Access to full text denied by publisher.

Please contact your local library to acquire the following paper:

Citation:

A Desilylation and a One-Pot Desilylation-Oxidation of Aliphatic *tert*-Butyldimethylsilyl Ethers Using Catalytic Quantities of PdCl₂(CH₃CN)₂ Noel S. Wilson and Brian A. Keay pp 2918 – 2919.

Tables:

Table 1. Times and Yields for the Desilylation and Oxidation of TBDMS Ethers

starting material	time for desilylation (h)	alcohol (% yield)	time for oxidation (h)	aldehyde or ketone (% yield) ^b
1.8	14	9 (91)**	6	10 (86)
2. 11	14	12 (80)a	6	13 (76)
3. 14	16	15 (73)a	4	16 (79)
4. 17	12	18 (82)a	10	19 (69)
5. 20	18	$21 (86)^a$	22	22 (80)
6. 23	13	24 (80) ^c	7	25 (75)
7. 26	16	27 (78)c	22	28 (78)
8. 29	14	$30 (78)^a$	20	31 (70)
9.32	20	33 (82)c	7d	34 (10)

 $[^]a$ Isolated yields using acetone, water (5 equiv), 75 °C, 6 h. b Isolated yields using DMF:acetone (1:1), water (5 equiv), 120 °C, 9 h, and then add 10 mol % PPh3, 2-bromomesitylene (1.1 equiv). c GC yields using the procedure in footnote b above. d Addition of another 5 mol % catalyst did not affect the yield.

Table 2. Compatibility of the Desilylation-Oxidation Conditions with Other Protecting Groups of Alcohols

entry	starting material	alcohol (% yield)#	aldehyde (% yield)ª
1	$35, R = SiEt_3$	36 (56)	37 (40)
2	38, $R = Si(i-Pr)_3$	39 (80)	40 (70)
3	41, $R = Si(t-Bu)Ph_2$	42 (81)	43 (78)
4	44, $R = MOM$	$45 (78)^b$	46 (60)
5	47, R = Bn	48 (80)	49 (66)
6	50, R = THP	51 (61)b	52 (-)c
7	53, $R = Ac$	54 (65) ^b	55 (55)

^a Isolated yields. ^b Diol was present by GC. ^cNMR indicated decomposition has occurred.

DOI: 10.1021/jo952210d