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ABSTRACT 

This thesis is an examination of the Algebraic Approach to Quantum Mechanics 

and its use in the description of infinite Quantum systems. This approach is based on 

the postulate that it is possible to set up a correspondence between Quantum systems 

and the mathematical theory of C*algebras. 

In Chapter 1 the theory of C*aIgebras and their representations is discussed. 

The main result isthe G.N.S. construction. 

In Chapter 2 the methods developed in Chapter 1 are applied to Quantum spin 

sytems. The C*alebra corresponding to a single spin is constructed and analyzed, 

and the G.N.S. representation for the state corresponding to a canonical ensemble 

with definite temperature is constructed. The discussion is then generalized to a two 

spin system, a multi spin system, and finally to a system consisting of an infinite 

number of spins. It is shown that the G.N.S. representations corresponding to different 

temperatures are unitarily equivalent for the finite system, while for the infinite system 

these representations become unitarily inequivalent. This example illustrates that 

classical variables, in this case the temperature, arise in quantum systems as labels 

that distinguish between different inequivalent representations of the Quantum algebra 

in the case of inifinitely many degrees of freedom. 

In Chapter 3 the algebraic description of a non-interactihg Bose gas is 

examined. The C.C.R. algebra is constructed. Methods developed by Araki and 

Woods are used to construct the state of the infinite Bose gas that has density p and in 
0 

which all particles have zero momentum. The representation constructed by Araki and 

'Ii 



Woods is shown to be the G.N.S. representation for this state. It is shown that for the 

infinite gas the GN.S. representations corresponding to different densities are unitarily 

inequivalent. Again a classical variable, the density in this case, arises as a label that 

distinguishes the different inequivalent representations. 
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INTRODUCTION 

Traditionally Quantum Mechanics is based on the postulate that it 

is possible to set up a correspondence between physical systems and 

the mathematical theory of Hubert spaces. To a given physical system 

we can associate a Hilbert space in such a manner that the states of the 

system are represented by density operators on the Hubert space (self 

adjoint, positive, bounded operators with unit trace), while the 

observables of the system are represented by linear self adjoint 

operators on the Hilbert space. It is possible to deal instead with the set 

of linear bounded operators, which are not self adjoint in general. The 

idea behind the Algebraic Approach to Quantum Mechanics is to 

consider the algebraic structure of the set of all bounded linear operators 

on the Hubert space as the fundamental mathematical object, with the 

Hubert space being secondary. We postulate that to a given physical 

system we can associate a C*algebra in such a way that the states of 

the system correspond to (normalized) positive linear functionals over the 

C*algebra, while the observables of the system can be expressed in 

terms of the elements of the C*a!gebra. The Hilbert space with its linear 

operators then corresponds to a concrete representation of. the 

C*algebra (see [Haag] and [Haagl] for a general discuccion of the 

Algebraic Approach). 

It may happen that the C*algebra associated with a particular 

physical system admits only one irreducible representation (up to unitary 

equivalence), as is usually the case when one deals with systems that 

have a finite number of degrees of freedom. When we consider systems 



INTRODUCTION 

that possess an infinite number of degrees of freedom we often find that 

the corresponding C*algebra has a number of unitarily inequivalent 

irreducible representations (such systems are encountered in Quantum 

Field Theory and Quantum Statistical mechanics, see [Haag2]). We shall 

see an example of this in Chapter 2 when we discuss the canonical 

commutation relations. The usual motivation for the Algebraic Approach 

is given by the second possibility (many inequivalent representations). In 

the first case we could consider the unique representation and return to 

the Hubert space formalism. In the second case we have to consider 

many inequivalent representations side by side and it is the C*algebra 

that provides an underlying connection between them. 

2 



CHAPTER 1 

C*_ALGEBRAS 

1.1 DEFINITION OF A C*ALGEBRA 

We begin by defining the structure of a C*aIgebra (some good 

references for this material are [Kadi], [Dixml], [Brati] and [Brat2]). We 

start with a vector space 91 over the field of complex numbers U and 

define a C*algebra by adding more structure to 91. 

Definition Li A product AB over a vector space 91 is a rule that 

associates to each pair A, Be 91 the product AB such that 

i) AB  9I. (closure), 

ii) A(BC)=(AB)C (associative), 

iii) A(3B+''C)=AB+yAC 

and (13B+)C)A=PBA+CA (distributive), 

for allA, B,Ce9t and P,?eD. 

Definition 1.2 A vector space 91 equipped with a product is an algebra. 

Definition 1.3 An involution of an algebra 91 is a mapping 

AE 91.A*E 91 that satisfies 

I) (A*)*=A, 

ii) (AB)*=B*A*, 

iii) (aA+B)*=A*+ B*, 

for all A,Be 91 and c3e C, where V is the complex conjugate of a. The 

element A* is referred to as the adjoint of A. An algebra 21 that 

possesses an involution is called a *..algebra. 

3 



CHAPTER 1 

Definition 1.4 A *..norm of a *..algebra 91 is a rule that associates a real 

number hAil (the norm of A) with every element Ae 91 such that 

i) IIAII≥O, IIAH=O iff A=O, 

ii) IlaAhI=lxl hAil 

iii) IIA+Bhi≤IIAII +11 Bhi (triangle inequality), 

iv) hlABhl≤IIAII 11 1311 (product inequality), 

v) IIA*hh=hiAhl (*..norm property), 

for all A,BE 91 and c3€ C. A *..algebra 91 that possesses a *..norm is 

called a normed *.algebra. 

Since a formed *...algebra 21 is, among other things, a set of 

elements it is possible to equip 21 with various topological structures. 

One such topology is the uniform topology which uses the *..norm to 

define the neighborhoods of an element AG 91, N(A;c)={Be 21:IIA-Bhl≤c}. 

Definition 1.5 A formed *..algebra 21 that is complete (in the Cauchy 

sense) in the uniform topology defined by its *...norm is called a Banach 

*...algebra. 

Given a *..algebra .91 we can attempt to construct a Banach 

*..algebra by defining a *.norm for 91 and then completing 91 in the 

uniform topology defined by this *...norm. Since it may be possible to 

define various inequivalent *..norms for 91 it may also be possible to 

construct different Banach *..algebras from one *.algebra.. This being the 

case one might wonder whether or not it is possible to fix a unique 

*...norm by adding more conditions to our definition of a "norm. The 

following theorem shows that this is indeed the case. 

4 



0*_ALGEBRAS 

Theorem 1.6 Let 91 be a *..algebra. If 91 possesses a *..norm that 

satisfies llA*All=llAll2 for all A€ 91 and if 91 is complete with respect to the 

uniform topology defined by this *..norm then this *..norm is unique (i.e. it 

is the only *..norm that satisfies IIA*All=ItAII2). 

Suppose we have a *-algebra 91 that possesses two inequivalent 

*..norms. If we complete 91 with respect to each of these norms then 

Theorem 1.6 implies that the resulting *..algebras are different. 

Since IIA*AII=ItAlI2 implies that IIA*II=IlAII we can replace condition 

(v) in our definitibn of a *..norm with the more stringent condition: 

(v') IIA*AII=IIAII2 (C*norm property). 

Definition 1.7 A*.norm that satisfies condition (v') is called a C*norm, 

and a *..algebra 91 that is complete with respect to the uniform topology 

defined by a C*norm is called, a 0*_algebra. The foregoing discussion 

shows that it is possible to construct at most one C*algebra from a given 

*-algebra. 

The most basic example of a C*algebra is the complex numbers, 

with involution defined as complex conjugation and with the usual norm 

llaIlIaI"2. A more relevant example is the set Z4) of all bounded 

linear operators on a Hilbert space 5, equipped with the usual algebraic 

structure. The operator adjoint defines an involution of £(), and the 

operator norm 

5 



CHAPTER 1 

IIAII=Sup{" 111. 1jfE 5 ; 'qc#O } 

defines a C*norm on £() (that &(.) is complete follows from the fact 

that a Cauchy sequence of bounded linear operators converges to a 

bounded linear operator). 

Definition 1.8 An identity of a C*algebra 9.1 (or of any algebra) is an 

element le 91 that satisfies AII=IA=A for all AG 21. 

If an identity exists it is unique. Furthermore it is easy to see that 11* 

is an identity it'll is, so that 1I*=lI. Since Il1Jll=llhl'111=111112 we must have 11111=0 

or 11111=1. From the product inequality we have that lIAlI=ltllAll≤llllll hAil, so 

that 111111=0 implies that IlAII=O for all AG 21. This last statement means that 

A=0 for all AE 9L and the algebra is identically zero. This being the case 

we shall assume that I1'llhl=l. If a C*algebra does not contain an identity 

(there is no guarantee that it does) we can proceed in one of two ways. 

First we can adjoin an identity to the C*algebra (i.e. embed 91 in a larger 

C*algebra that contains an identity), or we can construct an approximate 

identity (see, for example, [Brati] sections 2.1.1 and 2.2.3). We will 

ignore these technical difficulties and assume that the C*_algebras with 

which we deal contain an identity. 

1.2 STRUCTURE OF A C*ALGEBRA 

The structure of a C*algebra is completely determined by the 

assumptions previously laid out, i.e. a C*algebra is an algebra equipped 

6 
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with an involution and complete with respect to the uniform topology 

defined by a C*norm. Although this structure is quite simple, we shall 

see that these structural assumptions lead to a great wealth of properties 

(it is, of course, always pleasing to get a lot from a little). We begin by 

classifying the elements of a C*algebra. 

Definition 1.9 Let 9.1 be a C*.algebra, then an element As 91 is 

i) normal if AA*=A*A, 

ii) self adjoint or real if A*=A, 

iii) isometric if A*A=11, 

iv) unitary if A*A=AA*1J. 

An arbitrary element As 9.1 can be uniquely decomposed in terms 

of self adjoint elements Al and A2 as A=A1+iA2, where the real and 

imaginary parts of A are given, respectively, by Ai=(A+A*)/2 and 

A2=(AA*)/2i. A general self adjoint element AE 21 can be decomposed 

in terms of unitary elements as A=(U++U..)/2 with U±(A±i\JIIAD2IA2), 

(we shall soon see that the square root operation in the previous 

expression. is well defined). Using the above decompositions we then 

see that an arbitrary element As 91 can be decomposed as 

A=a1U1-i-a2U2+a3U3+a4U4 where the Ui are unitary elements of 91 and 

the cq 'D are such that lcql≤IIAII/2. 

Definition 1.10 An element A of a C*algebra 9.1 (with identity) is said to 

be invertible if there exists an elenent A 1E 21 (called the inverse of A) 

such that Ak1 =k1 A=1. 

7 
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All the usual results hold, i.e., an inverse is unique if it exists and 

AB is invertible if and only if A and B are invertible. Then (AB) 1=B -1A-l. 

Furthermore, if an element A€ 91 is invertible, then A* is invertible with 

(A*)-l=(A-l)*. If A is not invertible then it is said to be singular. The 

notion of an inverse allows us to define the spectrum. 

Definition 1.11 Let 91 be a C*_algebra (with identity). The resolvent set 

r(A) of an element AE 91 is defined to be 

is invertible). 

The spectrum a2E (A) of an element AE 91 is then defined to be the 

complement of the resolvent set, i.e., 

A){?.e D:?.11-A is singular). 

It will be noticed that we have attached the symbol 91 to r(A) and 

The reason for this is that if we consider a subalgebra 93 of 91 then 

there are two possible spectra, c(A) and A) (i.e., an element may be 

singular in 91 but invertible in 9.1; this would be the case if AE 9I and 

A 1e9L but A-1 91 ). As it turns out C*algebras have the property that 
for all A€ 93. The reason is that if A 1 exists it is contained 

in the C*subalgebra generated by 11, A, and A* ([Brati] Proposition 

2.2.7). With this in mind we shall simply write c(A) for the spectrum of an 

element AE 2L. 

Defihition 1.12 Let 91 be a C*algebra. The spectral radius p(A) of an 

element AE 2t is defined to be p(A)Sup(I?J:XE(A)}. 

8 
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The spectrum of an element A of a 0*_algebra 91 is related to its 

norm through the spectral radius p(A). In particular it is found that 

p(A)≤IIAII. A natural question is: when does equality hold? Is it possible 

to define a subset 3 of 91 such that equality holds for all elements of 93? 

The answer is contained in the following theorem ([Brati] Theorem 2.25). 

Theorem 1.13 Let 91 be a C*algebra (with identity), 

i) if AE 91 is normal, self adjoint or unitary then p(A)=11A11, 

ii) if AE 91 is unitary then cY(A)c{?.:?E (D, I7J=1 } and p(A)=1, 

iii) if AE 91 is self adjoint, the spectrum is real and 

(A)[-HAII,IIAD], 

iv) for general AE 91 and polynomial P, (P(A))=P(c(A)). In 

particular c(?.1-A)=?.-c(A). Also (A*)= o(A). 

In Theorem 1.6 we claimed that the C*norm property served to fix 

a unique norm and we now offer a proof. The spectrum (A), and 

therefore the spectral radius p(A), depend solely on the algebraic 

structure of a C*algebra 91. Given a general Ar= 21, A*A is self adjoint, 

so that (using the C*norm property and Theorem 1.13 (i)) 

IIAII=IIA*AII1/2=p(A*A)l/2. This shows that the C*norm hAil is unique. 

We now wish to set up an order relation between elements of a 

C*algebra. This is made possible by the identification of positive 

elements. 

Definition 1.14 An element A of a C*algebra 91 is said to be positive if 

it is self adjoint and its spectrum is contained in the positive half line. The 

set of all positive elements of 21 is denoted by 91+. 

9 
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The reason that we can use the definition of positivity to set up an 

order relation is that 9I +'-'(-2t +}={O}, i.e. if A is positive and -A is positive 

then A is necessarily zero. Thus we can make the following 

Definition 1.15 Two elements A,B of a C*atgebra 21 are said to be in the 

relation A≥B whenever A-Be 91+. 

This relation satisfies i) A≥O and A≤O => A=O, 

ii) A≤B and B≤C =:> A≤C. 

So we see that we have indeed defined an order relation on 91. 

The positive elements of a C*algebra admit the notion of a square 

root. Corresponding to every positive Ac '21 is a unique positive Be 21, 

called the positive square root of A, such that A=B2. It should be noted 

that,B*B is positive for all Be 91, and furthermore it is a fact that we can 

obtain all positive elements in this manner. Combining these two results 

leads to the notion of the modulus of an element Ac 21, 

Definition 1.16 The modulus of an element A of a C*algebra 91 is the 

element of 21 defined by IAI(A*A)l/2. 

Completing our, discussion on the algebraic structure of a 

C*aIgebra we note that we have the following decompositions. If Ac 91 

is self adjoint and we define A±- (lA2l±A) then 

I) A+e 94, 

ii) A=A-k, 

iii) A k =0. 

10 
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It also follows that A are the unique elements with these properties. We 

also have the following " polar decomposition "for invertible elements. 

An invertible AE 91 can be uniquely written as A=UlAl, where UAIAl -1 is 

unitary. 

1.3 STATES AND REPRESENTATIONS: THE G.N.S. CONSTRUCTION. 

We now wish to discuss the representation theory of 0*_algebras. 

Since the states over a 0*_algebra play a major role in representation 

theory we shall begin our discussion with them. The dual 9[* of a 

C*algebra is defined to be the space of continuous linear functionals 

over 91. We can define the norm of an element fe 9t as 

11111 S rlf(A)l  
= U hAil . A 91 ;A#O}. 

An important subset of 91* is the set of states. 

Definition 1.17 A linear functional f over a C*_algebra 91 is said to be 

positive if f(A*A)≥O for all AE 91, i.e. f takes on positive values for positive 

elements of 91 (recall that A*A≥b). A state Co over 91 is a positive linear 

functional over 91 with unit norm, i.e. llcoii=1. 

It turns out that that a linear functional f is positive if and only if f is 

continuous and satisfies iifii=f(1). So,a linear functional Co is a state if and 

only if Co is continuous and lkoii=w()=1. 

11 
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Definition 1.18 A mapping between two *..algebras 21 and 91, 

it:Ae 91 — it(A)E 91, that is defined for all Ae 91 and preserves the 

algebraic structure of 91, i.e. 

I) it(aA+3B)=cur(A)+f3it(B), 

ii) n(AB)=n(A) it(B), 

iii) ic(A*)=ic(A)*, 

for all A,BE 91 and aj3E (I, is a *...morphism between 21 and 9]. A 

*..morphism that is one to one is a *-isomorphism. 

When 91 and 91 are C*algebras we find that all *..morphisms 

between 91 and 91 are positivity preserving (A≥O=it(A)≥O), continuous, 

and satisfy IIit(A)ll≤IIAII. This last result implies the the set it(91) is itself a 

C*algebra, for it is obviously a *_algebra and the condition IIit(A)II≤IIAII 

implies that it is complete with respect to the uniform topology defined by 

the C*norm of 91. The kernel of a *..morphjsm is defined to be 

Ker it {A€ 21: ic(A)=O}. A *..morphjsm it is one to one and onto (i.e. it is a 

*..isomorphism) if and only it Kerit=(O}. We now define a representation 

of a C*algebra. 

Definition 1.19 Let 21 be a C*.algebra. A representation of 91 is a pair 

{,it}, where 5 is a Hilbert space and it is a *..morphism from 91 into 

C() (the set of all bounded linear operators on .). A representation 

{.,it} is faithful if Kerir={O}, i.e., if it is a *isomorphism from 91 into 

A set of operators it(91) on a Hubert space 5 representing a C*algebra 

91 is itself a C*algebra, which we refer to as a concrete C*algebra. 

We should mention at this point that a representation is faithful if and only 

if it is norm preserving, i.e., JIAII=llit(A)II for all AE 21. Following the well 

12 
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known procedure from group theory we can always construct a faithful 

representation from a non-faithful representation. If t:9L—() is not a 

faithful representation, we can construct a faithful representation 7C of the 

quotient algebra 2L9I/Kerit. 

Two important classes of representations are the irreducible ones 

and the cyclic ones. 

Definition 1.20 A set of operators 931 acting on a Hilbert space 53 is said 

to be irreducible whenever the only closed subspaces of S that are 

invariant under the action of 931 are the trivial ones {O} and . A 

representation { ,m} of a C*algebra 91 is then said to be irreducible 

whenever the set of operators it(91) is irreducible. 

Definition 1.21 A vector 92 in a Hubert space 5 is said to be cyclic for a 

set 931 of bounded linear operators on 5.5 whenever the set JA92:Ae 931} is 

dense in 5. A cyclic representation of a C*algebra 91 is then defined to 

be a triple {,it,c}, where {,it} is a representation of 91 and n is a cyclic 

vector for the set of operators it(21) on 5. 

The irreducible and cyclic representations are connected as 

follows ([Emch] page 84). 

Lemma 1.22 A nonzero representation {,it} of a C*algebra 91 is 

irreducible if and only if every nonzero vector T(=- .5 is cyclic for n(91). 

Definition 1.23 Let 931 be a set of bounded linear operators acting on a 

Hubert space 5.3. The commutant 9)1 ' of 9)1 is defined to be 

13 
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9J1'{AEcC(): AM=MA for all Me 9R). The bicommutant 911" of 911 is 

defined to be the commutant of 9)1'. 

Lemma 1.24 (Schur's Lemma) A representation {,it} of a C*algebra 91 

is irreducible if and only if ir(91.)'=(71I:A.E1}. 

Suppose that we have a representation {&t} of a C*algebra U. 

For any c2E with IIQII=1 we can use this representation to define a state 

con over 91, o1(A)E(,1t(A)c), which we refer to as a vector state. A 

fundamental result in representation theory is that the converse to this is 

also true: every state over a C*.algebra is a vector state in some 

representation ([Bratl] Theorem 2.3.16). 

Theorem 1.25 To every state co over a C*algebra 91 corresponds a 

cyclic representation, { such that A)=(c2, 0(A)). 

Proof: The theorem is proved by constructing a representation with the 

desired properties. This construction is known as the G.N.S. 

construction, named for Gelfand, Naimark, and Segal (the origins of the 

G.N.S. construction may be found in [Gelf] and [Sega]). It is based on 

the observation that the elements of a C*algebra 91 may be viewed in 

two ways, first as vectors in a complex vector space and second as linear 

transformations on this vector space. Consider the set E consisting of 

elements of 91., E=(WA=A:AE 91.), equipped with the additive structure of 

91. through the definitions 1VA+WB'VA+B and &VAVa A. The set E is a 

complex vector space. We can attempt to define a representation of 91 

on this vector space by using the algebraic structure of 91 to define a 

14 
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*..homomorphjsm it from 21 into the set of linear transformations on E. 

For all AE 21 we define 1t(A)\VB&4JAB for all VAc= E. Note that 

it(A)[WB+yVc]=1t(A)'V+ pAB+yAC=11t(A)'WB+Y1t(A)'VC, 

so that the it(A) are linear transformations on E. It is possible to show at 

this point that it is a homomorphism, i.e., it preserves the algebraic 

structure. We have, for arbitrary A, B, and CE 91 and a4 C, 

i) it((XA+13 B)Vc=N'cBc a'AO+P'WAB4Wt(A) +Pir(B)}'Vc, 

so it(aA+B)=cit(A)+f3ir(B), 

ii) It(AB)WC=N'ABC =1t(A)'VBQ =it(A)it(B)'Vc, 

so ir(AB)=it(A)it(B). 

For it to be a *..homomorphism we also require ir(A*)=ic(A)* . We must 

first define the action of it(A)* on E. A natural candidate for it(A)* would 

be the adjoint of n(A), but to define the adjoint we require E to possess a 

scalar product. If we could construct a scalar product we would have a 

representation since we could use this scalar product to define a norm on 

E, making E a pre-Hilbert space, and then complete E in the uniform 

topology arising from this norm, making E a Hilbert space. It is in the 

definition of a scalar product where we make a connection with the states 

over 21. Let co be a state over 21 and define (VA ,VB)w(A*B) for all A, 

Be 91. We must show that (Vp, ,VB) is a scalar product for E. Explicitly, 

(VA YB) must satisfy 

i) (&Vp, +!3VB, YVC)=Y(VA ,Vc)+-y(VB Yc), 

15 
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ii) (WA ,WB)= (WB ,WA) (the bar denotes complex 

conjugation), 

iii) (WA ,N'A)≥O. 

and iv) (WA ,VA)0 if and only if VA=O, 

for all A, B, CE 21 and c3E T. Using the fact that w is a state it is easy to 

see that the first three conditions conditions are satisfied. 

i) (cvWp, +WB, 71V)= ([crA+ 3BJ*yC) 

= oyA*CJyB*C) 

= (A* C)+yw(B*C) 

=ccy(1VA ,VC)+13Y(WB NO, 

ii) (WA ,WB)CO(A*B) co(B*A) = ('VB ,WA) 

iii) (WA ,WA)=CO(A*A)≥O, since co is positive. 

It may happen, however, that o(A*A)=O for some A#O. This means that 

condition iv) might fail. To salvage the construction we must redefine our 

vector space E in such a way that (WA ,WA)=O if and only if WA =0. 

Fortunately this can be done in a straight forward way. 

We construct the representation space as follows. Given a state Co 

over 91, consider the set Z{AE 91: o(A*A)=O}. Z3, is a left ideal of 21, 
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i.e., Z is a subset of 91 such that IEZ and Ae91 imply that AIE 0). 

The fact that that the ideal is left is not important as we could go through 

the construction using the right ideal 3'{A€ 91: co(AA*)=O}. What is 

important is that Z is an ideal, so that the quotient algebra 91IS, with 

equivalence classes 'I'A{A: i=A+I, Ie53}, is well defined. These 

equivalence classes are now used, rather than the elements of 21, to 

define our vector space. We define ECO={'VA:AE 21} and equip E with the 

structure VA+WBWA+B and &VA'VA. At this point E0 is a complex vector 

space. We can define a scalar product on the vector space E as 

(A,WB)co(A*B), and in turn define a norm as JIWAIIw(A*A)l/2. Since we 

are dealing with the quotient algebra 2E/S co we have that H'VAII=O if and 

only if AGZ, i.e. if and only if WA=O. This, of course, is why we deal with 

the quotient algebra 9LIS and not the original C* -algebra 91. Now, 

with respect to this norm, E0) is a pre-Hilbert space which we denote by 

H(, and completion of H0 then gives the representation space 5i. Note 

that we should verify that our scalar product is independent.of the 

particular representatives used in its definition. We have, for all 

Ii, 12 c= Z (0 and A, Be 9.1, 

o((A+I i)*(B+I 2))= co(A*B)+ w(B*I i) +co(A*I 2) +ci-(II 2) 

= 

where the last three terms vanish because is a left ideal. 

Now consider the second role of the elements of 91, namely that of 

linear operators over We fist define the action of the it(A) on H. 

For 1VBE H0) and any AE 91 we define 1t CO (A)'I1BN1AB. As before it is 
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possible to show that the it(A) are linear transformations on ft0 that ir 

is a morphism from A into the set of linear tansformations on H. Since 

the 7r(A) are bounded on Hw we can easily extend them to all of If 

we define itA*)1t(I)(A)t (= the adjointof it(A)), then it is a 

*..morphism from 91 into the set of bounded linear operators on the 

Hilbert space L0. The pair {(O,1tC)} is therefore a representation of 91. 

Finally we define the vector cv1. Since "VA=1t(A)'V1, Liw is a cyclic 

vector and the representation is therefore cyclic. Finally we 

note that 

so the cyclic representation {w,1rw$)w} has the desired property. This 

completes the proof. 

We now discuss the notion of unitary equivalence for 

representations of a C*algebra. 

Definition 1.26 Two representations of a C*algebra, {,ic} and { ',ic'}, 

are unitarily equivalent if there exists a unitary transformation U of S onto 

' such that it'(A)U=Uir(A) for all AE 91. Two cyclic representations 

and {. ',ir',c'} are unitarily equivalent if {,it} and { ',it'} are 

unitarily equivalent and using the same unitary transformation, LT=Uc2. 

Unitary equivalence of two cyclic representations and 

implies unitary equivalence of the representations {,t} and 
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{ ' it'} but not the converse. In connection with Theorem 1.25 we have 

the following ([Emch] page 81). 

Theorem 1.27 Let co be a state over a C*algebra 91 and {,it,c} 

the corresponding G.N.S. representation, then any cyclic representation 

{. ,it,≤)) of 91 with the property (c,it(A)c)=co(A) for all AE 91 is unitarily 

equivalent to the cyclic representation In particular, the 

representations {&O,itU)} and {5,it} are unitarily equivalent. 

Proof: Define a transformation U from the pro-Hubert space H into 5.3 as 

U1t(0(A)c2E it(A)fl, 

for all Ae 91. We have 

(B)c≥)=(c, (A*B)c) 

=w(A* B)=(7(A)c,7t (1 (B) )), 

so that U preserves scalar products. U is also bounded on H so that 

we may extend by continuity the definition of U to all of Since 92 and 

≤2(JI are cyclic we obtain in this manner a unitary transformation from 9(0 

into 5. This unitary transformation is such that 

i) by definition, 

ii) o(A)=(c,1t(A)c)=(Uc ,it(A)U2)=(,U -1 ir(A)U), and 

together with the cyclicity of imply that 

U-lit(A)U=ir 0(A) for all AE 91, i.e., t(A)U=Uir(A). 
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So the cyclic representations {.,it,≤2} and are unitarily 

equivalent. This proves Theorem 1.27 by construction. 

Quite , often it is too complicated to identify the G.N.S. 

representation corresponding to a state 0) with a known Hubert space 

and set of bounded operators. In practice we often invent a cyclic 

representation in which the state 0) is the vector state corresponding to 

the cyclic vector, and use Theorem 1.27 to conclude that this 

representation is unitarily equivalent to the G.N.S. representation. 

An important class of states are the pure ones. 

Definition 1.28 A state Co over a C*algebra 91 is said to be pure if it is 

not possible to decompose o into W=?.(O1+(1-?)CO2, where col :A CO2 are 

states over 91 and O<?.<1. A state that is not pure is mixed. 

The following theorem establishes a connection between the pure, 

states over a C*algebra 21 and the irreducible G.N.S. representations of 

91 ([Emch] page 87). 

Theorem 1.29 Consider a state co over a C*algebra 91 and the 

corresponding G.N.S. representation Then it(91) is 

irreducible if and only if co is pure. 
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Corollary 1.30 Consider an irreducible representation {,ir} of a 

C*algebra 9L Every vector state in this representation is pure. 

Proof: Let co(A)=(c,it(A)) be a vector state in an irreducible 

representation {.,ir}. Since the representation is irreducible every vector 

in 5 is cyclic. The representation {,ir,} is therefore cyclic and hence 

unitarily equivalent to the G.N.S. representation {$iW,1(J),c}, by 

Theorem 1.27. The G.N.S. representation is then irreducible because 

the representation {.,it} is irreducible. The state co is therefore pure by 

Theorem 1.29. 

1.4 Von NEUMANN ALGEBRAS AND TYPES OF EQUIVALENCE 

The physical states of a system correspond to linear functionals 

over the appropriate C*algebra, which in turn correspond (via the G.N.S. 

construction) to representations of the C*aIgebra as bounded operators 

acting on a Hubert space. We now review those aspects of the theory of 

operator algebras that appear to be most relevant to Quantum Mechanics 

(this material is covered in [Emch]). In addition we will discuss two types 

of equivalence between representations of a C*algebra, quasi and 

physical equivalence. 

Consider the set &() of bounded linear operators on a Hubert 

space 5 . A variety of topologies can be defined on but we will 

confine our attention to the uniform, strong, and weak topologies. We will 
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characterize a topology on () by specifying when a sequence of 

operators converges in that topology. 

Definition 1.31 A sequence of operators {An}e £(h) converges to an 

Operator AE () 

I) uniformly if lLrn 11A—AII=O, where hAil is the operator norm 

on 

ii) strongly if Urn lI(A—A)'Vll=o, for all 4'e, 

iii)weakly if urn (An'I',)=(A\jJ,4)) for all 
n—>— 

It is easy to demonstrate that uniform convergence implies strong 

convergence, which in turn implies weak convergence. When a set of 

operators contains its uniform (strong, weak) limits we say that the set is 

closed in the uniform (strong, weak) topology. If a set of operators is not 

closed in a particular topology we can close it by adding to it its limit 

points in that topology. The set c.() is closed in the uniform topology 

which is the topology generated by the operator norm on 3(). Since 

this norm is a C*norrn the set c(.) is a C*aIgebra. 

We now consider some special subalgebras of the von 

Neumann algebras. A set of bounded linear operators 9)1 on that is 

an algebra under the usual operations of cC(s) is a subalgebra of £(). 

If 9)1 is closed under the involution of S,() (i.e., the adjoint operation), 

then it is a *..subalgebra. Recalling the definitions of the commutant 9)1' 

22 



C*.ALGEBRAS 

and bi-commutant 911" of 931 (Definition 1.23) we now define a special 

class of *..subalgebras of the von Neumann algebras. 

Definition 1.32 A *..subalgebra 9)1 of () that has the property 9)1=9)1 

is a von Neumann algebra. 

Since 911'=911" and 9J1"=9)l", the commutant and bi-commutant of an 

arbitrary *..algebra 911 are von Neumann algebras. 

The set cS() is an example of a von Neumann algebra. As was 

mentioned above it is also  C*algebra. A natural question to ask is 

whether or not all von Neumann algebras are C*algebras. The answer 

is contained in the following theorem (see [Emch] page 116 or [Brati] 

page 72). 

• Theorem 1.33 For a *..subalgebra 931 of S() that contains the identity 

the following conditions are equivalent. 

i) 9)1=9)1, i.e., 9)1 is a von Neumann algebra, 

ii) 9)1 is weakly closed, 

iii) 9)1 is strongly closed. 

Furthermore any of the above conditions imply that 911 is uniformly 

closed. 

Every von Neumann algebra is closed in the uniform topology and 

is therefore a concrete C*algebrà (i.e. a C*algebra of operators on a 

Hilbert space). The converse is not true, a concrete C*algebra is not 

necessarily a von Neumann algebra. This means that the set of 
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operators it(91) in a representation {,it} of a C*algebra 91 is not a von 

Neumann algebra in genera?. We can, however, always generate a von 

Neumann algebra from it(9t) by forming the bi-commutant m(91)", or 

equivalently by completing it(9L) in the weak or strong topologies. 

We have mentioned that in the Traditional Approach to Quantum 

Mechanics one is always dealing with the set of all self adjoint operators 

on a Hilbert space, and that the states are represented by density 

operators. A state co over a von Neumann algebra 9)1 is said to be 

normal if there exists a density operator pe 9)1 (i.e., a self adjoint, positive, 

bounded operator with finite trace) such that o(A)= T.?1  for a ll AE 9)1. 

Given a representation {,n} of a C*.algebra 91, a state Co over 91 is said 

to be it-normal if there exists a density operator p in the von Neumann 

algebra it(2t)" such that o(A)_T) for all AE 91. We then define two 
Trp 

representations {.i,iri} and (.2,n2} of a C*algebra 91 to be quasi-

equivalent if every in-normal state of 91 is a 7t2-normal state. We denote 

this equivalence by it17t2. The following is Theorem 2.4.26 in [Brati]. 

Theorem 1.34 Two representations are quasi-equivalent if and only if 

there exists a *-isomorphism a from ini(91)" to 7t2(91) such that 

1t2(A)=cCltl(A) for all Ac 91. 

Some authors choose this latter property as the definition of quasi-

equivalence. 
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We now discuss another type of equivalence between 

representations, that of physical equivalence ([Emch] page 97). Given a 

representation .{. ,it} of a C*algebra 21, we know that the set of 

operators ic(91) form a C*algebra. Denote by S the set of all states over 

91 and by S the set of all states over ir(21). For an arbitrary linear 

functional f1c on ic(21) we can define a linear functional f on 91 by 

f(A)Ef(1c(A)for all Ae9I. Since a representation is positivity 

preserving, f is positive whenever fn is. We also note that f vanishes on 

Ker it. Going the other way we see that any linear functional f over 91 

that vanishes on Ker it gives rise to a linear functional fx over it(91) by 

the definition f(1t(A))Ef(A) for all Ae 91. Using the above definitions we 

.may then consider S to be a subset of S. Two representations {iati} 

and {.2,it2} of 91 are then said to be physically equivalent if their sets of 

states S, 1 and S, 2 are identical when considered as subsets of S. This 

is the case if and only if Ker iti=Ker 1r2. In particular we note that all 

faithful representations are physically equivalent. 

We now have three types of equivalence between representations 

of C*algebras; unitary, quasi, and physical. Two representations 

{.i,iri} and {2,1t2} that are unitarily equivalent have the same kernel 

and are therefore physically equivalent. The unitary equivalence 

between iti(21) and 1r2(91) can be extended by continuity to a unitary 

equivalence between itj(9L)" and 1t2(91) ". So each density operator in 

iti(A)" is unitarily equivalent to a density operator in ir2(A)". The two 

representations are therefore quasi-equivalent. Now assume that the 

two representations (i,iti} and {.2,m2} are quasi-equivalent. The von 

Neumann algebras iti(2[)" and 7t2(21)" are then *-isomorphic, where the 
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*-isomorphism a is such that ait2(A)=it1(A) for all Ae 21. This implies that 

the two representations have the same kernel and are therefore 

physically equivalent. We now have that unitary equivalence implies 

quasi-equivalence, which in turn implies physical equivalence. It is also 

possible to show that unitary and quasi-equivalence coincide for 

irreducible representations. 

1.5 QUASI-LOCAL ALGEBRAS 

As we have mentioned, the Algebraic Approach to Quantum 

Mechanics is based on the postulate that it is possible to construct a 

C*aIgebra for a given physical system in such a manner that the 

bounded observables of the system are represented by the self adjoint 

elements of the C*algebra and the states of the system are represented 

by linear functionals over the C*aIgebra. We now wish to extend this 

formalism to infinite systems. This is made possible by exploiting the fact 

that all physical measurements performed on a system are limited in 

space and time. This means that we usually understand the local 

structure of the system, and the structure of the infinite system is built up 

from this knowledge. The C*algebras that we associate with 

observables that can be measured in a finite space-time region are 

referred to as the local algebras and the C*algebra that we build from 

them is said to be a quasi-local algebra. 

In what follows we will assume that the configuration space of the 

system in question is either ER3 or ¶3iI (the four dimensional Minkowski 

space). The following may be found in [Emch], page 253. To each 

26 



C*ALGEBRAS 

bounded region z of the configuration space we assume that we can 

associate a C*algebra 2Lz in such a manner that the self adjoint 

elements of 21z correspond to the observables of the system that can be 

measured within the region Z. We order the regions Z by inclusion. This 

ordering is a partial ordering (for all pairs Z1 and Z2 there exists a Z3 

such that Z1≤Z3 and Z2≤Z3) and hence the set E of all bounded regions 

Z is a directed set. What allows us to construct a C*algebra that 

corresponds to the infinite system is the postulate of isotony. We assume 

that for any pair of regions Z1 and Z2 we can construct a 

*homomorphism 12,1 that takes all of 21 Z1 into 2I Z2 (i.e. 12,1 is an 

injection) that satisfies 

i) i2,101)=12, where 11 and 12 are the identities of 2L1 and 21 Z21 

respectively, 

ii) 13,212,1=1 3,2 whenever Zi≤Z2≤Z3. 

The postulate of isotony is a sufficient condition for a family 

{9Iz:Ze} of C*algebras (with Z a directed set) to admit a C*inductive 

limit. This is a C*algebra 9[ with identity'll that has the property that for 

every ZE there exists an injective *..homomorphism lz from 91z into 9.1 

that satisfies 

27 



CHAPTER 1 

i) izcllz)=11, where 1z is the identity of 21 z, 

ji) iz2(21z2)Dizi(91z1), whenever Z2≥Z1, 

and :111) y iz(9,Ez) =91, where the bar denotes the uniform closure. 

The C*algebra 91 is referred to as the quasi-local algebra for the infinite 

system. As the name would suggest, every element of 91 can be 

approximated to any degree by elements of the local algebras 91z (this is 

the content of condition (iii) above). 

States of the infinite system correspond to states over the quasi-

local algebra for the system. Of particular importance is the Gibbs 

equilibrium state, and we now discuss how we may attempt to construct 

this state as a state over the quasi-local algebra. Consider the quasi-

local algebra 91 generated by the family of C*algebras {91z:ZeL}. Let 

E0 be a subset of Z which consists of an increasing sequence {Z}. 

Assume that this sequence has the property that for every region Z in L 

there is an integer N(Z) such that ZDZ for all n≥N(Z). Let Hn be the 

Hamiltonian for the region Zn and pthe corresponding canonical 
eP'n  

For every AE 91 z and n>N(Z) we then density matrix PflTre_l3Hn .  

define the state cOn on Z as o(A)TrAp. If 1im. COO) exists and defines 

a state co on 91 we refer to it as the canonical (or Gibb's) equilibrium state 

at natural temperature P. The grand canonical state is defined in in a 

similar fashion with the Hamiltonian Hn replaced with H—M, where N is 

the number of particles in the region z. 
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1.6 THE CONNECTION BETWEEN-THE TRADITIONAL AND 

ALGEBRAIC APPROACHES TO QUANTUM MECHANICS 

In this section we will attempt to clarify two points. (a) In the 

Traditional Approach the representation we are working in is irreducible 

and pure states are vector states. In the Algebraic Approach all states 

are vector states and pure states correspond to irreducible 

representations (see Theorems 1.25, 1.29,1.30 Chapter 1). (b) In the 

Introduction to this thesis we made the statement that the algebra 

associated with a finite system usually admits, only one irreducible 

representation, and when this is the case we might as well work in this 

unique irreducible representation, thus returning to the traditional Hilbert 

space formalism. 

We first discuss (a). In the Hubert space formalism one is always 

dealing with a concrete Hilbert space 5. The algebra is assumed to be 

the set £() of all bounded linear operators on this Hilbert space, and 

this set is always irreducible (roughly speaking the set is too large to 

have any nontrivial invariant subspaces). A state is a now positive linear 

functional over It is possible to show that any such state Co is of the 

form co(A)= TrpA (for all AE £(5)), where p is a bounded, self adjoint 
Trp 

positive operator of finite trace. If we assume that p has a discrete 

spectrum , then according to the spectral theorem p can be written as 
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p=?P, and therefore o)(A)_A  , where the vectors are the 

eigenvectors of p and the P are projection operators onto the one-

dimensional subspaces spanned by the . Pure states then correspond 

to the special case in which p is a projection operator onto a one 

dimensional subspace. This is the, case when the above linear 

combination contains only one term. In this case A)=  , so the 

pure states are vector states and one can prove that all vector states are 

pure. Corollary 1.30 makes it clear that the latter proof depends on the 

irreducibility of the set of operators In the Algebraic Approach we 

gain the result that all states are vector states in some representation, 

with the price being that the representation is irreducible only when the 

state is pure. We can gain an understanding of what is going on here by 

considering the case when p is a projection operator onto a two 

dimensional subspace, and has unit trace. If this is the case then 

with and 2 the eigenvectors of p. In the 

Hilbert space , co is not a vector state. However, in E1 co is a vector 

state with A)=i42, (AA)q142). Thus we can express co as a 

vector state, but in doing so the algebra becomes 

reducible. 

We now discuss (b). Assume that the C*algebra 21 

corresponding to some physical system admits only one irreducible 

representation, {,it}. This is usually the case when the system 

possesses a finite number of degrees of freedom. In Chapter 2 we will 

show that this is the case for the C*algebra that corresponds to a finite 
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spin system and in Chapter 3 we will show that this is true for the 

C*aIgebra that corresponds to a finite Bose gas. This representation will 

be the irreducible representation in which one is working in the Hilbert 

space formalism. Let 0) be a mixed state over 91, and for simplicity 

assume that co decomposes into two pure states (o=?col +(1—X,)o2, col and 

(02 pure. Without loss of generality we may assume that the reducible 

G.N.S. representation corresponding to the co can be 

decomposed into a direct sum of the unique irreducible representation 

15,n) as 

(m(91) 0 
0 it(91) 

It easily follows that 

" ((t) 0 
I, I, 

lto)(91) = 0 it(9t)) 

so the von Neumann algebras ltcl)(91) and it(91) are *..isomorphic. The 

representations {(1),1t} and {5,ir} are therefore quasi-equivalent, by 

Theorem 1.34. This means that the set of states of 91 that can be 

expressed in terms of the trace of a density operator in either of the two 

representations coincide. Since co is a vector state in it can be 

expressed in terms of the trace of a density operator in {,ir}. So we 

might as well work in the irreducible representation {,it}, returning to the 

Traditional Approach. 

The C*aIgebra that corresponds to an infinite system usually 

admits an infinite number of unitarily inequivalent irreducible 
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representations. In Chapter 2 we shall show that this is true for the 

C*algebra that corresponds to an infinite spin system and in Chapter 3 

we shall show that this is true for the C*algebra that corresponds to an 

infinite Bose gas. When this occurs we must work with the C*algebra, 

since it provides an underlying link between all these different 

representations. 
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QUANTUM SPIN SYSTEMS 

In this chapter we will explicitly illustrate the main results of 

Chapter 1 by discussing the algebraic description of Quantum Spin 

Systems. The C*algebra corresponding to a single spin will be 

constructed and analyzed. The G.N.S. representétion corresponding to 

the canonical equilibrium state will be constructed, following the 

procedure given in the proof of Theorem 1.25. We will then generalize to 

a two spin system, a multi spin system, and finally to a system consisting 

of an infinite number of spins. We shall find, among other things, that the 

G.N.S. representations corresponding to different finite temperatures are 

unitarily equivalent, as long as the system remains finite, while for the 

infinite system these representations become unitarily inequivalent. 

2.1 SINGLE SPIN SYSTEMS 

Consider a system consisting of a single spin (s=1/2) with no other 

degrees of freedom. The C*algebra corresponding to this system is 

generated by the four abstract elements ao, , o, and cv3 equipped with 

the composition laws 

oo=yj 

and al G2=iu3 similarly for cyclic permutations 

of 1, 2, and 3. 

(2.1 a) 

(2.1 b) 

(2.1 c) 
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Latin indices (i, it k) will run from 1 to 3 while Greek indices 

(p, v, i) will run from 0 to 3. We begin by defining the algebra 91 to be 

the set of all polynomials in ag of finite degree with complex coefficients. 

Using (2.1) it is obvious that 91 consists simply of the linear combinations 

of the four y's, 

91= A=céLcy11: &€ D}. (2.2) 

Note that co is an identity for 91 and the product of A=a"ar and B=Pgag is 

ABaf3"cYYv. 

An involution of 9.1 can be defined as 

(Icy)* 11cy11 

(2.3) 

(2.4) 

To show that the mapping defined in (2.4) is indeed an involution 

of 91 we first note that A*c= 21 if AE 91 Then 

i) (A*)*=A; this is easily verified by inspection of (2.4), 

ii) (AB)*=B*A*; since the ag are self adjoint we have 

(AB )* = ( i3V cy .t(y)* 3YtcYv)* Tv(Y.t B* A*, 

(yA+oB)*=7A*+ B*; this is easily verified by inspection of 

(2.4). 

This shows that (2.4) does define an involution of 91, and 91 is therefore 

a *-algebra. 
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To define a C*norm on 91 we first determine the spectrum of an 

arbitrary Ac 91 and then use the fact that IIAII=p(A*A)l/2. As is evident 

from (2.1 b) the element o0 is an identity for 21. It is easy to demonstrate, 

by direct multiplication, that the inverse of Ac 2E is 

(c °3o- a'oj)  
-1_ 

Al =(c) (( o)2 ..(ai)2 - ((X2)2 - ( 3 )2 
(2.5) 

So A-1 exists if and only if (a°)2 #(ct1)2 + (a2 )2 + (a3 )2. Using this 

condition for invertibility it is easy to see that the spectrum of a general 

Ac 9.1 is (no confusion should arise from using the symbol a to denote the 

spectrum and ag to denote the generators of 91) 

+ (2)2 + ((x3)2 }. (2.6) 

E.g., y( °)={1,1}, (&)={1,-1}, (ao+c3)={1±/T}={O,2}. 

Using the spectrum we then define the norm of an arbitrary Ac 91 as 

IlAIIIIcV p(A*A)l/2=[Sup{IXI: Xc cy(A*A)}]l/2. 

[Re (a°& _ia23)]2+[Re(a02_ia31)]2 

E.g., IIojI=1, IIo6+3II=(Sup{lXI: X=1±-JT})1/2='s[. 

In demonstrating the connection between the norm and spectral 

radius of a C*algebra (IIAll2=p(A*A)) one assumes that a C*norm exists. 

This means that we must demonstrate that (2.7) really does define a 
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C*norm for 91, for it may happen that our *..algebra 91 does not admit a 

C*norm (not every *..algebra will). To demonstrate that (2.7) satisfies the 

properties in Definition 1.4 is rather difficult (it is very messy to 

demonstrate that (2.7) satisfies the triangle and product inequalities) so 

we will instead demonstrate that the *..algebra 91 possesses a C*norm 

(with respect to which it is complete) and then use Theorem 1.6 to 

conclude that this C*norm is unique and hence given by (2.7). To this 

end we define a norm on 21 through the faithful representation of 91 as 

the set of two by two matrices with complex entries acting on C2 The 

elements ai are represented by the familiar Pauli spin matrices while cro 

is represented by the two by two unit matrix, 

(io (01" )01 (10) it(i -)' Th(2)=I%,1 o ' 1*Y3)=(? ') 

A norm on it(91) is now defined as 

IIit(A)II=Ik(cs)D Sup( Dit(A)U :e D2, II?1 } 

=SUP{ 
1" a°+a3 lj2 \ 

L a0a3 j 212.J IX, I2+lA.l2= 1 (2.8) 

We now use the fact that the norm of a complex vector satisfies 

and 

(a) II2fl≥O, II2II=O if and only if 2k=0, 

(b) lIa2II=lal II2JI for all aE D, 

(c) 1111+1211<1111 11+11k211, 

(d)(Cauchy inequality) l(,)l≤D2jI UII, 
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to show that (2.8) satisfies the conditions in Definition 1.4, 

i) llit(A)D≥O, Hit(A)ll=O if and only if it(A)=O; the first part is 

obvious. The second part follows from (a) and the fact that it(A)2=O iff 

and only if n(A)=O, 

ii)llcic(A)ll=kxl llit(A)ll for all a cD; this follows from (b), 

iii)IIit(A+B)II≤IIir(A)ll+llit(B)II; using (c) and knowing that it is a 

representation we have 

llit(A+B)II=SuplIit(A)2+m(B)2jI 2, 11111=1 } 

≤Sup{Ik(A)2Jt+IIit(B)2jI :?e 02, } 

≤Sup{IIit(A)2JI :e D2, )+Sup{IIit(B)2jI :2kE 02,11 2,11= 1) 

=IIit(A)U+llit(B)II, 

IV) IIit(AB)II≤IIm(A)IIllit(B)II; using (b) and the fact that it is a 

representation we have (we may, without loss of generality,assume that 

Be-O) 

IIic(AB)II=Sup{llit(A)it(B)2jI :X.E D2, ?JI1 } 

=SUP{IIit(A) IIit(B)2JI  II:2c2; llkll 
llm(B)2JI 

=Sup{!Iit(A),II IIit(B)2jI : J2,JIJJIII1 } 

≤Sup{IIir(A)lI :e(D 2, ILII=1}Su pill it(B)2JJ :2,E 2, } 

=Dit(A)llhlit(B)II, 

( it (B)  
note • II(B)Il 

v') I!lt(A)11 2=IIit(A*A)ll; denote the adjoint of it(A) by 

it(A)t=lt(A*). Using (d) we have 
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IIit(A) lI2=Sup{II1t(A)2jI2:2E 2, J21 } 

=Sup{(2, ,it(A)fit(A)2) :2 2, 11_k11=11 

≤Sup{IIir(A)tit(A)2jI :2E C2,112,11=1} 

=IIm(A*A)II 

≤II it(A*)II llit(A)II, 

so It1t(A)ll≤II7t(A*)ll. 

By interchanging A and A* in the previous argument, it follows that 

II7t(A*)II≤II1c(A)II, so II1(A*)II=llit(A)II. If we now use this identity in the 

pre\'ious argument we have 

IIit(A)II2 ≤ If1t(A*A)Il≤llit(A*)ll IIit(A)Il =llit(A)II2 

so IIit(A)02 = IIit(A*A)II. 

We have shown that (2.8) defines a C*norm for it(2t) Since the 

representation is faithful (i.e., 7t(A)=O if and only if A=O), IIAllIIir(A)II is a 

C* norm for 2E. To show that 21 is a C*algebra we must demonstrate 

that 91 is complete with respect to this C*norm. Specifically, we must 

show that the sequence {c4 } converges to an element of 91 if it is a 

Cauchy sequence, i.e., if 

Jim 
m,n—*oo 
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We have ha t()_aii() 112 

=Sup( 2, hI2hI=1} 

Letting 2=IJ gives 
0 o,3 3 

II_aY ih12≥l(wm_an)+ a_cx,,) I2•l(a_c) +i(a_a) 12, 

while (o) gives 
I 2 ° 1 1 IhamaL_anthh ≥l ( amn)( am_ an) I + I (am_an 

.22 
I(Xm_an) 12. 

Using these inequalities we see that urn Hall 4 11=0 implies 
m,n—oo 

that urn l(a ll _c4)I=O for .L=O, 1, 2, and 3, i.e., the sequences of 
m, n—> 

complex numbers {c4} are Cauchy. Since the complex numbers are 

complete, {c4} converges for i.t=O, 1, 2, and 3. Let {c4}—c, we then 

see that {c4, (} cYce 91. We have shown that 21 is complete and 

hence is a C*aIgebra. We can now conclude that (2.7) is the unique C* 

norm for 21.1 

The real and self adjoint elements A€ 91 will now be classified. 

Since A=&'cy1 is completely determined by the &, this classification is in 

terms of them. 

1 What we have done here is quite general. We have shown that the usual norm on the 
set of bounded linear operators on a Hilbert space is a C*norm. If we know that a 
algebra has a faithful representation then we can conclude that it possesses a C -norm. If 
we can show that the *-algebra is complete with respect to this 0-norm then it is a 
algebra and we can use the relation llAIl2=p(AA) to derive a convenient expression for 
this C*norm. 
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Proposition 2.9 A general element A=arE 91 is: 

i) Self adjoint if and only if the coefficients ag are real, 

ii) positive if and only if the coefficients ag are real and 

satisfy a0≥/ ((X1 )2+ (a2)2+(a3)2 

Proof: i) Follows trivially from A*= tc . 

ii) Recall that A is positive if it is self adjoint and (A)E [O,00]; the 

above condition then follows from the relation 

(Y(A=a4ag)=f•--(XO±•(OC 1)2 + (a2 )2 + (3)2 I. 

Now that we have characterized the. positive elements we can go 

on to construct the states over 91. Since A=aa is completely 

determined by the coefficients alt, any functional f over 91 must be of the 

form f(A)=F(a), where F is a complex valued function. In order for the f 

to be a linear functional it must satisfy f(A+B)=f(A)+f(B). With B=P•ag this 

condition implies that 

so F must be of the form F(a')=xa -. Since f(A*)= f(A) if f is a linear 

functional, the coefficients x must be real. These results are 

summarized in the following proposition. 

Proposition 2.10 The most general linear functional f over 21 is of the 

form f (a )=x11a11, with the real coefficients x. 
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A linear functional f is positive if it takes on positive values for 

positive elements of 2E. Using the general form for a positive element of 

91, given in Proposition 2.9, along with the previous result we see that f 

is positive if and only if f(a )=x&≥O for all a11 satisfying 

a0≥/ (a1 )2+(a2)2+(a3)2 

with the coefficients x11 real. In particular note that c0>O implies 

f(( o)=xo>O. We can now prove the following. 

Claim 2.11 A necessary and sufficient condition for a linear functional 

f(&'c)= x11a11, with x11 real, to be positive on the positive cone 

a0≥\J (x1 )2+(a2)2+(a3)2 

is xo≥.\J(xi)2+(x2)2+(x3)2. 

Proof: We first show that the condition is sufficient. Given 

xo≥I(x1)24•(x2)2+(x3)2 we must show that x11a11≥O for all real a11 satisfying 

a°>\J (a1)2+(a2)2+(a3)2. Combining these two conditions we have 

(a0)2(xo)2≥[(al)2+(a2)2+(a3)2][(X,)2+(X2)2+ (X3)2]. 

If we form the vectors A=( a1,a2,a3) and X=( xl,x2,x3) we can use the 

Cauchy-Schwartz inequality to obtain 

[(al)2+(a2)2+((X3)2][(xi )2+(x2)2+(x3)2]11A11211X112 

A.X 12 

= (a1 x +a2x2+a3x3)2. 
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Combining the above inequalities we conclude that xc ≥O, and hence 

the condition is sufficient. 

To show that the condition is necessary we assume that 

xo<\/(x1)21(x2)2+(x3)2, i.e., the condition fails, and construct a positive A 

such that f(A)<O. Let a0=J(xi)2+(x2)2+(x3)2, a1=—xi, ct2=—x, a3 =-X3, 

and consider the element A=cy 1. Since (a0)2=(al)2+(a2)2+((3)2 A is 

positive. Now f(A)=xa-'=xo-s1(xi)2+(x2)2+(x3)2 - (xl)2 —(x2)2 —(x3)2 <0, 

where the last inequality follows from the assumption 

xo<\J(xi)2+(x2)2+(x3)2. So we have constructed a positive A such that 

f(A)<O, and the condition is necessary. 

The following "geometrical" interpretation of the condition in the 

previous claim will prove to be useful. Consider a linear functional 

f)=xc, with x0>0, x, x2, and X3 real. We imagine that the xi, x2, 

and X3 form a vector X=( xl,x2,x3) in FR3, and, that x0 is the radius of a 

sphere in FR3. We then have, from the previous claim, that f is positive if 

and only if X lies in or on the sphere of radius x0. 

A state co over 21 is a positive linear functional with unit norm. 

Since 91 possesses an identity, namely c°, we have llcoII=w(°)=x0=1. 

This immediately gives 

Proposition 2.12 The most general state co over 21 is of the form 

o=x&1, with xo=1≥(xi)2 +(x2)2 +(x3)2. 
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In terms of our geometrical interpretation we have that a linear 

functional Co is a state if and only if the corresponding vector X lies in or 

on the unit sphere. 

Finally we characterize the pure states. over 91. Recall from 

Definition 1.28 that a state Co is pure if it is not possible to decompose w 

as (o=?.o)1+(1—X)o2 with col and 02 states and O<A<1. In terms of the 

vector X co is pure if it is not possible to decompose X as X=2Xi+(l —A)X 

with IlXiII≤i, llll≤i and O<<1. So Co is pure if it is not possible to 

express the corresponding vector X as a non-trivial convex combination 

of two vectors lying in or on the unit sphere. Since X lies in or on the unit 

sphere this is the case only when X actually lies on the unit sphere. In 

terms of co itself we then have the following proposition. 

Proposition 2.13 The most general pure state co over 91 is of the form 

o=xc ,where the coefficients x are real and satisfy 

X0=1 =(x1)2+(x2)2+(x3)2. 

Suppose that we place our system in a uniform magnetic field in 

the 3- direction, so that the Hamiltonian is H=—Bc3. In the concrete 

Hilbert space approach, the canonical density matrix is then 

exp( 3B3) 

1' Trexp(B3)' 

where (f3=(kT) 1). We shall assume that this is also the case in the 

Algebraic Approach, with Tr(A){X.: X€ c(A)I. This gives rise to the state 
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co(A)=Tr(Ap). Using the properties of the spectrum in Theorem 1.13 we 

have 

Tr(exp3B(Y3))=A.: , (exp(Bc3))} 

={A.: ke exp((fB3))} 

=exp(B)+exp(—B) 

=2 cosh j3B, 

and 

=Tr(a 1. (cosh PB y0+sinh B Y3)) 

=(a° cosh PB+a3 sinh 13B)Tryo 

+ (X) Tr al + (Y) Tr Y2 (Z) Tr Y3, 

where X, Y, and Z depend on the & and cosh 13B , sinh 3B. Since 

Tr ao =2 and Tr y1 =Tr G2 =Trc3 =0 we have 

Tr(a(exp(13Bc3)) = 2 (a° cosh OB + a3 sinh 13B). 

Therefore ci(a11()= Tr(&p) - a°coshB + a3sinhB  
cosh PB 

or w(A)= o(a'cr)=a°+ a3 t, t=tanh 3B (O≤ltl≤1) (2.14) 

This equilibrium state was obtained by using the canonical density 

matrix p from the concrete Hilbert space approach. If we are true 

disciples of the Algebraic Approach we should demand an algebraic 

characterization of this equilibrium state. We only mention here that this 
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might be possible following the methods of Hagg/Trych-Pohlmeyer 

([Haag 1]). 

We now make the following observations. Since Itl≤1, co(A) is a 

state by Proposition 2.12. From Proposition 2.13 we conclude that w(A) 

is pure only when t=±1. Denote these states by co±(A) (i.e., 

CO+(a4G4)=aO+ x3 and o) - a). The state co+(A) corresponds to 

the zero temperature case. Finally a mixed state o(A) can be 

decomposed in terms of the pure states o as 

o(A)=u2o+(A) + v2o.(A), (2.15) 

With u2=(1 +t)/2 and v2=(1 -t)/2. 

The G.N.S. representations associated with these states will now 

be constructed. First consider the state o((c)=a°+ a3 t , O≤ltkl. We 

begin by constructing the left ideal ={A 91: o(A*A)=O}. A simple 

calculation shows that 

={&'ce 21 :la0l2+Iahl2+Ia2l2+kx3l2+t((x0&_• 0a3+j& (X2-ia1&)=O} 

21 :[la0l2+la312+t (a0&+0a3)]+[lal l2+la2l2it (i& (X2-ia12)]=O}. 

Now kx0+a312≥O implies 1a012+1a312 ≥ oa3_oa 3 ≥ t(a 0 & 3+ 0a3), 

where the last inequality follows from ltkl and is an equality only when 

a0=a3=O. So we see that 
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[1a012+kx312+t (a°&+°a3)]≥0, 

equality only for a0=a3=O. In a similar fashion we have 

[kxhl2+Ia2l2+t (i& (X2-ia1&)}≥O, 

'equality only for a1=a2=0. Since equality occurs in the above expression 

only when all the avanish, we conclude that 

={Ae 2I:A=0}. (2.16) 

The pre-Hilbert space H is the span of the set (VA : Ac 91}, where 

VA is the equivalence class VA={A+I A scalar product over H 

is then defined using the state Co, (VA ,NB)=co(A*B). We now show that H 

is four-dimensional by demonstrating that the set {VCFO , 'I', V(y} IS 

linearly independent while the set (WCFO , CF1 O3 VB} is not for 

arbitrary Be 21. Recall that Vp, =0 if and only if Ac i.e., if and only if 

A=O. Now 

CCOXV + a1W + a2W + cV =V (paw a 

so that a linear combination of the V vanishes if and only if the 

coefficients ag are identically zero, hence the set (Va 'V al ,V a2 'V (73 }is 

linearly independent. Now consider the linear combination 

+ a1W+ a2W + CC3V for arbitrary B=a#0. We have 

a°W +a1V +a2W +a3V 
a0 cY3 
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so that this linear combination of the 'I' OR ,W B vanishes if the coefficients 

are  chosen to be 13=1 and c =-I3", hence the set {o,lt2t3,WB} 

is not linearly independent for arbitrary 13:t-O. This shows that the pre-

Hubert space H is four-dimensional. 

To obtain an orthonormal basis for H we apply the Gram-Schmidt 

process to the linearly independent set 03 This 

produces the orthonormal set {W1,N12,V3,N'4}, where 

and 

v1='lJ Cr0 

1 .-.t2, 

V4=(-1tWCrl 'Cr2'11 -t2. 

Since the set {W1 ,'V2,'V3,'V4} is an orthonormal basis for a four-

dimensional space we let 

(o' 
o 1 0 0 
0 0 1 and V4= 0 

\O) 

Now the representatives it(A) are defined by 1r(A)1V B=V AB' so 

t()(A)jj=(Wj,1t((A)Wj). For example 
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ItO) (o.3)34=(T3 ,7t0(Y3)N14) 

('Vcyi ,tcü(3)Ht'Vai+ 21) 

- /1_t2 

(lVcyi I t'V2) ('fy1 , —iv al ) 
  + 

- f1_t2-V-J---t2 

=1 CJ)(cY1Y2) .co(cY1cY1) 

s/1t2 

=_i11_t2 . 

Continuing in this manner we find 

1r(cJ2)= 

0 0 o" 
0100 

0010 

\0 0 0 1 ) 

1t(CY1)= 

0 1 o" 
0001 

1000 

\0 —i 0 0) 

0 0 t 1_t2 

0 0 _.i'sll_t2 —t 

it i'I1_t2 0 0 

—t 0 o ,i 

I 
t I1_t2 0 0 

/1_t2 —t 0 0 

0 0 —t _iJ1_t2 

\\ 0 0 IJ1_t2 t ) 
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Since the pre-Hilbert space H is equal to G4, it is already 

complete, so J5. =D4. The cyclic vector nco is given by 1≥ 0 '=V1. At 

this point we should have a cyclic representation such that 

co(A)=(K20),,K(O(A)QO)) for all Ae 21. To demonstrate that this is the case we 

first put in a more convenient form by diagonalizing 

The solutions to the secular equation O=)(3)_?J=(A.2_1)2 are 

(I is the four by four unit matrix). The corresponding 

eigenvectors are found to be 

where u= 

therefore 

1 V 2 0 1 —U 
VX1 0 v ,VX_1 = 0 

\0) \—i U,/ \.O I 

and v= 

,and v_1= 
0 

U 

Jvj 

The matrix U that diagonalizes (c) is 

"U v 0 0 

0 0 u iv 

0 0 v —lu 

\V —u 0 0 1 

Applying U to our representation (.,itc1),L2} gives rise to the equivalent 

representation {CI)'%,dQ,},where 
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= O) 

0 0 

4o)=Uito)U= 0 1 0 0 
0010 

\O 0 0 1 j 

1 0 o' 
1 0 0 0 

0001 

\0 0 1 0 J 

0 —i 0 0 

i 0 0 0 

0 0 0 —i 

\0 0 i 0 J 

and 

0 0 0 

0 —1 0 0 

0010 

\0 0 0 —1 1 

0 

0 

\V) 

Dropping the primes, we arrive at our final form for the G.N.S. 

representation corresponding to the state co, co(A)=co(&¼ R)=a0+ta3: 
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I i+t ii 
where u= \j f- I = v= ---

-t and t=tanh OB. 

We now make the following observations about the above 

representation (it is easy to verify that it is indeed a representation of 21). 

Let I' be an arbitrary vector in S. Then by direct multiplication it is easy 

to show that 

(0(42 + + !V-] G 214 '•V-] G 2 + 124 (1 - •V-] 0' 3 
0 

0 

so 2AJ is a cyclic vector and the representation { ,it(,,Q} is cyclic. 

Furthermore, it is easy to show that the vector state (,it(A)c) is 

equal to the state Co (i.e., 

The representation is obviously reducible, as is to be expected 

since the state (o is mixed (Theorem 1.28). Since the representation is 

reducible, there must exist a non-zero 'f'eS that is not cyclic, by Lemma 

1.22. An example of such a vector is 

0 

0 

\.0) 

For example, it is not possible to obtain the cyclic vector by applying 

it(9I) to '{' (although there exists an AE 9.1 such that 'P=ir(A)c2; this A 

is not invertible). 
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The dependence of the representation on temperature is entirely 

contained in the cyclic vector 1k,, so that representations corresponding 

to different (nonzero) temperatures are unitarily equivalent (the 

representing matrices are in fact identically equal). The representation 

{,ir0} will be referred to as the finite temperature representation. We 

will discuss what happens to the cyclic representations as 

the temperature goes to zero after we have constructed the G.N.S. 

representation corresponding to the zero temperature state co+. 

The G.N.S. construction for the pure states o±(a1)=a°±a3 is 

basically the same as that for the mixed state co, only now the left ideals 

are not trivial: 

3+=[A 91:w(A*A)=OJ 

=M'ope 91 :Ic 0±(x3I2+kxl±ic 2I2=O) 

={a( o±o3)+(1±k2): a,J3E D}. 

The pre-Hilbert spaces HO)± =span {'VA: Ae 91}, where 'VA is the 

equivalence class 91 ;aj3E t1}, are now 

two-dimensional. To show this we demonstrate that the set {1Vyo,Vyi} is 

linearly independent while the set {Vcyo,V1YB} is not for arbitrary non-

zero 'VB. Recall that the zero vector is any element of 9 ± , the 

equivalence class corresponding to A=O, so that the linear combination 

7'VYo+'VY1 =IVyaO+5aj vanishes if and only if VyyO+&y E . This is 

the case only when y==O, so the set {'V 0,'V 1} is linearly independent. 
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Now let Vrg,be an arbitrary non-zero vector (i.e., 0:A±3 and f31:V±if32) 

and consider the linear combination 

YO+ö1+cLI'ycyo+&yl +e13'1cY1r 

This linear combination vanishes if c=1, i=1 °±(#O), and S=3 ±if 2(#O), 

so the set {V1Go,Nf191,TB1 is not linearly independent for arbitrary non-zero 

'41B and the pre-Hilbert spaces H0± are therefore two-dimensional. We 

in fact have H±=D2, so the H,± are already complete and therefore 

±=C2. 

Since the linearly independent set {V o,'I'c31} is orthonormal 

((o,'11ci)w±(coci)O, II\ oll2 o±( oc3o)1, and II'Vi II2=ü±(i ci)=l), 

we choose it for a basis , {\V1=Vc0,V2=Vy1}. Since the ± are two-

dimensional let 

11f, =(01) I and V2 

With this choice of basis, the representatives ir± and cyclic vectors 2± 

are 

(1o' (o1 
w•: +(o0)=0 1 )' +(1)= o)' 

and (0 

' 
OL.: 1tQ)_(0) oO 1 ) tAi)=1 

(ofl ), 

and 

(O—i (0-1 
1 0 . 

i 0  7t0)•(Y3)1 )' 

( 0 i 

0)' (-0 i 1 
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(0 1) 
Using the unitary transformation 0 

representation is unitarily equivalent to 

we see that the co_ 

'=(0 —i 7E - ,(1 0 
(0 IceJad ' (0 1 j' 0J' (2). 0 )' _) 

and ) - 

Our final form for the G.N.S. representations corresponding to the pure 

states e are then (dropping the prime from the co_ representation) 

(a0+a3 a1—ia2 t'5C0+=T,2, (tt)15, 

a1+ia2 (X 0-0t3 

LcxO+a3 a1-ia2 +ia2 aO_a3 

) 
) 

We now make some observations about the above 

representations (it is easy to verify that they are both representations of 

91). Let 'I' be an arbitrary vector in (I 2, then 

PE[u) = +(io+&i4J 

Yo+)Y1 )[J 
so the vectors and c are cyclic for their respective 

representations, and hence both representations are cyclic. Both 

representations are also irreducible, as is to be expected since the 
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states co+ are pure. Since the two representations differ only in their cyclic 

vectors, we will concentrate on the representation corresponding to the 

zero temperature state co+. To demonstrate the irreducibility we use 

Schur's Lemma (Lemma 1.24), specifically we show that any two by two 

matrix that commutes with all the representatives t+(2L) is necessarily a 

multiple of the unit matrix. Let M be an arbitrary two by two matrix. Then 

a b "Ia0 a1" aa0'+bal ba0+aal 
M1r +(a0 yo+a1G1 )=I 

c d a 1 a0 ,( Ca0+dal da0+ca1]' 
and 

a° a1 'Y b • (aaO+cal  ba°+da1 

(a°o+a1i) M=I aa1 d cao+aa1 dcz°+ba1 

This shows that M will commute with +(a0o+(xl1) only when a=d and 

b=c. We now require M to also commute with 

(ab 
M1c +(a2+a a 

and ((X22+a33)M= ia2 —a 
a3 —ia 

—ia" (acx3+iba2 -ba3-1aa2 

2 —a3 1t ba3+iaa2 —aa3—iba2 i' 

a b •(-ba3+ia(x2 
aa3—iba2 ba3—iaa2 

b a  —aa3+iba2 

We have now reached the desired result, for M will commute with 

+(a2 2+a3o3) and lt(o+(a0a0+alsl) only when b=O, i.e., when M is a 

multiple of the unit matrix. Schur's Lemma then allows us to conclude 

that the representation corresponding to the state co+ is irreducible (since 
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(a0+a3 a1-1x2 

for all AE 21, the representation corresponding to the state 

co- is also irreducible). 

The irreducibility of the representation , ir1+ } implies that 

every non-zero vector is cyclic, and every vector state 

it A)=(cD, +(A)(I) is pure. To demonstrate this, consider an arbitrary non-

zero vector , <D= a We may assume, without loss of generality, 

•)  
that <D is normalized to unity. The following result shows that cL is cyclic. 

Let 'P be an arbitrary vector in , , then 

PE(a} (a2a2+(X3 3)[a) 

Next we consider the vector state 

4(atoj=(, L 1 2 a •ia a°a3 )I 

=(IaI2+Il2)a0+(+)al+(a_iE13)c 2+(IaI2_II3I2)a3 

Now the state o(a)=x'a1 is pure if and only if xo=1=\J(x1)2+(x2)2+(x3)2 

(Proposition 2.13). We have x0=Ia12+flI2=1, x1=+a3=2Re[a], 

x2=a—ii43 =2Re[ia] , and x3=kxl2-1f312, so 

(xl )2+(x2)2+(x3)2=(kxl2—IJ312)2+4Re[cx]2+4Re[ia]2 

=(IaI2_113I2)2+4IaI2I3I2 

=(I(X12+I1I2)2 

=1. 
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The vector state 4(A) is therefore a pure state. This was to be expected 

from the general theory of C*algebras. The C*algebra 91 has the 

additional property that all pure states are vector states in the 

representation ,ir }• 

Theorem 2.17 Let 4 be an arbitrary pure state over. 91. Then there exists 

a cyclic vector such that A)=(,ir 0+(A)) for all AE 91. 

Proof: An arbitrary pure state over 91 is of the form a tc )=xIaP with 

x0 1=\J(x1)2+(x2)2+(x3)2 , and the xl1 real. We first consider the general 

case in which x0=\I(x1)2+(x2)2+(x3)2 . If we assume that X3V--X0, then the 

vector 

 (1 '\ 

x0±x3 x1+1x2 I 
X0+X3) 

is well defined and 

1 ' 

2((D,n(O((P,jg)(D)=(XO+X3 )(1, 
X0+X3)1 +ia 2 aO_a3 •Cc )xo+x3) 

=(a°+a3)(x0+x3)+(( l_ic 2)(x1+ix2)+(al +1(X2)(x1_ix2)+(a0_a3 (xl)2+(x2)2  
X°+X3 ) 

0 (X0) 2+(Xl )2+(x2)2+(x3)2+2x0x3 1x1+2a2x2 

x°+x3 

+a3(> )2_(x2)2+(x3)2+2x0x3  
xo+x3 

=2(x&L) (since (X0)2=(X1)2+(X2)2+(X3)2), 

=2(ac) 
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So (,it(A)(b)=(A) for all A€ 91. A pure state has the further property 

that x°=1, so the above vector will work for all pure states that have 

x3•-1. The case x3=-1 corresponds to the state co.... , which we have 

seen is produced by the vector •, ) in the representation {,_,it 0j. 

Finally <D is cyclic because the representation co+ ,it 0+ } is irreducible. 

This completes the proof. 

Corollary 218 Every G.N.S. representation { ,it,L} arising from a 

pure state j is unitarily equivalent to the representation { 0•,ir 0 ,}, for 

some cyclic vector . In particular the representation  

unitarily equivalent to 

Proof: From Theorem 2.17 we know that there is a cyclic such 

that A)=(cD,it (J)+ (A)D) for all Ar= 21. The cyclic representations 

and are therefore 'unitarily equivalent by 

Theorem 1.25. In particular the representations {,7tcI} and 

are unitarily equivalent. 

Corollary 2.19 The representation ,it+ } of the C*aIgebra 91 is 

the only irreducible representation of 9.1 (up to unitary equivalence). 

Proof: Let {.,it} be an irreducible representation and be an 

arbitrary non-zero vector. Since the representation {.,it} is irreducible cI 

is a cyclic vector, and the representation {,ir,I} is cyclic. Also the vector 

state 4(A)=(1,it(A)(D) is pure. The cyclic representation {,ir,I} is 

therefore unitarily equivalent to the cyclic G.N.S. representation 
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{,it} by Theorem 1.25. It then follows that the representation {,ir} 

is unitarily equivalent to the G.N.S. representation {cj,1t1}, which in turn 

is unitarily equivalent to {it} by Corollary 2.18. The representation 

{,it} is therefore unitarily equivalent to 

The following discussion is intended to illustrate the unitary 

equivalence of representations mentioned in Theorem 1.27. The mixed 

state 0) for finite temperatures can be decomposed into the pure states 

co±, co=u2o++v2o, so the representation{ ,it,c} should be a direct 

sum of the representations {± ,1t-± }. Inspection of the respective 

representations shows that this is indeed the case, with 

uc We first examine the physical meaning of this. 

Introduce the parameter i=4. Then 11 goes from —oo to oo as T goes from 
o to co, jumps to —oo and increases to —0. The values r=—oo and 11= oo 

correspond to t=1 and t=-1, respectively. So we see that t=-1 

corresponds to the negative zero temperature state. This is the pure 

state corresponding to the spin being anti-aligned with the magnetic field. 

Every finite temperature state is then a statistical mixture of these two 

pure states (the spin aligned with the magnetic field and the spin anti-

aligned with the magnetic field). Note that the probability of obtaining the 

value 1 when measuring the z-component of the spin in the state 

co=u2co,+v2co_ is u2 while the probability of measuring the value —1 for the 

z-component of the spin is v2. 

Now consider what happens to the representation as 

the temperature goes to zero, i.e., as t-1 and co—co. The dependence 
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of the representation (c≥) on temperature is entirely contained in 

≤1. As t—,1, u-41 and v-0, so that 

0 

0 

sO) 

In this limit { ,ir 1,c) is still a representation of 91, and is still 

a direct sum of the representations {± with = (+ 0ç. 

Furthermore, 0) is still the vector state o(A)=(c,r(A)c). Despite this, 

the representation { 2) is not, in the limit t--41, unitarily 

equivalent to the G.N.S. zero temperature representation ,ir+ ,} 

(one is four-dimensional and the other is two-dimensional). The reason 

for this is that, even though the representation produces the 

correct vector state in the limit t-1, the vector is not 

cyclic in this limit, and so the conditions of Theorem 1.25 do not hold. 

The representations {,7t} and {+ ,irj are both faithful and 

so they are physically equivalent (Ker ir =Ker ir + =0). Every state 4 

over 91 is a state over ir(2t) and it +(91) by the definitions 

it(A)) 4(A)' and 4(1c.(A))E 1(A). The set n +(21) consists of all 

two by two matrices with complex entries. This set is irreducible to that 

consists of only multiples of the two by two unit matrix. The bi-

commutant n +(91) is then equal to the set of all two by two matrices 

with complex entries so t +(9L )=n+(21 )", and the set ir(91) is 

therefore a von Neumann algebra. The set 1t(9I) is also equal to its bi-

commutant t(91)" and therefore a von Neumann algebra. To see this 
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we note that every element of 1t 0) (91) is of the form( v1) with M an 

arbitrary complex two by two matrix. Writing anarbitrary complex four by 

(A B '\ 
four matrix as D J where A, B, C, and D are complex two by two 
matrices, gives 

(M O(A B'J'MA MB 

O M)ISCDJ1S. MCMID 

and (ACBDR\(.MO O•(AMBM'\MI,CMDM) 

( (M' 
So an arbitrary matrix t AB D ) will commute with every O MJ if and only 

if each of the two by two matrices A, B, C, and D commute with every two 

by two matrix M. As we have seen above the set of complex two by two 

matrices are irreducible so that the matrices A, B, C, and D must each be 

a multiple of the two by two unit matrix I. So the commutant is 

1 
ir(9L) = al PI I:a,,,6ec1. We now require an arbitrary complex four 

(,Yi  61) J 

by four matrix A B ( C D )to commute with all members of ir(L). We have 

and 

• (cd PI A B(aA+3CaB+3D 

yj 81 )(C DrA+oC yB+6D 

(A B(cd PI(aC+,yD 
aA+yB 

C D) 61 1  J3C+yD 

So the two matrices will commute if and only if B=C=O and A=D. The bi-

commutant is then ir( 9L )"4(  )j=n w (9,E ) and the set it( (2I) is 

therefore a von Neumann algebra. Now every element of 
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+(91)=it(9I)" orit(2L)=it(91)" has finite trace and is therefore a 

density matrix. Assume that the state over 21 is a 7t+-normal state, i.e., 

there exists a density matrix pt +(9I) such that (A)= Trpir 0 (A) Trp for all 

AE 9t. The element ppeit 0(9t) is a density matrix and 

Tr (pp)ir(A) - Tr (p?p)(ir (1) (A)1r(0+(A)) 

Tr(pp) - Tr(pp) 

2Trpir +(A) 

2Trp 

for all Ae 91. The state 4' is therefore t-normal. In a similar fashion we 

can show that every 7u,+-normal' state is a 7r-normal state so the two 

representations are quasi-equivalent. We could have reached this 

conclusion by observing that the sets it(9t )"=ir +(9I ) and 

(2t)"=ir(2L) are *-isomorphic. 

For completeness we briefly review how this system is treated in 

the Traditional Approach. The Hilbert space corresponding to a single 

spin (s=1\2) system is a two-dimensional complex space, 02. The 

observables of the system correspond to the set of real two by two 

matrices, which are linear transformations on 02. This set is generated 

by the Pauli spin matrices Si, S2, S3 and the identity I (S). If we work in 

a basis that diagonalizes S3 and s2=s+s+s then the Pauli spin 

matrices are the same as the matrices representing the elements crge 91 

in the G.N.S. representation for the states co± (s=±(), etc.). A 
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general element of this set is a real linear combination of the Pauli spin 

matrices, a=x's. 

If we now place the system in a uniform magnetic field in the 3-

direction the Hamiltonian is H=—Bs3 and the canonical density matrix is 
e1  

We will denote the state that p produces (<a>=Tr(ap)) by 
Tr(eP S3) 

the same symbol p. The density matrix p is now an operator on the 

concrete Hubert space D2. Working with the orthonormal basis el ii 
O 

and e2 1 (which are the normalized eigenvectors of S2 and s3) we 

have 

es3=e(oi) 

" 
=coshfBp10 I+sinh B1 ), 

1) (0 

and Tr e13BS32cosh13B 

therefore 1(O1 10'' ) t(iO-1 o r1 I+i P -I 
'  

i+t(io)i—t(oo 
I\Ol) 

(io i The matrix s a projection operator onto the vector el while the 

matrix •00) is a projection operator onto the vector e2. The 

decomposition of p into projection operators allows us to express the 
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expectation value of an operator a=xl-'sRas a linear combination of vector 

states, 

Tr (ap)=(ei,apei) + (e2,ape2) 

1+t 1-t 
(e,ae) +--(e2,ae2). 

It is now easy to see that the state p is pure only in the zero temperature 

case (t=1), in which case it is the vector state (el,ael). 

In the Traditional Approach one is working in the unique 

irreducible representation of the C*aIgebra 91. This is the same 

representation that arises, via the G.N.S. construction, from the pure 

states c±. The mathematical structure of the Traditional and Algebraic 

Approaches is therefore the same in the zero temperature case. For 

finite temperatures the mathematical structure is different for the two 

approaches. In the Traditional Approach one is still working in the same 

irreducible representation. The state p is a linear combination of vector 

states in this representation. In the Algebraic Approach the state p is a 

vector state in a reducible representation. This reducible representation 

is a direct sum of the above irreducible representation with itself. 

Despite the mathematical differences between the two 

approaches they give the same physical predictions (i.e., the expectation 

values of observables and the probability to observe a given eigenvalue 

of an observable are the same). We illustrate this by calculating the 

probability that the value 1 will be obtained when the 3-component of the 
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spin is measured when the system in a finite temperature state. In the 

Traditional Approach the eigenvector of S3 corresponding to the 

elgenvalue 1 is el. The probability of finding the value 1 when 

measuring the 3-component is then the expectation value of the 

projection operator onto el, P el = (00 J' 
Prob(s3=1)=Tr(Pei 1+t el el) + 1— t (e2,Pei e2) 

1-ft 

In the Algebraic Approach the elgenvalue 1 of 1t() is doubly 

degenerate, with corresponding eigenvectors 

and ''2= 

The probability to find the value 1 when measuring the 3-component of 

the spin is then the expectation value of the projection operator onto the 

subspace spanned by kjl1 and 'i', 

(i o o o 
0000 

P{lw2}= 0 0 1 0 

L\ j 

(this corresponds to the direct sum P EDP e1 e1)• We have 
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,P2) o) 

(i 0 0 0 

=(u,0,0,v) 

=u2= 1+t  

2.2 MANY SPIN SYSTEMS 

0000 

0010 
0 

0 

0 0 0 ,,A.vi 

The algebraic description of systems which consist of arrays of 

spins will now be considered. We will begin with a system that contains 

two spins and then generalize first to a finite array of spins, and then to 

an infinite array of spins. 

The first step is to construct the appropriate C*algebra. To each 

spin corresponds a copy of the C*aIgebra 9L. The C*aIgebra 

corresponding to the entire system is the direct product 2I291®9L. A 

general element of 2E2 is of the form A=cVcy®cy. 

Let A=ctPy11®cy and B=31Kcy®cyK, then the following operations 

are defined in 2E 2: 
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i) A+B=(V+ptv)(y®cy, 

ii) AB=cd1v13T1K ®cy,cy, 

iii) A*® v. 

So 21 2 is a *..algebra. To show that 912 is a c*algebra we must 

demonstrate the existence of a C*norm with respect to which 212 is 

complete. To do this we turn to the faithful two-dimensional 

representation ,ir ) of 91 and define the norm of a general 

element of 21 as 

llagvageavll =sup( 11 5 ®O) ;ll2jI=1} (2.20) 

The representation {,m},with .E.S•® Q)• and 

1fJlVai.tøcyv) V (cy)Ø1r(yv)) 

is faithful so we know that (2.20) defines a C*norm for 912. It is also 

possible to show that the sequence {c4"®dv} is Cauchy (with respect 

to the above norm) if and only if the sequences {47} of complex 

numbers are Cauchy for all i,v=0,1 ,2,3. Thus the sequence 

converges to allva1LOav, where LV= lim c4"=&tv. 21 2 is therefore 
fl—oo 

complete with respect to the above norm, and hence 912 is a c*algebra. 

Place the system in a uniform magnetic field in the 3-direction. 

The Hamiltonian H2 and canonical density matrix p2 are then 
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H2=—B (oo cN3+a3(&c 0), 

and 

' Tre(0®33®o) 

- 

Tr[cosh2 Bc 0®cy0+sinh2 Bcy3®cy3+sj nhf3BcoshB(c0®c3+c3(&a0)] 

(coshBao+sinh38cs3)®(coshf3BcY0+sjnhBy3)  

Tr[coshB 0+sinhBc3] Tr[coshJ3B 0+sinhjBcN3] 

=p®p, (2.21) 

where p is the canonical density matrix for the single spin system. p2 

gives rise to the state w2 over 212, 

2 p2J_c LVTr[cyp]Tr[yp] 

_çJLVo)(cyo)(y) 

=a°°+t((t°3+a3°) +t2cL33, t=w(Y3). (2.22) 

We can then write the state co 2 as co 2_ co0 co w h e r e 

co®w(c&LVcy(Dy) cVco(cy)o(cy) We have referred to w2 as a state but 

this really must be shown. We need to demonstrate that w2 is a positive 

linear functional over 9L2 with unit norm. It is obviously a linear functional 
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over 912. The following calculation shows that it is positive. Consider an 

arbitrary element A=aP.V ®c v B"®, where then. 

2(A*A).2(BL* B"(&cYpcYv) 

=w(B BV O)(cYYv) 

=o ([B0* B0+tB0* B3+tB3* B0+B3* B3]+[Bl*Bl +itBl*B2 itB2* B1 +B2* B2]) 

=O)([B0+tB3][B0+tB3}* +( 1—t2) B3* B3 +[B1 +itB2][Bl +itB2]*+(l _t2)B2* B2) 

=w([B0+tB3][B0+tB3]*)+(1_t2) co(B3*B3) 

+co([Bl +itB2][Bl +itB2]*)+(1_t2) co(B2*B2). (2.23) 

Now co is a state over 21 and (1—t2)≥O so each of the above terms is non-

negative; w2 is therefore positive. Since CO2 is positive, its norm is given 

by its value on the identity, IIO)2D=O)2(c 0€a0)=1. So o2 is normalized and 

therefore a state over 9[2 

We now consider the G.N.S. representation of 912 associated with 

the state 02, for different temperatures. Instead of constructing these 

representations from the G.N.S. prescription, as was done in the single 

spin case, we will postulate a cyclic representation that produces the 

correct vector state over 212 and use Theorem 1.27 to conclude that this 

representation is unitarily equivalent to the G.N.S. representation. 

69 



CHAPTER 2 

First consider the case t#1 (i.e., the finite temperature case). The 

representation { ,i®,Q®c} produces the correct vector 

state over 

()(®≤), aVit() 01t0) 

=rJYLVcO(cy&*Tv) 

2(LVcy®) (2.24) 

Since 92o is cyclic for ®cLJI is cyclic for 5oo5 o. So the 

representation is unitarily equivalent to the 

G.N.S. representation {. 2, )2,c2}. This representation is obviously 

reducible, as it is the direct product of two reducible representations. 

For the zero temperature case, t=1, the representation 

is unitarily equivalent to the G.N.S. 

representation {2,it 02,≥ 2) corresponding to the state 
+ + + 

=a00+a03ij-a30+a33. We can use Schur's Lemma to show 

that this representation is irreducible if we can show that an arbitrary 

element AaPV ()Øir(yv) that commutes with all elements of 

is a multiple of the identity 1r(X +(oO)®1r(l)+(YO). We can 

write such an element as A= +(B")®7rO) (crV) (with B"=aJV) . We now 

require A to commute with elements of the form 1r(A1)ø1t(1) ((YO). Since 

the set ir +(9t) is irreducible this is only possible if Bv is a multiple of the 

identity s, B"=ciJ.tVc=3vcyo. This means the coefficients aJ-" must be of 

the form LV PO13V, and A=3V +(Y)®1t(Y). If we also require A to 
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commute with elements of the form irW+(Yo)ø1tO) (A2) we can conclude 

that v=13vo, and therefore A=ir(YO)(9it0) (cY0). This shows that the 

representation is irreducible. 

We now generalize to a system consisting of a finite number of 

spins. Since the spins do not interact with one another, the geometry of 

the system is not important. Denote the spins by the parameter i, whose 

range is Z (=set of integers). The C*algebra corresponding to the spin at 

the site i is a copy of 91, which we will denote by 21j. The C*aIgebra 

corresponding to a finite collection of spins t=[k,k+1 ,...,l-1 ,l} (bk) is then 

91 .® 2L. A general element of 21 is of the form 

k e a k+1 I—k+1=number of sites in . (2.25) I1k J.tk+1 

As in the two-spin case, we define a norm on 21using the faithful 

two- dimensional representation {+ ,it } of 21, 

IIWkJ1k+1 ... tI yk®k+l Øc 1 II 
1.tk .'k+1 III 

suP{IIcd.tiJ1i+i .. kit ( k)®W(Jk )®..it(o') 2jI:2E h1h11)} 

(2.26) 

The representation {.®• , .ø1t (0•) is faithful so that (2.26) is a C*norm 

for 21. In a similar fashion to the two-spin case we may conclude that 

91 is complete with respect to this norm and therefore a C*algebra. 
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If we place this system in a uniform magnetic field in the 3-

direction then a generalization of the arguments used in the two-spin 

case shows that the canonical density matrix for this system is p p, 

where pi is the canonical density matrix for the single spin at the site i. 

This canonical density matrix gives rise to the state (at natural 

temperature 1) o .® coi  where co is the single spin state generated by 

p (at natural temperature is). Again we must show that defines a state 

over 9[. Since cg is linear and o(.(D o)=l we only need to show that 

n 
o is positive. We will prove that the linear functional O)n= ffl1col over 

n 
9t i®1 2Ei is positive for arbitrary n by induction (2EI and COj are copies 

of the single spin algebra and state). For n=1 we are in the single spin 

case and the linear functional is positive. We now prove that it is positive 

for n+1 if it is positive for n by following the method used to show that the 

two spin state CO2 is positive. An arbitrary element of AE 91n+1 can be 

written as AB"®o, with each B"e 21n. As in the two spin case, we can 

show that 

(0n+1 (A*A)wn,1 (B* B"®c1() 

11 
=ci(B'-*  BV )o( tav) 

0)n ([B0+tB3][B0+tB3]*)+(1 t2)con(B3* B3) 

+COn([Bl+tB2][Bl+jtB2]*)+(1 _t2)o)n(B2*B2) 

≥O, (2.27)' 
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where the last inequality follows from the assumption that (On is positive. 

So COn is positive for arbitrary n by induction, and cg is therefore a state 

over 2t. 

The G.N.S. representation corresponding to is unitarily 

equivalent to the representation {.,it,LT≥} with 

. .0 ..,it= .0 it., and .0 •, (2.28) 
IEC I IEC I IE 

where { iti,} is the G.N.S. representation corresponding to the single 

spin state co,. At this point we should mention that the dependence of the 

representation on temperature is still entirely contained in the cyclic 

vector 0. In particular, representations {,itJ corresponding to different 

finite temperatures are still unitarily equivalent. 

We now construct the quasi-local C*aIgebra corresponding to the 

infinite system. Let E denote the set of all finite collections of sites i in 

Z, and equip E with the ordering of set theoretic inclusion. This ordering 

is a partial ordering. Also, for any pair of elements and U  in Z there 

exists a in E such that 1≤3 and 2≤3, so that the set Z is a directed 

set. Now consider the family {9:e} of C*algebras. The elements of 

any pair i U satisfying 1≤2 (with i containing n sites, 2containing m 

sites and n≤m) are of the form 

A1=cd'k'k+1 ... J-tI 0 J1k® t ®...3 with n=l—k+1, 
k+1 

and A2=citpIp+1 ... tq cyP OG p1-i0 a q with rn=q—p+1, q≥I, and p≤k. 
p p+i Itq 

(2.29) 
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Let i2,1 denote the mapping from 2E into 2L defined as 

i2,i(ak'k+1 ... 1 o cy k+1 

k q 
®((Y)®[cxJ.tkI.tk+1 ..4L1 k k+1 ®...c1i1 )](a), 

k J.tk+1 (2.30) 

The mapping i2,1 is a*homomorphism from 21 into 2t2 with the 

properties 

i) i2,11)=12, where 111 and 112 are the identities of and 21 

respectively, 

and ii) i311=i312i211 whenever 1≤ç2≤t3. 

The above mapping shows that the family of C*algebras {2L:} 

satisfies the postulate of isotony and.therefore admit a C*inductive limit 

(see section 1.5). Recall that this is a C*algebra 9100 with identityll°° that 

has the property that for every there exists a *.homomorphjsm i 

from 91E into 91 °° that satisfies 

i) i(11)=1r, where llç is the identity. for 91r3, 

ii) i whenever c2≥c1 

and iii) ui(91) = 9100 , where the bar denotes the uniform closure. 
E Y-

This mapping is given by i(A)E('k c)QA®( i) for all As 21, where iA 

=[k,l]. We will denote this C*inductive limit by i?Z 21 and refer to it as 

the infinite direct product of the C*algebras (2E Z). It is the quasi-

local algebra corresponding to our infinite lattice of spins. An arbitrary 
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element of i?Z 9L 1 can be approximated, in the norm, to any degree by 

linear combinations of elements of the form i?Z A,where A1E 9t and all 

but a finite number of the A are equal to a i (this is the content of 

condition (iii) above). Given an element A of le Z 2I, we define its 

projection onto i(9I.), =[k,l], as the element one obtains by replacing all 

of its components before the kth spot and beyond the Ith spot with the 

identity c, and denote it by P(A). We will refer to the element of 2Ithat 

is mapped, via i, into P(A) as the projection of A onto 9t. This element 

will be denoted by A. 

The canonical equilibrium state for the infinite system of spins will 

now be constructed following the procedure outlined in chapter 1, section 

1.5. Define the subset Zo of Eas :=[—n,—n+1 ,...,O,...,n-1 ,n]}. 

An arbitrary element =[k,k+1 ,...,l] in Z is contained in each for all 

n≥max{kl, lI}. For example, [-9,--8,...,4,5] is contained in each for all 

n≥9. For arbitrary Ae 9L, the canonical equilibrium state co over 9L 

is given by 

(A) 0 q] (A). •n 4i=-n (2.31) 

Let A be an arbitrary element of ieZ 2t and let Adenote its projection 

onto 21r . Note that urn ir(Ar )=A. We then define the equilibrium state 
',fl fl—oo" fl 

o°° for the infinite spin system as 

co°°(A) lim , for all AE . (2.32) 
fl—oo Ez 

In order to demonstrate that this limit is well defined we must show that 

o°° is bounded with unit norm. This follows from the fact that co°°(1I°°)=1 
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where 11°c is the identity for 0 2I. To show this we note that the le Z 

projection of TO onto 91 is the identity 1ç for 91 so that 

Iko00II=(O00C1100)= tim (11) =1. So o°° is normalized to unity. This of 

course implies that ü°° is bounded. Explicitly we have 

Ici00(A)I  
1IolI=Sup .AE?z91i, A#O} Iu 00 (A)I≤IIAII for all Ae ® 91 { II AII iEZ 

We have proven by induction that each e is a positive linear functional 

over 2E for arbitrary n. C000 is therefore a positive linear functional with 

unit norm over iEZ i.e., Cu00 is a state over 9'lez t 

For example, consider the element p(E) in ?2Lt corresponding to 
i Z 

the average energy per site. The projection of p(E) onto 9L Cn  is given by 

n 
p(E)= 2n•1J[(rn(Da-fl0+1(S)c4ØcyflJ 

i=—n 

where co is replaced by in the ith spot. This gives 

co°°(p(E))= lim 
n-300 

= tim 
fl-400 

= tim 
fl-400 

i=—nct•] —2n+1 [crfl®crfl+1 3 01 ®® 

[_2n+ 

lim / B  
= 1 2n+1 t 1 =—Bt =—B tanhfB. 

(2.33) 

(2.34) 
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Note that the expectation value of p(E) in the state Co°° is the same as the 

expectation value of the single spin Hamiltonian in the single spin state 

w. This is to be expected since the spins are non-interacting. 

•We will now construct a cyclic representation {,ir,} of IeZ with 

the property (≤,it(A)c)=o)(A) for all AE j?Z'j This representation will 

therefore be unitarily equivalent to the G.N.S representation 

This representation will be obtained as the infinite direct product of the 

single spin G.N.S. representations. The infinite direct product of a family 

of Hilbert spaces was originally defined by von Neumann [Neumi]. For 

our purposes it is more convenient to follow the definition used in [Emch], 

which can be shown to be equivalent to von Neumann's definition. 

Consider a family of complex vector spaces {V:iZ} (what follows 

is valid for an arbitrary directed index set F). Define the infinite direct 

product 0 V1 in analogy with the finite case. To every family 

{xi: ieZ; xjV} corresponds the element ipzxi in 1 VI, and every element 

of 0 V 1 is a linear combination of such elements. Let 

a={a: iEZ; air= V;a;4O} be an arbitrary family. Consider all vectors 1 Xj of 

that have xj=aj for all but a finite number of iEZ. Then define a 

subspace 1®aVj of 1 Vj that consists of all finite linear combinations of eZ 

these vectors just defined. 

We now consider the case where the vector spaces Vi are 

separable Hilbert spaces Oi . It is not possible to obtain a Hubert space 

from the entire infinite direct product ipz5i. This follows since, by 
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definition, the norm of a Hubert space must be related to the scalar 

product in the usual way. The scalar product between two elements of 

'uis 

( Izxi, izyi )=rj(xi'yi)' 
IEZ 

(2.35) 

and this infinite product may diverge. We can, however, define subsets 

of iZ' that are Hubert spaces. Let a= jai: iEZ; aueSu;llaull=1} be an 

arbitrary family and define the subspace 1 aHj as above. We can define 

a scalar product on aH as 

( & xi Ez , ipzyi ) fJ(x,y). 
iZ 

(2.36) 

Since xi=aj and yj=aj for all but a finite number of ieZ the above is well 

defined (all but a finite number of terms in the product have the value 

one). At this point o'ZaHi is a pre-Hilbert space which we can complete 

with respect to the norm obtained from this scalar product. We will 

denote this Hilbert spade by the ipZa.91. In his original paper von 

Neumann has shown that is a separable Hubert space, i.e., it has a cZ 

countable orthonormal basis. If {4} is an orthonormal basis for 5i , then 

one such basis may be obtained by enumerating the set 

{1 xj:xj=aj for all but a finite number of iEZ and xu=4, for some k, if xu#a}.(2.37) 

Denote the resulting basis by {ej). Each of these basis vectors is of the 

product form as opposed to being a linear combination of such 
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vectors. We will refer to such a basis as a product basis. Note that not 

every basis is a product basis. 

We now return to the quasi-local algebra and consider the state 

o)°°(A)E urn 0 (A = urn [ o](A ), for all AE .® 21. Denote the 
fl-4°°Li=-n fl IEZ t. 

G.N.S. representation corresponding to (j)i by j)i ,cL.} and form the 

Hubert space j? associated with the family 1={ 1:ieZ}. Let 

{ej=jxl} be an orthonormal product basis for oo. For all AE IEZ21I of 

the form i?Z A1, where A1E 91 i and all but a finite number of the A1 are 

equal to we define 

[7roo ( A1)]ej1?z 01(Ai)4 (2.38) 

Because all but a finite number of the A1 are equal to and all but a 

finite number of the xl are equal to all but a finite number of the the 

7t1(Aj)x1 are equal to c. The vector i?Z ic 1(A)x is therefore an element 

®IEZ 92 &. We can therefore extend this mapping by linearity to a 

bounded mapping from ®IEZI into itself by defining 

[oo (? Al)](aj®E zxD]EI:aj[7c 0o( Ai)1(®iz)x]. (2.39) 

j I 

Finally we can extend the definition of this operator by continuity to all of 

iEZ 9[ (and thus obtain a representation it,00 of i?z 21 on O.00 ) as 

follows. Again let A denote the projection of Ae i?Z 2[ onto Cn then 

It.n I (At. ) is a finite linear combination of elements of the form .®EZ I A. where 
'  
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A1E 21 and A1 is equal to ai for all i such that IiI>n. Denote this linear 

combination byYiez A1. We then deflne 

1too (A)E llm[itoo (iC(A))]E liflhE1tw00 ( j? (91 A1)], (2.40) 

for all A€ IEZ i 

The vector ≤ooE i€Z 0 L2 in is obviously cyclic for the 

representation 1too, so that ,ioo ,a.00)} is a cyclic representation 

of i€Z 91,. Again let A denote the projection of Ae 91 onto 

We then have 

[ 0 
4d iEZ 7cwi (Ai) 9200 00 

=19(Q(OiIn(Oi(Ai)K2wi) 

= I I1wi(Ai) 

=con(Ac). (2.41) 

This then gives 
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(oo ,7Coo (A)1oo)= Lm (coo ,7t0oo (iC(A))oo) 
= oo 

Jim wn(ACfl) 

Eco°°(A), (2.42) 

for all AE ieZ 2L. So the representation ( o,7 o,aoo} produces the 

correct vector state over i?Z 2[ and is therefore unitarily equivalent to the 

G.N.S. representation arising from the state co°° over i?Z 9t• 

Finally we show that the representations (S oo ,1t1000 } 

corresponding to different temperatures are unitarily inequivalent. Let 

and be the representations corresponding 

to natural temperature f3i and P2 respectively, with 01002 (we now drop 

the superscript oo from the state o°°). Our problem is this. Fix a basis {ej} 

in For each A€ ? 91 we can determine the matrix elements of 

Col.with respect to the basis {Oj}. Given an orthonormal basis {fj} in 

we can determine the matrix elements of 1r2(A) with respect to the 

basis {f}. In order to demonstrate the unitary inequivalence of the two 

representations we must show that there does not exist a basis {fj} in 

such that these two matrices are identical. 

Let {ej=1 x} be an orthonormal product basis for 5.1 such that 

ei=c2 1. Consider the set of elements {Aj}ej?z 2I of the form 

1 2 i-i i i+1 
A1=o®cj0•• 0 ®cy3®y0 (2.43) 
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The diagonal matrix elements of 7t1(Ai) between the basis element el 

are 

(ei,it 1(Aj)ei)=(c 1. 7t(J)1j (cY 3)c 0)1j) 

(2.44a) 

for all i. The diagonal matrix elements of 11 O01 0 a i  between the 

basis element el is 

(el ,7t()1 (11)ei)=(el,el)=1. (2.44b) 

We now must show that there does not exist a basis {f} of 0)2 such that 

(fj, 2(Ai)fj)=(ei, 1(Ai)ei) and (fJ,7 2ç11)fJ)=(fJ,fJ)=1 for some j and all. To 

show this it is sufficient to show that there does not exist a single 

normalized vector g in 5 such that 

(g , 02(A1))_(ei ,it (A)e1 )=t1, (2.45) 

for all i. One way to convince yourself that this is so will be outlined. 

First, let us choose an orthonormal product basis {hj=z1} for 

Note that for each j, z=c 2i for all but a finite number of i. We will 

first argue that a vector g that satisfies (2.45) cannot be one of the basis 

elements hj and that it cannot be a finite linear combination of the basis 

elements {h}. Finally, we will use these results along with the fact that 
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the set of finite linear combinations of the basis vectors is dense in 

to show that there does not exist a vector g in 5 that satisfies (2.45). 

First assume that g=hj for some j. Then g is of the•form 

where z1=a.2. for all but a finite number of i. Suppose that then 

(g ,2(A)g)=(zi1 ,z )(z,z) ... (4 1 ,z 1 ) (z 2k(Y)4)(zLl ,zLi )... 

=(4(, 1tO)2k(3 i)z ()= O2k ,ThW2k(3)CO2k) 

(2.46) 

which does not agree with (2.45) for i=k. Therefore g cannot be one of 

the basis elements h. 

Now assume that g is a finite linear combination of the basis 

elements {hj=z1}. Since, for each j, z=c 2. for all but a finite number 

of i, such a finite linear combination is of the form 

g=®c ®c 00 O2m O)2m-i-1 CO2m+2 (2.47) 

where E is a finite linear combination of vectors of the form 

x1®x2®•••®x1, where Now for all k>m we have 

(g 

(2.48) 
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which does not agree with (2,27) for i=k (we have used the fact that g is 

normalized). Therefore g cannot be a finite linear combination of the 

basis elements {h}. 

Finally, let us consider the possibility that g is an arbitrary element 

of Since the set of finite linear combinations of the basis vectors is 

dense in 5 0)2 there must exist a sequence (g) of vectors in that 

converges to g in the norm, where each vector gn is a finite linear 

combination of the basis vectors {h}. The convergence of the sequence 

{g} to g implies that we can make 

I(gn,it, 2(Aj)gn)—(g,it 2(Aj)g)I (2.49) 

as small as we want (for all I) by choosing n sufficiently large. The 

argument for finite linear combinations implies that there exists an m 

such that (g fl ,1t 0)2 (Ak)g fl )=t2 for all k>m. Furthermore we have 

(g, 2(Ak)g)=t1 for all k by assumption. So for all k>m we have 

(2.50) 

which contradicts the fact that we can make 

as small as we want by choosing n sufficiently large. Therefore g cannot 

be an arbitrary element of 
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We have now shown that there does not exist a vector ge 2 that 

satisfies (2.45). The representations {,it} and {.2,ir2} are 

therefore unitarily inequivalent. 

The previous result shows that the C*algebra for the infinite spin 

system admits an infinite number of inequivalent representations, which 

are labeled by temperature, a macroscopic parameter. In the finite case 

the cyclic vector in the G.N.S. representation is a finite direct product of 

the cyclic vector for the single-spin system. This cyclic vector generates 

the entire representation space, which is a finite direct product of the 

single-spin representation space. Thus, there is only one G.N.S. 

representation. When we pass to the infinite system, the corresponding 

cyclic vector does not generate the entire infinite direct product space, 

but generates only a subspace, called by von Neumann an incomplete 

direct product space. Representations over different subspaces are 

unitarily inequivalent. 
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INFINITE BOSE GAS 

3.1 THE ALGEBRA OF THE CANONICAL COMMUTATION RELATIONS 

The goal of this section is to construct the C**algebra which is 

appropriate for the description of a system of non-interacting bosons. 

This C*algebra is the O.C.R. (canonical commutation relations) algebra. 

The elements of this algebra will be labeled by the elements of an 

arbitrary vector space. Different vector spaces will correspond to different 

physical systems. We will proceed in three steps. In section 3.la, a set 

of elements which are labeled by the elements of a vector space and 

satisfy the C.C.R.'s will be introduced. These elements will be used to 

construct the C*algebra corresponding to a single point particle in 

section 3.lb. At this point the Weyl form of the C.C.R.'s will be 

introduced. Finally, the C*algebra corresponding to an arbitrary system 

of bosons (finite or infinite) will be constructed in section 3.lc. 

3.la THE CANONICAL COMMUTATION RELATIONS 

We begin by considering the abstract elements V(x) and 1V*(x), 

labeled by a parameter xr= 1133, that satisfy 

and 
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where the commutator [A,B]EAB—BA. These elements will be used to 

construct a general C*algebra, that is appropriate for the description of a 

(finite or infinite) Bose system of point particles. The presence of the 

delta function in (1) implies that these relations are to be interpreted in 

terms of distributions. This motivates the definitions 

If(f)j 1(x) 1V(x)dx, (3.2a) 

and 'V (f)Jf(x)'IJ* (x)dx, (3.2b) 

for suitably vanishing 1(x). The set of functions f(x) will be referred to as 

the space of test functions. It is easy to see that the "smeared" fields V (f) 

and V* (f) satisfy the folloMng commutation relations: 

and 

['qf(f),'V(g)*](f,g); (f,g)f 1(x) g(x)dx, (3.2c) 

[V(f),V(g)]=[1I1(f),\IJ* (g)]=O. (3.2d) 

These commutation relations depend solely on the inner product 

(f,g). We now replace the test functions with vectors in an arbitrary 

Hubert space ., and work with the commutation relations 

(3.3a) 

and lJ(f),'V(g)}=[1I*(f),y* (g)JO, (3.3b) 
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for all f,gE, where <f,g> is the scalar product in 0. This will allow us to 

describe two different "types" of systems, one which contains a fixed finite 

number of particles and one which contains an arbitrary (finite or infinite) 

number of particles. The first case will result when is 03. The second 

case will occur when 5 is the Hilbert space appropriate for the 

description (in the Traditional Approach) of a single particle of the system 

(see [Emch] section 3.1.c). We will justify the above interpretations by 

examining two familiar representations of the C.C.R. algebra, the 

Schrodinger and Fock representations. We will find that the one-

dimensional Schrodinger representation is a representation of the C.C.R. 

algebra corresponding to =C, and the Fock representation is a 

representation of the C.C.R. algebra corresponding to the case when 5 

is the Hubert space appropriate for the description of a single particle of 

the system. 

It is often convenient to work with the elements 

and 
= 0 'Y(f)111*(f) 

(3.4a) 

(3.4b) 

that satisfy [4(f) ,ir(g)J=iRe[4,g>], (3.5a) 

and [4(f), (g)]=[it(f) ,it(g)]=ilm[<f,g>], (3.5b) 
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One is more accustomed to the commutation relations [4(f),it(g)]=i<f,g>, 

and [(f),(g)]= [it(f),ic(g)]O , which are the same as (3.5) when S is a real 

Hubert space. Since this restriction seems unnecessary, we will assume 

that 0 is complex and work with the commutation relations in (3.5). Note 

that if the set {h} is an orthonormal basis for 0, and we define pit(h1), 

qj4(hj), we recover the familiar canonical commutation relations 

and 

[qj ,pk]=i6j,k, 

[qj ,qid=[pj pt1=O 

3.lb SINGLE PARTICLE IN ONE DIMENSION 

j,k=1 ,2,3,... 

(3.6a) 

(3.6b) 

We will begin by discussing the algebraic description of a single 

point particle. Although this case is interesting in itself, it will turn out to 

be needed also in constructing the very important Fock representation of 

•a general C*algebra. This representation will be constructed from a 

representation of the C*aIgebra corresponding to a single particle in 

one dimension. The C*algebra corresponding to a point particle in one 

dimension is constructed from the commutation relations (3.6) with 

j=k=1 (i.e., when =I). The number 1 forms a basis for C, so we have 

two elements, q=4(1) and p=it(1)4(i), that satisfy 

[q,p]=i. (3.7) 
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We initially consider the algebra 21 consisting of all polynomials in 

p and q with complex coefficients. Using (3.6) it is clear that 21 is simply 

given by 

KM 
21=(A= aflpnqm:aflE D}. 

n,m=O 

We note that the number 1 is an identity for 91. Furthermore, 

(N,M N,M 
I a11 pnqm D nMqmpn 

n,m=O 

(3.8) 

(3.9) 

defines an involution on 91, so that 91 is a *-algebra. This algebra, 

however, does not admit a *..norm. 

Theorem 3.10 If two elements p andq of an algebra satisfy the relation 

(3.6) then the spectrum of at least one of the two elements p and q is 

necessarily unbounded. 

Proof: The proof is the same as in the case when p and q are 

operators on a Hilbert space (see, for example, [Put] page 2). The proof 

is by contradiction. Assume that the spectra of both p and q are 

bounded, and hence the spectrum of pq is bounded. We may assume, 

without loss of generality, that q is invertible . If q is not invertible we can 

define q'= -X ([q',q]=[p,q]), for some A. (q). Since q has a bounded 
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spectrum, such a 7 must exist. Since q is invertible, qp—X=q[pq—A.]q-1, 

which implies c(qp)=(pq). Consider the following. 

pq-p=(qp-i)-R 

=qp—(j.t+i). 

This shows that Iir= a(n(f)•(f)) implies (L+i)e (f)it(f))=(it(f)4(f)). This 

then implies that (t+in)e c(qp)=a(pq) for arbitrary n≥0, and hence c(pq) is 

unbounded, which is a contradiction. This completes the proof. 

Theorem 3.10 allows us to conclude that it is not possible to define 

a C*norm for 2E, for we know that such a norm is related to the spectrum 

through the spectral radius, which does not exist for an element whose 

spectrum is unbounded. To avoid these problems we define 

and 

U(t)Ee itq, 

V(s)eiSP, 

where t and s are arbitrary real numbers. By explicitly writing out the 

power series in (3.11) and using the commutation relations (3.7) it is 

possible to show that 
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U(ti )U(t2)=U(tj +t2), 

V(si )V(s2)=V(sl +s2), 

U(t)V(s)=eftsV(s) U(t). 

(3.12a) 

(3.12b) 

(3.12c) 

This form of the canonical commutation relations is known as the Weyl 

form. We now consider the algebra 91 consisting of all finite polynomials 

in U(t) and V(s) with complex coefficients. Using (3.12) we see that 91 is 

simply given by 

N.M 

91={A= xrimU(tn)V(sm 
n,m=O 

An involution of 21 is defined as 

(N.M 

cxnmU(tn)V(sm) 
nm=O j 

nmE (D;tn,sm ER]. (3.13) 

IanmV(—SM)U(—tn)-
n,m=o 

(3.14) 

'it is easy to verify that (3.14) defines an involution of 91, so that 21 is a 

*..algebra. We note that U(t)U(t)*=U(t)*U(t)=1 and V(s)V(s)*=V(s)*V(s)=1, 

which imply that U(t) and V(s) are unitary for all t,s. 

A faithful representation {-h,1th} for A, the harmonic oscillator or 

Schrodinger representationi is described in Appendix A. Apart from the 

language in which this representation is described here, the 

92 



INFINITE BOSE GAS 

representation is well known from all quantum mechanics texts. For all 

Ae 91 we define 

hAil = sup{hlmh(A)hI  
- hlqil . 

(3.15) 

Since {.h,7th} is a faithful representation of 21, (3.15) defines a C*norm 

for 21.. We can then complete 91 with respect to the uniform topology 

defined by this norm. We denote the resulting C*algebra by 91(D), and 

refer to it as the C*algebra of the C.C.R.'s for a single degree of freedom. 

The vector 10>, see Appendix A, is cyclic for the set {1th(a*),1h(a)}, 

'and therefore for the set {1t(q),t(p)}. Since any element of this set may 

be approximated to any degree by elements of lth(91(cD)), the vector 10> is 

cyclic for lrh(91(C)), i.e., the representation {h,1rh,lO>} is: cyclic. This 

representation is also irreducible. To show this, assume that there exists 

a bounded linear operator M on Oh that commutes with every element of 

1th(9I()). Such an element must commute with lth(a*) and mh(a) (on 

D(N1/2). The matrix elements of M, with respect to the basis In>, are 

i(a)fl ir(a*)m 
(<ml)(MIn>)=<01 10> 

it(a)  lt(a*)m 
=<OIM : 10> 

R(a)n lt(a*)m 
 MI0>nm<0lMl0>, (3.16) 
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where the last equality follows from (A.9). This implies that M is a 

multiple of the identity, and hence the representation {H,it} is irreducible, 

by Schur's lemma. 

In Appendix A we have shown that the harmonic oscillator or 

Schrodinger representation is a faithful representation of the C.C.R. 

algebra 91(0). It is a well known result that it is the unique, up to unitary 

equivalence, faithful representation of 21((D) (this result is originally due 

to von Neumann [Neum2]). Since the Schrodinger representation is the 

representation that one uses for the description of a single particle in the 

Traditional Approach, our assumption that the O.C.R. algebra 91(G) is the 

C*algebra corresponding to a single point particle in one dimension 

seems reasonable. 

3.lc ARBITRARY BOSE SYSTEM 

The C.C.R. algebra 91(G) developed in the last section 

corresponds to a system consisting of a single particle in one dimension. 

We now repeat the construction carried out in 3.1.b for an arbitrary Hilbert 

space . This C*algeba will correspond to a system of particles whose 

single particle Hubert space (in the Traditional Approach) is 5 . Fix an 

orthonormal basis {h} in .5 and consider the algebra 21(5) generated by 
the (f) and ic(g). The elements in (3.3) satisfy, for a43e C and f=ahj, 

(3.17 a) 
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and (3.17b) 

i.e., N1 and N" are antilinear and linear in the smeared functions, 

respectively. However, the linear combinations (3.4), J and it, are neither 

linear nor antilinear. We can only go as far as 

(3.17c) 

it(f)=it(a1hj)it(aihj) (3.1 7d) 
I i 

The following relations are also useful. 

4f)=Re(c(f)+Im(a)4(if) 

=Re((x)4(f)+Im(a)it(f), (3.18a) 

and it(af)=Re(c)it(f)+Im(a)(—f). (3.18b) 

As in the case of a single degree of freedom, the spectrum of at 

least one of (f) and it(g) must be unbounded, so we define 

95 



and 

CHAPTER 3 

U(f)ei4(O, (3.19a) 

V(g)e i1t(g)=U(ig). (3.19b) 

As before we construct a C*algebra from the elements U(f) and 

V(g). Using the commutation relations (3.5) along with (3.18) and the 

relation eAB=eA--B e[A,B]12 ([A,B]=complex number), we can easily 

deduce the following. 

and 

U (fi )U(f2)=U(fl +f2)e tm1<t1.f2>1, (3.20a) 

V(g i)V(g2)=V(g 1+g2)e m[<1 g2>J (3.20b) 

U (f)V(g)=V(g)U(f)e-iR0(t9). (3.20c) 

We can summarize these relations by introducing the element W(f), 

W(f)=-U(f) and W(if)U(if)=V(f), that satisfies 

W(f)W(g)=W(f+g)e lm[<>], 

=W(g)W(f)eIm[<>]. 

The algebra 21) is then given by 

(3.21) 
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N 
2.t()={A=aW(fj):aj€ 0, fie 51 

i=1 
(3.22) 

From (3.22) we see that W(0)=l is an identity for 2t(). An 

involution of 91(5) is defined as 

N I N 
A*=[aiW(fj)]* (3.23) 

It is easy to verify that (3.23) defines an involution of 2I). We have to 
N 

show that (3.23) satisfies the following (Definition 1.3) with A=a1W(f) 
W 

M 
and B=iW(g): 

J=1 

i) (A*)*=A; this follows immediately from (3.23), 

4i,J=i 

N,M 
ii) (AB)*=B*A*; (AB)* a13iW(fj)W(gj) 

=Y4UipJW(fj+gj)e:z!'m1<fi,9J>I] * 

_i,j=1 

N,M 

c3J w(_fjgj)2im[<i1f>] 

i,J=1 

N 

(9j) 
i=1 
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iii) (aA+B)*=A*.i.B*; this follows immediately from 

(3.23). 

So (3.22) does define an involution of 9I(), and 9I() is therefore a 

algebra. 

To define a norm for 21 (.) we first construct a faithful 

representation of the so-called Fock representation. The first step 

is the definition of the representation space 15F. The definition uses the 

representation {h,1th,'PolO>} developed for the case of a single degree 

of freedom. Let {hj} be a basis for . With each hi, associate a copy of 

the representation {h,1th,'I'o} denoted {hi,7thi,'J'oi}. The representation 

space OF is then defined to be the Hubert space 5F= Oi ''5hi associated 

with the family 'P={'f'0j} (see page 71). The set 

00 {ln1,n2,...,nj .... >ln1>®ln2>(D ...ølnI>Ø... :nj<oo} (3.24) 

co 
forms an orthonormal basis for OF. Note that the condition I nj<oo 

implies that nj=O for all but a finite number of the i's (i.e., each basis 

vector is an element of the family 'i'). Using this basis, 5F may be 

expressed as 
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00 00 

a(n1,n2 .... )In1,n2 .... >:a(n1,n2,...)E; Ia(n1,n2,...)I2<oo. 
fli,fl2,...=O 

(3.25) 

For W(h) and at=a1+ibt, ai and bt real, define 

lt(W(aihj))FE 1 ®1 ®...®itj(U(a1)V(bt))01 0.... (3.26) 

For arbitrary fE., with we then have 
I I 

7rF(W(f))=1tF(W(aihi))=mF(fJW((xihi) 
I I 

JIJ7tF(W(a1hi)) 
I 

=it (U(a1)V(b1))01t2(U(a2)V(b2))0...Oltj(U(a')V(bi))O... .(3.27) 

It is easy to verify that the pair {F,1tF} form a faithful representation of 

2L(.), the Fock representation, and that the representatives 7tF(W(f)) are 

-unitary operators on 15 F. Furthermore, since the lrhj(U(a1)V(b1)) are 

irreducible in hi, the set 1tF(9t) is irreducible on F. This implies that 

the vector '1'Fo'o1®'1o2®... is cyclic for U(21), which is to be expected 

since the 'Pj is cyclic for 1rhj(U(a)V(b)). The definition 

IIAII su{" ' '" :'I'E F;'P•o} 
- 11T11 

(3.28) 
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is then a C*norm for 91(53). Completing 2L (5) with respect to the 

uniform topology defined by this norm makes 91(53) a C*algebra, which 

we will denote by the same symbol. We will refer to this C*algebra as 

the C.C.R. algebra, relative to the Hilbert space 53. 

3.2 STATES AND REPRESENTATIONS OF THE C.C.R. ALGEBRA 

We initially attempted to construct a C*algebra from the elements 

(f) and it(g)=4(ig). Since it was not possible to define a C*norm for 

these elements, we introduced the elements W(f)=ei(t) and used them to 

construct a C*.algebra, the C.C.R. algebra. The elements 4(f) and n(g) 

are formally given by 

and 

It=o - iim(W(kf)—W(0)) 
I k-40 

(3.29) 

(g)_:_(W(itg))J=i irr(W(ikg)—W(0)), (3.30) 

but are not elements of the C.C.R. algebra. It is possible for one of them 

to have a finite norm and be an element of the C.C.R. algebra, but it is not 

possible for both to have a finite norm. 

Although it is not possible for the C.C.R. algebra to contain both 

the elements 4(f) and it(g) (Theorem 3.10), there might exist a set of 
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unbounded linear operators on the Hubert space of a representation of 

the C.C.R. algebra that forms a representation of the 4(f) and it(g). 

Representations of these elements in a representation of the C.C.R. 

algebra are of physical; interest because with them one can form a 

number operator ( or a density operator in the infinite case). For 

example, consider the Fock representation (SF,7tF} of 9(5), and the 

operator 1tF(W(hi)), where {h1} is an orthonormal basis for 5. From (3.26) 

we have, for real k, 

7tF(W(khj)) 101® ... ®lti(U(k))®lØ... 

=1 01 0...®jtj(e1kq)®i 0...,. (3.31) 

so that 7tF(c1(hi)) E-1- T0R (ICF(W(khi))-EF(W(0))) 

1010 ... 0it(q)010... (3.32a) 

In a similar fashion, we have 

1tF(1t(hi)) 101 0...0ir(p)01 0.... (3.32b) 

The operators irj(p) and lrj(q) are copies of the representatives of the 

elements p and q in the harmonic oscillator representation developed in 

Appendix A. We use these to define 

_7tF((hj))+i1tF(1t(hI))  
ICF(W(hi))- .'& (3.33a) 
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1tF(1V 
N/i 

and, for arbitrary fE, with 
I 

and 

(3.33b) 

1tF(W (f)) j 1tF('V (hi)), (3.33c) 

1tF(W (f)*)=iF(1lf (h)*), (3.33d) 

with domains to be described. The action of the 1tF('I' (hi)) and ICF(Nf(hl)*) 

on the basis vectors {ln1,n2,...,nj,...>ln1>®ln2>® ... Ølnj>®... :Znj<oo} is 

and 

7tF(W(hj))Ifl1,fl2,...,flj,...>\JJfl1,fl2,...,flj-1 .... >, (3.34a) 

1tF(NJ*(hi))In1,n2,...,ni .... >\Ini+1In1,n2,...,ni+1 .... ). (3.34b) 

If we interpret the basis vectors in the usual manner, where 

In1,n2,..,ni,...> corresponds to the state in which there are nj particles in 

the state h, then 1tF(w*(hi)) and 1tF(W(hi)) create and destroy a particle in 

the state h, respectively. The domains of 1(qJ(f)*) and 1tF('V(f)) are 
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D(tF(W(f)* ))={'PE H F:II1rF(V(f)*)}ikoo} 

= cc(n1,n2 .... )Inl,n2 .... >: ' Ia(n1,n2 .... )aj'Ini+1I2< 
fll,fl2 .... 0 -'--I 

fli,fl2 .... =O 

and D(1tF('If(f)))={'f'E HF:II7rF(1V(f))'Pkoo} 

00 
00 

T= o(n1,n2 .... )Ini,n2 .... >: 
fll,fl2 .... 0 I 

fli ,fl2,...=0 

,(3.35a) 

(3.35b) 

These domains may be different for different functions f. For example, 

D(tF('If(hj)))#D(7cF('If(hJ))) for i#j. To see this, note that the vector 

00 

1 

ni=1 

is in D(1tF(W(hj))), but not in D(1tF(NJ(hf))). This motivates us to determine 

the common domain of definition of the annihilation and creation 

operators. Consider the number operator 

N1tF(\V(hi)*)1tF(\IJ(hi)). (3.36) 

For arbitrary 'i'E HF we have 

00 

N'f'=N a(n1,n2,...)In1,n2 .... >, 
fll,fl2 .... 0 

(3.37) 
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so that the domain D(N) of N is 

00 00 

i a(n1,n2,...)In1,n2 .... >: I I(x(nl,n2 .... )j njj2<oo 
fli,n21...=O j 

and the domain D(N 112) of N112 is 

00 
00 

• D(N 1/2)= '11= a(n1,n2 .... )In1,n2 .... >: 
fll,fl2,•.• 0 ____ 

fli,fl2,...0 

,(3.38a) 

.(3.38b) 

The common domain of definition of the set 

and therefore of the set {1F(4(f)),1tF(1t(g)):f,g.J, contains D(Nl/2). Since 

D(Nl/2) contains all finite linear combinations of the basis vectors, it is 

dense in HF. On this common, dense domain of definition, the 7tF(c(f)) 

and 1rF(lt(g)) satisfy 

and 

[1tF((f)) ,1tF(lt(g))] W=i Re[4,g>]W, (3.39a) 

[mF(4(f)),1rF((g))]'Pi Im[<f,g>]'I', (3.39b) 

[ICF(lt(f)) ,1tF(lt(g))]'P=ilm[<f,g>]'P, (3.39c) 
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i.e., they form a representation of the 4(f) and 7t(g). Furthermore, ICF(W(f)*) 

is the Hermitian adjoint of 7tF(V(f)) , and the 1rF(4(f)) and 1tF(lt(g)) are 

therefore self-adjoint. 

The previous discussion shows that in the Fock representation 

there exist densely defined, self-adjoint operators that form a 

representation of the (f) and it(g). The following version of Stone's 

Theorem ([Riesz] page 385) allows us to formulate conditions that an 

arbitrary representation must satisfy in order to have this property. 

Theorem 3.40 (Stone's Theorem) Every weakly continuous 1-parameter 

group of unitary transformations {Ut} on a Hubert space 5 is generated 

by an infinitesimal transformation A. A is a densely defined, self-adjoint 

transformation, which in general is not bounded, and which satisfies 

Ut=eitA, A=- lim 
I k—o 

note: the unitary transformations Ut are weakly or strongly continuous in 

the real parameter t if the sequence NO converges weakly or strongly, 

respectively, to Ut whenever tn converges to t. See Definition 1.31 for a 

definition of weak and strong continuity. 

Now, in an arbitrary representation {H,m} of the C.C.R. algebra 

9t(), it(W(f)) is a unitary operator on H. The set (m(W(tf)); t€ FR} is 

therefore a 1-parameter group of unitary transformations, for each fixed f. 

If we require the operators ir(W(tf)) to be weakly continuous in the real 
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parameter t, for all f, then Theorem 3.40 implies that there exist densely 

defined, self-adjoint transformations it((f)) that satisfy 

7t(W(tf))=eftlt(4(f)), (3.41 a) 

and it((f))4 im(it(W(kf))—it(W(0))). (3.41b) 

With it(it(g))it((ig)), it is easy to verify (using the commutation relations 

(3.21) of the W(f)) that the it(4(f)) and it(it(g)) satisfy the commutation 

relations (3.5), i.e., they form a representation of the (f) and ir(g). The 

condition we seek is that the unitary operators t(W(tf)) be weakly 

continuous in the real parameter t. Since weak and strong continuity 

coincide for unitary operators we make the following definition. 

Definition 3.42 A representation {Hat} of the C.C.R. algebra L() with the 

property that the unitary operators ic(W(tf)) are strongly continuous in the 

real parameter t, for fixed fEd, is said to be a regular representation. 

Thus, a regular representation of A(h) allows for a representation 

of the operators f(f) and p(f) and for the existence of a number or density 

operator. 

One of the reasons a relatively simple discussion of spin systems 

was possible in Chapter 2 was the simple characterization of a state in 

Proposition 2.12. An arbitrary state Co over the C.C.R. algebra 2t() is 

determined by its values on the W(f). We will denote these values by 
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E((f)o)(W(f)). E(f) is a functional on the set of vectors {f:feS}. The 

following conditions characterize functionals E(f) that define a state over 

91(3). 

Proposition 3.43 A functional E(f) defined for all fE that satisfies 

i) E(0)=1, 

ii) E0(f) =E(—f), 

;fi>)]E(rj—fi)≥o 
ij 

for all {f}e. and {a1}G, i=1,2,...,n, 

and is continuous defines a state over the C.C.R. algebra 9I(). This 

state is obtained by defining 

(3.43a) 

and then extending this definition to all of 91(.S)by linearity. 

Proof: First note that it is possible to extend (3.43a) to all of 2E(,5) since 

E(f) is continuous.By definition, w is a linear functional over 

Condition i) guarantees that ü is normalized, condition ii) guarantees 

that the o is real and condition iii) guarantees that w is positive. 
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Araki and Woods constructed representations of the O.C.R. 

algebra which they claimed were appropriate for the description of the 

infinite Bose gas ([Arak]). They worked solely with functionals over the 

algebra, and never introduced the concept of a state. They give the 

conditions of Proposition 3.43 as being necessary and sufficient for a 

functional to define a cyclic representation of the C.C.R. algebra. By 

dealing with states we obtain a simple proof of this claim (just use 

Proposition 3.43 and the G.N.S. construction) along with a physical 

interpretation of these conditions. Note that Araki and Woods actually 

dealt with the case when $ is a pre-Hilbert space Sand so did not require 

the functional to be continuous. They showed that it is possible to extend 

(in the strong' operator topology) a representation of 91 ()to a 

representation of (i), where 51 is a subset of the completion of 

.5. This subset contains all vectors fE 5 for which there exists a 

sequence {fn}E 0  such that lim Eo(frrfm)O. If E(f) is continuous 

then 51=0 . Since the functionals that we shall postulate are 

continuous our methods and results are the same as Araki and Woods. 

We extend the algebra to the completed Hubert space S and work with 

a C*algebra while they extend the representations of the algebra to the 

completed Hubert space J5 and never use the concept of a C*algebra. 

We should also note that the inequality of two functionals implies that the 

corresponding cyclic G.N.S. representations are unitarily inequivalent. It 

does not imply that the corresponding G.N.S. representations are 

unitarily inequivalent. For example, consider a representation {,7r} and 

two cyclic vectors 'i'i,'I'2E. The cyclic representations {,1E,i'1) and 

{ ,ir,'P2} are the cyclic G.N.S. representations corresponding to the 

functionals E1(f)=('Fj ,it(W(f))'1) and E2(f)=('}'2,it(W(f))'P2). In general 
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Ei(f);&E2(f), but {5 ,n) is the G.N.S. representation corresponding to both 

functionals. At the end of this chapter a proof will be suggested to show 

that the G.N.S. representations corresponding to states of an infinite 

Bose gas with different densities are unitarily inequivalent. this claim 

goes beyond the statement that the corresponding cyclic representations 

are unitarily inequivalent. 

A state co over 9I() is said to be regular if the corresponding 

G.N.S. representation { ,it 1,≤} is regular (see [Brat2] section 5.2.3. for 

a discussion of regular states). It is possible to formulate a condition on 

the functional E(f) in order for the state Co to be regular. In the 

representation { r(1),Q (1 } one has 

II (1 (W(tf))_1)it(W(g))c1,lI2=2.e-lt Im<fg>co(W(tf))_eIt Im<fg>co(W(_tf)) 

=2_e-ft lm<f,g> E(tf)-o Im<f,g> Eco(-tf) . (3.44) 

This leads to the following Proposition. 

Proposition 3.45 A state co over the C.C.R. algebra 9I() is regular if and 

only if E(tf)=co(W(tf)) is continuous in the real parameter t, for all fe.. 

Proof: The proof follows immediately from (3.44). 

For example, consider the Fock representation {HF,1tF,1PFO}. We 

can use the cyclic vector 'P Fo to define the vector state 

4Fo(A)=('PFo,mF(A)'PFo), which we refer to as the Fock ground state. The 
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Fock representation is unitarily equivalent to the G.N.S. representation 

corresponding to the Fock ground state 4Fo. The linear functional 

EFo(f)=Fo(W(f)) is calculated as follows. It is possible to show that (see 

equation (4.6c) in the fourth section of this chapter) 

so that 

W(f) F=e If 11/4 exp[=Nf(f)] exp[=lI1(f)F], 

E Fo(f)=e11 H /4('i'Fo exP[j=NJ(f)] exp[NJ(f)F1'PFo) 

=e-Ilf 112/4. (3.46) 

It is obvious that EFO(tf) is continuous in the real parameter t, for each 

fixed fe. This.implies that the Fock ground state 40 is a regular state, 

and hence the Fock representation is a regular representation. This, of 

course, is the reason why we were able to recover the infinitesimal 

generators 1tF((f)) of the unitary operators 1rF(W(f)) in the Fock 

representation (Stones Theorem 3.40 guarantees that these infinitesimal 

generators exist). 

When 5 is the Hilbert space appropriate for the description of a 

single point particle, the C.C.R. algebra 2L() corresponds to a system 

containing an arbitrary, finite or infinite, number of these point particles. 

The number of particles in the system depends upon the state the system 

is in. Different representations will then correspond to different particle 

numbers. For example, every state that is a vector state in the Fock 
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representation is a finite particle state. To see this, let 'V be an arbitrary 

vector in the densely defined domain of the number operator N on 

(see (3.36)). The expectation value ('i1,N'P)=(Nl/2'V,Nl/2 p) of the 

number operator gives the average number of particles in the state T. 

Equation (3.38) guarantees that this number is finite. 

3.3 QUASI-LOCAL C.C.R. ALGEBRAS 

We now analyze the quasi-local structure of the O.C.R. algebra 

9(,9 ) over the Hubert space = 2(IR3 ). This is the O.C.R. algebra 

corresponding to an infinitely extended system of bosons. We will 

denote it by 9t3. For an arbitrary bounded region Z in FR3, denote the 

subspace of . formed by the functions whose support is in Z by Hz, and 

the corresponding O.C.R. algebra 9t(H) by 91z• The collection Z of all 

finite regions Z, ordered by inclusion, is a directed set. If Z1≤Z2, then an 

arbitrary element fi e HZ, is an element of Hz2, and we can construct the 

following mapping i2,j from tz1 into 9t z2. For arbitrary W1(fl)r= 2E ZI 

define 

i2,1(W1(f1))W2(f1). (3.47) 

• This mapping may be extended to all of 91z1• The resulting mapping is a 

&.homomorphjsm from 9L z1 into 91z2 that satisfies 

i) 12,1 01102, where 111=W1 (0) and 112=W2(0), 
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ii) 13,212,1=13,1 whenever Z1≤Z2≤Z3. 

The family of C*algebras {91:Z€ FR3) satisfies the postulate of isotony 

(see pg. 25), and therefore admits a C*inductive limit 21. Recall that this 

is a C*algebra with identity I that has the property that for every Ze L 

there exists a *..homomorphjsm iz from 91z into 91 that satisfies 

I)i(1)=1, where lz is the identity for 21z 

ii) 1z2(91Z2)1z1(91Zj)' whenever Z2Zi, 

and iii) zLiz(91Z) =91, where the bar denotes the uniform 

closure. 

Any element of 5 may be approximated to any degree by 

functions with bounded support. This result suggests that 5= )rj Hz 

Hence this C*inductive limit is equal to 21 R3 so that the set 

{91R3;21z,ZEE} is a quasi-local algebra (see section 1.5). Since every 

element of 91z1 is also an element of 91FR, the *..homomorphjsm iz from 

21z into 91 FR is simply given by iz(A)=A for all AE 21 z. 

Let co be a regular state over the quasi-local algebra 

{91R; 91 Z,ZE E} and (S the corresponding G.N.S. 

representation. Let {h} be an orthonormal basis for Hz. We formally 

define an operator Nz for the region Z as 
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Nz=-jn.(V*(hj)V(hj)). (3.48) 

If this operator exists we interpret it as the number operator for the region 

Z. Although we are not guaranteed that Nz exists, we expect that it will for 

states which correspond to an infinite system with finite density (see 

[Brat2] section 5.2.3). If a density operator exists in 2EfR3 it will be given 

by 

pop= lim Nz TT, 
z-,R 3 vz 

where VZ is the volume of the region Z. 

3.4 THE INFINITE FREE BOSE GAS 

(3.49) 

In this section we examine the algebraic description of an infinite 

Bose gas of finite density, when all particles are in the zero momentum 

state. The C*algebra corresponding to this system is the quasi-local 

algebra {tn13;9Lz,ZE≥}. The state cop corresponding to a given density p 

of particles in the zero momentum state will be constructed in terms of its 

generating functional E(f), following the methods of Araki and Woods 

([Arak]). The generating functional E(f) will be dependent on the density 

p. This causes Araki and Woods to conclude that different densities give• 

rise to unitarily inequivalent representations. From the discussion 

following Proposition 3.43 we know that this conclusion is not necessarily 

true, so we will explicitly show that different densities give rise to unitarily 
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inequivalent representations. We will also find (following Araki and 

Woods) that the G.N.S representation corresponding to a fixed density is 

reducible, and express the representation as a direct integral of unitarily 

inequivalent irreducible representations. This shows, among other 

things, that the C.C.R. algebra 21(0) admits an infinite number of 

unitarily inequivalent irreducible representations. 

Let AL denote the cube in FR3 centered on the origin with sides of 

length L (and volume L3). The restriction ErestL(f) of E(f) to the local 

algebra 9I A L is obtained by restricting the functions f to the set of 

functions whose support lies in AL, i.e., we define 

ErestL(f)EEp(f) for all f(x) with Supp(f) in AL. (3.50) 

The generating functional Ep is then given by E(f)=im ErestL(f)(fAL), 

where fAL is the restriction of f to the region AL, 

fAL(X)={ 0 jfXAL 
f(x) ifxeAL 

(3.51) 

To determine Ep we could postulate a form for EL and then use 

E(f)=im ErostL(f)(fAL). The problem with this, of course, is how doesVL 

one determine ErestL(f) without knowing Ep. For this reason we will follow 

Araki and Woods and postulate that the functional E is the limit of the 

functionals EL that describe a system of N bosons in the box AL such that 

=p, where VL is the volume of AL. Note that the description of a gas in 
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a finite box is not the same as the description of a finite portion of an 

infinite gas; after EP has been calculated we will find that EreStLo-EL.'. 

Consider N particles in the box AL Let all particles be in the zero 

momentum state and let the system have a mean particle density p=VL  

where VL is the volume of AL. In section 3.2, equation (3.46), we 

calculated the Fock space functional EFO(f). It corresponds to the no 

particle case (zero density). Now we are interested in calculating the 

functional EL(f) which corresponds to the N-particle case, although we 

are taking the special case when all particles have zero momentum. To 

calculate EL(f) we use the Fock representation {F,1tF,Fo} of the local 

algebra 9L AL. To simplify notation we will denote the element 1tF(A) by 

AF. For example 1rF(W(f))=W(f)F and 1tCq1(f)*)=(f). The functional EL(f) 

is the given by 

EL(f)co(W(f))=(c≥N ,W(f)FcN), (3.52) 

where ON is the vector in the Fock representation corresponding to the 

state which contains N=pL3=pV particles in the zero momentum state in 

AL. This vector is given by 

where 

2N(N !)_l/2(V(fv))NcFO, 

fv(x)_V_h/2_' 1'2 x€ AL, (hi NI 

(3.53a) 

(3.53b) 
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i.e., we create N particles in the state fv, which is the zero momentum 

state for a single particle in a box of volume V. This gives 

EL(f)=( N !)1 ( V(fv))N)Fo , W(f) F(V(fV))NFo). (3.54) 

To evaluate (3.54) we need the following results. 

I1J(f)*)FoII2 IIfll2NN I, (3.55a) 

exp[Nf(f)F] (3.55b) 

and W(f)F=EF0(f) exp[=W(f)1 exp[='V(f)F], (3.55c) 

where EFo(f)=exp[_lIflI2] is the generating functional for the Fock ground 

state, (3.46). To show (3.55a), we note that the commutation relations 

[1Jf(f)F,lJ(f)']llfII2 imply 

[(11(f) F,(W(f )'i=N ll fII2(lIJ(f))N-1. (3.56) 

Using this along with the result that V(f)FFo=O we obtain the following 

(W(f) F)N(W(f)) 2Fo (W(f) F)1 {(IJ(f )*) NW(f) F+N hf hI2(hlJ(f))i }Fo 

=N hf 112('V(f) F) 1 (N'(f)) N—i Fo. 

Repeated application of (3.57) gives 

(3.57) 
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(NJ(f)F)N(v(f))NFo=N Illfll2Nc≥Fo. 

Using (3.58) we have 

II (1lJ(f))NcFOII2=((NJ(f))NcFO (v(f))NcFO) 

=(c 0, (w(f)F)N('w(f))Nc2FO) 

=N!llfll 

(3.58) 

(3.55a) 

(3.55b) follows from the commutation relations of the V(f) and W(f)F and 

the relation eABNe-A [eABe_A]N[B+[A,B]]N, valid when [A,B] is a 

constant. (3.55c) follows from the relation eA+B=9 112[A,BJeA eB and the 

commutation relations of the V(f) and V(f)F, 

W(f)F=exp[k(f) FJ=exp[V(f)+'V(f)F] 

=exp [-rvw,'vo F]] exp['V(f)] exp[jv(f) F] 

=exp[-lI f 112] exp[='IJ(f)] exp[=NJ(f) F]. 

We can now evaluate (3.54). 

(3.55c) 
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EL(f) (N 1)-i ( V(fV))Fo , W(f) F(1V(fV)) N(Fo) 

(using (3.55c)) 

E Fo (f) (N 1)_i ((w(fv))Fo , exp[j='f(f)] ex-2 F p[V(f)F](\V(fV))NcFO) 

=EFo (f) (N !) 1 (exp[=lV(_f)F] (W'(fv))) NFO exp[=V(f)F](W(fv))NcFO), 

(3.59) 

where the last equality follows from the relation 

exp[ J V(f)]t=exp[_Tj2 32 =llJ(f) F] =exP[j\tT(_f) F]. 

We now put the right hand side of this scalar product into a more 

convenient form. Since exp[=lV(_f)F]c≥Foc≥Fo, we have 

exp[*14J(f) F] (W(fv)) Nc0=exp[_L.f (f) F] (W(f v))Nexp[\V(_f) F1Fo, 

(using (3.55b) 

N 
Ni  

=(-1 )r (r! (N-r) ) (lIJ(fv))N-.r[.__(f,fv)]rcFo,(3.6oa) 

r=o 

where the last equality follows from the binomial theorem. In a similar 

fashion we find 
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N 

exp[j=l1f(—f) F1(W(fV)) NFo=1 (—')'(r l   (N—r)I) (v(f v))N_rEj=(f ,fV)] rc2FO (3.60 b) 
r=o 

Substituting (3.60) into (359) gives 

EL(f)=EFo(f)(N!)-1 N 
r,s=o 

N!  
)S(rI(II r)) (s!(N__s)!)[j( 'I)]9H (f,fv) ]S} 

X 

Using (3.55a) and the result IIfvll=lwe have 

('V(fv)) N_Sç0 ('V(fv)) N••1(Fo)=ör sil (liJ(f)) 2 

Substituting (3.62) into (3.61) gives 

N 

EL(f)=EF0(f)(N!)-1 )r(!( N! N),)2 (N—r) [I(f,fv)llr 

r=0 

N 
N!  rl(f, =EF0(f) (-1 ) fv)I2 2t  2 1r 

r=O 

(3.61) 

(3.62) 

(3.63) 

We can put the above expression into a more convenient form by noting 

that the Nth Laguerre polynomial is given by the power series 
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N 

LN(X)=(-1 )r N!(!)2(N)! Xr. 

r=O 

This allows us to write EL(f) as 

(3.64) 

EL(f)=EFo(f)LN( I(f,fv)I2). (3.65) 

Since the support of f is contained in AL we can write the scalar product 

(f,fv) as 

(flfv)— 1 (v)1/2 I i—(x) dx=T(0), 

where f (0) is the Fourier transform T(k)= f(x) eikXdx of f(x) evaluated 
IRI 

at k=O. The quantity I(f,fv)I2 may therefore be written as 

I(f,fv)I2=IT(0)I2, T(o)= k(x)dx. (3.66) 

Substituting (3.66) into (3.65) 'gives 

EL(f)=EFo(f)LN( iT(o)I2). (3.67) 

The limit V and N—oo is now taken, holding the density p=N/V constant. 

The Laguerre polynomials have the property (see [Szeg] Theorem 8.1.3) 
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JimLN(z/N)jo(2z), (3.68a) 
400 

where J0(x) is the zero order Bessel function, 

Co 

J(X)=)__[[x] 2 ] I' fl (n!)2 
n=O 

Using this property we have 

Ep(f)=EFo(f)Jim LN(12 iT (0) 12) 
>00 

=exp[_1IfII2]Jo((2p) 112 IT(0)I). 

(3.68b) 

(3.69) 

Note that ErestL(f) is simply obtained by restricting the functions f to the 

region LL, and this does not give the functional ELM. 

Equation (4,20) is the expression that we postulate for the 

functional corresponding to the ground state of the infinite bose gas with 

density p. At this point we should demonstrate that this functional 

satisfies the conditions of Proposition 3.43 and hence defines a state of 

9I3. Since it is quite difficult to show that this functional satisfies 

condition iii) of Proposition 3.43 we we first proceed to construct a cyclic 

representation. In terms of this representation this proof will be easy. 
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The G. N.S. representation corresponding to the functional E(f) 

will now be constructed. The functional E(f) is a product of the Fock 

functional with another functional. This suggests that the representation 

that we are looking for is the direct product of two representations, one of 

which is the Fock representation. We first define the representation space 

to be 

(3.70a) 

where O F is the Fock space and £2(S1) is the space of square 

integrable functions on the unit circle with respect to the Lebesgue 

measure (de/2n). The representatives it(W(f)) are then defined to be 

ir(W(f))=W(f) F®exp{i (2p) 112 ii (0) IA], (3.70b) 

where A is the operator 

(Af)(0)=cosof(e) (3.70c) 

defined on £2(S1). It is easy to verify that the pair {p,1tp} forms a 

representation of the C.C.R. algebra. Next consider the vector 

pFo®l. (3.70d) 

The vector 1 is cyclic for 2(S1) with respect to the algebra generated by 

A and QFo is cyclic for the Fock representation. This implies that the 
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vector 92P is cyclic for the representation {p,itp}, hence [t,c2} is a 

cyclic representation. Now 

(p,1tp(W(f))1p)=(WFo,W(f) FWFo) (1 ,exp((2p)1/217 (0) IA} 1) 

=EFo(JexP{i (2p)l/2 iT (0) icosoj (dO/2) 

=exp[_IIflI2]Jo((2p) 1/2 IT(0)J) 

(3.71) 

where we have used a standard integral formula for J0 that may be found 

in most texts on mathematical physics (see, for example, [Arfk} page 

580). So the representation produces the correct state over 

the O.C.R. algebra. Since J0(0)1, Epo=EF0. 

At this point we should mention we have yet to show that this 

functional satisfies the conditions of Proposition 3.43 and hence defines 

a state of 91R3. It is quite difficult to show directly that the functional E(f) 

satisfies condition iii) of Proposition 3.43. Now that we have written the 

functional in the form it is trivial to verify that it 

satisfies the conditions of Proposition 3.43. Furthermore, since the 

representation is cyclic we may use Theorem 1.25 to 

conclude that { p,1tp,p} is unitarily equivalent to the G.N.S. 

representation arising from the state that corresponds to the functional 

E(f). 
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The functional E(tf) is continuous in the real parameter t and 

therefore defines a regular state. The infinitesimal generator t(4(f)) is 

given by 

ir (4 (f))= d {it(W(tf))] = dt 

=&[W(tf)FOexpji(2p) 1/2tj -f(0) IA}]10 

=(f)F®1 +1 øi(2p) 11217(0)IA. (3.72) 

The annihilation and creation operators are then given by 

7tp(1V(f))I1tp(4(f)) +iitp(4(if))] 

=V(f)F®1+1ø(i_1)(p)h/2IT(0) IA, (3.73a) 

and 

_14J(f)*F®j. ®(i+1)(p)l/217(0)IA. (3.73b) 

Let {hz} be an orthonormal basis for Hz, where Z is an arbitrary 

bounded region in FR3 with volume Vz (recall that the Hilbert space Hz is 

the subspace of £ 2(FR3) formed by functions Whose support lies in Z. 

The number operator Nz for the region Z is 
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p(V(hzj)hI1(hzj)) 

=1: 

We now evaluate 

141(hzj)* F1V(hzi)FOl +1If(hzj)*F0(i_1)(p)1/2It(o)IA (3.74) 

+NJ(hj)F0(i+l )(p)1/2Ij(0)IA+1o2pIl(0)I2A2 

NzpNzWFo01 

-- 001 +lp'(h7j)* FLFo0(ki )(p)l/2It(0)ICO5O 1 
_00(1+1)(p)1121 j(0) Icose+c FO02pIE:;i(0) I2cos2O.i 

I 

SO ,2pII(0)I2COS2O) 

=12p1 j(0) 12 COS2O(dO/2it) 

=plIj(0)I2. (3.75) 

Consider the function f(x) that takes on the constant value 1 for xEZ and 

vanishes for x Z. The expansion of f(x) in terms of the basis {h} is 
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f(X)=j(0)hi. (3.76) 

We can then use Parseval's formula to conclude 

1 16j(0) 12= 11f (X)112=VZ, (3.77) 

where VZ is the volume of the region Z. Now the number density 

operator in the representation is given by 

Nz  
Pop 3 . (3.78) 

In the representations used here pop is a constant. Thus it is clear that 

this limit exists. The expectation value of pop is then (using (3.75) and 

(3.78)) 

zLr3   p)=P 

so the representation has the correct particle density. 

(3.79) 

We now discuss the inequivalence of the representations {.p,1tp} 

corresponding to different densities p. The dependence of the 

representation on density is entirely contained in the second factor of the 

direct product 

1t(W(f))=W(f)F®exp{i (2p) 1121T (0) IA}. 

126 



INFINITE BOSE GAS 

Since the representations are all faithful they are physically equivalent. If 

a bounded linear operator commutes with iri(W(f)) then it will obviously 

commute with ir 2(W(f)). This implies that the von Neumann algebras 

{it 1(W(f))}" and {t 2(W(f))}" are equal and the representations are quasi-

equivalent. They are not, however, unitarily equivalent. This is 

suggested by the fact that the operators exp{i(2p)1/21T(0)IA} on 

are unitarily inequivalent for different values of p. The eigenvalue 

equation for this operator is 

exp{i (2p)1/21T (0) IA)(O—A.)=exp{i (2p)1/21T (0) Jcos?..}(9—),). (3.80) 

This allows us to conclude that the elgenvalue exp{i(2p1)l/217(0)I} of 

exp{i(2p1)1/21T(0)IAJ is not an eigenvalue of exp{i(2p2)1/217(0)IA} if 

P1P2• Since the operators exp{i(2p1)l/ 21T(0)IA} and 

expi(2p2)1/2IT(0)jA} have different eigenvalues they cannot be unitarily 

equivalent. These eigenvalues do not seem to admit any physical 

interpretation. As we shall see below, however, they may be used to 

label the irreducible constituents of the representation Note 

that when the system is finite we are working in the Fock representation 

for all densities.. 

For any operator T on 2(5) that commutes with A, 1®T is an 

element of the commutant {it(9[(ER3))}', so the representation {p,1t} 

is reducible. Araki and Woods have shown that it is a direct integral of 

irreducible representations. They write 
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2it 

£2(S) JM (0)dO/27c (3.81) 

where dim M(0)=1. They then use the result [Dixm2]) 

2ir 2ir 

15 F j M(0)dO/2n= J-5 FM(0)d8/27t (3.82a) 

to decompose the representation space 5 
. With respect to this 

decomposition, the operators it(W(f)) are decomposed as 

2ir® 

ir(W(f))= jRo(W(f))dO/2n, (3.82b) 

where lro(W(f))=W(f)F®exp{i(2p)1'21T (0)Icose}. (3.82c) 

The Fock representation is irreducible. Since dim M(0)=1, it follows that 

the set {it9(W(f))} is irreducible in .F®M(0). The representation 

{F®M(0),1tO(W(f))} is therefore irreducible. We may use the eigenvalues 

of the operator exp{i(2p) 112 1T (0)IA} to label these irreducible 

representations. Since the operators exp{i(2p) 112 17(0)IcosO} are simply 

complex numbers, they are unitarily inequivalent for different values of 9. 

This implies that the irreducible representations {F®M(0),mO(W(f))} are 

unitarily inequivalent. This shows, among other things, that the O.C.R. 

algebra 2E fR admits an infinite number of unitarily inequivalent 

irreducible representations. 
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Araki and Woods also consider then case when the density is a 

function of momentum, p=p(k). Once again the representation they 

construct is a direct integral of irreducible representations, which they 

demonstrate are unitarily inequivalent. More recently Lewis and PulO 

[Lewi] and Cannon [Cann] have, calculated the canonical and grand 

canonical equilibrium states over 91. The form that they obtain for the 

generating functional reduces to our EL(f) when the temperature goes to 

zero. We expect that the representations corresponding to different 

temperatures (and chemical potentials in the grand canonical case) are 

unitarily inequivalent, although neither of these papers shows this. 
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APPENDIX A 

THE HARMONIC OSCILLATOR REPRESENTATION 

In this Appendix we construct a faithful representation of the O.C.R. 

algebra 21(FR) corresponding to a system with one degree of freedom. 

This representation is is constructed with the aid of the annihilation and 

creation operators, familiar from most modern Quantum Mechanics texts, 

q+ip  
a= , (A.la) 

and a*_ _iP (A.lb) 

They satisfy [a,a]=[a*,a*]=O, (A.lc) 

and [a,a*]= 1. (A.ld) 

Consider the abstract vector In>, where n is an arbitrary nonnegative 

integer. These vectors will form a basis for the representation space 5h. 

We initially define E to be the set of all finite linear combinations of the 

In>, so that E is a complex vector space. We define linear 

transformations lth(a) and lth(a*) on E by defining their action on the 

basis vectors, 

1th(a)ln>"[in-1>, (A.2a) 

and 7th(a*)ln>\In+1ln+1>. (A.2b) 
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Note that lrh(a)lth(a*)In>=(n+1)In> and lrh(a*)irh(a)ln>=nln>, so that 

[lrh(a),lth(a*)]In>=ln>, i.e., lrh(a) and lth(a*) satisfy the commutation 

relations (A.1). 

It is apparent that any basis vector In> can be obtained by 

repeated application of lth(a*) to 10>, 

mh(a*)n  
ln>= 10>. (A.3) 

To define a scalar product for E we introduce the conjugate vectors. For 

the basis vectors we define 

1 
In>t (lth(a* )11 10> \t 

i) 

N 

and for arbitrary 'P=cznln> in E 
i=0 

N 

i=O 

(A.4a) 

(A.4b) 

The action of lth(a*) and lth(a) on the conjugate basis vectors (ni is found 

to be 
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<nhlrh(a)=cn-1-1 14n+1. (A.5a) 

and <nl7th(a*)=<n_1N[. (A.5b) 

The conjugate vectors <ni can be obtained by repeated application of 

Rh(a) to <01, 

<nl=<01  
Ji 

To define a scalar product for the basis vectors we define 

<0I0>E1, (A.7a) 

and (In>,lm>)<nIm>. (A.7b) 

Using (A.4) and (A.6) we have 

(In),Im>)<nlni> 

7th(a) lth(a*)m  
10>. 

1_ 

Now the commutation relations (A.1) imply that 

7th(a)  1rh(a*)m1 f 0> if n=ml 
"t.0 if n>mt' 

(A.6) 

(A.8) 

(A.9a) 
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and 
  7th(a*)m 1<01 if n=m 1 

.'Ji 4—ml -10 if m>nJ' (A.9b) 

Substituting (A.9) into (A.8) then gives 

(In>,Im>)E<nlm>=6nm, (A.10) 

so the basis vectors are orthonormal with respect to the scalar product 

(A.7). 

Consider the set 

00 00 

h={T=anIn>:kxnI2<oo}, (A.1 1) 
n=O n=O 

and extend the scalar product to all of Sh by defining 

This definition satisfies 

00 00 

(P,L)=(aIn>, 13m 1m>) 
n=O m=O 

00 

xn3m<fllm> 
n,mO 

(A.12) 
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ii) (f')= ('P,), 

and iii)('P,'f')≥O, and ('P,'P)=O only when T=O, 

for all 'P,,He.h and a,e U, so it does define a scalar product for h. 

We can use this scalar product to define a norm on 15h as 

(A.13) 

Equipped with this norm, 15h is a pre-Hilbert space. We now show 

that 15 h is in fact a Hubert space, i.e., we will show that all Cauchy 

sequences converge to an element of 15 h. Consider a sequence 
00 

{%=c4I.n>} in h. Using (A.13) we have 

00 

II"i—" II2= I : n I cc' 4iI2. (A.14) 

Assume that the sequence is Cauchy, so that for given any positive real 

number e, there exists a positive integer N(c) such that II'Pi—'YU≤e for all 

i,j≥N(c). Using (A.14) we have 
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Ic4._c4I2≤ J2 

(A.15) 

foralli,j≥N(c). This implies that Ic4—c4i≤e for all i,J≤N(c), i.e. the 

sequences of complex numbers {c41} are Cauchy for each fixed n, and 

hence each c converges to a complex number U. For an arbitrary finite 

integer N>O, it follows from (A.15) that 

Ic4i_c4 2≤c2, 

for all i1j≥N(c). If we then let j—oo, we obtain 

lcx i—czn I2≤ 2, 

for all i≥N(c). Since N is arbitrary, (A.1 7) implies that 

n=O 

for alli≥N(E). Now 

22 

A.16) 

(A.17) 

(A.18) 
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so that for all i≥N(e) 

Ian I2 Ian_c4+c4 

≤2(I 

2 

12+a12) 

00 00 00 

Ian_I2+2 ,k4I2 
n=O Y, n 

nO n=O 

<00, 

(A.1 9) 

(A.20) 

where the last inequality follows from (A.18) and the fact that 'J!je.h. 
00 

This then' implies that 'P=anIn> is an element of 5 h. Now, for all 

i≥N(c), (A.18) implies that 

00 

ll'-'D 2 Ia-a 12 

<62 (A.21) 

so that the Cauchy sequence {W} converges to 'i', which is an element of 

h. Oh is therefore complete, and hence a Hubert space. 
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The action of the operators irh(a*) and lrh(a) on 15h will now be 

discussed. They are both linear transformations on Sh, but they are both 

unbounded. For example, II1th(a*)In>II=\In+1 and II1th(a)ln>II='[, which 

have no upper bound for all n, (note that IIln>II=1). Their domains are 

D(7t(a*))=pftE 5i h:II1rh(a*)f1II<oo} 

00 00 

=e"= anIn>: kxI2(n+1 )<oo}, (A.22a) 
n=O n=O 

and D(1th(a))=(''e h:II1th(a)'ikoo} 

00 00 

={'f'=czIn>: IanI2n<oo}. (A.22b) 
n=O n=O 

As expected, lrh(a*) and lch(a) are not defined on all of h. The domains 

D(lth(a*)) and D(lth(a)) are , however, equal. It is convenient to 

characterize these domains in a different manner. Consider the 

"number" operator N1th(a*)1th (a). We have Nln>=nln>, so the domain of 

Nis 

D(N)={'F= anIn>: IanI2n2<oo}, (A.23a) 
n=O n=O 

and the domain of N112 is 

00 00 

D(N 112)P anIn>: IanI2n<oo}. (A.23b) 
n=O n=O 
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Comparing (A.23b) with (A.22), we see that D(lth(a*))=D(lth(a))=D(Nl/2). 

Since every finite linear combination of the basis vectors is contained in 

D(N 1/2), D(N1/2) is dense in Oh. Furthermore, for all W,eD(Nl/2) we 

have 

(ith(a)11,I)=(P,1th(a* )1), (A.24) 

so that lrh(a*)=lth(a)f, the Hermitian adjoint of lth(a). 

We now construct a representation of 21(IR) on 5h, using lth(a*) 
00 

and lth(a). For an arbitrary polynomial anm(a*) 11(a)m we define 
n,m=O 

00 00 

anm(a*)n(a)m cnm(7th(a*))fl(1rh(a))m. (A.25) 
n,m=O , n,m=O 

In particular we have, using (A.1), 

and 

lth(a)+lrh(a*)  

lth(a)_lrh(a*)  
lth(P)- 

(A.26a) 

(A.26b) 

Both Rh(q) and Rh(p) are self adjoint, with domain D(N1/2). We now 

define 
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lt(V(s))EeiS7th(P), 

(A.27a) 

(A.27b) 

(N,M KM7th! anmU(tn)V(sm) anmith(U(tn))7th(V(sm)) (A.27c) 
n.mO 

For arbitrary I',ZE D(N1/2) we have 

(lrh(U (t))'1',ith(U (t))(D)=(eit1th(q) ,e h1th(q)(I) 

= (I ,e_it1th(q)ett1th(q)(1) 

(qJ,( ). 

In a similar fashion we find 

(1th(V(S))'I',7th(V(5)))=('+',7th(V(—S))7th(V(S))) 

(A.28a) 

(A.28b) 

This shows that 7th(U(t)) and lth(V(s)) are well defined on D(N1/2), and 

are in fact bounded on D(N1/2). This, along with the fact that D(N1/2) is 

dense in 15h, shows that lrh(U(t)) and lrh(V(S)) are well defined on all of 
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h• In addition, (A.28) now holds for all which implies that 

h(U(t)) and lth(V(s)) are unitary operators on h. Since the infinitesimal 

generators lth(p) and lth(q) of lch(U(t)) and lth(V(s)) satisfy the 

commutations relations (1.7) (section 3.1),lth(U(t)) and lrh(V(s)) satisfy 

the commutation relations (1.12) (section 3.1). The pair (h,7th) therefore 

forms a representation of 9.[(IR). Since the action of lth(U(t)) and lch(V(s)) 

on the vector 10> always produces a non-zero vector, this representation 

is faithful. 
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