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Abstract 

While much attention has been paid to data sanitization methods with the aim of protecting 
users’ privacy, far less emphasis has been put to the usefulness of the sanitized data from the 
view point of knowledge discovery systems. We consider this question and ask whether sanitized 
data can be used to obtain knowledge that is not defined at the time of the sanitization. We 
propose a utility function for knowledge discovery algorithms, which quantifies the value of 
the knowledge from a perspective of users of the knowledge. We then use this utility function 
to evaluate the usefulness of the extracted knowledge when knowledge building is performed 
over the original data, and compare it to the case when knowledge building is performed over 
the sanitized data. Our experiments use an existing cooperative learning model of knowledge 
discovery and medical data, anonymized and perturbed using two widely known sanitization 
techniques, called E-differential privacy and k-anonymity. Our experimental results show that 
although the utility of sanitized data can be drastically reduced and in some cases completely 
lost, there are cases where the utility can be preserved. This confirms our strategy to look at 
triples consisting of a utility function, a sanitization mechanism, and a knowledge discovery 
algorithm that are useful in practice. We categorize a few instances of such triples based on 
usefulness obtained from experiments over a single database of medical records. We discuss our 
results and show directions for future work. 

Keywords: utility of knowledge, privacy-preserving data mining, differential privacy, k-
anonymity, cooperative learning 

Introduction 

One of the main reasons why many organizations are interested in getting access to or doing large 
data collections is that these organisations want to use these collections to create new knowledge 
useful for them. Long before we had computers, data collections were used to, for example, get 
an idea what the average travel time between places was, how much food a soldier in an army 
consumes per day, or when fields should be planted. With computers, it became easier to do the 
analysis of data collections and the kind of statistical analysis that was done before could now 
be done with much larger data sets. And nowadays, even more complex analysis for even more 
complex knowledge can be done using advanced data mining techniques that try to come as close 
as possible to creating knowledge that is useful for many possible users of these techniques. 
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From the perspective of an individual, whose personal data is included in large data collections, 
some of the knowledge that organisations can gain from these collections will result in positive 
effects also for the individual, like new knowledge detecting diseases, but there can also be negative 
effects, like increases in car insurance premiums based on new knowledge an insurance company 
got out of their data collections. Even more, there is also always the possibility of abuse of personal 
data, like someone with access to the data informing a potential employer of an individual about 
his/her current financial situation which might give this potential employer advantages in the salary 
negotiations. So, for an individual, privacy of all or some of his/her individual data is an important 
concern and owners of data collections need to respect these privacy concerns [3]. 

At first glance, data mining and privacy seem to represent opposing goals, with mining trying to 
bring all kinds of knowledge “into the open” and privacy being interested in keeping such knowledge 
“in the dark”. But at a closer look, we can identify some key conditions with regard to both areas 
that can make the goals of them compatible. The users of data mining want to create knowledge 
useful for them, which means that they will have some kind of idea regarding the utility of new 
knowledge created. On the other side, individuals whose data is included in data collections usually 
are only concerned with the privacy of some of their data and there is also quite a spectrum of 
definitions of what people think privacy should mean. 
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Figure 1: Data mining vs. privacy 

So, users of data mining need to refine their utility idea to a precise utility definition and the 
people responsible for data collections need to come up with some kind of data sanitization that 
fulfills the privacy wishes that are put on the collection. For a given data mining mechanism, 
it is then possible to compare the utility that it produces on non-sanitized data with the utility 
achieved when mining the sanitized data and this way it is possible to identify triples (utility 
definition, sanitization mechanism, data miner) that are sufficiently compatible to be both useful 
and privacy-preserving. This general view is also graphically depicted in Figure 1. It should be 
noted that naturally not all such triples represent compatible instantiations of the 3 components. 

In this paper, we present experimental evaluations of such triples that turn out to be not useful, 
but we are also able to present triples that are very useful for a rather complex mining goal, namely 
finding rules for the analysis of billing data by doctors and hospitals in order to suggest patients 
that might have diabetis. 
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1.1 Sanitization, Knowledge Discovery, and Utility 

To mitigate the concern of users over privacy, different approaches have been proposed to 
transform data so that users’ information is protected. Measures such as E-differential privacy [4], 
E-indistinguishability [5], k-anonymity [13] and its derivatives such as p-sensitive k-anonymity, 
(α, k)-anonymity, l-diversity, and t-closeness, have been proposed to quantify the level of privacy 
achievable in the transformed sanitized data. Sanitized data may be accessed in one of two models 
of interaction. In the first model, the sanitized version of the data (database) is published and 
becomes accessible by the public, while in the second model users can only access the database 
through a sanitization filter that transforms the response to a query before delivering it to the end 
user. Sanitized data, published or accessible through an interactive sanitization filter, is then used 
for statical analysis and making inferences leading to new knowledge. 

Knowledge discovery (also knowledge building, knowledge learning, data mining) refers to 
non-trivial extraction of implicit, unknown, and potentially useful information from data [7]. A 
knowledge discovery method extracts trends or patterns from data and carefully and accurately 
transforms them into useful and understandable information. Such information, henceforth called 
knowledge, is more complex than what is typically retrievable by standard techniques, such as 
statistics, but is uncovered through the use of artificial intelligence techniques. Usefulness of the 
knowledge obtained at the end of the knowledge discovery process is measured by utility functions 
that quantify the level of user satisfaction with the knowledge discovered by the method. 

An important and less considered aspect of data sanitization algorithms is how they preserve the 
usefulness of the data for knowledge discovery systems. Ideally, a sanitization algorithm must ensure 
that no private or sensitive information will leak about individuals, while knowledge discovery 
algorithms can be used to extract useful knowledge about groups and trends in data – similar to 
those that could be extracted by using the original data. Much attention has been paid to the 
methods that ensure user anonymity and protect their private and sensitive information, but far 
less emphasis has been put into measuring and determining usefulness of the sanitized data for 
knowledge discovery. 

1.2 Our contribution 

We propose a definition for the utility of discovered knowledge and use it to compare the utility 
of knowledge discovered from original and sanitized data, using two widely used methods of data 
sanitization. Our definition of utility captures the value of the knowledge from the perspective of 
the end user who will be using the knowledge, and it differs from the classical measures in data 
mining, such as confidence and support of association rules that are all described later. Although 
we present a fairly general utility function that captures the core part of the usefulness of the 
obtained knowledge by the end user, there may still be the need and possibility of its extension. 

We use k-anonymity [13] and E-differential privacy [4], to quantify the level of anonymity and 
protection of the sanitized data. We investigate the usefulness of the sanitized data, that is, we ask 
the question whether the sanitized data can be used to obtain knowledge not defined and not known 
at the time of the sanitization. We do this by using the sanitized data as input to a knowledge 
discovery algorithm, evaluating the utility of the discovered knowledge using our proposed notion 
of utility, and comparing our result with with the utility of the knowledge obtained from the same 
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knowledge discovery algorithm when used with the original unsanitized data as input. 

Ultimately, we are trying to categorize triples (utility definition, sanitization mechanism, data 
miner) according to their usefulness in practice. A utility definition is often the missing dimension 
when evaluating sanitization together with knowledge discovery. We argue that a utility definition 
should be an integral part when sanitization and knowledge discovery are evaluated for privacy-
preservation and usefulness in practice. We use existing sanitization mechanisms and existing 
knowledge discovery methods, then we add the utility definition to them and categorize them. 
Our categorization is based on experiments performed over a single database consisting of medical 
records, and one would expect to see similar results for similar databases. 

For knowledge discovery, as our data miner component, we use the cooperative learning system 
introduced in [8]. It is a multi-agent system, which can produce knowledge that no single data 
miner can produce on its own. This allows us to perform more complex and versatile experiments 
on the original and sanitized data than just using a single data miner. 

One expects that the utility of knowledge discovered from sanitized data to decline compared 
to the utility of knowledge discovered from unsanitized data. However, one requires that sanitized 
data to remain highly ‘useful’ – in other words the utility to remain at an acceptably high level. 

k-anonymization releases sensitive information, but ensures that individuals cannot be linked 
to the information. Our experiments show that the loss of utility of the knowledge discovered by 
the cooperative learning system from k-anonymized data is no more than 40% when compared to 
the utility of knowledge discovered from unsanitized data. This result holds for a weak protection 
of k = 2 and strong privacy protection of k = 100. However, there are cases where the utility of the 
knowledge discovered from k-anonymized data is higher than the utility of knowledge discovered 
from unsanitized data. This, together with our definition of utility and the cooperative learning 
system, is an example of a triple that is useful in practice. 

Data perturbation protects the privacy of data values. We used 0.01-differential privacy to 
bound the amount of noise added during perturbation. This represents a strong privacy guarantee 
for data. Our experiments show that the utility of the knowledge discovered by the cooperative 
learning system from perturbed data is declining as more quality knowledge is discovered, and 
in some cases, there is no utility at all. In particular, the loss of utility is 100% as more quality 
knowledge is mined. This matches our expectation: local patterns and trends in the perturbed data, 
which represent less complex “low quality” knowledge, can be still extracted from the perturbed 
data and represents a useful and practical triple, but global patterns and more complex relationships 
are masked in the perturbed data and so high quality knowledge is harder (impossible?) to discover. 

These results suggest important directions for future research in data sanitization with respect 
to utility in knowledge discovery systems. 

1.3 Related work 

Privacy-preserving data mining is a field of study concerned with getting valid data mining results 
without learning the underlying private data. This is usually achieved [15] either by private data 
mining – data mining performed by the data owner; using Secure Multiparty Computation (SMC) 
– a cryptography-based technique; or by perturbation techniques. We will concentrate on the latter 
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approach, that is, we will assume that the data owner, who performs the perturbation, and data 
miner are two separate entities. Most of the existing proposals in this context follow the method of 
Agrawal and Srikant [2], which allows to approximate the original distribution of the data, hence 
preserving some statistical properties of the original data. 

There are many papers dealing with privacy-preserving data mining [2, 6, 10, 11, 14]. Usually, 
the papers describe methods that start with a mining goal and propose measures that protect the 
privacy of the underlying data, while still producing results contributing to the mining goal. It 
has to be noted that all of the privacy-preserving data mining mechanisms that we know of are 
targeting a specific mining goal. 

Data anonymization is another field that is concerned with the privacy of the underlying data. 
A typical example is the k-anonymity [13]. The process of anonymization takes the original 
data and releases them in a privacy-preserving way. The assumption is that the privacy of 
the original sensitive data is preserved in the anonymized release. This is usually achieved by 
distortion, generalization, and suppression. Again, some statistical properties of the original data 
are preserved, but the data anonymization is not concerned with the use of the information for 
knowledge discovery, only with the release of anonymized information. 

1.4 Organization of the paper 

We introduce our model for discovering knowledge from sanitized data in Section 2, together with 
showing some shortcomings of existing sanitization techniques for knowledge discovery. Section 3 
presents our core results – the measure of utility for prediction systems and the definition of a useful 
and privacy-preserving triple (utility definition, sanitization mechanism, data miner). Experimental 
results are in Section 4. 

2 Data Sanitization and Knowledge Discovery 

A model for knowledge discovery over sanitized data is introduced. The value of sanitized data for 
knowledge discovery is often overlooked, and although some statistical properties may be preserved, 
knowledge discovery goes, in general, beyond statistical characteristics of the data. 

2.1 A model for knowledge discovery 

Assume that D is a data set which contains some sensitive data. The sensitive data, denoted D∗ , 
can be elements of D or just parts of some of the elements in D. 

A sanitization (also called anonymization, pseudonymization, de-identification, obscuration, 
redaction) is a privacy-preserving process that transforms and releases the data D, while trying 
to preserve the privacy of the sensitive data D∗ . It is achieved by a combination of value 
removing, swapping, shuffling, substituting, masking, obscuration, perturbation, randomization, 
sub-sampling, or other techniques [1]. Anonymization is a form of sanitization, which protects the 
identity of individuals in the data, and perturbation is another form of sanitization, which protects 
sensitive and private data, not just the identity of individuals. A sanitization mechanism S is an 
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algorithm that on input x, an element in the range of any (query) function defined over D, uses the 
sanitization process described above to output sanitized x that preserves the privacy of D∗ . The 
process of sanitization can work in either one of the two models of interaction: interactive model and 
non-interactive model [4]. In the non-interactive setting the original data is sanitized and the output 
is published. An example of a non-interactive sanitization mechanism is the k-anonymity [13]. 

−→
 Sanitization mechanism S
 −→
 

Data D Sanitized data S(D) 

In the interactive setting the data is made available to parties through an interface that for 
incoming queries provides (possibly adaptively chosen) sanitized answers. An example of an 
interactive sanitization mechanism is the E-differential privacy [4]. 

f ←− Sanitization ←− query f 
f(D)−→ interface −→ response S(f(D))

Data D 

The sanitized output coming from an interactive or non-interactive sanitization mechanism is 
used as an input to knowledge discovery algorithms. A knowledge discovery algorithm takes a 
data set as an input and outputs another data set representing the discovered knowledge in the 
input. We take an existing knowledge discovery algorithm M proposed to work over D, and run it 
unmodified over the sanitized input S(D). 

←− ←−Sanitization S Knowledge discovery algorithm M −→ −→ −→ 
Knowledge K

Data D 

Our goal is to introduce a measure that quantifies utility of the knowledge discovered by M when 
used over D and over S(D). 

2.2 No value of the released sanitized data 

The notion of E-differential privacy has been proposed to limit the leakage of private information in 
the released data. On an example that achieves E-differential privacy, we show that the usefulness 
of the released (sanitized) data for knowledge discovery can be non-existent. 

The definition of the E-differential privacy notion [4] follows: A randomized function S gives 
E-differential privacy if for all data sets D1 and D2 differing on at most one element, and all 

xR ⊆ Range(S), Pr[S(D1) ∈ R] ≤ exp(E) × Pr[S(D2) ∈ R]. exp(x) is the exponential function e . 

The E-differential privacy notion limits the probability that the randomized function S, a 
sanitization function, would leak information from a data set that is extended by at most one 
element. That is, a data leak and therefore a disclosure of a private data through the function S is 
possible, but limited by the leakage parameter E. 
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Consider a randomized function S that on every input always outputs the same constant. Such 
a function satisfies the E-differential privacy notion, as well as the similar E-indistinguishability 
notion [5], for every leakage E ≥ 0. Yet the output of this function S, a sanitized release of data, is 
useless for practical purposes, such as statistical and knowledge discovery. 

This discussion does not imply that the E-differential and E-indistinguishability privacy notions 
are not good. In literature, the E-differential privacy and E-indistinguishability are achieved [5, 4] 
by using the value distortion technique. That is, an original value x is released as x + r, where r is 
a random value drawn from a known distribution. This discussion merely points out that methods 
that release sanitized data should take into account the usefulness of such data for statistical and/or 
knowledge discovery purposes. 

The “utility of the data at the end of the privacy-preserving process”, what we refer to as 
the usefulness of the released sanitized data, has been identified [15] as one of the quality criteria 
when evaluating privacy-preserving methods, but too often it is not even mentioned when privacy-
preserving notions, algorithms, methods, and techniques are proposed and evaluated. We believe 
that sanitization processes should take into account the usefulness of the released data, and a 
guarantee on some degree of usefulness should be an integral part of privacy notions. 

2.3 Shortcomings of statistical characteristics for knowledge discovery 

Existing sanitization methods, such as anonymization and perturbation, may degrade properties 
and characteristics of the original data. In the following, we point out some shortcomings of popular 
perturbation and anonymization techniques when their output is used for knowledge discovery. 

Take for example the E-differential privacy [4] or the perturbation method of Agrawal and 
Srikant [2]. They both propose to use the value distortion technique to achieve perturbation. The 
additive noise is randomly chosen from a Laplace distribution in the case of E-differential privacy 
and from a Gaussian distribution in the case of the method of Agrawal and Srikant. 

After the perturbed data is released, an approximation of the probability distribution of the 
original data can be computed using the Expectation Maximization method [2]. In other words, 
a statistical property of the original data is approximated. Having a probability distribution of 
the data is sufficient to obtain a decision-tree classifier, but not sufficient for most of the other 
knowledge building methods. For example, the cooperative learning system [8], that we use for 
our experiments, looks (among others) for ordered sequences. However, perturbation hides the 
original values and having statistical properties of the values is not enough to retain the sequence 
information. 

k-anonymity [13] is a data anonymization model for protecting privacy of the individuals. 
A table consists of identifiable columns (names, social security numbers, etc.), quasi-identifiable 
columns (combination of which can still identify a person, e.g., date of birth, ZIP code, gender, 
etc.), and sensitive columns (data that is private to the individual). The k-anonymity model assures 
that the identifiable columns are removed, sensitive columns are untouched, and any combination 
of quasi-identifiable values from one row can be found in at least k − 1 other rows of the table. This 
means that if a combination of the quasi-identifiable values from one row of the table identifies an 
individual, then the individual can be confused with at least k − 1 other individuals in the table. 
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The k-anonymity model preserves the sensitive information, and hence all its statistical 
characteristics, but many relations among sensitive values and quasi-identifiable original values 
are lost. This is a problem for a knowledge discovery method that relies on true original relations. 

Utility of Prediction Systems 

Knowledge is an abstract concept and it can be represented in different ways. In a majority of the 
cases, the knowledge can be represented or converted to “if . . . then . . . ” rule form. Here, we look 
at the specific case of rule mining, where knowledge is represented as a rule of the form “conditions 
⇒ conclusion”. We assume that our knowledge discovery algorithm M produces rules of the above 
form that are used to predict values of specific fields in a data base. 

Concentrating on rule mining and prediction systems is not really a restriction, since one can 
show that rule-based systems are Turing-complete as indicated by programming languages like 
Ops5 or Prolog. A prediction system can be also used for classification of data into classes, simply 
by using the prediction system to predict a class. 

An association rule is X ⇒ Y , where X and Y are sets of items. Its meaning is that a transaction 
– a set of items – that contains the items in X tend to also contain the items in Y . An example 
is 91% of students who pass Calculus 1 also pass Calculus 2. 91% is called the confidence of the 
rule. The support of the rule X ⇒ Y is the percentage of transactions in a set of transactions (a 
database) that contain both X and Y . Confidence and support are the traditional measures of 
quality of the association rules [6]. 

We consider a more general form of the rules, not just association rules, in the data. We assume 
our rules are of the form X ⇒ Y , where X is a boolean expression representing the condition, and 
Y is a prediction. For example, our rule can be 

age ≥ 50 ∧ seq(d136, d451, d94) ∧ has(d215) = true ⇒ diabetes, 

that is, if a patient is of age 50 or older, has been diagnosed with d136, d451, and d94 (representing 
diagnostic codes) in this order, and has been diagnosed with d215 at any time, than the patient is 
predicted to have diabetes. In other words, our condition X is a combination of logical expressions 
that may operate over sequential data. We call such rules hybrid rules, because they are usually a 
combination of different types of expressions [8]. 

Finally, we want to be able to measure the utility of such rule for the user who will be using 
this rule. In fact, we want to measure the utility not just of the obtained rules, but of the whole 
prediction system from the perspective of the end user. Therefore, our utility measure goes beyond 
the confidence and support measures. For example, a user wants to obtain the information about 
which patients are susceptible to diabetes. The user does not care whether there will be a large 
amount of false positives, as long as all the true positives would be detected. This cannot be 
captured using confidence and support. 
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3.1 Utility
 

Let U = D1 × · · · × Dn be a universe of tuples, where the Di’s denote domains. (x1, . . . , xn) ∈ U is 
called a tuple and each xi is the value of a field. Let DB be a database, a finite subset of U . This 
corresponds to the relational database concept. 

There is a data mining algorithm DM that takes a database DB and outputs a set of rules 
R = {X1 ⇒ Y1, . . . , Xm ⇒ Ym} that can be used for prediction. Let the set I contain the indices 
of the fields to be predicted. An incomplete tuple is x = (xi) ∈ U⊥, where U⊥ = D1

� × · · · × D�
n 

with D� = {⊥} for i ∈ I, and D� = Di for other i’s. The symbol ⊥ represents a missing value. The i i 
rules in R capture the patterns and trends in the database DB and are used to predict the missing 
field values of incomplete tuples. 

A rule X ⇒ Y ∈ R is applicable to an incomplete tuple x ∈ U⊥, if the boolean expression X 
evaluates as true when the field values of x are assigned to the corresponding variables of X. A 
prediction algorithm PA takes the set of rules R and an incomplete tuple x = (xi) ∈ U⊥, and for 
each rule Xj ⇒ Yj ∈ R determines whether the rule is applicable to x. If it is, then the tuple 
(xi) ∈ U , with the xi’s, for i ∈ I, coming from the prediction Yj , is added to the output set V . The 
tuples in the output set V , |V | ≤ m, may be conflicting on the predicted values, because several 
rules in R may be applicable to x. 

A conflict resolution algorithm CR takes the set V ⊆ U , decides on the best estimate for the 
missing fields indexed by I, and outputs this tuple v ∈ V . The predicted fields of v are x̂ = (x̂i)i∈I , 
and we assume the true values of these fields are x̄ = (x̄i)i∈I . 

The set of algorithms DM, PA, and CR (together with the index set I that depends on DM) 
comprise a prediction system, a type of knowledge discovery system. 

We define a error implication function E(x̂, x̄) that weights the seriousness of any occurring 
error for the utility, e.g., E(x̂, x̄) can be some value based on the predicted x̂ and true x̄ that 
accounts for the preferences of a user who measures the utility. Note that we want the function E 
to have a high value if there is no error, while it should be near 0 for serious errors. The function s 
E can be seen as E(x̂, x̄) = Ei(x̂i, x̄i), a sum of error implication functions for each of the i∈I 
predicted fields. 

In addition, the user is interested in incomplete tuples with a certain interest factor, therefore 
the user decides on a weight w(x) for each x ∈ U⊥, where higher weights for tuples show that the 
user is more interested in those tuples. 

The user computes the utility of the prediction system, resp. the correctness part of the utility, 
by finding 

Utility(DM, PA, CR, DB) =
 

w(x)E(x̂, x̄) 

=

x∈U⊥  
w(x)
 

Ei(CR(PA(DM(DB), x)), x̄). (1) 
x∈U⊥ i∈I 

We note that the utility as we have just defined it is just some kind of core utility (that deals with 
prediction errors), but there might be the need for extensions to it in order to capture additional 
aspects of usefulness of data in practice. 
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To actually evaluate the utility in practice, we consider a test set T ⊆ U⊥, possibly derived by 
removing the values to be predicted from the tuples in the original database that were not used for 
learning. Then we evaluate the finite sum over all x ∈ T . 

3.2 Example 

Consider the following real-world scenario: A health insurance company wants to predict whether 
an insured person can have a specific disease in the future. Assuming that prevention and early 
detection is cheaper then a treatment, such a prediction will benefit everyone – the patient, the 
insurance company, and the health care provider. Hence the health care provider is willing to 
cooperate, but is required by law to protect the privacy of the patients and their health information. 

The health care provider releases the information in a privacy-preserving way to the insurance 
company. Although the data mining is performed over the whole database, the insurance company 
is not interested in predicting results for all the patients, only in those that have insurance. 

The mining algorithm outputs rules that predict a disease, say field xj . That is, the output 
is either a patient has/will have the disease or not. It is acceptable to have false-positives, but 
unacceptable to have missed-positives. The error implication function Ej is 

Ej (x̂, x̄) = 1 if x̂j − x̄j ≥ 0 and Ej (x̂, x̄) = 0 otherwise . 

This can be visualized as 

x̄j (true) x̂j (predicted) result description 
0 1 acceptable false-positive 
1 1 good correct prediction 
1 0 unacceptable missed-positive 
0 0 good correct prediction 

That is, each correct and acceptable prediction would add to the utility, while unacceptable 
predictions will not. Or a negative value can be chosen to actually lower the utility. Regarding the 
interest weights w, we can simply assign w(x) = 1 if the patient x is of interest, and 0 otherwise. 
The utility is then an integer in the range 0 up to the number of people of interest. The higher the 
number, the greater is the value of the mining process for the user. 

3.3 Utility in the privacy-preserving case 

Our theoretical utility is Utility(DM, PA, CR, DB) from the equation (1) such that the series 
converges. This includes the possibility that w(x) is almost always 0 (i.e., w(x) is non-zero in a 
finite number of cases, and thus the sum is finite). In practice, the utility of the prediction system 
working over the original non-sanitized data is computed as 

Utilityorig = w(x) Ei(CR(PA(DM(DB), x)), x̄), 
x∈T i∈I 

where T ⊆ U⊥ is a finite test set and DB represents the learning set. 
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We have two possibilities to compute the utility of the prediction system working over sanitized 
data, that is, a prediction system where the input to the data miner DM is a sanitized database 
S(DB). These two possibilities depend on whether the obtained rules are robust – resilient to 
sanitization. If they are, we can apply the discovered rules to the original data coming from the 
universe U⊥, and hence we evaluate the utility over a non-sanitized original test set T ⊆ U⊥ as 

Utility = w(x) Ei(CR(PA(DM(S(DB)), x)), x̄).san→orig 
x∈T i∈I 

The other possibility is that the discovered rules are only applicable to sanitized incomplete tuples. 
Then the utility is computed as 

Utility = w(x) Ei(CR(PA(DM(S(DB)), S(x))), S(x̄)).san→san
 
x∈T i∈I
 

Now, consider a triple
 
(Utility, S, M)
 

consisting of (a utility definition, a sanitization mechanism, a knowledge discovery algorithm). The 
M consists of a data mining algorithm DM that implicitly defines the universe U (a database 
schema), a prediction algorithm PA, and a conflict resolution algorithm CR. The utility function 
Utility depends on the knowledge discovery algorithm M, the sanitization mechanism S, a user 
defined weight function w and an error implication function Ei, a learning set DB, and a testing 
set T , all described before. 

The privacy-preserving property of such a triple is solely depending on the privacy-preserving 
guarantees of the sanitization mechanism S, when applied to a database coming from the universe 
U . 

We say such a triple is useful if 

Utilitysan→orig ≥ c · Utilityorig or Utility ≥ c · Utilityorig,san→san 

where c is a constant representing some (society accepted) decline in the utility due to a privacy 
protection. 

Experimental Results 

The objective of our experiments is to determine the effect of sanitization on utility of knowledge 
discovery, in particular on a prediction system. The question we are addressing is whether the 
sanitized data can be used to discover knowledge not defined at the time of the sanitization. Based 
on the experimental results, we want to categorize some triples (utility definition, sanitization 
mechanism, knowledge discovery algorithm) according to their usefulness. 

In our experiments, we use the Cooperative Learning (CoLe) system [8] for knowledge discovery. 
We also use the diabetes medical data from [8]. For sanitization, we use two methods, namely 
k-anonymity and E-differential privacy. We first use the sanitization techniques on the original 
medical data, and then evaluate utility of the knowledge obtained by the CoLe system before and 
after sanitization. 
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4.1 The CoLe system
 

CoLe [8] is a knowledge discovery system. The goal of the CoLe system is to mine medical data and 
discover hybrid rules that predict an unknown diagnosis. The CoLe system specializes in employing 
multiple cooperative data miners to achieve this goal. 

Medical data. The diabetes medical data for our experiments comes from the Calgary Health 
Region. It was collected for billing purposes in the public health care system. Patients’ clinic visits 
are recorded with diagnostic codes, making the data a good source for data mining studies. 

This data contains a group of the population born before 1954 that have been living in Calgary 
continuously since 1994 (till the time of data collection – 2001). In the original study [8], the 
patients with no diabetes diagnosis in 1995 - 1999 but at least one diabetes diagnosis in 2000 are 
of interest. The CoLe system analyzes diagnoses between 1995 and 1999 in order to find rules that 
can potentially reveal diabetes patients earlier than laboratory tests. 

In the medical data provided to us, there are two tables. Table 1 shows some sample data 
in these two tables. One table is the registration table (REG table) containing ID, gender, year 
of birth, age group, and the numbers of visits for the last five years together with the average 
number of visits in those 5 years. This information is provided for 9450 patients. The other table 
(MD table) contains 2,059,929 medical records coming from health care service events (e.g., visits 
to a clinic). Each record consist of the date of the service, up to three diagnostic codes, and ID 
that references the ID in the REG table. The diagnostic codes are defined by the International 
Classification of Diseases, 9th revision (ICD-9) and are not numerical data but strings. We refer to 
all this data as the original data. 

REG 
ID SEX BYEAR AGEGRP VISITS95 V96 V97 V98 V99 AVGVISITS 
2 1 1922 8 7 9 12 12 16 11.2 
3 0 1924 7 7 6 34 28 14 17.8 
5 0 1947 5 5 1 0 0 0 1.2 
6 0 1934 6 7 35 52 17 23 26.8 

13 0 1928 6 7 5 1 0 0 2.6 
18 0 1948 5 4 12 15 8 13 10.4 
19 1 1925 7 8 13 7 16 18 12.4 

MD 
SERVDATE DIAG1 DIAG2 DIAG3 ID 
1996-03-06 2 
1999-03-25 595 2 
1997-06-27 594.9 788.0 3 
1999-12-14 733 717.8 719.4 5 
1995-09-06 626.2 V79.0 13 
1999-09-13 V79.0 780.9 18 
1998-11-16 V81.2 19 

Table 1: Sample data in the REG and MD tables
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The original data that was provided to us has been already anonymized by omitting the names 
of the patients, because of the privacy protection measures in the health care system. Still there is 
sensitive information in the tables that when joined and matched to publicly available information 
might reveal the identity and other sensitive information about the patients. 

We consider the columns with diagnosis codes to be sensitive information. The codes may 
represent diseases that individuals would like to keep private. Using the other available information 
in the original data, an individual may be linked to a sensitive value. For example, if we know that 
an individual was born in 1948, is male, and in 1999 visited the doctor around 50 times, then we 
can uniquely determine this individual’s ID and therefore his diagnoses and diseases. 

CoLe system description. The CoLe system [8, 9] consists of two cooperative data mining 
agents – a sequence miner and a conjunctive miner – and a combination agent. The concept of 
cooperative learning allows us to produce rules that no single data mining algorithm can produce 
on its own. Each data mining agent uses a single data mining algorithm on the given data (or 
part of it). The results from all the mining agents are combined by the combination agent into 
hybrid rules. This mining-and-combination work forms a mining iteration in the CoLe system. The 
quality of the produced rules are measured by both their accuracy and coverage (proportion of the 
total patients that a rule applies to) and this measure is combined into a fitness value. The higher 
the fitness value the better is the quality of the mined hybrid rules. This can be seen as trying to 
assign an indication of utility to a rule. The CoLe system performs several mining iterations and 
is parametrized by a fitness threshold. The rules exceeding this fitness threshold from any iteration 
are put into the final rule set and output as the mining result. 

Applying CoLe to medical data. When mining on the diabetes medical data, the produced 
hybrid rules contain conditions whether an individual is susceptible to have diabetes and hence 
whether the individual should be tested for it. In this experiment, we are interested in the obtained 
hybrid rules. Each hybrid rule is of the form “conditions ⇒ possible diabetes”. For example, a 
hybrid rule is 

gender = M ∧ has(466.1) = true ∧ seq(401, 780.3, 405) ⇒ diabetes, 

which means “if a patient is male, has a diagnosis 466.1 (diseases of respiratory system) at any time, 
and has diagnosis 401 (hypertension) followed by diagnosis 780.3 (symptoms) and then followed by 
diagnosis 405 (hypertension), the patient is probably having diabetes and should be tested for it.” 

The CoLe system is non-deterministic. The randomness comes from several parts of the miner: 
using a Genetic Algorithm as sequence miner, random selection of some features during conjunctive 
mining, and random sampling of part of the data during each iteration. We will therefore run the 
miner several times and average the results. 

We use the fitness thresholds 3.6, 3.7, 3.8, 3.9, and 4.0, respectively, which represent the steps 
from low quality to high quality of the mined hybrid rules. To obtain a hybrid set, we run the CoLe 
system in 10 iterations, which is enough to facilitate the cooperation during the mining process. 
For each of the above fitness thresholds we repeat the run of the CoLe system 5 times, obtain 5 
hybrid rule sets, and present the average of the results for these 5 runs. We denote this particular 
system by CoLe(t), where t is a fitness threshold. 
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4.2 Data sanitization 

Since the original medical data still contains sensitive information and there is the possibility to 
link individuals to this sensitive information, this data should not be publicly released without 
sanitization. 

Our scenario assumes that the data will be released to the public after sanitization, in particular, 
using a non-interactive anonymization achieved through k-anonymity [12] and unlimited interaction 
with a perturbation mechanism which achieves E-differential privacy [5] through value distortion. 

These two different sanitization techniques, anonymization and perturbation, are performed on 
the original data to get the sanitized data. We split each sanitized data set into a learning set, 
denoted DB, and a test set, denoted T . We do this by splitting all 9450 patients into two equal-size 
sets of 4725 patients each. The same 4725 patients are used for learning, unless a sanitization 
method suppressed some of the patients – removed patient data. Since the two k-anonymized data 
sets that we produced have some records suppressed, their learning sets are reduced to sizes 4704 
and 4701, respectively, for 2- and 100-anonymized data. 

Anonymization using k-anonymity. k-anonymity [13] is a model that has recently gained 
popularity. It is a model that releases individuals’ sensitive data without compromising the identity 
of the individuals, and thus it is suitable for releasing medical data in a privacy-preserving way. 

For providing anonymity, data holders release medical data by removing the identifiers, such as 
name, address, phone number with the incorrect belief that patient confidentiality is maintained. 
Sweeney [13] showed that the remaining data can be used to re-identify individuals by linking some 
other fields of the data (known as quasi identifiers or QI) to other databases. To solve this problem, 
she proposed the notion of k-anonymity as a privacy-protection in the released data. The released 
data satisfies k-anonymity if a combination of the QI-attributes from one row can be found in 
at least k − 1 other rows in the released data. k-anonymity is the common technique to achieve 
individual anonymity in the non-interactive model. We perform k-anonymization of our original 
data using the Datafly algorithm [12, Figure 8], which we present here as Algorithm 1. 

Algorithm 1 Datafly
 
Input: A data table DB consisting of tuples x = (x1, . . . , xn) ; a list of quasi-identifier attributes QI = 

(A1, . . . , Am); constraint k; Generalization Hierarchy Scheme for all quasi-identifier attributes GHSAi 

for i = 1, . . . ,m. 
Output: A generalization of DB[QI] with respect to k. 
1:	 freq ← a frequency list containing distinct sequences of values of DB[QI], along with the number of 

occurrences of each sequence 
2:	 while there exists sequences in freq occurring less than k times that account for more than k tuples do 
3: let Aj be attribute in freq having the most number of distinct values 
4: freq ← generalize the values of Aj in freq 
5:	 end while 
6:	 freq ← suppress sequences in freq occurring less than k times 
7:	 freq ← enforce k requirement on suppressed tuples in freq 
8:	 return new table DB' ← DB with DB'[QI] coming from the generalized values in freq 

We use only a single Generalization Hierarchy Scheme (GHS) for this algorithm that works 
with numerical values. At the bottom of the hierarchy we have a real number that is generalized 
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into an integer by rounding. The next generalizations are into integer intervals of size 2, 5, 10, 20, 
and 50. Our integer “intervals” of size s are actually the following sets: . . ., {0, 1, 2, . . . , s − 1}, 
{s, s + 1, . . . , 2s − 1}, . . ., and we choose the ceiling of the mid value of the corresponding interval 
as a representative. If the interval is {Ms, Ms + 1, . . . , (M + 1)s − 1}, then our representative is 
,(2Ms + s − 1)/2l. The last step of our generalization is to replace the value with the symbol *, 
which represents the top (root) of the GHS. 

GHS: real number → integer → int(2) → int(5) → int(10) → int(20) → int(50) → * 

For example, we want to generalize the number 192.34. In the first step we round it to 192. 
In the next steps, we obtain 193, as 193 = ,(192 + 193)/2l is the representative of the interval 
{192, 193} of size 2; then 192, as 192 = ,(190 + 194)/2l is the representative of the interval 
{190, 191, 192, 193, 194} of size 5; and then 195, 190, 175, and *. 

To avoid extensive generalization in the case of small values of k, we employ a heuristic trade-off 
between generalization and suppression. Our stop condition for small k in the generalization phase 
of the Datafly algorithm is to stop when no more than 0.5% records would need to be suppressed. 
So in the case k = 2, the line 2 of the Datafly algorithm (Algorithm 1) is modified to 

2:	 while there exists sequences in freq occurring less than k times that account for more than k tuples 
but no more than 0.5% of all the records of DB do 

Applying k-anonymity to the medical data. We chose the sensitive attributes to be the 
columns of the MD table and hence the ID’s of the REG table. Our quasi-identifier (QI) attributes 
are all the records in the REG table except ID. We use the following labeling for the QI-attributes: 
A1 is the column for gender, A2 for year of birth, A3 for age group, A4, . . . , A8 for the number of 
visits during 1995-1999, and A9 is the column of the average number of visits during this period. 
Our input to the Datafly algorithm is the REG table. 

Datafly outputs 2-anonymization of the original data with roughly 0.41% suppressed records. 
For a higher privacy level, we choose k = 100, and the Datafly algorithm suppresses approximately 
0.46% of the records. Table 2 summarizes the suppression of the records and shows the 
generalization of the QI-columns after k-anonymization. Only the values in the REG table were 
generalized and suppressed after running the Datafly algorithm. The suppression of some records 
in the REG table makes the corresponding records (linked by ID’s) in the MD table obsolete, and 
so we suppress them, too. 

# of suppressed records in # of distinct values in QI-column 
data REC table MD table A1 A2 A3 A4 A5 A6 A7 A8 A9 

original - - 2 50 6 6 103 104 101 106 280 
k = 2 39 (0.41%) 17124 (0.83%) 2 3 3 3 3 4 3 5 3 

k = 100 43 (0.46%) 21008 (1.02%) 2 2 3 3 3 2 3 3 2 

Table 2: k-anonymization of the medical data 

We denote these two described sanitization mechanisms by S(k = 2) and S(k = 100). 

Data perturbation for E-differential privacy. We use interactive perturbation by value 
distortion that achieves E-differential privacy, because, compared to other perturbation methods 

15
 



such as the one of Agrawal and Srikant [2], it quantifies and limits the risk of disclosure of sensitive 
information. 

The definition of E-differential privacy is [4]: A randomized function S gives E-differential privacy 
if for all data sets D1 and D2 differing on at most one element, and all R ⊆ Range(S), Pr[S(D1) ∈ 
R] ≤ exp(E) × Pr[S(D2) ∈ R]. 

This notion limits the probability that the randomized function S, a sanitization function, would 
leak information from a data set that is extended by at most one element. That is, a data leak and 
therefore a disclosure of private data through the function S is possible, but limited by the leakage 
parameter E. 

Dwork et al. [5] showed that E-differential privacy can be achieved in the interactive model 
using value distortion technique, which to a numerical value x adds a random noise r drawn from 
a known distribution. 

The random noise depends on the query function. It is drawn from a Laplace distribution a o
1 |y − µ|

Lap(µ, b), with probability density function h(y) = exp − . Let DB be a data set, 
2b b 

and let f be a query function with range Rd, that is, a query outputs a vector of numerical values. 
The L1-sensitivity Δf of f is defined as [4]: Δf = maxD1,D2 1f(D1) − f(D2)11 for all D1 and 
D2 differing in at most one element. If an answer x = f(DB) is masked by adding a random 
noise, a vector r ∈ Rd to x, whose values are chosen independently and identically from Laplace 
distribution Lap(µ, b), with location (mean, median, mode) µ = 0, and scale b = Δf/E depending 
on the leakage parameter E and the query function f , then the sanitized answer x + r achieves 
E-differential privacy. That is, the noise is drawn from Lap(0, Δf/E) with probability density a o 

E E|y|
function h(y) = exp − .

2Δf Δf 

Applying perturbation to the medical data. We use leakage E = 0.01 and we set 
sensitivity Δf to be 1 for all query functions f , which represents the worst-case scenario. The 
additive noise for each numerical value is then effectively drawn from the Laplace distribution a o

1 |y|
Lap(0, 1/E) with probability density function h(y) = exp − .

200 100 

In addition to perturbation of numerical values, we use perturbation of categorical values. In 
particular, we use the technique called uniform randomization [6], which is a generalized idea of 
Warner’s randomized response technique. The perturbation mechanism replaces a categorical value 
with some other value in the same category with probability p and keeps it with probability p − 1. 
The larger the probability p, the higher is the privacy protection. 

We use the uniform randomization technique to perturb diagnostic codes (columns DIAG1, 
DIAG2, and DIAG3 in the MD table). With probability p = 0.75 we replace the original diagnostic 
code with another value chosen uniformly at random from the set of all (ICD-9) diagnostic codes, 
and with probability 0.25 we keep the original diagnostic code. 

For our experiments we use two different combinations of perturbation: (1) a perturbation of 
all numerical values using the value distortion technique and noise from the Laplace distribution, 
as suggested in [5], and (2) the same perturbation of all numerical values using the value distortion 
technique as in (1) plus a perturbation of diagnostic codes (categorical values) using the uniform 
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randomization technique, as suggested in [6]. In addition, we use two variants of perturbation. 
Additive noise was (a) independently chosen from the distribution for each numerical value, and 
(b) independently chosen from the distribution for each new numerical value and fixed for the 
same values. This avoids partial disclosure of an original value by repeating the query and 
obtaining an approximation – a bounded estimator for the original value [1, 2]. The original 
data is perturbed using (1) or (2), and (a) or (b). The four obtained perturbed data sets are 
labeled 1a, 1b, 2a, and 2b, accordingly. The corresponding sanitization algorithms will be denoted 
as S(E = 0.01, variable noise), S(E = 0.01, fixed noise), S(E = 0.01, p = 0.75, variable noise), and 
S(E = 0.01, p = 0.75, fixed noise), respectively. 

4.3 Calculating utility 

After performing the two mentioned sanitization methods on the original medical data and 
generating six sanitized data sets, we computed the utility of the knowledge discovered from the 
original data and the sanitized data in order to compare them. 

To compute the utility of the knowledge discovered over the original non-sanitized data, we use 
the utility function that we derived in Section 3.3: 

Utilityorig = w(x) Ei(CR(PA(DM(DB), x)), x̄). 
x∈T i∈I 

In this formula, the data mining algorithm DM is the CoLe system as described above. DM(DB) 
means that we apply the CoLe system to the learning set from our original data. As a result our 
miner outputs a set R of hybrid rules that predict diabetes, say a boolean field x0, and the rules 
only predict whether x0 is true. The CoLe system outputs rules that predict only one value, namely 
x0, and so the index set I = {0}. Table 3, row “Original data”, summarizes our mining efforts over 
the unsanitized learning set DB. 

PA is our prediction algorithm, which takes the set of rules R and an incomplete tuple x, 
representing information about a patient with the field x0 missing, and determines if the individual 
rules of R are applicable to x. Even if one rule from R is applicable, that is, predicts that a 
patient represented by x has possible diabetes (x0 is true), then our conflict resolution algorithm 
CR chooses true for x0. 

For the error implication function E0 and weights w’s we need to know the preferences of the 
end user. Suppose that the end user of our system is a health care provider for whom it is acceptable 
to have false-positives, but undesirable to have missed-positives. The CoLe system predicts only 
whether x0 is true. If there is no prediction, the health care provider does not know whether the 
patient has or does not have diabetes. Although in reality we cannot determine x0 in this case, we 
set x0 to 0 if there was no prediction, to capture false-positives and correct negative predictions. 
The health care provider then uses the following error implication function 

E0(x̂, x̄) = 1 if x̂0 − x̄0 ≥ 0 and E0(x̂, x̄) = 0 otherwise , 

which represents 
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x̄0 (true value) x̂0 (predicted value) result description 
0 
1 
1 
0 

1 
1 

N/A ⇒ 0 
N/A ⇒ 0 

acceptable 
good 

undesirable 
good 

false-positive 
correct prediction 
missed-positive 

correct prediction. 

Regarding the interest weights w’s, the health care provider assigns w(x) = 1 for all patients 
represented by x that are in the test set T . 

Now the utility Utilityorig can be computed, and it is an integer in the range 0 up to the 
number of patients in the test set T with diabetes. The average Utilityorig computed from the 
results of 5 mining runs is shown in Table 4, in the row labeled “Original data”. 

In practice we have two possibilities to compute the utility of discovered knowledge from 
sanitized data, depending whether the knowledge is robust or not, that is, whether the obtained 
rules are resilient to sanitization or not. Either the knowledge is robust, and then we can apply 
the rules obtained from mining over sanitized data to make prediction about non-sanitized data 
(san → orig): 

Utility = w(x) Ei(CR(PA(DM(S(DB)), x)), x̄).san→orig 
x∈T i∈I 

Or the knowledge is not robust, and then we should only apply the rules obtained from mining over 
sanitized data to make predictions about sanitized data (san → san): 

Utility = w(x) Ei(CR(PA(DM(S(DB)), S(x))), S(x̄)).san→san
 
x∈T i∈I
 

In both cases, we obtain the rules from running the CoLe system DM over the sanitized learning set 
S(DB). But then we can apply the rules using our prediction algorithm PA to either an unsanitized 
incomplete tuple x or a sanitized incomplete tuple S(x). All the algorithms DB, PA, and CR are the 
same as before. The averaged Utility and Utility from 5 runs for each sanitized san→san san→orig 
data set and our selected fitness thresholds is shown in Table 4. 

4.4 Discussion 

Table 3, row “Original data”, summarizes our mining efforts over the unsanitized learning set DB. 
The other rows present mining efforts over the specified sanitized learning sets S(DB)’s. The 
columns show the average number of obtained hybrid rules in R from 5 runs for each of the fitness 
thresholds 3.6, 3.7, 3.8, 3.9, and 4.0. 

We see that the higher is the fitness threshold (the higher quality rules we request), the fewer 
or equal number of rules is obtained. This is an expected behavior of the CoLe system for the 
unsanitized learning set DB, and it remains true even when we mine over the sanitized learning 
sets S(DB)’s – the only exception being when applying the CoLe system with fitness threshold 3.9 
to Perturbed data 1b, and this exception is possibly a statistical anomaly due the random effects 
in the mining and the relatively small number of repetitions. 

The CoLe system discovered more hybrid rules when mining over unsanitized data, with some 
exceptions of mining over k-anonymized data. These exceptions are due to the generalization of 
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Fitness Threshold → 
Learning Set ↓ 

3.6 3.7 3.8 3.9 4.0 

Original data 791.2 146.8 32.8 8.0 0.4 
Perturbed data 1a 592.2 37.8 1.0 0.2 0.0 
Perturbed data 1b 595.2 49.0 2.0 2.4 0.0 
Perturbed data 2a 16.0 0.0 0.0 0.0 0.0 
Perturbed data 2b 3.6 0.0 0.0 0.0 0.0 
2-anonymized data 795.0 75.0 62.4 5.0 2.4 
100-anonymized data 568.6 142.6 56.8 13.2 6.2 

Table 3: The average number of obtained hybrid rules from 5 runs 

the columns of the REG table that resulted in more uniform values in the columns, so the mined 
rules had higher support, and therefore more rules passed the fitness threshold. In other words, 
k-anonymity seems to remove outliers. 

For Perturbed data 2a and 2b, the CoLe system with fitness threshold 3.6 discovered very 
few and with fitness threshold 3.7 - 4.0 no hybrid rules. The perturbation of diagnostic codes in 
these two learning sets disguised the data in a way that the CoLe system was unable to determine 
meaningful patterns and trends in the data from. Note that the other perturbed data (1a and 1b) 
as well as k-anonymized data did not change the diagnostic codes, because, respectively, they were 
categorical data and we were perturbing numerical data, and because the diagnostic codes were 
the sensitive data for k-anonymization and the anonymization process does not change them. The 
number of discovered rules, however, is not our criterion to evaluate the prediction, as it does not 
take into account the preferences and goals of an end user. That is why we have introduced the 
utility function. 

Table 4 presents the average of five computed utility values of knowledge that was discovered 
in 5 runs. The row “Original data” corresponds to Utilityorig, that is, to the utility of knowledge 
discovered over the unsanitized learning set applied to the unsanitized testing set. We call this utility 
the original utility. The remaining rows of the left part of the table correspond to Utilitysan→orig, 
and the rows of the right part of the table correspond to Utility .san→san

Fitness Threshold � Utilityorig and Utilitysan→orig Utilityorig and Utilitysan→san 
Knowledge From ↓ 3.6 3.7 3.8 3.9 4.0 3.6 3.7 3.8 3.9 4.0 

Original data 1942.6 1532.2 431.0 253.4 86.6 1942.6 1532.2 431.0 253.4 86.6 

Perturbed data 1a 
Perturbed data 1b 

1962.6 
1915.0 

1224.6 
1227.2 

216.2 
175.8 

59.0 
80.0 

0.0 
0.0 

1958.2 
1909.4 

1223.0 
1204.6 

216.2 
144.6 

45.8 
52.8 

0.0 
0.0 

Perturbed data 2a 
Perturbed data 2b 

9.4 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

136.8 
26.8 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

0.0 
0.0 

2-anonymized data 
100-anonymized data 

1907.2 
1863.0 

1290.6 
1402.4 

518.2 
636.8 

188.4 
191.6 

90.4 
141.0 

1888.4 
1831.4 

1253.2 
1086.6 

463.4 
364.2 

160.2 
156.0 

72.4 
75.6 

Table 4: Average utility of the discovered knowledge from 5 runs 

In most of the experiments, the number of false positives was well below 2 times the number 
of correct predictions, except in the case of Perturbed data 2a where it was 7.35. Yet health and 
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insurance professionals are willing to accept higher ratio of false positives to correct predictions. 

The mining over Perturbed data 2a and 2b produced almost no hybrid rules, and there is 
almost no utility – close to 0 and less than 8% compared to the original utility. The perturbation 
of diagnostic codes in these two learning sets disguised the data in a way that the miner was unable 
to determine meaningful patterns and trends in the data. This effectively shows that there is a 
knowledge discovery method that provides utility over unsanitized data, but fails when used over 
sanitized data. This also justifies the need to look at the triples (utility definition, sanitization 
mechanism, knowledge discovery method) and categorize them according to their usefulness. 

The utility in the cases of Perturbed data 1a and 1b is most of the time lower than the original 
utility, the only exception arising from computing the utility of knowledge discovered by the CoLe 
system with fitness threshold 3.6 over Perturbed data 1a. For the remaining fitness thresholds 
and for both Perturbed data 1a and 1b, the loss of utility is roughly 11%, 66%, 82%, and 100%, 
respectively, as the fitness threshold goes up. Some decline in the utility is expected and acceptable, 
since a privacy-preserving mechanism is in place, but a high loss of utility should be considered 
unacceptable. 

For the 2- and 100-anonymized data, the utility is in the range 61% – 163% of the original 
utility. When this utility is lower than the original utility, it is still acceptable and higher than 
the utility in the case of Perturbed data 1a and 1b. For the 2- and 100-anonymized data and 
fitness thresholds 3.8 and 4.0, and for the 2-anonymized data and fitness threshold 3.8, we obtained 
a utility that is higher than the original utility. This is due to the higher number of discovered 
hybrid rules in these cases and the fact that k-anonymization generalizes and smooths data. 

The utility that is non-trivial is most likely due to the facts that perturbation and anonymization 
in the cases of Perturbed data 1a and 1b, and 2- and 100-anonymized data left the diagnostic codes 
of the MD table unchanged, and that the CoLe system puts more weight to diagnostic codes 
than to the other data. Recall that the fitness threshold represents the quality of the discovered 
rules. It is rather obvious that many lower quality rules can provide a similar utility than a few 
high-quality ones. As the fitness threshold goes up, the number of discovered rules goes down, and 
this together with the variance of the utility of single high-quality rules explains the drastic decline 
of the minimum utility and the variance of the utility values in Table 4. 

Finally, we note that it is very interesting that for Perturbed data 1a and 1b, and 2- and 
100-anonymized data, the utility of the knowledge discovered over sanitized data when applied 
to unsanitized data is at least as much as when applied to sanitized data (Utility ≥san→orig 
Utility ). However, we do not have a readily available explanation for this phenomenon, san→san

as one would expect that knowledge discovered from sanitized data would be “more applicable” to 
sanitized data than to some other data, namely unsanitized data. 

Classification of triples. Recall that by CoLe(t) we denote the cooperative learning 
system that works in 10 iterations over the medical data and uses fitness threshold t. S(· · ·) 
denotes the sanitization mechanism, either using k-anonymity, E-differential privacy, or p-uniform 
randomization, with either fixed or variable noise for repeated queries. Finally, Utility will denote 
our utility function that can be used over original as well as sanitized data. We use w(x) = 1 as the 
weight function and E0(x̂, x̄) = 1 if x̂0 − x̄0 ≥ 0 and E0(x̂, x̄) = 0 otherwise as the error implication 
function. 
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In Table 5 we present a list of triples (utility definition, sanitization mechanism, knowledge 
discovery method) and categorize them by their usefulness in practice. We call a triple “Great” 
if the knowledge discovery over sanitized data provides better utility than over unsanitized data 
(i.e., achievement of at least 100% in either of the two cases of applying the discovered knowledge 
from sanitized data to unsanitized or sanitized data), “good” if 75% – 100% of the original utility 
is achieved, “acceptable” if 50% – 75% of the original utility is achieved, and “unacceptable” 
otherwise. 

triple (Utility, sanitization S, miner M) category 
(Utility, S(E = 0.01, variable noise), CoLe(3.6)) good 
(Utility, S(E = 0.01, variable noise), CoLe(3.7)) good 
(Utility, S(E = 0.01, variable noise), CoLe(3.8)) acceptable 
(Utility, S(E = 0.01, variable noise), CoLe(3.9)) unacceptable 
(Utility, S(E = 0.01, variable noise), CoLe(4.0)) unacceptable 
(Utility, S(E = 0.01, fixed noise), CoLe(3.6)) 
(Utility, S(E = 0.01, fixed noise), CoLe(3.7)) 
(Utility, S(E = 0.01, fixed noise), CoLe(3.8)) 
(Utility, S(E = 0.01, fixed noise), CoLe(3.9)) 
(Utility, S(E = 0.01, fixed noise), CoLe(4.0)) 

good 
good 
unacceptable 
unacceptable 
unacceptable 

(Utility, S(E = 0.01, p = 0.75, variable noise), CoLe(3.6)) 
(Utility, S(E = 0.01, p = 0.75, variable noise), CoLe(3.7)) 
(Utility, S(E = 0.01, p = 0.75, variable noise), CoLe(3.8)) 
(Utility, S(E = 0.01, p = 0.75, variable noise), CoLe(3.9)) 
(Utility, S(E = 0.01, p = 0.75, variable noise), CoLe(4.0)) 

unacceptable 
unacceptable 
unacceptable 
unacceptable 
unacceptable 

(Utility, S(E = 0.01, p = 0.75, fixed noise), CoLe(3.6)) 
(Utility, S(E = 0.01, p = 0.75, fixed noise), CoLe(3.7)) 
(Utility, S(E = 0.01, p = 0.75, fixed noise), CoLe(3.8)) 
(Utility, S(E = 0.01, p = 0.75, fixed noise), CoLe(3.9)) 
(Utility, S(E = 0.01, p = 0.75, fixed noise), CoLe(4.0)) 

unacceptable 
unacceptable 
unacceptable 
unacceptable 
unacceptable 

(Utility, S(k = 2), CoLe(3.6)) good 
(Utility, S(k = 2), CoLe(3.7)) good 
(Utility, S(k = 2), CoLe(3.8)) Great 
(Utility, S(k = 2), CoLe(3.9)) acceptable 
(Utility, S(k = 2), CoLe(4.0)) Great 
(Utility, S(k = 100), CoLe(3.6)) good 
(Utility, S(k = 100), CoLe(3.7)) good 
(Utility, S(k = 100), CoLe(3.8)) Great 
(Utility, S(k = 100), CoLe(3.9)) good 
(Utility, S(k = 100), CoLe(4.0)) Great 

Table 5: Categorization of triples based on our experiments.
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5 Conclusions 

The loss of the utility of the knowledge discovered by the cooperative learning system from 
perturbed data is often much more than what should be acceptable, and in some cases, there 
is no utility at all. On the other hand, k-anonymization of data is an acceptable sanitization 
mechanism that provides a privacy protection and preserves the utility (and even might provide 
better utility) of the knowledge discovered by the cooperative learning system. 

Since we have shown it is impossible to obtain knowledge from every knowledge discovery 
method working over sanitized data, this leads to the following idea: a sanitization mechanism 
must be tailored to guarantee utility to certain knowledge discovery methods to the exclusion 
of others. We believe that such a guarantee should be an integral part of privacy notions. For 
example, the k-anonymity notion should, in addition to privacy guarantees, also specify what kind 
of knowledge discovery is possible over k-anonymized data that would provide reasonable utility. 
We demonstrated this concept by looking at triples (utility definition, sanitization mechanism, 
knowledge discovery method) and categorizing them according to their usefulness in practice. 

We plan to classify some existing knowledge discovery methods that give reasonable utility of 
knowledge discovered from data that is sanitized using some widely used sanitization methods. 

Future investigation and development of sanitization methods should concentrate on those 
methods that would guarantee some reasonable degree of utility to several knowledge discovery 
methods. Ideally, there would be one (probably interactive) sanitization method that would protect 
the privacy of sensitive information and be useful for all knowledge discovery methods. 

Another direction for future research is the following problem: There is a data set D, a 
sanitization method S, and several knowledge discovery methods that can discover knowledge 
from D, but which fail to discover knowledge from S(D). Are there modified knowledge discovery 
methods, with the same set of objectives as the original knowledge discovery methods, that can 
succeed to discover meaningful, reasonable, and useful knowledge from S(D)? That is, do we need 
to modify existing knowledge discovery methods to be able to obtain knowledge from sanitized 
data? 
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