangement might be either due to the undesired root hair growth from this cell, or 

excessive load applied.  

For those Microtubules having a clear reorientation pattern, similar observations 

were performed for many other samples exposed to bending load. Results of such 

observations are compiled and summarized in the next few figures. 

If an individual cell is considered as a long cylinder, two sections of this cell are 

significant while studying the Microtubules orientation. First is the Middle third of the 

cell, defined as “M”, and the Tail-end sides (thirds) of the cell, defined as “T” in Figure 

4-31.  
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Figure 4-31: Two important sections in tracking Microtubules orientation are 

Middle part of an individual cell (M) and Tail end sides of the cell (T). 

 

Our investigation showed that in general the Middle portion (M) of a cell tends to 

have bigger angles of Microtubules with respect to the cell axis after bending load is 

applied for around six to seven hours; while Tail-end portion (T) of the same cell tends to 

have a smaller angles of Microtubules direction relative to the main axis of the cell. 

Again, this may not be the case for each individual cell, but the general trend of the 

majority of the cells displays such behavior.  

Below are histograms showing a summary of the results on the overall length of a 

cell gathered for control sample and bent samples. The reader should keep in mind that 

immediately following when cells are first bent, and before Microtubules have a chance 

to re-orient themselves, Microtubule orientation relative to the main cell axis might be 

small, as was shown in Figure B-2 (Appendix B). Keeping this in mind, Microtubule re-
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orientation for bent samples, as displayed in all following figures (up to the end of this 

chapter) is quite significant. 

   

 

Figure 4-32: Microtubule orientations with respect to the cell’s main axis are 

compared for control samples and bent samples for the overall length of an 

individual cell 
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To have a better comparison, based on what is shown in Figure 4-31, let’s 

consider the middle portion “M” and Tail-end portion “T” of a cell. In the “T” section of 

a cell for a bent sample, Microtubules generally tend to have a smaller angle (relative to 

the cell main axis) when compared to a control sample; while in “M” section of a cell, 

Microtubules for a bent sample generally tend to have a larger angle when compared to a 

control sample. The next figure displays this phenomenon. 

  

Figure 4-33: Microtubules orientations with respect to the cell’s main axis are 

compared for control samples and bent samples for Middle “M” and Tail-end “T” 

portion of an individual cell 

 

From the above, and based on what is subsequently shown in Chapter 5 (in Tables 

5-3 and 5-5), we can conclude that indeed Microtubules do move to try to orient 

themselves closer to principal stress trajectories when a large mechanical load is applied. 

Chapter 5 will show that principal stress trajectories are generally more transverse (90 

degrees in the previous figure) to the cell main axis near the middle of the cell, and part 
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way between transverse and longitudinal (longitudinal is zero degrees in the previous 

figure) to the cell main axis near the tail end of cell. Following this, we can see from the 

previous figure that for both the middle of the cell (with larger more transverse angles) 

and end of the cell (with smaller more longitudinal angles), Microtubules are orienting 

themselves closer to principal stress trajectories. 

Radius of curvature is also an excellent parameter to measure while investigating 

Microtubules orientation, and this measurement was obtained as illustrated in Figure 4-22 

using the average of three radii of curvature (for the inside, middle and outside of the 

cell). Since measuring the force or bending load applied to the very delicate and fragile 

Arabidopsis root is very difficult, measuring radius of curvature of the bent root is best. 

Figure 4-34 shows the radius of curvature of a cell versus Microtubules average angle in 

the area of focus. These diagrams are plotted once for the overall length of a cell, then for 

the Middle “M” portion of a cell and finally for the Tail-end “T” portion of a cell. 
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Figure 4-34: Microtubules average angle relative to the main axis of the cell versus 

the radius of curvature of the same portion of the cell are compared for each 

individual cell. This comparison is made for the entire length of a cell, and also for 

Middle “M” and Tail-end “T” portion of a cell. 
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It is obvious from the data plots in the previous figure that radius of curvature has 

an inverse relation with the Microtubules orientation. This means that in the Tail-end “T” 

portion of each cell where radius of curvature is higher, Microtubules hold a smaller 

angle relative to the cell main axis; and in the Middle “M” portion of a cell where the cell 

seems to be bent more and having a smaller radius of curvature, Microtubules show a 

larger angle relative to the cell main axis.  

The plots in Figure 4-34 also tend to agree with the statement that Microtubules 

do move to try to orient themselves closer to maximum tensile stress direction when a 

large mechanical load is applied (this is also based on what will be subsequently shown 

in Chapter 5, in Table 5-3 and 5-5). In Chapter 5 it will be shown that principal stress 

direction near the middle of the cell are generally more transverse, and such transverse 

principal stress directions are less the case near the cell ends (where angles are relatively 

more longitudinal). Correspondingly, Figure 4-34, Microtubule orientations are more 

transverse  to the cell (closer to 90 degrees) near the middle (“M” portions) and less 

transverse for the end (“T” portions), which tends to suggest Microtubule alignment 

closer to principal stresses based on what will be shown in Chapter 5. 

The effect of Microtubule positional location of a cell in a bent root (located in 

the inner surface or outer surface of the bent root) was also studied. This is shown in the 

following figure for the inner and outer surface (of curvature) for the cell. 



 134 

  

Figure 4-35: The influence of cell’s positional location in a bent root (inner surface 

and outer surface of curvature) is studied. 

 

If we assume a root is like a beam, then the outer surface of a bent root is the area 

outward from the neutral axis and inner surface will be the inward direction (towards the 

center of curvature) with respect to the neutral axis of the beam. As illustrated in Figure 

4-35, there isn’t a significant difference between the Microtubule orientations in the cells 

located in the outer surface or inner surface of the bent root.  

4.5 Experimental Sources of Error 

The main sources of error for the experimentation are discussed here. These 

sources of error were largely mitigated due to carefully carried out experimentation. 

One of the main sources of error was the fact that since the experimentation was 

carried out with biological specimens, none of the specimens were identical, and all had 

their own somewhat unique micro structure. This introduces some variation into the 

experimental results. 
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Another possible source of error was based on the nature of the bending load that 

was applied. Care had to be taken to make sure that the bending was all in-plane (i.e. with 

limited torque).  

A last source of error has to do with the fact that bending a root can cause growth 

changes (such as causing root hairs to appear). Specimens with root hairs often had to be 

discarded because the microtubule pattern was changed drastically in many of these 

cases. Removing such specimens from the sample set may affect overall results. There is 

no easy way to mitigate the experimental challenge caused by root hair appearance; when 

dealing with a living tissue, sometimes not all experimental variables can be controlled as 

desired as there is always some variability in living tissue behavior. 

 

4.6 Chapter Conclusion 

In this chapter, the manner in which microtubules change orientation in response 

to loading (specifically, bending loading) was the principal focus. In the next chapter 

(Chapter 5) the experiments carried out in this chapter will be simulated and studied by 

finite element simulation, and the results of such simulation will be compared against the 

experiments. It will be shown in Chapter 5 that microtubules orientations (as detailed in 

the experimental results in the current chapter) are related to the principal stress 

directions (based on finite element simulations in Chapter 5). 
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Chapter Five: Microtubule Orientation and Principal Stress Directions 

 

In this chapter, the empirical experiments carried out on Arabidopsis root by 

applying a bending moment (as discussed in Chapter 4) are analyzed and verified by 

means of finite element simulation in the Ansys software environment. Firstly in the 

chapter, challenges and shortcomings in the available data for creating such simulation 

models will be discussed first, followed by an example demonstrating details of an 

experiment carried out to determine mechanical properties of the plant tissue. Subsequent 

to the finite element modeling completed in Ansys, results of such modeling for different 

geometrical or mechanical properties will be discussed. Finally, these results will be 

compared to those achieved from physical experimentation (Chapter 4) and the 

conclusion from such comparison will be presented. 

5.1 Some bio-science replication challenges for engineering software 

There are various challenges when it comes to simulating a plant tissue in a finite 

element engineering software like Ansys.  The main challenge is that there isn’t accurate 

data available in regards to the material properties (e.g. modulus of elasticity, Poisson’s 

ratio) and also material behavior (e.g. linear or non-linear) of such tissue. These 

properties tend to vary for different segments of the specimens examined, so any 

numerical properties presented are estimates. Material properties can also vary widely for 

different specimens. A full accounting of material properties for each specimen is not 

currently possible with the available technology, and the available literature does not 

have any in depth analysis techniques to determine more accurate values of material 

parameters. Consequently, there are likely some unavoidable inaccuracies for any 
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simulation of plant response to stress. Verifying that the simulation is behaving in a 

manner such as to correspond with experimentation is one method that was used to 

mitigate the effect of such inaccuracies. In the coming decades, more studies will need to 

be conducted so that more relevant literature can be generated in order to assist with 

improving the accuracy of model parameters. 

In addition to challenges posed by finding suitable material parameters, 

simulating some real world loading conditions (e.g. the cantilever support type or the 

force type) as precisely as possible is rather unfeasible and time consuming. A smaller 

segment of the Arabidopsis root was selected to make it possible to run the simulation in 

a timely manner, and also because parameters to do a more thorough analysis do not exist 

in the literature (such as parameters defining cell to cell interaction, Microtubule to cell 

interaction etc.). In this thesis, a single cell of the Arabidopsis root was simulated with 

Ansys software. Following is a brief description of one technique utilized to overcome a 

challenge in determining the mechanical properties (modulus of elasticity) of a plant 

tissue in cellular level.    

5.1.1 Modulus of elasticity of the cell wall  

In this section, a creative approach employed by Milani et al [110] to identify 

modulus of elasticity of the cell wall in an Arabidopsis Shoot Apical Meristem (SAM) is 

introduced; the author of this thesis was a second author for this work. The paper 

established a protocol to measure local mechanical properties at the SAM by utilizing 

Atomic Force Microscopy (AFM).  

Atomic force microscopy utilizes a scanning probe microscopy technique which 

is very high in resolution (nanometer scale). Such AFM is composed of a silicon 
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cantilever beam with a pyramid shaped probe at its free end that directly touches the plant 

specimen surface as shown in Figure 5-1.  

      

Figure 5-1: Function of Atomic Force Microscopy (AFM) 

  

Once the probe comes in contact with the surface of the sample it deflects and 

such deflection is sensed and measured by a laser beam. The cantilever is made of 

piezoelectric material, which enables controlling the displacement of the cantilever (away 

from the tip) and the laser deflection measurement yields on the amount of bending of the 

cantilever. By probing the surface in multiple points the force-indentation curve for the 

surface of the sample can be derived. After reviewing the observations, it is concluded 

that the applied force (F) is proportional (based on proportionality constant  ) to the 

square of indentation ( ) which is called a “Pyramidal contact”:       . Modulus of 

elasticity was then defined as: 

       (    )        ( )            Equation 5-1 
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Where   is the Poisson ratio, and         is the angle of the pyramidal tip of the 

cantilever beam [110]. Equation 5-1 originates from Hertzian theory of contact and more 

details about it can be found in “contact mechanics” references. 

In Milani’s research (of which the author of this thesis was a part), the force-

displacement curve acquired by means of AFM had a parabolic shape as shown in Figure 

5-2 [110].  

 

 

Figure 5-2: Force-displacement curve obtained from the AFM performed on the 

SAM of an Arabidopsis plant. The axes are in nm and nN. (taken from [110]) 

 

The radius of the cantilever tip was around 10–40 nm, while the diameter of the 

cells are in range of 5–10 μm.. The modulus of elasticity (E) of the cell wall can be 

determined by and employing Equation 5-1. It was assumed the cell wall had linear 

orthotropic properties with             while z is the direction normal to the cell 
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wall. Such an assumption was based on the orientation of cellulose microfibrils, which 

makes the wall softer in the z direction. This was confirmed by generating the model in 

Ansys software and arbitrarily choosing        and    in a way that the correct 

corresponding force-displacement values are achieved. The element type selected for 

such Ansys analysis was a SOLID45 type. SOLID45 is appropriate for 3D modeling of 

solid materials. This element is determined by 8 nodes and has 3 DOF at each of these 

nodes. As well, this element has plasticity, large deflection and large strain modeling 

abilities.  

 

Figure 5-3: Left- TARGE170 and CONTA175 right- SOLID45 geometry and 

coordinate system 

 

TARGE170 and CONTA175 elements were also utilized to simulate the contact 

between the AFM cantilever tip and the cell wall surface. The contact elements are (in the 

simulation) placed on top of the solid element (SOLID45) defining the boundaries of the 

deformable object. The target surface is defined by target elements (TARGE170) and is 

paired with its related contact surface (CONTA175). Any translational or rotational 



 141 

displacement can be imposed on these two elements, which make it possible to model 

most complex deformations.  

Such Ansys simulation analysis has been performed multiple times for different 

parameters (cell geometry or material) and Figure 5-4 is just a sample representing one of 

these many simulations.  

 

Figure 5-4: One quarter model of the AFM cantilever beam touching the cell wall 

 

As shown in the previous figure, only one quarter of the whole system was 

modeled in Asnys and symmetrical boundary conditions were then applied to ZX and ZY 

planes.  

The model illustrated in Figure 5-4 had these properties: cell wall size of 150   , 

cell wall rectangular mesh size of 18.75   , Poisson’s ratio of   0.4 and shear modulus 

Gs= 3 Mpa. By assigning a linear orthotropic material with             and 
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        , the displacement and stress values for a concentrated force value of 5    

(on the cantilever) will be as follow:              ,                  ,    

               and                   MPa (these values are taken from the 

simulation in Ansys software).  

Such analysis was repeated multiple times for a cell wall size of 250 and 500    

for a variety of material properties. The results for different sizes of the cell wall were 

almost analogous, thus confirming that there is no large influence caused by the cell wall 

boundaries (e.g. stress concentration) affecting the outcome of analysis.  Table 5-1 shows 

one of these force-displacement values. 
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Table 5-1: Force-Displacement values obtained from a finite element analysis 

simulating an AFM experiment on a cell wall 

 Model name: AFM 31 

Material properties: Linear orthotropic 

  Ex,y=4 MPa, Ez=1 MPa 

  υ=0.4, Gs=3 MPa 

Cell wall size 250    

Force (  ) Displacement (  ) 

1 16.606 

2 28.929 

3 48.283 

4 61.654 

5 70.938 

6 87.833 

7 104.613 

8 118.806 

9 N/A 

10 N/A 

11 N/A 

12 N/A 

13 N/A 

14 N/A 

15 N/A 

16 N/A 

17 N/A 

 

As observed in Table 5-1, by applying a vertical force greater than 8    (which is 

equivalent of a displacement greater than 118.806nm), the Ansys simulation becomes 

unstable and does not converge any more.  

Figure 5-5 demonstrates the force-displacement results achieved from the finite 

element analysis performed using Ansys software for a variety of cell wall’s modulus of 

elasticity combinations along X, Y and Z axes. These combinations are shown with labels 
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as “Isotropic” and “Orthotropic Case 1 to 6” in this figure, whose results are also detailed 

in Table 5-2. 

 

Figure 5-5: Force-displacement outcome of Ansys simulation for the AFM 

experiment on the plant cell wall with diverse material properties detailed in Table 

5-2. 
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Table 5-2: Material properties of the cell wall for each simulation shown in Figure 

5-5 

Isotropic: Linear isotropic, E=4 Mpa, υ=0.4, Gs=3 Mpa 

Orthotropic- Case 1 Linear orthotropic, Ex,y=4 Mpa, Ez=3 Mpa, υ=0.4, Gs=3 Mpa 

Orthotropic- Case 2 Linear orthotropic, Ex,y=4 Mpa, Ez=8 Mpa, υ=0.4, Gs=3 Mpa 

Orthotropic- Case 3 Linear orthotropic, Ex,y=4 Mpa, Ez=16 Mpa, υ=0.4, Gs=3 Mpa 

Orthotropic- Case 4 Linear orthotropic, Ex,y=4 Mpa, Ez=1 Mpa, υ=0.4, Gs=3 Mpa 

Orthotropic- Case 5 Linear orthotropic, Ex=4 Mpa, Ey=8 Mpa, Ez=1 Mpa, υ=0.4, Gs=3 

Mpa 

Orthotropic- Case 6 Linear orthotropic, Ex=4 Mpa, Ey=16 Mpa, Ez=1 Mpa, υ=0.4,Gs=3 

Mpa 

 

One of the features in the above analysis performed in Ansys software is that not 

every simulation with any input entry will converge. For example most of the simulations 

performed with Poisson’s ratio of υ=0.3 did not converge; suggesting that υ=0.4 is 

possibly closer to the cell’s Poisson’s ratio in real world. Lack of convergence for υ=0.3 

does not imply nonexistence of a solution for this problem; instead it means that with the 

current assumptions (e.g. material properties and behavior) the program doesn’t converge 

and it might possibly converge by changing the assumptions. As well, some combinations 

of modulus of elasticity in X, Y and Z direction caused the stress- strain matrix of 

material to no longer maintain the positive definite condition.  
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The above results are comparable with the experimental tests results achieved by 

Milani et al. [110]. In the experimental test, Milani et al. obtained curves with indentation 

up to around 400nm (Figure 5-2); however the analysis was only considered up to around 

100nm indentation because the quadratic behavior of force-displacement curves was 

observed only up to about 100nm. On the other hand, the finite element modeling 

performed in Ansys becomes very unstable and stops converging just around same 

indentation value of 100nm. The reason is not really clear why the program doesn’t 

converge after this point, but likely it is related to some assumptions that the model is 

based on (like material behavior and properties) which is due to lack of more precise 

information than what currently exists in the literature. Excessive deformation of some of 

the elements could possibly be another reason behind non-converging program. 

As mentioned earlier the values of             were selected since they are 

in better agreement with empirical results and knowing the fact that the natural 

orientation of cellulose microfibrils causes the cell wall to be softer along the z direction.  

Miliani et al. also realized that the outer cell wall was quite stiffer at the apex of 

the meristem (around 5 MPa), than the side of the meristem (around 1.5 MPa). This 

means that the meristem surface does not have a “unique single” value as modulus of 

elasticity, and instead there is a gradient of modulus of elasticity on this surface.  

5.2 Arabidopsis root cell deformation simulation in Ansys under the mechanical 

bending load 

To analyze the re-orientation of Microtubules as per the empirical observations 

explained in Chapter 4, it is essential to simulate Arabidopsis root cell in a finite element 

software like Ansys, and replicate the same loading system. For this purpose a single 
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epidermal cell was selected with fraction of two other cells in its vicinity sharing a cell 

wall as illustrated in Figure 5-6. The rationale for partially modeling the two neighboring 

cells adjacent to this cell is to diminish the effects of stress concentration ensued from the 

cantilever’s rigid support at one end of the beam, and the concentrated force on the other 

end. Symmetrical boundary conditions were applied to the YZ plane as shown in this 

figure. 

 

Figure 5-6: Arabidopsis root cell simulated with Ansys software. The diameter of 

the cell and the wall thickness were considered to be 20 μm and 1 μm respectively. 

 

As mentioned earlier, the whole cross section of the Arabidopsis root was not 

modeled as modeling all the cell walls’ interactions with one another is very tedious and 

appropriate parameters for this do not exist in the literature. As well, the interaction of 

other materials (such as the interaction between Microtubules and the cell wall) is not 

well understood, and appropriate parameters for a model don’t exist in the literature. 
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Another factor is computer simulation  time, which for even single cell models is quite 

long (often few hours).  

SOLID185 was utilized for Ansys modeling since it has large deflection and large 

strain modeling abilities. This element is identified with 8 nodes having 3 DOF at each of 

these nodes, which is appropriate for 3D modeling. It is necessary to mention that using 

SHELL element to perform such analysis in Ansys will result in failure of all models in 

the earlier steps of large deformation simulation; Even though some SHELL elements 

(e.g. SHELL 181) could tolerate “large strain nonlinear applications”.  

Mechanical properties of the cell wall were considered to be linear isotropic with 

modulus of elasticity of     Mpa and Poisson’s ratio of υ=0.4 (based on work 

presented at the beginning of this chapter for the Arabidopsis SAM analysis, which is the 

closest available in the literature for the Arabidopsis RAM analysis outlined in this 

section).  

 The turgor pressure of the cell was considered to be     Mpa being applied in 

outward direction on all the interior cell walls. Some of the material properties selected 

for such simulations in this section (like turgor pressure) are based on those found in 

literature [91, 111, 112]. The analyzed cell had a length of 300 μm, diameter of 20 μm 

with the wall thickness of 1 μm. The two neighboring cells for the simulation had 200 μm 

length with the same diameter and wall thickness. The mesh type was considered to be a 

cuboid type all along the cell wall except for the common shared wall between each two 

cells, which was of tetrahedron type as shown in Figure 5-7. 
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Figure 5-7: Mesh style of the cell walls 

 

Since the Arabidopsis root is experiencing a large bending deformation in the real 

world, such load in Ansys environment had to be applied to the root cell gradually to 

avoid any sudden disruption to the model. For this purpose the “Large Displacement 

Static” option has to be set properly with the number of “substeps” for the nonlinear 

solution. Once these “substeps” are set properly the status of the “Graphical Solution 

Tracking” plot will be similar to Figure 5-8. On average iteration numbers required for 

the problem to converge was around 300 to 400 iterations.  
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Figure 5-8: Solution convergence tracking in Ansys software. Most of the 

simulations converged after a couple of hundreds of iterations at most. 

 

The “Time” title of the above chart represents the value of the last calculated 

iteration which in this case was selected to be 1. Changing this number (i.e. to 10 or 100) 

will not change the length of the simulation and will just scale it. The x-axis “Cumulative 

Iteration Number” shows the number of iterations for the program to converge. Ansys’s 

solver for such non-linear analysis employs an iterative technique (e.g. Newton-Raphson) 

to find the results. The more non-linear a program is, the larger number of iterations will 

be required with a lengthier graph in x direction. The y-axis “Absolute Convergence 

Norm” label implies non-normalized values having relevant units depending on the type 

of the analysis (in this case force). The “F CRIT” curve is associated to the convergence 

criteria for the force value. This value is defined as being equal to “VALUE × TOLER”; 

where “VALUE” is the square root of the sum of the squares of the applied forces, or a 
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parameter known as “MINREF” (with a default value of 0.001), whichever of the two is 

larger. The “TOLER” default value is set to 0.5% of the applied loads. The “F L2” curve 

specifies the” L2 Vector Norm” of the applied forces. L2 Vector Norm is the square root 

of the sum of the squares of the “force imbalance” for all degree of freedoms. In simpler 

words, it is the square root of the sum of the squares of the difference between the 

internal forces at a specific point and the external forces in that point. 

Figure 5-9 illustrates the model created in Ansys with the abovementioned 

specifications (e.g. material properties) having a displacement value of         μm 

and         μm. 

 

 

Figure 5-9: Displacement vector sum (color coded) of a cell modeled in Ansys having 

displacement magnitude of         μm and         μm. 
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5.2.1 Principal directions in the simulated Arabidopsis root cell 

In this section, the results of stress analysis of the simulation performed in 

previous section (5.2) will be studied. Three different sections of the root cell were of 

main interest: sections A, B and C as shown in Figure 5-10. 

 

 

Figure 5-10: Sections A, B and C of the simulated cell being studied and compared 

to one another. 

 

For each of these sections, the maximum value of the 1
st
 principal stress (  ) was 

obtained from the stress analysis performed in Ansys, and the associated principal 

direction was achieved based on the Equation 3-3. There is a slight transformation of 

coordinate axes so this equation will be usable. By transforming the local coordinate 

system at each node from (x,y,z) to (y,z,x) this equation will be revised as follow: 

  
  

 

 
(          (     ) )            Equation 5-2 

Note that   
  is the angle that the principal direction makes with the local Y-axis at each 

node, as shown in Figure 5-11. The Y-axis shown in Figures 5-6, 5-9 and 5-10 is global 

Y axis and should not be confused with the local coordinate system. Angle   
  will be 

defined as   
        

  and is the angle that principal direction makes with the local 

Z-axis. The Z-axis shown in Figures 5-6, 5-9 and 5-10 is the global Z axis and should not 

be confused with the local coordinate system: 
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Figure 5-11: Principal stress direction in the transformed local coordinate system of 

each node 

 

By extracting the maximum values of principal stress (  ) (which is tensile) of 

the nodes in section A, B and C of Figure 5-10 and Figure 5-12 and calculating   
  from 

Equation 5-2, these following values will be achieved: 

  
              

                   
                    

 

 

Figure 5-12: Maximum value of the principal stress (tensile) in sections A, B and C 

(left to right) detailed in Table 5-3 

 

Details of the Ansys analysis outcome are as follows: 
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Table 5-3: Nodal stress values along with principal stress direction in three different 

cross sections of the root cell (U_y=150  μm and U_z=-100 μm) 

 Max. principal  stress 

   (Mpa) (tensile) 

NODE 

Number 

 

   (Mpa) 

 

   (Mpa) 

 

   (Mpa) 

 

 

  
  (degree) 

 

 

  
  (degree) 

Section A 0.84490 8187 0.47703 0.39938 0.40469 42.26 47.74 

Section B 3.0996 4757 0.15745 2.9737 0.60852 -11.69 78.31 

Section C 0.61076 11531 0.10261 0.51902 -0.21568 23.01 66.99 

 

The compressive principal stresses as well as maximum shear stresses directions 

can be calculated from Table 5-3 knowing that their planes form 90 and 45 degree angles 

with the tensile stresses planes. 

Such analysis was performed another time for same cross sections A to C, but this 

time for the principal directions of the “average” values of the stresses at the nodes in 

each of these cross sections. As shown in Figure 5-13, the nodes used for averaging are 

located on the outer circumferential border of the root cross section. 
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Figure 5-13: Average values to find principal stress directions were calculated based 

on the nodes located on the perimeter of each cross section in the root cell 

 

Results of such analysis are summarized in Table 5-4 below. 

Table 5-4: Principal stress directions of the average value of stress (U_y=150  μm 

and U_z=-100 μm) 

      
 (Mpa)      

 (Mpa)       
(Mpa)      

  

(degree) 

     
  

(degree) 

Section A -0.06294 -0.05650 -0.05754 43.40 46.6 

Section B 0.03175 -0.07720 -0.15886 -35.54 54.46 

Section C 0.03479 -0.12975 -0.011052 -3.83 76.17 

 

 

Values of      
,      

and       
 components in Table 5-4 are calculated based on 

the associated average values of these components in Node 1 to 3 as illustrated in Figure 

5-13. For example      
 

 

 
(       

        
        ). Increasing the number of 
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nodes in each cross section to have a better estimate of the average values of stress 

components did not considerably affect the results in Table 5-4. 

The same analysis was replicated again for different bending loads. As mentioned 

before, such bending was applied by displacement load and the results were consistent 

with the above simulation outcome. This is summarized in Table 5-5 and Table 5-6for 

displacement values of                      and              

        respectively. Table 5-5 is analogous to Table 5-3, where one nodal value of 

stress was examined, and Table 5-6 is analogous to Table 5-4 where an average of three 

nodes were used at each cross section to evaluate average stress. 
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Table 5-5: Stress components and principal stress value and direction in three 

different cross sections of the root cell for two different models with two different 

displacements 

 

∆y=170    

∆z=-140 μm 

Max. principal 

stress    (Mpa) 

(tensile) 

 

   (Mpa) 

 

   (Mpa) 

 

   (Mpa) 

 

 

  
  (degree) 

 

 

  
  (degree) 

Section A 4.2644 1.8720 2.3854 2.1195 -41.55 48.45 

Section B 4.0515 -0.07519 4.0445 0.16229 -2.25 87.75 

Section C 1.1126 0.11715 1.0317 -0.28359 15.90 74.1 

 

 

∆y=170    

∆z=-170 μm 

Max. principal 

stress    (Mpa) 

(tensile) 

 

   (Mpa) 

 

   (Mpa) 

 

   (Mpa) 

 

 

  
  (degree) 

 

 

  
  (degree) 

Section A 3.3470E 1.8753 1.4312 1.6787 41.23 48.77 

Section B 4.4143 -0.07658 4.3930 0.30622 -3.90 86.1 

Section C 3.2332 0.14822 3.0843 -0.67607 12.36 77.64 
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Table 5-6: Principal stress directions of the average value of stress evaluated in three 

different cross sections of the root cell for two different models with two different 

displacements 

∆y=170    

∆z=-140 μm 

 

     
 (Mpa) 

 

     
 (Mpa) 

 

      
(Mpa) 

 

     
  

(degree) 

 

     
  

(degree) 

Section A -0.11069 0.04422 -0.89910 24.63 65.37 

Section B 0.28025 -0.07691 -0.20061 -24.16 65.84 

Section C 0.05310   -0.17298 -0.04829 -11.57 78.43 

 

∆y=170    

∆z=-170 μm 

 

     
 (Mpa) 

 

     
 (Mpa) 

 

      
(Mpa) 

 

     
  

(degree) 

 

     
  

(degree) 

Section A -0.07499 0.03164 -0.08543 29.02 60.98 

Section B 0.31566 9.1333e-04 -0.19959 -25.87 64.13 

Section C 0.04582 -0.11056 -0.03837 -13.07 76.93 

 

Adjusting some parameters such as the mesh type or material properties of the 

cell (e.g. normal or shear modulus) will not significantly affect the results, and the 

general trend of the outcomes is analogous to those presented in Table 5-3to Table 5-6.  
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5.3 Chapter Conclusion 

Comparing the results of such analysis with those achieved from the experiment 

and as detailed in Chapter 4 of this thesis confirms that the Microtubule direction is 

certainly influenced by the maximum value of the principal stress (tensile). In Figure 4-

33 and 4-34 from Chapter 4, the tendency of Microtubules near the middle of the cell to 

orient themselves more transversely to the cell main axis relative to Microtubules near 

the ends of the cell (which were oriented less transversely) is shown from 

experimentation. What is been shown here (and explained in detail in the next few 

paragraphs) is that maximum principal stress direction (tensile), which Microtubules tend 

to align to, is also more transverse near the middle of the cell than at the ends of the cell. 

Since both Microtubule orientation and maximum principal stress direction are more 

transverse near the middle of the cell, the experimentation (physical and numerical 

simulation) confirm that Microtubules move to try to orient themselves closer to principal 

stress trajectories when a large mechanical load is applied. This principal stress is based 

on a maximum value, which is the maximum in the node, among those in each of the 

selected cross sections (A, B and C) of the root cell; this root cell is located in the 

external layer of each of the cross sections as illustrated in Figure 5-12. As detailed in 

Table 5-3 and Table 5-5, by calculating the direction of the maximum principal stress, it 

is demonstrated that in section B the maximum principal stress (tensile) is more 

transverse to the cell main axis (corresponding to an angle closer to zero degrees in 

Tables 5-3 and 5-5), while in sections A and C the maximum principal stress (tensile) is 

less transverse to the cell main axis (corresponding to an angle larger than zero degrees in 

Tables 5-3 an 5-5). This means that in section B of the root cell, the maximum principal 
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stress (tensile) direction is closer to vertical axis (Y), and in contrast in sections A and C, 

the maximum principal stress (tensile) direction is comparatively closer to horizontal axis 

(Z) (refer to Figure 5-11).  

As one can notice in Table 5-4 and Table 5-6, which display the results for 

principal directions for average stresses calculated in each cross section of the root cell, 

principal stress directions do not correspond to the patterns of Microtubules arrangement. 

This suggests that the principal direction of the average stresses cannot explain 

Microtubules arrangement in the Arabidopsis root cell, the maximum principal stress is 

instead the determining factor  

These are very appealing results steering us closer to understanding the main 

cause of Microtubules re-orientation, which corresponds to most of the former similar 

research works conducted in this field. 

 There were two major achievements in the research presented in this thesis. The 

first one is the fact that mechanical loads do influence the micro-structure of a plant cell 

by altering the arrangements of Microtubule orientation. Specifically, Microtubules move 

to try to orient themselves closer to principal stress trajectories when a large mechanical 

load is applied. The originality in this research is that such kind of research experiment 

(studying effects of external bending moment on the Microtubules orientation) hasn’t 

been performed on Arabidopsis root previously. The second achievement of the thesis 

research is based on the fact that Microtubules orientations tend to move closer to the 

direction of maximum principal stresses in the root cell. It’s worthwhile to mention that 

the mechanism behind such reorientations directed by mechanical forces at sub-cellular 

level is still not very well recognized in the literature.  



 161 

Chapter Six: Conclusions and Recommendations 

 

The core of this thesis began in Chapter 2 with a literature review of Wolff’s law, 

Michell theory and expanded concept of Wolff’s theorem in plants; this expanded 

concept involved the role of mechanical forces affecting the reorganization of 

microtubules in micro-structure of plant cell. The subsequent chapter (Chapter 3) focused 

on generating engineering frame structures based on Wolff’s and Michell’s theories. The 

strength of such structures was analyzed based on the condition and constraints provided. 

In Chapter 4, some biological terms were first introduced. Afterwards, the materials and 

methods employed in performing the empirical test on the Arabidopsis root were 

detailed, followed by the data collection and analysis of the achieved results. Such 

experimental observations detailed in Chapter 4 were then validated in Chapter 5 by 

means of finite element simulation in Ansys software. 

In conclusion, the main goals of this thesis were achieved. It was shown that 

mechanical forces definitely affect the microstructure of a plant segment (Arabidopsis 

root) by changing the microtubules arrangement. This confirms that Wolff’s theory has 

the potential to be applied to plants in addition to bone tissue (which is the focus of the 

theory). As well, an enhanced structural performance is obtained if Wolff’s theory is 

employed to generate frame structures rather than Michell’s theory (as was shown in 

Chapter 3). The above mentioned results are further outlined in the following section of 

this thesis.  
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6.1 Objectives achieved 

From all of the aspects highlighted in this research, there were novel objectives 

that were achieved for the study carried out. These objectives were first summarized in 

Section 1.1 of the thesis, and will be detailed here.  

One of the key objectives was to enhance understanding regarding the 

Arabidopsis root cell’s micro-structural reaction to mechanical forces. In this research, 

when talking about plants’ micro-structural reaction, this refers to the reorientation of 

microtubules in Arabidopsis root cells (the key structure of study). This task was carried 

out by means of the empirical tests implemented on the Arabidopsis root. Undertaking 

tests included changing the gravity direction, and also applying an external bending load 

to the root to bend the cells and then visualize and record the alterations in microtubule 

arrangement in certain times by means of a confocal microscope.  Details of such 

empirical tests, visualization and processing of the outcome along with the challenges 

involved in performing such observations are well detailed in Chapter 4 of the thesis. The 

main conclusion was that the answer to the question of “do microtubules sense and 

respond to the mechanical forces?” is “yes”. Microtubules in Arabidopsis root cells do 

sense the mechanical forces and their orientation changes once the external mechanical 

force was applied; however there was no significant change in the microtubules 

orientation when the gravity direction was altered (which is consistent with the 

literature). 

Another objective was to expand the application of Wolff’s theory from bone 

micro-structure to plants (Arabidopsis root) micro-structure, and to verify this expanded 

application.  This goal was obtained when the empirical tests (detailed in Chapter 4) were 
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further analyzed in finite element software. The results of such simulation in Ansys 

software (detailed in Chapter 5) proved that once the bending force is applied, the 

dominant orientation of the microtubules is altered to align more closely to the direction 

of the maximum principal tension stress. 

It is essential to mention that the orientation of microtubules in the Arabidopsis 

root in the newly born cells (free of any external stresses) is along the principal stress 

direction, aligned with hoop stress in a thin wall cylinder. This was also confirmed by a 

simple simulation carried out in Ansys. Microtubules in these young cells are orthogonal 

to the main longitudinal axis of the cell. However, once the cells are fully grown and 

mature, the microtubules are no longer perpendicular to the longitudinal axis of the cell. 

Instead, they form a 45 degree angle with the main axis of the cell. This means that 

maximum principal tension stress direction is influencing microtubule orientation for the 

growing cells in development, but not for mature cells (for the case of no external load). 

This can be partly explained by knowing the fact that maximum shear stress makes a 45 

degree angle with the main axis of the cell, and microtubules, for some unknown reason, 

seem to prefer aligning to maximum shear stress direction instead of aligning to 

maximum normal stress. It is not completely understood in the literature why the 

orientation of microtubules have such a preference once the root cells grow longer (as 

they become more mature). Also, the mechanism behind the noted reorientation for the 

case of applied external load is not very well recognized in the literature.  

The third and final main objective of the thesis was to apply the theorized 

phenomena governing a natural tissue’s micro-structure (as a self-optimizing agent) in 

designing engineering frame structures. As mentioned before, structural optimization is 
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often accompanied by time and cost savings for engineering projects. The third objective 

was realized by modeling engineering frame structures based on the two major theories, 

Wolff and Michell, and comparing the strength of each model to the other. Michell’s 

theory is merely mathematically oriented, while Wolff’s is based on observations from 

nature (bone micro-structure) merged with some engineering calculations. Features of 

such strength comparison made between the two models are well described in Chapter 3 

of the thesis.  

The models produced from the two theories outlined had similar geometry 

(analogous to a cantilever beam), aspect ratio, total mass and also similar mass 

distribution (per unit area). The results showed that the frame structures modeled based 

on Wolff’s theory had higher yield strength capabilities than those modeled based on 

Michell’s theory, meaning that Wolff’s theory was found to be better for guiding 

potential engineering design. 

6.2 Assumptions and Limitations 

There are assumptions and limitations for the work outlined in this thesis and these are 

explained here in greater detail. These assumptions and limitations are principally related 

to the fact that biological materials are not ideal engineering materials and thus treating 

them from an engineering point of view requires certain simplifications. 

The first assumption is that biological material modeled as engineering material has 

consistent material properties (for example, in terms of yield strength, Poisson’s ratio 

etc.). This is, of course, not the case with real biological materials, but this assumption 

needed to be made in order for mathematical analysis (Chapter 3) and simulation 

(Chapter 5) to be carried out in a manner relevant to the thesis. A great deal of future 
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work would need to be conducted (likely over many decades) before an assumption like 

this could be discarded for future studies. Such studies would have to detail for many 

samples material properties and how they vary over a sample specimen. 

Another major assumption of the work is that simulation results at the micro scale can be 

extended to the macro scale; this assumption is well grounded because the microtubules, 

which were the focus of the simulation, are well documented to be the chief stress 

resistant structure for the specimens studied. The simulation carried out in Chapter 5 

needed to be conducted at the micro scale because intercellular interaction is not well 

enough documented in the literature to permit a macro scale simulation (as such a 

simulation would need to take into account how mechanical stress is transferred from one 

neighboring cell to another). There are other parameters that would also need to be 

obtained to do a full macro-scale simulation (and these also do not exist in the literature), 

such as the material properties and interactions between cells. A macro level simulation 

taking into account all relevant parameters is likely only going to be possible well into 

the future after much more thorough analysis of plant material is undertaken. 

6.3 Future work and recommendations 

There are numerous potential avenues in developing different aspects of this 

research. For instance, this research could be undertaken with other types of loading 

regimes like laser ablation of cells, gravity with elevated magnitude, tension, torque or 

hydrostatic pressure applied on the cells, or even a combination of such loads could be 

applied on the plant. The results of such analysis would certainly fortify a better 

understanding of mechanical stresses affecting microstructure of a plant. For a fragile 

object like Arabidopsis root to be visualized on an unstable and slippery surface like agar  
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(a necessary medium when growing the plant), developing appropriate tools to apply 

mechanical stresses such as tension and torsion would be beneficial and often necessary.  

Employing another type of plant with bigger physical size would also be very 

beneficial, since the Arabidopsis root is an extremely delicate and difficult to handle 

object. To the writers’ knowledge, there isn’t yet another type of mutant plant with 

noticeably bigger cell size (or organ’s size) whose microtubules are visible and traceable 

under microscope. This should motivate the biological and/or engineering researchers to 

develop other plant alternatives with GFP (for microtubule visualization).  

Another recommendation is related to simulations carried out in finite element 

software. Such simulations could be carried out for the entire root cross section rather 

than a single cell. However, since material properties and behavior of the plant cell is not 

very well recognized at present, this is a very difficult undertaking. A plant cell is 

complex with many different structures that can affect a cell’s response to external 

loading; and not only do each of these structures have to be modelled, but their 

interaction with one another has to be modeled as well. Parameters needed for such 

modeling are often non-existent in the literature. Perhaps employing other non-linear 

materials (e.g. visco-elasto-plastic) with different properties (e.g. shear or normal 

modulus, Poisson’s ratio) might offer an avenue for exploration.  

Another area of focus for the future work is making a more comprehensive 

comparison between the frame structures generated based on Michell theory and Wolff’s 

theory. For example, using a superimposed loading (rather than a single concentrated 

force) as well as a different geometry of the cantilever beam could be employed, and the 
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performance outcome could be compared for various material properties (e.g. non-linear 

or non-isotropic). 

Another aspect of focus for future work over the long term is that the effects of 

mechanical forces on plants microstructure could be applied to animals as well. For 

example, this can be studied by changing the stress pattern applied to an animal by 

altering the daily activities and then visualizing the stress trajectories in the femur bone. 

This would provide further application of Wolff’s theory.  

In coming up with the last recommendation, it is worthwhile to remember that the 

mechanism behind microtubules reorientation is not thoroughly understood to date; 

however, by investigating more in this field, one can potentially determine the parameters 

influencing microtubules reorientation and/or the logic of such a mechanism, which 

undoubtedly will allow for a better model of such a phenomenon. 



168 
 

References: 

 

[1]- R. Chiong (Ed.), “Nature-Inspired Algorithms for Optimization”, Series: Studies in 

Computational Intelligence, Vol. 193, 2009. 

[2]- J. G. Skedrosa et al., “Mathematical analysis of trabecular ‘trajectories’ in apparent 

trajectorial structures: The unfortunate historical emphasis on the human proximal femur”, 

Journal of Theoretical Biology 244, pp. 15–45, 2007. 

[3]- JC Koch, “The laws of bone architecture”, The American Journal of Anatomy, Vol. 21, No. 

2, 1917. 

[4]- P. Fernandes, H. Rodrigues and C. Jacobs, "A model of bone adaptation using a global 

optimization criterion based on the trajectorial theory of Wolff", Computer methods in 

Biomechanics and Biomedical Engineering, Vol. 2, pp. 125-138, 1999. 

[5]- M.H. Luxner, A. Woesz, J. Stampfl, P. Fratzl, H.E. Pettermann, "A finite element study on 

the effects of disorder in cellular structures", Journal of Acta Biomaterialia 5, pp. 381–390, 2009. 

[6]- W.A.M. Brekelmans, H.W.  Poort & T.J.J.H. Slooff, "A new method to analyze the 

mechanical behavior of skeletal parts", Acta Orthop Scand. 43, pp. 301-17, 1972. 

[7]- J.E.A. Bertram and S.M. Swartz, "The 'Law of Bone Transformation': A Case of Crying 

Wolff?", Biol. Rev. 66, pp. 245-273, 1991. 

[8]- Z. Xinghua, G. He, G. Bingzhao, “The application of topology optimization on the 

quantitative description of the external shape of bone structure”, Journal of Biomechanics 38, pp 

1612–1620, 2005. 

[9]- MK Bahari, F Farahmand, G. Rouhi, MR Movahhedy, “Prediction of shape and internal 

structure of the proximal femur using a modified level set method for structural topology 

optimization”, Computer Methods in Biomechanics and Biomedical Engineering Journal 15(8), 

pp 835-44, 2011.. 

[10]- D.P. Fyhrie and D.R. Carter, "A Unifying Principle Relating Stress to Trabecular 

Bone Morphology", Journal of Orthopuedic Research 4, pp. 304-31l, 1986. 

[11]- B. Chen et al., “A strain energy criterion for trabeular bone adaptation”, IEEE digital 

library, 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009. 

[12]- C. Mattheck, “Biomechanics and Structural Optimization”,  

http://141.52.27.55/fzk/groups/imf-2/documents/internetdokument/id_052585.pdf  

[13]- M.G. Mullender and R. Huiskes, “Proposal for the Regulatory Mechanism of Wolff's 

Law”, Journal of Orthopaedic Research 13, pp 503-512, 1995.  

http://141.52.27.55/fzk/groups/imf-2/documents/internetdokument/id_052585.pdf


169 
 

[14]- R. Huiskes, Ronald Ruimerman, G. H. van Lenthe and Jan D. Janssen, “Effects of 

mechanical forces on maintenance and adaptation of form in trabecular bone”, Nature Vol 405, 

pp 704-706, June 2000.  

[15]- R. Huiskes, “If bone is the answer, then what is the question?”, Journal of Anatomy  197, 

pp 145-156, 2000. 

[16]- A. Prakash Apte, “Topology Optimization Using Hyper Radial Basis Function Network, 

Phd thesis, The University of Texas at Arlington, 2009. 

[17]- I.G. Janga, I.Y. Kim, "Computational study of Wolff’s law with trabecular architecture in 

the human proximal femur using topology optimization", Journal of Biomechanics 41, PP. 2353–

2361, 2008. 

[18]- GN. Vanderplaats, “Structural optimization for statics, dynamics and beyond”, Journal of 

the Brazilian Society of Mechanical Sciences and Engineering 28, pp 316-322, 2006. 

[19]- O. Sigmund, “Topology optimization: a tool for the tailoring of structures and 

Materials”, Philosophical Transactions of the Royal Society 358, pp 211-227, 2000. 

[20]- G.I.N. Rozvany, “A critical review of established methods of structural topology 

optimization”, Struct. Multidisc. Optim. 37, pp 217–237, 2009. 

[21]- J.M. Rossi and S. Wendling-Mansuy, "A topology optimization based model of bone 

adaptation", Journal of Computer Methods in Biomechanics and Biomedical Engineering, Vol. 

10, No. 6, pp. 419–427, 2007. 

[22]- I.G. Jang & I.Y. Kim, "Analogy of Strain Energy Density Based Bone-remodeling 

Algorithm and Structural Topology Optimization", Journal of Biomechanical Engineering, Vol. 

131, 2009. 

[23]- G.I.N. Rozvany, “Partial relaxation of the orthogonality requirement for classical Michell 

trusses”, Structural Optimization 13, pp 271-274, 1997. 

[24]- P. Dewhurst, “Analytical solutions and numerical procedures for minimum-weight Michell 

structures”, Journal of the Mechanics and Physics of Solids 49, pp 445 – 467, 2001. 

[25]- 4- G.A. Hegemier, W. Prager, “On Michell trusses”, Int. J. Mech. Sci.11, pp 209–215, 

1969. 

[26]- A.S. L Chan et al., “The Design of Michell Optimum Structures”, The College of 

Aeronautics Cranfield, 1960.  

[27]- R.N. Iyengar, K.S. Jagadish, “Recent Advances in Structural Engineering”,   Universities 

Press, 2005. 



170 
 

[28]- GIN. Rozvany and W. Prager, “A new class of structural optimization problems: optimal 

archgrids”, Computer methods in applied mechanics and engineering 19, pp 127-l 50, 1979. 

[29]- William Prager, “A note on discretized Michell structures”, Computer methods in applied 

mechanics and engineering 3, pp 349 -355, 1974.  

[30]- G.I.N. Rozvany, “On the validity structures of Prager's example of nonunique Michell”, 

Structural Optimization 13, pp. 191-194, Springer-Verlag 1996. 

[31]- GIN. Rozvany, “Some shortcomings in Michell's truss theory”, Structural Optimization 

Journal13, PP 203-204, 1997. 

[32]- J. Kepler, “Structural optimization as a design and styling tool - with emphasis on truss 

structures”, published online http://www.c-i-d.dk/pdf/s-d-001.pdf 

[33]- J. Eyckmans, T. Boudou, X. Yu and C.S. Chen, "A Hitchhiker’s Guide to 

Mechanobiology", Developmental Cell 21, 2011. 

[34]- G.T. Charras and M.A. Horton, "Single Cell Mechanotransduction and Its Modulation 

Analyzed by Atomic Force Microscope Indentation", Biophysical Journal, Vol. 82, PP. 2970–

2981, 2002. 

[35]- C.B. Khatiwala, S.R. Peyton and A.J. Putnam, "Intrinsic mechanical properties of the 

extracellular matrix affect the behavior of pre-osteoblastic MC3T3-E1 cells", AJP-Cell Physiol 

Vol. 290, PP. 1640-1650, 2006. 

[36]- H. Shibaoka, "Plant hormone-induced changes in the orientation of cortical microtubules: 

Alterations in the cross-linking between microtubules and the plasma membrane", Annu. Rev. 

Plant Physiol. Plant Mol. Biol. 45, PP. 527–544, 1994. 

[37]- P. Nick, R. Bergfeld, E. Schaifer, and P. Schopfer, "Unilateral reorientation of 

microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize 

coleoptiles and sunflower hypocotyls", Planta Journal 181, PP. 162-168, 1990. 

[38]- C. Oakley and D. M. Brunette, "The sequence of alignment of microtubules, focal contacts 

and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata", Journal 

of Cell Science 106, PP. 343-354, 1993. 

[39]- A. Geitmann, R. Palanivelu, "Fertilization Requires Communication: Signal Generation 

and Perception during Pollen Tube Guidance", Floriculture and Ornamental Biotechnology 1 (2), 

PP. 77-89, 2007. 

[40]- R.L. Cyr, “Microtubules in Plant Morphogenesis: Role of the Cortical Array”, Annual 

Reviews Cell Biology 10, pp 153-80, 1994. 

[41]- A.R. Paredez, S. Persson, D.W. Ehrhardt, and C.R. Somerville, "Genetic Evidence That 

Cellulose Synthase Activity Influences Microtubule Cortical Array Organization", Plant 

Physiology, Vol. 147, pp. 1723–1734, 2008. 



171 
 

[42]- C. Wasternack, "Jasmonates: An Update on Biosynthesis, Signal Transduction and Action 

in Plant Stress Response, Growth and Development", Annals of Botany 100, PP. 681–697,  

2007. 

[43]- R. E. Williamson, “Alignment of Cortical Microtubules by Anisotropic Wall Stresses”, 

Aust. J. Plant Physiol. 17, pp 601-13, 1990.  

[44]- T.I. Baskin, "Anisotropic Expansion of the Plant Cell Wall", Annu. Rev. Cell Dev. Biol. 

21, pp. 203–22, 2005. 

[45]- A. Bichet et al., “BOTERO1 is required for normal orientation of cortical microtubules and 

anisotropic cell expansion in Arabidopsis”, The Plant Journal, 25, pp 137-148, 2001. 

[46]- P. Schopfer, "Biomechanics of Plant Growth", American Journal of Botany 93 (10), PP. 

1415–1425, 2006. 

[47]- J.F. Bolduc, L.J. Lewis, C.E. Aubin, A. Geitmann, "Finite-element analysis of geometrical 

factors in micro-indentation of pollen tubes", Biomechan Model Mechanobiol 5, PP. 227–236, 

2006. 

[48]- J.V. Small, B. Geiger, I. Kaverina and A. Bershadsky, "How do microtubules guide 

migrating cells?", Nature reviews, Molecular Biology, Vol. 3, 2002. 

[49]- A. Geitmann and J.K.E. Ortega, "Mechanics and modeling of plant cell growth", Trends in 

Plant Science Vol.14, No.9, 2009. 

[50]- P.W.Barlow and J.S. Parker, "Microtubular cytoskeleton and root morphogenesis", Plant 

and Soil 187, PP. 23-36, 1996. 

[51]- Z. Zhang, H. Friedman, S. Meir, I. Rosenberger, A.H. Halevy, S. Philosoph-Hadas, 

"Microtubule reorientation in shoots precedes bending during the gravitropic response of cut 

snapdragon spikes", Journal of Plant Physiology 165, PP. 289—296, 2008. 

[52]- S. Jesuthasan and P.B. Green, "On the Mechanism of Decussate Phyllotaxis: Biophysical 

Studies on the Tunicalayer of Vinca Major", Amer. J. Bot. 76 (8), PP. 1152-1166, 1989. 

[53]- P.B. Green, R.O. Erickson, and P.A. Richmond, "On the Physical Basis of Cell 

Morphogenesis ", Annals of the New York Academy of Sciences, Vol. 175, PP. 712–731, 1970. 

[54]- F. Corson, M. Adda-Bedia, A. Boudaoud, "In silico leaf venation networks: growth and 

reorganization driven by mechanical forces", J Theor Biol. 259 (3), PP. 440-8, 2009. 

[55]- Y. Nakagawa, T. Katagiri, K. Shinozaki, Z. Qi, H. Tatsumi, T. Furuichi, A. Kishigami, M. 

Sokabee, I. Kojimad, S. Sato, T. Kato, S. Tabata, K. Iida, A. Terashima, M. Nakano, M. Ikeda, 

T. Yamanaka, and H. Iida, "Arabidopsis plasma membrane protein crucial for Ca2+ influx and 

touch sensing in roots", PNAS, vol. 104, no. 9, PP. 3639–3644, 2007.  



172 
 

[56]- K. Zandomeni and P. Schopfer, “Mechanosensory microtubule reorientation in the 

epidermis of maize coleoptiles subjected to bending stress”, Protoplasma 182, PP. 96- 101, 1994.  

[57]- O. Hamant and J. Traas, “The mechanics behind plant development”, New Phytologist 

Journal 185, pp 369–385, 2010.  

[58]- Y. Chebli, A. Geitmann, "Mechanical Principles Governing Pollen Tube Growth", 

Functional Plant Science and Biotechnology 1 (2), PP. 232-245, 2007. 

[59]- J. Lucas and S.L. Shaw, “Cortical microtubule arrays in the Arabidopsis seedling”, Current 

Opinion in Plant Biology 11, pp 94–98, 2008. 

[60]- Z. Hejnowicz, “Autonomous changes in the orientation of cortical microtubules underlying 

the helicoidal cell wall of the sunflower hypocotyl epidermis: spatial variation translated into 

temporal changes”, Protoplasma 225, 2005, pp 243–256. 

[61]- Z. hejnowicz. A. Burian, I. Dobrowloska, E. Kolano, "Orientational Variability of Parallel 

Arrays of Cortical Microtubules Under the Outer Cell Wall of the Helianthus Hypocotyl 

Epidermis", Polish Botanical Society Journals, Vol. 75, No 3, PP. 201-206, 2006. 

[62]- Z. Hejnowicz, A. Rusin, and T. Rusin,"Tensile Tissue Stress Affects the Orientation of 

Cortical Microtubules in the Epidermis of Sunflower Hypocotyl", Journal of Plant Growth Regul 

19, PP. 31–44, 2000. 

[63]- D. Kwiatkowska, “Structural Integration at the Shoot Apical Meristem: Models, 

Measurements, and Experiments”, American Journal of Botany 91 (9), PP. 1277–1293, 2004. 

[64]- J. Dumais, “Can mechanics control pattern formation in plants?”, Current Opinion in Plant 

Biology 10, pp 58–62, 2007. 

[65]- R. L. Duncan, "Transduction of mechanical strain in bone", ASGSB Bulletin 8 (2), PP. 49-

62, 1995.  

[66]- E.H. Burger and J.Klein-Nulend, "Mechanotransduction in bone—role of the 

lacunocanalicular network", The FASEB Journal, Vol. 13, 1999. 

[67]- M. Saiki et al., “Cellular basis for the automorphic curvature of rice coleoptiles on a three-

dimensional clinostat: possible involvement of reorientation of cortical microtubules”, J Plant 

Res 118:199–205, 2005. 

[68]- R. Ranjeva et al., “Plant graviperception and gravitropism: a newcomer’s view”, The 

FASEB Journal, Vol. 13 Supplement 1999, pp 136-141. 

[69]- A.R. Hardham, D. Takemoto and R.G White, "Rapid and dynamic subcellular 

reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics 

responses to fungal and oomycete attack", BMC Plant Biology 8:63, 2008. 



173 
 

[70]- J. Elsner, “Effect of steady torque twisting on the orientation of cortical microtubules in the 

epidermis of the sunflower hypocotyls”, Plant Biology 10 pp 422–432, 2008.  

[71]- R. Himmelspach et al., “Gravity-induced reorientation of cortical microtubules observed in 

vivo”, The Plant Journal 18 (4), pp 449- 453, 1999. 

[72]- D. D. Fisher, R. J. Cyr, “Mechanical Forces in Plant Growth and Development”, 

Gravitational and Space Biology Bulletin 13(2), pp 67-74, June 2000.  

[73]- P.M. Lintilhac, “Differentiation, Organogenesis, and the Tectonics of Cell Wall 

Orientation. III. Theoretical Considerations of Cell Wall Mechanics”, Amer. J. Bot. 61(3), pp 

230-237, 1974. 

[74]- O. Hamant, M. G. Heisler, H. Jonsson, P. Krupinski, M. Uyttewaal, P. Bokov, F. Corson, 

P. Sahlin, A. Boudaoud, E. M. Meyerowitz, Y. Couder and J. Traas1, “Developmental Patterning 

by Mechanical Signals in Arabidopsis”, Science 322, Dec. 2008. 

[75]- M. Uyttewaal, J. Traas and O. Hamant, “Integrating physical stress, growth, and 

development”, Current Opinion in Plant Biology 13, pp 46–52, 2010. 

[76]- J. Dumais, “Plant Morphogenesis: A Role for Mechanical Signals”, Current Biology Vol 

19 No 5. 

[77]- Jing Zhou et al., Bochu, “Responses of Chrysanthemum Cells to Mechanical Stimulation 

Require Intact Microtubules and Plasma Membrane–Cell Wall Adhesion”, J Plant Growth Regul 

26, pp 55–68, 2007. 

[78]- C.L. Wymer, “Plant Cell Growth Responds to Externa1 Forces and the Response Requires 

Intact Microtubules”, Plant Physiology 110, pp 425-430, 1996.  

[79]- J. Hush , R. Overall, “Electrical and mechanical fields orient cortical microtubules in 

higher plant tissues”, Cell Biology International Reports 15, p 551-60, 1991. 

[80]- AL. Cleary, AR. Hardham, “Pressure induced reorientation of cortical microtubules in 

epidermal cells of Lolium rigidum leaves”, Plant and Cell Physiology 34, p 1003-8, 1993. 

[81]- K. Fischer and P. Schopfer, “Interaction of auxin, light, and mechanical stress in orienting 

microtubules in relation to tropic curvature in the epidermis of maize coleoptiles”, Protoplasma 

Journal 196, pp 108-116, 1997. 

[82]- J.M. Hush, C.R. Hawes and R.L. Overall, “Interphase microtubule re-orientation predicts a 

new cell polarity in wounded pea roots”, Journal of Cell Science 96, pp 47-61, 1990. 

[83]- D.R. Carter, D.P. Fyhrie and R.T. Whales, "Trabecular Bone Density and Loading History: 

Regulation of Connective Tissue Biology by Mechanical Energy", J Biomech. 20 (8), PP. 785-

94, 1987. 



174 
 

[84]- Stephen C. Cowin, “Bone Mechanics HANDBOOK”, second edition edited, CRC Press, 

2001. 

[85]- J.S. Rao, “Dynamics of Plates”, CRC Press, 1999. 

[86]- M. Gholamirad & M. Epstein, “A theoretical approach of obtaining principal stress 

trajectories”, International Conference on Mechanical Engineering (ISME2010), Tehran, Iran, 

May 2010. 

[87]- A.G.M. Michell, “The limit of economy of material in frame structures”, Philosophical 

Magazine Series 6, Vol 8, 1904. 

[88]- W.S., Hemp, "Theory of structural design", College of Aeronautics in Cranfield, 

Bedfordshire, 1958. 

[89]- M. Gholamirad & M. Epstein, “Bone remodeling as a problem in optimal structural 

design”, Proceedings of The Canadian Society for Mechanical Engineering (CSME FORUM), 

Victoria, BC, Canada, June 2010. 

[90]- M. Gholamirad & M. Epstein, “Performance comparison of frame structures: discrete 

Michell or Wolff?”, Proceedings of the ASME International Mechanical Engineering Congress 

& Exposition IMECE2010, Vancouver, BC, Canada, Nov. 2010. 

[91]- K.J. Niklas, “Plant Biomechanics- An Engineering Approach to Plant Form and Function”, 

The University of Chicago Press, 1992. 

[92]- C. Mattheck, "Biomechanics and Structural Optimization", Forschungszentrum Karlsruhe 

in der Helmholtz-gemeinschaft.  

[93]- T.I. Baskin, "Microtubules, Microfibrils, and Growth Anisotropy", Plant Physiology 

Journal, 5th edition, Essay 15.2, 2006. 

[94]- A. Desai and T.J. Mitchison, “Microtubule polymerization dynamic”, Annual Rev. Cell 

Dev. Biology 13, pp 83–117, 1997. 

[95]- T.I. Baskin, G.T.S. Beemster, J.E. Judy-March and F. Marga, "Disorganization of Cortical 

Microtubules Stimulates Tangential Expansion and Reduces the Uniformity of Cellulose 

Microfibril Alignment among Cells in the Root of Arabidopsis", Plant Physiology, Vol. 135, pp. 

2279–2290, 2004. 

[96]-  F. Corson, O. Hamant, S. Bohn, J. Traas, A. Boudaoud and Y. Couder, "Turning a plant 

tissue into a living cell froth through isotropic growth", PNAS vol. 106, no. 21, PP. 8453–8458, 

2009. 

[97]- D.B. Szymanski and D.J. Cosgrove, "Dynamic Coordination of Cytoskeletal and Cell Wall 

Systems during Plant Cell Morphogenesis", Current Biology 19, R800–R811, 2009. 



175 
 

[98]- G. Tian, D. Smith, S. Gluck and T.I. Baskin, "Higher Plant Cortical Microtubule Array 

Analyzed In Vitro in the Presence of the Cell Wall", Cell Motility and the Cytoskeleton 57, PP. 

26–36, 2004. 

[99]- D. M. Orcutt, E. T. Nilsen, “The Physiology of Plants Under Stress: Soil and biotic 

factors”, pp 195, John Wiley Inc., 2000.  

[100]- K. Sugimoto1, R.E. Williamson and G.O. Wasteneys, “New Techniques Enable 

Comparative Analysis of Microtubule Orientation, Wall Texture, and Growth Rate in Intact 

Roots of Arabidopsis”, Plant Physiology, Vol. 124, pp. 1493–1506, 2000. 

[101]- J. Marc, C. L. Granger, J. Brincat, D.D. Fisher, T. Kao, A.G. McCubbin,R.J. Cyr, "A 

GFP–MAP4 Reporter Gene for Visualizing Cortical Microtubule Rearrangements in Living 

Epidermal Cells", The Plant Cell, Vol. 10, PP. 1927–1939, 1998. 

[102]- J.M. Hush, C.R. Hawes and R.L. Overall, “Interphase microtubule re-orientation predicts 

a new cell polarity in wounded pea roots”, Journal of Cell Science 96, pp 47-61, 1990. 

[103]- N.J. Holdaway, R.G. White and R.L. Overall, "Is the recovery of microtubule orientation 

in pea roots dependent on the cell wall?", Cell Biology International, Vol. 19, No. 11, 1995. 

[104]- Y. Wang, B. Wang, S. Gilroy,E.W. Chehab, J. Braam, "CML24 is Involved in Root 

Mechanoresponses and Cortical Microtubule Orientation in Arabidopsis", J Plant Growth Regul, 

2011. 

[105]- F.A. Ditengou, W.D. Teale, P. Kochersperger, K.A. Flittner, I. Kneuper, E. Graaff, H. 

Nziengui, F. Pinosa, X. Li, R. Nitschke, T. Laux and K. Palme, "Mechanical induction of lateral 

root initiation in Arabidopsis thaliana", PNAS Journal, vol. 105, no. 48, 2008. 

[106]- Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D, Dedieu A, Peaucelle 

A, Ludynia M, Traas J, Boudaoud A, Kwiatkowska D, Hamant O. , “A katanin-dependent 

microtubule response to mechanical stress enhances growth gradients between neighboring cells 

in Arabidopsis”, CELL in press, 2012. 

[107]- S. Matsumoto, S. Kumasaki, K. Soga, K. Wakabayashi, T. Hashimoto and Takayuki 

Hoson, “Gravity-Induced Modifications to Development in Hypocotyls of Arabidopsis Tubulin 

Mutants”, Plant Physiology, Vol. 152, pp. 918–926, 2010. 

[108]- A. Geitmann, "Mechanical modeling and structural analysis of the primary plant cell 

wall", Current Opinion in Plant Biology 13, PP. 693–699, 2010. 

[109]- J. Chan, M. Eder, E.F. Crowell, J. Hampson, G. Calder and C. Lloyd, "Microtubules and 

CESA tracks at the inner epidermal wall align independently of those on the outer wall of light-

grown Arabidopsis hypocotyls", Journal of Cell Science 124, PP. 1088-1094, 2011. 

[110]- P. Milani, M. Gholamirad, J. Traas, A. Arnéodo, A. Boudaoud, F. Argoul, O. Hamant, “In 

vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic 

force microscopy”, The Plant Journal, Sep;67(6):1116-23, 2011. 

http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22David+M.+Orcutt%22
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Erik+T.+Nilsen%22


176 
 

[111]- E. Steudle, U. Zimmermann and U. Luttge, “Effect of Turgor Pressure and Cell Size on 

the Wall Elasticity of Plant Cells”, Plant Physiol. 59, PP. 285-289, 1977. 

[112]- J.H. Kroeger, R. Zerzour, A. Geitmann, “Regulator or Driving Force? The Role of Turgor 

Pressure in Oscillatory Plant Cell Growth”, PLoS ONE Journal, Volume 6, Issue 4, 2011. 



 177 

Appendix A: Matlab Programs Details 

 

Matlab program set #1: 

% A cantilever beam with transverse load "F" at the end is modeled to 
% define the stress trajectories curves (Similar to the Figure 3.9 in 

this thesis)  
% ************ Compression Curves ************ 

  
clc 
clear 
% h= Half-depth of the beam in Y direction (2h=Total depth along Y 

axis), mm 
% L= Total length of the beam in X direction, mm 
% S= Step length on trajectory Curve, mm. The finer S is the more 

smooth 
% the curve will be. 
% N= Number of Iteration; Increase it when you have longer beam 
N=100; 
L=input('what is the length of the cantilever, L,  in x direction, 

L='); 
h=input('what is the half-depth of the cantilever, h, in y direction, 

h='); 
% example h=40; L=180; 
y1(1)=0; S=.5; Y1(1)=0; 
ctrD=1; 
for II=0:10:L % If you want to see an individual trajectory, then you 

can run the program from NEXT line. Simply replace 'II' in EACH step 

from 0 to L 
    cn=1; x1(1)=II; X1(1)=II; 
    for i=2:N 
        a1=atan((-x1(cn)*y1(cn)-sqrt((h^2-

y1(cn)^2)^2+x1(cn)^2*y1(cn)^2))/(h^2-y1(cn)^2)); 
        A1=atan((-X1(cn)*Y1(cn)-sqrt((h^2-

Y1(cn)^2)^2+X1(cn)^2*Y1(cn)^2))/(h^2-Y1(cn)^2)); 
        x1(i)=x1(cn)+S*cos(a1); 
        X1(i)=X1(cn)-S*cos(A1); 
        y1(i)=y1(cn)+S*sin(a1); 
        Y1(i)=Y1(cn)-S*sin(A1); 
        cn=cn+1; 
    end 

            
    C1=0; 
    for i=1:N 
        if x1(i)<=L 
            p(i)=x1(i); 
            q(i)=y1(i); 
        end 
        if X1(i)>=0 
            P(i)=X1(i); 
            Q(i)=Y1(i); 



 178 

            C1=C1+1; 
        end 
    end 

  
    C2=1; 
    for i=C1:-1:1 
        P2(i)=P(C2); 
        Q2(i)=Q(C2); 
        C2=C2+1; 
    end 
    A=transpose([P2 p;Q2 q]); 

     
    A(:,3)=0;         
    clear A2 
    V=1; 
    for i=1:size(A) 
        A2(V,1)=A(i,1); 
        A2(V,2)=A(i,2); 
        V=V+1; 
    end 
    A2(V-1,3)=0; 
    for i=1:V-1 
        plot(A2(i,1),A2(i,2)) 
        hold on 
    end 
    axis equal 

     
    F_No_D=int2str(ctrD); 
    save(F_No_D,'A2','-ascii','-double') 
    ctrD=ctrD+1; 
end 

 
% ************ Tensile Curves ************ 

  
clc 
clear 
% h= Half-depth of the beam in Y direction (2h=Total depth along Y 

axis), mm 
% L= Total length of the beam in X direction, mm 
% S= Step length on trajectory Curve, mm. The finer S is the more 

smooth 
% the curve will be. 
% N= Number of Iteration; Increase it when you have longer beam 
N=100; 
L=input('what is the length of the cantilever, L,  in x direction, 

L='); 
h=input('what is the half-depth of the cantilever, h, in y direction, 

h='); 
y2(1)=0;S=.5;  Y2(1)=0; 
ctrU=1; 
for II=0:10:L % If you want to see an individual trajectory, then you 

can run the program from NEXT line. Simply replace 'II' in EACH step 

from 0 to L 
    cn=1; x2(1)=II; X2(1)=II; 
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    for i=2:N 
        a2=atan((-x2(cn)*y2(cn)+sqrt((h^2-

y2(cn)^2)^2+x2(cn)^2*y2(cn)^2))/(h^2-y2(cn)^2)); 
        A2=atan((-X2(cn)*Y2(cn)+sqrt((h^2-

Y2(cn)^2)^2+X2(cn)^2*Y2(cn)^2))/(h^2-Y2(cn)^2)); 
        x2(i)=x2(cn)+S*cos(a2); 
        X2(i)=X2(cn)-S*cos(A2); 
        y2(i)=y2(cn)+S*sin(a2); 
        Y2(i)=Y2(cn)-S*sin(A2); 
        cn=cn+1; 

                
    end 

     
    C1=0; 
    for i=1:N 
        if x2(i)<=L 
            p(i)=x2(i); 
            q(i)=y2(i); 
        end 
        if X2(i)>=0 
            P(i)=X2(i); 
            Q(i)=Y2(i); 
            C1=C1+1; 
        end 
    end 

  
    C2=1; 
    for i=C1:-1:1 
        P2(i)=P(C2); 
        Q2(i)=Q(C2); 
        C2=C2+1; 
    end 
    A=transpose([P2 p;Q2 q]); 

     
    A(:,3)=0;  

    
    clear A2 
    V=1; 
    for i=1:size(A)% change it according to your A matrix 
        A2(V,1)=A(i,1); 
        A2(V,2)=A(i,2); 
        V=V+1; 
    end 
    A2(V-1,3)=0; 
    for i=1:V-1 
        plot(A2(i,1),A2(i,2)) 
        hold on 
    end 
    axis equal 

      
    F_No_U=int2str(ctrU); 
    save(F_No_U,'A2','-ascii','-double') 
    ctrU=ctrU+1;     
end 
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These previously shown programs in Appendix A are saved with the name 

“CantileverBeam-StressTrajectory-DOWN-ALL-2.m” and “CantileverBeam-

StressTrajectory-UP-ALL-2.m”, respectively. 
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Matlab program #2: 

% This program is written to sort Node Numbers and corresponding Node's 
% Outputs (e.g. principal stress) from Ansys software 
% Refer to image "Figure (3.16)"  
clear 
clc 
fprintf('According to "NodeSortingGuide.jpeg":   ') 
XL=input('Enter Xl='); % XL= Total length of beam in X direction, mm 
YL=input('Enter Yl='); % YL= Total length of beam in Y direction, mm   

YL=2c 
% DX=Delta X & DY=Delta Y: 
DX=input('Enter Delta x, DX='); 
DY=input('Enter Delta y, DY='); 
% m & n are number of division along X and Y axes: 
m=XL/DX+1; 
n=YL/DY+1; 
% Matrix M is the matrix whose components are coordinates of the 

meshgrid 
% and the size of the matrix is "P*3" (P rows and 3 Columns). 1st 

column is 
% NEW node numbers 
P=m*n; 
% Here we define matrix M: 
x=0;y=0; 
for i=1:P 
    M(i,1)=i; 
    M(i,2)=x; 
    M(i,3)=y; 
    x=x+DX; 
    if x>XL 
        x=0; 
        y=y+DY; 
    end 
end 

  
% Here we load a '.txt' file which has XYZ components of Nodes: 
U=load('Box5-Node-XYZ-2.txt'); 
% Now we only choose those Rows of U matrix which have Z=0 (Nodes on XY 

plane) & we call it U2: 
ctr=1; 
for i=1:size(U) 
    if U(i,4)==0 
        U2(ctr,1)=U(i,1); 
        U2(ctr,2)=U(i,2); 
        U2(ctr,3)=U(i,3); 
        ctr=ctr+1; 
    end 
end 

 
% Here we load a '.txt' file which has S1-S3 (1st to 3rd Principal 

Stress) components of Nodes: 
V=load('Box5-Node-S1S3-2.txt'); 
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% Now we only choose those Rows of V matrix which have the same Node 

Number as U2 matrix & we call it V2: 
ctr=1; 
for i=1:100000 
    for j=1:size(V) 
        if ctr>size(U2) 
            break 
        end 
        if V(j,1)==U2(ctr,1)  
             V2(ctr,:)=V(j,:); 
             ctr=ctr+1; 
        end 
    end 
end  
 

% Here we load a '.txt' file which has Sx, Sy & Txy (Normal stress 

along X & Y and also XY shear stress) components of Nodes: 
W=load('Box5-Node-Sx-Sy-Txy-2.txt'); 
% Now we only choose those Rows of W matrix which have the same Node 

Number as U2 matrix & we call it W2: 
ctr=1; 
for i=1:100000 
    for j=1:size(W) 
        if ctr>size(U2) 
            break 
        end 
        if W(j,1)==U2(ctr,1)  
             W2(ctr,:)=W(j,:); 
             ctr=ctr+1; 
        end 
    end 
end  
% (This Node Numbers belong to Ansys) 

  
%----------------- 
% Matrix E has a size of P*8 (Rows*Columns) 
% E=[Node No.   X   Y   S1   S3   Sx   Sy   Txy] 
E=[U2 V2(:,2) V2(:,4) W2(:,2) W2(:,3) W2(:,5)]; 

  
% Matrix E is compared to matrix M and is sorted based on the ascending 
% coordinates (x & y). This sorted matrix is now called F, which is 

defined here: 
ctr=1; 
for i=1:1000000 
    for j=1:P 
        if ctr>P 
            break 
        end 
        if E(j,2)==M(ctr,2) & E(j,3)==M(ctr,3) 
             F(ctr,:)=E(j,:); 
             ctr=ctr+1; 
        end 
    end 
end  
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% Now we replace Ansys Node Numbers in F with NEW NODE NUMBERS which 

are well organized: 
F(:,1)=M(:,1); 

 

 

This program (Matlab program #2) is named “NodeSorting-

Real.m”. 
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Matlab program #3: 

 

 
% Here we draw Stress Trajectories based on the information from the 

'.m file' named "NodeSorting-Real": 
I=(round(n/2)-1)*m+1; 
% if n is an Even Number give a warning: 
if round((n-1)/2)==n/2 
    fprintf('**! WARNING ! **: Choose DY so that n becomes an ODD 

number and stress trajectories would be on Neutral Axis\n') 
end 
N_ST=input('How many Stress Trajectories do you want to draw, N_ST='); 
Q=XL/N_ST; 
O=round(Q/DX);     
counterD=1; 
counterD2=N_ST+1; 

 
for J=I:O:I+m-2 

     
    % . . . . . . . . . . . . . Initial Condition . . . . . . . . . . . 

. . . 
    Nom=2*F(J,8);          % F(J,8) is Txy 
    DNom=F(J,6)-F(J,7);    % F(J,6) is Sx & F(J,7)=Sy   
                           % So Nom/DNom=tg(2Teta_P)  
    if Nom>0 & DNom>0 
        Teta_P_0=0.5*atan(Nom/DNom);  %Teta_P_0 is the initial 

condition for Teta_P at Jth Node (Radian) 
        else if Nom>0 & DNom<0 
                Teta_P_0=pi+0.5*atan(Nom/DNom); 
                else if Nom<0 & DNom>0 
                        Teta_P_0=2*pi+0.5*atan(Nom/DNom);       
                        else if Nom<0 & DNom<0 
                                Teta_P_0=pi+0.5*atan(Nom/DNom); 
                            end 
                    end 
            end 
    end 

                                                         
    % Here we define that 0< Teta_P_0<90    OR   180< Teta_P_0 <270  

degree 
    % 90< Teta_P_Prime_0 <180  OR   270< Teta_P_Prime_0 < 360   degree:  
    if (Teta_P_0>=pi/2 & Teta_P_0<=pi) | (Teta_P_0>=(3*pi/2) & 

Teta_P_0<=2*pi)            
        Teta_P_Prime_0=Teta_P_0; 
        Teta_P_0=Teta_P_Prime_0-pi/2; 
    else % (Teta_P_0>=0 & Teta_P_0<=pi/2) | (Teta_P_0>=pi & 

Teta_P_0<=3*pi/2)             
        Teta_P_Prime_0=Teta_P_0+pi/2; 
    end 
    % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . .  
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    % . . . . . . . . . . . . . General Condition . . . . . . . . . . . 

. . . 
    % S= Step length on trajectory Curve, mm: 
    S=DY/10; % This S is arbitrary. You can change it. 
    % Now we define TETA at each Node.        
    for i=1:size(F) 
        Nom=2*F(i,8); 
        DNom=F(i,6)-F(i,7); 
        if Nom>0 & DNom>0 
            TETA(i)=0.5*atan(Nom/DNom); 
        else if Nom>0 & DNom<0 
                TETA(i)=pi+0.5*atan(Nom/DNom); 
            else if Nom<0 & DNom>0 
                    TETA(i)=2*pi+0.5*atan(Nom/DNom);           
                else if Nom<0 & DNom<0 
                    TETA(i)=pi+0.5*atan(Nom/DNom); 
                    end 
                end 
            end 
        end 
    end 
    TT=transpose(TETA); 
    % Teta_P_Prime  is the angle indicating the direction of S3 (3rd 

Principal Stress) 
    % Here we define if TETA=Teta_P OR TETA=Teta_P_Prime  
    for i=1:size(TT) 
        if (TETA(i)>=0 & TETA(i)<=pi/2) | (TETA(i)>=pi & 

TETA(i)<=3*pi/2)                           
            Teta_P(i)=TETA(i); 
            Teta_P_Prime(i)=TETA(i)+pi/2; 
        else  
                Teta_P_Prime(i)=TETA(i); 
                Teta_P(i)=TETA(i)-pi/2; 
        end 
    end 

 
    F(:,9)=Teta_P; 
    F(:,10)=Teta_P_Prime; 
        XcentrD=F(J,2)+S*cos(Teta_P_Prime_0);   
    YcentrD=F(J,3)+S*sin(Teta_P_Prime_0); 
    XcentrD2=F(J,2)-S*cos(Teta_P_Prime_0);  
    YcentrD2=F(J,3)-S*sin(Teta_P_Prime_0); 
    Curv_Points_D(1,1)=F(J,2);   

    Curv_Points_D(1,2)=F(J,3); 
    Crv_Pnt_D(1,1)=F(J,2);      
    Crv_Pnt_D(1,2)=F(J,3); 

     
    for k=2:500     
        Curv_Points_D(k,1)=XcentrD;   
        Curv_Points_D(k,2)=YcentrD; 
        Crv_Pnt_D(k,1)=XcentrD2;      
        Crv_Pnt_D(k,2)=YcentrD2; 

     
        % First we find the 4 neighboring points:  



 186 

        for i=1:m          
            if XcentrD>F(i,2) & XcentrD<F(i+1,2) 
                XnbD(1)=F(i,2); 
                XnbD(2)=F(i+1,2); 
                XnbD(3)=F(i,2); 
                XnbD(4)=F(i+1,2); 
            end 
        end 
        for i=1:m:P-m;    
            if YcentrD>F(i,3) & YcentrD<F(i+m,3) 
                YnbD(1)=F(i,3); 
                YnbD(2)=F(i,3); 
                YnbD(3)=F(i+m,3); 
                YnbD(4)=F(i+m,3); 
            end 
        end 
        for i=1:m          
            if XcentrD2>F(i,2) & XcentrD2<F(i+1,2) 
                XnbD2(1)=F(i,2); 
                XnbD2(2)=F(i+1,2); 
                XnbD2(3)=F(i,2); 
                XnbD2(4)=F(i+1,2); 
            end 
        end 
        for i=1:m:P-m;    
            if YcentrD2>F(i,3) & YcentrD2<F(i+m,3) 
                YnbD2(1)=F(i,3); 
                YnbD2(2)=F(i,3); 
                YnbD2(3)=F(i+m,3); 
                YnbD2(4)=F(i+m,3); 
            end 
        end   

  
        if XcentrD<0 
            XnbD=[-1 0 0 -1]; 
            YnbD=[0  0  1 1]; 
            SM_D=[1 1 1 1;1 1 1 1]; 
        end 
        if XcentrD2<0 
            XnbD2=[-1 0 0 -1]; 
            YnbD2=[0  0  1 1]; 
            SM_D2=[1 1 1 1;1 1 1 1]; 
        end     
        % According to the 4 neighboring points we found, we assign 

S3(3rd principal stress) & Teta_P_Prime to each of these 4 points:  
        ctr=1; 
        for i=1:size(F) 
            if XnbD(ctr)==F(i,2) & YnbD(ctr)==F(i,3) 
                SM_D(1,ctr)=abs(F(i,5));     
                SM_D(2,ctr)=F(i,10);          
                ctr=ctr+1; 
            end 
            if ctr==5 
                ctr=1;           
            end 
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        end 
        ctr=1; 
        for i=1:size(F) 
            if XnbD2(ctr)==F(i,2) & YnbD2(ctr)==F(i,3) 
                SM_D2(1,ctr)=F(i,5);          
                SM_D2(2,ctr)=F(i,10);  
                ctr=ctr+1; 
            end 
            if ctr==5 
                ctr=1;           
            end 
        end 

 
        % ***************     Now we interpolate:     ***************      

  

         
        Xc_D=XnbD(1)+DX/2;   % Xc belongs to Centroid of element 
        Yc_D=YnbD(1)+DY/2;   % Yc belongs to Centroid of element 
        Zeta_D=(2/DX)*(XcentrD-Xc_D); 
        Eta_D=(2/DY)*(YcentrD-Yc_D); 

  
        Xc_D2=XnbD2(1)+DX/2;   % Xc belongs to Centroid of element 
        Yc_D2=YnbD2(1)+DY/2;   % Yc belongs to Centroid of element 
        Zeta_D2=(2/DX)*(XcentrD2-Xc_D2); 
        Eta_D2=(2/DY)*(YcentrD2-Yc_D2); 
        % According to "Isoparametric formulation of quadilateral 

element" section  
        %  ......          Non-dimentional Shape Functions N are:                 
        N_D(1)=(1/4)*(1-Zeta_D)*(1-Eta_D);         N_D2(1)=(1/4)*(1-

Zeta_D2)*(1-Eta_D2); 
        N_D(2)=(1/4)*(1+Zeta_D)*(1-Eta_D);         

N_D2(2)=(1/4)*(1+Zeta_D2)*(1-Eta_D2); 
        N_D(3)=(1/4)*(1+Zeta_D)*(1+Eta_D);         

N_D2(3)=(1/4)*(1+Zeta_D2)*(1+Eta_D2); 
        N_D(4)=(1/4)*(1-Zeta_D)*(1+Eta_D);         N_D2(4)=(1/4)*(1-

Zeta_D2)*(1+Eta_D2); 

  
        Vx_D=sum(SM_D(1,:).*cos(SM_D(2,:)).*N_D); 
        Vy_D=sum(SM_D(1,:).*sin(SM_D(2,:)).*N_D); 

  
        Vx_D2=sum(SM_D2(1,:).*cos(SM_D2(2,:)).*N_D2); 
        Vy_D2=sum(SM_D2(1,:).*sin(SM_D2(2,:)).*N_D2); 

  
        if Vx_D>0 & Vy_D>0 
            Teta_Centr_D=atan(Vy_D/Vx_D); 
        end 
        if Vx_D<0 & Vy_D>0 
            Teta_Centr_D=pi+atan(Vy_D/Vx_D); 
        end 
        if Vx_D<0 & Vy_D<0 
            Teta_Centr_D=pi+atan(Vy_D/Vx_D); 
        end 
        if Vx_D>0 & Vy_D<0 
            Teta_Centr_D=2*pi+atan(Vy_D/Vx_D);              
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        end 

  
        if Vx_D2>0 & Vy_D2>0 
            Teta_Centr_D2=atan(Vy_D2/Vx_D2); 
        end 
        if Vx_D2<0 & Vy_D2>0 
            Teta_Centr_D2=pi+atan(Vy_D2/Vx_D2); 
        end 
        if Vx_D2<0 & Vy_D2<0 
            Teta_Centr_D2=pi+atan(Vy_D2/Vx_D2); 
        end 
        if Vx_D2>0 & Vy_D2<0 
            Teta_Centr_D2=2*pi+atan(Vy_D2/Vx_D2);            
        end 

  
        XcentrD=XcentrD+S*cos(Teta_Centr_D);      

YcentrD=YcentrD+S*sin(Teta_Centr_D); 
        XcentrD2=XcentrD2+S*cos(Teta_Centr_D2);   

YcentrD2=YcentrD2+S*sin(Teta_Centr_D2);    

  
        if XcentrD<F(1,2) & YcentrD>F(size(F),3) & 

XcentrD2>F(size(F),2) & YcentrD2<F(1,3)   
            break 
        end 

  
    end 

    
    plot(F(J,2),F(J,3),'r^') 
    hold on 
    for i=1:size(Curv_Points_D) 
        plot(Curv_Points_D(i,1),Curv_Points_D(i,2),'g*') 
        hold on 
    end 
    hold on 
    for i=1:size(Crv_Pnt_D) 
        plot(Crv_Pnt_D(i,1),Crv_Pnt_D(i,2),'*') 
        hold on 
    end 
    axis equal 
    % Saving the required DATA: 
    Curv_Points_D(1,3)=0; 
    Crv_Pnt_D(1,3)=0; 

  

 
        F_No_D=int2str(counterD); 
        F_No_D2=int2str(counterD2); 
        save(F_No_D,'Curv_Points_D','-ascii','-double') 
        save(F_No_D2,'Crv_Pnt_D','-ascii','-double') 
        counterD=counterD+1; 
        counterD2=counterD2+1; 
end 

This program (Matlab program #3) is named “Ansys-Stress-

Trajectories-DOWN-Isoparametric-Interpolation-3.m” 
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Matlab program #4 

clc 
clear 
% According to the Figure (3.24) and 3.25: 

% You need to define three parameters Delta_Phi, m, n, length of    and 

  : 

 
D_Phi=input('Enter Delta_Phi in Degrees, D_Phi= '); 
D_Phi=(D_Phi*pi)/180;      % D_Phi in Radian 

m=input('Enter the distance    on Alpha axis,    ='); 

n=input('Enter the distance     on Beta axis,    ='); 
N1=input('Enter the desired number of nodes along Alpha axis, m='); 
N2=input('Enter the desired number of nodes along Beta axis, n='); 

  
% 1st row on alpha line: 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- 
N_C(1,1)=0;  
N_C(1,2)=0;   % N_C = Node_Coordinates Matrix which is in the form of 

[x1 y1    x2 y2   ...   xn yn    
 

ctr=3; 
for i=3:2:2*N1 
    N_C(1,i)=N_C(1,i-2)+m*cos((ctr-3)*D_Phi+D_Phi/2); 
    N_C(1,i+1)=N_C(1,i+1-2)-m*sin((ctr-3)*D_Phi+D_Phi/2); 
    ctr=ctr+1; 
end 

  
% 2nd row above Alpha line: 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- 
   % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

= =  
N_C(2,1)=-n*sin(D_Phi/2); 
N_C(2,2)=n*cos(D_Phi/2); 
% According to Figure (3.26) for the intersecting point of the 2 lines: 
L=50*m; 
L_p=50*n;   
X1=N_C(2,1);                      Y1=N_C(2,2); 
X3=N_C(1,3);                      Y3=N_C(1,4); 

  
X2=X1+L*cos(D_Phi/2);             Y2=Y1+L*sin(D_Phi/2); 
X4=X3+L_p*cos(pi/2-D_Phi/2);      Y4=Y3+L_p*sin(pi/2-D_Phi/2); 
Y=((Y1/(Y2-Y1))*(X2-X1)-(Y3/(Y4-Y3))*(X4-X3)+X3-X1)/((X2-X1)/(Y2-Y1)-

(X4-X3)/(Y4-Y3));     
X=((Y-Y1)/(Y2-Y1))*(X2-X1)+X1; 
% so: 
   % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

= = 
N_C(2,3)=X; 
N_C(2,4)=Y; 
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   % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

= = 
ctr=1; 
Teta1=D_Phi/2; 
Teta2=pi/2-D_Phi/2; 
for i=3:2:2*N1-2     
    X1=N_C(2,i);     Y1=N_C(2,i+1); 
    X3=N_C(1,i+2);   Y3=N_C(1,i+3);  

     
    Teta1=Teta1-D_Phi; 
    Teta2=Teta2-D_Phi; 
    X2=X1+L*cos(Teta1); 
    Y2=Y1+L*sin(Teta1); 
    X4=X3+L_p*cos(Teta2); 
    Y4=Y3+L_p*sin(Teta2); 
    ctr=ctr+1; 
    % X & Y are for the intersecting point of the 2 lines: 
    Y=((Y1/(Y2-Y1))*(X2-X1)-(Y3/(Y4-Y3))*(X4-X3)+X3-X1)/((X2-X1)/(Y2-

Y1)-(X4-X3)/(Y4-Y3));     
    X=((Y-Y1)/(Y2-Y1))*(X2-X1)+X1; 
    % so: 
    N_C(2,i+2)=X; 
    N_C(2,i+3)=Y; 
end 

  

  
% 3rd row and the rest of the rows above Alpha line: 
% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

- 
for j=3:N2 
    % 1st point of the 3rd (or higher) row(s):  
    % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

= =  
    N_C(j,1)=N_C(j-1,1)-n*sin((j-2)*D_Phi+D_Phi/2); 
    N_C(j,2)=N_C(j-1,2)+n*cos((j-2)*D_Phi+D_Phi/2); 
    % According to Figure (3.26) 
    X1=N_C(j,1);                      Y1=N_C(j,2); 
    X3=N_C(j-1,3);                    Y3=N_C(j-1,4); 

     
    Teta1=(j-2)*D_Phi+D_Phi/2; 
    Teta2=pi/2+D_Phi/2+(j-3)*D_Phi; 
    X2=X1+L*cos(Teta1);             Y2=Y1+L*sin(Teta1); 
    X4=X3+L_p*cos(Teta2);           Y4=Y3+L_p*sin(Teta2); 
    % X & Y are for the intersecting point of the 2 lines: 
    Y=((Y1/(Y2-Y1))*(X2-X1)-(Y3/(Y4-Y3))*(X4-X3)+X3-X1)/((X2-X1)/(Y2-

Y1)-(X4-X3)/(Y4-Y3));     
    X=((Y-Y1)/(Y2-Y1))*(X2-X1)+X1; 
    % so: 
    % 2nd point of the 3rd (or higher) row(s):  
    % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

= = 
    N_C(j,3)=X; 
    N_C(j,4)=Y; 
    % other points on the 2nd row: 
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    % = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 

= = 

     
    for i=3:2:2*N1-2     
        X1=N_C(j,i);       Y1=N_C(j,i+1); 
        X3=N_C(j-1,i+2);   Y3=N_C(j-1,i+3);  

         
        Teta1=Teta1-D_Phi; 
        Teta2=Teta2-D_Phi; 

         
        X2=X1+L*cos(Teta1); 
        Y2=Y1+L*sin(Teta1); 
        X4=X3+L_p*cos(Teta2); 
        Y4=Y3+L_p*sin(Teta2); 
        Y=((Y1/(Y2-Y1))*(X2-X1)-(Y3/(Y4-Y3))*(X4-X3)+X3-X1)/((X2-

X1)/(Y2-Y1)-(X4-X3)/(Y4-Y3));     
        X=((Y-Y1)/(Y2-Y1))*(X2-X1)+X1; 
        % so: 
        N_C(j,i+2)=X; 
        N_C(j,i+3)=Y; 
    end 
end 
% - . - . - . - . - . - - . - . - . - . - . - - . - . - . - . - . -  
% Ploting the results: 
SZ=size(N_C); 
ctr2=1; 
for i=3:4:SZ(2) 
    ctr=1; 
    for j=SZ(1):-1:1 
        a_x_col(ctr)=N_C(j,i); 
        a_y_col(ctr)=N_C(j,i+1); 
        ctr=ctr+1; 
    end 
    A_X_COL(:,ctr2)=a_x_col; 
    A_Y_COL(:,ctr2)=a_y_col; 
    ctr2=ctr2+1; 
end 

  
O_E=1; 
ctr=1; 
for i=1:2:SZ(2) 
    if O_E/2-round(O_E/2)==-0.5  
        A_N_C(:,i)=N_C(:,i); 
        A_N_C(:,i+1)=N_C(:,i+1); 
    else  
        A_N_C(:,i)=A_X_COL(:,ctr); 
        A_N_C(:,i+1)=A_Y_COL(:,ctr); 
        ctr=ctr+1; 
    end 
    O_E=O_E+1; 
end 
 

ctr1=1; 
ctr2=N2; 
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for i=1:2:SZ(2) 
    ANC_points(ctr1:ctr2,1)=A_N_C(:,i); 
    ANC_points(ctr1:ctr2,2)=A_N_C(:,i+1); 
    ctr1=ctr1+N2; 
    ctr2=ctr2+N2; 
end 
plot(ANC_points(:,1),ANC_points(:,2), 'black-*') 
% - . - . - . - . - . - - . - . - . - . - . - - . - . - . - . - . -  
SZ=size(N_C); 
ctr2=1; 
for i=2:2:N2 
    ctr=1; 
    for j=SZ(2):-2:1 
        a_x_row(ctr)=N_C(i,j-1); 
        a_y_row(ctr)=N_C(i,j); 
        ctr=ctr+1; 
    end 
    A_X_ROW(:,ctr2)=a_x_row; 
    A_Y_ROW(:,ctr2)=a_y_row; 
    ctr2=ctr2+1; 
end 
O_E=1; 
ctr6=1; 
for i=1:N2 
    if O_E/2-round(O_E/2)==-0.5  
        ctr=1; 
        ctr2=2; 
        for j=1:2:SZ(2) 
            A2_N_C(O_E,ctr)=N_C(O_E,ctr); 
            A2_N_C(O_E,ctr2)=N_C(O_E,ctr2); 
            ctr=ctr+2; 
            ctr2=ctr2+2; 
        end 
        ctr3=1; 
        ctr4=2; 
        ctr5=1; 
        else                       

             
            for k=1:2:SZ(2) 
                A2_N_C(O_E,ctr3)=A_X_ROW(ctr5,ctr6); 
                A2_N_C(O_E,ctr4)=A_Y_ROW(ctr5,ctr6); 
                ctr3=ctr3+2; 
                ctr4=ctr4+2; 
                ctr5=ctr5+1; 
            end 
            ctr6=ctr6+1; 
    end 
    O_E=O_E+1; 
end 

  
ctr1=1; 
for j=1:N2 
    ctr2=1; 
    for k=1:N1 
        A2NC_points(ctr1,1)=A2_N_C(j,ctr2); 
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        A2NC_points(ctr1,2)=A2_N_C(j,ctr2+1); 
        ctr1=ctr1+1; 
        ctr2=ctr2+2; 
    end 
end 
hold on 
plot(A2NC_points(:,1),A2NC_points(:,2), 'black-*') 
% saving the results: 
ANC_points(size(ANC_points),3)=0; 
A2NC_points(size(A2NC_points),3)=0; 
save('ANC_points.txt','ANC_points','-ascii','-double') 
save('A2NC_points.txt','A2NC_points','-ascii','-double') 
 

This program (Matlab program #4) is named “Real Michell 

4.m”  
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Appendix B: Confocal Microscopy Images from the Arabidopsis Root Cells 

 

Below are some selected images from confocal microscopy observations. Figure 

B-1 shows images of the Arabidopsis root when bending moment has been applied to the 

root. These images have been taken once right after the bending moment has been 

applied (within half an hour) and then six to seven hours later. The figures demonstrate 

that the roots are still healthy and growing. As well, they display the root hairs growing 

around the bend in the curved root.  

 

 

 

 

 

 

 

 

 

 

Figure B-1: Left- Bending moment just applied to the Arabidopsis root. Right- Same 

root observed 6 to 7 hours after the bending moment was applied. 

 

Figures B-2 to B-6 show the microtubules orientation in a chosen Arabidopsis 

root cell after the bending load has been applied (one root cell was chosen for each of the 

After 6 to 7 hours  
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three figures). All these angles have been defined by means of an ImageJ program plug-

in. 

Figure B-2 shows some examples of the microtubule arrangement visualized 

immediately after the bending load was applied. 
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Figure B-2: Microtubules orientation measured immediately after (within minutes) 

the bending load was first applied. 
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As shown in the previous figure, microtubule orientations are angled 6.5, 12 and 

10 degrees with respect to the main axis of the cell. The same section of the root is 

visualized under the Confocal microscope immediately after around six to seven hours of 

continuous bending load exertion. This 6 to 7 hour time frame is how long microtubules 

need on average to re-orient themselves. Since the Arabidopsis root is continuously 

growing, one of the main challenges in tracking microtubules orientation is to find 

exactly the same cell as visualized in previous observations (i.e. observations 

immediately following when bending load was first applied). There isn’t really a practical 

method to mark or highlight a specific cell to be differentiated from other cells. The only 

ways to locate the desired cell is by trial and error, and to keep moving the microscope 

lens along the length of region “A” (from Figure 4-12) until a cell can be found based on 

its appearance from images taken previously. Another challenge is that sometimes after 

removing the cover slip, the root might slightly rotate due to the loss of surface tension 

between the root and cover slip and, the relative alignment will no longer be the same as 

before. This might cause some difficulty while collecting the data and images; thus this 

was avoided in order to carry out careful collection of data. 
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Figure B-3: Microtubules orientation tracked directly after 6 to 7 hours of 

continuous application of the bending load. 
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As shown in the previous two figures, microtubules have re-oriented themselves 

in a different angle with respect to the cell axis. The new angles for the same sections in 

Figure B-2 are now 25, 37 and 31.5 degrees respectively, as opposed to 6.5, 12 and 10 

degrees before load application. 

Below is another sample: 

  

Figure B-4 ((a) - page 1 of 2): Another sample showing microtubules orientation 

along the root cell visualized immediately (left) and 6 to 7 hours (right) after the 

bending moment was applied to the root. 
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Figure B-4 ((b) - page 2 of 2): Another sample showing microtubules orientation 

along the root cell visualized immediately (left) and 6 to 7 hours (right) after the 

bending moment was applied to the root. 
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Figure B-5 ((a) – page 1 of 3): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-5 ((b) – page 2 of 3): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-5 ((c) – page 3 of 3): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-6 ((a) – page 1 of 5): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-6 ((b) – page 2 of 5): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-6 ((c) – page 3 of 5): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-6 ((d) – page 4 of 5): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 
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Figure B-6 ((e) – page 5 of 5): Another selected sample showing microtubules 

orientation along the root cell visualized 6 to 7 hours after the bending moment was 

applied to the root. 

 

 

Figure B-7 is an image showing an example of a root cell that had a clear pattern 

of microtubules orientation once the bending moment was applied (left); but it lost the 

pattern after several hours (right). The reason is most likely related to the root hair grown 

from this cell. 
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Figure B-7: An example of a root cell losing its microtubules pattern after several 

hours of being bent with an external bending moment. The reason why the 

arrangement of microtubules is completely lost is not clear, but most likely it is due 

to the root hair grown from such cell (circled in red). 

 

 


