
Programmer-Centric Conditions for Itanium Memory Consistency

Lisa Higham, LillAnne Jackson, and Jalal Kawash

The University of Calgary, Calgary, Canada

Abstract

A programmer-centric model of memory consistency provides a sequence of instructions for each proces-
sor, and requires that these sequences satisfy a collection of rules. It also requires that the notion of
validity of a sequence is the natural one: the value read from a shared memory location must be
one that was written by the most recent preceding instruction that stored to the same location. A
programmer-centric model supports reasoning about programs at a non-operational level. It is not
obscured by the implementation details of the underlying architecture. In this paper, we formulate a
programmer-centric description of the memory consistency model provided by the Itanium architec-
ture. However, our definition is not tight. We provide two very similar definitions, each motivated
by slightly different implementations of load-acquire instructions, and prove that the specification of
the Itanium memory model lies strictly between the two. We also entertain a handful of other natural
notions of load-acquire rules and show that none exactly captures the Itanium specification. This leads
us to question whether the specification of the Itanium memory order [5] is actually faithful to the
Itanium architects’ intentions.

Keywords: Programmer-centric memory consistency, Itanium multiprocessor

1 Introduction

Modern multiprocessor systems include a variety of hardware components such as write-buffers, caches,
distributed memory and multiple buses all intricately interconnected. As a consequence, the way that
information flows in these various architectures differs widely. To program such systems correctly while
exploiting the potential efficiencies available because of these components, it is crucial to have a thorough
understanding of this information flow. The rules that describe this flow of data for a particular archi-
tecture is called the memory consistency model of that architecture. These rules are presented in the
system architecture manuals (and other sources) using many different descriptive (in)formalisms. This
motivates us to respecify memory consistency models using a common framework. Such a framework
helps us compare different systems, port code between systems, and transfer our expertise in one system
to facility in another. One framework often used to specify a memory consistency model for an architec-
ture A is to describe each instruction by a program of lower level operations acting on the components
of A. An execution is a sequence of all the operations of all the instructions executed by each processor.
Then,
• rules are added that restrict the order in which these lower level operations can occur in any

execution, and
• a notion of validity is defined, which constrains what values can legitimately be associated with

each operation.
An execution must satisfy all the ordering rules and the validity condition in order to be a possible
execution on A.

We contend, however, that for programming purposes, a memory consistency model should be specified
as a set of (ordering) rules on the instructions used by the programmer, rather than on a lower level
collection of operations. Furthermore, the validity condition should be the natural notion of validity of
sequences of these instructions acting on the objects of the system. For example, in a valid sequence of
loads and stores, the value returned by each load instruction should be the value written by the most recent
preceding instruction in the sequence that stored a value to the same memory location. Such a description

is useful to a programmer of the system since she can reason about her code directly, and therefore we
call it programmer-centric. Descriptions in terms of lower level operations specify an implementation
(in hardware or on a virtual platform) and are useful for an architect who is building the system, but
should not be confused with its specification. In this case, these lower level implementations should be
proved equivalent to the specification. A further advantage of our approach is that constructions can be
composed. A high level specification of an object oriented system can be implemented by a succession
of constructions, such that an implementation at one level is the specification for a still lower level, and
each level of implementation is proved to correctly implement its specification. This, of course, is the
familiar notion of abstraction; we simply extend it to weak models of memory consistency.

In previous work [4, 3] we established a framework for specifying programmer-centric memory consis-
tency models and for proving such equivalences between specifications and implementations. We applied
this framework and the proof techniques to an extensive example involving write buffer architecture [3].
This paper applies these ideas to the Intel Itanium architecture. That is, we aim for a programmer-
centric specification of the memory consistency of the Itanium multiprocessor. As will be seen, we failed
to realize this goal. Instead, we define two very similar programmer-centric memory consistency models,
called ItaniumA and ItaniumB, and prove that the “official” Itanium memory consistency [5], henceforth
referred to as Itanium (with no subscript), lies strictly between these two (Section 3). We even show
that eight other plausible programmer-centric definitions also fail to exactly capture the Itanium memory
consistency specification (Section 4). The resulting ten Itanium definitions differ only (often, slightly)
in their ordering constraints involving Itanium load-acquire instructions, and each is motivated by a
plausible hardware implementation. Yet, none of these tightly captures the specification of the Itanium
memory consistency [5]. The operational model proposed by Chatterjee and Gopalakrishnan [1] is an-
other reasonable and plausible Itanium implementation. Yet, it does not exactly satisfy the Itanium [6].
We know of no description that has a plausible hardware implementation and is equivalent to Itanium.
We are led to speculate whether the specification of the Itanium memory consistency [5] is really what
the Itanium architects intended!

Before we present our main results, we briefly describe the model in Subsection 2.1. Subsection 2.2
defines ItaniumA and ItaniumB. The paper requires familiarity with the Itanium memory consistency
model [5]. Those definitions that are essential for this work and are summarized in Section 2.3.

Several other frameworks for describing memory consistency have been proposed but are not central
to this paper. Yang et. al. [8] present a non-operational approach to specifying and analyzing shared
memory consistency models and use it to provide a translation of the rules of Itanium specification. The
TLA work of Joshi et. al. [7] is a precise specification and is the basis of the official specification [5].

2 Multiprocessors, Computations and Memory Consistency

2.1 Instructions, multiprocessors and computations

As each processor in a multiprocessor system executes, it issues a sequence of instruction invocations
on shared memory objects.1 For this paper the shared memory consists of only shared variables. Each
instruction invocation is of the form stp(x, v) or st.relp(x, v) meaning that processor p writes a value v

to the shared variable x, or ldp(x) or ld.acqp(x) meaning that p reads a value from shared variable x,
or fencep meaning that p invokes a memory fence instruction. Instructions st and st.rel are referred to
collectively as store instructions; ld and ld.acq are called load instructions. These five forms of instruction
invocations are called Itanium-based. It suffices to model each individual processor as a sequence of these
instruction invocations and call such a sequence an individual Itanium-based program.2 An (Itanium-

1Some of the definitions in this subsection were used in previous work (Section 2.2 of [2]); they are re-stated here in
modified form.

2We have made some common simplifying assumptions such as memory locations do not overlap, memory is cacheable
(i.e., WB) and semaphores are omitted.

2

based) multiprogram is a finite set of these individual programs.
An instruction is an instruction invocation completed with a response. In our setting the response

of a store or fence instruction invocation is an acknowledgment and is ignored. The response of a load
invocation is the value returned by the invocation. Let P be an Itanium-based multiprogram. An
(Itanium-based multiprocessor) computation of P is created from P by changing each load instruction
invocation, ldp(x) (respectively, ld.acqp(x)) to ν ←ldp(x) (respectively, ν ←ld.acqp(x)) where ν is either
the initial value of x or some value stored to x by a store instruction in P .

Notice that the definition of a computation permits the value returned by each load instruction
invocation of variable x to be arbitrarily chosen from the set of values stored to x by the multiprogram.
In an Itanium machine (or any other multiprocessor) the values that might actually be returned are
substantially further constrained by its architecture, which determines the way in which the processors
communicate and that shared memory is implemented. A memory consistency model captures these
constraints by specifying a set of additional requirements that computations must satisfy. Typically,
these require the existence of a set of sequences of instructions that satisfy certain properties. We use
C(P , MC) to denote the set of all computations of multiprogram P that satisfy the memory consistency
model MC. A collection of such sequences that meet all the requirements of MC is called a set of MC-
verifying sequences. If C ∈ C(P , MC), then there exist MC-verifying sequences for C. Memory consistency
model MC is stronger than MC’ if, for every Itanium-based Multiprogram P , C(P , MC) ⊆ C(P , MC′).
Similarly, The term strictly stronger requires that C(P , MC) ⊂ C(P , MC′).

The description of a memory consistency model is simplified by assuming that each store instruction
invocation has a distinct value. Although it is technically straightforward to remove this assumption,
without it, the description of the memory model is messy and its properties are consequently obscured.

For an Itanium-based computation C, I(C) denotes all the instructions in C. I(C)|p is the subset of
I(C) in processor p’s program sequence; I(C)|x is the subset of I(C) applied to variable x; I(C)|r is the
subset containing only the load instructions; I(C)|w is the subset containing only the store instructions;
I(C)|acq is the subset containing all ld.acq instructions plus the memory fence instructions; I(C)|rel is

the subset containing all st.rel instructions plus the memory fence instructions. The relation (I(C),
prog
−→),

called program order, is the set of all pairs (i, j) of instructions of C by the same processor p such that the

invocation of i precedes the invocation of j in p’s program. For any partial order relation (I(C),
y
−→),

the notation i
y
−→ j is used interchangeably with (i, j) ∈ (I(C),

y
−→). Also, if (I(C),

y
−→) is a total

order on a finite set, then y denotes the unique sequence such that i precedes j in y if and only if
(i, j) ∈ (I(C),

y
−→).

A load instruction is domestic if the value it returns was stored into a shared variable by the same
processor. a foreign instruction is either a non-domestic load or a fence instruction. If a load instruction,
i, returns the value stored by a store instruction, j, to the same variable then i and j are causally related.
A sequence of Itanium-based instructions is valid if, for every load instruction, its causally related store
instruction is the most recent preceding store to the same variable in the sequence.

2.2 Weak and strong Itanium memory consistency

The following definition is parameterized by an arbitrary partial order on I(C), denoted R, which will
be replaced by various partial orders to construct differing versions of Itanium consistency.

Definition 2.1 A computation C satisfies ItaniumR if for each p ∈ P there is a total order

(I(C)|p ∪ I(C)|w,
Sp
−→) such that Sp is valid and for every i, j ∈ I(C)|p ∪ I(C)|w:

1. If i
R
−→ j then i

Sp
−→ j (R Order), and

2. If i
prog
−→j and j ∈ I(C)|rel then i

Sp
−→ j (Release Order), and

3. If i
prog
−→j and i, j ∈ I(C)|x and [(i ∈ I(C)|w or j ∈ I(C)|w) or (i ∈ I(C)|acq)] then i

Sp
−→ j (Same

Memory Order), and

3

4. If i, j ∈ I(C)|x|w and i
Sp
−→ j then i

Sq
−→ j, ∀q ∈ P (Same Memory Agreement), and

5. If i, j ∈ I(C)|rel and i
Sp
−→ j then i

Sq
−→ j, ∀q ∈ P (Release Agreement), and

6. If i ∈ I(C)|rel and j ∈ I(C)|st|p and i
Sp
−→ j then i

Sq
−→ j, ∀q ∈ P (Release to Store Agreement),

and

7. There does not exist a cycle of i1, i2 . . . ik ∈ I(C)|w where ij ∈ I(C)|pj , ∀j ∈ {1, 2, . . . k} and k ≤ n

such that: ik
S1−→ i1, and i1

S2−→ i2, and i2
S3−→ i3 . . . and ik−1

Sk−→ ik (Cycle Free Agreement).

Define the following partial orders. Let i, j ∈ I(C) such that i
prog
−→j.

Acquire A: i
Acquire A
−→ j if and only if i ∈ I(C)|acq.

Acquire B: i
Acquire B
−→ j if and only if i ∈ I(C)|acq and i is foreign.

ItaniumA abbreviates ItaniumR when R = Acquire A. ItaniumB is defined similarly (R = Acquire
B). Section 4 defines additional Itanium models based on further variants of Acquire orders.

2.3 Memory consistency specification of the basic Itanium processor family

In order to prove that ItaniumB and ItaniumA bound Intel’s definition of the basic Itanium processor
family memory ordering model, we make extensive reference to that model as defined by the Intel manual
[5]. This section is quoted and paraphrased from [5].

2.3.1 The framework of the Itanium manual

In [5] an execution is considered to be a set of sequences of instructions, one sequence per processor.
Each sequence contains the instructions performed by the associated processor listed in program order.3

Program order is a total order when restricted to the instructions of a single processor.
Each instruction can read values from memory, write values to memory, or neither read nor write mem-

ory.4 For any two instructions I1 and I2, if I1 and I2 are by the same process (denoted p=Proc(I1)=Proc(I2)

and I1 precedes I2 in program order, we write I1
prog
−→ I2.

5

Instructions are decomposed into operations.6 As an example, a load instruction may be thought of
as having a read operation, a store instruction as having a write operation and a semaphore as having
both read and write operations. In general, an instruction’s operations correspond to different aspects of
the visibility of the instruction at different processors. A load instruction R is local for byte b if b∈Rng(R)
and there is a store W to b with p=Proc(W)=Proc(R) such that LV(W)−→R(R)−→RVp(W).

• If an instruction or operation X reads from memory, we say that X has read semantics or is a read.
RdVal(X) is the value read by X from Rng(X).7 If b∈Rng(X), RdVal(X;b) is the value read by X for
byte b and we say that X is read from b.

• If an instruction or operation X writes from memory, we say that X has write semantics or is a write.
WrVal(X) is the value written by X from Rng(X). If b∈Rng(X), WrVal(X;b) is the value written by
X to byte b and we say that X is write to b. The expression Rng(I1)∩Rng(R2)6= φ instructions I1

and I2 access the same memory locations. The notation Rng(I) expresses the range of memory
locations on which an instruction operates.

• Every byte in memory has an initial value that it will return to reads that occur before there are
any writes to the byte. For byte b, this value is denoted by InitVal(b).

3In our framework this is called a computation.
4In [5] they also allow an instruction to do both read and write, but this is skipped here because we are not considering

semaphore instructions in this work.
5In [5] the notation � is used. We use

prog
−→ to maintain consistency with our notation.

6In [5], each instruction is first decomposed into and access then into operations. We omit can omit accesses in this work.
7In this work we are assuming that memory locations do not overlap, that is Rng(X) is distinct for every X.

4

Every execution of the model being defined has a single associated visibility order which we call V.
This order must totally (i.e., linearly) order all the operations the execution generates. Each specification
has a set of rules that constrain the order in which the operations can appear and how the operations
affect memory. For any two operations O1 or O2, if O1 precedes O2 in visibility order, we write I1−→ I2.

2.3.2 Visibility Order Rules

In this section the symbol W is used to represent an instruction that has write semantics, the symbol R
represents an instruction with read semantics, the symbol FEN represents a fence instruction, the symbol
ACQ represents an instruction with acquire semantics, the symbol REL represents an instruction with
acquire semantics and the symbol SR represents a instruction store release instruction. Also in V, the
symbol R() represents a read operation, LV() represents a local visibility operation, RVq() a remote
visibility operation at processor q.

The visibility order V of the executions of the basic Itanium processor family memory ordering model
must satisfy the following rules. If there is no visibility order for an execution that satisfies all of these
rules, the execution is not permitted by the architecture.

Write Operation Order

(WO): No write can become visible remotely before it becomes visible locally. For every write instruction
W, LV(W)−→RVp(W) for p=proc(W), and RVp(W)−→RVq(W) for p=proc(W) and q6=proc(W).

Program Order:

(ACQ): No operation can become visible before a preceding acquire. If ACQ
prog
−→ I, A is an operation of

instruction ACQ, and O is an operation of instruction I, then A−→ O.

(REL) : No release can become visible before a preceding instruction’s operations.

• If I
prog
−→ REL, instruction I does not have write semantics, and operation O is an operation of

I, then O−→ LV(REL).

• If I
prog
−→ REL and instruction I has write semantics, then LV(I)−→LV(REL) and RVp(I)−→RVp(REL)

for each processor p.

Recall that all instructions with release semantics also have write semantics and thus have LV and
RV operations.

(FEN) 8: Operations become visible in-order with respect to memory fences.

• If FEN
prog
−→ I and O is an operation of instruction I, then F(FEN)−→ O.

• If I−→ FEN and O is an operation of instruction I, then O−→F(FEN).

Notice that either case implies that any two memory fences become visible in program order: if
FEN1

prog
−→ FEN2, then F(FEN1)−→F(FEN2).

Memory-Data Dependence:

(MD:RAW) : No read may become visible locally before an earlier write to a common location.

• If Rng(W)∩Rng(R)6= φ and W
prog
−→ R, then LV(W)−→R(R).

8In [5] this is called (REL). We prefer to call it (FEN) to distinguish from the previous item.

5

(MD:WAR) : No write may become visible locally before an earlier read to a common location.

• If Rng(R)∩Rng(W)6= φ and R
prog
−→ W, then R(R) −→ LV(W).

(MD:WAW) : Writes by a processor to a common location become visible to that processor in program
order.

• If Rng(W1)∩Rng(W2)6= φ and W1
prog
−→ W2, then LV(W1) −→ LV(W2) for processor p=Proc(W1)=Proc(W2).

Coherence:

(COH) : Suppose that W1 and W2 are write instructions to the same non-WC memory attribute and that
Rng(W1)∩Rng(W2 6= φ. The following must hold:

• If LV(W1)−→LV(W2) and processor p=Proc(W1)=Proc(W2), then RVp(W1)−→RVp(W2) for all
processors p.

• If RVp(W1)−→RVp(W2) for processor p, then RVq(W1)−→RVq(W2) for all processors q.

Read Value:

(RV1) : Suppose that R is local for b. Let W be a write to b such that Proc(W)=p, LV(W)−→R(R), and
there is no other write W’ to b with Proc(W’)=p and LV(W)−→LV(W’) −→R(R). Then RdVal(R;
b) = WrVal(W: b).

(RV2) : Suppose that R (where Proc(R)= p) is not local for b, there is a W to b such that RVp(W)−→R(R),
and there is no other write W’ to b with RVp(W)−→RVp(W’) −→R(R). Then RdVal(R; b) = WrVal(W:
b).

(RV3) : Suppose that R (where Proc(R)= p) is not local for b, and there is no W to b such that
RVp(W)−→R(R). Then RdVal(R; b) = InitVal(b).

Total Ordering of WB Releases:

(WBR) : Store-releases that write to WB memory become remotely visible atomically.

• If SR writes to WB memory and RVp(SR)−→ o−→RVq(SR) for processors then o=RVr(SR) for
some processor r.

3 Itanium is strictly between ItaniumB and ItaniumA

3.1 Itanium computations satisfy ItaniumB

Let P be any Itanium-based multiprogram. The proof that C(P , Itanium) is a proper subset of C(P , ItaniumB)
is constructive. Given an Itanium computation for P we construct “views” for each processor in P and
prove that these views constitute a collection of ItaniumB-verifying sequences. Then we provide a com-
putation that satisfies ItaniumB but not Itanium to establish strict inequality.

Most of the Itanium consistency rules are applicable to a subset of the instructions in the computation
or operations in the visibility order. For example, each load instruction ld[.acq]in a visibility order is either
local or non-local and if non-local R(ld[.acq]) is either preceded in the visibility order by a store to the
same location or not. Hence, only one of the three Read Value Rules (RV1), (RV2), or (RV3) is applicable
to ld[.acq], and if the visibility order is valid the others hold vacuously for ld[.acq]. In our proofs, we note
which rule applies in this sense, and prove whatever is required for that case, without repeatedly noting
that the other rules hold vacuously.

Let C be any computation of P that satisfies Itanium, and let V be a visibility order for C that
satisfies all the requirements of Itanium. Create an altered visibility order S(V) for C as follows:

6

S(V): For every processor p, for every store instruction st[.rel] by processor p, let ld[.acq]1, ld[.acq]2, . . .,
ld[.acq]k be the local loads that are causally related to st[.rel] listed in the order in which their
corresponding read operations occur in V, if k ≥ 1, move R(ld[.acq]1), (ld[.acq]2), . . ., (ld[.acq]k) to
immediately follow RVp(st[.rel]) in V.

Lemma 3.1 S(V) satisfies the Read Value Rules and only rules (RV2) and (RV3) apply to read operations
in S(V).

Proof: V satisfies (RV1), (RV2) and (RV3) by definition. Since only local read operations are moved
to form S(V) from V, in S(V) any non-local load still satisfies (RV2) or (RV3). For a local load ld[.acq],
rule (RV1) applies to ld[.acq] in V. But then operation R(ld[.acq]) is moved so that ld[.acq] is no longer
local and instead satisfies (RV2) in S(V).

Given a visibility order V for a computation C, create a sequence Sp(V) for each p ∈ P as follows.
• Sp(V) ←V.
• Delete all LV(st[.rel]) from Sp(V).
• Delete all R(ld[.acq]) where Proc(ld[.acq])6= p from Sp(V).
• Delete each RVq(st[.rel]) where q 6= p from Sp(V).
• Replace each remaining operation with its corresponding instruction.

Lemma 3.2 For any computation C with visibility order V, which satisfies Itanium, the sequences
Sp(S(V)) ∀p ∈ P comprise a set of ItaniumB-verifying sequences for C.

Proof:
Validity: By Lemma 3.1 S(V) satisfies the Read Value rule and only (RV2) and (RV3) apply to load

instructions. Thus for any R(ldp(x)) (or R(ld.acqp(x))) in S(V), its most recent preceding RVp(stq(x, v))
or RVp(st.relq(x, v)) must satisfy v = RdVal(R(ldp(x))) (or v =RdVal(R(ld.acqp(x)))). This property is
maintained in the construction of Sp for the corresponding load and store instructions. Thus, for each
sequence Sp, for each load instruction ld[.acq] in Sp, the store instruction that is causally related to
ld[.acq] is the most recent preceding store to the same location.

Acquire-B Order: V satisfies (ACQ). Only local read operations are moved to form S(V), so (ACQ)
is satisfied in S(V) for non-local instructions. Since all the ld.acq instructions by p are in the sequence
Sp(S(V)) in the same position relative to p’s other instructions as the corresponding operations are
in S(V), and since all foreign loads correspond to non-local read operations, these sequences extend
Acquire-B order.

Release Order: V maintains (REL) order. Let i
prog
−→ st.rel in the program for processor p. If i is a

st[.rel] then RVq(i)
V
−→ RVq(st.rel) by (REL), so RVq(i)

S(V)
−→ RVq(st.rel) since neither operation moves

in the construction of S(V). Therefore, i
Sq(S(V))
−→ st.rel for each processor q. If i is a ld[.acq] then i

appears only in Sp(S(V)) (not in any Sq(S(V)) for q 6= p) and again by (REL) R(i)
V
−→ RVp(st.rel).

Provided R(i) is not a local read, again neither operation moves in the construction of S(V) and thus

i
Sp(S(V))
−→ st.rel.
The only remaining case is if i is a local ld[.acq], and there is a st.rel operation following R(i) in V

but preceding it in S(V). Let j be the store (necessarily by p) that is causally related to i. Suppose

there is an st.rel also by p satisfying LV(j)
V
−→ R(i)

V
−→ RVp(st.rel)

V
−→ RVp(j). By (REL) st.rel

prog
−→

j, and by memory data dependence, j
prog
−→ i. Hence st.rel

prog
−→ i, so in this case there is no release order

to maintain between st.rel and i.
Same Memory Order: Let i

prog
−→j and i, j ∈ I(C)|x. Observe that S(V) satisfies (MD:WAW) and (WO)

because the conversion to S(V) does not move any LV or RV operations. S(V) maintains (MD:RAW)
order because moving R(ld[.acq]) later in the sequence does not alter the relative order of a read operation
and a write operation that precedes it. Since the creation of Sp(S(V)) retains only the instructions
corresponding to RV and R operations by p, the Same Memory Order holds when j ∈ I(C)|w. Although

S(V) does not maintain (MD:WAR), the (COH) rule of V ensures that R(ld[.acq])
S(V)
−→RVp(st[.rel]) when

7

ld[.acq]
prog
−→ st[.rel]. Since R(ld[.acq]) and RVp(st[.rel]) are the operations that are converted to ld[.acq]

and st[.rel] instructions respectively. This gives the Same Memory Order when i ∈ I(C)|w.
Now consider the final case of Same Memory Order when i ∈ I(C)|acq. Consider the operations to the

same location when a local R(ld.acq) operation is moved in the construction of S(V). By construction, any
operations to the same location that correspond to load instructions are also moved to after the R(ld.acq)
operation; any LV operations will be deleted in the final conversion; and any RVp operations must

correspond to a write operation st[.rel]’ that is st[.rel]’
prog
−→ st[.rel]

prog
−→ ld[.acq], where st[.rel] is causally

related to ld[.acq]. This is because (COH) ensures that LV(st[.rel]’)
V
−→LV(st[.rel])

V
−→R(ld[.acq])

V
−→

RVp(st[.rel]’)
V
−→RVp(st[.rel]). Thus, Same Memory order is assured when i ∈ I(C)|acq. Hence, Sp

satisfies Same Memory Order for every p.
Same Memory Agreement: V satisfies (COH) by definition, and S(V) maintains the order of V for all

RV operations. The order of the all store instructions in Sp(S(V)) is the same as the corresponding RVp

operations in S(V), ensuring Same Memory Agreement.
Release Agreement: The (WBR) rule ensures that all RV operations of a st.rel instruction are together

and there is only one F(fence) operation in V. S(V) does not affect the relative order of these operations.
The order of the all store instructions in Sp(S(V)) is the same as the corresponding RVp operations in
S(V) ensuring Release Agreement.

Release to Store Agreement: V satisfies (WBR) and (WO) and all write and fence operations are

in the same order in S(V) and V. If st.rel
Sp(S(V))
−→ stp(·, ·), then RVp(st.rel)

S(V)
−→ RVp(stp(·, ·)). So, by

(WBR) and (WO), RVq(st.rel)
S(V)
−→ RVp(stp(·, ·)).

S(V)
−→ RVq(stp(·, ·)) implying st.rel

Sq(S(V))
−→ stp(·, ·) for

any q and thus ensuring Release to Store Agreement.
Cycle Free Agreement: (by contradiction) Assume there is a cycle of i1, i2 . . . ik ∈ I(C)|w where

i1 ∈ I(C)|p1, i2 ∈ I(C)|p2 . . . ik ∈ I(C)|pk and k ≤ n such that: ik
S1−→ i1, and i1

S2−→ i2, and i2
S3−→ i3

. . . and ik−1
Sk−→ ik. The relation ik

S1−→ i1 corresponds to RV1(ik)
S(V)
−→RV1(i1) and from the (WO)

rule RVk(ik)
S(V)
−→RV1(ik)

S(V)
−→RV1(i1) thus RVk(ik)

S(V)
−→RV1(i1). Similarly, the relation ij−1

Sj
−→ ij corre-

sponds to RVj(ij−1)
S(V)
−→RVj(ij) and from the (WO) rule, RVj−1(ij−1)

S(V)
−→RVj(ij−1)

S(V)
−→RVj(ij) imply-

ing RVj−1(ij−1)
S(V)
−→RVj(ij). Combining these, gives the cycle RVk(ik)

S(V)
−→RV1(i1)

S(V)
−→RV2(i2). . .

S(V)
−→

RVk−1(ik−1)
S(V)
−→RVk(ik). But this cycle cannot exist because S(V) is a total order, providing the required

contradiction.

Consider the following computation:

Computation 1

{

p : 3←ld(x) st(x, 2) 2←ld.acq(x) st(y, 4)
q : 4←ld.acq(y) st(x, 3)

It is straightforward to confirm that the following sequence are ItaniumB-verifying sequences for Com-
putation 1:
{

Sp : stp(y, 4) stq(x, 3) 3←ldp(x) stp(x, 2) 2←ld.acqp(x)
Sq : stp(y, 4) 4←ld.acqq(y) stq(x, 3) stp(x, 2)

As a notational convenience, we write a
(IR)
−→ b, where (IR) is any of the Itanium rules given in Sub-

section 2.3, to mean that (IR) requires a
V
−→ b. The orders that must be maintained by any Itanium

visibility sequence that satisfies the Itaniumrules contains the following cycle: R(3←ldp(x))
MD:WAR
−→

LV(stp(x, 2))
(MD:RAW)
−→ R(2←ld.acqp(x))

(ACQ)
−→ LV(stp(y, 4))

(WO)
−→ RVp(stp(y, 4))

(WO)
−→ RVq(stp(y, 4))

(RV 2)
−→ R(4←ld.acqq(y))

(ACQ)
−→ LV(stq(x, 3))

(WO)
−→ RVq(stq(x, 3))

(WO)
−→ RVp(stq(x, 3))

(RV 2)
−→ R(3←ldp(x)).

Thus, Computation 1 does not satisfy Itanium because it does not have a Itanium visibility sequence.

Theorem 3.3 Itanium is strictly stronger than ItaniumB.

8

Proof: By Lemma 3.2, any Itanium-based computation that satisfies Itanium also satisfies ItaniumB,
and Computation 1 is an Itanium-based computation that satisfies ItaniumB but not Itanium.

3.2 ItaniumA computations satisfy Itanium

Let P be any Itanium-based multiprogram. The proof that C(P , ItaniumA) is a proper subset of
C(P , Itanium) is also constructive. Given an ItaniumA computation C for P , we construct a visibil-
ity order V for C and prove that it satisfies all the requirements of Itanium. To show strict inequality, a
computation is provided that satisfies Itanium but not ItaniumA.

For each p ∈ P , let Sp be the sequence for processor p in the set of ItaniumA-verifying sequences for
C. First, we create a visibility sequence V(Sp) for each p ∈ P . Then, these are merged to form a single
visibility order.

From each Sp create a sequence V(Sp) as follows:

• replace each load instruction ld[.acq] by R(ld[.acq]).

• replace each store instruction st[.rel] such that Proc(st[.rel])= p by the two contiguous operations:
LV(st[.rel]), RVp(st[.rel]).

• replace each remaining store instruction st[.rel] (Proc(st[.rel])= q 6= p) by RVp(st[.rel]).

• replace each fence fence by F(fence).

Each instruction in each Sp corresponds to the operation(s) that replaced it in V(Sp).
Next, the sequences V(Sp) are merged into one visibility order V as follows. Place a pointer ↓p at the

first operation of each V(Sp). Initially, each ↓p is unblocked. Advancing ↓p moves it to the next operation
in V(Sp). A pointer ↓p becomes null when it is advanced beyond the last operation in V(Sp). V is initially
an empty sequence.

While there is a not-null pointer ↓p, choose an unblocked ↓p:
1. If (↓p= o = R(ld) or R(ld.acq) or LV(st) or LV(st.rel) or RVp(stp)) then:

• Append o to V and advance ↓p

• If o = RVp(stp) then unblock any ↓q blocked on RVq(stp)

2. If (↓p= o = RVp(stq)) then:

• If RVq(stq) is in V then append RVp(stq) to V and advance ↓p

• else block ↓p on o

3. If ↓p= o = RVp(st.relq) then:

• If (∀t ∈ P , ↓t=RVt(st.relq) then:

– ∀t ∈ P append RVt(st.relq) to V starting with RVq(st.relq)

– ∀t ∈ P advance and unblock ↓t

• else block ↓p on o

4. If ↓p= o = F(fence) then append o to V and advance ↓p
First, we show that this merge procedure generates a visibility order V, which contains all the oper-

ations of the sequences V(Sp), for each p ∈ P . That is, we show it is deadlock-free. Observe that if ↓p
is blocked on some o, then (1) o = RVp(st[.rel]q), q 6= p, where st[.rel]q is either a st or a st.rel, and (2)

there is some ↓q= o′ and o′
Sq
−→RVq(st[.rel]q) (We say that ↓p is blocked by ↓q).

Lemma 3.4 In the merge procedure if there is at least one not-null pointer, then there is at least one
unblocked, not-null pointer.

9

Proof: Assume for the sake of obtaining a contradiction that the merge is not complete (there is at
least one not-null pointer) and all not-null pointers are blocked. Since no pointer is blocked by itself, all
not-null pointers are blocked if each is participating in a ‘blocked by’ cycle and each ‘blocked by’ cycle has
length ≥ 2. The following claim shows that ‘blocked by’ cycles cannot be a result of st.rel instructions.

Claim 3.5 In every ‘blocked by’ cycle there does not exist a pointer ↓p = RVp(st.relt) for any
t ∈ P .
Proof: If there is such a pointer ↓p = RVp(st.relt), then since p is in some ‘blocked by’ cycle,
there must be some q 6= p such that ↓q is blocked by ↓p. So, one of the following cases apply:

• ↓q = RVq(stp) and RVp(st.relt)
Sp
−→RVp(stp): By release to store agreement we must also

have

RVq(st.relt)
Sq
−→RVq(stp).

• ↓q = RVq(st.relr) and RVp(st.relt)
Sp
−→RVp(st.relr): By release agreement we have

RVq(st.relt)
Sq
−→RVq(st.relr).

In either case, ↓q must have advanced beyond RVq(st.relt). However by construction, ↓q could
only make this advance if in the same step ↓p advances past RVp(st.relt), contradicting the
position of ↓p.

It remains to consider non-release stores, or every ↓p that is blocked at some RVp(stq) for some q 6= p

and p and q are in the same ‘blocked by’ cycle, say c. It must be the case that ∀pi in cycle c, ↓pi
=

RVpi
(stp(i+1)mod k

) and stp(i+1)mod k

Spi−→ stpi
, contradicting the cycle free agreement property and proving

the lemma.

Now that we have shown the merge procedure adds all operations to V, we show next that V satisfies
Itanium.

Lemma 3.6 Each V(Sp) satisfies (RV1), (RV2), and (RV3).

Proof: Each Sp is valid. That is, each ld or ld.acq instruction returns the value of the most recent
preceding st or st.rel to the same shared variable, or the initial value if no such st or st.rel exists. Thus,
the construction ensures that in V(Sp), each R(ld[.acq]) is preceded by RVp(st[.rel]) where st[.rel] is the
causally related instruction to ld[.acq] and there are no operations RVp(st[.rel]) between them, where
st[.rel] is to the same variable as st[.rel].

Observation 3.7 The merge of the V(Sp) sequences, ∀p ∈ P , ensures the write order rule (WO) in V.

Observation 3.8 The merge of the V(Sp) sequences, ∀p ∈ P , ensures the write back release rule (WBR)
in V.

Lemma 3.9 The merge of the V(Sp) sequences, ∀p ∈ P , ensures the program order rules (ACQ), (REL)
and (FEN) in V.

Proof: Each Sp maintains Strong Acquire and Release parts of the Strong Orderable Order. The merge
procedure does not advance ↓p until after an operation corresponding to an acquire instruction is in V
yielding (ACQ). The merge procedure does not unblock ↓p on an operation corresponding to a release
before all preceding operations are in V yielding (REL). Since each Sp maintains the Strong Acquire part
of the Strong Orderable Order, the merge procedure does not place a F(fence) operation on V until after
operations that correspond to instructions that precede the fence in Sp. Since each Sp maintains the
Release parts of the Strong Orderable Order, the merge does not advance ↓p until after the F(fence) is
in V. This yields (FEN).

10

Lemma 3.10 The merge of the V(Sp) sequences, ∀p ∈ P , maintains the memory data dependence rules
(MD:RAW), (MD:WAR) and (MD:WAW), and the coherence rule (COH).

Proof: Each Sp maintains the Same Memory part of the Strong Orderable Order. The merge ensures
that the corresponding R and LV and RVp operations are placed in this order for all processors, p, yielding
(MD:RAW) (MD:WAR) and (MD:WAW).

All Sp maintain the Same Memory agreement property on store instructions. The merge procedure
places all RV operations of store instructions and on the same variable in V in the same order as Sp for
all p, yielding (COH) .

Lemma 3.11 V is an Itanium verifying visibility order.

Proof: By Lemma 3.4, V contains all the operations of the given computation. By Observation 3.7, V
maintains (WO). By Lemma 3.9, V maintains (ACQ), (REL) and (FEN). By Lemma 3.10, V maintains
(MD:RAW), (MD:WAR), (MD:WAW) and (COH). By Observation 3.8, V maintains (WO).

By Lemma 3.6 each V(Sp) satisfies (RV1), (RV2), and (RV3); therefore, these are maintained in V.

Computation 2 satisfies Itanium consistency but not ItaniumA consistency.

Computation 2

{

p : 4←ld(y) st(x, 5) st.rel(z, 2)
q : st(x, 3) 3←ld.acq(x) st(y, 4) 2←ld.acq(z) 3←ld(x)

A sequence V that satisfies Itanium is: LV(stq(x, 3)), Rq(3←ld.acqq(x)), LV(stq(y, 4)), RVq(stq(y, 4)),
RVp(stq(y, 4)), Rp(4←ld.acqp(y)), LV(stp(x, 5)), LV(st.relp(z, 2)), RVp(stp(x, 5)), RVq(stp(x, 5)),
RVp(st.relp(z, 2)), RVq(st.relp(z, 2)), Rq(2←ld.acqq(z)), Rq(3←ldq(x)), RVq(stq(x, 3)), RVp(stq(x, 3)).

The ItaniumA sequence, Sp, must extend: stq(y, 4)
valid
−→ 4←ld.acqp(y)

sacq
−→ stp(x, 5)

ord
−→ st.relp(z, 2).

The sequence (I(C)|q ∪ I(C)|w, Sq) must extend: stq(x, 3)
same memory
−→ 3←ld.acqq(x)

strong acquire
−→ stq(y, 4)

cycle free
−→ stp(x, 5)

release
−→ st.relp(z, 2)

valid
−→ 2←ld.acqq(z)

strong acquire
−→ 3←ldq(x). This makes the final

3←ldq(x) invalid.

Theorem 3.12 ItaniumA memory consistency is strictly stronger than Itanium memory consistency.

Proof: By Lemma 3.11, any Itanium-based computation that satisfies ItaniumA also satisfies Itanium,
and Computation 2 is an Itanium-based computation that satisfies Itanium but not ItaniumA.

4 Comparing Alternative Acquire Orders

ItaniumB and ItaniumA bound Itanium and the only difference between them is slight changes in the Ac-
quire Order. So a natural question is: “Is there a definition of an Acquire Order that yields a programmer-
centric memory consistency specification that is equivalent to Itanium?” This section examines several
plausible Acquire Order definitions and compares their relative strengths. One interesting result is an-
other memory consistency model that is weaker that ItaniumA yet still strictly stronger than Itanium.

4.1 Acquire order definitions

Define the write-before-read relation (I(C),
wbr
−→) by: i1

wbr
−→ i2 if, for some shared variable x, i1 ∈ I(C)|x|w

and i2 ∈ I(C)|x|r and i2 reads the same value written by i1.
I addition to Acquire A and Acquire B defined in Subsection 2.2, define to additional acquire orders

as follows. Let i, j ∈ I(C) such that i
prog
−→j.

Acquire C: i1 ∈ I(C)|acq and i2 is a non-domestic load.

Acquire D: i1
wbr
−→ i3

prog
−→ i2 and i3 ∈ I(C)|acq

11

These two partial orders give rise to two new definitions for Itanium consistency, in particular ItaniumC

(Definition 2.1 with R = Acquire C) and ItaniumD (Definition 2.1 with R = Acquire D).
More variants of the Itanium memory consistency model are defined by combining the four basic

acquire orders based either on intersection or conjunction as follows. Let γ, β ∈ {A, B, C, D}.
Intersection: A computation C satisfies Itaniumγ∩β if C satisfies Itaniumγ and Itaniumβ .

Conjunction: A computation C satisfies Itaniumγ∧β if C satisfies Itaniumγ∩β and there is a set of
Itaniumγ-verifying sequences for C that are also Itaniumβ-verifying sequences for C.

Note that the models Itaniumγ∩β allow the Itaniumγ-verifying sequences for C to be different from
Itaniumβ-verifying sequences for C. Hence, Itaniumγ∧β is stronger than Itaniumγ∩β .

Since ItaniumA is stronger than each of ItaniumB, ItaniumC , and ItaniumD, this introduces six new
and distinct Itanium memory consistency models: ItaniumC∩B, ItaniumC∩D ItaniumD∩B ItaniumC∧B,
ItaniumC∧D and ItaniumD∧B. Observe that ItaniumA is also stronger than each of the models ItaniumC∧B,
ItaniumC∧D and ItaniumD∧B.

Figure 1 shows the relative strengths of these models. The next two subsections present computations
and proofs that establish the relationships of Figure 1. Table 1 summarizes the arguments used for
incomparable models in Figure 1.

Itanium

ItaniumCItaniumD

ItaniumC B

IncomparableD B
Itanium U

C D

U Itanium
C B

U

ItaniumB

WeakStrong

ItaniumA

Itaniumspec

ItaniumD B ItaniumC D

Figure 1: Relative Strength of Various Systems

4.2 Incomparable consistency models

Here also we abbreviate our notation: a
valid
−→ b means that validity requires that a precedes b in the

sequence being discussed; a
Same Mem
−→ b means that the Same Memory Order requires that a precedes b in

the sequence being discussed; a
Same Mem Agree

−→ b means that the Same Memory Agreement requires that
a precedes b in the sequence being discussed; and hence forth.

Computation 1 of Subsection 3.1 was shown to satisfy ItaniumB but not Itanium (consequently,
ItaniumA). Computation 1 does not satisfy ItaniumC (consequently, it does not satisfy any of ItaniumC∩B,

ItaniumC∧B, ItaniumC∩D, or ItaniumC∧D); the sequence Sq must extend: stp(y, 4)
valid
−→ 4←ld.acqq(4)

Acquire C
−→ stq(x, 3). Since stp(y, 4)

Sq
−→ stq(x, 3) the Cycle Free Agreement requires that stp(y, 4)

Sp
−→ stq(x, 3).

Thus the sequence Sp has a cycle: stp(y, 4)
Cycle Free
−→ stq(x, 3)

valid
−→ 3←ldp(x)

Same Mem
−→ stp(x, 2)

Same Mem
−→ 2←ld.acqp(x)

Acquire C
−→ stp(y, 4).

Computation 1 satisfies ItaniumD as shown by the following verifying sequences:
{

Sp : stq(x, 3) 3←ldp(x) stp(x, 2) 2←ld.acqp(x) stp(y, 4)
Sq : stq(x, 3) stp(x, 2) stp(y, 4) 4←ld.acqq(y)

Since Computation 1 satisfies both ItaniumB and ItaniumD, it also satisfies ItaniumD∩B. However, it

does not satisfy ItaniumD∧B: The sequence Sq must extend stp(y, 4)
valid
−→ 4←ld.acqq(y)

Acquire B
−→ stq(x, 3).

Since stp(y, 4)
Sq
−→ stq(x, 3) the Cycle Free Agreement requires that stp(y, 4)

Sp
−→ stq(x, 3). Thus the se-

quence Sp has a cycle: stp(y, 4)
Cycle Free
−→ stq(x, 3)

valid
−→ 3←ldp(x)

Same Mem
−→ stp(x, 2)

Acquire D
−→ stp(y, 4).

12

Computation 3

{

p : st(x, 1) 2←ld.acq(y) 1←ld(x)
q : 1←ld(x) st(x, 3) st.rel(y, 2)

Computation 3 does not satisfy Itanium (consequently, ItaniumA) because V must extend: LV(stp(x, 1))
(WO)
−→ RVp(stp(x, 1))

(WO)
−→ RVq(stp(x, 1))

(RV 2)
−→ R(1←ldq(x))

(WAR)
−→ LV(stq(x, 3))

(WO)
−→ RVq(stq(x, 3))

(WO)
−→ RVp(stq(x, 3))

(REL)
−→ RVp(st.relq(y, 2))

(RV 2)
−→ R(2←ld.acqp(y))

(ACQ)
−→ R(1←ldp(x)). This, how-

ever, ensures that the R(1←ldp(x)) does not satisfy any of (RV1), (RV2), or (RV3).
Computation 3 does not satisfy ItaniumB (consequently, it does not satisfy any of ItaniumC∧B,

ItaniumD∧B, ItaniumC∩B, or ItaniumD∩B) : the sequence Sq must maintain stp(x, 1)
valid
−→ 1←ldq(x)

Same Mem
−→ stq(x, 3)

Release
−→ st.relq(y, 2). Since stp(x, 1)

Sq
−→ stq(x, 3), by the Same Memory Agreement

we must have stp(x, 1)
Sp
−→ stq(x, 3). So, sequence Sp must maintain stp(x, 1)

Same Mem Agree
−→ stq(x, 3)

Release
−→ st.relq(y, 2)

valid
−→ 2←ld.acqq(y)

Acquire B
−→ 1←ldp(x), yielding an invalid 1←ldp(x).

Computation 3 satisfies ItaniumC∧D (consequently, it also satisfies ItaniumC , ItaniumD, and ItaniumC∩D)
as shown by the following sequences:

{

Sp : stp(x, 1) 1←ldp(x) stq(x, 3) st.relq(y, 2) 2←ld.acqp(y)
Sq : stp(x, 1) 1←ldq(x) stq(x, 3) st.relq(y, 2)

Computation 4

{

p : st(y, 2) 5←ld(x) st.rel(x, 1) 1←ld.acq(x) 2←ld(y)
q : 2←ld(y) st(y, 4) st.rel(x, 5)

Computation 4 does not satisfy Itanium nor ItaniumA. Had it been the case, V must extend:

LV(stp(y, 2))
(WO)
−→ RVp(stp(y, 2))

(WO)
−→ RVq(stp(y, 2))

(RV 2)
−→ R(2←ldq(y))

(RAW)
−→ LV(stq(y, 4))

(WO)
−→

RVq(stq(y, 4))
(WO)
−→ RVp(stq(y, 4))

(REL)
−→ RVp(st.relq(x, 5))

(RV 2)
−→ R(5←ldp(x))

(REL)
−→ LV(st.relq(x, 1))

(RV 1 or 2)
−→ R(1←ld.acqp(x))

(ACQ)
−→ R(2←ldp(y)). However this means that the final R(2←ldp(y)) does

not satisfy any of (RV1), (RV2), or (RV3).
Computation 4 satisfies ItaniumC∧B (consequently, ItaniumC , ItaniumB, and ItaniumC∩B) as shown

by the following sequences:
{

Sp : stp(y, 2) 2←ldp(y) stq(y, 4) st.relq(x, 5) 5←ldp(x) st.relp(x, 1) 1←ld.acqp(x)
Sq : stp(y, 2) 2←ldq(y) stq(y, 4) st.relq(x, 5) st.relp(x, 1)

Computation 4 does not satisfy ItaniumD (and hence it does not satisfy any of ItaniumC∧D, ItaniumD∧B,

ItaniumD∩B, or ItaniumC∩D). The sequence Sq must extend: stp(y, 2)
valid
−→ 2←ldq(y)

Same Mem
−→

stq(y, 4). Thus, the Same Memory Agreement requires that stp(y, 2)
Sp
−→ stq(y, 4). Therefore, Sp must ex-

tend: stp(y, 2)
Same Mem Agree

−→ stq(y, 4)
Release
−→ st.relq(x, 5)

valid
−→ 5←ldp(x)

Release
−→ st.relp(x, 1)

Acquire D
−→

2←ldp(y). This ensures that the final 2←ldp(y) is invalid.

Computation 5











p : st(x, 1) 1←ld.acq(x) st(y, 2)
q : 2←ld(y) st(y, 3) st.rel(x, 4)
t : 4←ld.acq(x) 1←ld(x)

Computation 5 satisfies Itanium (Consequently, ItaniumB) as shown by the following visibility order
V: LV(stp(x, 1)) R(1←ld.acqp(x)) LV(stp(y, 2)) RVp(stp(y, 2)) RVq(stp(y, 2)) RVt(stp(y, 2)) R(2←ldq(y))
LV(stq(y, 3)) RVq(stq(y, 3)) RVp(stq(y, 3)) RVt(stq(y, 3)) LV(st.relq(x, 4)) RVq(st.relq(x, 4)) RVp(st.relq(x, 4))
RVt(st.relq(x, 4)) R(4←ld.acqt(x)) RVp(stp(x, 1)) RVt(stp(x, 1)) R(1←ldt(x)) RVq(stp(x, 1)).

However, Computation 5 does not satisfy ItaniumC nor ItaniumD. The sequence Sq must extend

stp(y, 2)
valid
−→ 2←ldq(y)

Same Mem
−→ stq(y, 3). Thus, the Same Memory Agreement requires that stp(y, 2)

−→ stq(y, 3) in all sequences. So, the sequence Sp must extend stp(x, 1)
Same Mem
−→ 1←ld.acqp(x)

Acquire C
−→ stp(y, 2)

Same Mem Agree
−→ stq(y, 3)

Release
−→ st.relq(x, 4) or stp(x, 1)

Acquire D
−→ stp(y, 2)

Same Mem Agree
−→

stq(y, 3)
Release
−→ st.relq(x, 4) . Thus, the Same Memory Agreement requires that stp(x, 1) −→ st.relq(x, 4)

13

in all sequences. Observe that the final part of Same Memory Order requires that sequence St maintains
4←ld.acq(x) before 1←ld(x) and thus it cannot be valid.

Consequently, Computation 5 does not satisfy any of ItaniumC∧D, ItaniumC∧B, ItaniumD∧B, ItaniumD∩B,
ItaniumC∩D, or ItaniumC∩B.

Computation Spec A B C D C ∩ B C ∩ D D ∩ B C ∧ B C ∧ D D ∧ B

1 × ×
√

×
√

× ×
√

× × ×
3 × × ×

√ √
×

√
× ×

√
×

4 × ×
√ √

×
√

× ×
√

× ×
5

√ √
× × × × × × × ×

Table 1: Summary of Computation-Model Satisfiability

Theorem 4.1 Itanium is incomparable to 1. ItaniumC , 2. ItaniumD, 3. ItaniumC∧D, 4. ItaniumC∧B,
5. ItaniumD∩B, 6. ItaniumC∩B, and 7. ItaniumC∩D

Proof: 1. Computation 3 does not satisfy Itanium but satisfies ItaniumC . Computation 5 does
not satisfy ItaniumC but satisfies Itanium. 2. Computation 1 does not Itanium but satisfies ItaniumD.
Computation 5 does not satisfy ItaniumD but satisfies Itanium. 3. Computation 3 does not satisfy
Itanium but satisfies ItaniumC∧D. Computation 5 does not satisfy ItaniumC∧D but satisfies Itanium.
4. Computation 4 does not satisfy Itanium but satisfies ItaniumC∧B. Computation 5 does not satisfy
ItaniumC∧B but satisfies Itanium. 5. Computation 1 does not satisfy Itanium but satisfies ItaniumD∩B.
Computation 5 does not satisfy ItaniumD∩B but satisfies Itanium. 6. Computation 4 does not satisfy
Itanium but satisfies ItaniumC∩B. Computation 5 does not satisfy ItaniumC∩B but satisfies Itanium.
7. Computation 3 does not satisfy Itanium but satisfies ItaniumC∩D. Computation 5 does not satisfy
ItaniumC∩D but satisfies Itanium.

Theorem 4.2 ItaniumB is incomparable to ItaniumCand ItaniumD.

Proof: Computation 3 does not satisfy ItaniumB but satisfies ItaniumC . Computation 1 does not
satisfy ItaniumC but satisfies ItaniumB. Computation 3 does not satisfy ItaniumB but satisfies ItaniumD.
Computation 5 does not satisfy ItaniumD but satisfies ItaniumB.

Theorem 4.3 ItaniumC is incomparable to ItaniumD.

Proof: Computation 4 does not satisfy ItaniumD but satisfies ItaniumC . Computation 1 does not
satisfy ItaniumC but satisfies ItaniumD.

Theorem 4.4 ItaniumC∧D is incomparable to ItaniumC∧B.

Proof: Computation 3 does not satisfy ItaniumC∧B but satisfies ItaniumC∧D. Computation 4 does not
satisfy ItaniumC∧D but satisfies ItaniumC∧B.

4.3 A model strictly weaker than ItaniumA and stronger than Itanium

We prove that ItaniumD∧B is strictly stronger than Itanium. The proof mimics that of Theorem 3.12.
Given C ∈ C(P , ItaniumD∧B), we construct a visibility order V for C and prove that it satisfies all the
requirements of Itanium. To show strict inequality, a computation is provided that satisfies Itanium but
not ItaniumD∧B.

We begin with a set of sequences, Sp, for each p ∈ P that are valid total orders of the operations
I(C)|p∪ I(C)|w and meet the consistency requirements and Agreement properties of ItaniumD∧B. From
each Sp create a sequence Altered(Sp) as follows: locate each ld.acq that has instructions i such that

ld.acq
prog
−→i but i

Sp
−→ ld.acq. Move each of these ld.acq instructions to immediately precede the earliest

such i in Sp. From each Altered(Sp) create a sequence V(Altered(Sp)) as follows:

• replace each ld[.acq] instruction by R(ld[.acq]).

14

• replace each st[.rel] instruction such that Proc(st[.rel])= p by two contiguous operations: LV(st[.rel]),
RVp(st[.rel]).

• replace each remaining st[.rel] instruction (Proc(st[.rel])= q 6= p) by RVp(st[.rel]).

• replace each fence by F(fence).

Use the same merge algorithm as was used in Subsection 3.2 to merge the V(Altered(Sp)) sequences
and call the resulting sequence V. By Lemma 3.4 the merge does not deadlock.

Lemma 4.5 Each V(Altered(Sp)) satisfies (RV1), (RV2), and (RV3).

Proof: Each Sp is valid. That is, each ld[.acq] instruction returns the value of the most recent preceding
st[.rel] to the same shared variable, or the initial value if no such st[.rel] exists. The validity of the ld[.acq]
instructions that were not moved are unaffected. For any ld.acq L that was moved, Acquire B Order
ensures that L is domestic and the Acquire D Order ensures that the instruction i that caused L to move
will follow its causally related instruction T in both program order and in Sp. The Same Memory Order

ensures that L is between T and the next st[.rel] instruction to the same variable T’. That is, T
Sp
−→ i

Sp
−→ L

Sp
−→ T’. The altered sequence simply moved L forward of i: T

Altered(Sp)
−→ L

Altered(Sp)
−→ i

Altered(Sp)
−→

T’. Thus L is valid in Altered(Sp).
The construction ensures that in V(Sp), each R(ld[.acq]) is preceded by RVp(st[.rel]) where st[.rel] is

the causally related instruction to ld[.acq] and there are no operations RVp(st[.rel]’) between them, where
st[.rel]’ is to the same variable as st[.rel].

Lemma 4.6 The merge of the V(Altered(Sp)) sequences, ∀p ∈ P , ensures that (ACQ), (REL) and
(FEN) are satisfied in V.

Proof: Each Altered(Sp) maintains Acquire B, Acquire D, and Release Order. The ld.acq instructions
that are moved to create Altered(Sp) are those that maintain only Acquire D Order and not Acquire B

Order. This movement ensures that i
Altered(Sp)
−→ ld.acq for every instruction i where i

prog
−→ ld.acq. Thus,

the merge procedure does not advance ↓p until after an operation corresponding to an ld.acq instruction
is in V yielding (ACQ). The merge procedure does not unblock ↓p on an operation corresponding to a
st.rel before all preceding operations are in V yielding (REL). Since each Sp maintains Acquire A Order,
the merge procedure does not place a F(fence) operation on V until after the operations that correspond
to instructions that precede the fence in Sp. Since each Sp maintains Release Order, the merge does not
advance ↓p until after the F(fence) is in V. This yields (FEN).

Lemma 4.7 V is an Itanium verifying visibility order.

Proof: By Lemma 3.4, V contains all the operations of the given computation. By Observation 3.7, V
maintains (WO). By Lemma 4.6, V maintains (ACQ), (REL) and (FEN). By Lemma 3.10, V maintains
(MD:RAW), (MD:WAR), (MD:WAW) and (COH). By Observation 3.8, V maintains (WO).

By Lemma 4.5 each V(altered(Sp)) satisfies (RV1), (RV2), and (RV3); therefore, these are maintained
in V.

Theorem 4.8 ItaniumD∧B memory consistency is strictly stronger than Itanium memory consistency.

Proof: By Lemma 4.7, any Itanium-based computation that satisfies ItaniumD∧B also satisfies Itanium,
and Computation 5 is an Itanium-based computation that satisfies Itanium but not ItaniumD∧B.

So, ItaniumD∧B is weaker than ItaniumA but still stronger than Itanium. At present a programmer-
centric consistency model that is equivalent to Itanium has not been identified.

15

References

[1] P. Chatterjee and G. Gopalakrishnan. Towards a formal model of shared memory consistency for Intel Itanium TM. In
Proc. 2001 IEEE International Conference on Computer Design (ICCD), pages 515–518, Sept 2001.

[2] L. Higham and L. Jackson. Porting between Itanium and Sparc multiprocessing systems. In Accepted to: 18th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’06), to appear 2006.

[3] L. Higham, L. Jackson, and J. Kawash. Specifying memory consistency of write buffer multiprocessors. ACM Trans. on
Computer Systems. To appear.

[4] L. Higham, L. Jackson, and J. Kawash. Capturing register and control dependence in memory consistency models with
applications to the Itanium architecture, May 2006. Submitted to: DISC 2006.

[5] Intel Corporation. A formal specification of the Intel Itanium processor family memory ordering. http://www.intel.com/,
Oct 2002.

[6] L. Jackson. Phd thesis: Complete framework for memory consistency with applications to Itanium multiprocessors, In
Preparation, 2006.

[7] R. Joshi, L. Lamport, J. Matthews, S. Tasiran, M. Tuttle, and Y. Yu. Checking cache-coherence protocols with tla,
2003.

[8] Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Analyzing the Intel Itanium memory ordering rules using
logic programming and sat. Technical Report UUCS-03-010, University of Utah, 2003.

16

