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ABSTRACT

This thesis is an examination of the Algebraic Approach to Quantum Mechanics
and its use in the description of infinite Quantum systems. This approach is based on
the postulate that it is possible to set up a correspondence between Quantum systems

and the mathematical theory of C*-algebras.

In Chapter 1 the theory of C*-algebras and their representations is discussed.

The main result is the G.N.S. construction.

In Chapter 2 the methods developed in Chapter 1 are applied to Quantum spin
sytems. The C*-algebra corresponding to a single spin is:constructed and analyzed,
and the G.N.S. representation for the state corresponding to a canonical ensemble
with definite temperature is constructed. The discussion is then generalized to a two
spin system, a multi spin system, and finally to a system consisting of an infinite
number of spins. It is shown that the G.N.S. representations corresponding to different
temperatures are unitarily equivalent for the finite system, while for the infinite system
these representations become unitarily inequivalent. This example illustrates théi
classical variables, in this case the temperature, arise in quantum systems as labels
that distinguish between different inequivalent representations of the Quantum algebra

in the case of inifinitely many degrees of freedom.

In Chapter 3 the algebraic description of a non-intefacti'ng Bose gas is

examined. The C.C.ﬁ. algebra is constructed. Methods developed by Araki and

Woods are used to construct the state of the infinite Bose gas that has density p and in

which all particles have zero momentum. The representation constructed by Araki and



Woods is shown to be the G.N.S. representation for this state. It is shown that for the
infinite gas the G:N.S. representations corresponding to different densities are unitarily
inequivalent. Again a classical variable, the density in this case, arises as a label that

distinguishes the different inequivalent representations.
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INTRODUCTION

Traditionally Quantum Mechanics is based on the postulate that it
is possible to set up a correspondence between physical systems and
the mathematical theory of Hilbert spaces. To a given physical system
. we can associate a Hilbert space in such a manner that the states of the
system are represented by density operators on the Hilbert space (self
adjoint, positive, bounded operators with unit trace), while the
observables of the system are represented by linear self adjoint
operators on the Hilbert space. It is possible to deal instead with the set
of linear bounded operators, which are not self adjoint in general. The
idea behind the Algebraic Approach to Quantum Mechanics is to
consider the algebraic structure of the set of all bounded linear operators
on the Hilbert space as the fundamental mathematical object, with the
Hilbert space being secondary. We postulate that to a given physical
system we can associate a C*-algebra in such a way that the states of
the system correspond to (normalized) positive linear functionals over the
C*-algebra, while the observables of the system can be expressed in
terms of the elements of the C*-algebra. The Hilbert space with its linear
operators then corresponds to a concrete representation of the
‘ C*-algebra (seé [Haag] and [Haag1] for a general discuccion of the

Algebraic Approach).

It may happen that the C*-algebra associated with a particular
physical system admits only one irreducible representation (up to unitary
equivalence), as is usually the case when one deals with systems that

have a finite number of degrees of freedom. When we consider systems
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that possess an infinite number of degrees of freedom we often find that
the corresponding C*-algebra has a number of unitarily inequivalent
irreducible.representations (such systems are encountered in Quantum
Field Theory and Quantum Statistical mechanics, see [Haag2]). We éhall
see an example of this in Chapter 2 when we discuss the canonical
commutation relations. The usual motivation for thé Algebraic Approach
is given by the second possibility (many inequivalent representations). In
the first case we could consider the unique representation and return to
the Hilbert space formalism. In the second case we have to consider
many inequivalent representations side by side and it is the C*-algebra

that provides an underlying connection between them.



CHAPTER 1

C*-ALGEBRAS

1.1 DEFINITION OF A C*-ALGEBRA

We begin by defining the structure of a C*-algebra (some good
references for this material are [Kadi], [Dixm1], [Brat1] and [Brat2]). We
start with a vector space 9 over the field of complex numbers ¢ and

define a C*-algebra by adding more structure to 9L.

Definition 1.1 A product AB over a vector space N is a rule that

associates to each pair A, Be U the product AB such that

i) ABe U (closure),
ii) A(BC)=(AB)C (associative),
iii) A(BB+yC)=BAB+YAC ”

and (BB+yC)A=pBA+CA (distributive),

forall A, B, Ce ¥ and B, yeC.
Definition 1.2 A vector space ¥ equipped with a product is an algebra.

Definition 1.3 An involution of an algebra 9 is a mapping
Ac A —-A*e U that satisfies

i) (A¥)*=A,

i) (ABy*=B*AX,

iii) (tA+BB)*=a A¥+ B B¥,
for all A,Be ! and o,Be €, where & is the complex conjugate of . The
element A*is referred to as the adjoint of A. An algebra 9l that

possesses an involution is called a *-algebra.
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Definition 1.4 A *-norm of a *-algebra U is a rule that associates a real
number [All (the norm of A) with every element Ac 9 such that

i) IAlI>0, lIAll=0 iff A=0,

i) loAll=lod [IAl,

iif) lA+BlI<llAll+IBI (triangle inequality), |
iv) IABII<[IAll IBH (product inequality),
v) IAX[I=IAl (*-norm property),

forall A,Be N and o,Be C. A *-algebra U that possesses a *-norm is

called a normed *-algebra.

Since a normed *-algebra 2 is, among other things, a set of
elements it is possible to equip U with various topological structures.

One such topology is the uniform topology which uses the *-norm to

define the neighborhoods of an element Ae ¥, N(A;é):{Be 9L:JA-Bli<g}. -

Definition 1.5 A normed *-algebra 9l that is complete (in the Cauchy
sense) in the uniform topology defined by its *-norm is called a Banach

*_algebra.

Given a *-algebra 9 we can attempt to construct a Banach
*-algebra by defining a *-norm for 90 and then completing 9 in the
uniform topology defined by this *-norm. Since it may be possible to
define various inequivalent *-norms for 9 it may also be possible to
construct different Banach *-algebras from one *-algebra. This being the
case one might wonder whether or not it is possible to fix a unique
*-norm by adding more conditions to our definition of a ¥*-norm. The

following the‘orem shows that this is indeed the case.
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Theorem 1.6 Let U be a *-algebra. If 9 possesses a *-norm that
satisfies IIA*All=IIAlI2 for all Ac & and if A is complete with respect to the
uniform-topology defined by this *-norm then this *-norm is unique (i.e. it

is the only *-norm that satisfies [|A*All=[|Al2).

Suppose we have a *-algebra 9 that possesses two inequivalent
*-norms. If we complete 2L with respect to each of these norms then

Theorem 1.6 implies that the resulting *-algebras are different.

Since [|A*All=llAll2 implies that [A*[I=[|All we can replace condition

(v) in our definition of a *-norm with the more stringent condition:

(v') IA*All=]Al2 (C*-norm property).

Definition 1.7 A *-norm that satisfies condition (v') is called a C*-norm,
and a *-algebra 9 that is’ complete with respect to the uniform t,op'ology
defined by a C*-norm is called a C*-algebra. The foregoing discussion
shows that it is possible to construct at most one C*-algebra from a given

*-algebra.

The most basic example of a C*-algebra is the complex numbers,
with involution defined as complex conjugation and with the usual norm
llall=lo @l172. A more relevant example is the set £ (5) of all bounded
linear operators on a Hilbert space 5, equipped with the usual algebraic
structure. The operator adjoint defines an involution of £($), and the

operator norm
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IIAII=Sup{H%’\%I—I: yed; w¢0}

defines a C*-norm on £(9) (that £(H) is complete follows from the fact

that a Cauchy sequence of bounded linear operators converges. to a

bounded linear operator).

Definition 1.8  An identity of a C*-algebra 9L (or of any algebra) is an

element e A that satisfies Al=1A=A for all Ac 9.

If an identity exists it is unique. Furthermore it is easy to see that T*
is an identity if 1 is, so that 1*=1. Since [li=IT*1ll=/1]2 we must have 11ll=0
or {ll=1. From the product inequality we have that llAll=IAIlI<II #1All, so
that 1l=0 implies that J|All=0 for all Ae Ql This last statement means that
A=0 for all Ac ! and the algebra is identically zero. This being the case
" we shall assume that Itil=1. If a C*-algebra does not contain an identity
(there is no guarantee that it does) we can proceed in one of two ways.
First we can adjoin an identity to the C*-algebra (i.e. embed U in a larger
C*-algebra that contains an identity), or we can construct an approximate
identity (see, for example, [Brat1] sections 2.1.1 and 2.2.3). We will
ignore these technical difficulties and assume that the C*-algebras with

which we deal contain an identity.
1.2 STRUCTURE OF A C*-ALGEBRA

The structure of a C*-algebra is completely determined by the

assumptions previously laid out, i.e. a C*-algebra is an algebra equipped
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with an involution and complete with respect to the uniform topology
defined by a C*-norm. Although this structure is quite simple, we shall

see that these structural assumptions lead to a great wealth of properties
| (it is, of course, always pleasing to get a lot from a little). We begin by

classifying the elements of a C*-algebra.

Definition 1.9 Let AU be a C*-algebra, then an element Ac W is
i) normal if AA¥=A*A,
ii) self adjoint o“r real if A¥=A,
iii) isometric if A*A=1,

iv) unitary if A*A=AA*=],

An arbitrary element Ae & can be uniquely decomposed in terms
of self adjoint elements Ay and Az as A=A{+iA2, where the real and
imaginary parts of A are given, respectively, by A1r=(A'+A*)/2 and
Ax=(A-A¥%)/2i. A gene:ral self adjoint element Ae‘Q,l can be decomposed
in terms of unitary elements as A=(U,+U.)/2 with U+=(Ati [Al21-A2),
(we shall soon see that the square root operation in. the previous
expression.is wéll defined). Using the above decompositions we then
see that an arbitrary element Ae &l can be decomposed as
A=a1U1+a2U2+03Uz+a4Ug where the Uj are unitary elements of ¢ and

the aje € are such that lol<[|All/2.

Definition 1.10 An element A of a C*-algebra & (with identity) is said to
be invertible if there exists an element A-le Y (called the inverse of A)

such that AA-1=A-1A=1.
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All the usual results hold, i.e., an inverse is unique if it exists and
AB is invertible if and only if A and B are invertible. Then (AB)-1=B-1A-1.

Furthermore, if an element Ae 9 is invertible, then A* is invertible with

(A¥*)1=(A-1)*_ If A is not invertible then it is said to be singular. The

notion of an inverse allows us to define the spectrum.

Definition 1.11 Let A be a C*-algebra (with identity). The resolvent set
rgr(A) of an element Ac A is defined to be

rop (A)={Ae C:XT-A is invertible}.

The spectrum og (A) of an element Ae U is then defined to be the

complement of the resolvent set, i.e.,

ogr (A)={Ae C:XT-A is singular}.

It will be noticed that we have attached the symbol U to rot(A) and
og- The reason for this is that if we consider a subalgebra B of & then

there are two possible spectra, o (A) and o (A) (i.e., an element may be

singular in &8 but invertible in 9 ; this would be the caée if Ae B and
A-le A but A-1¢ B ). As it turns out C*-algebras have the property that
ogr(A)=0cg(A) for all Ac B. The reason is that if A-1 exists it is contained
in the C*-subalgebra generated by 1, A, and A* ([Brati] Proposition
2.2.7). With this in mind we shall sifnply write_ o(A) for the spectrum of an

element Ae 9L.

Definition 1.12 Let A be a C*-algebra. The spectral radius p(A) of an
element Ae U is defined to be p(A)=Sup{lAlAec(A)}.
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The spectrum of an element A of a C*-algebra N is related to its
norm through the spectral radius p(A). In particular it is found that
p(A)<IIAll. A natural question is: when does equality hold? Is it possible

to define a subset B of U such that equality holds for all elements of B?

The answer is contained in the following theorem ([Brat1] Theorem 2.25).

Theorem 1.13 Let AU be a C*-algebra (with idenﬁty),
i) if Ae 9 is normal, self adjoint or unitary then p(A)=IIAll, -
i) if Ae W is unitary then o(A)c{A:Ae €, IM=1} and p(A)=1,
iii) if Ae 9 is self adjoint, the spectrum is real and
o(A)c[-IAILIIAN,
iv) for general Ae & and polynomial P, o(P(A))=P(c(A)). In

particular o(X1-A)=A-c(A). Also 6(A*)= G(A) .

In Theorem 1.6 we claimed that the C*-norm property served to fix
a unique norm and we now offer a proof. The spectrum o(A), and
therefore the spectral radius p(A), depend éolely on the algebraic
structure of a C*-algebra 9. Given a general Ac U, A*A is self adjoint,
so that (using the C*-norm property and Theorem 1.13 (i)
IAl=llA*All1/2=p(A*A)1/2, This shows that the C*-norm [|A]l is unique.

We now wish to set up an order relation between elements of a
C*-algebra. This is made possible by the identification of positive

elements.

Definition 1.14 An element A of a C*-algebra 9 is said to be positive if

it is self adjoint and its spectrum is contained in the positive half line. The

set of all positive elements of 9L is denoted by U ,.
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The reason that we can use the definition of pdsitivity to set up an
order relation is that 2 .~ {-8L,}={0}, i.e. if A is positive and -A is positive

then A is necessarily zero. Thus we can make the following

Definition 1.15 Two elements A,B of a C*-algebra 2 are said to be in the

relation A>B whenever A-Be U .

This relation satisfies i) A0 and A<0 = A=0,

ii) A<B and B<C = A<C.

So we see that we have indeed defined an order relation on .

The positive elements of a C*-algebra admit the notion of a square
root. Corresponding to every positive Ae W is a unique positive Be 2,
called the positive square root of A, such that A=B2. It should be noted
that B*B is positive for all Be 2L, and furthermore it is a fact that we can
obtain all positive elements in this manner. Combining these two results

leads to the notion of the modulus of an element Ae U,

Definition 1.16 The modulus of an element A of a C*-algebra U is the

element of A defined by |Al=(A*A)1/2,

Completing our discussion on the algebraic structure of a

C*-algebra we note that we have the following decompositions. If Ac 9

+
is self adjoint and we define A= IA|2_A then

') Aie gl-h
ii) A=A,-A. ,
iii) A, A. =0.

10
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It also follows that Ax are the unique elements wiih these properties. We
aiso have the following " polar decomposition " for invertible elements.
An invertible Ae & can be uniquely written as A=UIAI, where U=AIAl-1 is

unitary.
1.3 STATES AND REPRESENTATIONS: THE G.N.S. CONSTRUCTION.

We now wish to discuss the representation theory of C*-algebras.
Since the states over a C*-algebra play a major role in representation

theory we shall begin our discussion with them. The dual U™ of a

C*-algebra is defined to be the space of continuous linear functionals

over . We can define the norm of an element fe U* as

llfll=Sup{M"%I-|M: Ae 9L ;A;to}.

An important subset of 9* is the set of states.

Definition 1.17 A linear functional f over a C*-algebra U is said to be
positive if f(A*A)=0 for all Ae U, i.e. f takes on positive values for positive
elements of 9 (recall that A*A>0). A state w over N is a positive linear

functional over N with unit norm, i.e. lloll=1.

It turns out that that a linear functional f is positive if and only if f is
continuous and satisfies llfl=£(1). So. a linear functional o is a state if and

only if o is continuous and llwll=w(l)=1.

11
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Definition 1.18 A mapping between two *-algebras U and B,
n:Ae W 5n(A)e B, that is defined for all Ae M and preserves the
algebraic structure of 9, i.e. |
i) 7(0A+BB)=an(A)+Br(B),
ii) n(AB)=r(A) ©(B),
i) (A% )=re(A)¥,
| for all A,Be & and a,BeC, is a *-morphism between 9 and B. A

*-morphism that is one to one is a *-isomorphism.

When A and B are C*-algebras we find that all *-morphisms
between AU and B are positivity preserving (AZO:MI:(A)ZO),: continuous,
and satisfy Ix(A)lI<IAll. This last result implies the the set n() is itself a
C*-algebra, for it is obviously a *~-algebra and the condition lix(A)I<IAll
implies that it is complete with respect to the uniform topology defined by
the C*-norm of B. The kernel of a *-morphism is defined to be
Ker © ={Ae ¥ : n(A)=0}. A*-morphism = is one to one and onto (i.e. it is a
*-isomorphism) if and only if Kerr={0}. We now define a representation

of a C*-algebra.

Definition 1.19 Let & be a C*-algebra. A representation of U is a pair
{$,x}, where H is a Hilbert space and = is a *-morphism from 9 into
&£ () (the set of all bounded linear operators on $). A representation

{®,n} is faithful if Kern={0}, i.e., if & is a *-isomorphism from 9 into £(5).

A set of operators (L) on a Hilbert space » representing a C*-algebra
A is itself a C*-algebra, which we refer to as a concrete C*-algebra.

We should mention at this point that a representation is faithful if and only

if it is norm preserving, i.e., |All=llx(A)]l for all Ae L. Following the well

12
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known procedure from group theory we can always construct a faithful

representation from a non-faithful representation. if ©:% -&£(H) is not a
faithful representation, we can construct a faithful representation 7 of the

quotient algebra 2 = /Kerr.

Two important classes of representations are the irreducible ones

and the cyclic ones.

Definition 1.20 A sét of operators Yl acting on a Hilbert space  is said
to be irreducible whenever the only closed subspaces of $ that are
invariant under the action of I are the trivial ones {0} and $. A
representation {$,r} of a C*-algebra 9 is then said to be irreducible

whenever the set of operators n(2L) is irreducible.

Definition 1.21 A vector Q in a Hilbert space $ is said to be cyclic for a
set P of bounded linear operators on H whenever the set {AQ:Ac P} is
dense in $. A cyclic representation of a C*-algebra 9 is then defined to
be a trible {H,7,Q}, where {$,n} is a representation of W and Q is a cyclic

vector for the set of operators n(2) on 5.

The irreducible and cyclic representations.are connected as

follows ([Emch] page 84).

Lemma 1.22 A nonzero representation {S‘,n} of a C*-algebra U is

irreducible if and only if every nonzero vector e % is cyclic for ().

Definition 1.23 Let D be a set of bounded linear operators acting on a

Hilbert space ». The commutant MM ' of P is defined to be

13
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P'={Aec £ (H): AM=MA for all Me DM}. The bicommutant M" of M is

defined to be the commutant of 9.

Lemma 1.24 (Schur's Lemma) A representation {$,n} of a C*-algebra A

is irreducible if and only if ©(8L)'={A1:Ae T}.

Suppose that we have a representation {$,n} of a C*-algebra A.
For any Qe % with [[Qll=1 we can use this representation to define a state
wq over A, wo(A)=(Q,n(A)Q), which we refer to as a vector state. A
fundamental result in representation theory is that the converse to this is
aiso true: every state over a C*-algebra is a vector state in some

representation ([Brat1] Theorem 2.3.16).

Theorem 1.25 To every state w over a C*-algebra 2L corresponds a

cyclic representation, {9 ¢, 7w,Qe}, such that ®(A)=(Qgw,Te(A)Qw).

Proof: The theorem is proved by constructing a representation with the
desired properties. This construction is known as the G.N.S.
construction, named for Gelfand, Naimark, and Segal ( the origins of the
G.N.S. construction may be found in [Gelf] and [Sega]). It is based on
the observation that the elements of a C*;algebra A may be viewed in
two ways, first as vectors in a complex vector space‘and second as linear
transformations on this vector space. Consider the set E consisting of
elements of U, E={Va=A:Ae U}, equipped with the additive structure of
20 through the definitions Wa+¥g=W¥a,pand a¥a=Vya. The set E is a
complex vector space. We can attempt to define a representation of U

on this vector space by using the algebraic structure of 9L to define a

14
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*-homomorphism = from 9 into the set of linear transformations on E.

For all Ac 2l we define n(A)Wg=Vag for all YaoeE. Note that

T(A)BYe+YYcl=n(A)¥pB+ yo=YpaBiyac=Pr(A) Ve +yn(A)Vc,

so that the n(A) are linear transformations on E. It is possible to show at
this point that n is a homomorphism, i.e., it preserves the algebraic

structure. We have, for arbitrary A, B, and Ce & and o,Be C,

i) (A +BB)Vo=Yaacipac =aVac+BYas=lom(A)+Br(B) Ve,
so n(cA+pB)=an(A)+Br(B),

i) T(AB)Ye=Yagc =n(A)¥ec =n(A)n(B)Vc,
50 T(AB)=r(A)(B).

| For © to be a *-homomorphism we also require n(A*)=r(A)* . We must

first define the action of n(A)* on E. A natural candidate for n(A)* would
‘be the adjoint of (A), but to define the adjoint We require E to possess a
scaiar product. 1f we could construct a scalar product we would have a
representation since we could use this scalar product to define a norm on
E, making E a pre-Hilbert space, and then complete E in the uniform
topology arising from this norm, making E a Hilbert space. It is in the
definition of a sqalar product where we make a connection with the states
over . Let w be a state over A and define (Va ,¥p)=w(A*B) for all A,
Be 9. We must show that (Va ,VB) is a scalar product for E. Expilicitly,
(Wa ,¥B) must satisfy

i) (a¥a +BVs, YWe)=tv(Va ,¥o)+By(Vs , Vo),

15
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i) (Wa ,¥B)= (Vg ,¥a) (the bar denotes complex

conjugation),
iii) (Wa ,¥Ya)=0.
and iv) (Va ,¥a)=0 if and only if ¥a=0,

for all A, B, Ce ¥ and o,BeC. Using the fact that w is a state it is easy to

see that the first three conditions conditions are satisfied.

i) (WA +BYB, YWe)= o([aA+BBJ*YC)
= 0(oyA*C+fYB*C)
=Ty (A*C)+Byn(B*C)

=Ty (Ya Ve )+Br(Vs Vo),

i) (Va ,Wa)=0(A*¥B)= w(B*A) = (V5 ,Va) ,
iii) (Wa ,Wa)=(A*A)>0, since w is positive.

It may happen, however, that o(A*A)=0 for some A#0. This means that

condition iv) might fail. To salvage the construction we must redefine our
vector space E in such a way that (Wa ,Wa)=0 if and only if ¥4 =0.

Fortunately this can be done in a straight forward way.

We construct the representation space as follows. Given a state o

. over A, consider the set S,={Ae U: w(A¥A)=0}. S, is a left ideal of 9,

16
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i.e., S is a subset of A such that Ie 3, and Ae U imply that Ale 3.
The fact that that the ideal is left is not important as we could go through
the construction using the right ideal 3',={Ae U : w(AA¥)=0}. What IS
important is that 3, is an ideal, so that the quotient algebra /3, with-
equivalence classes Va={A: A=A+I, 1€ 3}, is well defined. These
equivalence classes are now used, rather than the elements of 9L, to -
define our vector space. We define Ey={¥a:Ae W} and equip E, with the
structure Wa+Vg=W¥a,gand a¥a=V¥qa. At this point Eg, is a complex vector
space. We can define a scalar product on the vector space Eg, as
(Wa,¥B)=w(A*B), and in turn define a norm as [[¥all=w(A*A)1/2, Since we
are dealing with the quotient algebra U /3, we have that [|Wll=0 if and
only if Ae S, i.e. if and only if Wa=0. This, of course, is why we deal with
the quotient algebra 9 /3, and not the original C* -algebra 9L. Now,
with respect to this norm, E, is a pre-Hilbert space which we denote by
Hg, and compleiion of Hg, then gives the representation space . Note
that we should verify that our scalar product is independent of the

particular representatives used in its definition. We have, for all
I11,I0e%,and A,Be U,

o((A+]1)*(B+12))= 0(A*B)+ (B*11) +0(AXIo) +m(1’:12)

= w(A*B),

where the last three terms vanish because $, is a left ideal.

Now consider the second role of the elements of 9, namely that of
linear operators over % . We fist define the action of the my(A) on Hy,.

For ¥Yge Hyp and any Ae 9 we define nm(A)WBEWAB. As before it is
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possible to show that the n,(A) are linear transformations on Hy, that
is a morphism from A into the set of linear tansformations on Hy,. Since
the nu(A) are bounded on Hy, we can easily extend them to all of 5. If
we define n,(A*)=n,(A)T (= the adjoint of ny(A)), then =, is a ,
*-morphism from 2l into the set of bounded linear operators on the
Hilbert space % . The pair {$ ,ne)} is therefore a representation of 91.
Finally we define the vector Q,=V¥3. Since Va=r,(A)V1, Q4 is a cyclic
vector and the representation {5 ,,7,,Q} is therefore cyclic. Finally we

note that
(Qu,Teo(A) Q)= (Y1, (A)V1)=(Va,V a)=(T* A)=w(A),

so the cyclic representation {$ o, mw,Qe} has the desired property. This

completes the proof.

We now discuss the notion of unitary equivalence for

representations of a C*-algebra.

Definition 1.26 Two representations of a C*-algebra, {,n} and {5 1},
are unitarily equivalent if there exists a unitary transformation U of $ onto
%' such that n'(A)U=Un(A) for all Ac Y. Two cyclic representations
{$,7,Q} and {$',n',Q"} are unitarily equivalent if {$,x} and {$',n'} are

unitarily equivalent and using the same unitary transformation, Q'=UQ.

Unitary equivalence of two cyclic representations {$,r,Q} and

{»'7',Q'} implies unitary equivalence of the -representations {»,n} and

18
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{$',7'}, but not the converse. In connection with Theorem 1.25 we.have

the following ([Emch] page 81).

Theorem 1.27 Let o be a state over a C*-algebra A and {H ,7q, R}

the corresponding G.N.S. representation, then any cyblic representation
{5 ,n,Q} of A with the property (Q,n(A)Q):m(A) for all Ae W is unitarily
equivalent to the cyclic representation {9, Qe}. In particular, the
representations {9 ,n,} and {H,r} are unitarily equivalent.
Proof: Define a transformation U from the pre-Hilbert space Hy, into H as
Une(A)Qp= T(A)Q,

for all Ae 2. We have

(Urtr(A) Q0 Unn(B)Q0)=((A)Q, n(B)Q)=(Q, n(A*B)Q)

=0(A*B)=(nu(A) Qe (B)Qw),

so that U preserves scalar products. U is also bounded on Hy, so that
we may extend by continuity the definition of U to all of » . Since Q and

Qg are cyclic we obtain in this manner a uvnitary transformation from 5,

into . This unitary transformation is such that
i) UQyu=Q, by definition,

i) @(A)=(Q,n(A)Q)=(UQ,,t(A)UQy)=(Qy, U-11(A)UQ), and
0(A)=(Qy,mu(A)Q ), together with the cyclicity of Q, imply that
U-1r(A)U=r(A) for all Ae 9, i.e., T(A)U=Umny(A).
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So the cyclic representations {$,r,Q} and {$ ,,nu,Qe} are unitarily

equivalent. This proves Theorem 1.27 by construction.

Quite often it is too complicated to identify the G.N.S.

representation corresponding to a state w with a known Hilbert space

and set of ‘bounded operators. In practice we often invent a cyclic

representation in which the state w is the vector state corresponding to
. the cyclic vector, and use Theorem 1.27 to conclude that this

representation is unitarily equivalent to the G.N.S. representation.
An important class of states are the pure ones.

Definition 1.28 A state w over a C*-algebra 9 is said to be pure if it is
not possible to decompose o into w=Awi+(1-A)w2, where w1 # w, are

states over A and 0<A<1. A state that is not pure is mixed.

The following theorem establishes a connection between the pure
states over a C*-algebra 9l and the irreducible G.N.S. representatiohs of

9L ([Emch] page 87).

‘Theorem 1.29 Consider a state w over a C*-algebra 9 and the
corresponding G.N.S. representation {9 4,n,,Q¢}. Then me () is

irreducible if and only if w is pure.
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Corollary 1.30 Consider an irreducible representation {»,x} of a

C*-algebra L. Every vector state in this representation is pure.

Proof: Let w(A)=(Q,t(A)Q) be a vector ;tate in an irreducible
representation {$,r}. Since the representation is irreducible every vector
in » is cyclic. The representation {5,r,Q} is therefore cyclic and hence
unitarily equivalent to the G.N.S. representation {9 4,nq,Qp), by
Theorem 1.27. The G.N.S. representation is then irreducfble because
the representation {$,r} is irreducible. The state w is therefore pure by

Theorem 1.29.

1.4 Von NEUMANN ALGEBRAS AND TYPES OF EQUIVALENCE

The physical states of a system correspond to Iiaear functionals
over the appropriate C*-algebra, which in turn correspond (via the G.N.S.
construction) to representations of the C*-algebra as bounded operators
acting on a Hilbert space. We now review those aspects of the theory of
operator algebras that appear to be most relevant to Quantum Mechanics
(this material is covered in [Emch]). In addition we will discuss two types
of equivélence between representations of a C*-algebra, quasi and

physical equivalence.

Consider the set £(9) of bounded linear operators on a Hilbert
space $. A variety of topologies can be defined on &(5), but we will

confine our attention to the uniform, strong, and weak topologies. We will
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characterize a topology on &£ (%) by specifying when a sequence of

operators converges in that topology.

Definition 1.31 A sequence of operators {Ap}e £ (h) converges to an

operator Ac £(9)

i) uniformly if lim_ lIA-Anll=0, where [|All is the operator norm

on £(H),

ii) strongly if lim_ I{A-An)VI=0, for all Ve 5,

iiijweakly it lim (AnV,9)=(Ay,9) for all V.bed.

It is easy to demonstrate that uniform convergence implies strong
convergence, which in turn implies weak convergencé. When a set of
operators contains its uniforrﬁ (strong, weak) limits we say that the set is
closed in the unifofm (strong, weak) topology. If a set of operators is not
closed in a particular topology we can close it by adding to it its limit
points in that topology. The set &(%) is closed in the uniform topology
which is the topology generated by the operator norm on &£($). Since

this norm is a C*-norm the set £($) is a C*-algebra.

We now consider some special subalgebras of £(5), the von
Neumann algebras. A set of bounded linear operators M on' H that is
an algebra under the usual operations of £($) is a subalgebra of £(5).
If P is closed under the involution of £(H) (i.e., the adjoint operation),

then it is a *-subalgebra. Recalling the definitions of the commutant I’
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and bi-commutant F " of P (Definition 1.23) we now define a speéial

class of *-subalgebras of £(5), the von Neumann algebras.

Definition 1.32 A *-subalgebra W of &(5) that has the property P =9

is a von Neumann algebra.

Since M'=M "' and 9]1"=9]l"", the commutant and bi-commutant of an

arbitrary *-algebra 9l are von Neumann algebras.

The set‘él(f)‘) is an example of a von Neumann algebra. As was
‘mentioned above it is also a C*-algebra. A natural question to ask is
whether or not all von Neumann algebras are C*-algebras. The answer
is contained in the following theorem (see [Emch] page 116 or [Brat1]

page 72).

| "Theorem 1.33 For a *-subalgebra M of £(H) that contains the identity
. the following conditions are equivalent.

) PM"=9 , i.e., P is avon Neumahn algebra,

ii) D is weakly closed, |

iiiy M is strongly closed.
Furthermore any of the above conditions imply that I is uniformly

closed.

Every von Neumann algebra is closed in the uniform topology and
is therefore a concrete C*-algebra (i.e. a C*-algebra of operators on a
Hilbert space). The converse is not true, a concrete C*-algebra is not’

necessarily a von Neumann algebra. This means that the set of
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operators 7(9) in a representation {$,n} of a C*-algebra 9L is not a von
Neumann algebra in general. We can, however, always generate a von
Neumann algebra from =(2) by forming the bi-commutant =(9L)", or

equivalently by completing =(2L) in the weak or strong topologies.

We have mentioned that in the Traditional Approach to Quantum
Mechanics one is always dealing with the set of all self adjoint operators
on a Hilbert'space, and that the states are represented by density'
operators. A state © over a von Neumann algebra M is said to be

norhal if there exists a density operator pe M (i.e., a self adjoint, positive,
TrpA

bounded operator with finite trace) such that w(A)= for all Ae M.

Given a representation {9 ,r} of a C*-algebra U, a state w over N is said

to be w-normal if there exists a density operator p in the von Neumann

Trpn(A)
Trp

representations {${,m1} and {$2,n2} of a C*-algebra U to be quasi-

algebra n(9L)" such that w(A)= for all Ae L. We then define two

equivalent if every m{-normal state of U is a no-normal state. We denote

this equivalence by ni=n2. The following is Theorem 2.4.26 in [Brat1].

Theorem 1.34 Two representations are quasi-equivalent if and only if
there exists a *-isomorphism a from x41(2)" to na(2)" such that

n2(A)=om1(A) for all Ae L.

Some authors choose this latter property as the definition of quasi-

equivalence.
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We now discuss another type of equivalencé between
representations, that of physical equivalence (([Emch] page 97). Given a
representation ..{55 ,n} of a C*-algebra 9, we know that the set of
operators () form a C*-algebra. Denote by S the set of all states over
9 and by S the set of all states over n(2L). For an arbitrary linear
functional fr on n(8l) we can define a linear functional f on 9L by
f(A)Efn(n(A))‘for all Ae L. Since a representation is positivity
preserving, f is positive whenever f is. We also note that f vanishes on
Ker n. Going the other way we see that any linear functional f over o«
that vanishes on Ker & gives rise to a linear functional f, over n(2) by
the definition fr(r(A))=f(A) for all Ae 2. Using the above definitions we
~may then consider S, to be a subset of S. Two representations {9 {,m1}
and {$2,n0} of A are then said to be physically equivalent if their sets of
states Spy and Sy, are identical when,cqnsidered as subsets of S. This

" is the case if and only if Ker ny=Ker 2. In particular we note that all

faithful representations are physicaily equivalent.

We now have three types of equivalence between representations
of C*-algebras; unitary, quasi, and physical. Two representations
{$ 1,71} and {$2,n2} that are unitarily equivalent have the same kernel
and are therefore physically equivalent. The unitary equivalence
between n1(2L) and n2(2) can be extended by continuity to a unitary
equivalence between n1(2l)" and 11:2(91)". So each density operator in
n1(A)" is unitarily equivalent to a density operator in n2(A)". The two
representations are therefore quasi-equivalent. Now assume that the
two representations {$1,m1} and {$ 2,1} are quasi-equivalent. The von

Neumann algebras m1(2L)" and n(2L)" are then *-isomorphic, where the
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*-isomorphism « is such that ano(A)=n1(A) for all Ae 2. This implies that
the two représentations have the same kernel and are therefore
physically equivalent. We now have that unitary equivalence implies
quasi-equivalence, which in turn implies physical equivalence. It is also

possible to show that unitary and quasi-equivalence coincide for

irreducible representations.
1.5 QUASI-LOCAL ALGEBRAS

As we have mentioned, the Algebraic Approach to Quantum
Mechanics is based on the postulate that it is possible to construct a
C*-algebra for a given physical system in such a manner that the
bounded observables of the system are represented by the self adjoint
elements of the C*-algebra and the states of the system are represented
by linear functionals over the C*~al§ebra. We now wish to extend this
formalism to infinite systems. This is made possible by exploiting the fact
that all physical measurements performed on a system are limited in
space and time. This means that we usually understand the local
structure of the system, and the structure of the infinite éystem is built up
from this knowledge. The C*-algebras that we associate with
observables that can be measured in a finite space-time region are
referred to as the local algebras and-the C*-algebra th:at we build from

them is said to be a quasi-local algebra.

In what follows we will assume that the configuration space of the

system in question is either R3 or M4 (the four dimensional Minkowski

space). The following may be found in [Emch], page 253. To each
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bounded region Z of the configuration space we assume that we can
associate a C*-algebra 9 z in such a manner that the self adjoint
elements of 8z correspond to the observables of the system that can be
measured within the region Z. We order the regioné Z by inclusion. This
ordering is a partial ordering (for all pairs Z1 and Zy there exists a Z3
such that Z1<Z3 and Z»<Z3) and hence the set X of all bounded regions
% is a directed set. What allows us to construct a C*-algebra that
corresponds to the infinite system is the postulate of isotony. We assume
that for any pair of regions Zy and Z2 we can construct a

*-homomorphism iz ¢ that takes all of 9121 into 9122 (i.,e. i2,1 is an

injection) that satisfies

i) i2,1(11)=12, where 14 and 12 are the identities of 9121 and le?_,

respectively,

i) i3,2 i2 1=i 3,2 whenever Z1<Z2<Z3.

The postulate of isotony is a sufficient condition for a family
{él z:Ze X} of C*-algebras (with T a directed set) to admit a C*-inductive
limit. This is a C*-algebra 9L with identity 1 that has the property that for
every Z:e):‘there exists an injective *-homomorphism iz from 8z into A

that satisfies
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i) iz({lz)=1, where 1z is the identity of 9L,
ii) i22(9122)3i21(9121), whenever Zs>7Z1,

and i) Zgziz(ﬂz) =9, where the bar denotes the uniform closure.

The C*-algebra U is referred to as the quasi-local algebra for the infinite
system. As the name would suggest, every element of 9l can be
approximated to any degree by elements of the local algebras ¥ z (this is

the content of condition (iii) above).

States of the infinite system correspond to states over the quasi-
local algebra for the K‘system. Of particular importance is the Gibbs
equilibrium state, and we now discuss how we may attempt to construct
this state as a state over the quasi-local algebra. Consider the quasi-
local algebra & generated by the family of C*-algebras {2 z:Ze Z}. Let
%o be a subset of = which consists of an increasing sequence {Zn}.
Assume that this sequence has the property that for every region Z in &
there is an integer N(Z) such that ZpoZ for all nzN(VZ). Let Hp be the
Hamiltonian for the region Zn and ppthe corresponding canonical

. . _ e‘BHn
density matrix pn—————-——Tre_ﬁHn . For every Ae 8l z and n>N(Zp) we then

define the state wn on Z as wp(A)=TrApn. If n"l}L on(A) exists and defines
a state w on 8 we refer to it as the canonical (or Gibb's) equilibrium state
at natural temperature B. The grand canonical state is defined in in a

similar fashion with the Hamiltonian Hp replaced with H-uN, where N is

the number of particles in the region Zp.
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1.6 THE CONNECTION BETWEEN-THE TRADITIONAL AND
ALGEBRAIC APPROACHES TO QUANTUM MECHANICS

In this section we will attempt to clarify two points. (a) In the
Traditional Approach the representation we are working in is irreducible
and pure states are vector states. In the Algebraic Approach all states
are vector states and pure states correspond to irreducible
representations (see Theorems 1.25, 1.29,1.30 Chapter 1). (b) In the
Introduction to this thesis we made the statement that the algebra
associated with a finite system usually admits only one irreducible
representation, and when this is the case we might aé well work in this
unique irreducible representation, thus returning to the traditional Hilbert

space formalism.

We first discuss (a). In the Hilbert space formalism one is always

dealing with a concrete Hilbert space . The aigebra is assumed to be
the set £(H) of all bounded linear operators on this Hilbert space, and
this set is always irreducible (roughly speaking the set is too large to

have any nontrivial invariant subspaces). A state is a now positive linear

functi'onalqover £(H). Itis possible to show that any such state o is. of the
TrpA

form w(A)= Trp

(for all Ae £(9)), where p is a bounded, self adjoint ,

positive operator of finite trace. If we assume that p has a discrete

spectrum , then according to the spectral theorem p can be written as
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P=Z7»¢P¢, and therefore w(A)= Ao(,A9)
2 A(0,0)

eigenvectors of p and the Py are projection operators onto the one-

, where the vectors ¢ are the

dimensional subspaces spanned by the ¢. Pure states then correspond
to the special case in which p is a projection opefator onto a one
dimensional subspace. This is the case when the above linear

(9,A0)

combination contains only one term. In this case w(A)=""—, so the

(9.4)

pure states are vector states and one can prove that all vector states are
pure. Corollary 1.30 makes it clear that the latter proof depends on the
irreducibility of the set of operators £(%). In the Algebraic Approach we
gain the result that all states are vector states in some representation,
with the price being that the representation is irreducible only when the
state is pure. We can gain an understanding of what is going on here by
considering the case when p is a projection operator onto a two
dimensional subspace, and has unit trace. If this is the case then
o(A)=(01,Ad1)+(d2,Ad2) , with ¢1 and ¢ the eigenvectors of p. In the
Hilbert space 5, w is not a vector state. However, in 5% o is a vector
state with w(A)=(¢1D¢2, (A®A)019¢2). Thus we can expre‘ss wasa
vector state, but in doing so the algebra £(5)®L(H) becomes

reducible.

We now discuss (b). Assume that the C*-algebra U

corresponding to some physical system admits only one irreducible

representation, {»,n}. This is usually the case when the system

possesses a finite number of degrees of freedom. In Chapter 2 we will

show that this is the case for the C*-algebra that corresponds to a finite
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spin system and in Chapter 3 we will show that this is true for the
C*-algebra that corresponds to a finite Bose gas. This representation will
be the irreducible representation in which one is working in the Hilbert
space formalism. Let w be a mixed state over A, and for simplicity
assume that w decomposes into two pure states w=Awy +(1-A)wg, w1 and
w2 pure. Without loss of generality we may assume that the reducible
G.N.S. representation {9 ,,n,} corresponding to the @ can be

decomposed into a direct sum of the unique irreducible representation

(D} as

©2A) 0
ndm):( 0 n(ﬁl)}

It easily follows that

{5 )

so the von Neumann algebras (AU ) "and 1;(91)" are *-isomorphic. The
representations {9 q,ne} and {H,n} are therefore quasi-equivalent, by
Theorem 1.34. This means that the set of states of 9 that can be
expressed in terms of the trace of a density operator in either of the two
representations coincide. Since w is a vector state in {5 y,ny}, it can be
ekpressed in terms of the trace of a density operator in {$,r}. So we
might as well work in the irreducible representation {55 ,7t}, returning to the

Traditional Approach.

The C*-algebra that corresponds to an infinite system usually

admits an infinite number of unitarily inequivalent irreducible
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representations. In Chapter 2 we shall show that this is true for the
C*-algebra that corresponds to an infinite spin system and in Chapter 3
we shall show that this is true for the C*-algebra that corresponds to an
infinite Bose gaé. When this occurs we must work with the C*-algebra,
since it provides an underlying link between all these different

representations.
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QUANTUM SPIN SYSTEMS

In this chapter we will explicitly illustrate the main results of
Chapter 1 by discussing the algebraic description of Quantum ‘Spin
Systems. The C*-algebra corresponding to a single spin will be
constructed and analyzed. The G.N.S. representation corresponding to
the canonical equilibrium state will be constructed, following the
procedure given in the proof of Theorem 1.25. We will then generalize to
a two spin system, a multi spin system, and finally to a system consisting
of an infinite number of spins. We shall find, among other things, that the
G.N.S. representations corresponding to different finite temperatures are
unitarily equivalent, as long as the system remains finite, while for the

infinite system these representations become unitarily inequivalent.

2.1 SINGLE SPIN SYSTEMS

Consider a system consisting of a single spin (s=1/2) with no other

degrees of freedom. The C*-algebra corresponding to this system is
generated by the four abstract elements oo, G4, Op, and o5 equipped with

the composition laws

0‘0=(0'o)2=(0i)2 i=1,2,3, 1 (2.1a)

O0=0; i=1, 2, 3, , (2.1b)

and  o©,0,=io; , similarly for cyclic permutations (2.1¢c)
of 1,2,and 3.
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Latin indices (i, j, k) will run from 1 to 3 while Greek indices
(1, v, ) will run from 0 to 3. We begin by defining the algebra U to be
the set of all polynomials in o, of finite degree with cbmplex coefficients.
Using (2.1) it is obvious that 9L consists simply of the linear combinations

of the four ¢'s,
A =({A=otcy: ae C}. (2.2)
Note that o, is an identity for 2 and the product of A=ot'c, and B=p oy, is
AB=oMBVo,0y. (2.3)
An involution of 2L can be defined as
(cMopy*=otoy,. | (2.4)
To show that the mapping defined in (2.4) is indeed an involution
of A we first note that A*e U if Ac A . Then
i) (A*)*=A,; this is easily verified by. inspection of (2.4),

ii) (AB)*=B*A¥*; since the o, are self adjoint we have

(AB)*=(aMBYopoy)*=0HBY (oyoy*=aHBY oyop=B*A¥,

iif) (YA+8B)*=YA*+5B*; this is easily verified by inspection of
(2.4).

This shows that (2.4) does define an involution of 9, and 9 is therefore

a *-algebra.
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To define a C*-norm on A we first determine the spectrum of an
arbitrary Ae & and then use the fact that l|All=p(A*A)1/2, As is evident
from (2.1b) the element o, is an identity for 9L. It is easy to demonstrate,
by direct multiplication, that the inverse of Ac U is

(aCoo- a'oi)

A(aM -
Al=(a"op) (0®)2 -(@1)2 - (@?)2 - (a3)2

(2.5)

So A1 exists if and only if (0°)2 #(a')2 + (@?)2 + (¢3)2- Using this
condition for invertibility it is easy to see that the spectrum of a general
Ae MU is (no confusion should arise from using the symbol o to denote the

spectrum and oy, to denote the generators of o)

0(A)=c(a”ou)={k=a°i\/ ()2 + (a?)2 + (a8)2 } (2.6)

E.g. o(c®)={1,1}, o(c)={1,-1}, o(co+oa)={1x\1}={0,2}.

Using the spectrum we then define the norm of an arbitrary Ac ¥ as

IAl=lloHoyll=p(A*A)1/2=[Sup{IAl: Ae o(A*A)}]1/2.

— 1\2
={a“a“+2\/ [Re (a8 '-i0253)]2+[Re (00 2~ia3a )2 } (2.7)

- +[Re(cfal-ia'5?))2
E.g., loyll=1, log+oall=(Sup{iMl: A=1£\1})12=n2 -

In demonstrating the connection between the norm and spectral

radius of a C*-algebra (l|All2=p(A*A)) one assumes that a C*-norm exists.

This means that we must demonstrate that (2.7) really does define a
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C*-norm for A, for it may happen that our *-algébra 2 does not admit a
C*-norm (not every *-algebra will). To demonstrate that (2.7) satisfies the
properties in Definition 1.4 is rather difficult (it is very messy to
demonstrate that (2.7) satisfies the triangle and product inequalities) so

we will instead demonstrate that the *-algebra 2 possesses a C*¥-norm

(with respect to which it is complete) and then use Theorem 1.6 to
conclude that this C*-norm is unique and hence given by (2.7). To this

end we define a norm on U through the faithul representation of A as

the set of two by two matrices with complex entries acting on €2- The
elements ojare represented by the familiar Pauli spin matrices while o,

is represented by the two by two unit matrix,

w(a={ gy } wton{o 5 } sea{ g stoai{ 7'}

A norm on () is now defined as

I{A)l=ln(ao )l =Sup{lin(AjAl:Ae €2, IAl=1}

0,3 1.2 1
—Sup A Al smqzemor=1p  (28)
a'-ia? o%-ad |2,

We now use the fact that the norm of a complex vector satisfies

(a) IIAll=0, IAl=0 if and only if A=0,
(b) lloAll=lot IAll for all ae €,
(c) IA1+A2ll<lA11l+lIA2,

and (d) (Cauchy inequality) I(A,3)I<IAll 13,
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to show that (2.8) satisfies the conditions in Definition 1.4,

i) Ix(A)I=0, lix(A)=0 if and only if n(A)=0; the first part is
obvious. The second part follows from (a) and the fact that n(A)A=0 iff
and only if n(A)=0,

illar(A)lI=lot In(A) for all e €; this follows from (b),

iii)"n(A+B)ll£lIn(A)||+ll7r(B)l|; using (c) and knowing that nis a
representation we have |
llx(A+B)lI=Sup{lin(A)A+r(B)All:Ae T2, IAll=1}
<Sup{lin(A)Al+Ix(B)Al:Ae T2, IAl=1}
<Supflir(A)Ml:Ae €2, IAl=1}+Sup{lin(B)All:Ae T2, lAll=1}
=l (A)l+ll(B)l,

iv) ir(AB)lI<liz(A)lllx(B)ll; using (b) and the fact that = is a

representation we have (we may, without loss of generality,assume that
B=0)

le(AB)lI=Sup{lln(A)r (B)AJI'?»E(I)2 ||7&|| =1}

_Sup{”n ) I (B)Al ll: ae @ 2; I0NI= 1}

m
=Sup{lin(A)8ll Ix(B)All : A,8e C2,IAll=lISl=1}
<Sup{lln(A)3ll:3e €2, I3ll=1}Sup{lix(B)All:Ae €2, IMl=1}
=[ln(A)lllx(B)I,

r(B1A
( note:g= lln(B)Lll)

v') In(A)lI2=lix(A*A)ll; denote the adjoint of m(A) by
n(A)t=n(A¥). Using (d) we have |
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lIm(A)I2=Sup{lin(A)All2:Ae €2, IMl=1}
=Sup{(n(A)A (AL e C2, IAll=1}
=Sup{(A ,m(A)Tr(A)A)Ae C2, IAll=1}
<Sup{lin(A)Tr(A)Al:Ae C2, IAl=1}
=[ln(A*A)l
<lm(A* =(A,

o) (A<l (A

By interchanging A and A* in the previous argument, it follows that
Ie(A*)lI<lim (A, so ix(A*)=lx(A)l. If we now use this identity in the

previous argument we have
(A2 < lIm(A*A)li<lin(A*) (Al =lIn(A)lI2,

so (A2 = lIx(A*A)I.

We have shown that (2.8) defines a C*-norm for n(2L). Since the
representation is faithful (i.e., ©(A)=0 if and only if A=0), IIAIIEIIn(A)ll is a
C*-norm for 2L. To show that U is a C*-algebra we must demonstrate

that 9l is complete with respect to this C*-norm. Specifically, we must
show that the sequence {aﬁ, op} converges to an element of N ifitis a

Cauchy sequence, i.e., if

lim  lloboy—ohoyli=0.
m,N—oo
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We have lognop-obiopll? = llodn(oy)-ohn(oy)I2

=Sup{ (oot )1r(cr,1)2,‘ll2 Ae €2, [IAll=1}

Letting L:CJ) gives

0 3 3 1 1, .., 2 2
IIocﬁ,ou._aﬁcull22!(ocm..aﬁ)+(am_an)l2+l(am_ocn)+l(ocm_an)l2,

while L:(?) gives

| 2
llody ou-ohoul221(ad, o)~ (am-an)l +l(ocm_oc )- l(am_a

2.

Using these inequalities we see that mltijr_nm llaﬁ,ou_a‘,fouH:O implies

that mIri1n_1m. I(aﬁq_aﬁ)ho for u=0, 1, 2, and 3, i.e., the sequences of

complex numbers {aﬁ,} are Cauchy. Since the complex numbers are

complete, {oc‘,;} converges for u=0, 1, 2, and 3 Let {ocl,;}—m”, we then
see that {o}, o} —atoue 9. We have shown that 9 is complete and

hence is a C*-algebra. We can now conclude that (2.7) is the unique C*-

norm for 9.1

The real and self adjoint elements Ae &l will now be classified.
Since A=aay, is completely determined by the o, this classification is in

terms of them.

T What we have done here is quite general. We have shown that the usual norm on the
set of bounded linear operators on a Hilbert space is a C'-norm. If we know that a -
algebra has a faithful representation then we can conclude that it possesses a c’ -norm. If
we can show that the "-algebra is complete with respect to this C'-norm then itis a C'-
algebra and we can use the relation l|All2=p(A’A) to derive a convenient expression for
this C"-norm.
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Proposition 2.9 A general element A=atope U is:
| i) Self adjoint if and only if the coefficients o/ are real,
ii) positive if and only if the coefficients o™ are real and
satisfy oc°2\/ (@24 (a?)2+(a)2 .

Proof: i) Follows trivially from A*=aMo, .

ii) Recall that A is positive if it is self adjoint and o(A)e[0,]; the

above condition then follows from the relation

o(A:a”ou)={7\:a°i\/(a1)2 + (0?)2 + (a3)2 }

Now that we have characterized the.positive elements we can go

on to construct the states over 2. Since A=a”ou is completely
determined by the coefficients oM, any functional f over 9L must be of the
form f(A)=F(oM), where Fis a complex' valued function. In order for the f
to be a linear functional it must satisfy f(A+B)=f(A)+f(B). With B=p"oy, this

condition implies that
F(aM+BH)=F(aH)+F(BH),

so F must be of the form F(a!)=x,a™. Since f(A*)= f(A) if f is a linear
functional, the coefficients: Xp must be real.'r These results are

summarized in the following proposition.

Proposition 2.10 The most general linear functional f over 9l is of the

form f(oMop)=x,oM, with the real coefficients x,,.
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A linear functional f is positive if it takes on positive values for

positive elements of . Using the general form for a positive element of
A, given in Proposition 2.9, along with the previous result we see that f

is positive if and only if f(oMoy)=x,0"=0 for all ot satisfying

o2\ (o1)2+(a?)24(c3)2 ,

with the coefficients xp real. In particular note that co>0 implies

f(0o)=X0>0. We can now prove the following.

Claim 2.11 A necessary and sufficient condition for a linear functional

f(o*op)= x,a", with xM real, to be positive on the positive cone

aoz'\/ (@')2+(0®)2+(aB)2

is XOZ\] (X1 )2+'(X2)2+(X3)2..

Proof: We first show that the condition is sufficient. Given

Xo2V (X1) 2+’(x2»)2+(x;3)2 we must show that x,0/*20 for all real o* satisfying

°>\/ 2+ 3)2 Combining these two conditions' we have

(2°)2(x0)22[ (e )24 (et )2+( %)2][(x1)2+(x2)2+(x3)2].

If we form the vectors A=( ola a3) and X=( x1 X2 X3) we can use the

Cauchy-Schwartz inequality to obtain

[(01)24(02)24+(03)2][(x1)2+(x2)2+(x3)2]= IIAII2IIX|l2
ZIA._)glz

= (o xq+0Pxp+03%3)2.
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Combinihg the above inequalities we conclude that xyot 20, and hence

the condition is sufficient.

To show that the condition is necessary we assume that

Xo<V (X1)2+(x2)2+(x3)2, i.e., the condition fails, and construct a positive A
such that f(A)<0. Let a®=V (x1)2+(x2)2+(x3)2, a'=—xq, a®=—x2, 03=—x3,

and consider the element A=atoy. Since (a°)2=(a')2+(0?)2+(03)2 A is

positive. Now f(A)=xuot=xqV (x1)2+(x2)2+(x3)2 — (x1)2 —(X2)2 —(x3)2 <0,

- where the last inequality follows from the assumption

Xo<V (X1)2+(x2)2+(x3)2. So we have constructed a positive A such that

f(A)<0, and the condition is necessary.

The following "geometrical” interpretation of the condition in the
previous claim will prove to be useful. Consider a linear functional
flaMop)=x oM, with xo>0, X1, x2, and x3 real. We imagine that the x1, x2,
and x3 form a vector X=( x1,x2,x3) in R3, and that x, is the radius of a
sphere in R3. We then have, frorﬁ the previous claim, that f is positive if

and only if X lies in or on the sphere of radius x,.

A state o over U is a positive linear functional with unit norm.
Since AU possesses an identity, namely ¢°, we have lloll=0(c®)=x=1.

This immediately gives

Proposition 2.12 The most general state o over ¥ is of the form

o(oMoy)=x oM, with xo=12(x1)2 +(x2)2 +(x3)2.
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In terms of our geometrical interpretation we have that a linear

functional w is a state if and only if the corresponding vector X lies in or

on the unit sphere.

Finally we characterize the pure states.over 8L. Recall from
Definition 1.28 that a state w is pure if it is not possible to decompose
as w=Aw{+(1-A)w2 with w1 and w2 states and O<A<1. In terms of the
vector X w is pure if it is not possible to decompose X as X=AX1+(1-A)X2
with IX1ll<1, IX2ll<1 and 0<A<i. So w is pure if it is not possible to
express the corresponding vector X as a non-trivial convex combination
of two vectors lying in or on the unit sphere. Since X lies in or on the unit
sphere this is the case only when X actually lies on the unit sphere. In

terms of w itself we then have the following proposition.

Proposition 2.13 The most general pure state ® over o is of the form
o(atoy)=x oM, where the coefficients x, are real and satisfy

Xo=1=(x1)2+(x2)2+(x3)2 .

Suppose that we place our system in a uniform magnetic field in

“the 3- direction, so that the Hamiltonian is H=-Boc3. In the concrete

Hilbert space approach, the canonical density matrix is then

__exp(BBog)
P=Tr exp(PBo3) ’

where (B=(kT)-1). We shall assume that this is also the case in the

Algebraic Approach, with Tr(A)E{ZX: Ae o(A)}. This gives rise to the state
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®(A)=Tr(Ap). Using the properties of the spectrum in Theorem 1.13 we

have
Tr(exp(BBoa))={Q ) : Ae o(exp(BBog))}
={D A : Acexp(c(BBa3))}
=exp(pB)+exp(-HB)
=2 cosh BB,
and Tr(Aexp(BBo3))=Tr(c*oyexp(pBos))

=Tr(oop(cosh BB op+sinh BB o3))
=(a® cosh BB + a3 sinh BB) Tr oo

+ (X) Tr o1 + (Y) Troo+ (Z) Tr o3,

where X, Y, and Z depend on the o' and cosh BB, sinh BB. Since
Trog=2and Tr o1 =Tr o2 =Trc3 =0 we have
Tr(oc“cuexp([}Bcg)) =2 (a® cosh BB + o3 sinh BB).

a®cosh BB + osinh BB
cosh BB '

Therefore  w(atoy)= Tr(a!oup) =
or o(A)= o(ctoy)=al+ 031, t=tanh BB (Oslti<1) (2.14)

This equilibrium state was obtained by using the canonical density
matrix p from the concrete Hilbert space approach. If we are true

disciples of the Algebraic Approach we should demand an algebraic

characterization of this equilibrium state. We only mention here that this
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might be possible following the methods of Hagg/Trych-Pohimeyer
( [Haag1]).

We now make the following observations. Since Iti<1, w(A) is a
state by Proposition 2.12. From Proposition 2.13 we conclude that w(A)
is pure only when t=t1. Denote these states by w4(A) (i.e.,
w..(oHoy) =0+ o3 and w_(aMoy)=al- ad). The state w,(A) corresponds to
the zero temperature case. Finally a mixed state w(A) can be

decomposed in terms of the pure states w+ as
0(A)=ulw,(A) + vea(A), (2.15)
with u2=(1+t)/2 and v2=(1-t)/2.
The G.N.S. representations associated with these states will now
be constructed. First consider the state o(atoy)=al+ o3 t, O<lti<i. We

begin by constructing the left ideal 8, ={Ae 2: w(A*A)=0}. A simple

calculation shows that
8 p={oHope Wila®R+lot 2+102R+a3 R +t(ala3+5C o3 in o®-ic ') =0}
={oMope W {la®2+103124t (00T3+T a3 +{la 12+1a22+t (! o—io'52)]=0).

Now la®+a:®1220 implies 106°12+1a312 > —°%3-6%a3 > t(a@3+ad),
where the last inequality follows from Iti<1 and is an equality only when

a®=03=0 . So we see that
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[loCi2+l03124t (03 +0%03)]20,
equality only for 0°=a3=0. In a similar fashion we have
lloc 2 +laP124t (1o 0el-ic62)]20,

equality only for o'=a2=0. Since equality occurs in the above expfession

only when all the o vanish, we conclude that

S ={Ac W:A=0}. (2.16)

The pre-Hilbert space Hy, is the span of the set {Va : Ac ¥}, where
Wa is the equivalence class Ya={A+I :1e Sy}. A scalar product over H,

is then defined using the state , (VA ,¥B)=0(A*B). We now show that H,,
is four-dimensional by demonstrating that the set {\lfco, ‘4’61, ‘Voz, WOS} is

linearly independent while the set {\IIGO, ‘lfm, W(Sz’w()'a’ ‘lfB} is not for

arbitrary Be &L. Recall that ¥a =0 if and only if Ae S, i.e., if and only if

A=0. Now
0 1 2 3 o
o \lfco + 0 W01+ o \ch + 0 ‘lfcs ”Woc”cu’

so that a linear combination of the w“u vanishes if and only‘ if the

coefficients oM are‘identically zero, hence the set {‘lfco ,\l’(,1 ,‘I’GZ ,‘4’03 }is

linearly independent.  Now consider the linear combination
WOV +alVo 40PV +a®V 4BV, for amitrary B=PHoy=0. We have
oV _ + oV _ 40PV 4oV LBV oV m

Oo o1 O2 O3 B~ ' o~op+Bproy

=V ot Oy’
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so that this linear combination of the W"u ,\I’B vanishes if the coefficients

are chosen to be B=1 and o* =B" , hence the set VYoo ¥o1Vor Vo V!

is not linearly independent for arbitrary B#0. This shows that the pre-

Hilbert space Hy, is four-dimensional.

To obtain an orthonormal basis for Hy, we apply the Gram-Schmidt |
process to the linearly independent set {\Vco,‘lfm,‘l’cz,\lfoa}. This

produces the orthonormal set {V4,¥2,¥3,V4}, where

ViV,
Va=(-tV g Vo N1,
Yo=Yy, .'

and Va=(—itV g +V o N2,

Since the set {V1,¥2,¥3,V4} is an orthonormal basis for a- four-

dimensional space we let
1

Vi=t [, V2  ¥a=| | |, and V4=

O O = O
o = O O
- 0O O O

0
0
0

Now the representatives ny(A) are defined by nm(A)WB=\VAB, s0

Te(A)ij=(Vito(A)Yj). For example
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Tw(03)34=(V3,me(03)Vs)

Vi
_(\Vc1 ,t\lfcz) (\V(,1 ,—-i\lf(y1 )
V12 V12
,{c102) . w(c101)
=1 —i
1-12 1-12
(it
\]142
=12,
Continuing in this manner we find
1000 0010
roloo)e © 100 lron= 00O
T 0010 [ 1000
0001 0-i0O0
( 0 0 —it \j1-—t2\
0 0 —iVi-t2
Tw(o2)= ‘
it ivi-t2 0 0
\«]1—t2 —t 0 0 }
( t V1-t2 0 0 \
\f1-—t2 —t o 0
Tp(03)=
0 0 —t —i\]1-—t2
\ 0o o W2 t )
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Since the pre-Hilbert space H, is equal to C4, it is already
complete, so H, =C4. The cyclic vector Q, is given by Qu=Ys,=Y1. At
this point we should have a cyclic representation {$ ,n4,Q¢} such that
®(A)=(Q0,Tt0(A)Qg) for all Ae 2. To demonstrate that this is the case we
first put {5 ,70,Qq) in @ more convenient form by diagonalizing Tu(o3).
The solutions to the secular equation 0=|1c(,,(c53)—x1 |=(x2—1)2 are
A=1,1,-1,—1 (I is the four by four unit matrix). The corresponding

eigenvectors are found to be

u 0 v 0
1 v 2 0 1 -u 2 0
Vy_q4= y Vo _q= Ty 1= ,and vy __4= ,
A=1 0 A=1 v A=—1 0 A=—1 u
0 —iu 0 iv
1+t 1-t . . . .
where u= 5 and v= - - The matrix U that diagonalizes ny(o3) is
therefore
uvo0ao 0
Uz 00 u |Y
' 0 0 v —iu
v-u0 0

Applying U to our representation {9 ,,n,Q¢} gives rise to the equivalent

representation {Sw:n'm,dw},where
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$0)=U5w = 5(0 =®4,

00 )

7o (00)=Umy(00)U'=

O O O —
QO - O
b
o

To(o1)=Ung(o1)U'=

o O = O
O O O =
o
—r

To(02)=Une(c2)U'=

oo — o
o
o
1

Mo(03)=Ung(os)U'= ,

0 0 0-1

and Q=UQq=

< O O C

Dropping the primes, we arrive at our final form for the G.N.S.

representation'corresponding to the state o, w(A)=w(oHoy)=00+tad:

0 To(oHoyp) T4ia? of—oB

(rmolotoy) O oC+ad al-in?
{5m=a>4,nm(a”ou)=( o }no(a“ou){ | J Qq
ol i
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where u=’\/ % , v=’\/ let , and t=tanh BB.

We now make the following observations about the above
representation ( it is easy to verify that it is indeed a representation of 91).
Let ¥ be an arbitrary vector in 5. Then by direct multiplication it is easy

to show that

sl
i

o O 1 i o &
“‘”(ﬁ[ﬁ-* V]Go+§[“g+ Yg]or—%[% -73]024-5[5- V}%

O < O Q
< O O C

S0 Q, is a cyclic vector and the representation {5 ,n,,Q} is cyclic.
Furthermore, it is easy to show that the vector state (Qg,me(A)Qg) is

equal to the state  (i.e., (Qo, (0t 01) Q)= +tod =0(otoy)).

The representation is obviously reducible, as is to be expected
since the state w is mixed (Théorem 1.28). Since the representation is
reducible, there must exist a non-zero We $, that is not cyclic, by Lemma

1.22. An example of such a vector is

ol+03

1
1 .
0 0
0 0

2
b4

For example, it is not possible to obtain the cyclic vector Qg by applying
To(2) to ¥ (although there exists an Ae U such that W=n,(A)Q; this A

is not invertible).
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The dependence of the representation on temperature is entirely
contained in the cyclic vector Q,, so that représentations corresponding
to different (nonzero) temperatures are unitarily equivalent (the
representing matrices are in fact identically equal). The representation
{9 w,me} Will be referred to as the finite temperature representation. We
will discuss what happens to the cyclic representations {9 y,nu,Qu} as
the temperature goes to zero after we have constructed the G.N.S.

representation corresponding to the zero temperature state ..

The G.N.S. construction for the pure states coi(oc“ou)=oz°:toc3 is
basically the same as that for the mixed state w, only now the left ideals

Y+ are not trivial:

S gr=(Ae W (A*A)=0})
={otope W:lal+ad|2+]o +io?[2=0}

={o(cor03)+PB(01%ic2): o,Be C}.

The pre-Hilbert spaces Hy+ =span {Ya: Ac U}, whe;e Ya is the
equivalence class Va={A+o(coto3)+B(c1icn):Ac 8 ;0,Bc T}, are now
two-dimensional. To show this we demonstrate that the set {Wco,‘i’o1} is
linearly independent while the set {Yo,,%Y61,¥YB} is not for arbitrary non-
Zero ‘{’B. Recall that the zero vector is any element of § 4+ , the
equivalence class corresponding to A=0, so that the linear combination
Woo+8Vo1 =Vy00+801 vanishes if and only if ¥Yyoo+801 € Sz . This is

the case only when y=3=0, so the set {¥o,,Y051} is linearly independent.
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Now let WBuo'u be an arbitrary non-zero vector (i.e., B°¢i[33 and B1¢ii[32)

and consider the linear combination
Woo+dVo1+eVpio,=Yyo,+501 +efHoy-

This linear combination vanishes if e=1, 7=B°:tB3(¢O), and 8=B1ii[32(¢0),
so the set {Yo,,Y01,Yg} is not linearly independent for arbitrary non-zero
Vg, and the pre-Hilbert spaces Hy: are therefore two-dimensional. We

in fact have Hy+=C2, so the Hy+ are already complete and therefore
Smi=®2.

Since the linearly independent set {Yoo,Y01} is orthonormal
((Yoo0,Y01)=01(0001)=0, I¥ooll2=w+(c000)=1, and Vo1ill2=0(cio1)=1),

we choose it for a basis , {¥1=Y0,,Y2=¥051}. Since the $,+ are two-

ol wnf)

With this choice of basis, the representatives ny+ and cyclic vectors Qg+

dimensional let

are

04 . nm+(00)=(; (1) )v 7to)+(0'1)=(c1) (1)): nm+(02)=(? _(;i )’ 7‘:0)+(0'3)=(

and Qg =Y =(:))

- Em_(Go)=(8 ?), uw_(01)=((1) (1)), ﬂm_(02)=(£)i (l)), 7‘(0_(03)=(
1
and Q, =¥1 =(o).

53



CHAPTER 2

Using the unitary transformation Ue);) we see that the o-

representation is unitarily equivalent to

co_'_: nm_(Go)'ﬁ(; (1)), T (O1 )’=(? :)) , “m_(GZ)'=(? ;i ) ' “m—(°3)'=((1) _01 )

and Qm_=((1)).

Our final form for the G.N.S. representations corresponding to the pure

states w+ are then (dropping the prime from the w- representation)

(oP+0 ol-ic? )

1)
0yt 1D, =C2, ny, (cHopy)= L Q =( }
- { o o g Ka1+ia2 a°—o3 ) ®+0)

(al+o ol—io?

, 0)
- : {Sm_;ﬁ)z,nw_(a”cu): 1.2 o .8 ,Q’m_=(1 }
| o' +ia® a-o” J

We now make some observations about the above

representations (it is easy to verify that they are both representations of

9L ). Let ¥ be an arbitrary vector in €2, then

\PE(Y) =gy (yc50+8<51)(1 )
) * - \0

=7tm_(500+701)(?),

so the vectors Qg and Q,_ are cyclic for their respective

represeniations, and hence both representations are cyclic. Both

representations are also irreducible, as is to be expected since the
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states wy. are pure. Since the two representations differ only in their cyclic
vectors, we will concentrate on the representation corresponding to the

zero temperature state w,. To demonstrate the irreducibility we use

Schur's Lemma (Lemma 1.24), specifically we show that any two by two
matrix that commutes with all the representatives nm+(91) is necessarily a

multiple of the unit matrix. Let M be an 'arbitrary two by two matrix. Then
o ] ab Yol o' (acliba’ bol+aa
Mnm+(oc Co+O 01)=( 1 1 1 b
cdAa' a® )| cal+da’ dal+co
4 : ] aon°+coc1 boC+dat!
an Ty, (0P00+a ' G1)
. coc°+aoc1 dol+bot

This shows that M will commute with nm+(a°co+a1 o1) only when a=d and

b=c. We now require M to also commute with nm+(a202+oc303),

M. (6262+a%03) (a bY o -ia? Y (aad+iba? ~bol—iacn?
Ty, (SO2+0°03)= s
* ba)ia? —a3 ) | bal+iac? —aa’~iba?

. ' M aa3—iba2 bas-iaa?
an T, (@202+0503
¥ in® —ad —bal+ian? —acd+iba?

We have now reached the desired result, for M will commute with
nw+(a202+a303) and nw+(a°oo+a1'o1) only when b=0, i.e., when M is a

multiple of the unit matrix. Schur's Lemma then allows us to conclude

that the representation corresponding to the state w, is irreducible (since

55



CHAPTER 2

T, (A)=nt,_(A) for all Ac L, the representation corresponding to the state

w- is also irreducible).

The irreducibility of the representation {$ 0, T, } implies that
every non-zero vector <Deb'm+ is cyclic, and every vector state

O(A)=(D,my,, (A)D) is pure. To demonstrate this, consider an arbitrary non-

107 . : .
zero vector de 55(,)+ ; <D=( } We may assume, without loss of generality,

. that @ is normalized to unity. The following result shows that @ is cyclic.

Let ¥ be an arbitrary vector in 5, , then

‘PE(S} T +(a202+a303)[g)

Next we consider the vector state ¢(A)=(<D,nm+(A)CD),

3 1

_ (of+03 al-ia? (g
q)(aucu):(&’ B)[ 1 2 3 J[ J

a'+ia® al-a® )\B

=(lol2+IB[2)a’+ [@P+oB) ot +(oB-idB) o+ (lol2~1B12) .

Now the state w(o#'oy)=x"a*is pure if and only if x0=1=V (x1)2+(x2)2+(x3)2

(Proposition 2.13). We have x°=|a|?2+]BI2=1, x1=aB+aB=2Re[cf],

x2=0,p-iap =2Re[iaf] , and x3=la|2—|BI2, so

(x1)2+(x2)24(x3)2=(lc|2-IB12)2+4Re[of]2+4 Re[io ]2
=(loJ2-IBI2)2+4lof2Ipl2
=(lal2+IBl2)2

=1.
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The vector state ¢(A) is therefore a pure state. This was to be expected
from the general theory of C*-algebras. The C*-algebra 9 has the

additional property that all pure states are vector states in the
representation {5, g, }.

Theorem 2.17 Let ¢ be an arbitrary pure state over. L. Then there exists
a cyclic vector ®e $,_such that O(A)=(D,,, (A)D) for all Ac A.

Proof: An arbitrary pure state ¢ over U is of the form ¢(otoy)=x oM with

x0=1=v (x1)2+(x2)2+(x3)2 , and the xM real. We first consider the general

case in which x0= (x1)2+(x2)2+(x3)2 . If we assume that xg#—xo, then the

vector

is well defined and

w1—ix2y a2+a® o'l-ia? 1
2(@mo{ok o) @)=(x04x3)(1, | o || x1eixe
o +10 vOiv3

X04x3 ) 1,. 2 o
o -0 x0+x3

=(0%+03) (x0.4x3)+ (o —iar?) (x 1 +ix2) + (o0 +ia2)(x1-ix2)+(a°—a3>(%%2—ﬁ)

ao(X°)2+(X1)2+(X2)2+(X3)2+2X°XS

NV +2a x1+202x2

3(x°)2-—(x1)2—(x2)2+(x3)2+2x°x3
X04x3

+0Q

=2(ol) (since (x0)2=(x1)2+(x2)2+(x3)2),

57



CHAPTER 2

© S0 (D,my(A)D)=0(A) for all Ae . A pure state has the further property
that x°=1, so the above vector will work for all pure states that have

x3#—1. The case x3=—1 corresponds to the state w_ , which we have

seen is produced by the vector Q = ((1)) in the representation {$,_,x, }.

Finally @ is cyclic because the representation {5m+ T, } is irreducible.

This completes the proof.

Corollary 2.18 Every G.N.S. representatioﬁ {55¢,7t¢,§2¢} arising from a

pure state ¢ is unitarily equivalent to the representation {5m+,1cw+,¢}, for
some cyclic vector 95, . In particular the representation {5 ¢,n¢}is

‘unitarily equivalent to {550,+,7tm RE

Proof: From Theorem 2.17 we know that there is a cyclic ®e 55(,,+ such
that ¢(A)=(P,my,, (A)P) for all Ac A. The cyclic representations
{D4,m6,Q0} and {H 0o Te, P} are theréfore ;unitarily equivalent by
Theorem 1.25. In particular the representations {Sq,,nq,} and {$w+,nm+}

are unitarily equivalent.

Corollary 2.19 The representation {5m+ Ty, } of the C*-algebra U is

the only irreducible representation of 9L (up to unitary equivalencs).

Proof: Let {$,r} be an irreducible representation and ®e$ be an
arbitrary non-zero vector. Since the representation {$,r} is irreducible ®
is a C‘yclic vector, and the representation {9 ,n,®} is cyclic. Also the vector
state ¢(A)=(®,n(A)P) is pure. The cyclic representation {$,r,®} is

therefore unitarily equivalent to the cyclic G.N.S. representation

58



QUANTUM SPIN SYSTEMS

{5¢,n¢,§2¢} by Theorem 1.25. It then follows that the representation {$,n}
is unitarily equivalent to the G.N.S. representation {5)¢,n¢}, which in turn
is unitarily equivalent to {9, T, } by Corollary 2.18. The representation

{.n} is therefore unitarily equivalentto " {$, ,m, )

The following discussion is intended to illustrate the unitary
equivalence of representations mentioned in Theorem 1.27. The mixed

state w for finite temperatures can be decomposed into the pure states
0+, O=U2m,+V20_, SO the representation {9 7w, Q) should be a direct
sum of the representations {9 u+ e+ ,Quz }. INspection of the respective

representations shows that this is indeed the case, with

Qp= uly,, evQ,_ . We first examine the physical meaning of this.

Introduce the parameter n=a1]-. Then n goes from —oo fo oo as T goes from

0 to o0, jumps to —e0 and increases to —0. The values n=—c and n=o0
‘ correspond to t=1 and t=-1, respectively. So we see that t=—1
corresponds to the negative zero temperature state. This is the pure
state corres'ponding to the spin being anti-aligned with the magnetic field.
Every finite temperature state is then a statistical mixture of these two
pure states (the spin aligned with the magnetic field and the spin anti-
aligned with the magnetic field). Note‘that the probability of obtaining the
value 1 when measuring the z-component of the spin in the state
0=U2m4+v2w_ is u2 while the probability of measuring the value —1 for the

z-component of the spin is v2.

. Now consider what happens to the representation {9 ,,m,,Q,} as

the temperature goes to zero, i.e., as t—»1 and w—w,. The dependence
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of the representation {9 74,2} On temperature is entirely contained in

Qy. Ast—1,u—-1 and v—0, so that

O O O =

In this limit {5 4,74,Qe} is still a representation of U, and {H ,, 7y} is still
a direct sum of the representations {9 ¢ ,Tet}, With Qu=Q, S0Q,,_.
Furthermore, w is still the vector state w(A)=(Q¢,7x(A)Q). Despite this,
the representation {5 ,n,Q¢) is not, in the limit t—1, unitarily

equivalent to the G.N.S. zero temperature representation {9, o, Lo,

(one is four-dimensional and the other is two-dimensional). The reason
for this is that, even though the representation {5 7,9} produces the

correct vector state in the limit t—1, the vector Qu=Q,, ®0Q,,_is not

cyclic in this limit, and so the conditions of Theorem 1.25 do not hold.

The répresentations Dune} and {B,, ,ny } are both faithful and

so they are physically equivalent (Ker g, =Ker Ty, =0). Every state ¢
| over A is a state over ny(WU ) and ne, (W) by the definitions
du(men(A))= ¢(A) and 00, (T, (A))= ¢(A). The set T, (&) consists of all
two by two matrices with complex entries. This set is irreducible to that
nm+(91)' consists of only multiples of the two by two unit matrix. The bi-
commutant nw+(91)" is then equal to the set of all two by two matrices
with complex entries so nw+(ﬁl)=nw+(9l)", and the set Ty, () is
- therefore a von Neumann algebra. The set n,(2) is also equal to its bi-

commutant nm(ﬂ)" and therefore a von Neumann algebra. To see this
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we note that every element of n,(U) is of the form('gl l(\)ll) with M an

arbitrary complex two by two matrix. Writing an arbitrary complex four by

four matrix as (g [B)), where A, B, C, and D are complex two by two

matrices, gives
MOY(AB)(MAMB
OM)\CD/\MCMD
and ABYMO AM BM
CD/)A0M CM DM
So an arbitrary matrix (g g)will commute with every ('g’ &) if and only

if each of the two by two matrices A, B, C, and D commute with every two
by two matrix M. As we have seen above the set of complex two by two
matrices are irreducible so that the matrices A, B, C, and D must each be

a multiple of the two by two unit matrix I. So the commutant is

' I BI
(W) ={(a s ]:a,B,y,Se (D}. We now require an arbitrary complex four
vl oI

by four matrix (g [B))to commute with all members of nm(ﬁl)'. We have

ol BI (A B): oA+BC oB+fD )
y1 81 J\C D) | yA+5C yB+8D |

and (A B] ol BI ) (cA+yB PA+SB )
CD){y1 81 ) (aC+yD BC+D J
So the two matrices will commute if and only if B=C=0 and A=D. The bi-

AO
0A

therefore a von Neumann algebra. Now every element of

commufant is then nm(Ql)q( )}:nm(ﬂl) and the set w,y(WU) is
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T, (A=, ()" Or mep(U )=mp(2)" has finite trace and is therefore a

density matrix. Assume that the state ¢ over 9 is a nm*-normal state, i.e.,

Trpmy. (A
there exists a density matrix pe nm+(9,l) such that ¢(A)=—p—T“(:p'Ll for all

Ac . The element p@peny(N) is a density matrix and

Tr (p@p)mu(A)  Tr (pDp)(ny, (A)®T,, (A))
Tr(p®p) Tr(p®p)

2Trpmy,, (A)
T 2Trp

=0(A)

for all Ae . The state ¢ is therefore n,-normal. ‘In a similar fashion we

can show that every n, -normal state is a ne-normal state so the two

representations are quasi-equivalent. We could have reached this

conclusion by observing that the sets nw+(Ql)"=1cm+(91) and

(W) =ny(2L) are *-isomorphic.

For completeness we briefly review how this system is treated in
the Traditional Approach. The Hilbert space corresponding to a single
spin ($=1\2) system is a two-dimensional complex space, C2. The
observables of the system correspond to the set of real two by two
matrices, which are linear transformations (;n C2. This set is generated

by the Pauli spin matrices s1, s2, s3 and the identity I (=sg). If we work in
a basis that diagonalizes s3 and 32=s%+s§+s§ then the Pauli spin

matrices are the same as the matrices representing the elements oye 2

in the‘ G.N.S. representation for the states ws (sp=ng+(oy), etc.). A
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general element of this set is a real linear combination of the Pauli spin

matrices, a=xMsy,.

If we now place the system in a uniform magnetic field in the 3-

direction the Hamiltonian is H=—Bs3 and the canonical density matrix is
eBBS3

p=Tr(eB‘333) '

We will denote the state that p produces (<a>=Tr(ap)) by

the same symbol p. The density matrix p is now an operator on the

concrete Hilbert space €C2. Working with the orthonbrmal basis e1=(:))

and ez{?) (which are the normalized eigenvectors of s2 and s3) we

have
eBBS3=eﬁBC>-?1)
=coshBB(;c1)) +sinh [38(:)_?1 )
and Tr ePBS3-2coshpB ,
therefore p=% (;?) 4% ((1)_(?1 )

1+ 10) JRE oo)
2 \oo) 2 lo1)

The matrix (;8) is a projection operator onto the vector eq while the

matrix (g:)) is a projection operator onto the vector epx. The

decomposition of p into projection operators allows us to express the
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expectation value of an operator a=xMsyas a linear combination of vector

states, -

Tr (ap)=(e1,ape1) + (e2,ape2)
1+t 1-t
=5 (e1,ae1) + 5~ (e2,ae2).
It is now easy to see that the state p is pure only in the zero temperature

case (t=1), in which case it is the vector state (eq,aeq).

In the Traditional Approach one is working in the unique
irreducible representation of the C*-algebra L. This is the same
representation that arises, via thé G.N.S. construction, from the pure
states w+. The mathematical structure of the Traditional and Algebraic
Approaches is therefore the same in the zero temperature case. For
finite temperatures the mathematical structure is different for the two
approaches. In the Traditional Approach one is still working in the same
irreducible representation. The state p is a linear combination of vector
states in this representation. In the Algebraic Approach the state p is a
vector state in a reducible representation. This reducible representation

is a direct sum of the above irreducible representation with itself.

rDespite the mathematical differences between the two
approaches they give the same physical predictions (i.e., the expectation
values of observables and the probability to observe a given éigenvalue
~ of an observable are the same). We illustrate this by calculating the

probability that the value 1 will be obtained when the 3-component of the
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spin is measured when the system in a finite temperature state. In the
Traditional Approach the eigenvector of s3 corresponding to the
eigenvalue 1 is ey, The probability of finding the value 1 when
measuring the 3-component is then the expectation value of the
projection operator onto e, P, = ((1)0)

1+t 1-t
Prob(sg=1)=Tr(P,, p)="5" (e1,P,, ©1) + 5~ (e2,P,, €2)

1+

—tr———

T2

In the Algebraic Approach the eigenvalue 1 of ny(o3) is doubly

degenerate, with corresponding eigenvectors

Y= and Wo=

O O O =
o - O O

The probability to find the value 1 when measuring the 3-component of

the spin is then the expectation value of the projection operator onto the
subspace spanned by ¥1 and ¥,

1000
0000
Prerwal | 0010
0000

(this corresponds to the direct sum Pe1€BPe1). We have -
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PfOb(ﬂ:w(G3))=(Qm,P{\P1 ,\112} Q(D)

1000 Vy
0.0 0000 |o
=U00M 5010 |g
0000 Av

14t

2 =

-—U—2.

2.2 MANY SPIN SYSTEMS

The algebraic description of systems which consist of arrays of
- spins will now be considered. We will begin with a system that contains
two spins and then generalize first to a finite array of spins, and then to

an infinite array of spins.

The first step is to construct the appropriate C*-algebra. To each
spin corresponds a copy of the C*-algebra 9. The C*-algebra
corresponding to the entire system is the direct product A=A SU. A

general element of 92 is of the form A=alVo,®oy.

Let A=alVou®oy and B=f1%c;®0y, then the following operations

are defined in 912 :
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i) A+B=(OI}W+BP~V)O'”_®O'V,
||) AB:(X“VBT\K O'p_o'n®0'vcx,

iil) A¥ =_6L1»1V0'u®0v.

So 92 is a*-algebra. To show that 92 is a C*-algebra we must
demonstrate the existence of a C*-norm with respect to which %2 is

complete. To do this we turn to the faithful two-dimensional
representation {5 w, e, } Of 9 and define the norm of a general

element of A as

llotvop@oyll=sup{llottvrg, (o))@m,, (ov)AlAe S, ,®9, IMI=1} (2.20)

The representation {$,n},with =5, ®9,_and
n(aHVou®oy)= alvr, (op)®n,, (Ov))

is faithful so we know that (2.20) defines a C*-norm for 92, It is also
possible to show that the sequence {oh o,®ay} is Cauchy (with respect

to the above norm) if and only if the sequences {ocﬁv} of complex
numbers are Cauchy for all u,v=0,1,2,3. Thus the sequence {a,';wou®cv}

converges to aMvVo,®ocy, where okv=1im o '=arv. 9?2 is therefore

complete with respect to the above norm, and hence 92 is a C*-algebra.

Place the system in a uniform magnetic field in the 3-direction.

The Hamiltonian H? and canonical density matrix p2 are then
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H2=—B(co®03+63®00),

and

eBB(UQ®0'3+G3®CQ)

p =TreBB(O'o®0'3+O'3®O'°)

__c0sh?BBo®0p+sinh2pBo3®o3+sinhBBcoshPB(c,®03+03®0))
—Tr[cosh2BBoo®oo+sinh2[3803®c3+sinhBBcoshBB(co®o3+o3®oo)]

_ (coshBBoo+sinhPBo3)®(coshBBoo+sinhfBos)
—Tr[coshBBco«usinhBBcs] TricoshBBoo+sinhBBa3]

eBBG3®eBBC3
-—-TreBB"?’TreBB"3

=p®p, (2.21)

where p is the canonical density matrix for the single spin system. p2

gives rise to the state w2 over U2,
w?(cVou®cy)=TralVo,®oy p2l=oitvTr{oup] Tricyp]
=oHVw(o)w(oy)
=uﬂ§0+t(a°3+a3°)+tza33, t=0(03). (2.22)

We can then write the state w2 as w?2=0®® where
0®w(otVo,®cy) =alva(oy)w(oy). We have referred to w? as a state but
this really must be shown. We need to demonstrate that w2 is a positive

linear functional over 92 with unit norm. ltis obviously a linear functional
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over 2. The following calculation shows that it is positive. Consider an

arbitrary element A=olVo,®0,=B"®oy, where BY=akvay,, then.
@2(A*A)=w2(B**B'®0y0v)
=w(B**BYw(0y,0v)

=o([B°*BO+tB*B3+1B¥* B0+ B¥* B3+ [B*B1+itB *B2 itB2*B1+82*B2))

=0 ([BO+tB3)[BO+tB3*+(1-12)B%*B3 +[B'+itB?)[B1+itBY* +(1-12)82*B2)
=m([BO+tB3)[BO+tB3*)+(1—t2)o(B3*B3 )

+o([B1+itB2][B+itB2*)+(1-t2)0(BZ*B? ). (2.23)

Now w is a state over AU and (1-t2)=0 so each of the above terms is non-
negative; w? is therefore positive. Since w? is positive, its norm is given
by its value on the identity, lw?l=w2(co®0,)=1. So w2 is normalized and

therefore a state over 92,

We now consider the G.N.S. representation of 92 associated with
the state w2, for different temperatures. Instead of constructing these
representations from the G.N.S. prescription, as was done in the single
spin case, we will postulate a cyclic representation that produces the

correct vector state over 912, and use Theorem 1.27 to cohclude that this

representation is unitarily equivalent to the G.N.S. representation.
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First consider the case t=1 (i.e., the finite temperature case). The
representation {9 ¢®9 4, n,®ne,2,®Q} produces the correct vector

state over 92,

(Qo®Qw, MV, (0p) BTw (Ov) QLu®Qe) =0V (Q, T k(01 Lw) (R, Tk (Ov) L)
oMoy )(oy)
=a2(oHV o, ®0y). (2.24)

Since Qg is cyclic for $, QE®Qq, is cyclic for $,®5,. So the
representation {9 ,®9 4, n,®n,Qu®Q} is unitarily equivalent to the

G.N.S. representation {550,2,1rm2,§2m2}. This representation is obviously

reducible, as it is the direct product of two reducible representations.

For the zero temperature case, t=1, the represent'ation
{90,890, m0,874,.Q0,8R2,,} is unitarily equivalent to the G.N.S.

representation {sz’“mz'ng) corresponding to the state
+ + + .

wf(au\’ouébcv) =000+0034+030+033, We can use Schur's Lemma to show

that this representation is irreducible if we can show that an arbitrary

element A=olVr, (op)®my,, (ov) that commutes with all elements of
T, ()@, (A) is a multiple of the identity Tw,(00)®my, (0o). We can
write such an element as A=nm+(BV)®nm+(cvj (with BV=clVoy) . We now
require A to commute with elements of the form nm+(A1)®nm+(oo). Since
the set }cw+(ﬁl) is irreducible this is only possible if By is a multiple‘of the

identity oo, B":auvcu:BVco. This means the coefficients oMV must be of

the form oMv=8HOBV, and A=anm+(co)®nm+(0v). If we also require A to
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commute with elements of the form nm+(co)®nm+(A2) we can conclude

that Bv=Pavo, and therefore A=Bnm+(co)®nm+(oo). This shows that the

representation is irreducible.

We now generalize to a system consisting of a finite number of
spins. Since the spins do not interact with one another, the geomstry of
the system is not important. Denote the spins by the parameter i, whose
range is Z (=set of integers). Tﬁe C*-algebra corresponding to the spin at
the site i is a copy of ¥, which we will denote by 9;. The C*-algebra

corresponding to a finite collection of spins {=[k,k+1,...,I~1,l} (I>k) is then

W= & A;. A general element of U is of the form

A=oHKkb1 - Cl'l(k®0 k1 ®...0,!

ket py» Fk+1=number of sites in {. (2.25)

As in the two-spin case, we define a norm on U ¢ using the faithful

two- dimensional representation {5}(,,+ M, } Of 9L,

k k+1 |
[l otk k1 -1 OO0 ®...op I

=sup {Ilodlllll+1 "'”k"m(oﬁk)@”m(cum )@y, (o) Al:Ae igbcf)‘m L lAl=1 }}

(2.26)

The representation {i?g’jm , i?gn“’*r} is faithful so that (2.26) is a C*-norm

for A¢. In a similar fashion to the two-spin case we may conclude that

AN ¢ is complete with respect to this.norm and therefore a C*-algebra.
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If we place this system in a uniform magnetic field in the 3-

direction then a generalization of the arguments used in the two-spin

case shows that the canonical density matrix for this system is P¢= ig’C P »

where p; is the canonical density matrix for the single spin at the site i.
This canonical density matrix gives rise to the state (at natural

tefnperature B) o= i?C ©; , where w; is the single spin state generated by

p; (at natural temperature B). Again we must show that o defines a state
over A¢. Since wy is linear and mC(i§c0°)=1 we only need to show that -
n
w¢ is positive. We will prove that the linear functional wp= i@1 w;j over
n
U= i, A; is positive for arbitrary n by induction (2L and w; are copies

of the single épi'n algebra and state). For n=1 we are in the single spin
case and the linear functional is positive. We now prove that it is positive
for n+1 if it is positive for n by following the method used to show that the
two spin state w? is positive. An arbitrary element of Ae ¥ .1 can be
written as A=BY®a, with each BYe & ,. As in the two spin case, we can

show that
@41 (A*¥A)=0n41(BH* BY®cyov)
=on(B**BY)w(0,0v)
=n([BO+B3[BO+B3*)+(1-12)en(B*B3)
+con([B‘+tB?][B1+it82]*)+(1—{2)mn(82*82)

>0, (2.27)
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where the last inequality follows from the assumption that w, is positive.
So wq is positive for arbitrary n by induction, and wy is therefore a state

over Ay,

The G.N.S. representation corresponding to Wy is unitarily

equivalent to the representation {$,r,Q} with

5= i?c’)i 1= ® m, and Q= &9, (2.28)

where {Si, 7, €} is the G.N.S. representation corresponding to the single
spin state ;. At this point we should mention that the dependence of the
represenfation on temperature is still entirely contained in the cyclic
vector Q. In particular, representations {$,r} corresponding to different

finite temperatures are still unitarily equivalent.

We now construct the ‘quasi-local C*-algebra corresponding to the

infinite system. Let X denote the set of all finite collections ¢ of sites i in
Z, and equip Z with the ordering of set theoretic inclusion. This ordering
is a partial ordering. Also, for any pair of elements {1 and {2 in £ there
“exists a {3 in X such that {1<C3 and {2<{3, so that the set X is a directed
set. Now consider the family {¥ ¢:{e X} of C*-algebras. The elements of
any pair &1 ,82 satisfying {1<{2 (with {1 containing n sites, {2 containing m

sites and n<m) are of the form

— k k+1 ] : |
Al-jallkukﬂ H cuk®°uk+1®'“°ul with n=l-k+1,

and Ao=0ttpHp+1--Hq cﬁp@o@&@...oﬁg with m=g-p+1, g2, and psk.

(2.29)
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Let iz, 1 denote the mapping from ng into ml;z defined as

i k k+1 |
12,1 (OMkHk+1 K cruk@muk+ 1®...cm)

%@x

q .
() @[okkts -1 GX Bk ®...) , (),  (2.30)
I=

The mapping iz,1 is a *-homomorphism from 91@1 into 91§2 with the

properties

i) i2,1(11)=T2, where 1y and 12 are the identities of 2l§1 and mCz'

respectively,
and ii) ig,1=i3,2i2,1 whenever {1<{2<{3.

The above mapping shows that the family of C*-algebras {2 ¢:(e X}
satisfies the postulate of isotony and therefore admit a C*-inductive limit
(see section 1.5). Recall that this is a C*-algebra 9™ with identity 1% that
has the property that for every {e X there exists a *-homomorphism i

from ¢ into U™ that satisfies
i) ig(lo)=1", where Tt is the identity for %,
ii) iCz(mCz)DiQ(mQ)' whenever {>>(1,

and iii) ggzig(ﬁlc) = U™, where the bar denotes the uniform closure.

This mapping is given by i¢(A)= (@ )®A®( ol) for all Ae 9.l§, where

i<k Co

C=[k,]l. We will denote this C*-inductive limit by ic7 & and refer to it as

the infinite direct product of the C*-algebras { ¢:{eZ}. It is the quasi-

local algebra corresponding to our infinite lattice of spins. An arbitrary
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element of i?z AU, can be approximated, in the norm, to any degree by

linear combinations of elements of the form igz A, where Ae ¥, and all
but a finite .number of the A; are equal to o/ (this is the content of
condition (iii) above). Given an element A of i?Z A ;, we define its
projection onto ig(¢), {=[k,!], as the element one obtains by replacing all
of its components before the kth spot and beyond the Ith spot with the
identity oo, and denote it by P¢(A). We will refer to the element of AU that
is mapped, via i¢, into P¢(A) as the projection of A onto A This element

will be denoted by A¢.

The canonical equilibrium state for the infinite system of spins will
now be constructed following the procedure outlined in chapter 1, section

1.5. Define the subset Zg of Z as Zo={{ne Z:{n=[-n,—n+1,...,0,...,n=1,n]}.
An arbitrary element {=[k,k+1,...,I] in £ is contained in each ¢, for all

nzmax{lkl, lll}. For example, [-9,-8,...,4,5] is contained in each ¢, for all

n29. For arbitrary Ae 2, , the canonical equilibrium state W, over Qlcn

is given by

an(A){i énux](A). : (2.31)

Let A be an arbitrary element of i(egz ; and let ACn denote its projection

onto A, . Note that lim ir(Ar )=A. We then define the equilibrium state
Cn N—ooo Cn

o> for the infinite spin system as

@>(A)= lim_ ar (A¢) , for all A 2,9, . (2.32)

In order to demonstrate that this limit is well defined we must show that

@ is bounded with unit norm. This follows from the fact that 0 (1™)=1
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where 17 is the identity for I?Z U,. To show this we note that the
projection of 1% onto 9l ¢, s the identity ’ﬂcn for 2[ ¢,» SO that
lw*ll=0>(17)= lim o (1) =1. So w* is normalized to unity. This of
course implies that w* is bounded. Explicitly we have

lw>(A)l

1=Ilco°°||=8up{ TAl

‘Ae i(eg’zg[i' A¢O} = o> (A)I<IAll for all Ae i?zﬂr

We have proven by induction that each o, is a positive linear functional
over AU tn for arbitrary n. w® is therefore a positive linear funétional with

. X . . ®
unit norm over ieZ Qli, Le., o> is a state over ieZ 913.

For example, consider the element p(E) in i?zmi corresponding to

the average energy per site. The projection of p(E) onto 9[(;" is given by

n
B .
pr (E)= —W'Z[G;“@o“’c‘,”®...0§®...0‘S], (2.33)

I=-n
where o, is replaced by o3 in the ith spot. This gives

@(p(E))= lim o (pr (E))

N—oo

I=—N

n
n B .
= i : n n+1 i n
= dim, Lf’:n""]{ nyT QA0S0 ®..-os®--~col]

( n
. B .
= fim_ | ~gryg 2L0-n(0)0-nt (05)...0(0Y)...n(0)]
. \ i=—n
(B
= lim | -3, +1iznt)=—Bt =—B tanhpB. (2.34)
\ =
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Note that the expectation value of p(E) in the state o> is the same as the

expectation value of the single spin Hamiltonian in the single spin state

o. This is to be expected since the spins are non-interacting.

‘We will now construct a cyclic representation {$,x,Q} of i?zml with
the property ﬂ(Q,ﬁ(A).Q):m(A) for all Ae i?zmi- This representation will
therefore be unitarily equivalent to the G.N.S represéntation {9 00,0}
This representation will be obtained as the infinite direct product of the
single spin G.N.S. representations. The infinite direct product of a family
of Hilbert spaces was originally defined by von Neumann [Neum1]. For
our purposes it is more convenient to follow the definition used in [Emch],

which can be shown to be equivalent to von Neumann's definition.

Consider a family of complex vector spaces {ViiieZ} (what follows

is valid for an arbitrary directed index set I'). Define the infinite direct

product ®,Vj in analogy with the finite case. To every family
{xi: ie Z; xje Vi} corresponds the element @in in @Zv;, and every element
of ig)ZVi is a linear combination of such elements. Let
a={aj: ie Z; gje Vj;aj=0} be an arbitrary family. Consider all vectors i‘§ZXi of
, iL:®2Vi that have xj=a; for all but a finite number of ie Z. Then define a

subspace &,2Vjof &,V that consists of all finite linear combinations of

these vectors just defined.

We now consider the case where the vector spaces V; are
separable Hilbert spaces 5. It is not possible to obtain a Hilbert space

from the entire infinite direct product ®,%i. This follows since, by
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definition, the norm of a Hilbert space must be related to the scalar

product in the usual way. The scalar product between two elements of

&,9iis

( Q7%+ BzYi )EH(Xi,Yi), (2.35)
ieZ

and this infinite product may diverge. We can, however, define subsets
of @,9i that are Hilbert spaces. Let a= {aj: ic Z; ajc Hi;lajl=1} be an
arbitrary family and define the subspace &,8H; as above. We can define
a scalar product on ®,2H; as

(@2xi. @i )=IT0y. (2.36)

ieZ

Since xj=aj and yj=a;j for all but a finite number of ie Z the above is well
defined (all but a finite number of terms in the product have the value
one). At this point ®,2Hi is a pre-Hilbert space which we can complete
with respect to the norm obtained from this scalar product. We will
denote this Hilbert space by the i§Za5} i. In his original paper von
Neumann has shown that ié-:@zasi is a separable Hilbert space, i.e., it has a

countable orthonormal basis. If {eL} is an orthonormal basis for $j, then

one such basis may be obtained by enumerating the set

{{&,xi:x=a; for all but a finite number of ieZ and xi=e{(, for some K, if xjza}.(2.37)

Denote the resulting basis by {ej}. Each of these basis vectors is of the
product form ej=i§WZx}, as opposed to being a linear combination of such
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vectors. We will refer to such a basis as a product basis. Note that not

every basis is a product basis.

We now return to the quasi-local algebra and consider the state

n .
O (A)= r!i_Tmen(ACn)= lim [.® (W](Az;n)» for all Ae i?Z 9. Denote the

N—>e0| j=—n
G.N.S. representation corresponding to w;j by {9, ;T .2} and form the
Hilbert space Hyeo= &, @F; associated with the family Q={Qic Z}. Let
{ej=i<§zx%} be an orthonormal product basis for $ 4. For all Ae ie®zﬁli of

the form i?Z A;, where Ae U, and all but a finite number of the A are

equal to 6! we define
O

[ (&, Ale= S, T (AX. (2.38)

Because all but a finite number of the A, are equal to ¢/ and all but a

finite number of the x% are equal to Q,, all but a finite number of the the

nmi(Ai)xji are equal to Q.. The vector i?Z 1t(,,i(Ai)xji is therefore an element

®ic ZQSL We can therefore extend this mapping by linearity to a

bounded mapping from ®;_ 295i into itself by defining

[moo i?Z Ai)](zo‘j ®ic le; )]Ezaj [”m“(;?z AI(®;e )], (2.39)
. j \
]

Finally we can extend the definition of this operator by continuity to all of
i(c_?z A; (and thus obtain a representation weo of igz A, onH =) as

follows. Again let A, denote the projection of Ae &, 9L onto ¥, , then
Cn ieZ T Cn

ir (Ay ) is a finite linear combination of elements of the form B A where
En\"Cn iez i

79 \



CHAPTER 2

A U and A;is equal to o for all i such that lil>n. Denote this linear
combination by Zi(?z A;. We then define
Koo (A)E lim [mgoo(iy (Ar )= lim [Zn (2, A)], (2.40)
w A—soot @ VEAVEY N300 0™ \jez Nilds

®
for all Ae ic7 91i.

The vector Qo= i?Z Qg; in 55m°° is obviously cyclic for the

representation Ty, S0 that {9 o0 w0 Qye0)} is a cyclic representation

of &, U, Again let A, denote the projection of Ae |2, 9 onto €Ay .

We then have

(o=l (eI P0=)~( Qs D" [ @ A Q)

=2H(Qmi,nmi(Ai)Qwi)
el

n
= 2 Tloiw)
I=-Nn

~on(A)  (241)

This then gives
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(Qpo0, oo (A)Qgye0)= r!!.glo (Qm”fna)”(icn(Agn))Qcof”)

= lim_ on(A%)

=w%(A), (2.42)

for all Ae i?z 9. So the representation {D ;00,1 00,Q, 00} produces the
correct vector state over i?Z o, and is therefore unitarily equivalent to the

G.N.S. representation arising from the state w* over i?Z a4,

Finally we show that the representations {H e, eo}
corresponding to different temperatures are unitarily inequivalent. Let
{550)1,150)1,(20)1} and {sz,nm?_,ﬂwz} be the representations corresponding
to natural temperature B4 and B2, respectively, with B1=f2 (we now drop

the superscript oo from the state w*). Our problem is this. Fix a basis {ej}
in . Foreach Ae ig)z A; we can determine the matrix elements of

“m1(A) with respect to the basis {ej}. Given an orthonormal basis {fj} in

55(02 we can determine the matrix elements of nm?_(A) with respect to the

basis {fi}. In order to demonstrate the unitary inequivalence of the two
representations we must show that there does not exist a basis {fj} in 5032'

such that these two matrices are identical.

Let {ej=& xji} be an orthonormal product basis for 5031 such that

e1=ie®zﬂmﬁ, Consider the set of elements {Ai}eig’z 9 of the form

Ai=C @0 (@@, . (2.43)
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The diagonal matrix elements of nm1(Ai) between the basis element e

are

(1.7 (A)e1)=(Repy; » Ty (082

=(u1)2=(v1)2=ty, | | (2.44a)

for all i. The diagonal matrix elements of’ﬂsc;®o§---®oi(,®--- between the

basis element eq is

(e1.1y,(De1)=(e1,e1)=1. | (2.44b)

We now must show that there does not exist a basis {f;} of $ wp Such that
(5 ,an(Ai)fj)=(e1,nm 1(Ai)e1) and (fj ,nmz(ﬂ)fj)=(fj fj)=1 for some j and all i. To

show this it is sufficient to show that there does not exist a single
normalized vector g in 550)2 such that |

(9,7, (Ai)g)=(e1,my,, (Ai)e1)=t1, (2.45)

forall i. One way to convince yourself that this is so will be outlined.

First, let us choose an orthonormal product basis {hj:igzz%} for

%, Note that for eachj, z’;=£2(JJZi for all but a finite number of i. We will

first argue that a vector g that satisfies (2.45) cannot be one of the basis

elements hj and that it cannot be a finite linear combination of the basis

elements {hj}. Finally, we will use these resuilts along with the fact that
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the set of finite linear combinations of the basis vectors is dense in $ w2

to show that there does not exist avectorgin ﬁmz that satisfies (2.45).

. ' First assume that g=hj for some j. Then g is of the‘form g=i<§lzzji,

where z{:sz for all but a finite number of i. Suppose that zL:Qm?_k, then
' k
(970l AKIO)=(eh 24) (2 ) (2l g Pl )y 0 e 1 2
k k
e Tap(ONZI=( QT (03)23)
=to, “ (2.46)

which does not agree with (2.45) for i=k. Therefore g cannot be one of

the basis elements hj.

Now assume that g is a finite linear combination of the basis
elements {hj:igbzz’i}. Since, for each §, z%:Qm2i for all but a finite number

of i, such a finite linear combination is of the form

g=>:®QC02m®QC02m+1 ®Q(D2m+2m’

- (2.47)

where X is a finite linear combination of vectors of the form
X1®x2®--®xm-1, Where xje S(DZi' Now for all k>sm we have

k

~tp, | (2.48)
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which does not agree with (2,27) for i=k (we have used the fact that g is
normalized). Therefore g cannot be a finite linear combination of the

- basis elements {:h,-}.

Finally, let us consider the possibility that g is an arbitrary element
of 50)2. Since‘th'e set of finite linear combinations of the basis vectors is

dense in sz there must exist a seduence {an} of vectors in 5m2that

converges to g in the norm, where each vector g, is a finite linear
combination of the basis vectors {hj}. The convergence of the sequence

{gn} to g implies that we can make

1G0T A)G)—{0. g, (A0)] )

‘as small as we want (for all i) byl choosing n sufficiently large. The

argument for finite linear combinations implies that there exists an m
such that (gn.,my,(Ak)gn)=ta for all k>sm. Furthermore we have

(Q,an(Ak)g)=t1 for all k by assumption. So for all ksm we have

(G (AT ~(0.7,(AKIG) =t (2.50)

which contradicts the fact that we can make |(gn,m,,(Ak)gn)~(g,7,(Ak)g)!

as small as we want by choosing n sufficiently large.: Therefore g cannot
be an arbitrary element of 5.
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We have now shown that there does not exist a vector ge 9, that -

satisfies (2.45). The representations {5m1’7‘m1} and {sz,nw?_} are

therefore unitarily inequivalent.

The previous result shows that the C*-algebra for the infinite spin
system admits an infinite number of inequivalent representations, which
are labeled by temperature, a macroscopic parameter. In the finite case -
the cyclic vecto:r in the G.N.S. representation is a finite direct product of
the cyclic vector for the single-spin system. This cyclic vector generates
the entire representation space, which is a finite direct product of the
single-spin rep.reseritation space. Thus, there is only one G.N.S.
representation. When we pass to the infinite system, the corresponding
cyclic vector does not generate the entire infinite direct product space,
but generates only a subspace, called by von Neumann an incomplete
direct product space. Representations over different subspaces are

unitarily inequivalent.
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INFINITE BOSE GAS

3.1 THE ALGEBRA OF THE CANONICAL COMMUTATION RELATIONS

The goal of this section is to construct the C*-algebra which is
appropriate for the description of a system of non-interacting bosons.
This C*-algebra is the C.C.R. (canonical commutation relations) algebra.
The elements of this algebra will be labeled by the elements of an
arbitrary vector space. Different veptor spaces will correspond to different
physical systems. We will proceed in three steps. In section 3.1a, a set
of elements which are labeled by the elements of a vector space and
satisfy the C.C.R.'s will be introduced. These elements will be used to
construct the C*-algebra corresponding to a single‘point particle in

'section 3.1b. At this point the Weyl form of the C.C.R.'s will be
introduced. Finally, the C*-algebra corresponding to an arbitrary system

of bosons (finite or infinite) will be constructed in section 3.1c.

3.1a THE CANONICAL COMMUTATION RELATIONS

We begin by considering the abstract elements ¥(x) and ¥*(x),

labeled by a parameter xe R3, that satisfy
[0V (y)]=8(x-y), (3.1a)

and [W(x),W(y)]=[¥* (x),¥* ()}=0, (3.1b)
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where the commutator [A,B]=AB-BA. These elements will be used to
construct a general C*-algebra, that is appropriate for the description of a
(finite or infinite) Bose system of point particles. The presence of the
delta function in (1) implies that these relations are to be interpreted in

terms of distributions. This motivates the definitions

W(f)EJWW(x)dx, | (3.2a)
and v* (h=J1o0v* (dx, C (3.2b)

for suitably vanishing f(x). The set of functions f(x) will be referred to as
the space of test functions. It is easy to see that the "smeared" fields V (f)

and V¥ (f) satisfy the following commutation relations:

(), ¥(g)*]=(1.0); (1.9)= [ 100 gx)ox, (3.2c)

and D), W(g)=[v* (f),¥* (g)]=0. , (3.2d)

These commutation relations depend solely on the inner product

(f,9). We now replace the test functions with vectors in an arbitrary

Hilbert space $, and work with the commutation relations
[W(f), V(g)¥]=<f.g>, o (3.3a)

and . (W (i), W(@)=[v* (). ¥* (g)]=0, | (3.3b)
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for all f,ge H, where <f,g> is the scalar product in $. This will allow us to
describe two different "types" of systems, one which contains a fixed finite

number of particles and one which contains an arbitrary (finite or infinite)

number of particles. The first case will result when $ is €3. The second
case will occur when % is the Hilbert space appropriate for the
description (in the Traditional Approach) of a single particle of the system
(see [Emch] section 3.1.c). We will justify the above interpretations by
examining two tamiliar representations of the C.C.R. algebra, the
Schrédinger and Fock representations. We will find that the one-
dimensional Schrédinger representation is a representation of the C.C.R.
aléebra corresponding to $=C, and the Fock representation is a-
representation of the C.C.R. algebra corresponding to the case when %
is the Hilbert space appropriate for the description of a single particlé of

the system.

It is often convenient to work with the elements

<1>(f)-=-3’%’f§£(Q | (3.42)

and | n(f)Eq)(if):M, (3.4b)
: Vai | -

that satisfy [6(f),x(g)]=iRe[<f,g>], (3.53)

and [6(0).0(@=In(1)x(@)=ilm{<t,g>], (3.5b)
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One is more accustomed to the commutation relations [¢(f),n(g)]=i<f,g>,
and [¢(f),9(g)]= [n(f),x(g)]=0 , which are the same as (3.5) when % is a real
Hilbert space. Since this restriction seems unnecessary, we will assume
that » is complex and work with the commutation relations in (3.5). Note
that if the set {h;} is an orthonormal basis for $, and we define pj=mn(hj),

ai=¢(hj), we recover the familiar canonical commutation relations

(G Pxc]=15; k., (3.6a)
jk=1,23,.
and . [Qj ’qk]=[pj vpk]=o (36b)

3.1b SINGLE PARTICLE IN ONE DIMENSION

We will begin by discussing the algebraic description of a single
point particle. Although this case is interesting in itself, it will turn out to
be needed also in constructing the very important Fock representation of
-a general C*-algebra. This representation will be constructed from a
representation of the C*-algebra corresponding to a single particle in
one dimension. The C*-a_lgebra corresponding to a point particle in one
dimension is constructed from the commutation relations (3.6) with

j=k=1(i.e., when $=C). The number 1 formsga basis for €, so we have

two elements, g=¢(1) and p=n(1)=¢(i), that satisfy

Qpk. (3.7)
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We initially consider the algebra 9L consisting of all polynomials in
p and q with complex coefficients. Using (3.6) it is clear that 9 is simply
given by
NM

U=(A= ) otnmp"qM:ctmne C}. (3.8)

n,m=0 .

We note that the number 1 is an identity for 8L. Furthermore,

NM M

( > onmpgm | = zanmqmp" (3.9)
n,m=0 n,m=0

defines an invojution on 9L, so that U is a *-algebra. This algebra,

however, does not admit a *-norm.

Theorem 3.10 If two elements p and'q of an algebra satisfy the relation
(3.6) then the spectrum of at least one of the two elements p and q is

necessarily unbounded.

Proof: The proof is the same as in the case when p and q are
operators on a Hilbert space (see, for example, [Put] page 2). The proof |
is by contradiction. Assume that the spectra of both p and q are
bounded, and hence the spectrum of pq is bounded. We may assume,
without loss of generality, that q is invertible . If q is not invertible we can

define g'=q-A ((q',q]=[p.q]), for some A¢ o(q). Since q has a bounded
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spectrum, such a A must exist. Since q is invertible, gp-A=q[pg-A]q-1,
which implies o(qp)=c(pq). Consider the following.

Pg-p=(qp—i)-p
=qp—(p+i).
This shows that pe o(r(f)¢(f)) implies (n+i)e o(d(f)n(f))=c(x(f)o(f)). This
then implies that (u+in)e o(gp)=c(pq) for arbitrary n>0, and hence o(pq) is
unbounded, which is a contradiction. This completes the proof.
Theorem 3.10 allows us to conclude that it is not possible to define

a C*-norm for 9, for we know that such a norm is related to the spectrum

through the spectral radius, which does not exist for an element whose

spectrum is unbounded. To avoid these problems we define

U(t)=elq, (3.11a)
and V(s)=eisP, | (3.11b)
where t and s are arbitrary real numbers. By explicitly writing out the

power series in (3.11) and using the commutation relations (3.7) it is

possible to show that
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U(t1)U(t2)=U(t1+t2), (3.12a)
V(s1)V(s2)=V(s1+s2), (3.12b)
and | Ut)V(s)=esV(s)U(t). -~ (3.12¢)

This form of the canonical commutation relations is known as the Weyl
form. We now consider the algebra 9L consisting of all finite polyhorhials
in U(t) and V(s) with complex coefficients. Using (3.12) we see that 9 is
simply given by

N'M - . :
A=(A= D onmU({tn)V(Sm):0nme Citn,Sme R}. (3.13)

n,m=0

~ An involution of 9 is defined as

N,M N.M |
( 2.0nmU(tn)V(sm) | = Z‘dan(—sm)U(—-tn)- (3.14)

n,m=0 n,m=0

It is easy to verify that (3.14) defines an involution of 9L, so that 9 isa
*-algebra. We note that U(t)U(t)*=U(t)*U(t)=1 and V(s)V(s)*=V(s)*V(s)=1,
which imply that U(t) and V(s) are unitary for all t,s.

A faithful representation {$n,npn} for A, the harmonic oscillator or

Schrédinger representation; is described in Appendix A. Apart from the

language in which this representation is described here, the
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representation is well known from all quantum mechanics texts. For all
Ae AU we define

Inn(A)PI

llAllESup{ 12l :‘I’efjh;‘l’;eo}. (3.15)

Since {Hn,nn} is a faithful representation of 9L, (3.15) defines a C*-norm
for A.. We can then complete 9 with respect to the uniform topology
defined by this norm. We denote the resulting C*-algebra by 9 (C), and

refer to it as the C*-algebra of the C.C.R.'s for a single degree of freedom.

The vector 10>, see Appendix A, is cyclic for the set {nn(a*),nn(a)},
‘and therefore for the set {rnh(q),nh(p)}. Since any element of this set may
be approximatéd to any degree by elements of np(2L(CT)), the vector 10> is
cyclic for nh(8L(C)), i.e., the representation {$h,np,10%} is"cyclic. This
representation is also irreducible. To show this, assume that there exists
a bounded linear operator M on 51, that commutes with evéry element of
h(2L(C)). Such an element must commute with nh(é*) and np(a) (on

D(N1/2). The matrix elements of M, with respect to the basis In>, are

(<ml)(Mln>)=<o;n(a g e

Vot vml

3

10>

3
2
j4Y)
=

3

n(a)

Vol mt

=<0IM

m(@)" m(a*)m

Vo mi

<Ot MIO>=8m<OIMIO>, (3.16)
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where the last equality follows from (A.9). This implies that M is a

multiple of the identity, and hence the representation {H,n} is irreducible,

by Schur's lemma.

In Appendix A we have shown that the harmonic oscillator or
Schrodinger representation is a faithful representation of the C.C.R.
algebra 9 (C). It is a well known result that it is the unique, up to unitary
equivalence, faithful representation of 2L(C) (this result is originally due
to von Neumann [Neum2]). Since the Schrédinger representaiion is the
representation that one uses for the description of a single particle in the
Traditional Approach,ﬂour assumption that the C.C.R. algebra 8[(C) is the
C*-algebra corresponding to a single point particle in one dimension

seems reasonable.

3.1c ARBITRARY BOSE SYSTEM

The C.C.R. algebra 2 (C) developed in the last section
corresponds to a system consisting of a single particle in one dimension.
We now repeat the construction carried out in 3.1.b for an arbitrary Hilbert
space ». This C*-algebra will correspond to a system of particles whose
single particle Hilbert space (in the Traditional Approach) is $. Fix an

orthonormal basis {h} in 5 and consider the algebra 9 (5) generated by

the ¢(f) and n(g). The elementsin (3.3) satisfy, for a,Be € and f=2aih1,
i

W(f)=\V(ZOLihi)=ZW(OLihi)=zai‘l/(hi), (3.17a)
i i i ﬂ
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and WE(f)=w* (S odhy)= D obvH(hy), (3.17b)
i i

i.e., ¥ and ¥* are antilinear and linear in the smeared functions,
respectively. However, the linear combinations (3.4), ¢ and &, are neither

linear nor antilinear. We can only go as far as

o(1)=0( odhy)= o(cihy), - @170)
i i

n(f)=n(D oihi)=> n(odhy). (3.17d)
i i

The following relations are also useful.

o(cf)=Re(o)o(f)+Im(o)(if)
=Re(c)é(f)+Im(c)n(f), (3.18a)

and n(af)=Re(o)r(f)+Im (o) d(—f). (3.18b)

As in the case of a single degree of freedom, the spectrum of at

least one of ¢(f) and n(g) must be unbounded, so we define
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U(f)=eio(), (3.19a)
and | V(g)seifc(g)=U(ig). (3.19b)
As before‘we construct a C*-algebra from tﬁe elements U(f) and
V(g). Using the commutation relations (3.5) along with (3.18) and the

relation eAB=gA+B glA.BI/2 ([A B]=complex number), we can easily

deduce the following.

; |
U(f1)U(f2)=U(f1 +f2)e2 M<f1f2>] (3.20a)
4
V(g1)V(g2)=V(g1+go)e2'm<8192>] (3.20b)
and ’ U(fV(g)=V(g)U(f)e—Re(t.9), (3.20c)

We can summarize these relations by introducing the element W(f),
W(f)=U(f) and W(if)=U(if)=V(f), that satisfies

=
W(f)W(g)=W(f+g)e2'™<"e>],

=W(g)W(f)e~"mi<e>] (3.21)

The algebra 2 () is then given by
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N ,
W(D)={A= cdW(H):o4e T, fie D} (3.22)
i=1

From (3.22) we see that W(0)=1 is an identity for 2L($). An

involution of 9 ($) is defined as
N R
A*=[2aiW(fi)]*EZEiW(—fi). (3.23)
Ci= =1

It is easy to verify that (3.23) defines an involution of 2L ($). We have to

N
show that (3.23) satisfies the following {Definition 1.3) with A=ZoéW(fi)
i=1
M .
and B= BiW(g;):
j=1
i) (A*)*=A,; this follows immediately from (3.23),
%K
if) (AB)* =BXA¥; (AB)¥ Zaimw f)W(g )]
i,j=1
NM *
i
ZaiBIW(f1+gj)e5'm[<'i'gi>1
i,j=1
N,M

i,j =1

M

N .
=D BIW(g)) D /oAW(—ty)=B*A*,

j=1 i=1
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iif) (cA+PB)*=0A*+BB*; this follows immediately from

(3.23).

So (3.22) does define an involution of A (H), and A (H) is therefore a *-

algebra.

To define a norm for 9 (H) we first construct a faithful
representation of % (%), the so-called Fock representation. The first step
is the definition of the representation space Hg. The definition uses the

‘representation {9 n,mh,¥o=10>} developed for the case of a single degree

of freedom. Let {h;} be a basis for $. With each hj, associate a copy of
the representation {9 n,nh,¥o} denoted {Hpi,mhi,¥oi}. The representation
space HF is then defined to be the Hilbert space H$r=®; ¥5H}; associated
with the family W={¥;} (see page 71). The set

. ,
{In1,n2,...,N4,.. > = NP BIND ®...BINP ®... 1 . .nj<oo} (3.24)
i1

00
forms an orthonormal basis for HF. Note that the condition Zn1<oo
' i=1

implies that ny=0 for all but a finite number of the i's (i.e., each basis

vector is an element of the family ¥). Using this basis, 5 may be

expressed as
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oo ’ [
SF={‘I’= Za(m,nz,...)|n1,nz,...>:a(n1,n2,,,.)e(1>; Zloc(n1,n2,...)l2<oo}.
n{,ns,...=0 ni,n2,...=0

(3.25)
For W(h;) and ol=al+ibl al and bl real, define

n(W(odhy))F=1018...0m(U(al)V(b))®@1®... . (3.26)

For arbitrary fe 5, with f=) othij=) (al+ibi)h;, we then have
i i

p(W(f)=mr (W (X athi))=mr(] [W(odhy)
i i )

=] [rr(W(odhs))

i
=n1(U(al)V(b1))®n2(U(a?)V(b2))®...0m;(U(al)V(bi))®... .(3.27)

It is easy to verify that the pair {9 F,ng} form a faithful representation of
A (H), the Fock representation, and that the representatives nr(W(f)) are
~uﬁitary operators on . Furthermore, since the mpi(U(al)V(bi)) are
irreducible in Hpy, the set np() is irreducible on H. This implies that
the vector ¥ro=¥o1®¥02®... is cyclic for np(2L), which is to be expected

since the Wy; is cyclic for mri(U(al)V(bl)). The definition

lee(A)¥l

17 :‘PESF;‘I’:&O} (3.28)

IIAIIESup{

99



CHAPTER 3

is then a C*-norm for U (H). Completing WU (H) with respect to the
uniform topology defined by this norm makes 9 (5) a C*-algebra, which

we will denote by the same symbol. We will refer to this C*-algebra as

the C.C.R. algebra, relative to the Hilbert space H.

3.2 STATES AND REPRESENTATIONS OF THE C.C.R. ALGEBRA

We initially attempted to construct a C*-algebra from the elements

o(f) and m(g)=¢(ig). Since it was not possible to define a C*-norm for

these elements, we introduced the elements W(f)=ei¢(!) and used them to

construct a C*-algebra, the C.C.R. algebra. The elements ¢(f) and nt(g)

are formally given by

(1)1 W) heo = Jim HW(K1)-W(0) (3.29)
id .., . 1. 1.
and 1(0)=1 giW(itgheo=T Jim (W (ikg}-W(0)) (3.30)

but are not elements of the C.C.R. algebra. It is possible for one of them
to have a finite norm and be an element of the C.C.R. algebra, but it is not

possible for both to have a finite norm.

Although it is not possible for the C.C.R. algebra to contain both

the elements ¢(f) and n(g) (Theorem 3.10), there might exist a set of
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unbounded linear operators on the Hilbert space of a representation of
the C.C.R. algebra that forms a representation of the ¢(f) and =(g).
Representations of these elements in a representation of the C.C.R.
algebra are of physical; interest because with them one can form a
number operator ( or a density operator in the infinite case). For
example, consider the Fock repre‘sentation {(DE. g} of A (D), and the
operator np(W(hi)), where {h;} is an orthonormal basis for . From (3.26)

we have, for real k,
nr(W(khi))=1®1®...01; (U(k))®1®...

=1®1®...0m(ek)R1®..., . (8.31)

so that (M) = Jim e Rr (W (kb)) e (W (0))
=1®1®...91;(q)®1Q... (3.32a)

In a similar fashion, we have

AE(n(hi))=1091®...0m(p)®1®.... (3.32b)

The operators ri(p) and ni(q) are copies of the representatives of the

elements p and q in the harmonic oscillator representation developed in

Appendix A. We use these to define

nE(§(hi))+irr(r(hi))
‘\/E s

- nR(V (hy))= (3.332)
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heyky = REC@(hi))—imE (e(hi)) .
mr(Y (hi)*) N2 - (3.33b)
and, for arbitrary fe 5, With f=2a1hi,
i
REY (0)= D Fre(Y (), (3.330)
i ,
and RV M= obE (), (3.834)
i ,,

with domains to be described. The action of the ng(¥ (hj)) and me(V¥ (hy)*)

00
on the basis vectors {in{,n2,...,N§,..> =INP@IND ®...QINP ... : I ni<eo} is
. i=1

nF(\V(hi))Im,nz,...,ni,..)E\/ni|n1,n2,...,ni—1,...>, (3.34a)
and - TEW ())IN1,02,0e 0N, > =V N+ N1 02,0005+, (3.34D)

If we interpret the basis vectors in the usual manner, where
In{,n2,...,ni,...> corresponds to the state in which there are n; particles in
the state hy, then ne(¥*(h;)) and nF(W(hi)) create and destroy a particle in

the state hi, respectively. The domains of np(¥(f)*) and np(V(f)) are
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D(rr(V(f)*))={¥e HE:lnp(W(f)*)Pll<oo}

= Y= zoc (nq,n2,...)inq,na,... E lo(nq,n2,... Zap]nin 2<00 (8. 35a)

ni{,n2,...=0
ni,no,...=0

and D(np(¥(f)))={¥e Hr:lInp(¥(f))¥ll<oo}

n{,ns,...=0

= ¥= Za (n4,n2,...)|n1,n2,... E lo(ny, na,.. )Zai\] njl2<co 3. (3.35b)

nqy,n2,...=0

These domains may be different for different functions f. For example,

D(nr(W(hy)))=D(rnr(W(hy))) for i#j. To see this, note that the vector

(=]

21 0,0,...,0,n,0,...>

nj=1

is in D(rp(W(hj))), but not in D(re(W(hi))). This motivates us to determine
the common domain of definition of the annihilation and creation

operators. Consider the number operator

N= D mr (Wb (¥ (ho). (3.36)
i

For arbitrary We HF we have

N¥=N  Da(ng,nz,...)|n1,n2,..>, (3.37)
n{,n2,...=0 :
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so that the domain D(N) of N is

ni,nNo,... 0
n{,ns,...=0

and the domain D(N1/2) of N1/2 js

D(N1/2)=4 Y= Za (N1,n2,...)|n1,N2,... E lon1,nz,.. )ZVni 2<00 .(3.38b)

ni,ns,...=0
ny,na,...=0

The common domain of definition of the set {np(V(f)*),xp(V(g)):f.ge D},
and therefore of the set {nr(¢(f)),nr(r(g)):f,ge H}, contains D(N/2), Since
D(N1/2) contains all finite linear combinations of the basis vectors, it is
dense in Hr. On this common, dense domain of definition, the mr(¢(f))

and nr(rn(g)) satisfy

[rr(o()),mr(n(g))]¥=iRe[<t,g>]¥, (3.393)
[rr(9(5).mr (@) ¥=ilm[<f,g>], (3.39b)
and [re(n()) nE(m@)]P=ilm[<f,g>]¥, (3.39¢)
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i.e., they form a representation of the ¢(f) and n(g). Furthermore, (V¥ (f)¥)
is the Hermitian adjoint of ne(V¥(f)) , and the nF(¢(f)) and ng(n(g)) are

therefore self-adjoint.

The previous discussion shows that in the Fock representation
there exist densely defined, self-adjoint operators that form a

representation of the ¢(f) and n(g). The following version of Stone's
Theorem ([Riesz] page 385) allows us to formulate conditions that an

arbitrary representation must satisfy in order to have this property.

Theorem 3.40 (Stone's Theorem) Every weakly continuous 1-parameter |

group of unitary transformations {Uy} on a Hilbert space $ is generated
by an infinitesimal transformation A. A is a densely defined, self-adjoint

transformation, which in general is not bounded, and which satisfies

Uelth, A=t Jim HUc).

note: the unitary transformations Uy are weakly or strongly continuous in

the real parameter t if the sequence {Uy } converges weakly or strongly,

respectively, to Uy whenever t, converges to t. See Definition 1.31 for a

definition of weak and strong continuity.

Now, in an arbitrary representation {H,rx} of the C.C.R. algebra
A (D), n(W(f)) is a unitary operator on H. The set {x(W(tf)); te R} is
therefore a 1-parameter group of unitary transformations, for each fixed f.

If we require the operators n(W(tf)) to be weakly continuous in the real
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parameter t, for all f, then Theorem 3.40 implies that there exist densely

defined, self-adjoint transformations n(¢(f)) that satisfy
n(W(th))=eitr(é(h), (3.41a)

and n(q)(f)):;— iy_r)no%(n(W(kf))—n(W(o»). (3.41b)

With n(r(g))=n(¢(ig)), it is easy to verify (using the commutation relations
(3.21) of the W(f)) tha_t the n($(f)) and n(n(g)) satisfy the commutation
relations (3.5), i.e., they form a representation of the ¢(f) and n{g). The
condition we seek is that the unitary operators n(W(tf)) be weakly
continuous in the real parameter t. Since weak and strong continuity

coincide for unitary operators we make the following definition.

Definition 3.42 A representation {H,r} of the C.C.R. algebra 2L (5) with the
property that the unitary operators n(W(tf)) are strongly continuous in the

real parameter t, for fixed fe 9, is said to be a regular representation.

Thus, a regular representation of A(h) allows for a representation
of the operators {(f) and p(f) and for the existence of a number or density

operator.

One of the reasons a relatively simple discussion of spin systems
was possible in Chapter 2 was the simple characterization of a state in

Proposition 2.12. An arbitrary state o over the C.C.R. algebra % () is

determined by its values on the W(f). We will denote these values by
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Ew(f)=a(W(f)). Ey(f) is a functional on the set of vectors {f:fe $}. The
following conditions characterize functionals E(f) that define a state over
A D).

Proposition 3.43 A functional E(f) defined for all fe $ that satisfies

i) Eo(0)=1,

ii) Eo(f) =Ew(-1),

iii)Zaiod exp[aim(<fj fi>)|E(fj~f)20
i '

for all {f}e $ and {od}e T, i=1,2,...,n,

and is continuous defines a state over the C.C.R. algebra € (5). This

state is obtained by defining

a(W()=E(f), (3.743a)
and then extending this definitionrto all of A (H) by linearity.
Proof: First ﬁote that it is possible to extend (3.43a) to all of A (H) since
Ew(f) is continuo‘us.‘By definition, o is a linear functional over U (5).

Condition i) guarantees that w is normalized, condition ii) guarantees

that the w is real and condition iii) guarantees that w is positive.

107



CHAPTER 3

Araki and Woods constructed representations of the C.C.R.
algebra which they claimed were appropriate for the description of the
infinite Bose gas ([Arak]). They worked solely with functionals over the
algebra, and never introduced the concept of a state. They give the
conditions of Proposition 3.43 as being necessary and sufficient for a
functional to define a cyclic representation of the C.C.R. algebra. By
dealing with states we obtain a simple proof of this claim (just use

Proposition 3.43 and the G.N.S. construCtion) along with a physical
| interpretation of these conditions. Note that Araki and Woods actually
dealt with the case when % is a pre-Hilbert space ‘and so did not require
the functional to be continuous. They showed that it is possible to extend

(in the strong operator topology) a representation of A (H) to a
representation of 2 ($ 1), where 51 is a subset of the completion $ of

$». This subset contains all vectors fe—f)T for which there exists a

sequence {fn}eg such that 0 m_T\_)wEm(fn~fm)=0- If E@(f) is continuous

then $ 1= 5 . Since the functionals that we shall postulate are

continuous our methods and results are the same as Araki and Woods.
We extend the algebra to the completed Hilbert space $ and work with

a C*-algebra while they extend the representations of the algebra to the
completed Hilbert space '$ and never use the concept of a“C*-algebra.
We should also note that the inequality of two functionals implies that the
: correspénding cyclic G.N.S. representations are unitarily inequivalent. It
does not imply that the corresponding G.N.S. representations are
unitarily inequivalent. For example, consider a representation {%,r} and
two cyclic vectors ¥1,%2e 5. The cyclic represenfations {»,n, ¥4} and
{» 7, W2} are the cyclic G.N.S. representations corresponding to the

functionals E1(f)=(¥1,m(W(f))¥1) and Ea(f)=(¥2,n(W(f))¥2). In general
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E1(f)=E2(f), but {»,r} is the G.N.S. representation corresponding to both
functionals. At the end of this chapter a proof will be suggested to show
that the G.N.S. representations corresponding to states of an infinite
Bose gas with different densities are unitarily inequivalent. this claim
goes beyond the statement that the corresponding cyclic representations

are unitarily inequivalent.

A state o over A (H) is said to be regular if the corresponding
G.N.S. representation {5 ,,n,,Q} is regular (see [Brat2] section 5.2.3. for

a discussion of regular states). It is possible to formulate a condition on
the functional Ey(f) in order for the state w to be regular. In the

representation {» ,,n,,Q,} one has
I (e (W(t))=T)mo(W(g))Qqll2=2~e-t Im<f.g>(W(tf))~elt IM<h.g>aw(W(-tf))
=2—g-tIm<tg>E  (tf)—elt Im<f.g>Eq(-tf).(3.44)
This leads to the following Proposition.

Proposition 3.45 A state  over the C.C.R. algebra () is regular if and

only if Eq(tf)=w(W(tf)) is continuous in the real parameter t, for all fe 5.

Proof: The proof follows immediately from (3.44).

For example, consider the Fock representation {Hg,ng,¥fo}. We
can use-the cyclic vector ¥, to define the vector state

dFo(A)=(¥Fo.,mF(A)¥Fo), which we refer to as the Fock ground state. The
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Fock representation is unitarily equivalent to the G.N.S. representation

corresponding to the Fock ground state ¢ro,. The linear functional
EFo(f)=0Fo(W(f)) is calculated as follows. It is possible to show that (see

equation (4.6c) in the fourth section of this chapter)

W(f)F=e—IIfl|2/4 exp[‘%\l’(f)’g] exp[‘/—i_z-\]!(f)[_-],
so that EFo(f):g‘"'"‘g/“(‘PFo,exp[t\l’(f)ﬁ] exp[—JréW(f)F]TFo)

o ITP/a{expE V(R Fo.expl=V(FI¥Fo)

=e—"f"2/4. (3 46)

It is obvious that Efo(tf) is continuous in the real parameter t, for each

fixed fe . This.implies that the Fock ground state ¢r, is a regular state,
and hence the Fock representation is a regular representation. This, of
course, is the reason why we were able to recover the infinitesimal
generators wr(¢(f)) of the unitary operators ng(W(f)) in the Fock
representation (Stones Theorem 3.40 guarantees that these infinitesimal

generators exist).

When 5 is the Hilbert space appropriate for the description of a
single point particle, the C.C.R. algebra ¥ () corresponds to a system
containing an arbitrary, finite or infinite, number of these point particles.
The number of particles in the system depends upon the state the system
is in. Different representations will then correspond to different particle

numbers. For example, every state that is a vector state in the Fock
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representation is a finite particle state. To see this, let ¥ be an arbitrary
vector in the densely defined domain of the number operator N on Hf
(see (3.36)). The expectation value (¥,N¥)=(N1/2¥ N1/2¥) of the
number operator gives the average number of particles in the state .

Equation (3.38) guarantees that this number is finite.

- 3.3 QUASI-LOCAL C.C.R. ALGEBRAS

We now analyze the quasi-local structure of the C.C.R. algebra
9 (H) over the Hilbert space $=£2(R3). This is the C.C.R. algebra

corresponding to an infinitely extended system of bosons. We will
denote it by 9L R3. For an arbitrary bounded region Z in R3, denote the

subspace of » formed by the functions whose support is in Z by Hz, and
the corresponding C.C.R. algebra A (Hz) by A z. The collection T of all

finite regions Z, ordered by inclusion, is a directed set. If Z1<Z5, then an
arbitrary element f1eHz_ is an element of Hz,, and we can construct the

following mapping iz,1 from A z, into M z,. For arbitrary W1(f1)e Az,

define

i2,1(W1(f1))=Wa(fy). (3.47)

This mapping may be extended to all of le1. The resulting mapping is a

*-homomorphism from Az, into Uz, that satisfies

i) i2,1(T1)=12, where 14=W1(0) and T2=W2(0),
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ii) i 2i2,1=i3,1 whenever Z4<Z<Z3.

The family of C*-algebras {2 z:Ze R3} satisfies the postulate of isotony

(see pg. 25), and therefore admits a C*-inductive limit L. Recall that this

is a C*-algebra with identity 1 that has the property that for every Ze =

there exists a *-homomorphism iz from 7 into U that satisfies

i)iz(1z)=1, where 1z is the identity for 9z,
ii) izz(S!lzz):iZ1(le1), whenever Z305Z4,

and iii) Zgziz(ﬂz) =9, where the bar denotes the uniform

closure.

Any element of $ may be approximated to any degree by
functions with bounded support. This result suggests that = ZkEJsz .

Hence this C*-inductive limit is equal to 9 R3, so that the set
{UR3;U7,Ze %} is a quasi-local algebra (see section 1.5). Since every

element of A z, is also an element of U R3, the *-homomorphism iz from

Az into A R3 is simply given by iz(A)=A for all Ac U 7.

Let @ be a regular state over the quasi-local algebra
UR3; A 7,Ze =} and {H ,n,Qu} the corresponding G.N.S.
R Z

representation. Let {hzj} be an orthonormal basis for Hz. We formally

define an operator Ny for the region Z as
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Nz= D o (V¥ (h)¥(hy). (3.48)
i

If this operator exists we interpret it as the number operator for the region
Z. Although we are not guaranteed that N, exists, we expect that it will for

states which correspond to an infinite system with finite density (see
[Brat2] section 5.2.3). If a density operator exists in 2L g3 it will be given

by

im Nz
Pop=_lim, v, » (3.49)

where V; is the volume of the region Z.

3.4 THE INFINITE FREE BOSE GAS

In this section we examine the algebraic description of an infinite
Bose gas of finite density, when all particles are in the zero momentum
state. The C*-algebra corresponding to this system is the quasi-local
algebra (U y3; M 7,Zez}. The state wp corresponding to a given density p
of particles in the zero momentum state will be constructed in terms of its
generating functional Ey(f), following the methods of Araki and Woods
([Arak]). The generating functional E(f) will be dependenf on the density
p. This causes Araki and Woods to conclude that different densities give
rise to unitarily inequivalent representations. From the discussion
following Proposition 3.43 we know that this conclusion is not necessarily

true, so we will explicitly show that different densities give rise to unitarily
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inequivalent representations. We will also find (following Araki and
Woods) that the G.N.S representation corresponding to a fixed density is
reducible, and express the representation as a direct integral of unitarily
inequivalent irreducible representations. This shows, émong other

things, that the C.C.R. algebra ¥ (C) admits an infinite number of

unitarily inequivalent irreducible representations.

Let AL denote the cube in R3 centered on the origin with sides of

length L (and volume L3). The restriction Eeet (f) of Ep(f) to the local
algebra 9 ,t is obtained by restricting the functions f to the set of

functions whose support lies in AL, i.e., we define

ErestL(f)=Ep(f) for all f(x) with Supp(f) in AL. "(3.50)

The generating functional Ep is then given by Ep(f)=[_ly_;n°° Erestt(f)(fAL),

where fjl is the restriction of f to the region AL,

f if xe AL
fAL(x)ﬁ{o(X)if'x);eAL ' (3.51)

To determine E, we could postulate a form for E_ and then use
Ep(f)=l_li_gwoo ErestL(f)(faL). The problem with this, of course, is how does
one determine Eegtl (f) without knowing Ep. For this reason we will follow
Araki and Woods and postulate that the functional Ep is the limit of the

functionals E|_ that describe a system of N bosons in the box AL such that

% =p, where V|_is the volume of AL. Note that the description of a gasin
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a finite box is not the same as the description of a finite portion of a’,ri :

infinite gas; after Ep has been calculated we will find that Ergstu&E[_," :

Consider N particles in thé box AL. Let all particles be in Athe.zerOx
momentum state and let the system have a mean particle density p=%,
where‘VL is the volume of AL.' In section 3.2, equation (3.46), we
calculated the Fock space functionai ErFo(f). It correéponds to the no.
particle case (zéro density). Now we are interested in calculating the
functional EL(f) which corresponds to the N-particle case, although we
are taking the sbecial case when all particles have zero momentum. To
calculate Ey(f) we use the Fock representation {$f,ng,QFo} of the local
algebra U L. To simplify notation we will denote the element ngr(A) by
Ar. For example np(W(f))=W(f)r and nF(W(f)*)=W(f)’,'§. The functional Ey (f)

is the given by

EL(f)=o(W(H)=(Qn,W(HFON), (3.52)
where Qp is the vector in the Fock representation corresponding to the
state which contains N=pL3=pV particles in the zero momentum state in

AL, This vector is given by

ON=(NI)-V2(y(fv)E)NQFo, (3.53a)

where fv(x)=V-12=(%) "2, xe AL, | (3.53b)
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i.e., we create N particles in the state fy, which is the zero momentum

state for a single particle in a box of volume V. This gives

EL()=(N)" (W(v)EINQFo , WHF(Y(FV)EINQFo). (3.54)

To evaluate (3.54) we need the following results.

W EINQRolI2=lIfI2NNI, (3.55a)
exp[¥(7)F] [¥(gftNexp[V(-rl=lW(g)E+(tQIN, (3.55b)
and W()F=Eroll) expl=V(1}E] expl V(1) (3.55¢)

where EFo(f)=exp[—%||fll2] is the generating functional for the Fock ground

state, (3.46). To show (3.55a), we note that the commutation relations
[W(h)FW(HEI=II2 imply

(W), (WEOENI=NIFI2(w (HEN-1. (3.56)
Using this élong with the result that ¥(f)rQro=0 we obtain the folloyving
(‘?(f)F)N(‘lf(f)é)NQFo=(‘V(f)F)N“{(W(f)E)N‘V(f)F+Nllfl|2(W(f)E)N“}QFo

=Nl (RN (WHN-1QFo. ' (3.57)

Repeated application of (3.57) gives
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(WORNWEEINQRo=NIITIZNQE,. (3.58)

Using (3.58) we have

I EENQFoliZ=((WHEINQFo , (W(HEINCFo)
=(QFo , (WIHRANVHHNCQF)

=NI[f[[N (3.55a)

(3.55b) follows from the commutation relations of the W(f)",; and Y(f)r and
the relation eABNg—A é[eABe-A]N=[B+[A,B]]N, valid when [A,B] is a

constant. (3.55¢) follows from the rélation eA+B=g-1/2[A,B]gA ¢B and the
commutation relations of the \V(f)",é and Y(f)F,

W(0)r=explio(f)Fl=expl ¥ (TE+- =V (NF]
=exp[-5V (LY ()F)|expL =V () expl =V (NF]

=expl-4ll2Jexp[ =V (1jE] exply=V (el (3.55¢)

We can now evaluate (3.54).
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EL()=(N)~T(W(fv)ENQFo , WHF(W(fV)HNQF)

(using (3.55c))

=Ero(f) (NI~ (W(v)EINGFo , expl W (1) H el VRV vENaro)

=Efo(f)(NY~" (expL =¥ (-NFIVIVIEINGFo , expE Y (FIVINIINGF),

(3.59)

where the last equality follows from the relation

oxpl 2V (EIt=expl—-2V1)F] =expl V(-1

We now put the right hand side of this scalar product into a more
convenient form. Since exp[‘—}—E‘V(-f)F]QF(,:QFo, we have

exp[%z\v«m(W(fv)*,é)NnFFexp%W)Fl(W(fv)*,é)Nexp[ﬁv(—m:]szpo,

(using (3.55b) =V )N,
N ,
= A D YOI 0Fo,(3.60)
"r_o rI(N=n)I/ \FAVIE Vo VIESFOAS.

where the last equality follows from the binomial theorem. In a similar

fashion we find
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‘ N
exp[j—‘z“‘l’(—f)F](‘V(fV)E)NQFo=§( 1) (rl(lt\]l_!.r)[)(w(fV)*)N-r[{—(f )I"Fo.(3.60b)

Substituting (3.60) into (3.59) gives
EL(f)=Ero(f)(N!)~1

N
NI NI i | :
T« E {H)'( ”S(rn(N_r))(si(N_s”)[f——(f,fvnr[-rf 2 S
X (Wi PIN-SQEo, (W(ivIRN-QR,)

r,s=0

Using (3.55a) and the result [lfyll=1we have

(YIWVEIN-SQFo, (W(fV)E )N"QFo) Br, sl (W(ENTQFolI2

=8¢ (N—1)L. (3.62)

Substituting (3.62) into (3.61) gives

ff ’
EL(f)=EFro(f)(NI)- 12(”‘1) rl(N r)l) (N- r)[l( 2V)l2]

N
| f.iv)[27" |
~Ero) 2(4 )r(r!)z'(\’r\'l_r)!{'( 2"” ] (3.63)

We can put the above expression into a more convenient form by noting

that the Nth Laguerre pblynomial is given by the power series
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N_r I, - Ge

Tl‘[\42
o

This allows us to write E( (f) as
ELO-ErnGIGnR). (@68)

Since the support of f is contained in AL we can write the scalar product

(f,fv) as

()= [f0e7 axyT o)
R

where T (0) is the Fourier transform T (k)= ‘[f(x) eik-xdx of f(x) evaluated
R

at k=0. The quantity I(f,fy)|2 may therefore be written as

G.AIR=RIT ()12, T (0)= £f(x)dx. (3.66)
R

Substituting (3.66) into (3.65) gives
EL=EroILN(E 1T @) (3.67)

The limit V and N— oo is now taken, holding the density p=N/V constant.
The Laguerre polynomials have the property (see [Szeg] Theorem 8.1.3)
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- Jim Ln(@N)=Jo(22172), (3.68a)

where Jo(x) is the zero order Bessel function,

X 27n
de):ZH:(ﬂ)Z] . ~ (3.68b)

Using this property we have

Eq(f1=Erolf), im LnG RiT ()12)
=expl411121Jo((2p) 17217 (0)1). (3.69)

Note that Eest (f) is simply obtained by restricting the functions f to the

region LL, and this does not give the functional E(f).

Equation (4,20) is the expression that we postulate for the
functional corresponding to the ground state of the infinite bose gas with

density p. At this point we should demonstrate that this functional

satisfies the conditions of Propositioh 3.43 and hence defines a state of
A R3. Since it is quite difficult to show that this functional satisfies

condition iii) of Proposition 3.43 we we first proceed to construct a cyclic

representation. In terms of this representation this proof will be easy.

121



CHAPTER 3
The G.N.S. representation corresponding to the functional Ep(f)
will now be constructed.  The functional Ep(f) is a product of the Fock
functional with another functional. This suggests that the representation

that we are looking for is the direct product of two representations, one of

which is the Fock representation. We first define the representation space
5, tobe

5,=Hr®8£2(SY), (3.70a)
where 5 is the Fock space and £2(S1) is the space of square

integrable functions on the unit circle with respect to the Lebesgue

measure (d6/2n). The representatives ny(W(f)) are then defined to be
np(lW(f))=W(f)F®exp{i(2p)1/2IT(O)IA}, (3.Y7Ob)
where A is the operator
(Af)(0)=cos6f(0) | . (3.70c)

defined on £2(S1). It is easy to verify that the pair {Sp,np} forms a

representation of the C.C.R. algebra. Next consider the vector-
Qp=QFo®1. , (3.70d)

The vector 1 is cyclic for £2(S1) with respect to the algebra generated by

A and Qg is cyclic for the Fock representation. This implies that the
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vector Q is cyclic for the representation {5 p,mp}, hence {$,,m,,Qp} is a

cyclic representation. Now

(Qp,mo(W())Q2p)=(Wro, W(H)FWFo) (1,exp{(2p)12IT (0)IA}1)
2n
=Epo(nﬂjexp{i(2p)1/2|?(0)lcose}(de/2n)

=expl4fi21o((2p) V21T (0)1)
“E,(1), (3.71)

where we have used a standard integral formula for J, that may be found
in most texts on mathematical physics (see, for example, [Arik} page
580). So the representation {5p,np,Qp} produces the correct state over

the C.C.R. algebra. Since Jq(0)=1, Ep-0=EFo.

At this point we should mention we have yet to show that this
functional satisfies the conditions of Proposition 3.43 and hence defines
a state of A y3. It is quite difficult to show directly that the functional Ep(f)
satisfies conditién i) of Proposition 3.43. Now that we have written the
functional in the form Ep(f)=(Qp,mp(W(f))Qp), it is trivial to verify that it
satisfies the conditions of Proposition 3.43. Furthermore, since the
representation {5 psTp,Qp} is cyclic we may use Theorem 1.25 to
conclude that {5 psTp,Qp} is unitarily equivalent to the G.N.S.

representation arising from the state that corresponds to the functional

Eplf).
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The functional Ep(tf) is continuous in the real parameter t and
therefore defines a regular state. The infinitesimal generator np(9(f)) is

given by
d
To(d(M)=grlme W], _,
4 withreexpiizp) 27 (0)14)]
=dt (thr®@expfi(2p)/<t| f (0)IA} =0
=0(f)E®1+1®i(2p) 12| T (0)IA. (3.72)
The annihilation and creation operators are then given by
1 . .
mp(V(0)=rlmp(9(f)) +imp(o(if))]
=V(f)FR1+10(i—1)(p) 12T (0)IA, - (3.73a)
1 . .
and ftp(‘l’(f)*)=@[7rp(¢(f))—mp(¢(lf))]
=Y({*r@1+1®(+1)(p) /2 T (0)IA. (3.73b)
Let {hzi} be an orthonormal basis for Hz, where Z is an arbitrary
bounded region in R3 with volume Vz (recall that the Hilbert space Hz is

the subspace of £2(R3) formed by functions Whose support lies in Z.

The number operator N3 for the region Z is
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Ng= D o (W* (i) ¥ (hzi))
i )

| V(hzil* F¥ (hz) @1+ (hA)*E®(i-1)(p) 12121 (0) 1A |(3.74)

+W(hz1)F®(i+1)(p) 12I1z1(0)|A+1®2plhi(0)2A2

We now evaluate (Qp,NzQp).
NZQP=NZWFO®1

0®1+W(hzi)*EQFo®(i—1)(p)2Ih2(0)lcos® |,

0®(i+1)(p)1/21h2i(0)lcosb+QFo®2plhzi(0)12cos26

SO (Qp,NzQp)=Z(QfO,Qfo)(1 2plhzi(0)12c0s26)
' ,

| 2%
- E 2p|h”zi(0)|2Jcos2e(de/2n)

=pzlffzi(0)|2. (3.75)
|

Consider the function f(x) that takes on the constant value 1 for xe Z and

vanishes for x¢ Z. The expansion of f(x) in terms of the basis {hyj} is
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f(x)=2h”zi(0)hzi. (3.76)

We can then use Parseval's formula to conclude

erﬁ(O)l2=llf(x)ll2=vZ, : (3.77)
| :

where Vz is the volume of the region Z. Now the number density

operator in the representation {5p,np,§2p} is given by

Nz
Pop= llm3 v, (3.78) .

Z
In the representations used here pop is a constant. Thus it is clear that

this limit exists. The expectation value of pop is then (using (3.75) and

(3.78))
lim, ( Ne )= (3.79)
I @oigobp. -
so the representation {Sp,np,Qp} has the correct particle density.

We now discuss the inequivalence of the representations {Sp,np}
corresponding to different densities p. The dependence of the

representation on density is entirely contained in the second factor of the

direct product
o (W(D))=W(H)r®exp{i(2p) 12| T (0)IA}.
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Since the representations are all faithful they are physically equivalent. If -
a bounded linear operator commutes with Tp1(W(f)) then it will obviously
commute with p(W(f)). This implies that the von Neumann algebras
{mp1(W())}" and {rp2(W())}" are equal and the representations are quasi-
equivalent. They are not, however, unitarily equivalent. This is
suggested by the fact that the operators expf{i(2p)1/2|T (0)IA} on £2(S1y
are unitarily inequivalent for different values of p. The eigenvalue

equation for this operator is
exp{i(2p) 1217 (0)IA}3(6-A)=exp{i(2p) /21T (0)lcosA}5(8-1).  (3.80)

This allows us to conclude that the eigenvalue exp{i(2p1)1/2|T (0)I} of
exp{i(2p,)172|T (0)|A} is not an eigenvalue of exp{i(2p,)1/2|T (0)IA} if
P1#p2. Since the operators exp{i(2p1)1/21T (0)]A} and
exp{i(2p2)1/21T (0)IA} have different eigenvalues they cannot be unitarily
equivalent. These eigenvalues do not seem to admit any physical
interpretation. As we shall see below, however, they may be used to
label the irreducible constituents of the representation {5)p,1cp,Qp}. Note
that when the system is finite we are working in the Fock representation

for all densities. .

For any operator T on £2(S) that commutes with A, 1®T is an
element of the commutant {np(Ql(ER3))}', so the representation {5}p,np,Qp}
is reducible. Araki and Woods have shown that it is a direct integral of

irreducible representations. They write
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2nd
£2(S)= JM(G)dG/Zn, (3.81)
where dim M(6)=1. They then use the result [Dixm2])
2n® 2n®

Hr® d[:vl(e)demn: Jb‘ FOM(0)do/2n | (3.82a)

to decompose the representation space Sp. With respect to this

decomposition, the operators m,(W(f)) are decomposed as

2nd .
no(W()= |mg(W(f))de/2r, (3.82b)
where mo(W(f))=W(f)r®exp(i(2p)1/2| T (0)Icoss}. (3.82¢)

The Fock representation is irreducible. Since dim M(6)=1, it follows that
the set {ne(W(f))} is irreducible in 5 F®M(8). The representation
{DFOM(8),mg(W(f))} is therefore irreducible. We may use the eigenvalues
of the operator exp{i(2p)1/2|T (0)IA} to label these irreducible
representations. Since the operators exp{i(2p) 12T (0)lcos6} are simply
complex numbers, they are unitarily inequivalent for different values of 6.
This implies that the irreducible representations {$ F®M(0),e(W(f))} are

unitarily inequivalent. This shows, among other things, that the C.C.R.
algebra W p3 admits an infinite number of unitarily inequivalent

irreducible representations.
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Araki and Woods also consider then case when the density is a
function of momentum, p=p(k). Once again the representation they
construct is a direct integral of irreducible representations, which they
demonstrate are unitarily inequivalent. More recently Lewis and Pulé
[Lewi] and Cannon [Cann] have. calculated the canoﬁicél énd grand
canonical equilibrium states over W p3. The form that they obtain for the
generating functional reduces to our E(f) when the temperature goes to
zero. We expect that the represen‘tations corresponding to different
temperatures (and chemical potentials in the grand canonical case) are

unitarily inequivalent, although neither of these papers shows this.
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APPENDIX A
THE HARMONIC OSCILLATOR REPRESENTATION

In this Appendix we construct a faithful representation of the C.C.R.

algebra 9L (R) corresponding to a system with one degree of freedom.
This representation is is constructed with the aid of the annihilation and

creation operators, familiar from most modern Quantum Mechanics texts,

a=9%9,  (Ada)
and a*=9\]—i§9. (A.1b)
They satisfy [a,a)=[a*,a*]=0, (A.1c)
and [a,a*]=1. | (A.1d)

Consider the abstract vector In>, where n is an arbitrary nonnegative
integer. These vectors will form a basis for the representation space Hp.
We initially define E to be the set of all finite linear combinations of the
In>, so that E is a complex vectof space. We define linear
transformations nh(a) and nh(a*) on E by defining their action on the

basis vectors,

h(a)in> =V nin—1>, (A.2a)
and wh(a*)in>=v n+1In+1>. (A.2b)
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Note that mh(a)wh(a*)In>=(n+1)In> and nh(a*)rp(a)ln>=nin>, so that
[nh(a),mh(a*)]in>=In>, i.e., Th(a) and np(a*) satisfy the commutation

relations (A.1).

It is apparent that any basis vector In> can be obtained by

repeated application of nh(a*) to 10>,

a*)n
(@) 0

Vnl'

In>= (A.3)

To define a scalar product for E we introduce the conjugate vectors. For

the basis vectors we define

In>’=(MIO> )T

Vnt
n
=¢ofth@)”
VnI
=<, (A.4a)
N
and for arbitrary W= apln> in E
i=0
N
¥'=><nlgn. . (A.4b)
i=0

The action of nh(a*) and np(a) on the conjugate basis vectors <nl is found

to be |
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<nlrp(a)=<n+1 Wn+1. (A.5a)
and <ninp(a*)=<n—1n. | (A.5Db)

The conjugate vectors <nl can be obtained by repeated application of
mh(a) to <O0l,

cni=co@l (A.6)

—

To define a scalar product for the basis vectors we define
olo>=1, (A7)
and (In>,Im>)=<nlm>. (A.7b)

Using (A.4) and (A.6) we have

(In>,Im>)=<nlm>

n *ym
=<o=m\’/([;a_') “h\(%_') 10>, (A.8)
Now the commutation relations (A.1) imply that
Th(a)" mh(a*)m {|o> if n=m}
N ml 0>=10 it n>m J’ (A.92)
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n xym o
and <0=7th(a) Th(@*)M (<0l if n_m}_

W m “l0 if m>n
Substituting (A.9) into (A.8) then gives

(In>,Im>)=<nIlm> =8,

(A.9D)

(A.10)

so the basis vectors are orthonormal with respect to the scalar product

(A.7).
Consider the set

$h={‘1’=ianln> :ilanl2<oo},

n=0 n=0

and extend the scalar product to all of 5 by defining

(¥ ,0)=(3 0tnln>, 3 Prold)
n=0

m=0

o0
= > GnBm<nim>
n,m=0

=Zaan- |

n=0

This definition satisfies
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i) (T, 0% +BD)=t(I1,%) + B(IL, D),

ii) (@,%)= (¥,9) ,

and iii)(¥,¥)=20, and (¥,¥)=0 only when ¥=0,

for all ¥,®,ITe 1, and a,Be €, so it does define a scalar product for $,.

We can use this scalar product to define a norm on , as
I, ¥l2=(y,¥). (A.13)

Equipped with this norm, 5, is a pre-Hilbert space. We now show
that 5, is in fact a Hilbert space, i.e., we will show that all Cauchy

 sequences converge to an element of $y. Consider a sequence

oo

{‘I’i=2ain]n>} in%h.  Using (A.13) we have
- n=0

e l12= 2 ' lod —od 2. (A.14)
n=0

Assume that the sequence is Cauchy, so that for given any positive real
number ¢, there exists a positive integer N(e) such that Ivi—¥;li<e for all

i,j=N(e). Using (A.14) we have
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o0
—oJz i_
lain nI s Ian_anlz
n=0

<e2, (A.15)

for all 1,j=N(e). This implies that lol-of I<e for all 1,j<N(e), i.e. the

sequences of complex numbers {ain} are Cauchy for each fixed n, and

hence each ocin converges to a complex number o, For an arbitrary finite

integer N>0, it follows from (A.15) that

N
E lod —od [2<e2, . (A16)
n=0 |

foralli,j=N(e). If we then let j—co, we obtain
N ) ‘
Zla‘n-anl2.<.e2, : (A.17)
n=0 | ;
for all i=N(g). Since N is arbitrary, (A.17) implies that
zlain—anlzs@, | . (A1)
n=0 :

for alli>N(g). Now

139



APPENDIX A

locnl2=lan—-ocin+oainl2 ‘
<2(loyrof |2+l [2), (A.19)

so that for all i=N(e)

00 o0 00
> lanl2<2 § lotn—ol [242 2 lod 2
n=0
no n=0 ﬂ

<09, (A.20)

where the last inequality follows from (A.18) and the fact that ¥ie H,.

(=]
This then implies that ¥= Zanlm is an element of . Now, for all
n=0

i=N(e), (A.18) implies that

[ee]
lw—y;l2= E Iocn—ocinl2
"n=0

<g? (A.21)

so that the Cauchy sequence {¥j} converges to ¥, which is an element of

Hh. D is therefore complete, and hence a Hilbert space.
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The action of the operators nn(a*) and nh(a) on D will now be
discussed. They are both linear transformations on 5y, but they are both
unbounded. For example, llnn(a*)in>ll=n+1 and llnp(a)ln>ll=n , which

have no upper bound for all n, (note that [lin>ll=1). Their domains are

D(np(a*))={¥e Dn:lnn(a*)Pll<oo}

={¥= ianlnx ilanlz(n+1)<oo}, (A.22a)
n=0 n=0
and D(nn(a))={¥e S h:llnn(a)¥ll<oo}
={\If=ian|n>: ilan|2n<°°}. (A.22b)
-n=0 n=0

As expected, nh(a*) and nn(a) are not defined on all of . The domains
D(rwn(a*)) and D(rnh(a)) are , however, equal. It is convenient to
characterize these domains in a different manner. Consider the
"number" operator N=np(a*)np(a). We have Nin>=nln>, so the domain of

N is

D(N)=(¥= D on[n>: D lonl2n2<eo}, -~ (A.23a)
n=0 - n=0
and the domain of N1/2 js
D(N1/2)={¥=> an|n>: Y lopl2n<oo}. (A.23b)
n=0 n=0
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‘Comparing (A.23b) with (A.22), we see that D(nn(a*))=D(nn(a))=D(N1/2).
Since every finite linear combination of the basis vectors is contained in

D(N1/2), D(N1/2) is dense in $. Furthermore, for all ¥,de D(N1/2) we
have
(Th(2)¥,@)=(¥ th(a¥)®), (A.24)

so that np(a*)=mn(a)', the Hermitian adjoint of np(a).

We now construct a representation of 8L (R) on H, using wh(a*)

and mp(a). For an arbitrary polynomial zanm(a*)"(a)m we define
n,m=0

Wh( ZOan(al”‘)”(a)’“)E 2 oam(h(@*))"(wn(a))™. (A.25)

n,m=0 "~ n,m=0

In particular we have, using (A.1),

X
ﬂh(Q)=nh(a)\7%h(a ), (A.26a)
and 1 (p)=iBn(a*) (A.26b)

2

Both nh(q) and nh(p) are self adjoint, with domain D(N1/2). We now

define
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mU)=etn@,  (A27a)
7(V(s))=eisth(p), ; (A.27b)
: N.M . NM
and “h( ZgnmU(fn)V(Sm) Zgnmnh(U(tn))nh(V(Sm))(A-27C)

For arbitrary ¥, D(N1/2) we have
(mh(U(1)¥,mth(U(1))D)=(etmh(Q¥ eitmh(a)p)
=(¥,(et"h(q)) teitnr(@)p)
=(‘I’,e‘n";1(Q)eit7‘h(Q)(D)
=(¥,mn(U (1) mn(U(t) @)
e (A.28a)
In a similar fashion we find
(nh(V(S))W,Nh(V(S))¢)=(‘I’.nh(V('—S))nh(V(S))d’)
=(¥,0). " (A.28b)
This shows that mp(U(t)) and mp(V(s)) are well defined on D(N1/2), and

are in fact bounded on D(N1/2). This, along with the fact that D(N1/2) is
dense in 5y, shows that np(U(t)) and np(V(s)) are well defined on all of
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5 1. In addition, (A.28) now holds for all ¥,®e 5, which implies that
th(U(t)) and np(V(s)) are unitary operators on $p. Since the infinitesimal
generators mnh(p) and wh(q) of mh(U(t)) and mp(V(s)) satisfy the
commutations relations (1.7) (section 3.1),‘7£h(U(t)) and mwh(V(s)) satisfy
the commutation relations (1.12) (section 3.1). The pair ($n,nh) therefore
forms a representation of A (R). Since the action of ny(U(t)) and h(V(s))

on the vector 10> always produces a non-zero vector, this representation
is faithful.
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