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Abstract

For modeling extremal behaviors, the Generalized extreme value distribution that originated

from the well established Extreme Value Theory has been widely used. As a special case

of such Generalized extreme value distribution, the Gumbel family is suitable for modeling

maximum values from light-tailed distributions. A common assumption used in the central

models of extreme values is the independence of extremes in most previous studies. However,

short-term dependence among extremes might exist. In this thesis, we study a linear Gumbel

distributed autoregressive model which was introduced by Toulemonde et al. (2010) to

simulate dependent extremes that follow the Gumbel distribution. Our main goal is to

investigate that if Gumbel distributed short-term maxima are weakly/moderately/strongly

dependent, but this dependence is not recognized, what will happen to the resulting estimates

of the Gumbel parameters. To reach this goal, simulations and a numerical example in

environmental science are presented to quantify the above issue.
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Chapter 1

Introduction

What on earth can we expect next? Can we do anything to protect ourselves from the

extreme events that lie years, decades, or even centuries in the future? Known as Extreme

Value Theory (EVT), it can give insights into extreme events. EVT is a curious and fasci-

nating blend of a variety of theories and applications involving natural phenomena, financial

market, insurance industry, economics and other disciplines. In particular, in the financial

world, EVT is being used to assess the risk of natural disasters, and to ensure institutions

have the financial reserves needed to cover the likely impact. The technique is being used

to protect ship from the most extreme storms they may face. Also it has helped architects

design a sea wall to sustain the shock of waves. Many real life extreme events require EVT

to provide a firm theoretical foundation on which we can build statistical models to describe

those extreme events.

The musings of EVT have been traced back to the early eighteenth century. Yet it was

not until the 1920s that the idea of predicting the unexpected events first attracted serious

attention. In 1928, Cambridge mathematician R.A. Fisher and his colleague L.H.C. Tippett

launched what became known as EVT with a paper showing that extreme events do indeed

follow their own special types of distribution. However, this obvious practical value was

regarded with suspicion for many years until it was used to predict flood levels from past

records with great success in the 1940s. From then on, EVT was gradually improved and

the Generalized Extreme Value (GEV) distribution is used as an approximation to model

the extreme values. Although it is widely accepted and has been spread into ever more fields

now, implementation of EVT still faces many challenges. In this thesis, we will concentrate

on the model called Gumbel distribution which is a special case of the GEV distribution.
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1.1 Introduction to the GEV distribution

In probability theory and statistics, the GEV distributions arise as the limiting distribution-

s for maximum or minimums (extreme values) of a sample of independent and identically

distributed (iid) random variables, as the sample size increases. The GEV distribution are

widely used in insurance, economics, risk management, environmental science, telecommuni-

cations, and many other industries to deal with extreme events which occur with very small

probability. The class of GEV distributions essentially involves three families of extreme

value distributions, namely types I, II and III or Gumbel, Weibull, and Fréchet families.

In some fields of applications, the GEV distribution is also known as the Fisher-Tippett

extreme value distribution which was named from Sir Ronald Aylmer Fisher (1890-1962) and

Leonard Henry Caleb Tippett (1902-1985) who recognized three principle functions outlined

later. As the most common type, the Gumbel distribution is a particular case of the GEV

distribution and it was named after a German mathematician Emil Gumbel (1891-1966) who

pioneered the mathematical field of extreme value theory along with Leonard Tippet and

Ronald Fisher.

The Gumbel distribution has two forms. One is based on the smallest extremes and the

other is based on the largest extremes. We call these the minimum and maximum cases

respectively, although this thesis will only focus on the maximum case.

The general formula for the probability density function of the Gumbel (minimum) dis-

tribution is

f(x) =
1

σ
e
x−µ
σ e−e

x−µ
σ , x ∈ (−∞,+∞) ,

where µ is the location parameter and σ is the scale parameter. The case where µ = 0 and

σ = 1 is called the Standard Gumbel distribution. The density for the standard Gumbel

distribution (minimum) reduces to

f(x) = exe−e
x

, x ∈ (−∞,+∞) .
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Figure 1.1 is the plot of the Gumbel probability density function (PDF) for the minimum

case.
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Figure 1.1: Gumbel distributionm PDF (Minimum).

The general formula for the PDF of the Gumbel (maximum) distribution is

f(x) =
1

σ
e−

x−µ
σ e−e

−x−µ
σ , x ∈ (−∞,+∞) ,

where µ is the location parameter and σ is the scale parameter. The case where µ = 0 and

σ = 1 is called the Standard Gumbel distribution. The density for the standard Gumbel

distribution (maximum) reduces to

f(x) = e−xe−e
−x
, x ∈ (−∞,+∞) .
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The following Figure 1.2 is the plot of the Gumbel probability density function for the

maximum case.
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Figure 1.2: Gumbel distributionm PDF (Maximum).

The formula for the cumulative density function (CDF) of the standard Gumbel distri-

bution (minimum) is

F (x) = 1− e−e
x−µ
σ , x ∈ (−∞,+∞) ,

and the CDF for the standard maximum case is

F (x) = e−e
−x−µ

σ , x ∈ (−∞,+∞) .
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Figure 1.3 and Figure 1.4 show the plots of the Gumbel cumulative distribution functions

for the minimum and maximum cases.
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Figure 1.3: Gumbel distributionm CDF (Minimum).

1.2 Review of Previous Studies

Classical EVT dictates that correctly normalized maxima should follow (under various con-

ditions) a GEV distribution. The key characteristic of the GEV is its stability for the max

operator. Also, the GEV distribution is the limit distribution of normalized maxima of a

sequence of independent and identically distributed random variables. When the target ran-
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Figure 1.4: Gumbel distributionm CDF (Maximum).

dom variables are iid, a peaks over threshold analysis can be carried out, where only cluster

maxima are used in the generalized Pareto distribution (GPD) fit and confidence interval

evaluation (Davison and Smith, 1990). This approach can largely avoid dependence in ex-

ceedances. However, short term dependencies (e.g. day-to-day records in weather systems)

might exist. When such dependence is present, one approach is to fit the GPD using all

exceedances and then model the dependence between exceedances in a cluster (Smith et al.,

1997). Alternatively, one can fit the GPD using all exceedances and (falsely) assuming that

they are independent, then account for the dependence in the confidence interval evaluation
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by using appropriate block bootstrap methods (Davison and Hinkley, 1997). Davison and

Ramesh (2000) admitted the difficulty to handle the failure of assuming the independence

of extremes. Chavez-Demoulin and Davison (2005) argued that dependence between the ex-

tremes would not bias estimators of the parameters of a model built upon the independence

assumption. However, no direct investigation on the effect of the failure of the indepen-

dence assumption has ever been done, possibly because there was no easy way to simulate

dependent extremes that follow GEV distribution or GPD. This situation changed due to

the recent work such as Toulemonde et al. (2010), by which we can generate temporally

dependent values that are Gumbel distributed.

1.3 Thesis Plan

As mentioned before, there is no direct investigation to show that failure of the independence

assumption of extreme values may or may not affect the accuracy of the final modeling

results using the Gumbel distribution. In particular, if Gumbel distributed maxima are

weakly/moderately/strongly dependent, but this dependence is not recognized, what will

happen to the resulting estimates of the Gumbel parameters? In this thesis we will answer

this question. Our goal is to use the autoregressive (AR) processes (Toulemonde et al,

2010) to generate temporally dependent values under Gumbel distribution and compare the

estimation results with previous works assuming independence of the extremes.

The thesis is organized as follows. In Chapter 2, we will introduce and discuss the

maximum likelihood estimators of the parameters of the Gumbel distribution and then briefly

explain how to extend linear AR models in such a way that they handle Gumbel maxima

distribution. In Chapter 3, we will run simulations to study the bias and mean square error

(MSE) of the maximum likelihood estimators of the Gumbel parameters by comparing the

cases under the independence assumption with the dependence cases. Also the return levels

of the two cases are considered. In Chapter 4, we will present the analysis of a real dataset

7



in environmental science using the methodology we introduced in Chapter 2. In Chapter 5,

we will draw some conclusions and discuss some future study possibilities. The computer

codes of our program are given in the Appendix.

8



Chapter 2

Methodology

The GEV distribution is widely used to model daily, weekly or yearly extreme values in

many disciplines. One special case of such GEV distributions is the Gumbel family that

corresponds to the modeling of maxima stemming from light-tailed distributions. In this

chapter, we are going to focus on introducing the methodology of parameter estimation for

the Gumbel distribution and the basic knowledge about the AR(1) Gumbel model. In the

first section, asymptotic models for extreme value distribution are briefly introduced and

basic concepts and properties of GEV distributions are provided. In the second section,

we are going to discuss an efficient estimation algorithm based on the maximum likelihood

method and give some simple model checking techniques. In the third section, we are going

to introduce a way of extending linear autoregressive models to handle Gumbel distributed

maxima in order to capture temporal dependencies and give an approach of the AR(1) model

checking.

2.1 Asymptotic Models

2.1.1 Model Formulation

In this section the foundation of extreme value theory is used to build the model. The

model focuses on the statistical behavior of the maximum, denoted by Mn, of a sequence of

independent random variables X1, ..., Xn,

Mn = max {X1, ..., Xn} ,

where X1, ..., Xn have a common distribution function F . In applications, the Xi usually

represent values of a process measured on a regular time-scale such as hourly measurements

9



of wind speed, daily average temperature or weekly rainfall depth and then Mn represents the

maximum of the process over n time units of observation. If n is the number of observations

in a year, then Mn corresponds to the annual maximum.

We use F (x) to represent the distribution of X1, ..., Xn, then the distribution of Mn can

be derived exactly for all values of n by

P (Mn ≤ x) = P (X1 ≤ x, ...., Xn ≤ x)

= P (X1 ≤ x)× ...× P (Xn ≤ x)

= [F (x)]n . (2.1)

However, the distribution function F is usually unknown in practice. One possible

method is to use standard techniques to estimate F from observed data, and then to sub-

stitute this estimate into equation 2.1. Unfortunately, some very small discrepancies in the

estimate of F can lead to substantial discrepancies for F n in applications.

An alternative method is to accept that F is unknown and to look for approximate models

for F n, which can be estimated on the analysis of extreme data instead of the sequence of

independent random variables. This idea is similar to the usual practice of approximating

the distribution of sample means by the normal distribution, as justified by the central limit

theorem. By this idea, we need to look at the behavior of F n as n → ∞. However, for

any x < x+, where x+ is the upper end-point of F , F n(x) → 0 as n → ∞, so that the

distribution of Mn degenerates to a point mass on x+. This difficulty is avoided by allowing

a linear renormalization of the variable Mn :

M∗
n =

Mn − µn
σn

,

for sequences of constants {µn} and {σn > 0}. Appropriate choices of the {µn} and {σn}

stabilize the location and scale of M∗
n as n increases, avoiding the difficulties that arise with

the variable Mn. Therefore, we look for the limit distributions for M∗
n instead of Mn with

proper choices of {µn} and {σn}.

10



2.1.2 Extremal Types Theorem

The entire range of possible limit distributions for M∗
n is given by Theorem 1 (Coles, S. G.,

2001), the extremal types theorem.

Theorem 1 If there exist sequences of constants {µn} and {σn > 0} such that

Pr {(Mn − µn) /σn ≤ x} → F (x), as n→∞,

where F is a non-degenerate distribution function, then F belongs to one of the following

families:

I : Fx = exp

{
−exp

[(
x− µ
σ

)]}
,−∞ < x <∞;

II : Fx = exp

{
−
(
x− µ
σ

ε
)−ε

}
, x > µ;

III : Fx = exp

{
−
[
−
(
x− µ
σ

ε
)ε]}

, x < µ,

for parameters µ, σ > 0, and in the cases of families II and III, ε > 0.

Theorem 1 states that the rescaled sample maxima (Mn−µn)/σn converges in distribution

to a variable having a distribution within one of the three families labeled I, II and III.

Collectively, these three families of distributions are termed the extreme value distributions,

known as the Gumbel, Fréchet, and Weibull families, respectively. Each family has a

location and a scale parameter, µ and σ respectively. In addition, the Fréchet and Weibull

families have a shape parameter ε.

2.1.3 The Generalized Extreme Value Distribution

The three types of limits that arise in Theorem 1 have distinct forms of function. The

distribution function of the three-parameter GEV distribution with parameters µ, σ > 0,

11



and ε is

F (x) = exp

{
−
[
1− ε

(
x− µ
σ

)]1/ε}
, (2.2)

where 1 − ε(x − µ)/σ > 0. The model has three parameters: a location parameter, µ; a

scale parameter, σ; a shape parameter, ε. The Fréchet and Weibull families of extreme value

distribution correspond respectively to the case ε > 0 and ε < 0 in the parameterization.

The subset of the GEV family with ε = 0 is interpreted as the limit of equation 2.2 as ε→ 0,

leading to the Gumbel family with the distribution function

F (x) = exp

{
−exp

[
−
(
x− µ
σ

)]}
,−∞ < x < +∞. (2.3)

Although these three families have different requirement of ε, the data themselves deter-

mine the most appropriate type of tail behavior, and there is no need to make subjective a

priori judgements about which individual extreme family to adopt.

For modeling the extremes of a series of independent observations x1, x2, ..., data are

blocked into sequences of observations of length n, for some large value of n, generating a

series of block maxima, Mn,1, ....Mn,m, say, to which the GEV distribution can be fitted.

Often the blocks are chosen to correspond to a time period of length one year, such as n is

the number of observations in a year and the block maxima is the annual maxima. We will

use the annual maxima in the following discussion.

By inverting equation 2.2, estimates of extreme quantiles of the annual maximum distri-

bution are obtained:

xp = µ+ σ {1− [−log (1− p)]ε} /ε, (2.4)

where 0 < p < 1, F (xp) = 1− p and ε 6= 0.

Similarly, for a Gumbel family with ε = 0,

xp = µ+ σ {−log (1− p)} . (2.5)

12



By definition, xp is the return level corresponding to return period 1/p. The level xp

is expected to be exceeded on average once every 1/p years. More specifically, the annual

maximum in any particular year is supposed to exceed xp with probability p.

2.1.4 Asymptotic Models for Minima

Some applications require models for extremely small, rather than extremely large obser-

vations. For example, the lifetime of a system needs to be tested when the overall system

breaks down if any of the individual components fails. In this case, the target is the work-

ing time of the weakest components of the system. To model the minima cases, we denote

M̃n = min {X1, ....Xn}, where the Xi is independent and identically distributed. Also anal-

ogous arguments which were applied to Mn still apply to M̃n, leading to to a similar limiting

distribution of M̃n.

Letting Yi = −Xi for i = 1, ..., n, the change of sign means that small values of Xi

correspond to large values of Yi. So if M̃n = min {X1, ....Xn} and Mn = max {Y1, ..., Yn},

then M̃n = −Mn. Hence, for large n,

P (M̃n ≤ x) = P (−Mn ≤ x)

= P (Mn ≥ −x)

= 1− P (Mn ≤ −x)

≈ 1− exp

{
−
[
1− ε

(
−x− µ

σ

)]1/ε}

= 1− exp

{
−
[
1− ε

(
x− µ̃
σ

)]1/ε}
,

on {x : 1 − ε(µ̃ − x)/σ > 0}, where µ̃ = −µ. This distribution is the GEV distribution

for minima, which was introduced by Coles, S. G. (2001).

13



2.2 Inference for the GEV Distribution

2.2.1 The Choice of Block Size

By Theorem 1, the GEV provides a model for the distribution of block maxima. Usually

the preparatory work consists of blocking the data into blocks of equal length and fitting the

GEV to the set of block maxima. For some particular dataset, the choice of block size can

be critical. If the blocks are too small, the approximation by the limit model in Theorem 1

is likely to be poor, creating bias in estimation and extrapolation. Otherwise, large blocks

generate few block maxima, leading to large estimation variance. In applications, the block

size of one year is often to be adopted because only the annual maximum data may have been

recorded in some situations such that the annual rainfall depth or annual highest sea-level.

Many datasets contain seasonal factor which might lead to different distributions for block

maxima. For example, daily temperatures are likely to vary according to season, violating

the assumption that the xi have a common distribution. If the data were blocked into block

lengths of around 3 months, the maximum of the summer block is likely to be much greater

than that of the winter block and then it would be likely to give inaccurate results.

2.2.2 Maximum Likelihood Estimation

If the data set {Xi} are independent and identically distributed from a GEV distribution,

then the minus of the log-likelihood function for a sample of n observations {x1, ....xn} is

−L(µ, σ, ε) = nlogσ + (1− ε)
n∑
i

yi +
n∑
i

e−yi , (2.7)

where yi = −ε−1log {1− ε (xi − µ) /σ} and provided that

1− ε(xi − µ)/σ > 0, i = 1, ...., n. (2.8)

At parameter combinations for which equation 2.8 is violated, corresponding to a configu-

ration for which at least one of the observed data point falls beyond an end-point of the

distribution, the likelihood is zero and the log-likelihood equals −∞.
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The case ε = 0 requires separate treatment using the Gumbel limit of the GEV distribu-

tion. This leads to the log-likelihood

−L(µ, σ) = nlogσ +
n∑
i

zi +
n∑
i

e−zi , (2.9)

where zi = (xi − µ)/σ.

Maximization of the log-likelihood function is equivalent to the minimization of the pair

of equations 2.7 and 2.9 with respect to the parameter vector (µ, σ, ε), which gives to the

maximum likelihood estimates with respect to the entire GEV family. There is no analytical

solution, but for any given dataset the minimization is straightforward using standard nu-

merical optimization algorithms. The maximum likelihood estimators of µ and σ are denoted

by µ̂ and σ̂.

By substitution of the maximum likelihood estimates of the GEV parameters into equa-

tion 2.4, the maximum likelihood estimate of xp for 0 < p < 1, the 1/p return level, is

obtained as

x̂p = µ̂+ σ̂
{

1− [−log (1− p)]ε̂
}
/ε̂, (2.10)

where ε 6= 0 and F (xp) = 1− p. Similarly, for the Gumbel family (ε = 0),

x̂p = µ̂+ σ̂ {−log (1− p)} . (2.11)

2.2.3 Model Checking

Though it is impossible to check the validity of an extrapolation based on a GEV model,

assessment can be made with reference to the observed data. This is not sufficient to justify

extrapolation, but is a reasonable prerequisite. We will discuss the use of probability plots

and quantile plots for model checking.

A probability plot is a comparison of the empirical and fitted distribution functions.

With ordered block maximum data x1 ≤ x2 ≤ ... ≤ xn, the empirical distribution function

evaluated at xi is given by
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F̃ (xi) = i/(n+ 1).

By substitution of parameter estimates into equation 2.2, the corresponding model based

estimates are

F̂ (xi) = exp

{
−
[
1− ε̂

(
xi − µ̂
σ̂

)]1/ε̂}
.

Also for the Gumbel model with ε = 0,

F̂ (xi) = exp

{
−exp

[
−
(
xi − µ̂
σ̂

)]}
.

If the distribution is working well,

F̂ (xi) ≈ F̃ (xi),

for each i, so a probability plot, consisting of the points

(F̂ (xi), F̃ (xi)), i = 1, ....n,

should lie close to the unit diagonal. Any substantial departures from linearity are indicative

of some failing in the GEV distribution.

A weakness of the probability plot for the GEV distribution is that both F̂ (xi) and F̃ (xi)

are bound to approach 1 as xi increases, while it is usually the accuracy of the model for

large values of x that is of the greatest concern. That is, the probability plot provides the

least information in the region of most interest. This deficiency is avoided by the quantile

plot, consisting of the points (
F̂−1(

i

n+ 1
), xi

)
, i = 1, ...., n,

where from equation 2.4,

F̂−1(
i

n+ 1
) = µ̂+ σ̂

{
1− [−log (1− p)]ε̂

}
/ε̂.
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Also for the Gumbel model with ε = 0

F̂−1(
i

n+ 1
) = µ̂+ σ̂ {−log (1− p)} .

Departures from linearity in the quantile plot also indicate model failure.

2.3 Gumbel AR Models

2.3.1 Literature Review

The Gumbel distribution is usually used to describe independent and identically distributed

samples. This is a common assumption used in the central models of extreme values. How-

ever, temporal dependencies may exist in some cases. For example, the highest temperature

of today may affect the highest temperature of tomorrow. As mentioned in chapter 1, some

statisticians have attempted some approaches to avoid dependence in exceedances (Smith et

al., 1997) or argued that dependence between the extreme values would not bias estimators

(Chavez-Demoulin and Davison, 2005).

The key characteristic of the GEV is its stability for the max operator. The maximum of

two independent and identically distributed GEV distributed random variables is still GEV

distributed. But adding two GEV random variables does not generate a GEV distributed

random variable. This explains why linear autoregressive processes are not generally used

to describe maxima behavior and other methods have to be developed to combine linear AR

processes for light tails and maxima. It is well known that correctly normalized maxima

from light-tailed distributions belong to the Gumbel domain. This means that maxima can

be expected to be adequately fitted by the Gumbel distribution defined by

Fµ,σ(x) = exp

{
−exp

(
−x− µ

σ

)}
,−∞ < x <∞,

where µ and σ are the so-called location and scale parameters.

Toulemonde et al. (2010) presented a method using linear autoregressive processes to

generate temporally dependent values that are Gumbel distributed. This method changes
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the investigation of temporal dependence of extreme values. They took advantage of the

stability of Gumbel random variables when added to the logarithm of a positive α-stable

random variable. This can propose a linear Gumbel distributed AR model whose main

theoretical properties are derived.

In this section, we are going to introduce the method to generate temporally dependent

extreme values that are Gumbel distributed.

2.3.2 Studies of Gumbel AR Models

The building block of our model is an additive relationship between Gumbel and positive

α-stable variables. Recall that a random variable S is said to be stable if for all non-negative

real numbers c1 and c2, there exist a positive real number a and a real number b such that

c1S1 + c2S2 is equal in distribution to aS + b where S1, S2 are iid copies of S.

If X is Gumbel distributed with parameters µ and σ and is independent of S which

represents a positive α-stable variable with α ∈ (0, 1) defined by its Laplace transform

E(exp(−µS)) = exp(−µα), for all µ ≥ 0, (2.12)

then the sum X + σlogS is also Gumbel distributed with parameters µ and σ/α. Such an

additive property has been recently studied by Fougèes et al. (2009) in a mixture context.

In time series analysis, the additive stability between Gumbel and positive α-stable random

variables allows us to propose a simple linear AR model that can be summarized by the

following proposition (Toulemonde et al., 2010).

Theorem 2 Let Si be iid positive α-stable variables defined by equation 2.12 for any i ∈

Z, Z = {0,±1,±2, ...}. Let {Xi, i ∈ Z} be a stochastic process defined by the recursive

relationship

Xi = αXi−1 + ασlogSi, (2.13)

where σ > 0 and α ∈ (0, 1), then Xi follows a Gumbel distribution with parameters (0, σ).
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An advantage of the equation 2.13 is that Xi follows a Gumbel distribution whose parameters

are independent of α. The covariance between Xi and Xi−h is increasing with α.

To simplify the statement of our discussion, the Gumbel location parameter µ is set equal

to zero. In practice, µ can be different from zero. It suffices to add µ to Xi in equation 2.13

to have a Gumbel(µ, σ).

Concerning the estimation of α, a least-square estimator can be introduced by writing

argminr

{
n−1∑
i=1

([Xi+1 − E(X0)]− r [Xi − E(X0)])
2

}
=

∑n−1
i=1 (Xi − E(X0)) (Xi+1 − E(X0))∑n−1

i=1 (Xi − E(X0))
2 .

This is similar to the classical Yule-Walker equation for AR (1) models. It follows that given

a sample X1, ..., Xn that satisfies equation 2.13, our estimator of α is simply

α̃ =
1

s2n

n−1∑
i=1

(
Xi −X

) (
Xi+1 −X

)
,

with standard error

s.e.(α̃) =
√

(1− α̃2)/n,

where X =
∑n−1

i=1 Xi/n and s2 =
∑n

i=1

(
Xn −X

)2
/n.

2.3.3 AR(1) Model Checking

When we use the Gumbel AR(1) model, it is important to check whether it is good or not to

fit the extreme values. Section 2.2.3 introduced model checking for the Gumbel model with

iid assumption. Here is a method of checking whether the dataset fits the AR(1) model.

First, graph the sample autocorrelation function (ACF) and partial autocorrelation func-

tion (PACF) for values of the lag h. Second, values of the ACF should decay rapidly as h

increases, which indicate short-term dependency in the time series. Third, as a rough guide,

the sample PACF of AR(1) model should lie between the plotted bounds ±1.96/
√
n for lags

h > 1. That means the sample PACF cuts off at lag 1.
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Chapter 3

The Simulation Study

In this chapter, simulations will be run to study what happens to the maximum likelihood

estimators µ̂ and σ̂ of the Gumbel parameters µ and σ obtained under the assumption that

the data X1, ..., Xn are iid Gumbel (µ, σ) when in fact the data X1, ..., Xn are following the

Gumbel AR(1) model with series dependence.

3.1 Studies of the Estimators

To study the behavior of our estimators µ̂ and σ̂, we generated 10,000 samples from the

Gumbel AR (1) model defined in equation 2.13 with different values of n (sample size) and

α. Simulations were performed for n = 10, 20, 50, 100, 200, 500 and α ∈ {0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9}, and without loss of generality, we set µ = 0 and σ = 1. For each

combination of n and α, 10,000 dependent samples were generated from the Gumbel AR(1)

model. As α increases, the dependence is enhanced. Also, we generated a comparison dataset

with α = 0 which means that the 10,000 samples are iid.

For each sample, we estimate µ = 0 and σ = 1 using the maximum likelihood estimators

µ̂ and σ̂ under the independence assumption.

Our simulation results are summarized in Tables 3.1 to 3.4 and Figure 3.1 to 3.4, which

give the bias and mean squared error (MSE) of the two estimators µ̂ and σ̂. The bias of an

estimator is defined to be

Bias(θ̂) = E(θ̂ − θ),

and the MSE of an estimator is defined as

MSE(θ̂) = E
(

(θ̂ − θ)2
)
,
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where θ is the true value of a parameter and θ̂ is an estimator of θ. If Bias(θ̂) = 0, θ̂ is

an unbiased estimator of θ, and small MSE values indicate better estimation accuracy. In

our simulation study, we report sample bias and sample MSE for each combination of n and

α, where

Sample Bias(θ̂) =
1

10000

10000∑
i=1

(θ̂i − θ),

and

Sample MSE(θ̂) =
1

10000

10000∑
i=1

(θ̂i − θ)2,

with θ̂i being the estimate of θ using the ith sample.

Table 3.1: Biases of µ̂.

n α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

10 0.0430 0.0485 0.0505 0.0615 0.0817 0.0912 0.1141 0.1539 0.2037 0.3091
20 0.0209 0.0216 0.0267 0.0323 0.0419 0.0467 0.0602 0.0889 0.1357 0.2143
50 0.0086 0.0084 0.0100 0.0161 0.0174 0.0224 0.0257 0.0387 0.0591 0.1024
100 0.0033 0.0055 0.0047 0.0069 0.0089 0.0112 0.0132 0.0169 0.0278 0.0514
200 0.0008 0.0034 0.0020 0.0032 0.0017 0.0057 0.0096 0.0098 0.0123 0.0352
500 0.0012 -0.0003 0.0008 0.0022 0.0033 0.0022 0.0036 0.0035 0.0049 0.0134

Table 3.1 and Figure 3.1 present the biases of the estimator µ̂. When α = 0 the generated

Gumbel samples are independent and µ̂ and σ̂ should perform well. This is indeed the case.

With the increase of α, the biases of µ̂ also increase for a fixed sample size. On the other

hand, at a fixed α value, the biases of µ̂ decrease as the sample size increases. In particular,

for large α values (α ≥ 0.7 or strong dependence) and small sample sizes (n ≤ 50), the biases

of µ̂ are not negligible.

The biases of σ̂ shown in Table 3.2 and Figure 3.2 are mostly negative under estimation.

The biases are relatively high for small samples and/or large α values. Figure 3.2 shows

clearly that biases of σ̂ is in positive correlation with α, but the influence becomes weak

with the increase of the sample size. Compared with the biases of µ̂, large α values have

larger influence on the biases of σ̂.
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Figure 3.1: Biases of µ̂ with α ∈ (0, 1).

Table 3.2: Biases of σ̂.

n α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

10 -0.0737 -0.0803 -0.0994 -0.1257 0.1387 -0.1665 -0.2094 -0.2651 -0.3561 -0.5128
20 -0.0383 -0.0437 -0.0511 -0.0617 -0.0751 -0.0888 -0.1103 -0.1505 -0.2201 -0.3554
50 -0.0144 -0.0172 -0.0197 -0.0263 -0.0300 -0.0363 -0.0487 -0.0671 -0.0985 -0.1954
100 -0.0078 -0.0091 -0.0112 -0.0142 -0.0163 -0.0188 -0.0258 -0.0367 -0.0539 -0.1083
200 -0.0042 -0.0033 -0.0055 -0.0070 -0.0074 -0.0096 -0.0124 -0.0185 -0.0279 -0.0559
500 -0.0011 -0.0018 -0.0019 -0.0020 -0.0030 -0.0041 -0.0057 -0.0074 -0.0108 -0.0257

Since σ = 1 and µ = 0 are used to generate data from the Gumbel distribution, so the

estimates µ̂ = 0.3091 and σ̂ = 1 − 0.5128 = 0.4872 with n = 10 and α = 0.9 are a bit

too large to be acceptable. But even though α is still 0.9, the estimates µ̂ = 0.0134 and

σ̂ = 1− 0.0257 = 0.9743 with n = 500 are acceptable when the sample size is large.

From Tables 3.3 and 3.4 and Figures 3.3 and 3.4, it is clear that the MSEs in the first

column with α = 0 are fairly small. The biggest MSE values generally occur when α is large

and close to 1. Increasing the sample size generally reduce the MSEs for all different values

of α.
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Figure 3.2: Biases of σ̂ with α ∈ (0, 1).

Table 3.3: Mean Squared Errors of µ̂.

n α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

10 0.1174 0.1399 0.1700 0.2125 0.2613 0.3291 0.4047 0.5311 0.7469 1.0744
20 0.0565 0.0712 0.0851 0.1061 0.1356 0.1688 0.2195 0.3065 0.4558 0.7527
50 0.0225 0.0278 0.0347 0.0437 0.0536 0.0701 0.0917 0.1276 0.1930 0.3955
100 0.0114 0.0137 0.0171 0.0209 0.0275 0.0351 0.0462 0.0673 0.1038 0.2138
200 0.0056 0.0069 0.0086 0.0107 0.0135 0.0169 0.0229 0.0323 0.0521 0.1076
500 0.0023 0.0028 0.0035 0.0044 0.0055 0.0069 0.0091 0.0133 0.0213 0.0438

Tables 3.1 to 3.4 and Figures 3.1 to 3.4 demonstrate that for small sample sizes (n ≤ 50),

ignoring the dependence between the Gumbel extreme values leads to increased biases and

MSEs for µ̂ and σ̂. When the dependence is strong (α ≥ 0.7), the increased biases and MSEs

become serious and can provide misleading results when fitting data to the Gumbel model.

3.2 Studies of the Return Level

The return value is defined as a value that is expected to be equaled or exceeded on average

once every interval of time 1/p (with a probability of p). We run simulations as in section
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Table 3.4: Mean Squared Errors of σ̂.

n α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5 α = 0.6 α = 0.7 α = 0.8 α = 0.9

10 0.0650 0.0692 0.0724 0.0816 0.0929 0.1093 0.1336 0.1654 0.2263 0.3589
20 0.0323 0.0331 0.0353 0.0391 0.0469 0.0544 0.0696 0.0944 0.1360 0.2258
50 0.0123 0.0125 0.0139 0.0160 0.0189 0.0230 0.0287 0.0401 0.0608 0.1161
100 0.0061 0.0063 0.0070 0.0079 0.0094 0.0120 0.0150 0.0210 0.0320 0.0638
200 0.0031 0.0032 0.0035 0.0040 0.0047 0.0058 0.0075 0.0104 0.0166 0.0328
500 0.0012 0.0013 0.0014 0.0015 0.0019 0.0024 0.0030 0.0043 0.0064 0.0137
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Figure 3.3: MSEs of µ̂ with α ∈ (0, 1).

3.1 and report, for each combination of n, α and p , the average return levels, where for each

simulated sample, are estimated according to

x̂p = µ̂− σ̂log {−log (1− p)} .

We choose p ∈ {0.01, 0.02, 0.05, 0.1, 0.2}, then xp is the return level associated with the

return period 1/p ∈ {100, 50, 20, 10, 5} time periods.

Figure 3.5 shows plots of return levels for different α, p and sample size n = 10, 20, 50,

100, 200, 500. We see that for each combination of sample size n and p, the return levels

decrease with increasing α values, especially when the sample size is small. Moreover, the
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Figure 3.4: MSEs of σ̂ with α ∈ (0, 1).

speed of decreasing is slowing down with the increasing of p. For example, if one year is the

time period length, 100 years return level will be affected more seriously with the increase

of α than 10 years return level when the sample size is fixed. Increasing the sample size

apparently reduces the decrease of return levels for different values of α and p, but for

α ≥ 0.8 and p ≤ 0.02, the influence of the dependence between the Gumbel extreme values

on the return level estimates is still noticeable even when the sample size n = 100. From

the figures, we can conclude that when n is larger than 100, the influence will become quite

weak.
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Figure 3.5: Return levels.
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Chapter 4

An Example

In this chapter, we use an example to illustrate how to identify the temporal structure among

the extreme values in the Gumbel AR(1) model.

This example uses an environmental dataset to illustrate the connection between light-

tailed maxima and the Gumbel distribution. The dataset is maximum daily wind speeds

(m/s) in Calgary downtown in 2012. Wind storms can generate severe damage to infrastruc-

ture and therefore lead to large economic losses. That is why the prediction of maximum

wind speeds is essential in many areas of industry. In this example, identifying the temporal

structure of the daily fastest wind speed measurements is of primary interest for atmospheric

science because this can help to predict future maxima of wind speeds at a specific location.

A scatter plot of the daily maximum wind speeds is displayed in Figure 4.1. It seems

to show a linear decrease of maximum wind speeds. To study the dependency between the

maximum wind speeds, a scatter plot of xi+1 vs xi is given in Figure 4.2, where a positive

dependence is observed.

To see more about this dependence, the sample ACF and sample PACF are plotted in

Figure 4.3. We see from Figure 4.3 that the sample ACF decays exponentially and the

sample PACF (mostly) cuts off at lag 1, so an autoregressive model of order 1 is suggested.

Since we are dealing with maximum wind speeds, we can try to model the data with an

AR(1) Gumbel model.

Using the method in Toulemonde et al.(2010), for the maximum wind speeds data, the

least-square estimator of α is α̃ = 0.3931 with a standard error of s.e.(α̃) = 0.0481. This

further confirms that the dependence does exist among daily maxima wind speeds in Calgary

downtown in 2012.
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Figure 4.1: Plot of daily maximum wind speeds.

By the conclusion of chapter 3, sample size is an important aspect of the estimation.

The daily maxima of wind speeds dataset comes from a sample of size n = 366 which is

far larger than 100 and α̃ = 0.3931 which is less than 0.7, so the dependence among the

maximum wind speeds may not affect the accuracy of the modeling results if the Gumbel

distribution under the independence assumption is used. In this case, the previous method

to obtain the maximum likelihood estimates can still be used. The maximization of the

Gumbel log-likelihood for this dataset leads to the estimates

(µ̂, σ̂) = (5.6944, 1.8263) and (s.e.(µ̂), s.e.(σ̂)) = (0.1008, 0.0730),

for which the log-likelihood is 788.32. The 100-day return level is estimated to be x̂0.01 =

14.10. This value implies that, the speed of 14.10 m/s is expected to be exceeded on

average once every 100 days. The corresponding estimate for the 500-day return level is
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Table 4.1: Daily maximum wind speeds (m/s) recorded at a specific location in Calgary
downtown, 2012.

6.30 6.42 14.00 12.92 9.27 5.75 10.39 10.71 11.01 8.69 6.23 8.29 5.87
9.72 3.45 3.21 2.80 4.80 4.41 7.58 7.80 6.04 11.77 8.12 10.35 9.54
8.86 8.20 6.39 6.64 3.23 4.43 4.83 5.06 7.40 6.28 6.49 5.61 5.63
7.83 3.16 4.55 4.00 6.81 10.73 8.65 4.25 7.21 6.07 6.56 8.12 6.80
7.05 8.70 12.56 9.04 9.50 7.28 7.66 7.35 11.72 11.69 5.00 6.41 4.42
5.05 5.41 6.18 7.69 11.02 8.53 10.79 8.04 7.98 8.70 7.46 3.89 6.90
5.94 7.17 7.10 8.81 7.98 7.01 7.97 3.78 5.52 4.30 5.26 10.66 8.85
5.11 8.29 6.21 6.28 9.04 5.03 4.68 5.05 7.53 5.29 8.09 6.64 8.55
6.98 4.99 5.50 10.03 9.62 5.28 5.31 5.82 4.76 5.99 8.79 5.74 4.16
3.36 4.13 7.51 7.10 4.99 5.90 4.48 4.87 5.03 8.28 5.49 6.50 6.38
6.86 6.89 8.17 8.95 5.95 6.20 9.93 7.18 5.23 7.77 6.65 8.37 8.50
9.53 6.96 7.70 5.37 7.34 7.22 7.69 5.66 6.31 10.13 8.20 4.13 5.42
6.16 6.20 11.54 8.79 7.16 6.56 10.68 4.00 11.89 5.16 8.07 5.98 4.83
5.97 5.84 8.03 7.63 6.19 9.26 5.77 8.24 9.62 8.47 5.49 6.50 7.19
7.11 6.86 6.46 6.25 6.31 3.66 5.56 4.92 7.26 8.49 6.31 7.95 5.96
7.23 7.49 8.00 3.27 3.97 5.10 4.84 9.85 5.85 7.06 5.87 6.66 5.76
7.41 6.93 7.25 7.18 4.68 8.11 9.97 9.32 6.89 6.20 6.62 4.78 5.19
8.88 9.37 8.94 5.35 7.92 7.45 4.32 4.23 7.10 6.43 4.67 4.99 5.15
3.60 3.82 6.32 5.35 4.56 5.89 8.67 9.83 9.00 8.63 3.24 3.61 6.67
10.23 8.14 8.05 7.88 6.55 8.35 6.21 6.21 11.94 12.10 5.40 8.77 7.07
4.18 3.22 4.92 3.38 4.49 5.05 5.22 5.43 7.49 5.78 5.87 3.70 3.29
3.59 8.86 7.01 7.15 5.27 4.02 4.12 7.18 7.11 6.42 5.93 6.72 5.12
7.34 6.71 3.54 3.18 2.79 6.19 3.80 5.45 3.64 4.67 4.83 5.01 4.07
7.05 7.66 10.98 8.17 2.69 7.10 6.81 9.45 6.51 5.96 7.54 8.46 3.59
5.18 5.21 4.81 5.15 5.93 3.46 3.32 2.32 3.50 3.81 2.64 6.69 6.88
4.73 5.15

x̂0.002 = 17.04. Also we use the model checking approach introduced in section 2.2.3 to test

whether the dataset fits the Gumbel model.

Two diagnostic plots for assessing the accuracy of the Gumbel model fitted to the data

are shown in Figures 4.4. Both plots show a linear relationship, which indicates that a

Gumbel fit seems to be reasonable.

Therefore, although there is a short-term dependence among the maximum wind speeds

in this example, the maximum likelihood estimators µ̂ and σ̂ of the Gumbel parameters µ

and σ obtained under the independence assumption can still be used because of the large
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Figure 4.3: The sample ACF and PACF of daily maximum wind speed series.
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Figure 4.4: Diagnostic Check: probability plot and quantile plot.
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Chapter 5

Conclusion and Future Work

Extreme Value Theory has been widely used in the past 50 years in hydrology, meteorology

and insurance, especially in the cases where one has the most to lose or to win: stockmar-

ket crash, earthquake, and so on. Some models based on extreme value techniques, such

as threshold and multivariate extreme models are attractive to many researchers. Among

these popular models, the GEV distribution has been widely and successfully used in fitting

maximal data in many areas. In general, extreme values in the GEV models are assumed

to be independent. However, the failure of assuming independence of extremes may or may

not bias estimators of the parameters of a model. Although some arguments and studies

have been done to figure out this problem, the situation was changed until the work of

Toulemonde et al.(2010).

In this thesis, we use the Gumbel AR(1) model introduced by Toulemonde et al. (2010) to

generate temporally dependent extreme values that are Gumbel distributed and investigate

maximum likelihood estimators of the parameters under the Gumbel distribution. In the

simulation part, biases and MSEs of the maximum likelihood estimates µ̂ and σ̂ of the

Gumbel parameters µ and σ are compared under multiple combinations of sample size n

and parameter α. The return levels associated with the return period 1/p are also shown in

chapter 3. We observe biases and MSEs in the estimation of location and scale parameters,

µ and σ, of Gumbel models to conclude that ignoring the dependence between the Gumbel

extreme values can yield increased biases and MSEs for µ̂ and σ̂ when the sample size is

small (n ≤ 50). Moreover, large α (α ≥ 0.7), which means the dependence is strong, leads to

increased biases and MSEs for µ̂ and σ̂. The sample size is also an important aspect. When

the sample size is large enough, the influence of dependence among the extreme values will
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become weak. In the example, the sample size is large (more than 100) and α are small (less

than 0.7), that is why we can estimate the Gumbel parameters µ and σ using the maximum

likelihood method which is obtained under the independence assumption. Therefore, the

dependence between the extreme values may not affect the accuracy of the final modeling

results using the Gumbel distribution when the sample size is large enough and α is small.

Some useful R programs for generating temporally dependent values that are Gumbel

distributed and estimating parameters with the maximum likelihood method is given in the

Appendix.

For future research, the following issues are worth to be worked on:

• Propose a more general AR model like a GEV AR(1) model and figure out the

way of estimating three parameters of the GEV distribution using maximum

likelihood method.

• Extend the Gumbel AR(1) model to Gumbel AR(p) models for p ≥ 2.
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Appendix A

Useful R code

The function rlaptrans is introduced by Ridout, M.s. (2009). This function implementing

the inversion method to generate random variables from the distribution, using a modified

Newton-Raphson algorithm, with values of the distribution and density functions obtained

by numerical transform inversion.

rlaptrans <- function(n, ltpdf, ..., tol=1e-7, x0=1, xinc=2,

m=11, L=1, A=19, nburn=38)

#==============================================================

{

#---------------------------------------------------------

# Function for generating a random sample of size n from a

# distribution, given the Laplace transform of its p.d.f.

#---------------------------------------------------------

maxiter = 500

# -----------------------------------------------------

# Derived quantities that need only be calculated once,

# including the binomial coefficients

# -----------------------------------------------------

nterms = nburn + m*L

seqbtL = seq(nburn,nterms,L)

y = pi * (1i) * seq(1:nterms) / L

expy = exp(y)

A2L = 0.5 * A / L
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expxt = exp(A2L) / L

coef = choose(m,c(0:m)) / 2^m

# --------------------------------------------------

# Generate sorted uniform random numbers. xrand will

# store the corresponding x values

# --------------------------------------------------

u = sort(runif(n), method="qu")

xrand = u

#------------------------------------------------------------

# Begin by finding an x-value that can act as an upper bound

# throughout. This will be stored in upplim. Its value is

# based on the maximum value in u. We also use the first

# value calculated (along with its pdf and cdf) as a starting

# value for finding the solution to F(x) = u_min. (This is

# used only once, so doesn’t need to be a good starting value

#------------------------------------------------------------

t = x0/xinc

cdf = 0

kount0 = 0

set1st = FALSE

while (kount0 < maxiter & cdf < u[n]) {

t = xinc * t

kount0 = kount0 + 1

x = A2L / t

z = x + y/t

ltx = ltpdf(x, ...)
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ltzexpy = ltpdf(z, ...) * expy

par.sum = 0.5*Re(ltx) + cumsum( Re(ltzexpy) )

par.sum2 = 0.5*Re(ltx/x) + cumsum( Re(ltzexpy/z) )

pdf = expxt * sum(coef * par.sum[seqbtL]) / t

cdf = expxt * sum(coef * par.sum2[seqbtL]) / t

if (!set1st & cdf > u[1]) {

cdf1 = cdf

pdf1 = pdf

t1 = t

set1st = TRUE

}

}

if (kount0 >= maxiter) {

stop(’Cannot locate upper quantile’)

}

upplim = t

#--------------------------------

# Now use modified Newton-Raphson

#--------------------------------

lower = 0

t = t1

cdf = cdf1

pdf = pdf1

kount = numeric(n)

maxiter = 1000

for (j in 1:n) {
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#-------------------------------

# Initial bracketing of solution

#-------------------------------

upper = upplim

kount[j] = 0

while (kount[j] < maxiter & abs(u[j]-cdf) > tol) {

kount[j] = kount[j] + 1

#-----------------------------------------------

# Update t. Try Newton-Raphson approach. If this

# goes outside the bounds, use midpoint instead

#-----------------------------------------------

t = t - (cdf-u[j])/pdf

if (t < lower | t > upper) {

t = 0.5 * (lower + upper)

}

#----------------------------------------------------

# Calculate the cdf and pdf at the updated value of t

#----------------------------------------------------

x = A2L / t

z = x + y/t

ltx = ltpdf(x, ...)

ltzexpy = ltpdf(z, ...) * expy

par.sum = 0.5*Re(ltx) + cumsum( Re(ltzexpy) )

par.sum2 = 0.5*Re(ltx/x) + cumsum( Re(ltzexpy/z) )

pdf = expxt * sum(coef * par.sum[seqbtL]) / t

cdf = expxt * sum(coef * par.sum2[seqbtL]) / t
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#------------------

# Update the bounds

#------------------

if (cdf <= u[j]) {

lower = t}

else {

upper = t}

}

if (kount[j] >= maxiter) {

warning(’Desired accuracy not achieved for F(x)=u’)

}

xrand[j] = t

lower = t

}

if (n > 1) {

rsample <- sample(xrand) }

else {

rsample <- xrand}

rsample

}

Function gumbelar1 is used to generate temporally dependent values that are Gumbel

distributed through function ralptrans.

gumbelar1 <- function(n, alpha, burn=200){

#n is sample size and alpha is between 0 and 1.

ltpdf <- function(u,alpha) {

exp(-u^alpha)
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}

e <- rlaptrans(n+burn,ltpdf, alpha=alpha)

x <- rep(0,n+burn)

for(i in 1:(n+burn-1)) {

x[i+1] <- alpha*x[i] + alpha*log(e[i+1])

}

x[-c(1:burn)]

}

The gumbelmle function returns the maximum likelihood estimates by optimizing the

negative log likelihood function.

gumbelmle <- function(x){

fngumbel <- function(theta,x){

#Define likelihood function.

mu <- theta[1]

sig <- theta[2]

u <- (x-mu)/sig

length(x)*log(sig) + sum(u) + sum(exp(-u))

}

xbar <- mean(x)

s <- sqrt(var(x))

n <- length(x)

gumbelini <- c(xbar - 0.57721*sqrt(6)*s/pi, sqrt(6)*s/pi)

out <- optim(gumbelini, fngumbel, hessian = TRUE,

control=list(maxit=1000), x=x)

mle <- out$par

mle
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}

The gumbelbe function can return biases and MSEs of maximum likelihood estimators.

gumbelbe <- function(n, alpha, nrep=1000){

# Estimate mu=0 and sigma=1 in a Gumbel model

when the data are Gumbel AR(1)

# bias and mean square error are computed

z <- matrix(0,nrep,2)

for(i in 1:nrep) {

z[i,] <- gumbelmle(gumbelar1(n, alpha))

}

bias <- apply(z,2,mean) - c(0, 1)

mse <- c(mean(z[,1]^2),mean((z[,2]-1)^2))

list(bias, mse)

}

The function returnlevel is used to obtain returnlevels of predictor.

returnlevel<- function(n,alpha,p,nrep){

#1/p is return period.

z <- rep(0,nrep)

for (i in 1:nrep){

est <- gumbelmle(gumbelar1(n,alpha,burn=200))

z[i] <- est[1] - est[2]*log(-log(1-p))

}

returnlevel <- mean(z)

}
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