
THE UNIVERSITY OF CALGARY 

A Constitutive Theory and Wave Propagation in 

Thermoplastic Solids 

BY 

XIANG-YAO QIU 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF MECHANICAL ENGINEERING 

CALGARY, ALBERTA 

MAY, 1991 

© XIANG-YAO QIU 1991 



1+1 
National Library 
of Canada 

81b1iothèque nationale 
du Canada 

Canadian Theses Service Service des theses canacJiennes 

Ottawa. Canada 
K1A 0W4 

The author has granted an irrevocable non-
exclusive licence allowing the National Ubrary 
of Canada to reproduce, loan, distribute or sell 
copies of his/her thesis by any means and in 
any form or format, making this thesis available 
to interested persons. 

The author retains ownership of the copyright 
in his/her thesis. Neither the thesis nor 
substantial extracts from it may be printed or 
otherwise reproduced without his/her per-
mission. 

cmaaa11*1 

L'auteur a accordé une licence irrevocable et 
non exclusive permettant a la Bibliothêque 
nationale du Canada de reproduire, pzêter, 
distribuer ou vendre des copies de sa these 
de quelque manière et sous quelque forme 
que ce soit pour mettre des exemplaires de 
ette these a la disposition des personnes 

intéessé'ës. 

L'auteur conserve la propriété du droit d'auteur 
qui protege sa these. Ni la these ni des extraits 
substantiels de celle-ci ne doivent être 
imprimés cu autrement reproduits saris son 
autorisation. 

ISBN 0-31.5-71177-9 1 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to 

the Faculty of Graduate Studies for acceptance, a thesis entitled 

"A Constitutive Theory and Wave Propagation in Thermoplastic Solids", 

submitted by Xiang-Yao Qiu in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy. 

27 May, 1991 

Pau 
Dr. M.C. Singh, Supervisor 
Department of Mechanical Engineering 

Dr. S. Dost 
Department of Mechanical Engineering 
University of Victoria 

Dr. M.- Epstein 
Department of Mechanical Engineering 

A14-- •&4 
Dr. N.G. Shrive 
Department of Civil Engineering 

Dr R.S. Dhaliwal 
Department of Mathematics & Statistics 

Dr. R.N. Dubey, External Examiner 
Department of Mechanical Engineering 
University of Waterloo 
(ii) 



ABSTRACT  

The theory of normality is extended to include both thermal and 

plastic effects. Some restrictions imposed on the free energy function 

are obtained. The relation between the free energy function and dissi-

pation function is clarified. A theorem for constituting the two leading 

functions of thermodynamics is justified. By employing the concept of 

internal state variables and taking into account the dissipative nature 

of plastic deformation, strain hardening and " temperature effects, the 

constitutive equations for thermoplastic solids are developed based upon 

the extended theory of normality and the field theory of irreversible 

thermodynamics. 

Different combinations of free energy function and dissipation 

function are introduced for different properties of materials under 

consideration. Because both the free energy. function and dissipation 

function have been employed, self-compatibility of the derived equations 

is assured. The developed model is temperature-dependent, and the 

material properties considered allow the constitutive equations for a 

wide temperature-range application. 

A particularly selected rate-sensitive constitutive equation-set is 

employed to study plastic wave propagation problem in a semi-infinite 

rod. The resulting equations are numerically solved by utilizing CYBER-

175 computer. Two different numerical integration procedures are. 

involved. One is the characteristics and the other is of finite 

difference. For different boundary conditions the two methods generate 

physically meaningful results. In these results, mechanical and thermal 

coupling is clearly displayed. 
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1. 

CHAPTER 1 

INTRODUCTION 

1.1 Significance of Field Theory of Thermodynamics  

The field theory -of mechanics can be dated back to the, 18th 

century when fluids were studied by Euler and to the 19th century when 

solids were studied by Cauchy. Compared with this fact the theory of 

thermodynamics established by Carnot, Mayer and Clausius is a younger 

science, and the development of its field theory has just been existing 

for several decades. 

For a long time the objective in the study of thermodynamics 

has been to considei a finite portion of matter. This situation covers 

nearly entire published literature and it is still almost true for 

today's works, where one usually assumes that the state under conside-

ration is the same through the entire volume of the body. From mechanics 

pbint of view this simply means that the body is in a homogeneous state. 

With this assumption, if we try to solve a mechanics problem to obtain 

the values of dependent variables such as stress and strain, which are 

associated with thermodynamics dependent variables like temperature, 

heat flow etc. we would be unable even to solve very simple problems 

like a circular bar subject to torsion or a cantilever beam subject to 

transverse loading and non-uniform temperature distributions, without 

using the field theory of thermodynamics. Lack of the field theory even 

at the middle of this century has resulted in a far reaching negative 

consequences. 

Reversible process is one of the fundamental concepts in 

classical thermodynamics. Suppose we consider a finite portion of a 



2. 

continuum. Mechanical and thermodynamic states within this portion 

generally differ from point to point, and the state usually changes even 

when it is isolated from its surroundings. For instance, at least the 

temperature will tend to be uniform as time goes on; the process is 

accompanied by an increase of entropy, and therefore, is irreversible. 

To minimize the irreversibility, classical thermodynamics has to 

restrict itself to infinitely slow processes, or in other words, to the 

states that are in the immediate vicinity of equilibrium. Under this 

assumption most processes are considered reversible, and as a 

consequence classical thermodynamics claims that every sufficiently 

slow process is reversible. While the assumption has produced many 

conclusions in practice, a counter example concludes obviously that 

plastic deformation of a solid is always irreversible, no matter how 

slow it may be. 

As continuum mechanics deals with motions in which many thermo-

dynamic processes may be involved, it is closely related to thermo-

dynamics. However, as the reasons mentioned above the classical 

theory can not be directly applied to continuum mechanics, unless a 

refined theory or so called field theory of thermodynamics is 

available. 

1.2 Balance of Linear Momentum  

Suppose a body of continuum, B shown in Fig.1.1, is under 

examination. Its volume is denoted by v, and its surface whose exterior 

normal is v is denoted by s. Now let us consider the balance law of 

momentum associated with the body. 

If f is the body force per unit mass, and t(v) is the stress 
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x2 

X3 

Fig. 1.1 A body of continuum 

xl 
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vector acting on the surface element ds whose exterior normal vector is 

v, then the resultant external force F acting on the body is given by 

the following expression: 

F=ft(V)ds+J'pfdv  

According to the law of balance of linear momentum, which 

asserts that the time rate of change of momentum is equal to the 

resultant force F acting on the body, we have: 

&fpvdv=F (1.2) 

where stands for material derivative. Combining equation (1.1) with 

(1.2) yields the expression for global balance of linear momentum: 

15-t fpvdv=ft(v)ds+fpfdv (1.3) 

When the indicated differentiation on the left hand side is carried out, 

and the local form of mass conservation is noticed, equation (1.3) can 

be written in the form of 

or 

f p ' dv f t (V) ds + f p f dv , (1.4) 

f prjdv=ft(v)jds+fpfjdv . 

V S V. 
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Here the dot also means material derivative. By the stress principle of 

Euler and Cauchy [1.44] we have: 

t(v)j = Yjj V (1.5) 

where is the stress tensor and vi. is the components of the unit 

vector along the outer normal to the surface of the region v. 

Substituting equation (1.5) in (1.4b) and applying Gauss' 

theorem to convert the surface integral into volume integral, we obtain: 

f[q.- - + P (f. - • )] dv = 0 (1.6) 

For equation (1.6) to be valid for any arbitrary volume v, the necessary 

and sufficient condition is vanishing of the integrand. Hence 

(1.7) 

Equation (1.7) expresses the local form of the law of balance of 

momentum, and is the equation of motion. 

1.3 Conservation of Energy  

For considering conservation of energy let us re-examine the 

ways by which the energy of a non-isolated system can be altered. By 

definition, the amount of energy transferred to a system as work, W, 

associated with some infinitesimal changes in the position of the system 

is: 

aW = F•dx = F1 dxi , (1.8) 
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where F is a force vector exerted by the surroundings on the system and 

dx is the vector of infinitesimal displacement. a means this term is not 

necessarily an exact differential. 

The rate at which work is done on the system can be expressed 

as below: 

dx 
(1.9) 

When this equation is applied to body and the force is expressed with 

body force and surface traction, it takes the form of: 

or 

P=Jt(v).vds+j'pf.vdv 

P = f v CISp f1 v. dv 

(1.10) 

Heat, like work, is a form of energy being transferred in a 

thermodynamic process. However, usually heat transfer is not visible. If 

q with components q1 is heat flow entering the system, the rate of heat 

input is 

f qi vi ds f qi,i dv . (1.12) 

Beside the energy forms mentioned above, kinetic energy is 

another one which is often involved in a thermomechanic process. The 

kinetic energy K contained in body 3 is defined by: 
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K=Jpv1v1 dv 

Similarly, the internal energy is expressed in the form of 

U=Jpudv 

(1.13) 

(1.14) 

where u is the internal energy per unit mass of body B. 

According to the principle of conservation of energy, for the 

continuous medium contained in v, the time rate of kinetic energy K 

and internal energy U is equal to the rate of heat and the rate of work, 

therefore, we have: 

K+U=Q+P . (1.15) 

Substituting equations (1.11) through (1.14) in equation (1.15), 

carrying out the indicated differentiation and using Gauss' theorem to 

convert the surface integrals into volume integrals, it is possible to 

obtain the local form of principle of conservation of energy: 

(1.16) 

where d ij . is the deformation rate tensor. 

1.4 Irreversible Thermodynamics  

The second law of thermodynamics postulates that any process which 

would reduce entropy of an isolated: system is impossible to occur. 
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Processes which do not violate the second law can be classified as 

reversible and irreversible. Let us consider a process taking place 

within an isolated system. In what we shall call the forward direction 

the change in state of the system is such that the entropy increases. 

Then for the backward process, that is the reverse change of the state, 

the entropy would decrease. The backward process is therefore impos-

sible, and the forward process is irreversible. If the entropy is 

unchanged, however, during the forward process, it will be unchanged 

during the backward process, and the process can go in either direction 

without violating the second law; such a process is called reversible. 

It can be seen that the key point of a reversible process within an 

isolated system is that it produces no entropy. That is what we have 

learnt from the classical thermodynamics. To make the theory applicable 

to continuum mechanics, we need to extend it with two more features. 

First, we should be able to count entropy in a more precise way and 

then to establish its evolution equation for an isolated system for any 

interesting process. And second, the formulation involved must be 

suitable for non-uniform systems, that is the theory must be of field 

form. These two items will be the main objectives of the theory of 

irreversible thermodynamics in which we are interested. Since these 

features are beyond the scope of classical thermodynamics some 

additional hypotheses have to be introduced. 

The first assumption is that entropy is a function of state in 

irreversible processes as well as in reversible processes. Obviously, 

the assumption is significant for the development of irreversible 

thermodynamics. Its justification has been studied by Prigogine [1.45]. 

Having compared the results due to this assumption with those of 
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statistical mechanics for some particular models of non-uniform gases, 

the author shows that the domain of validity of the assumption covers 

that of validity of linear phenomenological laws such as Fourier's law 

of heat conduction, Fick's law of mass diffusion, etc. 

The second assumption consists of extending the second law of 

thermodynamics locally to every portion of a continuum, either uniform 

or non-uniform. It may be explained as follows. For precise accounts, it 

should be noticed that entropy is an extensive quantity, therefore it 

must be subject to a law of balance: for a given set of particles 

occupying a domain v the total change of entropy must be equal to the 

total amount of entropy transferred to these particles through the 

boundary plus that produced inside this domain. Referring to body !B, 

Fig 1.1 , we may have: 

p s dv =- f SOdA + D f P (s') dv ITt f  ITI 
V S V 

(1.17) 

where s is the specific entropy per unit mass, is the entropy 

source or internal entropy production per unit mass. S is the entropy 

flow vector on the boundary . dA is a surface element of boundary s. 

Its direction is represented by the outward normal. The dot between 

S and dA implies scalar product. The material derivative is taken 

with respect to a given set of particles. On transforming the first term 

of the right hand side into a volumetric integral, reducing the material 

derivative of an integral, realizing that domain v is arbitrary and 

using the continuity condition of entropy we are able to obtain the 

following equation: 
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or 

where 

Ds p JY-t =- divS+p Ds' 
-D —t 

Ds(1)_ Ds 
Ui ITt-

(1.18) 

(1.19) 

S=ps=q U , (1.20) 

in which q is the heat flow vector, and 0 is the local absolute tempe-

rature. 

Equation ( 1.18) or (1.19) serves as the relation among total 

entropy rate, entropy flow due to heat conduction and internal entropy 

production which is essentially related to the second law of 

thermodynamics. The law may be stated as follows: 

Ds' 
Di— 

Ds' 
17t > 

Ds' 
Dt 

0 corresponding to reversible processes; 

0 corresponding to irreversible processes; 

0 never occurs in nature. 

Combining equation (1.21b) with equations (1.19) and (1.20) 

generates the Clausius-Duhem inequality: 

1 

(1.22) 

where g1= 0, . (1.23) 
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CHAPTER 2 

BACKGROUND OF PLASTIC WAVE PROPAGATION 

2.1 Historical Background 

Studying plastic waves in solids has had an unusually contro-

versial history concerning whether the geometry, loading, boundary and 

initial conditions could be precisely defined; However, one of the most 

controversial topics has been around the velocity of wave front since 

1951 when Bell did his experiments on incremental wave propagation in 

plastically prestressed rods of mild steel [2.37]. The specimen rod was 

pulled in simple tension until yielding occurred, Then a longitudinal 

tensile wave was generated by dropping a sleeved ring onto the end of 

the rod. At the same time the longitudinal wave was recorded by strain 

gauges attached to the specimen rod. The significant result of these 

experiments was that the wave front propagated at the velocity of an 

elastic rod. This fact appeared to contradict the rate independent 

theory of plastic wave propagation in rods, developed by von Karman and 

Duwez [1.6], Taylor [1.2], Rakhmatulin [1.22] and White and Griffis 

[1.10]. According to that theory the wave front should propagate at the 

plastic wave speed of c=((da/d8)/p) 1/2, in which d/de is the slope of 

the stress-strain curve at the prestressed state, and p is the mass 

density of the rod. Such a fundamental disagreement between theory and 

experiment was clearly unacceptable. When many investigators tried to 

clear the discrepancy, Sternglass and Stuwart [2.38] repeated the 

experiment and obtained the same result with copper rods. Later on, some 

other researchers conducted the similar experiments on different 

materials with different designs, but all these experiments showed that 
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the wave front velocity corresponded to the elastic wave. 

As the experiments were accepted to be well-founded, efforts 

were directed towards re-examination of the theory. Several researchers, 

e.g. Craggs [2.48] and Hill [2.49], considered plane plastic wave 

propagation as a better explanation. In their researches, the strain 

rate independent theories based on the commonly used form of plasticity 

constitutive equations were still used. The result obtained showed that 

under plane plastic wave consideration, there were three wave speeds of 

propagation involved, and the fastest one was lying between the elastic 

shear wave and elastic longitudinal wave speed. Based upon the result, 

there was speculation that elastic wave speed was observed in 

experiments because three-dimensional effect was neglected in a one 

dimensional rod. However, when a better numerical solution for plane 

strain case was obtained by Clifton [2.39] and an approximate 

axi-symmetric solution obtained by Hunter and Johnson [2.40], the 

explanation from three-dimensional theory became doubtful. The newer 

result showed that the theoretical disturbance which could propagate at 

elastic speeds would be too small to be observed as wave front at the 

experiment. It was more clear when torsion case was re-examined, where 

the wave front propagated also at an elastic wave speed but no three-

dimensional effect included. Thus a broad agreement formed that three-

dimensional effect was not, at least, the main reason for wave front of 

incremental disturbance propagated at elastic speed through a pre-

stressed region. 

Soklovsky [2.41] and Malvern [2.42] introduced a one-dimensional 

plasticity wave theory which included the part of rate dependent strain. 

The theory was based upon the assumption that when a load is applied to 
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a crystalline solid, the instantaneous response is elastic, then 

inelastic process begins, mainly by the glide motion of dislocation, and 

plastic deformation occurs. Because the instantaneous response is 

elastic, the incremental wave propagates at elastic speed. 

Although there were some other interpretations for Bell's 

tests, the following conclusion is broadly acceptable that rate 

dependent theory of plasticity does include the feature of instantaneous 

elastic response, which is consistent with the experimental observation 

that in a plastically prestressed rod the wave front of an incremental 

disturbance propagates with elastic speed. 

The model of wave propagation in a plastic material consists 

of balances of momentum and energy, compatibility, heat conduction, and 

the most active of all, the constitutive relation between stress and 

strain. In classical elasticity this relation is described with two 

Lam6 constants which are sufficient to set up the law. In plasticity, 

however, two constants are far from enough to completely describe the 

features of stress-strain relation. As a matter of fact, a lot of 

varieties of constitutive laws have fully been evolved by diiffenrent 

research workers [2.12], [2.15], [2.23], [2.17], [2.19] etc. Because of 

the variety and the directness of its influence on the analytical 

results, controversy on plastic wave propagation had concentrated on the 

nature of the constitutive law from the very beginning ( see, e.g. 

Cristescu and Suliciu [4.1] ). This fact tells us how important is the 

development of plasticity constitutive theory to the problem of plastic 

wave propagation. 

Although criterion for the yielding of plastic solid such as 

soil was suggested by Coulomb in 1773. It was not considered to be a 
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significant investigation concerning metal deformation. The plasticity 

theory as a scientific study may be justly regarded as beginning in 

1864, when Tresca published his experiments on punching and extrusion 

and stated that a metal yielded plastically when the maximum shear 

stress reached a certain value. For the first time he realized that 

initiation of plastic deformation was governed primarily by shear 

stress. 

Tresca's yield criterion was utilized by Saint-Venant to 

determine the stress distribution in a cylinder of perfectly plastic 

material. Then Levy adopted the idea of perfectly plastic material from 

Saint-Venant to establish three dimensional relations between stress and 

strain rate. 

After a long period of time , early this century von Mises 

proposed another yield criterion on the basis of mathematical 

consideration. It was interpreted afterwards by Hencky as that yield 

• occurred when the elastic shear strain energy attained a critical value. 

Von Mises also independently proposed equations similar to Levy's. The 

Lévy-Mises theory is sometimes regarded as "flow rule". 

During the time period between the two world wars some 

important advances were made by German researchers. While Prandtl and 

Reuss made allowance for the elastic components of strain to be 

included, Schmidt and Odquist showed how work-hardening could be brought 

into the framework of Lévy-Mises' stress-strain relations. Besides, at 

about the same time Hencky proposed a rival plasticity theory which was 

analytically convenient for the problems where plastic strain was small. 

Hencky's equations lead to approximately correct result only for simple 

loading paths; sometimes it is regarded as "deformation theory". 
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After more than a century's efforts, all the contributors 

working in the area of classical plasticity, typically represented by 

Lévy-Mises' theory, seem to have laid its foundation. However, up to 

the present time, for each specific subject in plasticity, confusion 

seems no less than understanding. While too many questions are con-

trasted with too few answers, there seems still a long way to go before 

being able to say it is a well developed branch of solid mechanics. 

The backward situation is basically due to the complicated 

features of plastic deformation process. 

It is understandable if we say that physical non-linearity is 

an impediment to the progress of plasticity theory. With this incon-

venience even when Hencky's "simple" theory is employed, the solutions 

for practically interesting problems are still limited. The main 

difficulty brought to us by non-linearity is that it makes the well-

established mathematically linear theory of analysis lose its power. 

Even for solving a pretty simple problem we probably have to take 

numerical procedure, which, in many cases, would diminish our field of 

vision. 

Another feature of non-linearity relates to large deformation 

which is sometimes called geometrical non-linearity. Since plastic 

deformation of metals can be notably large, to solve such a problem one 

• has to use the geometrical relations based on finite displacement 

consideration, which surely makes any practically interesting problem 

even harder to be solved. 

One of the important characteristics of plastic deformation is 

its. irreversibility. In classical thermodynamics, while a process is 

under study, it is assumed that if th process is very slow it can be 



16. 

treated as a reversible process. Unfortunately, this hypothesis does not 

hold for a plastic deformation process. No matter how slow it is, 

plastic deformation is definitely irreversible. It may be said that 

plastic deformation is an inherently irreversible process. The irrever-

sibility endows the material with a memory of the whole history it has 

experienced, and therefore makes the plastic deformation path-dependent. 

At least up to now, no successful modelling has been achieved to 

clearly describe the dependency. As a result, it is difficult to 

comprehend under what circumstances the simpler "deformation theory" 

would just reach the limit of the domain of its applicability. 

To treat such inherently irreversible processes the theory of 

irreversible thermodynamics has to be utilized. As mentioned in 

Chapter 1, unlike classical thermodynamics in which uniform systems are 

studied, combined with continuum mechanics the irreversible thermo-

dynamics deals with a continuous field, therefore sometimes it is called 

field theory of irreversible thermodynamics. This theory had not been 

well-established until the 50's or 60's of this century, thus it was 

impossible to utilize the theory of irreversible thermodynamics solving 

plasticity problems before that age. 

Plastic deformation results in strain hardening. The concept 

was introduced into Levy-von Mises' theory in the 30's. But not until 

the material science acquired enough knowledge, was it possible for 

scientists to comprehend its mechanisms. The up-to-date theory of 

material science has revealed the connection between hardening and 

micro structure movements of metallic materials. Nevertheless, a 

realistic model relating various variations of micro scale to 

macro-hardening still remains open. 
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The deformation-induced heat further complicates the nature of 

the problem. As a result the heat causes temperature and therefore 

stress re-distribution, deteriorates mechanical behavior or even bring 

about phase movement of a metallic material. For this complexity it is 

not surprising that the research in plastic deformation-induced heat is 

decades behind plasticity itself. 

With all these difficulties comes today's plasticity. Looking 

back on it we feel some aspects concerning the advance are still worth 

notice: despite the theory itself keeps on being improved, the 

research methodology adopted has experienced a notable evolution. While 

Tresca, worked out his yield criteria based on the experimental results, 

von Mises, Plandtl, Reuss and others employed mathematical techniques 

for improving the theory. Today's plasticity, consisting of relations of 

stress and strain, expression of dissipative energy, influence of micro 

scale variation on hardening etc. has become a system. Any amendment 

motivated either by experimental results or mathematical consideration 

in one aspect may alter its other features, therefore the methodology of 

continuum mechanics must be used to assure the consistency inside the 

whole system and no contradiction with fundamental laws. 

2.2 Review of the Related Literature of Thermoplasticity  

It is known from the preceding section that plastic defor-

mation is a very complex process. The main feature of the process is its 

irreversibility, which always keeps company with energy dissipation. For 

such a complicated thermodynamic process any attempt to describe every 

detail with perfectness is not possible. From the published literature 

it is seen that different aspects have been considered important and 
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worth study by different authors, and differences of their backgrounds 

and brand of era result in different methodology to be used. For 

instance, in studying constitutive theory of so-called Maxwellian 

materials, Nunziato and Drumheller [2.25] started their formulation with 

assuming the type of stress-strain relation. When theories of 

thermodynamics, especially, Clausius-Duhem inequality is applied, the 

restricting conditions which the constitutive model must observe are 

obtained. It is interesting that the authors have shown when the 

equilibrium state is considered both stress and temperature can be 

directly obtained from internal energy function. 

In addition to stress-strain relation assumed to be in 

differential forms, the assumed law can also be in an integral form 

[2.6], [2.26], wherein there is a hypothesis that the entire history of 

the independent constitutive variables influence the constitutive 

response aspect of the material in a principle like fading memory. This 

kind of treatment has been very successful in obtaining some important 

results in viscoelasticity [2.50]. However, when non-linear kernels are 

involved as in the case of viscoplasticity the situation will be quite 

different and it is hard to expect the method to be so fruitful as it 

has been in the linear case. 

The two methods mentioned above start with assumed 

stress-strain relations and then utili z e the theory of irreversible 

thermodynamics to pursue the desired results. Another feasible procedure 

is quite different. First, it recognizes the deformation is an 

irreversible thermodynamic process, then independent and internal state 

variables, which characterize the process, and related thermodynamics 

functionals are prescribed. Application of fundamental thermodynamics 
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theory to the system leads to the desired constitutive relations. 

It seems not enough to regard the method of assuming 

thermodynamic functionals just as an inverse of that assuming the type 

of stress-strain relation. As a matter of fact the former has some 

notable advantages compared with its rival. When it is used, more or 

less, the research work of constitutive law of thermoplasticity becomes 

a systematic job, and the resulted relations are ensured to be self-

consistent. Because of these features it has been adopted by a great 

number of authors since the 60's when the theory of irreversible thermo-

dynamics became popular. 

No matter which one is chosen and employed to establish the 

constitutive relations for a thermoplastic deformation process, the 

obtained results must be subject to re-examination. They should not con-

tradict the conclusions which have proved to be valid. When they are 

introduced in a plastic wave propagation problem the output should be 

physically reasonable. 

To study a system with irreversible thermodynamics requires 

choosing a set of variables to characterize the system. Some of these 

variables have appeared in classical thermodynamics, and the others are 

introduced for a closer examination: The variables characterizing the 

internal state of the system are called internal state variables, or 

simply, internal variables. The concept of internal state variables may 

date back to half century ago when Onsager published his conspicuous 

articles [3.32], [3.33]. Since then, quite a few of works have been 

followed by Eckart [2.33], Biot [2.28], Ziegler [2.32] and Schapery 

et al. [2.16]. However, among those authors Coleman and Gurtin 

[2.5] seem to be the first who laid a solid foundation for studying 
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thermoplastic behavior of materials with the concept of internal state 

variables. Their article has been cited repeatedly by different writers. 

Since the 60's of this century, a great number of works about 

plastic deformation behavior of materials employing the theory of 

irreversible thermodynamics have been undertaken. It is impossible to 

make an overall review within few lines, but only those which are 

directly related to our interest will be discussed below. 

First, we would like to mention the works of Kratochvil and 

Dillon [2.12], [2.19]. Therein the authors constructed analysis 

framework for plastic behavior of materials, using Coleman-Gurtin's 

theory. Rate-dependent phenomenon was studied and the internal state 

variables were considered to be the average quantities of micro 

structural re-arrangement. Thermodynamics functional such as free energy 

was examined, but no explicit expression was given. 

In early 1970's Rice [2.15], [1.17] presented his framework 

combining continuum mechanics and irreversible thermodynamics for estab-

lishing constitutive relations concerning plastic deformation. In these 

works emphasis was given to the connection between macroscopic defor-

mation mechanisms and micro scale re-arrangement of metallic materials. 

Although the author believed that many other mechanisms like diffusion, 

phase changes could be treated in the same manner, the main concern was 

the deformation caused by slip mechanism. In these articles no 

detail of expressions of the leading thermodynamics functionals was 

mentioned. 

While many researchers built their frameworks of theory on the 

normality principle, Lehman [2.23] argued that revision of stress-strain 

relation based on normality was necessary, if the loading path was much 
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different from the proportional. With this idea, not only was plastic 

deformation as global process, but also the generation, re-distribution 

of lattice defects were considered. 

Although a great number of writers assuming thermodynamics 

functionals as a start point have used normality principle, the works 

about the theory itself are rarely reported. Ziegler [3.34], Ziegler and 

Wehrli [3.17] have presented a normality framework, in which according 

to the authors' opinion, the theory can be utilized to construct 

constitutive equations of heat conduction, thermoelasticity, gases, 

visco-liquids and isothermal plasticity. Actually, being compared with 

other works regarding normality and its application, this one built 

strictly from the field theory of thermodynamics shows its remarkable 

consistency. The addition of the dissipation functional therein is never 

superfluous, but makes designation of phenomenological relation between 

stress and strain more versatile. 

Nevertheless, the theory has not been used widely by the 

researchers in the related area. This may be due to the fact that it 

does not include thermal effects in plastic deformation process. It is 

well known that a distinguishing feature of plastic deformation as an 

irreversible process is that a part of plastic work becomes heat energy 

and is dissipated. Having failed to account for thermal effects means 

neglecting one of the fundamental features of plastic deformation 

process and would lower the value of the theory. 

Another point worth noting is that since the 60's many 

researchers in this area have been working for establishing the 

relations between micro structure rearrangements and macro plastic 

behaviour of metallic materials. In their works the concept adopted from 
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science of materials has been used in the constitutive theories of 

plastic deformation, e.g. Gilman [1.46], Kratochvil [2.12], [2.19], 

[2.20], Rice [2.15], Perzyna [2.34], Lehman [2.9] et al. Through these 

studies it is believed that the generation, motion and interaction of 

dislocations of metallic materials is the most important factor among 

the micro structure re-arrangements which contribute to strain hardening 

properties of the materials. Unfortunately, the evolution aspect of 

strain hardening property is not included in Ziegler's framework. It 

seems that the main concern there is about the strictness of normality 

and its widespread applications. 

Since more work to be done is related to the normality, we feel 

it necessary to give an outline below. 

2.3 Outline of Normality Theory  

A thermodynamic state of a point of continuum can generally 

be described by a set of independent variables e and temperature 8. If 

the deformation process, however, is irreversible, or entropy pro-

ductive, more additional variables may be needed to describe the state. 

In that case we can introduce an additional set of variables into the 

problem which is under consideration to characterize different states of 

the continuum. The variables so introduced are generally related to the 

internal state of the continuum. They are denoted by a. in the 

following derivation. 

Combining equations of energy conservation (1.16) and entropy 

production (1.19), (1.20), the following equation is obtained: 

p( -e ) ii - -_ q1- p 8 . (2.1) 
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If a function which is called free energy function is defined 

as: 

V=u- 9s , (2.2) 

equation (2.1) takes the form of 

P (s ') + p () Ij = C - —s! - p e 
ij ij 

equation: 

(2.3) 

Now that the stress tensor may be obtained from the following 

aNf 
1J P 8E (2.4) 

The internal thermodynamic force tensor can be decomposed into 

quasi-conservative and dissipative parts as below: 

f3. = + (d) 
lj ij ij 

where by definition, the quasi-conservative part is 

all!  
ij aa ii.. 

(2.5) 

(2.6) 

and f3) is the dissipative part. For the reason that do not show 
ij 

up in the energy equation (1.17) explicitly, the total Dii should vanish: 

')= 0 ij 

ij (2.7) 
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Substituting equation (2.4) through (2.7) in equation (2.3) 

yields: 

(2.8) 

where 

(2.9) 

is the specific dissipation function. According to the second law of 

thermodynamics 4 can never be negative. 

If we consider p, the material density a constant as in most 

cases of solid mechanics, the free energy and dissipation rate of unit 

volume can be expressed as: 

(2.10) 

(2.11) 

Then equation (2.8) can be written as: 

= ') & - (!) q1 
ij 

Again, the second law asserts that 

(2.13) 

(2.12) 
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If it is assumed that the dissipation function is only de-

pendent on the "velocities" as it appears in equation (2.12), having 

stand for (conjugate with I3 )), q1 (conjugate with ), where 

k runs from 1 to 9, and F1 1 stand for the corresponding dissipative 

force, equation (2.12) can be written as 

(2.14) 

Furthermore, if 1 is a given single-valued differentiable 

function in the velocity space, then equation (2.14) has a unique 

solution for F1 1 which is: 

where 

' F(d)__ a 
k 

V=(a am) 

(2.15) 

(2.16) 

And the normality asserts that 

czk > 0 (2.17) 

> 0 , (2.18) 

(2.19) 
acLk 

The surface &k) = constant is star-shaped and convex in 
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the velocity space. 

The duality is also true, if the dissipation function is given 

in the force space as following 

cI_akF(k) 

then the solution is unique as 

where 

ak = Al'  aF 

a1' (F) 

V'= \ F F(  8' 51 aF  (d) m 
M. 

And similarly 

F)>0 

(2.20) 

(2.21) 

(2.22) 

2.4 Objectives of This Research  

When a solid body deforms elastically, its temperature may go 

up or down instantly, depending upon whether it is compressed or 

dilated. Since there is no energy dissipated, the process is said to be 

reversible. As loading is increased the body will deform plastically, 
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and it is found that the plastic deformation is a typically irreversible 

process. No theory of classical plasticity yet, either Lévy-Mises-Reuss' 

flow rule or Hencky's deformation theory takes into account the 

dissipated heat energy. The classical plasticity seems independent of 

thermodynamics. 

The combination of continuum mechanics with thermodynamics 

yields the field theory of thermodynamics, . or continuum thermodynamics. 

With this theory it is possible to consider quantitatively the 

dissipated heat energy induced from plastic deformation process. 

The theoretical analysis shows that plastic deformation always 

accompanies temperature rising. Unfortunately, this important fact has 

not been strictly introduced into the theory of normality to construct a 

consistent framework, therefore, the first objective of this research is 

to extend the fundamental theory of normality which is based on 

isothermal plasticity regime to that based on thermoplasticity, and then 

employing the developed framework to study the constitutive relations of 

different metallic materials. 

Studying plastic wave propagation or dynamics of thermo-

plasticity, in which balance of momentum, conservation of energy, 

compatibility of deformation, heat conduction and constitutive relation 

of stress and strain are involved, is another objective of this 

research. The obtained constitutive equations will be examined with 

dynamic modeling environment, and at the same time, the important 

phenomena of plastic wave propagation in one-dimensional system will be 

investigated in detail. 

For comparison, two numerical methods of integration, namely 

characteristics and finite difference, will be employed to obtain the 



28. 

solutions of the concerned problem. 

2.5 Organization of the Dissertation  

This dissertation consists of six chapters. Chapter 1 intro-

duces the field theory of thermodynamics, including the law of energy 

conservation and the second law of irreversible thermodynamics. These 

theories are utilized in the development of our constitutive equations. 

In Chapter 2, the background of plastic wave propagation is 

discussed. The literature related to our subject is reviewed. Besides, 

an outline of Ziegler's normality theory is presented. 

Chapter 3 deals with the theoretical development of this re-

search. The restriction imposed on Helmholtz free energy function and 

the relation between free energy function and dissipation function are 

derived. A theorem concerning the leading thermodynamics function is 

justified. Then the developed theory is used to study the constitutive 

relations of thermoplasticity for two kinds of metallic materials. The 

obtained results for mild steel are applied to the plastic wave 

propagation problem presented in the next chapter. 

In Chapter 4, the: problem of plastic wave propagation in a 

semi-infinite rod is studied. The system of the equations governing the 

problem and the associated characteristics analysis are presented. Then 

the jump conditions are given at the end of the chapter. 

In Chapter 5, the computational algorithms solving the system 

of equations are introduced. Two integration methods are considered. One 

is the characteristics method, and the other is the two-sub-step finite 

difference method. Since the computational procedure for interior grid 

points is different from that for boundary grid points both methods are 
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treated differently at interior and boundary points. 

In Chapter 6, the information about boundary and initial 

conditions is given, and the numerical results are presented and 

discussed. The main body of the dissertation concludes with Chapter 6, 

where the conclusions of this research and recommendation for further 

work are addressed. 
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CHAPTER 3 

DEVELOPMENT OF CONSTITUTIVE THEORY OF THERMOPLASTICITY  

3.1 The Restriction Imposed on Helmholtz Free. Energy Function  

Before further discussion on our subject we need to determine 

the state variables which are employed in the analysis. Since' the selec-

tion of the variables has some arbitrariness, at the beginning we will 

do it with a broad point of view. As modeling is fuither developed more 

specification of independent state variables may become necessary and 

natural. 

To make it distinct let us divide the independent variables 

into two groups. One of them consists of internal state variables, which 

characterize the variation happening inside the material and are closely 

connected to dissipation process. The other is used to describe the 

state of the material and consists of free state variables. Following 

Coleman and Gurtin [2.5], and Ziegler et al. [3.17] we choose c, 8 and g 

as independent variables, where c is the total strain tensor, 8 is the 

absolute temperature of the system, and g is the gradient of the 

temperature. In addition, a i) are used to denote a set of internal 

variables. 

As soon as the independent variables have been selected, the 

fundamental leading thermodynamics functions 'P and cI, which are free 

energy and dissipation function respectively, may be expressed as 

function of the independent variables. It should be pointed out that 

the "independent" variables themselves are functions of spatial 

coordinates and time, actually, they are "dependent" variables, 

therefore, the fundamental functions should be called functionals. 
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However, for simplicity, we still call them functions, and the free 

energy function can be written as 

'I' = 'P (eu, 0, g, () . (3.1) 

By the definition of the free energy which is 

'P=U - SO , (3.2) 

and equation (1.16) which represents the principle of energy 

conservation or the first law of thermodynamics, the following equation 

can be readily obtained: 

'P+s0+0s=Y ij èij -q11 (3.3) 

where S is entropy, cv ii is stress tensor, and q is heat flow. Equation 

(3.3) expresses the requirement of energy conservation. Besides, a 

thermodynamic process is possible to occur only if it meets the 

restriction imposed by the second law, which is expressible by Clausius-

Duhem inequality ( 1.22). With S = p s it takes the following form: 

g. aq. 

Substituting (3.4) in (3.3) we obtain 

gi 
+1<O 

(3.4) 

(3.5) 
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Assuming the free energy function expressed in (3.1) is differentiable 

with respect to its arguments, we have 

J1= ae  ij 

Combining (3.5) and (3.6) yields 

a'P. a'P 
+q1 <O 

(3.6) 

(3.7) 

According to the second law of thermodynamics inequality (3.7) 

holds for any deformation process, where èii , e, ji could vary 

independently. For (3.7) to be valid we must have: 

aP 
ij - ae ij 

a'P 

Oq' 0 
ag 1 

(3.8) 

(3.9) 

(3.10) 

where (3.10) implies that 1P is a function independent of g. With equa-

tions (3.8) through (3.10) being valid inequality (3.7) becomes 

a'P• g1 
q1 <0 (3.11) 
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Assuming that validity of the law of heat conduction is independent of 

the changes of internal state variables we have: 

g1 
- q1 <O 

(3.12) 

Inequality (3.12) asserts that for a real process which can 

occur in nature, the gradient of temperature and the heat flow always 

have opposite signs. In other words, as is well known the heat energy is 

always transferred in the direction from the higher temperature to the 

lower. 

Then from independence of heat conduction and internal state 

variables we obtain: 

(3.13) 

Although inequality (3.11) has been obtained elsewhere such 

as [4.6], the deduction (3.13) and the important fact behind it have 

been neglected. As a result, errors may be brought into the expression 

of the free energy function. 

For simplicity, the signs of the internal variables are so 

defined that aj are positive and during an irreversible thermodynamic 

process 6ti are greater than zero [3.34]. This requirement can be easily 

satisfied when a monotonic process is considered. If a process is non-

monotonic, however, the characteristic physical quantity may change its 

sign during the whole process. In such circumstances the whole process 

should be divided into several sub-processes. Each' of them is monotonic 

and may be considered as an independent thermodynamic process, for which 
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the above mentioned requirement is satisfied. 

The combination of (3.13) and (2.17) yields the following 

inequality and theorem. 

aT <0 
(3.14) 

Theorem 3.1: The free energy function is a decreasing function 

of the internal state variables. 

When the irreversibilities of thermodynamic processes are 

examined, an essential question may arise: does the irreversibility 

diminish the free energy in the system? Theorem 3.1 answers the question 

in the affirmative and implies the free energy contained in the real 

system is less than that in the system which were with "less" or "nott 

irreversibility. 

As a simple example we may consider a bar subject to tension. 

Let us assume the selected independent variables to characterize the 

system are temperature, total strain and an internal state variable 

which is plastic strain. For such a system when the total strain is 

fixed, the case with more plastic strain will contain less free energy. 

In other words, when total strain is constant, the case with more 

plastic strain recovers less strain energy when the system is unloaded. 

3.2 Effects of Temperature  

From the discussion in Chapter 2 it is seen that the theory of 

plasticity is still in its developing stage. In order to do some 

research work in that area we have to assign some limitation to 
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ourselves. In the following discussion it is assumed again that the 

material is plastically incompressible; Baushinger effect is ignored; 

the change of temperature would not cause the processes such as phase 

change, recovering etc. to occur. 

Generally speaking, increasing temperature has several effects 

on the system. First of all, the higher temperature directly increases 

the internal energy of the system. Second, it changes the mechanical 

properties of the material, and third, it causes re-distribution of 

strain and stress field. Hereinafter, we will concentrate our attention 

to the last issue. 

Our discussion will eventually take, into account thermoplastic 

effects, however, for a better understanding we will start our 

discussion with a thermoelastic case. 

It is well known that if a solid body, subjected to a uniform 

temperature increase, can expand freely, there will be no stress 

developed inside. If, however, the temperature increase is non-uniform 

or the expansion is restrained, stresses and corresponding strains will 

be developed inside the body. For further development the strains 

concerned are distinctly defined as follows. 

Definition: The strain developed independently of stress is 

called free strain, and that developed due to stress is called 

constrained strain. 

With this definition we can see that if a body subjected to a 

uniform temperature increase can expand freely, there is only free 

strain existing; however, if the temperature is not uniform or the, 
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expansion is restrained, there will be both free and restrained strains 

existing. In other words, the effect of temperature generates both free 

expansion and stressed strain which co-exists with stress developed 

inside the body. The stress so developed, depending upon the selected 

coordinate system, can be normal or shear or both normal and shear 

stress. This simply means that temperature rising can develop shear 

stress and constrained shear strain inside the solid body even when 

it is isotropic. This is the basic picture concerning thermoelasticity. 

However, an important fact which should be noticed is that the effect of 

temperature never produces "free distortion strain" inside an isotropic 

body. 

Now let us examine the construction of free energy function for 

a linearly isotropic body. From thermoelasticity point of view two 

state parameters are decisive, which are temperature and elastic strain. 

By all possible combinations the free energy function would have the 

form as follows: 

= "i(°) + 'P2(e) + F3(E, 0) (3.15) 

where 'P1(9) is corresponding to thermal internal energy of the system. 

It is related to temperature changes only. P2(e) is the strain energy 

corresponding to the stressed strains due to both loading and restrained 

thermal expansion. 'P3(c,9), representing the coupling of temperature 

changes and stressed strain is our main concern. Physically, this 

coupling means the work done by the stress tensor during thermal free 

expansion, or in the words of the definition, it is the strain energy 

of stress tensor and free strain. Since temperature changes produce no 
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free distortion strain, 'P3 is only related to dilatation part of the 

stress tensor and thermal free expansion. It can be shown that 

(3.16) 

This fact may be explained in a different way. Physically, it can be 

said that a deviatoric stress tensor does no work during a thermal free 

expansion, or mathematically, the inner product of a deviatoric 

stress and another tensor of free dilatation strain is zero. Thus we 

may state as below: 

Statement: For an isotropic body there is no explicit coupling 

between temperature change and distortion in the evaluation of strain 

energy. 

After examining the coupling effect between distortion and 

temperature change in the elastic range we are ready to study the same 

problem in thermoplasticity. It has been noticed since the very 

beginning that distortion plays a major role in plasticity. Tresca first 

found that shearing caused plastic yield. Then the theory developed by 

Levy and Mises confirmed that plastic deformation was governed by the 

relationship between deviatoric stresses and the increments of 

distortion strains. All of this means plastic deformation is of 

distortion in nature. As we already know in the elastic range, the free 

thermal expansion directly contributes to dilatation. By the same 

reasoning we can conclude that for a plastically incompressible 

isotropic material, temperature changes generate no "free plastic 
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strain", and finally, the following statement is justified. 

Statement: For evaluation of the energy, there is no explicit 

coupling between temperature change and plastic deformation. 

The statement is significant for evaluating the free energy and 

dissipative energy. In constituting the two leading functions, which 

are free energy function and dissipation function, it suggests that 

there be no explicit coupling terms appearing in their expressions. 

3.3 Selection of Internal State Variable  

As we have noticed, plastic deformation of a metallic material 

is a complicated process in which many microscopic mechanisms, such as 

twinning, void growth, and dislocation etc. may be involved. If our 

knowledge of material science enabled us to comprehend the evolution law 

of every such mechanism and the combination relation of its contribution 

to the free energy and dissipation functions, a great number of internal 

state variables would be used to specify the effect of each mechanism 

individually. However, if some of them remain, at least at the time 

being, obscure, a smaller number of internal state variables will be 

employed and only the major concerned factors or their comprehensive 

influence will be considered. Thus, the number of internal state 

variables selected shows how much we know the system and indicates the 

degree of freedom with which the thermoplastic system is examined. 

As soon as the number of internal state variables has been 

determined, we are faced with the problem of selecting the physical 

variables which are to be considered as basic unknowns. For instance, 
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let us assume the strain is under consideration. The total strain can be 

divided into two parts: the elastic part and the lastic part, and is 

the sum of the two parts so long as the small deformation is considered. 

Then, in order to describe the deformation state we may either choose 

elastic and plastic strains or plastic and total strains as independent 

variables. 

One of the important features. concerning plastic deformation of 

metallic materials is the strain hardening effect. If thermoplasticity 

can be successfully applied to engineering problems with the sophisti-

cated continuum mechanics theories and as many as possible micro 

structure features included, the hardening effect should be within the 

scope of our examination. As for answering the question whether 

hardening should be chosen as an internal state variable deliberation is 

necessary to make the system of equations to be consistent. 

In analyzing behaviors of elastic-viscoplastic materials 

Kratochvil and Dillon [3.14] employed the free energy function of 

following form 

P= 0 2 +va-kT(ln-- 1) (3.17) 

where a is the stress, T is absolute temperature, T  the reference 

temperature, jt,, v, k are material constants, and cx is an internal state 

variable characterizing the defect arrangement. It is noteworthy that 

hardening effect was brought in by cx, but plastic strain was not 

introduced simultaneously as another independent internal state variable. 

Kim and Oden [3.6] presented the following expression for free 

energy function: 
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'P = [?. (trEl2 + 2 p. tr(E2)}-Z1W- ( ZiH 1-Z0)exp(-mW), (3.18) 

where 2 and p.. are Lame's constants of elasticity, E is elastic strain 

tensor, W is plastic work. The same as in (3.17), the authors did 

not consider thermoelastic effect. Another point noteworthy is that only 

one internal state variable W has been used, while Z the hardening 

variable is introduced as conjugate of the plastic work. 

It is believed that in above articles the authors have recog-

nized there is only one degree of freedom in the internal state space 

when plastic hardening is considered, therefore introducing one internal 

state variable is enough. It can be either the hardening parameter or 

plastic work or something else. But if more than one were employed to 

characterize the plastic deformation system with isotropic hardening, 

the introduced state variables would not be independent of each other, 

therefore erroneous conclusion would result. 

Moreover, it is clear from these two expressions that the gra-

dient of temperature is not an argument of the free energy function; it 

only appears in the equation of heat conduction. 

With these considerations, the variables adopted as independent 

in this research work are a, F, and 8. Here a stands for the total 

strain tensor, e the plastic strain tensor and 8 absolute temperature. 

3.4 Constitutive Relations of Thermoplasticity 

3.4.1 The Free Energy Function  

According to the theory of normality the constitutive equa-

tions are derived from free energy function 'P and dissipation function 
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. The free energy function 'P is, generally, a function of the basic in-

dependent variables e, c and 8. It can be expressed in the 

following form: 

(3.19) 

For a better approximation of limited-term expansion of Taylor 

series, the independent variables may be equivalently substituted with 

the elastic part of strain, 
ij 

c(p) 
ii the plastic part of. strain and 

8, the temperature. In so doing we have the free energy function '1' as 

follows: 

'P = 'P (8c) ' ij ' 0) 
1J  

(3.20) 

- If the material is assumed to be isotropic, the free energy 

function 'P will be a function of c, e, c, c, c, c 

and 9, where the subscripts (1), (2) and (3) stands for the first, 

the second and the third invariants, respectively. Then 'P can be 

re-written as 

- 8(e) (e) (e) 8(p) 8(p) 8(r) 
- (1)' (2)' (3)' (1)' (2)' (3)' (3.21) 

Expanding 'P into a Taylor series with respect to the 

reference configuration where e, e, e, E, E, c, and 

T = 9 - 8R are zero, taking the small amount such as e,..., E, or 

T as the increment and neglecting the terms which are higher than the 

second order, we obtain the following expression: 
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'P = ':l' +   +  a'P  PE () T +   
aE 1) + a aa 2 

1  32'P e2 + 1 a2'i' T2 +  a2'P  

2 ae  2 acae 
+ 

+ ae aO e T + a'P 'P +  a 
ae ac 

In equation (3.22) if T, and 

zero, 'P degenerates to that for an elastic case: 

(2) 

(3.22) 

are identically 

+ E aT  1  a2'T!  (e)2 +  a'P . (3.23) 
'P =; ae + 2 ae2 C(1) ac 

For the free energy function, which is the strain energy 

function in an elastic case, expressed . in equation (3.23) to be 

positive definite, its second term must vanish. 

If we assume that the plastic deformation of the material is 

incompressible, all the terms containing e(P) in equation (3.22) vanish. 

As a result we have: 

1   (e)2 1 a2'P 2 a2'P  
'P='P0+ cT RT T•2 ac (e)2c(1)+2T+ac(e)a9iT 

( 1) 

+  a'P a'P  

ac ae 
(3.24) 

For a thermoelastic case concerned, there is no plastic term 

in the expression of the free energy function, and it takes the form: - 
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aT 1  a2tP  (e)2 1 a21P 2 a2'P  
P=}'0 +T+ z  (e)2C(1)+2T+(e)0T 

+  a'P  8(e) 

a8 (2) 
(2) 

(3.25) 

It can be shown that if the material properties are indepen-

dent of temperature, the thermoelastic free energy function assumes the 

following form [3.17]: 

= - ST + 8(e)2 + - (3 + 2) k T 

(3.26) 

The comparison of (3.23) with (3.26) yields the following set of 

equations: 

alp 
-S=-(S0+(3+2L)kE+ PC ---- T) 

PC 

c 

ac e)2 
(1) 

8c aO - (32k + 2g) k 

8'I'  
I.t. 

(2) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 
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Setting o'P  
11 

(2) 

(3.32) 

which is a hardening parameter, with equations (3.27) through (3.32) 

noticed, equation (3.24) can be written as 

'P = 'P - S0 T + + (e - C)(2) + H 

- pc  T (3.33)2 (3A ,+ A, + 2p.) k C(1)T 20R 

in which e is the total strain. Equation (3.33) is the expression of 

free energy function for linearly elastic and plastic strain hardening 

materials of non-isothermal situation. 

Generally speaking, the coefficients of Taylor series in 

equation (3.24) are state-dependent. This fact means that both sides of 

equations (3.27) through (3.32) are functions of the independent vari-

ables, which are e, and 9. Actually, however, most of them but H 

show little change as deformation goes up, while every one apparently 

depends on temperature. When thermoplasticity is concerned, the 

dependency of properties of materials on temperature must be taken into 

account. Thus, the free energy function takes the following form: 

'P(9) = 'P0 - S0 (9 -9R + X(9) C() + t(0) c - eP)(2) 

+ H (9W) E(P) - D(0) C(1) (9 - 

- F(9) (9 - 9R ' (3.34) 

where 
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D(8) = (3X(0) + 2(9)) k(0) , (3.35) 

and 

F(9) - 2eR p(8) c(8) (3.36) 

3.4.2 The Meaning of Dissipation Function  

In [3.17], Ziegler et al. consider the cases of thermoelasticity 

and isothermal plasticity. The theory of normality is used to obtain the 

corresponding constitutive equations. The article is certainly motiva-

tional, yet since plastic deformation irreversibly transfers some part 

of mechanical energy into heat, thermal effects in plasticity is 

inherent, therefore, we feel it essential for our research to have the 

free energy function include thermal effects in developing plasticity 

theory as it is shown in equation (3.34), from which by the field theory 

of thermodynamics we are able to obtain the expression of entropy 

function as below: 

a'P 1 
= - = S0 - 2J(0) C() - '(e)(- - c(P))a-ff (2) 

aH(9W)() + D'(8) e(1)(8 - + D(8) 8(1) 
-  80 

+ F'(0) (0 - OR)2 + 2 F(0)(O - (3.37) 

where the prime stands for derivative. 

On the other hand,from equation ( 1.19) we have the following 

expression for the specific rate of entropy increase: 
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q. 

S = S(i) - (s!),. , (3.38) 

which states that the rate of change of entropy consists of a reversible 

and an irreversible part. The reversible part is the entropy supply 

from the outside of the element, and the irreversible part, interpreted 

as an entropy production within the element, is never negative. 

Equation (3.38) can be written as 

a.. 
8 5 + U 1 q - q11 (3.39) 

where t = 0 s' is defined as dissipation function. This function 

consists of two parts. One of them, is corresponding to mechanical 
0,. 

irreversible process, and the other, I 2 = - q i s due to heat 

conduction, therefore, equation (3.39) is simplified as 

0 S = - (3.40) 

Recall equation (1.16), which we have for the expression of 

rate of change of internal energy, shown as below: 

U = p U = è - q1 

Combination of equation (3.40) with equation (3.41) yields: 

= . . + e S - U. 

However, by the definition of free energy function we have 

(3.41) 

(3.42) 
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ues+es+'r' . (343) 

Substituting equation (3.43) in (3.42) generates the interesting 

expression for 

(3.44) 

As S and P are related with each other by equation (3.9), 

our equation ( 3 .44) establishes a relationship between the mechanically 

dissipative power and the rate of change of free energy. This equation 

is important not only because it directly relates the two leading 

thermodynamic functions, but also because it can be conveniently 

employed to derive the plasticity constitutive equations. In other 

words, the ' equation is an alternative way other than normality for 

establishing the constitutive equations. 

The firt term on the right hand side of equation (3.44) is 

easily to be recognized as total mechanical power. The second term can 

be changed as below on the basis of equation (3.9) 

(3.45) 

which is the rate of change of free energy due to the factors other than 

temperature. 

As a matter of fact; from equation (3.34) the expression of 

the rate of change of the free energy is 

'P = - S0 0 + X'(0) 0 C() + t'(0) 0 (c - 
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+ aH 0 - D'(8) 0 (9 - 9R C(1) - D(8) eaff (2)  C(1) 

- F'(8) e (0 - 0R - 2 F(9) 0 (9 - 0R 

+ 2(9) C(1) C(1) + 2 (0) (c - c)(à - 

+ 2 H(9, W) e(P) (P) - D(9)(9 - 9R(1) 

aH dW 
8Wdt (2) 

Equation (3.37) allows us to obtain the following expression: 

0 S = S0 0 - '(9) 9 - t'(9) 0 (c - cP)(2) 

aH - 9 + D'(9) 0 (0 - 0R C() + D(9) 9 

+ F'(0) 0 (0 - + 2 F(8) 0 (9 - 

Then from equations (3.46) and (3.47) we have 

'P + 0 S = ?(9) C(1) (1) + 2 t(9) (c - - 

+ 2 H(9, W) (P) - D(0)(9 - 9R C(1) 

aH dW 

adt W(2) 

(3.46) 

(3.47) 

(3.48) 

Realizing = (e)+ (1'), 'and e(1) = the above equation can be 
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written as 

'P + e S = a 21 (8) (e)2 + .t(0) - D(8)(8 - 8R e 
Tt 

+ H(e, W) e ] (3.49) 

Now it is seen that the second term on the right hand side of 

equation (3.44) is nothing but the recoverable part of the mechanical 

power. Then the meaning of equation (3.44) is clear. It says the 

mechanically dissipative power is the difference between the . total 

mechanical power and the recoverable part. Of course, this is nothing 

surprising, yet it does show that after so much manipulation the 

dissipation function keeps its clear physical meaning. 

The stress tensor can be directly derived from the free energy 

function (3.34) on the basis of equation (3.8): 

a'P  
ij = ae 1J.. - X(0) E(1) 6j + 2 I(e)(e - c) 

- D(9)(9 - 8R ij (3.50) 

The deviatoric part of the stress tensor, which is responsible for 

plastic deformation is then obtained as: 

= 2 I(0)(e - c) (3.51) 

where the prime means deviatoric. 

With all these results ready, equation' (3.44) is reduced to 
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the following form: 

= 2 .t(0)(c. - - 2 H(e, W) ) ) 
J 1J iJ 13 ij 

aH dW 

3Wdt (2) (3.52) 

To make a better understanding of equation (3.52) let us 

consider a simple case. For the materials whose hardening parameter H is 

independent of W [3.17], the last term vanishes, and with equation 

(3.51) noticed, the dissipation function becomes 

cIi = - 2 H 
ii ii ii ij 

(3.53) 

from which it is seen that the entire amount of plastic deformation 

power has not been dissipated. The second term, part 2He is not 

dissipated. 

3.4.3 Constitutive Equations for Linear Dissipation Materials  

In elasticity where the processes are reversible, the free 

energy is a potential function, and usually is a function of "position" 

characterized by strain tensor. Anyway, it is not a function of 

"velocity", therefore, there is no time factor involved. In 

thermoplasticity, however, things are completely different. Because the 

processes are irreversible, the factor of time is always involved. An 

attempt to employ the free energy function alone to describe the 

dissipative processes and to obtain the constitutive equations seems no 



51. 

longer a proper way, because the evolution equation of the internal 

variable can not be directly derived from the assumed free energy 

function. It is because of this reason that Ziegler and Wehrli [3.17] 

0 

introduced the dissipation function in the velocity space. 

In the preceding section the constructive features of func-

tion have been discussed. It is believed that there should be no tem-

perature term explicitly involved in the function. According to the 

theory of normality the dissipation function is defined in the velo-

city space of internal state variables [3.17]. For the materials with 

linear dissipation, the function can be chosen as follows 

1 
= C(9) (2 (3.54) 

where C(0) is a temperature-dependent material property. The subscript 

(2) stands for the second invariant. 

As mentioned before, 2' the other part of the dissipation 

function concerns the process of heat conduction, for which the selected 

"velocity" is heat flow or "equivalent heat flow" depending upon which 

law of heat conduction is adopted, and the the conjugated "force" is 

(4 ). In order the law of heat conduction is to be satisfied, for 

isotropic materials the dissipation function due to heat conduction is 

assumed as: 

= ( EMURR (3.55) 

where k(s) is a temperature-dependent material property, and R is heat 

flow i.e. R q when Fourier's heat conduction law is adopted; or 
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equivalent heat flow R E 

conduction law is employed. 

A hypothesis employed 

laws for plasticity and for 

other, therefore we have 

+ 'r dq if Cattaneo's hyperbolic heat 
Tt-

in this research is that the constitutive 

heat conduction are independent of each 

= + = C(9)( 2 )2 + ( k(€3)O ) R1R . (3.56) 

With free energy function described by equation (3.34), dissi-

pation function by (3.56) all the constitutive equations concerning 

the dependent variables can be derived from the leading functions 

according to the theory of thermomechanics. 

First of all, the relation among stress, total strain, plastic 

strain and difference of temperature can be readily established as 

given in equation (3.50), and the expression of entropy is given by 

equation (3.37). 

Heat conduction is a dissipative process, therefore, the 

establishment of the constitutive relation governing the process is 

related to the dissipation function. By equations (2.15) and (2.16) the 

following equation between the "velocity" and the "force" is obtained: 

a2 -1 aJ 
(3.57) 

Substituting equation (3.55) in equation (3.57) yields either 

one of the following equations, depending upon which law of heat conduc-

tion is adopted: 
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qi = - k(0) e, , (3.58) 

or 

qi + r qi = - k(0) 8, . (3.59) 

In addition to those obtained above, the most important one is 

the plasticity constitutive equations, which can be obtained either by 

by normality equations (2.4) through (2.7) and (2.14), (2.15), (2.16) or 

directly by our equation (3.44), and the result is: 

where 

+ J(m1(0), m2(8),...,ml(0), W)c} - 2 H (0, w) e' 

= ij 

C(0) ( E())Z ij 

aH( 0 W) 
J(m1(0), m2(0) .... ,m(0), W) - 

(3.60) 

(3.61) 

is the softening rule of strain hardening parameter of the material, and 

m1(0), m2(0),...,m1(8) are the material properties depending upon the 

temperature. The softening rule serves as an interface between the 

constitutive theory and the related experimental works. A simple example 

of this rule has been given by Bodner and Parton [3.18] as well as 

Bodner and Aboudi [ 1.26], where only the isothermal case is examined, 

and based upon the experimental observation exponential law is 

considered suitable for metallic materials such as copper, aluminum and 

titanium with variable strain hardening properties. 
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Many authors have been trying to introduce strain hardening 

effects into the theory of plasticity since Schmidt and Odquist 

succeeded in revising Lévy-Mises plasticity theory of perfect material. 

Ziegler and Wehrli [3.17] introduced a simple parameter into the free 

energy function of isothermal plasticity, in which the strain hardening 

parameter, instead of being a function of plastic work, is taken as a 

constant. Of course, it only represents a simple model, yet the authors 

have realized that strain hardening is contributive to the free energy 

function. Bodner et al. [1.26], [3.18] have been considering the strain 

hardening parameter as a function of plastic work. Similarly to Schmidt 

and Odquist, Bodner et a! use - the flow rule of plasticity to obtain the 

desired equations, and as a result, the thermal effects can not be 

naturally taken into account. 

Trying to obtain a consistent set of constitutive equations of 

thermoplasticity is a major objective of this research. As a consiquence 

the expressions for the leading functions, equations (3.34), (3.54) and 

(3.55); the expression for entropy, equation (3.37); for stress, 

equation (3.50); for heat conduction, equation (3.58) or (3.59) and most 

important, for thermoplasticity constitutive relation, equations (3.60) 

and (3.63) are obtained. All these equations are consistent with one 

another. 

3.4.4 Constitutive Equations for Non-Linear Dissipation Materials  

Experiments have shown that metallic materials like mild steel 

e.g. Steel 1010 are very rate-sensitive. Cowper and Symonds [3.35] and 

Bodner and Symonds [3.36] presented a relation between stress and rate 

of strain, based on Manjoine's test- data. For the reason that the 
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formula is only applicable to isothermal case and empirically based it 

does not reveal any information concerning thermodynamic features of 

plastic deformation. It is worthwhile to re-examine the process with 

the theory of thermomechanics. Referring to [3.17], let us have the non-

linear dissipation function of the following form: 

K(9)[1 + K2(e)( i(P) )n(0) 1 (2 i(P) 

and the free energy function 

= 'P0 - S0 T + 2(9) E(1)+ t(9)( e - 

- D(0) 6(1) T - F(0) T2 

(3.62) 

(3.63) 

With the leading functions given above the expression of entropy can be 

found on the basis of equation (3.9) as: 

S -   2 dg(0) (a - 6(P)) 
- 0 - Z dO 6(1) dO  + D(8) P_ (1) 

dD(0)  
+ d  c(l)T+ 2 F(e)T+ ddF ) T, (3.64) 

and the plastic constitutive relation on the basis of equation (3.44) 

is: 

= K1(0) [1 + K2(e) ()n(0) }( èZ . (3.65) 

For one-dimensional case equation (3.65) assumes the following form: 
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and 
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= G(9)(_ Y , (3.66) 
(10 0) 

n(0) 
G(8) = / {K2(0)] 2 , (3.67) 

= Y/3 K(8) , (3.68) 

K(9) - n(0) (3.69) 

To gain some physical understanding let us consider a simple 

case of deformation-induced heat. Around the centre part of the sample, 

the equation is simplified as: 

es= 1. (3.72) 

Substituting equations (3.62) and (3.64) in (3.70) yields the following 

relafion between the increase of temperature and the deformation rate: 

y0(9) fl 
+ 

= {( 

1 
( 3 2k(0)( G(I)f"' (i(PTkM }(2a)Z 

1 d22(0) 2 d2J.L(0)  
2 d92 (1) dO2 c + 2 dD(8) C(1) 

+d21)(8)T + 4d 0)T + 2F(o) + d2F(0)T2 J+ 
dO2 c(1) dU dO2 

+(D(o) C(1) + dD(9) d(0)  
d  T 8(1) dO 
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2 dp.(0) (e) (e))} (°R + (3.71) 

It can be seen from equation (3.71) that plastic deformation 

corresponding to term on the left hand side of equation (3.71) 

will cause an increase of temperature. While in elastic region in 

which 0, equation (3.71) implies that a positive (1) i.e. 

expansion corresponds to a negative T. The elastic body behaves as an 

ideal gas, expansion causes decrease of temperature. 

The isothermal form of equation (3.66) is called Cowper-

Symonds formula. The constitutive relation (3.66) is employed for study 

of wave propagation in a uniaxial solid in this research. 
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CHAPTER 4 

PLASTIC WAVE PROPAGATION IN A SEMI-INFINITE ROD  

4.1 Introduction  

It is well known that the action of impulsively applied 

loads is not distributed instantaneously through the body, but is 

transferred from particle to particle in a wave manner. 

The theory of plastic wave propagation deals with motions of 

disturbances in metallic solids when the stresses are large enough to 

cause plastic strains in the material. The theory was originally 

motivated by the necessity of protection from an explosive attack during 

World War II. Now it has found widespread applications in different 

areas. In spite of its importance in practical applications, study of 

plastic wave propagation along with the associated plastic constitutive 

relations is considered significant for the reason that a sound 

constitutive law must generate the results which can be proved correct. 

In this chapter, the problem of plastic wave propagation in a 

semi-infinite rod is examined, and a uniaxial model is utilized. The 

reason of this usage is its simplicity and feasibility, yet it 

illustrates the main features of the problem without much undue 

mathematical complications. The chapter begins with the description of 

the motion. When the fundamental laws are applied, the equation of 

motion, the equation for energy conservation are obtained. Then 

associated with the geometric compatibility equation, the. Cattaneo's 

hyperbolic heat conduction and the constitutive equation are derived. 

the system of equations which govern the problem is thus established. 

Characteristics analysis of the system is undertaken following 
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the establishment of the system of equations. The statement of the 

problem is completed by prescribing initial and boundary conditions. The 

jump conditions at the wave fronts, which are essential for determining 

the values of discontinuities, are discussed thereafter. 

4.2 Description of the Problem  

Many practical problems for deformable media may be simplified 

by means of appropriate justifiable assumptions, so that the medium can 

be regarded as a one-dimensional geometric object. Also, there are many 

dynamic problems for which it is justifiable to assume the dependent 

variables depend upon only one space variable and time. These physical 

situations, when occurring in the field of propagation of disturbances, 

lead to the theory of one-dimensional waves. 

In the development of the theory of one-dimensional wave, some 

fundamental assumptions are made in the outset. First of all, the 

cross-section of the rod is assumed to remain plane and normal to the 

axis of the rod during the dynamic deformation. Second, the inertia 

forces corresponding to the motion of the rod in transverse directions 

are negligible. Then the problem can be readily treated as a uniaxial 

one. 

The rod is composed of material particles each of which is 

called a particle for simplicity. The instantaneous geometric location 

of a particle will be spoken of as a point. At the beginning, to label a 

particle we choose a coordinate system x, which is called as Lagrangian 

coordinate system. At a later time t, the particle with label x is moved 

to another point. Its position is denoted by coordinate x, which is 

called as Eulerian coordinate. Then, the motion of the particle is 
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described by the following relation: 

X = x (x,t) . (4.1) 

Equation (4.1) is said to be Lagrangian description of motion. It 

implies that a material particle which initially had a label coordinate 

x is at position x at time t. With this information the displacement 

function can be written as 

u=u(x,t)=x-x 

Infinitesimal strain is then expressible as 

C = e(x,t) = au(x,t)  
ax 

(4.2) 

(4.3) 

The velocity . of the particle' can be obtained as the derivative 

of displacement function with respect to time t. 

V = v(x,t) - au(x,t)  
at (4.4) 

Assuming function u(x,t) to be smooth enough, its alternate derivative 

respect to x and t does not depend upon the order of differentiation, 

and we have 

86 0v - 

at ax' (4.5) 

known as the geometric compatibility equation. In addition, there are 
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some other governing equations which can be derived from the fundamental 

balance laws of continuum mechanics. 

The law of balance of momentum generates the equation of motion 

(1.7). In one-dimensional case it is in the form 

ag av 
(4.6) 

where stands for stress, p is mass density of the material, and f is 

the body force per unit volume. 

The balance of angular momentum is automatically satisfied since 

there is only one stress component involved, and the symmetry of stress 

tensor is automatically ensured. 

Because constant density is assumed, conservation of mass gives 

no further governing equation, but is identically satisfied. 

The law of energy conservation or the first law of thermo-

dynamics plays an important role in a thermomechanic process. The law 

asserts that the time rate of the internal energy equals the sum of 

inputs of external power and heat flow. According to equations (1.16) 

the first law can be represented by the following form 

ae  eq 
at ax (4.7) 

Besides, as I we discussed in Chapter 3, the system gets some restric-

tions imposed by the second law of thermodynamics. Among them the most 

impressive one is 

(4.8) 
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where and thereafter p stands for plastic strain. 

The relations (4.5) through (4.8) are utilized in establishing 

a system of governing equations. 

4.3 System of Equations Governing the Problem of Wave Propagation  

The requirements of balance of momentum, compatibility, energy 

conservation, heat conduction and the relation between stress and rate 

of plastic strain form the system of equations governing the problem of 

wave propagation in a semi-infinite rod. Based on equations (4.5), 

(4.6), (4.7) associated with equations (3.59) and (3.68) the system of 

equations can be listed below: 

av - ay 
pat ax - 

the equation of motion, 

D2+D aTapav 
at 5 at at 

geometric compatibility equation, 

D aa +D aTap +aq0 
1 3T - ax 

the equation of energy conservation, 

Lq + k + q = ax 

the Cattaneo's hyperbolic heat conduction equation, and 

(4.9a) 

(4.9b) 

(4.9c) 

(4.9d) 
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ap 

F = 0 (4.9e) 

the constitutive equation. The coefficients D k ( k=1, 2,..., 5) are 

functions of temperature, stress and plastic strain. F is the exp-

ression of the right hand side of equation (3.68). 

4.4 Characteristics Analysis of the System 

where 

Equations (4.9) may be re-written as: 

I AO I f Yt • + [ BO ] f Y. • = f CO I , (4.10) 

'p 0 0 0 O 

0 D2 D5 0 1 

AO 0 D1 ID3 0 -ID4 

0 0 0 To 0 

\ O 0 0 0 1, 

/ 0 -1 0 0 0 

-1 0 0 0 0 

0 0 0 1 0 

0 0 k 0 0 

\0 0 0 0 0, 

av aa aT aq ap f 

(4.11a) 

(4.1 lb) 

(4.1 lc) 



f 

fov au aT aq ap 
Lax ax ax ax ax 

If 0 0 -q F] ; (4.1 le) 

and superscript T stands for transpose of the column matrix. 

Equation (4.10) may be simplified by left-multiplying both 

sides with A 1, the inverse of A0. In so doing the equations become 

fY}+[Ao] I BO ] f Yx I = [ AO ] f CO I (4.12) 

where, as given in appendix A 

A0 11 

1 
p 

0 

0 
13 13 13 

0 0 0 1 0 
TO 

0 0 0 0 

- 0 (D3+D4D5) 

13 13 13 
0 (D1+D2D4) 

40 0 0 0 

Substituting (4.13) in (4.12) yields 

{;}+ [A]{Y4={c} 

or simply 

(4.13) 

(4.14) 
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where 

and 

Y t + A(Y)Yx = C(Y), 

'0 

D3 

0 0 0' 

0 0 
D5 

0 

D1 
- 0 0 0 

o o k-  0 0 
T O 

\ 0 0 0 0 0, 

(4.15) 

(4.16) 

{ c = [  (D3+D4D5)F (D1+D2D4)F F 1 
(4.17) 

.to  

=D2 D3 Di D5 (4.18) 

For obtaining the eigenvalues of equations (4.15) the characteristic 

equation is expressible as 

det(A-2I)=O. (4.19) 

Substituting equation (4.16) in equation (4.19) and accomplishing the 

required operation we obtain 

+ }= O. ifS ' IC k  

The solution of equation (4.20) generates the eigenvalues which are 

(4.20) 



where 

0 

(2,3) ± 

± 

1 

= { C ( 1 + i-j-:j 4 2 

1 

V3 = f C ( 1 - ITi )} 2 

C =L_h D + "0 2 .1) 

4 

(D3 't 0+pk02)2 
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(4.21a) 

(4.21b) 

(4.21c) 

(4.22a) 

(4.22b) 

(4.22c) 

(4.22d) 

The system of the partial differential equations is hyperbolic 

if its associated eigenvalues X'(i=1, 2, ..., 5) are real. This 

requirement is satisfied if 

and 

C((Y,O,p)>O , (4.23) 

R ( a, e, p ) < 1 . (4.24) 

In other words, equations (4.23) and (4.24) assure of the hyperbolicity 
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of the system of equations, therefore, they are referred to as hyper-

bolicity conditions. The eigenvalues given by equations (4.22) are 

called as characteristic speeds, which reflect the fact that thermal 

and plastic deformations are coupled with each other. 

When c0, the relaxation time tends to zero, the equation of 

heat conduction becomes that of Fourier, and equations (4.9) become 

singular. With T and q deleted, equations (4.9a), (4.9b) and (4.9e) can 

be re-organized to be a degenerated equation-system. The main eigenvalue 

of this system, which reflects the velocity of wave propagation is 

1 1 

= pD 2 ' (4.25) 

which is the velocity o f elastic wave propagation. This result is 

consistent with Bell's experiments [2.37]. The fact means that rate 

dependent type constitutive equations are capable of predicting the 

speed of plastic wave propagation. In the history of controversy, this 

was the reason for some people preferring it to the constitutive 

equations of rate-independent type. 

4.5 Statement of the Problem  

The governing equations (4.9) for the problem may be written 

in the following form: 

(4.26) 

aa - D' (c,T,p) + D' (,T,p) + D, (,T,p)aT  = 0 (4.27) 
T 1 ax 2 at 
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+ D (o',T,p) - D (,T,p) + D (,T,p) ax = 0 (4.28) 

aq + k aT + q = 0 (4.29) 
at 

ap - F(,T,p) = 0 , (4.30) at 

where and j =1, 2,...,6) are related to Dk via equations 

(4.9). The solution for the basic unknowns will uniquely and 

continuously depend upon the initial values, if the initial and 

boundary conditions are properly prescribed. Following Orisamolu [4.6], 

these conditions are chosen as below. 

Initial conditions: 

v(x,0) = v1(x) 

a(x,0) = 1(x) 

T(x,0) = 0 or 8(x,0) = 

(4.3 la,b,c,d,e) 

Boundary conditions: 

Case (A): O(0,t) = 90(t) 
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(0,t) = 

Case (B): 8(O,t) = e0(t) 

v(O,t) = v0(t) 

(4.32a,b) 

(4.33a,b) 

The performed numerical work has shown that the problem is 

properly stated, and the values of following unknowns are obtainable: 

v(x,t), G(x,t), T(x,t), q(x,t) and p(x,t). 

Other dependent functions such as free energy, internal energy, entropy 

etc. if necessary, may be obtained from the fundamental ones. 

4.6 Jump Conditions at the Wavefront  

A wave propagating through the rod is a smooth curve in the 

(x,t) plane with property that the dependent variables v, o, T, q, p and 

their derivatives are continuous with respect to x and t everywhere 

except at the wavefront. The continuous variations of the dependent 

variables are governed by the system of equations (4.9). However, 

discontinuities or jumps exist across the wavefront, and the quantities 

of the discontinuities must be determined separately. 

Quite a few researchers have studied the wave propagation 

problem, in which the hyperbolic heat conduction equation is employed 

and internal state variables are involved. Cristescu and Suliciu [4.1] 

have presented the relevant literature. In Chapter VII, [4.1], the 

authors show that for such a hyperbolic system, there exist acceleration 
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waves, and the corresponding jump conditions across the wavefront can be 

accordingly determined. 

A regular curve in the (x,t) plane is called an acceleration 

wave if the dependent variables such as v, a, T, q and p are continuous 

across this curve, but their derivatives with respect to x and t have 

jump discontinuities when crossing it. As 1T= v,oT,q,p ) are 

continuous functions, Hadamard's kinematic compatibility conditions, 

which have to be satisfied when crossing the curve, are expressible in 

the form 

(4.34) 

where v, is the propagating velocity of the wave, and the brackets [ 1 

in this section, denote the jump of the quantity inside. On the basis 

of equation (4.34), we have 

ray1 - 

L8xJ V 

raax-'1 - 

1  

[}1= -v 



71. 

1aq1 - 

L8XJ q 

(4.35a-j) 

where , , T, and p are jumps across the wavefront; their values 

are to be determined. 

As equations (4.9) are quasi-linear, the coefficients 

D1( i=1,..,,5 ) do not contain the derivatives of the dependent 

variables; neither does function F, the expression on the right hand 

side of equation (3.66). Assuming the body force is continuous every-

where and applying the jámp operation to equations (4.9), we obtain the 

Hadamard's dynamic and geometric compatibility equations as below. 

pvw 7+.=o 

7+D2v+D5vT=O 

Divw +D3vw T=O 

= 0 . (4.36a-c) 
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The first four equations can be written as 

[c] ( V U T j )T = 0 , (4.37) 

where 

[c] = 

"P v 

1 

0 

-0 

1 

D2v 

D 1 v 

0 

0 0 

D 5 v w 0 

D 3 v w -1 

k 

(4.38) 

with det [] = p v ( k D2 + to v ) + k D1 t0 v . (4.39) 

Because equations (4.37) are non-singular, the quantities of jumps can 

always be evaluated. 

Since there are two positive eigenvalues involved ((4.22a) and 

(4.22b)), the coupled waves propagate with leading and trailing 

wavefronts, whose velocities may be denoted by v1 and vwt respectively. 

The total jumps of the derivatives of the dependent variables are the 

sum at the two wavefronts, therefore, we have the following results: 

iavKi = \Tl + t 

ov 
= -( Vwl ' l + wt Vd 

i—XI = :i + Ot 
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= + Tt 

aT 
= -( v1 T + vw t T) 

ax 

[qJ = -( at wl wt it 

[-1 = 0 ax 

{J = 0 at (4.40a-j) 

The values of VII vt, 4 Ut, T1, T, ql, qt are determined by 

equations (4.37) at the leading and trailing wavefronts respectively. 
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CHAPTER 5 

DEVELOPMENT OF COMPUTATIONAL ALGORITHMS  

5.1 Preface 

The principle of numerical integration of hyperbolic equation 

was first presented by Massau [5.16] at the end of last century. Because 

these kinds of partial differential equations relate to many important 

phenomena such as vibration in engineering, various waves in mechanics, 

supersonic aerodynamic flow etc. its numerical integration has attracted 

much attention. 

When compared with other kinds of partial differential equa-

tions the hyperbolic equations have some particular features. First, 

there is discontinuity, existing in the solution. This fact makes it more 

difficult to solve it than others. Another feature is that there are 

characteristics with which it is possible to utilize some particular 

methods of integration like Massau's to obtain numerical result. 

The existing numerical procedures for integration of hyperbolic 

partial differential equations include two difference methods. One of 

them is the characteristic method. In this method, first of all, the 

characteristics are worked out, then the original equations are changed 

into ordinary differential 

integration of the equations 

equations along the characteristics.Numerical 

generates the solution of the problem along 

the characteristics. The values of unknowns at the positions out of the 

characteristics may be obtained by the interpolation technique. 

It has been asserted [5.14] that the accuracy of Massau's, method 

for a hyperbolic system is comparable to that of the Euler method for 

ordinary differential equations. There are also some variants of, the 
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characteristic method, which give greater accuracy. For instance, the 

extrapolation method by Busch and Esser et al [5.15] has proven to 

be particularly useful. The method uses higher order difference 

quotients, therefore is much more involved than Massau's. Before using 

such a procedure one should also consider the cost of the increased 

accuracy. 

Two types of nets can be employed for numerical integration 

of hyperbolic equations. For one of them, like Massau's, both 

integration and net grid are along characteristics. In order to obtain 

the values of the unknowns at certain points in the x-t space one has 

to utilize interpolation procedures, therefore, outputting the 

calculated results at certain time and positions are not very 

convenient. 

For the other net type, the grid is formed by constant-time and 

constant-position lines. The values at the points which do not coincide 

with the grid nodes are obtained via interpolation. Integration 

procedures are still along characteristics. Although the slopes of 

characteristics vary from point to point due to non-linearity of the 

system, the interpolation easily provides the necessary data for the 

next integration step with tolerated error. This procedure has proved to 

be very convenient and efficient. 

In addition to the method of integrating the equations along 

characteristics a finite difference procedure is also applicable. In 

this procedure a partial differential equation is reduced into a finite 

difference equation in terms of the unknowns at grid nodes. The equation 

is then employed to evaluate the desired unknowns at the grid nodes. 



76. 

5.2 Integration of the System via Characteristics Method  

A feasible computational algorithm based on characteristics 

method will be provided in this section. As the system of partial 

differential equations developed in Chapter 4 is highly non-linear, the 

eigenvalues, and therefore the slopes of the characteristic lines vary 

from point to point. Under these circumstances, the most convenient and 

efficient grid system to choose is the constant-time grid. In our 

development presented below, the original system is, at first, 

transferred into ordinary differential equations which hold along the 

characteristic lines; then these ordinary differential equations are 

integrated with prescribed auxiliary conditions. Recall that the 

original partial differential equations as obtained in equations (4,26) 

through (4.30) are: 

8V lacy l 
at paxp 

- Dj(c,e,p) av  + D(c,8,p) ao + D,8,p) = 0 
at 3 at 

+ D(c,e,p) - D(,e,p) . + D,O,p) = 0 
ax 

aqk a9q_ 0 
ax tax t€ 

ap - F((F,9,p) = 0 . (5.la-e) at 

This system is represented by: 

Yt +A(Y)Y=C(Y) , (5.2) 
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where matrix A (Y) and vector C (Y) were determined by equation (4.16) 

and equation (4.17), respectively. 

With the eigenvalues given by equations (4.21) and (4.22) the 

corresponding characteristics are determined by the following equations: 

for (1) 0 1 - (5.3a) 

for (2) V2(Y) dx2 - V2(y) ; (5.3b) 

for - V2(Y) dx3 --  - V(Y) ; (5.3c) 

for J4)= V3(Y) dx4 --  V(Y) ; (5.3d) 
a _F 

for (5)= - V3(Y) dx5 - — - V(Y) . (5.3e) 

It can be seen from equation (5.3a) that its corresponding 

characteristics in the x-t space is a straight line parallel to the t 

axis. For the other four, however, their slopes in the space are non-

linear functions of the basic unknown vector Y whose values vary from 

point to point, therefore, the characteristic lines are curvilinear. 

For equations (5.2), the left eigenvectors associated with 

matrix A(Y) are found from the following relation: 

i1(Y) ::() = A.(Y) j()(y) , (5.4) 



where i" (Y) stands for the ith left eigenvector. In Appendix B all 7t8h.e 

eigenvectors have been determined as: 

p 

p 

[0 0 0 0 i] 

1 

P  - D3 

pY 2D 1 

to 
Py 

1 

1 

pV - D3 

pV2D 1 

'c0 pV -D3 

PE D  ) 

(5.5a) 

(5.5b) 

(5.5c) 
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1 
pV 3 

pV - D3 

pV 3D 1. 

TO pVb -D3 

0 

1 

PV - D3 

pV3D 1 

z0 PV -D3 

PR D 1 

(5.5d) 

(5.5e) 
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On the basis of partial differential equations (5.2) and equations (5.3) 

of the characteristic lines, the ordinary differential equations holding 

along each of the characteristic lines can be determined by the left 

eigenvectors. Left multiplying equations (5.2) and utilizing equations 

(5.4) we obtain 

+ (i)(y) yx = i1k (5.6) 

Making use of equations (5.3), we can re-write equations (5.6) as: 

dY 

i a:i:. = 1 ( y) C(Y) i=1,2, ...,5 . (5.7) 

These are the desired ordinary differential equations which hold along 

the characteristics. The explicit form is expressed as: 

dp - 

at - Tt-
along dx = 0 ;• 

dv 1 cIa pV - D3 d8 'c pV -D3 dq 

dT V— T pV2D 1 D1 Ut 

D +D D PV - D3 
+ 124 F =f—(  

p V 2 D 1 

pV2 -D 
along dx = V2 

(5.8a) 

(5.8b) 
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dv 1 dcY pVD - D3 dO TO pV -D3 dq 

pV2D 1 T -PT   

PV 2 
1 1   F  2 3 124 F 

p-v pV2D 2 f) 1 

q (PV 2 D -D3 

PR D1 
along 

dv 1 da p 3D - D3 dO TO PVT-D3 dq 
-(_)-+( pV3D 1 dTpIE -  TF 

= f + _ ( 345) F +  -D3 D1+D2D4 
3 5 pV3D1 ( )F 

pV2D -D 
dx along = V3 

dv' 1 da pV3 - D3 dO Ø pV -D3 dq 
pV3D 1 T D1 TF 

1 - 1 345 F  - D3 124 F 
pV3D 1 

pV2 -DOR D along dx = -VUt 3 

(5.8c) 

(5.8d) 

(5.8e) 

The above equations are to be. numerically integrated along the 

characteristics. 
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Fig. 5.1 Characteristics at a typical point Q' 
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5.3 Outline of the Numerical Procedure via Characteristics Method  

Since solutions in closed analytical form are seldom possible 

for our quasi-linear system, to solve the problem we now turn to finite 

difference method. Among various numerical procedures of finite diffe-

rence method which exist we would like to present that due to Courant et 

al.[5.12]. This method has the advantage of being straightforward and 

general in its application, but particularly suitable for initial-

boundary value problem of quasi-linear hyperbolic system which has two 

independent and n dependent variables. To outline the method let us 

examine the representative points in the x-t plane illustrated in 

Fig. 5.1. Suppose the values of the vector Y at point p are denoted by 

Y(p), then the initial data at time t will give the values of the 

vectors Y(P), Y(Q), Y(R). Now it is required to determine the values of 

the vectors at the next moment t+At, that is the values of Y(P'), Y(Q') 

and Y(R'). For arbitrary values of net intervals Ax, At the n 

characteristics passing through Q' when traced backwards in time will 

intersect the line through PR at points S1,...,S all of which may not 

lie between P and R. That is, in general, line segment PR does not 

contain the whole domain of dependence of the point Q'. However, since 

the solution is required to be evaluated at the mesh points and all the 

initial data specified within the domain of dependence i ,...,S will 

influence the solution at Q'; it is clear that for simplicity Ax and 

At must be so chosen that line segment S1,...,S lies within the line 

segment PR. This condition is of fundamental importance and will be 

expressed more conveniently. Since in the finite difference approxi-

mation no knowledge of the solution between net points is available, 

simplification of the requirements regarding the domain of dependence of 
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Q' is taken as follows. The Ax and At are so selected that at all points 

of interest the tangents to the characteristics at Q' when traced 

backwards in time intersect the line through P and R at points always 

between P and R. Satisfaction of this condition ensures that the domain 

of dependence is contained within the segment PR. Geometrically, this 

condition may be conveniently expressed by 

max J < Ax (5.9) 

for all points Q' under consideration. 

Inequality (5.9) imposes an important condition which must be 

satisfied when net sizes are selected. 

The method of Courant et al. was revised by M. Lister [5.5] 

with three obvious improvements. First, Lister introduced a second-order 

approximation by trapezoidal rule formula, that substantially enhanced 

the precision of the solution. Second, in the article particular atten-

tion was paid to the boundary points with which proper algorithm was 

re-developed, and third, it gave the concrete quadratic interpolation 

procedures matching with the second order process. To apply the proce-

dures to the present problem let us begin with the interior points. 

5.4 Algorithms for the Interior Grid Points by Characteristics Method 

Now let us consider an interior grid point P shown in Fig. 5.2 

where C1 is the characteristics curve corresponding to The 

intersect of C1 with axis x is denoted by C. C, C, C, C are the cha-

racteristics curves passing through point P. These curves corresponding 

to (2) (3) (4), intersect the x-axis at s2 S3, S4 ' and S5 
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respectively. Our grid size is so designed by taking inequality (5.9) 

into account, which guarantees that the points S2, S3, S4 and S5 are 

within the segment AB. In section 5.2 the ordinary differential 

equations (5.8) which hold along C+27 C-2, C4 + , C -4 and C1 have been 

established. Now the solution at point P is to be obtained by the 

numerical integration of equations (5.8) and taking into account the 

values at points S2, S3, S4, S5 and C. It will generate five simul-

taneous equations which are just enough for the solution of the five 

unknowns, v, a, 9, q and p. 

Along each characteristics line the integral can be approxi-

mated with finite difference. The first-order approximation is expressed 

as: 

f(x) dx = f(x0)(x1 - x0) 
x0 (5.10) 

which is equivalent to supposing that the integrand keeps its value at 

x0. The second-order approximation is: 

-x1 

f(x) dx = [f(x0) + f(x1)J(x1 - x0) 
xo (5.11) 

which is equivalent to assuming the integrand is the average value at 

x0 and x1. 

If, say, equation (5.11) is employed to evaluate the integral 

from S 2' s3 S4, S5 or C, the values of dependent variables at S 2' S3 

S 41S5 must be known. However, for an interior point like P, all the 

information available is at the points A, B and C, obtainable either 
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from previous step of calculation or initial condition assigned 

beforehand. To make the values of dependent variables at points S2, S3, 

S4 and S5 available a quadratic interpolation procedure as follows is 

utilized [5.5], 

(k+1) + 1 a - B2S2 + VW) 

+ a(Y + - 2 c12S2 + 2P ; (5.12a) 

(k+1) y 
+ a(y -  YB)(V) + y)) 

+ + - 2 + V)2 
3S4 3P 

.(k+1).. y 
- a - + y)) 

+ a(Y + - 2 Y)(V + 8 —A 

 YB 2S 3 2P 

(k+1) - a - B(2S3 + y))EF 

+ a2 (Y + - 2 + V)2 

iiX 

(5. 12b) 

(5. 12c) 

(5. 12d) 

(5. 12e) 
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Before going any further, for the reason of convenience let 

us change the equations (5.8) into following forms: 

dp 
d1 Ht 

along = O (5.13a) 

R1dv do dO Td 
TF  R - 3d 4 =RF 6 q+R5 f (5.13b) 

along dx = V2 

R1+R2 do - R3 dO + R4 dq =-R7F-R6q+R5f (5.13c)• 

along dx = 
U V2 

W1-W2+W3 Ut +W4 =W7 F-W6 q+W5 f (5.13d) 

.along dx = VTF 3 

W1+W2 dv do ff—t -W3+W  TF 4 =-W7 F-W6 q+W5 f (5.13e) 

along dx = -Va —t 3 

where the coefficients are defined as follows 

R1 = pV2D1Ib , (5.14a) 

R2 = D113 , (5.14b) 
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and 

R3 = (pV 2 D -D3), (5.14c) 

Tvb 
R4 =  k (pV221 -D3) , (5.14d) 

(5. 14e) 

(5.14±) 

= 

R 

6 co ' 

= D1(D3 + D4D5) + (D1 + D2D4)(pV -D3) ; (5.14g) 

W 1 = PV 3D 15 , (5.15a) 

W2 = D15 , (5.15b) 

W3 = (pV -D3) , (5.15c) 

v f5 
w4 = t0 k3  (pV -D3) , (5.15d) 

W5 = VD113 , (5.15e) 

W A 
W 6 =__., (5.15±) .t o 

W7 = D1 (D3 + D4D5) + (D1 + D2D4)(pV -D3) . (5.15g) 



90. 

To obtain a discrete form of differential equations (5.13) let 

us apply the finite difference method of second-order approximation, 

equation (5.11), which is equivalent to assuming that the coefficients 

of equation (5.13) remain constant along each segment of the characte-

ristics curves such as S2P, S3 P, S4P or S5P, and the value of the 

coefficient equals the average value at the two points such as S2 and P, 

etc. Then the equations to be integrated are reduced to the 

following finite-difference forms: 

(k+1) 1 
Pp Pc+z(c+Fp)Lt (5. 16a) 

1 ( k) R (k+1) 2 ( k) R(k) (k+1) 3 (k) (k) 9(k+l) 
( Rs2 + Vp - (R s2 + 2P ) Yp + ( R 2 + R3) p 

+ (4R + R)q 1 = (1R+ R) v - (2RS2 2P S2 + S2 1 P S2 

+ (3R + R)9 + (4R+ R)q + f(R5 t) + (R5 f) 1 3P S2 S2 4P 

- (R6 q) -  (R6 q) (k) + (R.7 .p)) (R7 F)' At 

(1R + R) Vp( k+1) + (2R + R)1- (3S3 1p R S3 3P)OP + 
S3 2P 0• 

+ (4R + R)q 1 = (1R+ R) v + (2R + S3 4P 

- (3RS3 3P S3 S3 4P + R)e + (4R+ R)q + {(R5 t) + (R5 i' 

(5. 16b) 

- (R 6q) - (R6 q)' - (R7 F)g)... (R7 F),') At (5.1-6c) 
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1 (k) (k) (k+1) 2 (k) ,(k) (k+1) 3 (k) (k) (k-i-1) 
(Ws4 + W1) "p - (Ws4 + 2P )(Yp + (Ws4 + W 3p )vp 

+ (4W + = (1W+ W)v - (2W + W)o S4 4P P S4 1P S4 S4 2P S4 

+ (3W + W)O + (4W+ W)q + ((W 5 f) + (W5 tT$' S4 3P S4 S4 4P 

- (W 6q) - (W 6 q) (k) + (W7 F)+ (W7 F) 1 } At (5. 16d) 

(1W + W) V (k+1) (2W + (3W + w)e' 

+ (4W + W) ( 1) - (1W+ W)v + (2W + S5 4P qp - S5 1P S5 S5 2P S5 

- (3W + + (4W+ W)q + ((W5 f) + (W5 c) 
S5 3P S5 S5 4P 

- (W 6 q) - (W6 q) (k) - (W7 F)- (W7 F) " } At (5.16e) 

where, for instance, 1R) stands for the value of R defined by 
Sj 

equation (5.14) at point Si during the kth iteration; 1w () stands for jP 

the value of W defined by equation (5.15) at point i during the kth 

iteration, and so forth. 

The values of the unknowns at poini P, e.g. Vp CYp 9 and qp 

are to be obtained from the above equations. Because of the non-

linear nature of the system of equations, the coefficients of equations 

(5.16) remain unknown until the unknowns' values Vp are obtained. 

To be out of the dilemma and get the discrete equations solved, an 

iteration procedure is required. For initiating the iteration the 
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initial values of the unknowns are needed. As a first order approxi-

mation it may be assumed that the values of the coefficients along the 

segments of the characteristics curves are the same as those at points 

S2, S4, C, S5 and S3. This simply means equation (5.10) is being 

utilized. By doing so the initial values of the unknowns for iteration 

can be obtained from the solution of the following equations: 

$O)= Pc + Fc &, (5. 17a) 

1Rv ° - 2R52 Y° + 4RP S2 P S2 q,0 = + 2A52 t , (5.17b) 

1Rv ° + 2R53o ° - 3ie°+ 4RS3 P S3 q0 = 3A53 + 4A53it , (5.17c) S3 P 

1Wv ° - 2w )c$°)+ 3we ° + 4w° (0) - 5A + 6A54Lt , (5.17d) S4 p S4 S4 P S4 - 

1Wv 0 + 2Wy ° - 3we ° + 4Wq0 = 7A55 + 8As5L&t , (5.17e) S5 p S5 P S5 P S5 

where superscript (0) stands for "initial", and 

A S2 = 1R52v- 2Ry+ 4RS2 S2 S2 S2 S2 S2 q2 

= (R5 t' - (R6 q) + (R7 F) 

3A53 = 1R53v+ 2Ry- 3ie+ 
S3 S3 S3 S3 S3 S3 

4 - (0) (0) (0) As3 (R5 t)53 - (R6 ) 3 - (R7 F) (0) 

(5.18a) 

(5.18b) 

(5.18c) 

(5.18d) 



.5 5A S4 

6A  

- 1 ( 0) ( 0) 2(°) ( 0) 
W54V4 S4 S4 

= (W5 f) ) - 6 q) ) + 

= 1Wv+ 2Wy-
S5 S5 S5 S5 S5 

4 (0) 0 
S4 S4 W54  q54 

(W7 F) 

3W(0)0(0)+   4 ( 0) 0 
55 5  w5 ss 

8A55 (W (0) = 5 S5 - (W ) 6 q) + (W7 F) 
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(5.18e) 

(5.18±) 

(5.18g) 

(5.18h) 

The intermediate unknowns involved are obtained by the following 

linear interpolation equations: 

)= Yc(l - cx 2C + cx A2C 

'c(' - ° 3C + a A3C 

)= Yc(l - a 3C + 'B3C 

)= Yc(l - a V20  + a YBV2C 

Equations (5.17) with (5.18) can be put in a matrix form 

where 

(0) ( 0) - h0 Up - 

40) = [40) y O) °) q O)jT 

(5.19a) 

(5. 19b) 

(5. 19c) 

(5. 19d) 

(5.20) 

(5.21) 
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/ 1As2 + 2A52 At 

3As3 + 4A53 At 

a(0) = 

S5 

h0 =< 

As4 + A54 At 

+ 8A55 At 1 

/ 1R 0 -2R 0 3R 0 " S2 S2 S2 

1R 0 2R0 (0) 4 (0) 
S3 S3 - R53 R53 

- S4 S4 

S5 

(5.22) 

(5.23) 

The solution of equations (5.20) gives us the initial values 

of the unknowns at an interior point P. Yet, care must be taken as the 

equations are ill-conditioned. 

As soon as the initial values have been obtained, the main ite-

ration equations are to be solved. They are 

Q(k)(k+1) = b 
—P (5.24) 
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where (k+1) {' 1 (k+1) e'1 (k+1) 
Up P P qp 1, 

Q = R + 11 S2 1p 

Q = - ( RS2 2P + R) 

Q = 3R ) + 

Q = R + 14 S2 4P 

Q = 1 S3 1p R ) + 

Q = - (3RS3 3P + R) 

(k) 4 (k) 
= R 3 + 

Q31 S4 1p = + 

Q ) = - + W32 S4 2P  

(k) - 3 (k) (k) 
Q33 - ws4 + w3p 

(k) - 4w(k) + 
S4 

(5.25) 
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Q41 ) = + 

Q = S5 2P w ) + 

Q ) = - (3WS5 3P + W) 

(5.26a - p) 

b = (1R + R) v ( k) - (2R' + R) ) 
S2 S2 2P S2 

+ (3R + R) + (4R + R) (to) 

+ ((R + (R5 k) - (R6 q) - (R6 q) (k) 
5 S2 

+ (R7 F) + (R7 F)} At , (5.27a) 

b 1 = (1R S3 1P S3 S3 2P S3 + R) V ) + (2R + R) ) 

- (3 3 R + R) Ø) + (4R + R) (z) 
S3 3P S3 S3 .9S 

+ f (R5 + (R5 (k) - (R6 q) - (R6 q) (k) 

- (R7 F) - (R7 F)) At , (5.27b) 
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(k) 1 (k) (k) (k) 2 (k) (k) (k) 
b3 - ( W 4 + W1) VS4 - ( W 4 + W2) S4 

+ (3W + W) + (4W + W) (k)4P S4 S4 3P S4 

+ ((W5 + (1W5 t k) - (W6 q) - (W 6 q) 

+ (W7 F) + (W7 F)1 } At , (5.27c) 

(k) - 1 (k) (k) (k) 2 (k) (k) (k) 
b4 _( Wss+Wip)vss +( Ws5 + W2p)cY5 

- (3W + W) Ø) + (4W + W) (k) 
S5 3P S5 S5 4P S5 

+ ((W5 f) + (W5 (k) - (W 6 q) - q ) (k) 

- (W7 F) - (W7 F)} At . (5.27d) 

At any interior point like P equations (5.24) are solved 

iteratively until the precision requirement is satisfied. 

5.5 Algorithms for the Boundary Grid Points by Characteristics Method 

In Fig.5.3 a boundary point M with characteristics passing 

through is shown. It is clear that the situation for a typical boundary 

point like M is different from that of an interior point,, therefore, the 

treatments for the two types of points must be different as well. Gene-

rally, for determination of the solution of the system some auxiliary 

conditions must be prescribed on the boundary. In this research they are. 

considered as follows. 
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t 

M 

t 
At 

A S5 S3 C 

Ix Ix 

Fig.5.3 A boundary grid point M 

B x 
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Case (A): (O,t) and O(O,t) prescribed 

Due to the non-linearity of the system, the solution at boun-

dary points as well as at interior points requires iterative procedures. 

For the initial values of iteration the intermediate unknowns are ob-

tained from the linear interpolation formulas: 

- a 3A + a Y V 3 

- a 2A + a 3A 

(5.28a) 

(5.28b) 

Re-examination of equations (5.16c) and (5.16e) gives the 

following equations for determining the initial values of the unknowns 

at a boundary point: 

1R v 0) +4R0 ( 0) - (3A+ 4A At 
S3 - S3 S3 

- 2RYM + 3R 0M 

1w +4w° - (7A+ 8A At S5 S5 S5 

- + S5 M S5 VM) 

(5.29a) 

(5.29b) 

The solutions of equations (5.29) generate v 0 and q0), the 

initial values of velocity and heat flow supplementary to stress and 

temperature which are already prescribed. 
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As soon as the initial values of the unknowns are obtained, the 

main iteration procedure may be executed as follows. 

At first the intermediate unknowns are determined via the three-

point quadratic interpolation formulas: 

(k+l) y 
- CA - + v)B 3S5 3M ) - 2) 

form: 

+ 'A + - 2Yc)ta(V + V) - 2)2 

(k+1) yC - A - + VM)) - 2) 
2S3 

+ U ('A + - 2''ct a(V + V ?) - 2)2 2S3 2M 

(5.30a) 

(5.30b) 

The equations for the iterative values of VM and qM  are of the 

(1R + (4R + R)q (1) = 
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+f(R5 f) )+ (R5 f)(k) (R6 q) 

where 

-(R6 q)51 (R7 F)g(R7 F)') & 

1 (k) ( k) ( k+1) 4 (k) ( k) ( k+1) 1W (k) + W (k) 
)VM + ( W5 + W (k) 

- 

(3W + w ))eM -(2W + W (k) )M 

+ (1W+ W)v+ (2W+ 
S5 IM S5 S5 2M S5 

-(3W+ + (4W+ WS5 3M S3 S5 1)q 

+{ (W f) )+ 5 (W  f) (k) (W  (k) 
5 S5 6 q5 

(5.31a) 

-(W6 q) (k)_ (W7 F) -(W7 F) 1 } At . (5.31b) 

Equations (5.29) may be written in the matrix form as 

- a 1 
—g rm 

r arm - I VMqMJ 

a = 1R+ R(k) 
ill 1M 

a = 4R + R k) 
j12 4M 

(5.32) 

(5.33a) 

(5.33b) 

(5.33c) 
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(k) 1w' + w(k a - g2l S5 1M 

a = S5 4M w )+ 
j22 

a= ( 3 R(k) + R))eM - (2R+ R2M)M 

+(1R+ RS3 1j)v+ (2R+ R)4 
-( S3 S3 2M 3 

3R+ R)O+ (4R+ R)q 

S3 3M S3 S3 4M-i-((R5 f)+ (R5 k) (R6 q) 

-(R6 q)k)( F)- (R7 F4} At 

(k)_ 3 (k) ( k) 2w(k) ( k) 
a2 - (Ws5 + WW(k ) - C + W (k) )aM 

1 (k) ( k) (k) 2 (k) ( k) ( k) 
+( W5 + W1M "S5 + W5 + W(k) ss 

-(3W+ w?)o+ (4W+ WS5 3M S5 S5 1)q 

+{(W5 t)+ (W (k)5 f) (W6 q) 

-(W6 q)k)(w7 F)- (W7 F)') At 

(5.33d) 

(5.33e) 

(5.33±) 

(5.33g) 

Equations (5.32) are to be solved for every iteration to obtain 

the values of v and q$k+l) The procedure is continued until a 

satisfactory solution is obtained. 
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Case (B): v(0,t) and 8(0,t) prescribed  

When the particle velocity and the temperature are prescribed 

on the boundary grid points, the solution procedure is similar to 

Case (A) where the stress and temperature are given. 

The intermediate values are evaluated from the following linear 

interpolation formulas: 

- a 3A + a Yc''3A 

= A1 a 2A + a cY2A 

(5.34a) 

(5.34b) 

The values of the unknowns for initiating the iterative proce-

dure are determined from the following set of linear equations: 

(0) 4R0 (°) 3R8M - RS3 VM M S3 - 

+ 1Rv+ 2Rcy ( °- 3i (0)e 
S3 S3 S3 S3 S3 

+((R5 f)) (R6 q)) (R7 F)} At 

(0) 4W° °) 3w )eM - 1w)VM M — 

+ 1 (0) ( 0) 2\V0 (0) 3W (0)0(0)+4W(0)    (0) 
W 55 S5 + S5 S5 - S5 S5  S5 q55 

+f (W5 f)- (W6 q)-  (W7 F)) At 

(5.35a) 

(5.35b) 
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As soon as the values of o&°and q O) have been obtained from 

the solution of equations (5.35) we are ready to run the main iteration 

for evaluating the values of aM  and qM . For the main iteration the 

intermediate unknowns are obtained by the three-point quadratic inter-

polation formulas, equations (5.30). Then the main iteration based on 

equations (5.16c) and (5.16e) are expressed in the matrix form as 

where 

b(k) - b(k) 
—g _rm _w 

b = (k+1) ( k+1)1T 
rm 

b(k) - 2R(k)+ ( k) 
g11 S3 

b(k) - 4R1-i- R(k) 
g12 S3 4M 

b - 2w+ 
g21 - S5 2M 

b - 4w(k)+w(k) 
g22 S5 4M 

U (k)_ 3 (k) (k)  (k) ( k) 
Wl - ( R3 + R3M 9M - ('Rs3 + RiM )vM 

+(1R+ R)v + (2R+ R)c4 

-(3Rg )+R 1))e ) +(4R+ RS3 S3 1)q 

+{(R5 t)+ (R5 (1k) (R6 q) -(R6 q11) 

(5.36) 

(5.37a) 

(5.37b) 

(5.37c) 

(5.37d) 

(5.38) 
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-(R7 F)- (R7 F)'} At 

b(k)_ 3 (k) ( k)8 lw(k) ( k) 
w2 - (Ws5 + W3M) M - S5 + W (k) 

)IM 

1 (k) ( k) (k) 2,(k) ( k) (k) 
+( W 5 + W1 's5 + S5 + W (k) 95 

-(3W+W)9 +(4W+ W)q 
S5 3M S5 S5 4M 

+[(W5 + (W5 f.)(k)(w q)) -(W6 q1) 

-(W7 p))S5 _ (W7 F)} At 

(5.38f) 

(5.38f) 

In each above-mentioned case, based on equation (5.16a) the 

plastic strain is calculated from the following equation: 

(k+1)_ + + j(k) it M A (5.39) 

5.6 Algorithms of Finite Difference for Interior Grid Points  

Like other partial differential equations the equations of wave 

propagation can be solved with common finite difference method. Now let 

us recall the basic equations, equations (5.2): 

where 

Yt+.Yx =c 

Y =[ 9• q 8p 
t at at at T at 

(5.40) 

(5.41a) 



_ 1 ov o a9 aq Op 'r 
x Ox Ox Ox, Ox Ox 

The elements other than zero of the square matrix A are as follows: 

12' 

D 

21 

D 

24 - - 

A31 

A k 
43 — s 

Vector C has the following elements: 

C f 1 — 

(D+DD) 

2 

(D+DD) 

3  13 
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(5.41b) 

(5.42a) 

(5.42b) 

(5.42c) 

(5.42d) 

(5.42e) 

(5.420 

(5.43a) 

(5.43b) 

(5.43c) 

(5.43d) 
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C5 =F (5.43e) 

To solve hyperbolic differential equations by finite difference 

method MacCormack has developed a procedure with alternative features 

[5.7]. The procedure includes two sub-steps. The first one is called 

"predictor" which is done under the condition that time is "fixed". The 

second sub-step is called "corrector" which is elaborately designed. The 

method was originally developed for solving field problem of supersonic 

flow. However, it has been shown that it can also be successfully 

applied to wave and dynamic problems of solid mechanics. 

The modification of MacCormack method which is suitable for 

wave propagation problem is given as follows: 

= - .TX_ - 1)] + At 

Th+1 t +1 
= ( Y. + - [A(y)(y n+1 y fl±1 )] 

+ At C(Yr')} 

(5.44) 

(5.45) 

where n counts for time t and j for coordinate x. Equations (5.44) are 

for the predictor and equations (5.45) are for the corrector sub-steps 

respectively. 

Expanding equations (5.44), we obtain 
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—n+1 
vi 

which yields 

n 
vi 

n 
pi 

At 
Tx-

I 
2j+1 ' 

A21 (v 1 -v)+A24 (q 1-q) 

A31 (v' 1 -v')+A34 (q' 1-q') 

0 

Cl 

C2 

+ it C3  

C4 

C5 

—n+1 n At 
v = v - A1 +i - + At C1 

At fl +1 = - [A1(v +1 - v) + A24(q 1 - q)} + t C2 

e  At fl 
= - [A31 (v 1 - v) + A34(q 1 - q?)] + t C3 

'1 q - A43(0?+i - + t c4 

—n+1 n 
pi P+AtC5 

(5.46) 

(5.47a,b,c,d,e) 
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Then from equations (5.45) the following equations of corrector are 

obtained: 

n+1 1 n -n+1 L.t -n+1 -n+1 
v = [v + v - Al2( - 

+LtC1 } 

n+1 1 t on -n+1 yj = + +1_ [x2l(r' - v1) 

+ 24(q i) + At C2}, 

-n+1 er1 = {O + -n+1 31( r 1- ".j - i) 

1.-n+1 
+ 7C34(—n+ -q..1 ) + At C3} 

At n+1 
+1 1 n 

q = z (ci? + ?+1 43(j 

+AtC4 } 

n+1 1 n n+1 
= z {p + t C5 ) 

(5.48a) 

(548b) 

(5.48c) 

(5.48d) 

(5.48e) 

5.7 Algorithms of Finite Difference for Boundary Grid Points  

At the points of boundary grid the predicted values may 

not be available for the corrector. With the forward derivatives 

employed, the scheme then becomes as 
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= - - ')J + At , (5.49) 

and 

n+l 1 
= 2: U.o + .n+1 - 0 ax [A(Y At 8 1)(Yr1.Y8 1)J 

+ At C(Y8 1)} . (5.50) 

Expanding equations (5.49) we obtain the expression of the predictor for 

boundary grid points as 

—n+1 n At 
v1 = v1 - Al2( - on.) + At Cl 

n+1 n At n n 
=a1 -[A21 (v2 -v1) 

+ A24(q - q)J + At C2 

fl+1 = - [A31(v -v) 

+A34(q -q'1)] + At C3 

—n+1 n At 
= q1 - A43(8 -) + At 

—n+1 n 
P1 = p1 +AtC5 

(5.51a) 

(5.5 ib) 

(5.5 1c) 

(5.51d) 

(5.51e) 



where A ii take their values at the boundary grid points. 

Similarly, according to equations (5.50) the corrector for 

boundary grid points is expressed as 

n+1 1 n —n+1 At 122 v1 = 2[v1-v1 TX-

-n+ 1 
(71 )+ AtC} 

n+1 - 1 —n+1 At —n+1 —n+1 
1 -z -TX- [X21(v2  

(_fl+1 .-n+1 
+ q2 -q1 )]+ tC2) 

= 1 n+1 —n+1 + +1  1 2: - - i ) 

+ AC1 —n+1 q2 -q1 )]-1-L\tC3 }, 

q1 = 2[q1 -i-q1 - 

(5.52a) 

(5.52b) 

(5.52c) 

fl+1) + At C4] , (5.52d) 

n+1 1 n —n+1 
i =[p1 +p1 + AtC5 ] (5.52e) 
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By utilizing equations (5.47), (5.48), (5.51) and (5.52) we are 

able to solve the basic equations (5.40) in either case of the boundary 

conditions prescribed. 
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CHAPTER 6 

NUMERICAL RESULTS AND CONCLUSIONS 

6.1 Preface  

The coupled one-dimensional thermoplastic waves propagating in 

a semi-infinite mild steel rod have been studied in the chapters 4 and 5 

under different combinations of time-dependent inputs. The numerical 

results are presented in this chapter. 

Two algorithms of numerical integration discussed in the pre-

ceding chapter have been implemented with computer programs coded in 

FORTRAN-77 language and carried out on CYBER- 175. For the generality of 

the results the programs are written in dimensionless form. Since the 

algorithms for the boundary grid points are different from those for the 

interior grid points, each program contains two different parts to deal 

with the different types of grid points. 

As presented .in the preceding chapter, the solution procedures 

for the two boundary conditions assigned in Case (A) and Case (B) are 

different, therefore different computational programs have to be 

utilized when using the method of characteristics. For each of these 

programs, according to the numbering rule the computer judges the types 

of grid points and then executes the appropriate subroutine. 

Because the system is non-linear, an iterative procedure had to be 

imposed upon the two subroutines for both interior and boundary grid 

points. In addition, as the system is ill-conditioned, to obtain a 

convergent solution, Thigh accuracy linear system solution" coded as 

LSARG in Nosve, CYBER- 175 was called in each iteration. With properly 

selected net size these two measures guaranteed convergence of the 
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solutions; nevertheless, large number of iterations were still required 

for any boundary point. 

The program of finite difference method is much more straight-

forward; yet, two different procedures were needed for different types 

of grid points. The program for interior grid points was based on 

equations (5.44) and (5.45), while the program for boundary grid points 

was based on equations (5.49) and (5.50). 

6.2 Boundary Conditions Assigned in the Numerical Calculation  

It is assumed that the rod is initially in unstressed state 

with known temperature and then the following, forms of inputs are 

applied for Case (A). 

(i) Stress and temperature increment are in the form of step input, 

a(O,t) = CY0 H(t) 

T(0,t) = 00 H(t) 

where H(t) is the Heaviside function defined as: 

1 

H(t) = 

0 

if t≥0 

if t<0 

(6.la) 

(6.lb) 

(6.2) 

This type of input prescribes the impact condition at the boundary, 

through which the discontinuity propagates into the medium. In the 

figures, the boundary condition is coded as 1. 

(ii) Stress and temperature increment are in the form of ramp input as 
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(0,t) = 00 L<t> 

T(0,t) = O <t> 

where p<> denotes the McAuley bracket defined as 

= { 
t 

0< t< to 
-to 

1 t > to 

(6.3a) 

(6.3b) 

(6.4a,b) 

This kind of input prescribes a continuous function, but its 

derivatives are discontinues at t=0 and to. The boundary condition is 

coded as 2 in the figures. 

(iii) Stress and temperature increment inputs are of sinusoidal form as 

(0,t) = cy0 S(t) (6.5a) 

T(0,t) = 90 S(t) , (6.5b) 

where S(t) is the sine function defined as below 

Sin Cot 

S  

if t ≤ 

0 ift>. 

(6.6a,b) 

Again, the input prescribes a continuous function for the de-

pendent variables, but its derivatives are discontinues at t=0 and t= 
CO 

This boundary condition is coded as 3 in the figures. 

(iv) Stress input alone is prescribed on the boundary as step function, 
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(O,t) = O0 H(t) 

T(O,t) = 0 (6.7a,b) 

This case is assigned with intent to show the temperature change 

due to mechanical deformation process. The boundary condition is coded 

as 4 in the figures. 

Similar forms of inputs are considered in Case (B), where the 

increments of velocity and teftiperature are prescribed. 

During the calculations the data of Steel SAE1010 were employed. 

Its physical properties at room-temperature are: 

E = 2.0 x 1011 (N M 2) 

p = 7•7g x 10 (kg M 3) 

a = 1.25 x 10 (K 1) 

k = 52.25 (W M 1K 1) 

C = 522.5 (1 kg-1K-1) 

v = 0.32 

All the calculated results are expressed in Fig.6. 1 through 

Fig 6.78. The solid lines are of the solutions by the method of charac-

teristics, while the dashed are of the finite difference solution. B.C. 

stands for "boundary condition", where the first Roman letter other than 

H denotes the types of boundary conditions. "A" means that stress o and 

temperature increment T are prescribed on the boundary, while "B" means 

that velocity v and temperature increment are prescribed on the 

boundary. The first Arabic numeral stands for the type of boundary 

conditions; 1 is the code of case (i);. 2 for case (ii) and so on. The 
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second Arabic number gives the information of what the figure is for. 1 

indicates that the figure is for velocity; 2 means the figure is for 

stress; 3 is for temperature; 4 is for heat flow and 5 for plastic 

strain. When the first letter under "B.C." is A or B, the figure is 

plotted with dependent variable versus distance x, while time t is the 

parameter whose values corresponding to different curves are denoted by 

t1, t2, etc. If the first letter under "B.C." is H, the figure is 

plotted with dependent variables versus time t, while distance (or po-

sition) x is the parameter whose values are denoted by x1, x2 and so on. 

The following dimensionless time and distance have been 

employed: 

v - (E PC 
- .1\ - ) 

x= (.)Z (PC  x' 

where t' and x' denote the real time and distance respectively. 

(6.8a,b) 

6.3 Description of the Results  

All the results obtained from the numerical work show that 

both characteristics and finite difference methods have produced pro-

files of excellent resolution. It can be seen from Fig. 6.1, Fig.6.2, 

Fig.6.31 and Fig.6.33 that the results obtained by the two methods are 

convergent and very close to each other. It can also be seen that for 

the basic responses like velocity, stress, and plastic strain the 

characteristics method usually gives a sharper solution. However, the 

situation for heat flow is different as is shown in Fig.6.39. 
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It is interesting to note that for the case of an end step 

input the values of dependent variables are continuous everywhere except 

on the boundary. This simply means that there is no discontinues shock 

waves except on the boundary, therefore, all the waves in the problem 

are of acceleration type. The conclusion can be justified by checking 

Fig.6.1 to Fig.6.1O, Fig.6.30 to Fig.6.40, Fig.6.41 to Fig.6.50 and 

Fig.6.71 to Fig.6.80. 

The comparisons of Fig.6.1, Fig.6.2, and Fig.6.5 with Fig.6.3 

and Fig.6.4; of Fig.6.41, Fig.6.42, and Fig.6.45 with Fig.6.43 and 

Fig.6.44 reveal the fact that the fronts of mechanical waves such as 

velocity, stress, plastic strain and of thermal waves like temperature 

increment, heat flow are propagated with the same velocity. This fact 

shows the thermoplastic waves are coupled. 

The thermal responses produced by mechanical input can be seen 

in Fig.6.33 and Fig.6.34 which indicates that due to the stress step 

input, each point in . different position, i.e. with different value of x 

experiences a pulse of heat wave. After that pulse the heat wave dimi-

nishes and tends to a stable value. The fact can be observed in Fig.6.38 

and Fig.6.39 which show the similar situation for the heat flow except 

that the range of variation is wider. 

It may be noticed from Fig.6.6 and Fig.6.36 that the dis-

continuity corresponding to step input loses its sharpness when it is 

propagated in a plastic medium. Because the input is that of Heaviside 

function type, at x--O, it takes no time to reach its maximum value 'for 

each of the inputs. At x, =0.16, however, by Fig.6.6 and Fig.6.36 it 

takes about 3 units of time for the velocity to reach its maximum value. 

At x2=O.047, it takes about 5 units of time to do so. At x3=O.08, it 
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Fig. 6.1 Velocity distribution along x-axis due to stress 

and temperature step inputs ( o=340 MPA,e05K) 
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Fig. 6.2 Stress distribution along x-axis due to stress and 

temperature step inputs (Yè=340 MPA,905K) 
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Fig. 6.3 Temperature distribution along x-axis due to stress 

and temperature step inputs (=34O MPA,00=5K) 
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Fig. 6.4 Heat flow distribution along x-axis due to stress 

and temperature step inputs MPA,O05K) 
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Fig. 6.5 Plastic strain distribution along x-axis due to 

stress and temperature step inputs ( o=340 MPA,005K) 
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Fig. 6.6 Velocity response at certain positions due to stress 

and temperature step inputs ( o=34O MPA, 005K) 
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Fig. 6.7 Stress response at certain positions due to stress 

and temperature step inputs ( o=340 MPA,905K) 
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Fig. 6.8 Temperature response at certain positions due to 

stress and temperature step inputs ((70=340 MPA,005K) 
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Fig. 6.9 Heat flow response at certain positions due to 

stress and temperature step inputs (0o=340 MPA,005K) 
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Fig. 6.10 Plastic strain response at certain positions due to 

stress and temperature step inputs ((Yo=340 MPA,005K) 
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Fig. 6.11 Velocity distribution along x-axis due to stress 

and temperature ramp inputs (oo=34O MPA,005K) 
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Fig. 6.12 Stress distribution along x-axis due to stress 

and temperature ramp inputs MPA,e0=5K) 
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Fig. 6.13 Temperature distribution along x-axis due to stress 

and temperature ramp inputs (( 0=34O MPA,805K) 
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Fig. 6.14 Heat flow distribution along x-axis due to stress 

and temperature ramp inputs ((7=34O MPA,005K) 
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Fig. 6.15 Plastic strain distribution along x-axis due to stress 

and temperature ramp inputs ( o=340 MPA,005K) 
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Fig. 6.16 Velocity response at certain positions due to stress 

and temperature ramp inputs ((7=34O MPA,O05K) 
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Fig. 6.17 Stress response at certain positions due to stress 

and temperature ramp inputs (0o=340 MPA,e05K) 
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Fig. 6.18 Temperature response at certain positions due to stress 

and temperature ramp inputs (=34O MPA,00=5K) 
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Fig. 6.19 Heat flow response at certain positions due to stress 

and temperature ramp inputs ((7=34O PA,005K) 



138. 

Fig. 6.21 Velocity distributions along x-axis due to stress 

and temperature sinusoid inputs ((7b=340 MPA,90=5K) 
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Fig. 6.22 Stress distribution along x-axis due to stress 

and temperature sinusoid inputs ((7=34O MpA,e0=5K) 
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Fig. 6.23 Temperature distribution along x-axis due to stress 

and temperature sinusoid inputs (c=340 MPA,80=5K) 
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Fig. 6.24 Heat flow distribution along x-axis due to stress 

and temperature sinusoid inputs ( o=340 MPA,005K) 
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Fig. 6.25 Plastic strain distribution along x-axis due to stress 

and temperature sinusoid inputs (a0=340 MPA,80=5K) 
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Fig. 6.26 Velocity response at certain positions due to stress 

and temperature sinusoid inputs (7ö=34° MPA,80=5K) 
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Fig. 6.27 Stress response at certain positions due to stress 

and temperature sinusoid inputs (0o=340 MPA,005K) 
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Fig. 6.28 Temperature response at certain positions due to stress 

and temperature sinusoid inputs (oo=340 MPA,005K) 
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Fig. 6.29 Heat flow response at certain positions due to stress 

and temperature sinusoid inputs ((7o=340 MPA,005K) 
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Fig. 6.30 Plastic . strain response at certain positions 

due to stress and temperature sinusoid inputs 

o34° MPA,805K) 
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Fig. 6.31 Velocity distribution along x-axis due to stress 

step input alone o34° MPA) 
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Fig. 6.32 Stress distribution along x-axis due to stress 

step input alone MPA) 
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Fig. 6.33 Temperature distribution along x-axis due to stress 

step input alone °ö=34° MPA) 
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Fig. 6.34 Heat flow distribution along x-axis due to stress 

step input alone ( o=34O MPA) 
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Fig. 6.35 Plastic strain distribution along x-axis due to 

stress step input alone (a0=340 MPA) 
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Fig. 6.36 Velocity response at certain positions due to 

stress step input alone ((734O MPA) 
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Fig. 6.37 Stress response at certain positions due to 

stress step input alone (=34O MPA) 
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Fig. 6.38 Temperature response at certain positions due to 

stress step input alone (a 0  MPA) 
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Fig. 6.39 Heat flow response at certain positions due to 

stress step input alone ((7ö=340 MPA) 
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Fig. 6.40 Plastic strain response at certain positions due to 

stress step input alone (a0=340 MPA) 
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Fig. 6.41 Velocity distribution along x-axis due to velocity 

and temperature step inputs (V0=8 M/S,80=5K) 
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Fig. 6.42 Stress distribution along x-axis due to velocity 

and temperature step inputs (V0=8 M/S,e0=5K) 
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Fig. 6:43 Temperature distribution along x-axis due to velocity 

and temperature step inputs (V0=8 MJS,80=5K) 
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Fig. 6.44 Heat flow distribution along x-axis due to velocity 

and temperature step inputs (V0=8 MJS,90=5K) 
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Fig. 6.45 Plastic strain distribution along x- axis 

due to velocity and temperature step 

inputs (V0=8 M/S,80=5K) 
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Fig. 6.46 Velocity response at certain positions due 

to velocity and temperature step inputs 

(V0=8 M/S,00=5K) 
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Fig. 6.47 Stress response at certain positions due to velocity 

and temperature step inputs (V0=8 MIS,O05K) 
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Fig. 6.48 Temperature response at certain positions due 

to velocity and temperature step inputs 

(V0=8 M/S,00=5K) 
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Fig. 6.49 Heat flow response at certain positions due 

to velocity and temperature step inputs 

(V0=8 M/S,90=5K) 
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Fig. 6.50 Plastic strain response at certain positions 

due to velocity and temperature step inputs 

(V0=8 M/S,80=5K) 
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Fig. 6.51 Velocity distribution along x-axis due to velocity 

and temperature ramp inputs (V0=8 M/S,EJ0-5K) 



169. 

Fig. 6.52 Stress distribution along x-axis due to velocity 

and temperature ramp inputs (V0=8 M/S,90=5K) 
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Fig. 6.53 Temperature distribution along x-axis due to velocity 

and temperature ramp inputs (V0=8 MIS,90=5K) 
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- Fig. 6.54 Heat flow distribution along x-axis due to velocity 

and temperature ramp inputs (V0=8 M/S,00=5K) 
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Fig. 6.55 Plastic strain distribution along x-axis 

due to velocity and temperature ramp 

inputs (V0=8 M/S,90=5K) 
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Fig. 6.56 Velocity response at certain positions 

due to velocity and temperature ramp 

inputs (V0=8 M/S,80=5K) 
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Fig. 6.57 Stress response at certain positions 

due to velocity and temperature ramp 

inputs (V0=8 M/S,00= K) 
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Fig. 6.58 Temperature response at certain positions 

due to velocity and temperature ramp 

inputs (V0=8 M/S,90=5K) 
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Fig. 6.59 Heat flow response at certain positions 

due to velocity and temperature ramp 

inputs (V0 8 WS,90=5K) 
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• Fig. 6.61 Velocity distribution along x-axis 

due to velocity and temperature 

sinusoid inputs (V0=8 MJS,90=5K) 
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Fig. 6.62 Stress' distribution along x-axis 

due to velocity and temperature 

sinusoid inputs (V0=8 M/S,00=5K) 
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Fig. 6.63 Temperature distribution along x-axis 

due to velocity and temperature 

sinusoid inputs (V0=8 M/S,80=5K) 
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Fig. 6.64 Heat flow distribution along x-axis 

due to velocity and temperature 

sinusoid inputs (V0=8 M/S,00=5K) 



181. 

Fig. 6.65 Plastic strain distribution along x-axis 

due to velocity and temperature 

sinusoid inputs (V0=8 M/S,00=5K) 
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Fig. 6.66 Velocity response at certain positions 

due to velocity and temperature 

sinusoid inputs (1J=8 WS,90=5K) 
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Fig. 6.67 Stress response at certain positions 

• due to velocity and temperature 

sinusoid inputs (V0=8 M/S,80=5K) 
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Fig. 6.68 Temperature response at certain positions 

due to velocity and temperature 

sinusoid inputs (V0=8 MJS,90=5K) 
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Fig. 6.69 Heat flow response at certain positions 

due to velocity and temperature 

sinusoid inputs (V0=8 M/S,00=5K) 
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Fig. 6.70 Plastic strain response at certain positions 

due to velocity and temperature 

sinusoid inputs (V0=8 M/S,00=5K) 
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Fig. 6.71 Velocity distribution along x-axis at 

different times due to a velocity 

step input alone (V0=8 MIS) 
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- Fig. 6.72 Stress distribution along x-axis at 

different times due to a velocity 

step input alone (V0=8 MIS) 
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Fig. 6.73 Temperature distribution along x-axis at 

different times due to a velocity 

step input alone (V0=8 MIS) 
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Fig. 6.74 Heat flow distribution along x-axis at 

different times due to a velocity 

step input alone (V0=8 WS) 
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Fig. 6.75 Plastic strain distribution along x-axis 

at different times due to a velocity 

step input alone (V0=8 MIS) 
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Fig. 6.76 Velocity response at certain positions due 

to a velocity step input alone (V0=8 MIS) 
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Fig. 6.77 Stress response at certain positions due 

to a velocity step input alone (V0 8 MIS) 
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Fig. 6.78 Temperature response at certain positions due 

to a velocity step input alone (V0=8 MIS) 
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Fig. 6.79 Heat flow response at certain positions due 

to a velocity step input alone (V0=8 MIS) 
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Fig. 6.80 Plastic strain response at certain positions 

due to a velocity step input alone (V0=8 MIS) 
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takes about 6 units of time, and at x4=O. 11, it takes more than 7 units 

for the velocity to reach its maximum value. Similar feature can be seen 

in Fig.6.7 and Fig.6.37 for stress, Fig.6.9 for heat flow, Fig.6.38 for 

temperature etc. This "dulling" phenomenon is due to the fact that in 

our system the front and trailing edges of the waves are propagated by 

different velocities. As time increases, the distance between the front 

and the trailing edges increases correspondingly. The increased abscissa 

decreases the slope. 

Although the velocity and stress inputs are decreasing functions 

of time in boundary conditions coded by A3 and B3, which correspond to 

Fig.6.21 to Fig.6.30 and Fig.6.61 to Fig.67O, respectively, at any 

point x=constant the plastic strain once established never goes down. 

This tallies with the assertion that the evolution of internal state 

variables is irreversible. Fig.6.30 and Fig.6.70 clearly show the 

feature. 

Cattaneo's hyperbolic equation of heat conduction has been emp-

loyed in the analysis of the thermomechanical coupled system. The rela-

xation time included in the equation is decisive for selecting the time 

step of integration algorithm. No matter whether characteristics or the 

two-sub-step finite deference method is used, the time step utilized can 

never be greater than the relaxation time in order to obtain a conver-

gent solution. By the achievement of modern computer science, even if 

super computer is used, it is still impossible to get the results 

corresponding to a really long time. Our observations are drawn from the 

profiles sketched with the certain calculated data; yet, it brings us a 

distinct picture. 
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6.4 Discussion  

When an elastic long rod is impacted at one end, the particle 

velocity and elastic strain are propagated in the form of a shock wave. 

There is a discontinuity or jump formed at the wavefront. However, for 

thermoplastic wave propagation the situation is different. The numerical 

results presented in the preceding section have shown that the discon-

tinuity only exists at the end of the rod. As the waves are propagated 

along the rod, the sharpness of the discontinuity becomes vanishingly 

small. It suggests there is no shock wave propagated in the rod. 

Orisamolu [4.6] has numerically studied the wave propagation 

problem associated with thermoplasticity, in which Cattaneo's hyperbolic 

heat conduction equation and a plastic constitutive relation associated 

with internal state variables are employed. In spite of the assertion on 

jump conditions at wave fronts, some of his numerical results show the 

feature similar to an acceleration wave. When the end of rod is 

subject e d to a step input of stress or velocity and temperature 

change, the sharpness of the step decreases as the waves propagate along 

the rod. This feature is indicated by Fig.6.9a, Fig.6.9b, Fig.6.13a, 

Fig.6.17a, Fig.6.17b, Fig.6.19a, Fig.6.19b etcetera [4.6]. 

Cristescu and Suliciu have presented some numerical results 

of plastic wave propagation in Chapter IV, Section 4, [4.1], where a 

rate-independent constitutive equation is employed. The results suggest 

that when the end of the rod is impacted, discontinuity of strain shows 

up clearly at the positions near the end. However, as the distance of 

the point from the end becomes larger, the discontinuity vanishes. 

In Chapter VII, [4.1], the existence of real acceleration 

waves has been discussed. It is shown when Cattaneo's hyperbolic heat 



199. 

conduction equation and a plastic constitutive equation with internal 

state variables are employed, quasi-linear thermoplastic equation system 

with real eigenvalues leads to the existence of acceleration waves 

inside the body. That conclusion is congruent with the numerical results 

obtained in this research. 

6.5 Conclusions 

In this research, a constitutive theory of thermoplasticity is 

developed based on the free energy function and the dissipation 

function. At first, the physical aspects and the constitutive features 

of the two leading functions are examined and clarified. It is found 

that the free energy 

variables; and it is 

material there is no 

and plastic deformation 

is a decreasing function of the internal state 

also found that for a plastically incompressible 

explicit coupling between the temperature change 

for evaluation of the energy. A relation between 

the two leading functions is established. This expression can be 

employed to directly derive the plastic constitutive equations. 

Contribution of the strain hardening parameter to the free energy has 

been taken into account, and the dissipative feature of softening of 

this parameter is considered by a particularly assigned function which 

is able to relate the experimental results to the constitutive 

equations. 

Based upon the examination of the leading functions, a model 

system of constitutive equations has been established. The system 

includes the evolution of entropy, law of heat conduction and plastic 

constitutive equations. 

From the numerical results. the following conclusions can be 
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obtained: 

L Both the characteristics and two-sub-step finite difference methods 

are applicable to generate a convergent result for the problem of 

plastic wave propagation, if the time-step is correctly selected. 

ii. Generally speaking, the method of characteristics is more strict, 

and gives a sharper solution in most cases, therefore, is more suitable 

and dependable for solving hyperbolic partial differential equations. 

However, compared with the other, it is more involved and more 

computer-time consuming. Roughly, it is 20 to 40 times more time 

consuming than the two-sub-step finite difference method. 

iii. The results show that after being propagated in the plastic medium, 

the discontinuity of step input is "dulled" so smoothly that the values 

of the dependent variables are continuous at the front of the waves. But 

it can be seen from the related figures that their derivatives are still 

discontinues. By the definition those kinds of waves are classified as 

acceleration waves. In other words, the thermo-mechanical coupled waves 

propagated in plastic media are of acceleration type. 

iv. The discontinuity associated with step input is propagated between 

the front and the trailing edges of the waves. As time increases, the 

distance between the two edges increases correspondingly, and the 

the discontinuity becomes vanishingly small. 

v. The mechanical waves (stress, velocity, plastic strain) and the 

thermal waves (temperature increment, heat flow) are coupled and 



201. 

propagate between the leading and trailing edges with the same 

velocity. 

Consistency is an important feature of the newly established 

constitutive relations. Thermoplastic analysis based on fundamental 

laws associated with numerical calculation which clarify some basic 

facts of plastic wave propagation problems have not been hitherto 

reported in the literature. I hope this research would make a further 

step in the developing efforts of the related areas. 

6.6 Recommendation for Further Research  

From the development presented in Chapter 3 it is seen that 

there are three factors which are decisive for the plastic constitutive 

equations. The first one is the strain hardening parameter which is 

related to cold work and contributes to the free energy function. The 

second is the time-dependent term of plastic strain which is closely 

related to the dissipation function; and the third the softening rule of 

the strain hardening parameter, which constitutes another part of 

dissipative power. Different kinds of materials correspond to different 

combinations of these factors, which are characterized by corresponding 

material properties. Experimental research efforts are recommended to 

identify the these material properties for various engineering 

materials. 

Since the 60's of this century a great number of experiments 

have been done on determining material behaviors at elevated temperature 

to meet the growing industrial needs. Because most of the works are 

empirically based, the essential features of thermoplasticity are seldom 

taken into account. After so many years of continuous development it is 



202. 

the time to relate the theory of thermoplasticity to the experimental 

results of metallic materials at elevated temperature. 

At the same time, material science is expected to make more 

research efforts towards the relation of strain hardening and micro 

structure movement at different temperature levels. A better under-

standing of micro scale movement is of vital importance for further 

development of thermoplastiity of metallic materials. 
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APPENDIX A 

INVERSION OF MATRIX A0 

Square matrix A0=[a ij J is given in such a way that the elements 

other than zero are: 

a?i = p 

0 a22 - D2 

= D1 

0 a32 - D5 

= to 

00 
a52 - _ a55 = 1 

a3 = 

It can be easily seen that det A0 = p'r0 13, where 5 = D2D3 - D4D5 . •If we 

set 

A 1= [a] 

then the elements other than zero are: 
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D1 
a23 = -h--

a - - 

1 
a44 —— 

3h - (D3+D4D5) 
a 

- (D1+D2D4) 
a 

b 

a55 = 1 

The matrix with these elements is the inverse of A0. 
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APPENDIX B 

DETERMINATION OF EIGENVECTORS 

The basic equations (4.15b) are written in the following form: 

+ A Yx = C (B 1) 

where Y t, Y and C are defined in Chapter 4. Matrix A is expressed as 

follows 

A= 

\ 

1 

T 
0 0 0 

D3 D 
0 0 0 

13 

D1 D2 
0 0 - 0 

13 

0 0 
k 
to 0 0 

0 0 0 0 0' 

(B2) 

As soon as the eigenvalues are available, the left eigenvectors can be 

found by the following equations 

A = (i) 1(i) 

For eigenvalue = 0, we have 

[11 12 13 14 151 [A ii ] = 0 11 12 13 14 15] 

(133) 

(B4) 
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which yields 

[fl = [0 0 0 0 1] (B5) 

For (2) = V2, we have 

[11 12 13 14 151 [A ii ] = V2[ 11 12 13 14 15] 

which yields 

1 pV-D3 0 pV-D., 

pV 2 L) 1 JJ 

Similarly, for 4)= -v2 

(B6) 

01 , (B7) 

1 pVD - D3 't0PV-D3 0 ] . (B8) 
[1] = [1 

5V pV 2D 1 5l D1 

For V: 

[1] = [1 jYV pV 3D 1 j5k D1 0 

For (6) = -V3: 

1 pV-D3 'c0 pV-D3 
(B9) 

1 PV - D3 O(P3 01 . (B1O) [1] = [1 
pV 3D 1 k' D1 


