Interactive End-User Creation Of Workbench Hierarchies
Within A Window System

Saul Greenberg and lan H. Witten

Man-Machlne Systems Laboratory
Department of Computer Sclence
The Unlversity of Caigary
2500 Unlversity Drive NW
Calgary, Canada T2N 1N4

Abstract — Conventlonal command-language Interfaces to
interactive computer systems do not support the problem-solving
behaviour of users In a natural way. They supply a single view
into a sequential stream of actlons, whereas people normally juggle
many activities concurrently, switching rapldly from one to
another. They provide a wide and flat command structure which
Is fixed and Insensitive to the context of the dialogue. They offer
little opportunity for personalization, while people differ radically
In what they do and how they prefer to do It.

This paper describes an experimental interface which
supports parallel actlvity through user-defined extensions to a
basle command interface. Windows provide multiple independent
views Into the system. Workbenches supplant the flat command
structure. A speclalized dlrect-manipulation editor allows easy
creation and malnt of workbenches by novice and expert
allke. Users are encouraged to create their own informatlonal
support environments and to alter them as thelr actlvity dictates.
The scheme complements the normal command interface and
utilities can be invoked In whichever way seems most natural.

Introduction

Conventional command languages are widely used to
communicate intentions to the Interactive top level of a computer
operating system. A powerful working environment can be
constructed by combining linguistic expression — which provides a
terse but simple dlalogue — with the flexibility of allowing
experlenced users to comblne commands and create their own.
But one of the biggest drawbacks to such interfaces is thelr
sequential nature. They are unsuited to parallel activity such as
consulting an on-line manual, looking up references when
preparing documents, checking calendars when composing mall, or
responding to urgent higher-priority tasks. Sequentlal dialogue is
a poor match to the highly parallel thought processes of people.

In contrast, modern Interfaces are window-based and thereby
permlt parallel activity. Translent pop-up (or pull-down) menus
focus the dialogue to the window’'s current context. Supporting
metaphors supply the user with a model for making sense of the
Interface complexity. For example, the screen is a desktop in the
Xerox Star (Smith et al, 1982) and Apple Macintosh (Willlams,
1984). Applications take advantage of windows to give multiple
views into information structures like documents. Similarly,
Interactive programming environments use an Integrated toolbox

paradigm for program development, where tools are highly tuned
to_the application. Smalltalk-80 (Goldberg, 1984) and Interlisp
(Teitelman, 1979) are two good examples within the genre. But
the structure of each context-dependent view within a window Is
normally Imposed by the system designer. Changing this view Is
difficult or Impossible for the end user, forcing him to conform to
a standard which may not fit his current needs.

The present work explores the possibility of supporting
parallel activity through user-defined extensions to a basic
command Interface. A main command window (or several of
them) supplies the primary channel of communication with the
computer operating system. Independent workbenches can be
created — grouped hierarchically If necessary — to support
parallel activity. These contain context-dependent pop-up menus
to inltlate supporting commands. Each workbench is assoclated
with & window which displays any resulting output.

What is novel about this scheme Is that context and
workbench creation is totally user-defined. A speclalized direct-
manipulation editor allows easy creatlon and maintenance of the
workbench infrastructure and the pop-up menu contents by novice
and experlenced users allkke. The intent Is to encourage users to
create thelr own informational support environments and to alter
them as thelr activity dictates, while retaining the convenlence of
separate windows with assoclated pop-up menus.

In order to set the scene before plunging Into detalls of the
workbench creation system, the paper begins by discussing aspects
of parallelilsm in user sactivities, workbench paradigms, and
personallzation as a path to system flexibllity. The subsequent
sectlon describes how workbenches can support a command
interface. Illustrations and examples demonstrate the workbench
In action. The thrust of the paper follows — personalization
through end-user creatlon and editing of the workbench
Infrastructure. Finally, implementation 1issues and future
directions are discussed.

Parallelism, workbenches and personalization

This section Introduces three concepts fundamental to our
work: supporting user actlvity through parallelism; organizing
activities with workbenches; and matching user requirements with
system offerings via personalization.

&IPS SESSION 85

Parallelism

Traditlonal Interactive Interfaces are highly sequential. Most
conventlonal command languages Inslst on completing the current
activity before the next one can begin. Hicrarchical menu
structures compound this constraint — before a command can be
Invoked, the user must navigate from the current location In the
hlerarchy (the previous actlvity) to the desired target (the next
activity).

Despite the sequential nature of traditional command
interfaces, much parallellsm arises naturally In Interactive
dialogues with computers. Documentation must be consulted,
references checked, subsidlary programs run, and so on.
Parallellsm also occurs when the current activity Is unexpectediy
pre-empted by more urgent tasks, only to be resumed later. A
user Wil generally Internallze complex sequences of paraliel
activity while running tasks {ally on the £r.

The model of computer-supported parallel activity provides
a realistic framework for alding the user’s cognitlve thought
processes — specifically his short-term and working memory. As
Shneiderman (1984) summarizes:

Short-term memory Is used
working memory for processing Informatlon and
problem solving. ... If many facts and declslons are
necessary to solve a problem, then short-term and
working memory may become overloaded. ... [In
addition, these memorles] are highly volatile;
disruptions cause loss of memory, and delays can
require that the memory be refreshed.

Shnelderman, 1984

In conjunctlon with

In practice, sequential dialogues provide little support for storing
intermediate results of an action. For example, a programmer
requiring documentation on a language construct must leave the
editor, invoke the programmer’s manual, find and read the
required Information, and finally recall the editor. The cognitlve
cost of using this informatlon Is high. He must recall his mental
location within the program, remember the retrieved information,
and apply it. Obvlously, a high load Is placed on short-term and
working memory, resulting in Inefficlency due to memory fallure.

What Is required 1s Interactive support of parallel activity.
Certain command languages (such as the Unix C shell; Joy, 1980)
support primitive parallelism: tasks (called processes) can be
suspended and resumed on demand. This practice provides only
limited benefits, for only one viewport into these processes Is
allowed. Window-based Interfaces address the viewport problem
very nicely. They are specifically designed to permit parallel
activity by providing a varlable number of virtual views into a
given structure, all mapped to a single physical screen. But
windows also system complexity, for the user must now physically
manlpulate the windows and keep track of which one does what.
Constralned systems — such as workbenches — help to minimize
confusion by Hmiting actlons In a window to the context of the
subsystem running in it.

Workbenches

A second concept fundamental to this paper Is that of the
workbench, a metaphor for categorizing and accessing system
utilitles. We introduce this tople first by deserlbing the difference
between unconstrained and constralned dialogues and then by
lookling at organizational methods within the latter.

There are several different approaches available for
interfacing with Interactlve systems, such as conventlonal
command-driven Interfaces, menus, forms, natural languages and
icon-based metaphors (Witten & Greenberg, In press). Although
qQuite different at the presentation level, they can usefully be
compared according to the extent to which they constraln the
user's actlons. An unconstralned system (such as a command
interface) allows the user access to all facllitles at any time, while
a constralned system (such as a menu hierarchy) limits actions to
the context of the current subsystem.

General-purpose computers almost Invariably eschew
contextual dependency between subsystems by making all tools
avallable at any time in the interaction. Because of the virtually
infinite range of activities which may be required in unconstrained
dlalogues, lingulstic expression In a command language I8 the
conventional medium for the expert user to convey his intentions
to a general-purpose system. Unfortunately, this power Is also the
system’s falling — the user may not desire such a high degree of
freedom within what he considers familiar contexts (Thimbleby,
1980).

In order to reduce the cognitive load imposed by a rich set of
commands, the utllitles which can be Invoked by the user are
sometimes arranged hlerarchically to assist him with his work.
Utllitles are divided typleally Into minlmally interacting
subsystems. This kind of organization (although dealing with
passive Information rather than active utility programs) iIs
exemplified by Videotex, a generic name for systems used by the
general public for information retrieval, tele-shopping and tele-
banking. Actlvities are normally accessed via a menu selection
dlalogue where each menu category represents progressive
refinements of "flelds of knowledge™ (Tompa, 1982). Another good
illustration is the Apple Macintosh (Willlams, 1984), in which
applications normally Interact through an intermediary. For
example, including a figure in 8 text document Involves creating
the figure tn the "Macpaint™ application, posting it in an
Intermediary scrapbook, leaving Macpalnt and Invoking the
"Macwrite” application, and finally retrieving the figure from the
scrapbook. Although division of the system Into utilities is useful
for routine tasks, It is necessary to leave the current context and
enter a new subsystem In order to perform unusual actlons. The
result is a dialogue which 1s tedlous to use unless It happens to be
well-tallored to the user's needs while working within a given
subsystem. A better paradigm for highly interacting sub-systems
is found in the workbench/toolbox metaphor.

Nakatani and Rohrlich (1983) propose a method of
Integrating links between subsystems by analogy with tools in a
workshop. The hierarchy used Is a tool bin, which Is the entlre set
of tools, a workshop, which collects similar tools, and a workbench
on which the actual work Is done. Toolboxes and workbenches
differ from conventional hlerarchies In that actions (verbs) are
categorized instead of objects (nouns). Workbenches contaln tools
appropriate for acting on the object(s). Example objects may be
the complete system environment, a collectlon of files, or a single
file. Example workbenches are a viewing workbench for editing,
displaying and listing files, a language workbench for complling
and_debugging programs, and a manual workbench for accessing
the programmer's manual.

A recent profect at Bell Laboratorles, called Menuniz, shows
how an extensive and flexible operating system Interface can be
implemented with menus (Perlman, 1984). One consequence of
menu access to Unlx programs Is that the vast selection of utilitles
must be structured somehow Into reasonably small subsets;
otherwise the menu would become unmanageable. System

&IPS SESSION 85

programs are assigned o workbenches — arranged nierarchicaily
— and a program meny displays brief (half-line) descriptions of
the programs In the current workbench. When a program menu
entry Is sclected, arguments are requested and the program |s
cxecuted. In order to implement the hlerarchy, an entry In a
workbench may point to another workbench (in the same way
that an entry in a directory may point to another directory In the
file hlerarchy). Sclecting one of these entrles will replace the
current program menu accordingly. Menunix provides integration
by using the workbench metaphor to unlfy the user's view of the
system.

Menunix does not seem to have galned wide acceptance,
perhaps because 1t uses sequentlal access to drive a paradigm
which Is best viewed In parallel. But most modern Interfaces use
windows to provide parallel views, and transient pop-up menus to
access generic functions. In sharp contrast to lingulstle
commands, fixed menus constraln the user to a small set of
operations in each context. By mapping workbenches to windows
(the working area) and tools to the transient menus tled to the
window, a parallel workbench system i3 created.

Another problem of the workbench paradigm I8 matching
the collection of tools with the user's requirements. We explore
this in the next sectlon.

Personalization

The ability to create virtual views into a workbench
structure through the use of windows addresses parallel activity
very nicely. So does the use of pop-up menus which remind the
user what can be done In the current context and which offer a
simple way of invoking relevant procedures. The more clearly the
user's actlvity can be delineated, the more probable It Is that a
pre-deflned scheme will be able to support 1t unobtrusively. In the
case of everyday Interaction with a general-purpose computer
system, activity Is unpredictable and varies enormously from one
user to another. In this case a fixed scheme Is unlikely to provide
8 good match to the user's requirements.

The arrangement and selection of workbenches is normally
imposed by the system designer, and so users are forced to adopt
a standardized view of the system (or suffer). For example, a
typleal mall workbench may contaln tools to send, recelve, filter
and edit mall. This Is insufficlent for the user who receives
encrypted malil and requires access to a decryptlon tool. High
overhead Is involved If this tool belongs to a different workbench.
In contrast, while some speclallst systems (such as the Lisp
machlnes and Xerox Dolphin) supply pop-up menus for context-
dependent commands, they do permit the user to create his own
windows and choose which operations to assoclate with thelr pop-
up menus. However, only the highly skilled are likely to attempt
this, and then infrequently and not as part of dally activity in
coplng with non-routine demands.

While the range of tools avallable may be very large, each
Individual user generally employs only a small subset of them
(Hanson et al, 1984; Greenberg, 1984). Techniques of modeling the
user promise to reduce his cognitive load by personalizing the
environment to make avallable (or at least glve preference to) only
those commands which he is likely to invoke, and structuring
them In a way which corresponds to the way he percelves the
system. At Its most basle, user modeling takes the form of a
system designer interacting with the target populatlon to adjust
the system to fit the typlcal user's current nceds (Eason &
Damodaran, 1979). Unfortunately, users cannot accurately be
viewed as "typical” in the normal case of a highly heterogeneous
community (Rich, 1983). Edmonds (1982) suggests that our
knowledge of human behavior is inadequate to portray correctly

the typical user ~— especlally one whose need will change over
time. An alternative personalized outlook shifts the design focus
towards a collection of models of individual users.

Ezplicit personalization, where the user explicitly alters his
working environment to suit hlmself, offers the greatest potential
for personalization — at least In the short to medium term
(Greenberg, 1984). The abllity to tallor one's working
environment seems to be an Important attribute of what are
termed "user-friendly” systems. Examples are the use of a profile
statement which Is interpreted automatically on login, control over
system parameters (such as the prompt), making appropriate
entries In abbreviation flles, and placing utllity programs so that
they will automatically supersede the standard system utllities
when Invoked (as supplled In the Unix C-shell; see Joy, 1982).
Unfortunately the possibility of explicit personalization ralses Its
own problems. In order for the user to construct the model, he
usually needs falrly advanced knowledge of the system and Its
capabilities, possibly negating any benefits. Although Inferentlial
automatic modeling may offer a solution to this, It is very difficult
to do for the general systems we are taking about.

With general-purpose workbenches, there Is an excellent case
for extensive explicit personalization so that the user can set up
hls own options in pop-up menus and specify their effect in terms
of Invoking system commands, creating new windows, and so on.
In order to reduce set-up overhead, and to encourage frequent re-
modeling by novice and expert allke to reflect changing task
requirements, it is essential that easy-to-use tools be provided for
constructing and maintaining the models.

Workbenches in a conventional
command-driven interface

The rest of thls paper describes the workbench creation
system (WCS), which supports command-driven Interactions with
the Unix operating system through a window Interface, the Jade
window manager (Unger et al, 1984). Print on paper Is a poor
medium for explaining highly interactive systems like WCS: we
use simulated snapshots of the workstation screen to help convey
the nature of the Interface,

The user pursues his primary activity through a command
window (several parallel command windows may be created If
desired). He 1Is supported by an infrastructure of speclallzed
windows (workbenches) which can be used to provide relevant
information (Figure 1). This 18 much more than a set of views
into a passive text database, for arbitrary Unix commands, shell
scripts or local programs can be assoclated with pop-up menu
Items. In fact, the user can deflne his own hierarchy of
workbenches In the speclalized windows, thereby creating an
Individualized classification of Unlx commands and non-standard
utility programs.

Each workbench comprises a window and assoclated pop-up
menu. Entries on the pop-up menu may be of three types. The
first Invokes a8 Unix command which produces output only.
Arguments may either be specified when the menu item Is created
or requested when It Is picked. For example, a "Manual”
workbench may provide two commands, entitled “title” and
"keyword” (Figure 1). Both have one argument, which Is solicited
in the workbench window by the prompt "Title of manual entry:"
for the first command and "Keyword contained in manual entry:”
for the second. The first Invokes the Unix man <argument>
command, and the second Invokes man -k <argument> (which Is
Unix man’s way of specifylng a keyword search). In elther case
the output of the maen command appears in the workbench
window. One enha t of this arr t Is the automatic

&IPS SESSION 85

tnsertion of the output Into a simple cut and paste editor, allowing
scrolling, altering, and saving of resuits. Additionally, as the
window may be of arbitrary size, the workbench and its contents
may be shrunk and recalled later.

The second type of pop-up menu item invokes an Interactive
Unix command. If no process i8 running in the workbench, the
sub-system Invoked through the menu will run in Its window.
Otherwise, the workbench Is duplicated In a new window and the
command executed there.

The final type of pop-up menu Item enters another
workbench. This creates a new window on the screen and
assoclates the appropriate pop-up menu with 1t. The old
workbench window remains on the screen and can still be
accessed, along with Its pop-up menu. As a consequence, the user
may have entry polnts into many different parts of the workbench
hierarchy.

The WCS operates In the envir t of the d
window that spawned it, allowing each workbench to share global
notions such as the current working directory. For example, a
workbench that lists files will list those of the current directory
even after it has been ch d In the cc d window.

Command Windouws (ttyv

§ nroff -021 intro body summary

nroff - texnt formatting
SYNOPSIS

nroff [options] ... Ifile] ...
DESCRIPTION

Nroff formats text in the name

bilities of nroff are described i

if no file argument is present,
minus (-) is taken to be a file n

The options, which may appear

body
figurel

figure2
intro

The example In the Figure represents a scenario where the
user has created workbenches to help him compose a command in
the "command™ window for putting text files through nroff, a text
formatter. Of the two "manual” workbenches, the first Invoked a
keyword search for the title of a manual entry. The second was
used to display the entry. A "llst” workbench listed the files In
the current directory, and a "blbllography” bench allowed perusal
of references (perhaps used In the text files). In this lllustration,
the "benches” window is the root of the workbench hierarchy.

End-user creation of workbench hierarchies

~Central to the WCS Is the method of creating and altering
the support system of workbenches. Without the ability to
personalize 1t the Interface would have limited novelty, belng
simply a way of allowing users to navigate through a pre-
determined hlerarchy of utilitles. Although superlor to non-
windowing workbench Interfaces such as Menunix (Periman, 1084)
— In that, once accessed, a workbench remains Immedlately
accessible as a window on the screen untll 1t 1s expileitly deleted
by the wuser — the workbench paradigm contalns no
fundamentally new Ideas.

Benches

Manual

checknr (1)
colcrt (1)
deroff (1)
nroff, troff (1)
soelim (1)

tbl (1)

-filter nrofT output
-remove nroff, trof
-tent formatting an
-eliminate .so's fro

Greenberg,
University of Calgary,

figure 1: Workbenches as a support structure

&IPS SESSION 85

But the inclusion of an d-user creation/malntenance
system provides an Interesting medium in which to explore explicit
user personallzation In a rather sophisticated Interface. It Is
essentlal Lo success that modificatlon be quick and easy, for If not,
novice users will be denled access to a tool which should make
work much easler for them, and expert users will not alter the
support structure to reflect changing requirements. These
drawbacks are evident In most existing explicit user
personalization systems. A direct-manlpulation Interface®reduces
the usually complex task of setting up windows and pop-up menu
contents into a matter of form-fllling (Figure 2).

The user defines workbenches In the first place by filling out
and editing a simple form. This specifies the name of the
workbench and the name and action assoclated with each pop-up
menu item. Actlons are of three types: the first executes a Unix

i good overview of direct manipulation
is found in Shneiderman, 1983

Command Window (ttyed1)

utllity or user-defined program which produces output only, the
second executes Interactive utllitles, and the last enters a new
workbench. In the first and second case, the Unlx command s
speclfied along with the name of the menu item. It may contaln
arguments (given In the usual Unix shell notation), In which case a
prompt must be entered to sollclt each one when the menu item Is
picked. In the last case, when the menu item speclfles another
workbench, that workbench must also be defined in the same way.

Along with each menu ltem Is assoclated a HELP window
which the user can see at any time by pressing a "HELP” button
on the mouse. By default, the WCS displays the Unix command
assoclated with the selectlon. However, the user Is invited to
specify the contents of each help window when creating the
workbench. This encourages workbenches to be documented when
they are created, removing one of the most severe drawbacks to

$ nroff -021 intro body summary

8 Command

Manual

Title

Keyword

Browser

B|l|09t80hg

Menu

Bibhiography

Paste

Pause
Reject

Command

Edit bib

led ~/refs: emacs bib.file]

Install bib

[cd ~7refs: make all]

Show bib

cal ~/refs/bib_filelmy.prini

Find ref

[seebib ~/ref/bib.file $*

| (0ther biblio’s?

Browser

Figure 2: The workbench editor

&IPS SESSION 85

expliclt personallzation — that a user becomes confused and
disorlented when faced with another's model (for example, when
helping him on a terminal). Although we do not check that the
user-supplied HELP Information is accurate, the fact that it must
be Provided before a workbench can be completed should
encourage sensible use.

Direct manlpulation is used as far as possible In the WCS.
A user edits or expands an existing workbench by traversing the
workbench hierarchy in the normal way and then selecting edit
from the pop-up menu. The window becomes a workbench edltor,
with a concrete view of Its pop-up menu appearing inside (Figure
2). Attributes of each menu item are listed in fields next to the
item. These attributes and all other workbench entries may be
altered at will. At any polnt, the user may choose to accept,
reject, or pause the editing sesslon.

The direct manlpulation paradigm 13 also used to edit the
hlerarchy (Figure 2). New workbenches are added by creating a
new menu item in the parent, selecting that entry, and editing the
empty workbench. Removing an entry point deletes the
workbench. Attributes are duplicated between windows through
cutting and pasting. For example, copylng the name of a menu
item from one workbench to another duplicates all attributes
assoclated with that entry. If the item was an entry into a child
workbench, the complete hlerarchy Is duplicated.

Figure 2 shows a user modifying a workbench Infrastructure.
He Is editing two benches, "Manual” and "Bibliography”. Within
the editing view, selection boxes Indicate the menu entry's type (B
for benches, I for Interactlve and O for output). For example, the
"Edit bib” entry s a program which would be run Interactively in
the Bibliography workbench. Attribute fields are displayed only If
appropriate, l.e. the "Prompt” fleld is visible only If a varlable
argument was specifled in the "Command” area. In the Figure,
the user has copled the "Browser” item from the Bibllography
menu to the Manual menu. As this item is actually an entry to a
workbench sub-tree, the complete sub-tree is duplicated.

The workbench creatlon system sketched above Is an
eflective user interface prototyping scheme for windowed Interfaces
with pop-up menus. With It, one can easily and interactively
bulld a window Interface for a command-based Interactive
program. For example, a Unix software tool with a plethora of
switches to generate different varfants of Its behavior can in a
matter of minutes be glven a smooth, window-based, Interface
which Is controlled by pop-up menus, each having pertinent
context-dependent help.

Implementing the WCS

The workbench conceptual model

From the user's perspective, the WCS has two conceptually
different components. The first 1s the workbench access system,
which allows users to Interact with a pre-defined workbench model.
The second component Is the workbench editor, which alters the
model (Figure 3). The rest of this discussion will be concerned
with the Implementation detalls of those components which are
kept hidden from the user.

The workbench model Is defincd by a recursive intermediate
seript language. In BNF form, this language 1s defined In Figure
4a. In the Flgure, ItemmName, Help, UnixCommand and Prompt
are character strings. Of special interest Is the recursive
appearance of WindowType within the Benchltem definitlon, for it
permlts the user to consiruct a tree structure of workbenches.
Figure 4b illustrates one realization of the seript language using a

Workbench
ficcess
System
‘Workbench Model
*an intermediate
script language
Workbench
Editor

figure 3: The conceptual model of the WCS

lisp-like syntax. Except for the help window contents, which are
abbreviated to <help> for brevity, the example completely
defines the workbench hlerarchy of Figure 4c.

Each workbench ecarries with it its location in the model.
For example, the "Manual” workbench of Figure 4¢ points to its
corresponding definition in Figure 4b. Sub-trees may be include In
this description as they are nested in the workbench definition.
Editing a workbench is simply a matter of altering a localized view
of the model.

The workbench smplementation model

The workbench creation system I3 conceptually simple In
design, consisting of five fundamental processes: a unique
environment process, workbench conlrollers for each bench,
program servers to execute programs in a window, cut and paste
editors for filtering program output, and workbench editors for
editing the workbenches.

Consider the model in Figure 5. After invocation from the
user's command window, two processes are spawned. The first Is
the environment process, which maintains a common working
environment between all benches and the original command
window, and which creates program servers upon request. The
second process Is a workbench controller, which Is responsible for
activating the four types of user requests.

The first asks the workbench to create a new child bench.
The controller for Workbench 1 In the Figure Is shown spawning a
child subtree. A new controller is recursively created, and Is glven
a polnter Into the workbench model which describes its activities.

Running Interactive programs Involves requesting a program
server from the environment process (Workbench 2 in the Figure).
Cooperation between server and the workbench controller allows
program execution in the appropriate window. Non-Interactive
programs invoke similar actions, except output is flltered to a cut
and paste editor spawned by the controller (Workbench 3).

The final task of the controller — workbench editing —
invokes a speclal editor process whose effect IS to alter the
Intermediate seript language of the workbench (Workbench 4).

Figure 5 does not show all the detalls of process Interactions.
For example, the workbench editor does not edit the intermediate
script language directly, for it must go through a master script
editor which is responsible for maintaining a consistent workbench

&IPS SESSION 85

("Benches”, <help>,

<Seript> < WindowType: -

< WindowType> <WindowName >, <Help> {, <MenuType>}
<MenuType> <MenuName>, <Help>, <ltemType> {, <ItemType>}
<ltemType> <Outputitem> | <Interactiveitem> | <Benchltem> | <>
< Outputitem> <ItemName>, -ZHelp>, O, <UnixCommand>, <Prompt>
<Interactiveltem> <ItemName>, <ZHelp>, I, <UnixCommand>, <Prompt>
<Benchltem > <ItemName>, <<Help>, B, <WindowType>

4a: Script language (BNF form)

(" Benches”, <help>,

|
|
|
!
!

("Blbliography”, <help>, B,
(" Bibliography”, <help>,
("Bibliography”, <help>,
| ("Edit bib”, <help>, I, "cd ~ /refs; emacs bib.file”, *")
("Install bib”, <heip>, O, "cd ~ /refs; make all*, "*)
| ("Show bib", <help>, O, "cat ~ /refs/bib.file | my.print®, ")
("Find ref", <help>, 1,"seebib ~ /refs/bib.file $s~, " Other biblics?"))))

.("Manual®, <help>, B,

("Manual”, <help>,
| ("Manual”, <help>,
| ("Title*, <help>, O, *man $1°, "Title:")
| | ("Keyword”, O, “man -k $1”, "Keyword:"))))))
I
| | menu items, 2nd level
| menu names, &nd level
| workbench names, 2nd level
menu slems, 1st level

Biblio...
Manua! —

menu names, st level

workbench names, 1st level

4b: An example script

4c: A simple workbench hierarchy

Figure 4: The intermediate script language and an example

(meintain
T environment)
Dindo Environment
w process
initishze
k4
create wes “\ ~
workbench N
N .
\
1 request E
’ N i progrsm |
Workbench 1 Workbench 2 | server H
controller controller i :
Edit Edit ; :
interactive :
Output

Neuw Bench

creste
workbench

Workbench 4
controiler

Edut
intersctive
OQutput
New Bench

Workbench 1
Editor

All Figures represent processes;
Solid lines: process creation
Dotted lines: inter-process communication

&IPS SESSION 85

Workbench 3
controlier

interactive
Output

i filter
1 output

igure 5: The implementation mode! of the WCS

model. Another hidden detall 1s that the environment process
knows the status of all workbenches. Upon request, It may record
the location and actlvities of all benches on the screen, allowlng
the user to "save” his workshop between sesslons.

Difficulties in implementation

Although the workbench model described above is simple In
design, implementation Is difficult, partly as a result of the Unix
operating system. The first problem stems from the number of
processes created for a large number of active workbenches, for
Unix restricts the number of processes a user Is allowed. Our
implementation multiplexes all workbench controllers Into a single

process. Although messy In practice, it Is totally transparent to
the user.

The second difficulty arises from the distributed nature of
our work. Our model allows processes to run on (or between)
workstatlons and a Unix host (a Vax 11/780). For example, the
cut and paste editor and the workbench editor reside on a
workstation. Program servers are actually two communicating
processes running on the host and the user's workstation. The
executlon locatlon of an individual program s determined by the
program litself. Fortunately, the WCS 1s bullt upon the Jade
Inter-process communication protocol, which elegantly handles the
distributed nature of our system (Unger et al, 1984).

But the major problem comes from the nature of the WCS,
which attempts to amalgamate two fundamentally different
paradigms — sequentisl command dialogues and cooperating
workbenches. In practice, many extra processes must be created
to support parallelism due to the sequential nature of Unix and lts
underlying assumptions. For example, the environment process of
Flgure 5 is necessary because maintaining a common working
directory between workbenches is difficult.

The marriage of the WCS to a modern Interactive
programming environment would not only minimize these
problems but would also enhance Its capabilitles. The strong
notion of objects in Smalltalk (Goldberg, 1984) would allow
binding of workbenches to individual objects, such as documents,
filess or graphical entities. The extensible nature of Lisp
environments (Teltelman, 1979) would eliminate naturally many of
the extra processes needed In our implementation.

The WCS has been partially implemented, and should be
completed by the summer of 1985. A prototype of the workbench
access system was recently released, and the workbench editor is
now under development. Currently, users may edit the
Intermediate script language for personalization. That they are
willlng to edit an internal language shows high promise for the
completed system.

Summary

The workbench creation system represcnts a synthesis of
many ldeas. General purpose command languages, parallelism,
workbenches for constralning actlvities, and personalization are all
combined In a natural interface to offer the user flexibility In
performing tasks on a computer. We have shown how this
paradlgm can be implemented on top of a conventional interface.

The thrust of our work i to provide a parallel workbench
structure which may be created and modified by the end user. It
Is this aspect of personalization that the workbench creation
system exempiifies.

Most systems allowing personalization do so at great cost to
the user in learning and modlification time. Traditionally, the user
minimizes thls cost by avolding personallzation altogether or by
copylng and modifylng the profile of the local “expert”
(Greenberg, 1984). As the WCS Is specifically designed to ease the
user's burden, It should provide a good vehlcle for studying how
users can effectively personalize thelr environment.

The union of ezplicit and automatic personalization suggests
exclting new developments. We foresce an interface monitor
which keeps track of user actlvitles and offers potentlally useful
workbench configurations on request. When combined with a
knowledge base, the monitor may Infer workbenches from minimal

user actions, possibly through stereotyping with existing models

(Rich, 1983). One consequence 18 rapld development of
workbenches sultable for transient user actlons.

We envision a complete system which Integrates all aspects
of modeling. Perhaps first time users will have a default
workbench structure to begin with (created by the designer
through discussion with users and through analysis of their needs).
It is a simple learning progresslon to go from modifying Individual
workbenches, to adding new ones, and finally modifying or
creating new support Infrastructures. The exeiting possibility of
werkbenches modifying themselves (possibly through consultation
with the user) would go even further to facllitate effective use of
the WCS.

Acknowledgement. We would like to give speclal thanks to
the talented Dan Freedman, who is buslly turning our ldeas into
reality. This research Is supported by the Natural Sclences and
Engineerlng Research Council of Canada.

Bibliography

Eason, K.D. and Damodaran, L (1979) "Deslgn procedures for user
involvement and user support” Infotech - Man Computer
Communications, London.

Edmonds, E. (1982) "The man-computer Interface: a note on
concepts and design™ Int J Man-Machine Studies, 16 (3) 231-
236, April.

Goldberg, A. (1884) "The influence of an object-oriented language
on the programming environment™ in Inferactive
progr ing ts, edited by Barstow, Shrobe and
Sandewall, pp 141-174. McGraw-Hill Book Company, New
York.

enuvir

Greenberg, S. (1984) "User modeling In interactlve computer
systems™ MSc Thesls, Department of Computer Sclence,
Unlversity of Calgary.

Hanson, S.J., Kraut, R.E., and Farber, J.M. (1984) "Interface
design and multivariate analysls of UNIX command use”
ACM Transactions on Office Information Systems, 2 (1),

March.
Joy, W. (1980) "An introduction to the C shell” In Uniz
Programmer’s Manual, Seventh Edition, Volume £c.

Unlversity of Callfornla, Berkeley, Callfornia, November.

Nakatani, L.H. and Rohrlich, J.A. (1983) "Soft machines: A
philosophy of user-computer Interface design” Proceedings of
human factors in computer systems, Boston, Mass., December
12-15.

&IPS SESSION 85

Perlman, G. (1984) "Natural artificlal languages: low-level
processes” Int J Man-Machine Studies, 20 (4) 373-419, April.

Rich, E. (1983) "Users are Individuals: Individualizing user models™
Int J Man-Machine Studies, 18 (3) 199-214, March.

Shnelderman, B. (1983) "Direct manlpulation: a step beyond
_programming languages” JEEE Computer, 16 (8) 57-89,
August.

Shnelderman, B. (1984) "Response time and display rate In human
performance with computers” Computing Surveys, 16 (3) 265~
285, September.

Smith, D.C,, Irby, C., Kimball, R., Verplank, B., and Harslem, E.

(1982) "Deslgning the Star user Interface” Byte, 7 (4) 242-282,
April.

Teltelman, W. (1979) "A display oriented programmer's assistant”
Int J Man-Machine Studies, 1 (2) 157-187, March.

Thimbleby, H. (1980) "Dialogue determination” Int J Man-

Machine Studies, 18 (3) 295-304, October.

Tompa, F.W. (1982) "Retrieving data through Telldon” CIPS
Session 82 conference, Saskatoon, April.

Unger, B., Birtwistle, G., Cleary, J., Hill, D., Lomow, G., Neal, R.,
Peterson, M., Witten, LH., and Wyvill, B. (1984) "Jade: a
simulation and software prototyping environment™ Proc
Conference on Simulation in Strongly Typed Languages, San
Dlego, California, February.

Willlams, G. (1984) "The Apple Maclntosh computer” Byte, 9 (2)
30-54, February.

Witten, 1.H. and Greenberg, S. (In press) “User interfaces for offlce
systems” In Ozford Surveys in Information Technology, edited
by P. Zorkoczy. Oxford University Press, Also available as
Research Report 84/161/19, Department of Computer
Sclence, University of Calgary.

&IPS SESSION 85

