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Abstract 

State-space models are widely used in engineering, biology, finance and many other 

fields. Often, there are two stochastic processes in a state-space model. One, the 

signal, is not observed directly and is said to be hidden, but is often observed through 

a second observation process. Usually, there is noise present in both the unobserved 

and observed processes. Hidden Markov models are one of the most popular state-space 

models. In hidden Markov models, the hidden process is a Markov process. 

In a state-space model, the problem is how to estimate thehidden states and the 

parameters of the model, given the observations. In order to estimate the state and 

parameters simultaneously, I adopt the EM algorithm and a method called "change of 

measure". Some of these methods were introduced in one of Robert Elliott's papers in 

1994. Later, in 2006, R. J. Elliott and W. P. Malcolm gave some improvements to the 

related smoother. In this thesis, I apply the "measure change" and the EM algorithm 

to the filtering problem for the Autoregressive hidden Markov model (ARHMM). Using 

extensions of the Viterbi algorithm, estimates of the hidden states and parameters are 

obtained for a Hidden Markov model where the observed process takes values in finite 

discrete state space. 

Sometimes, the hidden signal and the observation process have nonlinear dynamics. 

I apply a measure change to obtain an estimate of the joint density of the hidden signal 

and the parameters of such a model where the hidden signal and observation process 

are scalar processes and have nonlinear dynamics. 

In many practical cases, the noise in the observations is correlated and has some 

"memory". In this thesis, I also consider the several state-space models, where the sig-

nal is observed through a real valued process which is corrupted by fractional Gaussian 

II 
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noise. I derive the exact estimates and approximate recursive estimates for the hidden 

signal and the parameters, using the change of measure method. 

Simulations and applications to some practical problems are carried out to demon-

strate the performance of the algorithms. 
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Chapter 1 

INTRODUCTION TO HIDDEN MARKOV MODELS 

1.1 Markov Processes 

A stochastic process which satisfies Markov property is called a Markov process, i.e., a 

stochastic process is a Markov process if its past and future are conditionally indepen-

dent given the present. Markov processes are named after the Russian mathematician 

Andrey Markov. 

Definition 1.1. Suppose {X, t € [0, oo)} is a real valued stochastic process on a 

probability space (c2,.F,P). Let {}, t E (0,00) be the filtration generated by {X8,0 ≤ 

s ≤ t} and write o(X3) to be the o--field generated by X. Denote B() to be the Borel 

field on R. Then, {X, t E [0, oo)} is said to be a Markov process if 

1. The stochastic process {X, t E [0, oo)} is adapted to the filtration {J}, i.e., Xt 

is .F-measurable for all t. 

2. For any Os<t<oo and any A€8(Q),we have 

P(Xt E AlT8) = P(Xt E Ajcr(X8)).[44][5] 

1.2 Markov Chain 

Usually, a Markov chain means a discrete-time Markov process. 

Suppose (, T, P) is a probability space. On (, T, 7') we consider a sequence of 

random variables X = {X, n = 0, 1, 2, ...} with a finite state space Sx := (x1, x2,. . . , XN). 

Without loss of generality, the state space of X can be identified with the set S = 
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{ e1, 62,... . eN}, where ej is the unit vector with unity in the ith position and zero 

elsewhere. At each instant the process X may change its state from the current state 

to another state, or remain in the same state, according to a certain probability dis-

tribution. The changes of state are called transitions. The conditional probabilities 

P(X 1 = ej JXn = e) A P (n), e, ej € S are called transition probabilities, and the 

probabilities P(X = es), 1 ≤ i < N, are called marginal probabilities. X is a Markov 

chain, if it satisfies the Markov property, that is 

P(Xfl+1=eIXfl=ei,Xk=ek,k= 1,2,...,n -1) = P(X +i =ejIX=ej) 

= 

V 1 ≤ ≤ N, and n ≥ 0. 

Write IIn = (pjj (fl)), 1 ≤ i,j ≤ N. Then, 

(1.2.2) 

Note that 

E[X 1jX] = 

i=1 

EY 
i=1 j= 
N 

j=1 

N 

= eIX)e 

<X1, ej >pjj (n)ej 

<xn , ej > 

N 

i=1 

pij (n)ej 

<X, ej > fle 
j=1 

= rix, 

where < .,. > means the scalar product. 

Then E[M 1jX] = - ]TIX71 X] = 0. So, M = {M,n = 1,2,...} 

is a sequence of martingale increments. 
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In addition, if the Markov process is (time-) homogeneous, then 

V l≤i,j,ik_<N, and n≥O. 

Write 11 = (p), 1 ≤ i,j ≤ N, then 

x+1 = rix + M+i. (1.2.3) 

Otherwise, it is nonhomogeneous. Homogeneous Markov processes form the most 

widely used class of Markov processes. 

1.3 Continuous-time Markov Chain [36] 

Suppose (, .F, 7') is a probability space. We consider a continuous-time Markov pro-

cess {X, t € [0, oo)} on (, .F, 7') with a finite state space S = {e, e2,... , CN} E RN. 

Write pt = P (Xt e), 1 ≤ i ≤ N, and Pt = ...,p)'. Suppose for some matrix 

At = (a(t)), t ≥ 0, pt satisfies the forward Kolmogorov equation 

The transition matrix (t, s) associated with At is defined by 

  =  dt At  (t, s), (s, s) = I, 

d(t, s) =  ds —A(t, s), (t, t) I, 

where I is the identity matrix. 

(1.3.1) 

(1.3.2) 

(1.3.3) 
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Then, if X is a Markov process, 

E[XtIFs] = E[XtIXs] 

P(Xt = ejIX3)ei 
i=1 

= <Xe, e >P(X = eJX8 = e)e 
i=1 j=1 

N N 

<X3,e> 
j=1 

N 

i=1 

<X5,e3 > (t,$)e 
j=1 

= (t,$)X5. 

Write M := - Xo - fArXrdr. For 0 ≤ s ≤ t, we have 

E[Mt — MsIJ] = 

t 

E[x - - f A,.X.dT PC8] 
(t, s)X8 - - f A,4('i', s)X8dr 

0. 

We see that {M}, t ≥ 0, is an RI-valued martingale process with respect to the 

filtration generated by {X}, t ≥ 0. 

Therefore, {X}, t ≥ 0 has the following dynamics: 

Xt=Xo+ ArXrdr+MtER,N. 
f - 

1.4 Hidden Markov Models 

(1.3.4) 

Hidden Markov Models are one of the most widely used stochastic models in engineer-

ing, biology, finance and many other fields. Having introduced Markov processes, we 

shall give some descriptions of hidden Markov models. 
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According to L. R. Rabiner[22], a hidden Markov model (11MM) is doubly stochastic 

process, with one Markov process that is not observed directly (hidden), but could be 

observed through another noisy process. 

Suppose the signal, or state, process {X}, is a Markov process which cannot be 

observed directly. Xt is often called a hidden state at time t. Information concerning 

{X} is obtained from the observation process {Y}, which is influenced by the hidden 

state, and so gives some information about the hidden states. The state space of {X}, 

Sx, is taken as the set S = {ei, e2,.. . , eN} of unit vectors. Denote the state space 

of {} as Sy. If Sy is finite, it can be identified with the set Sy = {fl, f2, ..., fM}, 

where fj is the unit vector with unity in the jth position and zero elsewhere. Write 

qji = P(Yt = fjlXt= i), C = (c). Then the dynamics of X and Y can be written 

as: 

xt+1 = AX + V 1,  

= cx,+1 + w+1. (1.4.2) 

Here, A is the transition probability matrix of the Markov chain. V and W, represent 

the driving noise and measurement noise respectively. Details of this model are given 

in Chapter 4. 

Suppose a hidden Markov model is discrete in time, in the state, and continuous 

in the measurement space. For example, suppose the observation process is a scalar 

process {yt}. Then the dynamics of the model can be expressed as: 

Xt+i = AX + V+,, 

Yt+i = <9, Xt+i > + < £7, X 1 > w+1, 

(1.4.3) 

(1.4.4) 

where A is the transition probability matrix of the Markov chain; g and a are N-

dimensional vectors; V and wt are the driving noise and scalar measurement noise 
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respectively. The filtering and estimation problems regarding this model are discussed 

in Chapter 2. 

There are three basic problems associated with HMMs: [22] 

(1) Given the parameters of the model and the output sequence, compute the 

probability that a particular output sequence is produced by the model. 

(2) Given the parameters of the model, find the most likely sequence of hidden 

states that could have generated a given output sequence. 

(3) Optimize the model parameters, so as to best describe how the observations have 

been produced. In other words, given an output sequence, find the most likely state 

transition probability matrix and output probabilities, that is, find the parameters of 

the 11MM. 

L. R. Rabiner gave some classical solutions to the above three problems. For prob-

lem (1), the forward-backward algorithm is often used; for problem (2), the Viterbi 

algorithm is often used; for problem (3), the Baum-Welch algorithm is often used. The 

details of these algorithms can be found in [22] and [23]. In this thesis, we mainly 

discuss the following problem: 

Given an output sequence, find the parameters of the HMM and the most likely 

sequence of hidden states which could have generated the output. 

We also discuss more general discrete-time models where the state space of the 

scalar hidden states {Xt} and the scalar observations {Yt} are both continuous. That 

is, we consider the dynamics: 

Xt+1 = f(xt) + Vt+i, (1.4.5) 

Yt+i = (1.4.6) 

where the function f(s) may be either linear or nonlinear, and xt and yt have a linear 

relationship, i.e., g(o) is a linear function. 
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1.5 History and Applications of a Hidden Markov Model 

Hidden Markov Models, HMMs, were first described by Leonard E. Baum and other 

authors in 1960s. HMMs initially appeared in some statistical papers. Later, in the 

second half of the 1970s, L. R. Rabiner induced HMMs into speech recognition. This 

was an important application of HMMs. [23] 

In the late 1980s, HMMs began to be used in computational biology and bioin-

fomatics, to analyze biological sequences, especially the DNA sequence. Since then, 

many biological models based on HMMs have been introduced. 

In the last 20 years, HMMs have become important models in temporal pattern 

recognition, such as speech, handwriting, gesture and image recognition, classification, 

navigation, musical score following, partial discharges and bioinformatics. They are 

also useful tools in other fields, such as finance and social science. 

In this thesis, we shall discuss two applications of HMMs: tracking and classifica-

tion. 
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Chapter 2 

A FILTER FOR A SIMPLE LINEAR HIDDEN MARKOV 

MODEL 

2.1 Introduction 

In this chapter, we consider a discrete time, discrete finite state Markov chain, observed 

through a real valued function whose values are corrupted by Gaussian. noise, and the 

relation between the hidden states and the observations is linear. The state space of the 

observations is continuous. This is the simplest, but most widely used hidden Markov 

model. Many problems in bioinformatics, finance and engineering, such as tracking, 

navigation, pattern recognition, and so on, can be modeled as such a model. 

In order to estimate the hidden states and the parameters of the HMM, we derive 

the recursive estimates based on a "change of measure" and the Expectation Maximiza-

tion(EM) algorithm. This method was introduced in one of Robert J. Elliott's papers 

in 1994 [28]. Later in 2006, R. J. Elliott and W. P. Malcolm gave some improvement 

to the smoother [37]. 

In the following sections, I first give a description of this model. Then, a new mea-

sure is constructed, under which the observations are N(0, 1) i.i.d random variables. 

Working undefr the new measure, recursive estimates are obtained for the states of the 

Markov chain, for the number of jumps from one state to another, for the occupation 

time in any state, and for processes related to the observations. Using the EM algo-

rithm, estimates of all the parameters of the model are obtained, including the variance 

of the Gaussian noise in the observations. In the last part of the chapter, simulations 
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are given which demonstrate the effectiveness of the method. I also apply this method 

to the problem of classification of DNA copy numbers. 

2.2 A Simple Linear Hidden Markov Model 

Assume a finite state time-homogeneous Markov chain X = {X, t = 0, 1, .. .1 is defined 

on probability space (1, J, P). Without loss of generality, the state process of X can 

be identified with the set of unit vectors 

S={ei,e2,...e }, 

where ej = (0, 0, ..., 0, 1, 0, ..., 0)' E RN. 

We assume the chain is time-homogeneous and write 

aj,j = P(X+1 = ejlXt = e) 

= P(Xi = ejlXo = es). (2.2.1) 

Then A = 1 < i < N, 1 < j < N, is the matrix of transition probabilities. 

Lemma 2.1. Write J= o{Xo, X1, ..., X}, and IF for the filtration {J}, then 

Xt = AX,_ + M, (2.2.2) 

where Mt is a (P, F) martingale increment. 
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Proof 

Then 

E[XtIX.1] = 

i=1 

N N 

i=1 j= 

N 

3=1 

N 

= eiI.X_i)e 

<X_1, ej >ae 

<xt_1, ej > 

<Xt_i,e > Aej 
j=1 

= AX-1. 

E[MtI.Fi] = E[X - AXt...iIJi] 

= 

=0. 

E 

We suppose the process X is not observed directly; rather, it is observed through 

another function, whose values are corrupted by Gaussian noise. All functions of X 

are linear. We suppose the observations {Yt} have the form 

yt=<g,X>+<d,Xt>wt. (2.2.3) 

Here g and d are both N dimensional vectors, and w = {Wt, t = 0, 1, ...1  is a sequence 

of N(0, 1) independent, identically distributed (i.i.d.) random' variables. 

Consider a probability measure P on the measurable space (1, F) such that, under 

P, 

(1) The process X is a finite state Markov chain with transition matrix A, 
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(2) The observation {y,} is a sequence of N(O, 1) i.i.d. random variables. 

We call the measure P a "reference" probability. 

We now construct a probability P, such that, under F, the process X is still a finite 

state Markov chain with transition matrix A, and {wt : 'Wt =  } is a sequence 

of N(O, 1) i.i.d. random variables. 

Write Yt = a{yo, Yi, ..., Yt}, and 9t = a{Xo, yo, X1, y, ..., X,, yt}. Then the "histo-

ries", or filtrations, of the X, y and (X, y) processes are {J}, {Yt}, {g}. 

Write 

where o(x)= exp(—ç). 

Definition 2.1. Define P by putting 

dP - 

= A,. 
dP 

Theorem 2.1. Under F, {Wt} is a sequence of N(O, 1) random variables. 

Proof. 

P(wt ≤ algt_i) = E[I(w <a)IOt_i] 
- E[AjI(wt < a)t_]  

- E[I(w ≤ a) 19t-1] 

- 

= E[E[ tg_1 VX]Igt_1I. 

(2.2.4) 

(2.2.5) 

(2.2.6) 

(2.2.7) 
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The inner expectation 

00 
' ) E[tIgt_1 VXt1 <d,Xt> = f < d,Xt > 

CO 

00 = f(wt)dwt 

=1. 

Then 

E[ tg_i] = 1. 

Similarly, 

00 

f o, W\ <d,X>E[YtI(wt ≤ a) t_ VXt] =  < d, Xt > q5(yt) ≤ a)q(yt)dyt 

f oo 

00 

= cb(wt)I(wt≤ a)dwt. 

2 [jI(w ≤ a)_1] = E[E[YtI(wt ≤ a)_1 VX]Ig_1] 
00 

= 00 

(w)I(w ≤ a)dwt. 

So,P(wt ≤ aG_) = P(wt ≤ a) = f°° q(wt)I(wt≤ a)dwt, and the result follows. 
0 

Remark: Under P, the process X is still a finite state Markov chain with transition 

matrix A. 

Proof 

E[< X, em > c_1] 

E[Igt1] 

E[At <Xt, em > cti]  
E[AL I ct-il 

E[ <xt, em > c-1]  

E[tIctil 

= E[E[,\tlgt_i VXIIc_]. 
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The inner expectation 

Then 

E[JIg_1vx] = BI 

(yt—<g,X>  
<d,Xt> ) 

19t—<d, X> (Yt) ' 
00 ijt—<g,Xt>\ 

- I qf <d,Xt> )  q(yt)dyt 
- 00 

= f 00 O(wt)dwt 

=1. 

[tIt_i] = 

Again, using double conditioning, we have 

1. 

I yt—<g,Xt> \ 

[t<Xt,em>gt_vXt] = <Xt,em > j r  <d,Xt> )  —' V L< d, Xt> (Yt) X] 
p00 d(Vt_<9iXt>) 

<Xt,em>J " i' <d,Xt>  q(yt)dyt 
< d,X, > (Yt) 

f-'*OO = <X,, em >  (w)dw 

= 

Consequently, 

E[ <Xt,em > lgt-i] = vx]Ig,_1] 

= E[<Xt,em>Igt_i} 

= E[<Xt,em>IXt_i] 

So, 

= <AXj_i,em>. 

= <AXt_i,em >. 

(2.2.8) 

Therefore, under P, X is a Markov chain with transition matrix A = (âj,j). 0 
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2.3 Estimation of States and Parameters 

The results were provided in [28] and [37]. 

2.3.1 Recursive Estimation 

First of all, we shall describe how to estimate the hidden states, given the observations 

{y,t= 0, 1, 2, 

Given Yt, write 

it = E[X,Y,]. 

Using a version of Bayes' rule [36], we have 

Write 

and 

E[XtIYt] - - .[AtXtlYt]  
E[AtIYt] 

= 

qt = 2[AXIY] 

/ ,ifit21 
dicb(yt) 

0 

0 

0 0 

•0 

0 

'V' 
,/jYt9N 

dN  

dNcb(yt) J 
Theorem 2.2. The probability vector qt is computed by the recursion 

qt = D(yt)Aq_1. 

(2.3.1) 

(2.3.2) 

(2.3.3) 

(2.3.4) 

(2.3.5) 
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Proof. 

qt = E[AtXtIYt] 

's <d,Xt>  xy 
tl 

- - <d,Xt>q(y) 

Note that 

So, 

= 

i=1 

N 

i=1 

= D(y)Aq_i. 

q (Vt—<9X>) 
<d,Xt>  

<d,X> cb(Yt) 
< Xt, ej >XtIYj] 

[A 1 <AX i + M, e1 > dçb(yt) ' 

< E[At—jAXt—j lYt-1], ei 
> (vti) 

 dcb(yt) e 

<qt, 1> = <.[AX IYt], 1> 

[At<Xt,1>IYt] 

= E[AtlYt]. 

q 
At — * 

<qt, 1> 
(2.3.6) 

In order to estimate the parameters in this model, we must estimate several random 

processes. In the remainder of this section, we shall introduce these processes and derive 

recursive estimates based on these processes. 

The first process is the counting process for the number of state transitions ej to 

e. Denote this process by 

Then - 

t 

<X1_1, e>< X1, e3> . (2.3.7) 

l=1 
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Write 

4 (2.3.8) 

Theorem 2.3. The vector is computed by the recursion 

= D(y)Au(NX_1)+ < ej > 

Proof. 

= 

<X_1, e >< X, e >)XtIYt] 

= <xt_1, >< x, e >) < x, e1 >XtlYt] 

(2.3.9) 

1=1 

= + Mt)lYt], e1 > e1 + 

<X_1, ej >< AX-1 + M, e1 > IYt]e 

=B[At—,Nt•`•)AXt—j Cl > t,iei+ < E[At_iXt_iIYt], ej > At,ae 

= D(y)A(NX_1)+ <q_, e> 

Now <Xe, 1 >= 1, so 

1> = 1> 

= E[< 1> IYt] 

E[AN' <Xi, 1> IYt] 

= 

and E[AtN(ji)ly] = 0.(p.j(ii)) by definition. 

(2.3.10) 
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The second process J is defined to be the cumulative sojourn time spent by the 

process X in state e. 

Then 

T 
Jti - 

Write 

1=1 

<Xt,e > . (2.3.11) 

cx(JXt) E[AtJXtIY]. (2.3.12) 

Theorem 2.4. The vector u(JX) is computed by the recursion 

u(JX) = D(yt)Aa(J_1Xt_i)+ <Aqt_i, ei > (2.3.13) 

Proof. 

iti  

= E[AtJXtIytY 

= E[A_iX(J_1+ <X,, ei >)XtIYt] 

= E[A_1(J_1+ <Xi, e1 >) < X, e1 >XIY] 

+ Mt) lYt] , e1 > e1 + 
l=1 

E[A_1), <AX_1 + M, ei > IYt]e 
N 

<E[At_iJ_iAXt_iIYt_iI, e1 > t,tCl+ < E[A_1AX_1Iy], ei > )tt,e 
1=1 

D(y)Au(J_1X_1)+ <Aq_, ei > D(yt),e. 

0 

As before, o(J) =< a(J,Xt), 1>. 

Finally, we define G to be the observation variance and drift. 
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>' f(yj) <X1, e>, (2.3.14) 
1=1 

where f(yi) is any function of y. 

Write 

a(GXt) 4 E[AGXIy]. 

Theorem 2.5. The probability vector ci(GXt) is computed by the recursion 

cr(GXt) = D(y)Ao(G_1X....1)+ < Aq_i, e > f(yt)D(yt),e. 

Proof. 

o(GXt) 

E[AGX IYt] 

= 

N 

1=1 

N 

+f(yt) <Xt,e 

+f(YO <X,e1 

>)XtjYtJ 
N 

>)< X,ej>XtIYt] 
1=1 

(2.3.15) 

(2.3.16) 

{E[A_1,1G_1 <Xt, ci > cjIYt] + E[A_11f(yt) <Xe, ej >< X, el > eilYt]} 

< Mt) IYt],ez > e1+ 

<AX 1 + M, e> Yt]e 

< E[A_iG_1AXt_1IY_1], el > t,iei+ < E[A_1AXt_1IY], ej > f(yt),\t,iei 

ci > t,iei+ <Aq 1, e> f(yt),e 
i=1 

= D(y)Au(G_1X_1)+ <Aqt_1, e > f(yt)D(yt),e. 

Again, o- (G') =< a(G,X),1>. 
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2.3.2 Estimation of Parameters 

Having introduced the three processes in the above section, we use Expectation Maxi-

mization (EM) algorithm to re-estimate the parameters in this HMM. 

The EM algorithm has two main steps. 

(1) E-step: Take the expectation of the Log-likelihood function, given the observa-

tions up to time t. 

Qt(O,O*) = Eo*[Le*(9)IYt], (2.3.17) 

where 0 is the true value of the parameters, and 8 is an estimate of the parameters at 

time t— 1. 

(2) M-step: Maximize the above expectation in equation (2.3.17) with respect to 0. 

Here, we take the Log-likelihood function to be the logarithm of the Radon-Nikodym 

derivative of the new probability measure with respect to the old, see [36]: 

Then, 

L0 (0) =log dP0 
dPo.—. 

Qt(0,0*) =E0. [log dP9 

(2.3.18) 

(2.3.19) 

Recall that under P0 = F, X is a Markov chain with transition matrix A 

Now we shall introduce another probability measure P, so that under P, X is a 

Markov chain with transition matrix A = (&jj). 

Theorem 2.6. Define A0 = 1, A = fl (>I•_ () <X1, e >< X1_1, es >.) for 
dp-

t ≥ I. Define PO by putting = A. Then under P, X is a Markov chain with 

transition matrix A = (âj4. [36][30] 
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Proof. 

E[< X, e. > IJt_i] 

So, 

=E 

=E 

- E[At <Xt,Cm> IJ-1]  
- E[AIJ1] 
- A_1E[A <Xt, Cm> J_i]  

- At_iE[)ttIJ_i] 
E[N 1 L!\ 

= iJ1 'a,2) <Xe, e3 >< X,_1, e > <Xi, em> IJ_'] 
<X,e >< Xt_1,e >J_1] 

(a3i) < Xt, ej >< X,—,, ej >IFt_i] 
a1, 

ij=1 

N N 

=E E[( (2!!)a1, ) <X_1, e> Ft—i1 
-i i=1 3= 

N 

=E[ 
i=1 

=1. 

N 

N 

<Xe, e1 >< X_1, e,>) <Xe, em > IJi] 

(i!!!) <xi, em >< Xt_i, ej >IJ:_i] 
am ,i 

N 

i=1 

Pe(Xt = emlXt_i = e) = E[< Xt, Cm> IXt_i = ei] = &.,i. 

Therefore, X is a Markov chain with transition matrix A = (&j,j). 

Theorem 2.7. Given the observations up to time t, the EM estimation of aj,j is 

cr -  (Nt ") 
a1, - 

0 

(2.3.20) 
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Proof. 

Then, 

dPa. 11 
1=1 i,j= 

L0 (8) 

1=1 i,j=1 

N 

aj,i 
<X1, ej >< Xi-1, ej >). 

< X1, ej > < Xj- 1, ej > (log â,— log a,) 

N'logà + R(a). 

Qt(&O*) = E[Lo*()IY] = E[N2jy] log â, +(a). 
i,j=1 

Notice that E = 1. Write 'y for the Lagrange multiplier and put 

N N 

l(â, y) = E[N' IYt] log âj,j + f(a) + '(E 
i,j1 2=1 

Setting the derivative of l(à, 'y), in &j,j and 'y, to be 0, we have 

+ = 0, 
aj,i 

j=1 

Solving the above two equations, we get 

aj,i = 

= 1. 

E{N(2i) jYtj = 

j=1 

E[N' Yt] - 

E[J_iIYt] - o(J_1) 

1). (2.3.21) 

0 
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Theorem 2.8. Given the observations up to time t, the EM estimation of gi is 

where f(yt) = yj for G(y). 

Proof. Define 

Ago 

cr(G(y))  

=1; 

= ri yj—<g,Xj>  
<d,Xj> ) 

1=1 <d,Xj>cb(yj) 

A(y1<g,Xt>  

rit "  
1=1 <d,Xj>c1(yj)  

(2.3.22) 

Set P9 = P. Define P by putting dpl Igt = A9. Then, as in the proof of Theorem 

2.1, we can prove that, under Ps,, (Vi— <, X >)/ <d, X1 > is a sequence of N(O, 1) 

i.i.d. random variables. 

Now, 

Qt(,g*) E[Lg*()IYt] 

= E[log dP lYt] 
dP9 

1 Vi — <ThX1 >)2 - R(g,d)IYt] =E[ 
i=1 

= E[<X1,e >( 1(Yi—g)2)1] —(g,d). 
2 di 

1=1 i=1 

Setting the derivative of Qt(, ü*), in j, to be 0, we have 

1=1 

That is, 

<X1,e> (Vi - i)IYtI= 0. 

E[J] = E[G(y)]. 
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So, 

where f(i) = yj for G(y). 

Theorem 2.9. Given the observations up to time t, the EM estimation of di is 

d = 
o(G(y2)) -  2o(G(y)) + o(Jt)  

where f(yj) = yj for G(y), f(y) = ? for G(y2). 

Proof. Define 

Ado = 

Adt = 

1, 

ri "  

1=1 <ci,Xz>çb(y)  

H .f 9, VL<Xl> 
H t 

<d,Xj>cb(yj) 

D 

(2.3.23) 

Set Pd. = P. Define P by putting dPj Igt = Ad. Then, as in the proof of Theorem 

2. 1, we can prove that, under Pj, (Vi— <g, X1 >)/ <ci, X1 > is a sequence of N(O, 1) 

i.i.d. random variables. 

Now, 

Q, d*) 

= E[Ld*(d)IY] 

- E[log dP lYt] 
- dPd* 

1=1 

t N 

1   

<,xi> 

= E[<Xi,e 2 di 
1=1 i=1 
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Setting the derivative of Qt(ci, d*), in di, to be 0, we have 

E[ 

That is, 

So, 

1=1 

<X1,e> ((Yl —gj)2 1 1)IYt] = 0. 
di di 

E[Jd1] = E[G(y2) - 2gG(y) + gJ]. 

a(Gti  - 2o(G(y)) + o(J)  

cr(Jfl 

where f(y) = yj for G, f(y) = y for G(y2). 

2.4 Simulation and Results 

In this section, we shall give an example to show the performance of this method. 

Assume the parameters in equation (2.2.2) and (2.2.3) have the following values: 

0.1 0.9 

g [0.7,0.3]', 

d = [0.2,0.2]/. 

600 data points are generated for the simulation. The estimated results for the 

parameters are shown in figure 2.1 and 2.2. 

The accuracy of estimating the hidden states is always higher than 70%. 
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Figure 2.1: Estimated transition probabilities 
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2.5 Application in Classification of DNA Copy Numbers 

The application of comparative genomic hybridization(CGH)s enabled genome-wide 

analysis of gross DNA copy number imbalance. These are key genetic events in the de-

velopment and progression of human cancers. The purpose of array-based Comparative 

Genomic Hybridization, (array CGH), is to detect and map chromosomal aberrations, 

on a genomic scale, in a single experiment. Since chromosomal copy numbers can not be 

measured directly, two samples of genomic DNA, (referred to as the reference and test 

DNAs), are differentially labelled with fluorescent dyes and competitively hybridized 

to known mapped sequences, (referred to as BACs), that are immobilized on a slide. 

Subsequently, the ratio of the intensities of the two fluorochromes is computed and a 

CGH profile is constituted for each chromosome when the 1092 of fluorescence ratios are 

ranked and plotted according to the physical position of their corresponding BACs on 

the genome. Each profile can be viewed as a succession of "segments" that represent 

homogeneous regions in the genome whose BACs share the same relative copy number 

on average. [13] 

Copy number variants are regions of the genome that can occur at a variable copy 

number in the population. In diploid organisms, such as humans, somatic cells normally 

contain two copies of each gene, one inherited from each parent. However, abnormalities 

during the process of DNA replication and synthesis can lead to the loss or gain of DNA 

fragments, leading to variable gene copy numbers which may initiate or promote disease 

conditions. For example, the loss or gain of a number of tumor suppressor genes and 

oncogenes are known to promote the initiation and growth of cancers. [9] So, detection 

of the changes of the DNA copy numbers is very important in cancer research. 

Array CGH data are normalized with a median set to be 1092(ratio) = 0 for regions 

of no change; segments with positive means represent duplicated regions in the test 
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sample genome, and segments with negative means represent deleted regions. [13] An 

example is shown in figure 2.3. 

Duplication 

0 

2 

—1 

2 

Deletion 

100 200 300 400 500 600 
Probe Number 

700 800 

Figure 2.3: An example of array-CGH data[9] 

900 1000 

If we suppose that different copy numbers belong to different classes, then the 

detection of changes of copy numbers becomes a problem of classification of different 

copy numbers. The different classes are not observable. What can be observed are the 

1092 of fluorescence ratios corrupted by noise, which could be considered as a function 

of copy number with Gaussian noise. Therefore, this problem could be modeled as a 

hidden Markov model. The hidden states Xt are the classes of different copy numbers, 

and the observations are the CGH data Yt• Recall that 

Here, g is the 1092 of fluorescence ratios. Usually, there are four states for the copy 

numbers: [41] 

(1) a copy number loss (that could be either a single copy loss or a deletion), 

1092(ratio) = 1092(1/2) = —1; 

(2) copy-neutral state, 1092(ratio) = 1092(2/2) = 0; 

(3)a single copy gain, 1092(ratio) = 1092(3/2) = 0.585; 

(4)an amplification (i.e. multiple copy gain), 1092(ratio) = 1o92(k/2), k > 3. 
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For the state (4), we take 1og2(ratio) = 1.5. So, in this problem, g = [-1,0,0.585,1.5]. 

Then the algorithm described in the previous sections could be used to detect the 

changes of copy numbers. 

The data used in this section is the array CGH profiles of 24 pancreatic adenocar-

cinoma cell lines and 13 primary tumor specimens from [2]. Labeled DNA fragments 

were hybridized to Agilent human cDNA microarrays containing 14160 cDNA clones. [2] 

Here I use four sample data sets to show the performance of the above method. Figure 

2.4, Figure 2.5, Figure 2.6 and Figure 2.7 show the estimated states. The x-coordinate 

is the position of the corresponding chromosome. The y-coordinate of the top figure 

is the 1092 of the fluorescence ratios, and the y-coordinate of the bottom figure is the 

estimated states, 1, 2, 3, 4 refer to state (1), (2), (3), (4) correspondingly. 

The estimated parameters for sample 6, chromosome 12 are as follows: 

A = 

"0.1223 0.1116 0.2845 0.2980\ 

0.6151 0.6985 0.3418 0.4264 

0.0788 0.0941 0.2586 0.2230 

\0.1838 0.0958 0.1151 0.0526j 

d = [1.5794, 0.3139, 0.0650, 1.5064], 

The estimated parameters for sample 8, chromosome 12 are as follows: 

A = 

/0.2012 0.1052 0.1274 0.2518 

0.3957 0.7317 0.3111 0.2892 

0.1970 0.0516 0.2566 0.3074 

\0.2061 0.1115 0.3049 0.1516) 

ci = [1.6287, 0.2234, 0.2409, 0.4015]', 
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The estimated parameters for sample 9, chromosome 20 are as follows: 

/0.2365 0.1799 0.2506 0.1633\ 

0.2985 0.2151 0.3340 0.0971 

0.2547 0.2730 0.2487 0.1971 

\0.2102 0.3320 0.1666 0.5424j 

= [1. 7497, 0.6543, 0.1745,0.8063]', 

2 

1093 
U, 4 

I I 

• • •+ 4d1• 

t • ,+ .4 
S *. 

+ 4 + '; : •. • 

*0 

2 3 41 5 

Physical ositions6f DNA 
6 7 

7 
xlO 

411*4* .* '4** 4* 4** 4 *f*9* # - 

-*4*4 ** * •*_ ' 

.1 .2 3 '4 5-

PhSJiclposition of DNA ' )c 10 7 

Figure 2.6: Estimated result for array-OGH data (sample 9, chromosome 20) 

The estimated parameters for sample 22, chromosome 10 are as follows: 

/0.1726 0.2498 0.2410 0.1377" 

0.6434 0.6441 0.4063 0.5254 

0.1270 0.0646 0.1496 0.1638 

\0.0569 0.0415 0.2030 0.1731/ 

A = 

ci- [0.8857, 0.3553, 0.0950, 0.4474]', 
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Figure 2.7: Estimated result for array-CGH data (sample 22, chromosome 10) 

We see from the above estimates and figures that, although a few states were 

misclassified, most of the states could be estimated correctly using the method descibéd 

in this chapter. We also see that the CGH data contains large noise. In this case, 

however, the results obtained by using the methods described in this chapter are still 

reasonable. 
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Chapter 3 

A FILTER FOR AN AUTOREGRESSIVE HIDDEN 

MARKOV. MODEL 

3.1 Introduction 

Autoregressive(AR) models are widely used in modeling time-varying signals. Combin-

ing a hidden Markov model and an autoregressive model, we obtain an autoregressive 

hidden Markov model(ARHMM), which is an extension of a hidden Markov model. 

There are already some methods for estimating the states and parameters of an au-

toregressive hidden Markov model. In this chapter, we derive new formulae, following 

Chapter 2, to estimate the hidden states and parameters of an ARHMM. As in Chapter 

2, the formulae are recursive in the observation data, and provide on-line estimates. 

In the next section, we give a brief introduction to the autoregressive hidden Markov 

model. We then derive the formulae for estimating hidden states and parameters 

based on a change of measure and the EM algorithm. In section 3.4, we describe an 

application of the autoregressive hidden Markov model to classification and give some 

simulation results. In the final section of this chapter, we apply these estimates to real 

data. 

3.2 Autoregressive Hidden Markov Model 

In this chapter, the finite state time-homogeneous Markov chain X = {X, t = 0,1, . . .} 

is defined as in Chapter 2. The transition probabilities and dynamics of X are defined 
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in equation (2.2.1) and (2.2.2). 

The process X is not observed directly. It is observed through another function, 

whose values are corrupted by Gaussian noise. Here, we assume the observed process 

Y = {yt, t = 0, 1, ...1  is the summation of an autoregressive time series of order p and 

Gaussian noise. Then y can be written in the form 

Yt + /3 y + /3yt-2 + ... + + OrXtWt, (3.2.1) 

where w = {Wt, t = 0, 1, ...1 is a sequence of N(0, 1) independent, identically distributed 

(i.i.d.) random variables. 

axe, i = 1, 2, ..., p} and uxt are parameters for the autoregressive model in 

state X,. axt is the variance of the Gaussian noise. They all depend on the current 

state Xt of the chain. Since there are finitely many states, the number of the values 

for the parameters is finite. Then we can rewrite equation (3.2.1) as 

Yt< a,Xt > + < 01, Xt >Yt-i+ </32,Xt >Yt2+...+< PP, Xt >Yt_p+ < 0,Xt >Wt, 

(3.2.2) 

where a, {f3j, i = 1, 2, ...p}, a axe  dimensional vectors. 

Consider a probability measure P on the measurable space (l, .F) such that, under 

1) The process X is a finite state Markov chain with transition matrix A, 

2) The observation {Yt} is a sequence of N(0, 1) i.i.d. random variables. 

As in Chapter 2, the measure P is called a "reference" probability. 

We now construct a probability P, such that, under F, the process X is still a finite 

state Markov chain with transition matrix A, and {Wt Wt = yt-<a,Xt>- la,Xt></3?nXt>Yt_m } 

is a sequence of N(0, 1) i.i.d. random variables. 



34 

Write 

O(wt)  

<o_,xt > (y) 
<13m,Xi>yi_m \ 

<cr,Xj> I 

<o-,X1 > q(yi) 

A0 =1, 

At = t= 1,2,3,... 

Definition 3.1. Define P by putting 

dP 

dP 

Theorem 3.1. Under P, {Wt} is a sequence of N(O, 1) random variables. 

Proof. 

P(wt ≤ algt_1) = E{I(w ≤ a)Ict_i] 
.[AI(w ≤ a)_]  

E[Ajg 1] 
≤ a)_1]  

Epg 1] = E[E[ tgt1 V xtfigt1 ]. 

The inner expectation 

Then 

, ) E[ tg 1 V X] = <Pm,Xt>Yt_m  <o Xt> 
\ 

<o,X>q(y) 

= f00 : wtdwt 

E[g_1] = 1. 

cb(yt)dyt 

(3.2.3) 

(3.2.4) 

(3.2.5) 

(3.2.6) 
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Similarly, 

≤ a) t_1 VXt] = 
c 4,(Yt—<aXt> =j <13m,Xt>yt_m  

<cr,Xt> )  
I(wt≤a)(yt)dyt 

= f oo 

(wt)I(wt < a)dw. (3.2.7) 

E[,\I(w <a)lgt_i] = E[E[I(w ≤ a) t_1 vxt]lgt_i] 

= foo w)I (wt a)dwt. 

So, P(wt aIg_i) = P(w a) = f cb(wt)I(wt < a)dwt, and the result follows. 
0 

Remark: Under P, the process X is still a finite state Markov chain with transition 

matrix A. 

This can be proved similarly as in Chapter 2. 

3.3 Estimation of States and Parameters 

3.3.1 Recursive Estimation 

In this section we shall first describe how to estimate the hidden states, given the 

observations {yt, t = 0, 1, 2}. The notations are the same as Chapter 2. 

Write 

D(y) = 

/  cb( Vt1 Erni I3m,1Yt—m  
Cl ) 

oi4(yt) 

0 

0 

0 0 

0 

0 (VtN E fl l f3mNVt_m) 
OW  

0 Ncb(vt) I 

(3.3.1) 

Theorem 3.2. The probability vector qt is computed by the recursion 

qt = D(y)Aqt_i. (3.3.2) 

/ 
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Proof. 

qt E[AX lYt] 

E[A1 

E[A.1 

N 

i=1 

(Yt-<a,Xt>- E=1 </3rnXt>Vt_rn) 
<tr,Xt> 

< or, Xt> (y) 
XtlYt] 

(V <a,Xt>->..1 <13m,Xt>yt_tn N 

<c,Xt>   <a,Xt>q(yt) <Xe, ei >Xtlyt] 

(Vt- ai->i 13m,i Vt-rn ) 

E[A_1 <AX 1 + M, e> lYt]  e 
acb(yt) 

N yt- az-E1 13rniYt_rn) 
ci  

> oig(yt) e 

D(yt)Aq_i. 
i=1 

Similarly a in Chapter 2, 

qt  
At — 

<qt, 1> 

0 

(3.3.3) 

As in Chapter 2, in order to estimate the parameters in the ARHMM, we have to 

estimate the random processes Jt and G. The recursive estimates of the three 

processes are given in Section 2.3.1. 

3.3.2 Estimation of Parameters 

In this section, we use Expectation Maximization (EM) algorithm to re-estimate the 

parameters in the ARHMM. EM algorithm has been introduced in Chapter 2. 

The EM estimation of aj,j is given in Theorem 2.7. 

Theorem 3.3. Given the observations up to time t, the EM estimation of aj is 

- O•(Gm)/3m,i 

o' (4) 

where f(yj) = YI-m for G,m, m = 0, 1, ... ,p. 

(3.3.4) 



37 

Proof. Define 

Aao = 1, 
yj—<â,Xj>— E 1 r <13m,Xi>Vi_m  

1t   

Ii=i <,Xj>ç(yj) 
- 

y1—<o,Xj>— E 1 <13m,Xi>Vi_m  
fI t   

1=1 <o,Xj>q(y1) 

Set Pa* = P. Define P& by putting dp& I A. Then, as in the proof of Theorem 

2. 1, we can prove that, under P, (y <&, X1 > - Irji < 13m, X1 > Yi-m)/ <a, X1> 

is a sequence of N(0, 1) i.Ld. random variables. 

Now, 

Qt (&, a*) = E[L(&)[Y] 

= E[log'Y] 

E[ '(Yt <OXl> i3m,' > = -- <a,X1> 
1=1 

= <Xi, e >( l(Yt - - Erni I3miYl_m)2)IyI - (a) , a). 
M 

1=1 i=1 

Setting the derivative of Qt(&, c*), in â, to be 0, we have 

1=1 

That is, 

So, 

<X1,e> (Yi&i /3m,iyt-m)IYt] = 0. 

= E[G ,0 - > G,m/3m,i]. 
M=1 

o(G,0) - >II a(G,m )i9m ,i  ai= 
a(J) 

where f(i) = for m = 0, 1, ... ,p. 0 
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Theorem 3.4. Given the observations up to time t, the EM estimation of 13m,i is 

- a(G,m)ài 
=  

(G ,mm) 
(3.3.5) 

where f(yj) = YI-m for.G,m, f(yi) = Yl-mYl for G,m o, f(yi) = Y? _m for G,mm, m = 

o'l' ... 'p. 

Proof. Define 

A 0 = 

A,3= 

1, 
yj-<a,Xj>- <rn=l </m,Xt>yi_m  

fit   
1=1<c,Xj>çb(yj) 

1=1 ,yj-<,Xi>- E 1 <13m,Xi>yi_m  U t )  

Set P* = P. Define P by putting = Apt. Then, as in the proof of Theorem 

2. 1, we can prove that, under P,, (ye— <Of, X > - < Im, Xi > Yi.-m)/ <CT, X1> 

is a sequence of N(O, 1) i.i.d. random variables. 

Now, 

Qt(&,8*) = E[L(/)IY] 

= E[log ddPP , IYt] 

t 

<X1 > 21< /m ,Xi > Y1m)2 - R(c,/3,i)IYt] 
- 2 <cr,X1> 

1 y -  ai  -  EPM=1 2(  miYl_m )2)IY] - fi u) 
cli 1=1 i=1 

= 

1=1 

t N 

Setting the derivative of Qt(I, *), in I3m,i, to be 0, we have 

E[ 

That is, 

1=1 

<Xl, ci > (Yt -  ai  - 

n= 
/m,iyi-m)yi-mIYt] = 0. 

E[G,mm,&m,i1 = E[G,mo - G,mai]. 
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So, 

(G,.0) -  

O(G mm) 

where f(Yi) = Yt-m for G,m, f(Yi) = Yt-mYl for G,m0, f(yi) = Y?_m for G,mm, m = 

O,l, ... ,p. D 

Theorem 3.5. Given the observations up to time t, the EM estimation of ai is 

= (((G ,00) - 2&u(G ,0) —2 $m,i(G,mo) +2 &im,i(G,m) + 
M=1 

p p 

&c7(Jfl + Irn,iI3n,icT(G ,mm))/(cT(Jfl)) h/2, 

rn=1 m=1 

M=1 

(3.3.6) 

where f(yj) = ? for G,00, f(Yi) = VI-m for Gm, f(Y) = Yl-mYt for Gmo, f(Y) = 

Yi_mYz_n for G,mn, m,n=O,1,...,p. 

Proof. Define 

= 1, 
vr—<cx,Xt>— <13m,XI>V1_m  

fi t   
t1  

fi t <ô,X>  
1=1 <cr,Xj>cb(yj) 

Set P = P. Define P. by putting dP& Ic = Then, as in the proof of Theorem 

2. 1, we can prove that, under P, (yt— <a, X1 > < /3m, X1 > yi_m)/ <&, Xi> 

is a sequence of N(O, 1) i.i.d. random variables. 
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Now, 

Qt(&, o*) 

= E[L(&)IYt] 

E[log  dP  IYt] dP 

=E[ 

t1 i=1 

<X1,e> (- ( 1 Yt - - =i rniYt-rn )2 - log)IYt] - (a, P, a). 

Setting the derivative of Qt(&, o.*), in &,, to be 0, we have 

t El 
E[< > ((Yl - -  \2 1 1 

-m) )IYt]= 0. 
Vz & ai 

1=1 

That is, 

E[J&] 

= E[G ,00 - 2aG,0 2 I3m ,iG,mo +2 ajf3m,jG,m + cJ + >i: i: I3m,ifin,iG,mn]. 
M=1 m=1 m=1 n=1 

So, 

((o(G ,00) - 2ao(G ,0) - 
M=1 

,ia(G mo) +2 L &ifim,ia 
M=1 

p p 

&o(J) + T, T, i8m,iIn,iO(Gt,mm))/(U(Jt)))1, 
m=1 n=1 

G m) + 

where f(yj) = y? for C ,00, f(t) = Yt-m for G,m, f(Yi) = Yl-mYt for G m ü, f(Yi) = 

Yl-mY1-n for G, Mn) m,n = 0, 1, ...,p. 

3.4 Classification and Simulation Results 

El 

In some classification problems, the object belongs to one class at one time, and may 

jump to another class at the next time, according to certain probability. Then, the 
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states of the object could be modeled as a Markov chain. However, the states (classes) 

may not be observed directly. What possibly can be observed is a sequence of data, 

generated by different AR models corresponding to different classes. In this case, we 

could use the ARHMM to model the problem, and apply the above method to estimate 

the hidden states (classes). 

In order to show the effectiveness of the method, we consider an example. Assume 

there are two classes, and assign the following values to the parameters. 

a = [0.7,0.3]', 

= [0.4,0.6]/, 

o = [0.1,0.1]'. 

We generate 300 data for the simulation. The estimated results for the hidden 

classes are shown in Figure 3.1. 

The accuracy of estimating the hidden classes is always higher than 75%. 

3.5 Application in Predicting EL NINO Phenomenon 

One of the applications of the ARHMM for classification is prediction of the EL NINO 

phenomenon. What are observed are temperatures of the sea water. The values of the 

temperatures could be modeled by two AR models, according to two classes, "there is 

an EL NINO phenomenon" and "there is no EL NINO phenomenon". 
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Figure 3.1: Estimated classes 

250 300 

The data are downloaded from the website: "http://www.pmel.noaa.gov/tao/". 

We use the temperature values of the sea water at O°N,155°W and O°N,170°W, from 

July 21st, 1991 to January 9th, 1997. Figure 3.2 shows the distribution of temperature 

of the sea water from 140°E to 100°W along the equator, from July 21st, 1991 to 

January 9th, 1997. If the warm tongue takes up most of the area from east to west, 

we could say there is an EL NINO phenomenon at that time. [49] 

Figure 3.3 shows the estimated result. The points in the first plot of Figure 3.3 

show that there are EL NINO at those times. Compare Figure 3.2 and Figure 3.3, we 

see that our estimation is consistent with the real situation. For example, the warm 

tongue takes up most of the area from east to west on the right in Figure 3.2, so there 

is an EL NINO phenomenon during those years. The estimated result in Figure 3.3 

also shows that there is an EL NINO phenomenon during the years on the right of the 

figure. 
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Chapter 4 

A VITERBI SMOOTHER FOR A DISCRETE STATE 

SPACE MODEL 

4.1 Introduction 

Recursive estimates for the parameters of discrete time Markov chains observed in 

Gaussian noise have been discussed in Chapter 2 and Chapter 3. The recursive estimate 

for the hidden Markov model in which both the hidden states and the observations 

are discrete is derived in [36]. In this chapter, we derive new filter and smoother 

update formulae, based on a change of measure method and extensions of the Viterbi 

algorithm. The formulae are recursive in the observation data, and could possibly be 

used in biological sequence analysis and communications. 

This chapter is organized as follows. In the next section, we give a brief introduction 

to the discrete state hidden Markov model. In section 4.3, we derive the filter based 

recursive estimates of the parameters in the hidden Markov model. In section 4.4, we 

derive the smoother based recursive estimates of the parameters in the hidden Markov 

model. In section 4.5, we give the backward Viterbi filter and the simulation results. 

In section 4.6, we give the backward Viterbi smoother and the simulation results. In 

the final section, we give some conclusions. 



45 

4.2 Hidden Markov Model 

In this chapter, the finite state time-homogeneous Markov chain X = {X, t = 0,  

is defined as in Chapter 2. The transition probabilities and the dynamics of X are 

defined by equations (2.2.1) and (2.2.2). 

We suppose the process X is not observed directly; rather, we observe a second 

finite state process .Y = {Y, t = 0, 1, ...}, where 

= c(X,Wt+1 ). (4.2.1) 

Here W = {W, t = 0, 1, . ..} is a sequence of independent, identically distributed 

(i.i.d.) random variables. 

Suppose the range of c(.,.) consists of M points; then we can again identify the 

range of c(., .) with the set of unit vectors 

Q = {fl,f2,...,fM}, (4.2.2) 

where f=(O,0,...,0,1,O,.,.,O)tERm. 

Write 9t = o{Xo, yo, X1, Yi, ..., X, yt}. Suppose 

P(Y 1 = fIct) = P(Y+1 = fIXt), (4.2.3) 

and write 

4 P( 1 = = ei), C = (c4, 1 ≤ i N, 1 i ≤ M. 

Then, E[Y+1lX] = CXI. If W 4.1 := - CXL, then 

E[W +1 g] = E[Y+1 - CXg1] 

= Cxt — Cxt 

=0. 
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So, W 1 = - CXt is a (P, c+1) martingale increment. [36] Therefore, 

y+1=cxt+wt+1. (4.2.4) 

Consider a probability measure P on the measurable space (Q, .F) such that, under 

1.) The process X is a finite state Markov chain with transition matrix A, 

2) The observation {} is a sequence of i.i.d. 'random variables and 

= = = 1} 1/M. (4,2.5) 

We call the measure P a "reference" probability. 

We now construct a probability F, such that, under F, the process X is still a finite 

state Markov chain with a transition matrix A, and P(+1 = f IXt = e) = c. 

Write 

= 

MN ,, < 11+i, f >< X1, e,>. (4.2.6) 

j=1 i=1 

At = 

Definition 4.1. Define P by putting 

dPdP 
- 

= A. 

(4.2.7) 

(4.2.8) 

Theorem 4.1.. Under P, the process X is still a finite state Markov chain with tran-

sition matrix A and {Y} is a sequence of random variables such that P(Y41 = 1X = 

e) = cj,i. [361 
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Proof. 

MN 

-[At+iIgtJ [M> > c f >< X, e2> Igi] 
j=1 i=1 

M 

P(Y41 = 1IXt = e) 

=ME[ j,i < Yt+i, f.i > c] 
j=1 

= Mc,E[< Y+1,f> g] 
j=1 

M 

=M 

j=1 

=1. 

1 

= E[< Yt+i,f> ICt = ci] 

- .[A+1 <Yt+i, f> Ixt =  e] 
= e] 

-  [t+i <Yt+i, f3> IXt = c]  
- E[t+iIXt = ci] 
= E[+1 <Yt+i, f> IXt = ci] 

MN 

= E[Mcmi<Yt+i,fm><Xt,ei><Yt+i,fj>IXtej] 
M=l 1=1 

= ME[c, <Yt+i, f3> Ixt = e] 

= cj,i. 
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E[xt+ilgt] = 
E[A+iX+1Ig]  
E[At+i gt] 

E[t+igt] 

MN 

E[M>Cm,i <Yt+i,fm >< X,e1> X 1 ] 
M=1 11 

N M 

=E <Xt,ej > X +1E[M 
1=1 

IV 

= E[ <Xt,ei > Xt+ilgt] 

= E[Xt+iIXt1 

m= 
Cm,1 <Yt+i ,frn > I g]ig] 

= AX. 

So, the result follows. 

The real world dynamics take place under P. However, 15 is a nicer measure under 

which to work. 

4.3 Filter Based Estimation 

In this section, we shall derive filter based estimates for the parameters A and C. 

Following the steps in Chapter 2, we must first estimate the unobserved state process 

X and some processes related to X. 
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Write 

B(Y+1) = M 

Ljm=i c,,,,, <Yt+i, fm> 0 0 

0 ... 0 

0 o EM=I Cm,N <Yt+i, fm >1 
(4.2.9) 

Theorem 4.2. The unnormalized probability vector qt satisfies the recursion 

Proof. 

= 

qt+i = AB( i)qt. (4.2.10) 

MN 

= 1[At(AXt + M+i) M > Cj, <Yt+i, f >< Xt, e> IYt+il 
i=1 1=1 

MN 

= M E[AAXc, <Yt+i, f >< X, e> IYt+11 
j=1 i=1 

MN 

= MS7 S7 B[At <Xi, e> IYt]Aeicj, <Y+i, f> 
j=1 i1 

MN 

= MS7 S7 < E[AXtIYt], ej > Aecj, <Y+1, f3> 
j=1 i=1 

MN 

= M <q, ej > Aecj, <+i, f3> 
j=1 i=1 

= 

As in Chapter 2, 

E qt [XIY]= N 
>j <qt, e> 

0 

(4.2.11) 
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Theorem 4.3. The vector a(N'Xt) is computed by the recursion 

a(NX•1) <qt, e > 

where is defined in Chapter 2. 

Proof. 

ci(NXt+i) 

= 

(4.2.12) 

MN 

= E[A(N+ <Xi, e >< e >)X +iM Cm, <Y+i, fm >< X, e> IYt+11 
M=l t=1 

MN 

= M < cr(N' X) , el > Aeicm, <Y,-i, fm > + 
M=l 1=1 

M RpAt <Xt,e> IYt1aj,iejcm,i <Yt+i, fm> 
M=1 

= AB(Y +i)o(N'Xt)+ < qt, e > 

Theorem 4.4. The vector cr(JXt) is computed by the recursion 

a(J+1X+1) = AB(Y +i)a(JX)+ < qt, ej > 

where J t <X1_1,e>. 

0 

(4.2.13) 
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Proof. 

= E[At+1 J+iXt+iIY+i] 
MN 

= E[A(J+ <Xi, e1 >)(AX + M+i)M Cm,1 <Yt+l, fm >< X, e1> IYt+il 
M=I 1=1 

MN 

= M E E <cr(JX) , el > AeiCm,i <i, f > ± 
M=1 1=1 

M 

M :i: <qt, ej > AeCm, <Yt+i, fm> 
M=1 

= AB(+1)o(JX)+ <q, e1 > Ae[B(Yt+i )]1,. 

Theorem 4.5. The probability vector o(GX) is computed by the recursion 

o(G +1Xt+i) = AB( +1)o(GX)+ < qt, ej > f(Yt+i)Ae[B(Yt+i )],, 

where Gti A Et=l f('j) <X1_1, es >. 

Proof. 

a. i I 

= 

MN 

(4.2.14) 

E[A(G + f(+i) <Xi, >)(AX + M+1)M CflZ,l fm >< X, ej> Yi] 
m=1 1=1 

= AB(Y +1)o(GX)± < qt, e > f(Yt+i)Ae[B(Y +i )],. 

As before, 

= 

o(J) = 

= <cr(G,Xt),1>. 

E 
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Finally, using the Expectation Maximization (EM) algorithm, the parameters can 

be re-estimated by the formulae: 

a(G)  

= cr(Jfl' 

with f() =< 

The details of this algorithm and the derivatives of the estimates are given in [1] 

and [36]. 

4.4 Smoother Based Estimation 

In this section, we derive the estimate of X,, given the information YT, for 0 ≤ k ≤ T. 

From Bayes' Theorem, 

Here 

E[XtIYT] - .[AO,TXtIYT1  
- E[Ao,TIYT] 

(4.4.1) 

E [AO,TXt I Y'1 = E [AO,tXiE [A,+l,T I YT V J] I YT], (4.4.2) 

where At+1,T = fl' i4 ). 

Using the Markov property, we have 

Write 

[At+l,TIYT V T] = F[At+l,TIYT V o(X)]. 

Vt,T = (<V,T, e1 >, ..., < Vt,T, eN >)', 

where <Vt,T, ei > E[At+1,TIYT V Xt = e]. We Put VT,T = 1 E RN. 

(4.4.3) 

(4.4.4) 
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Lemma 4.1. The process v is computed by the backward recursion 

fT \ nl 
Vt,T - 1 7D 1t+1)PiVt+1,T. 

Proof. 

<Vt,T, Ci> 

MN 

= E[At+2,TM E T, Cm,l <Y+i, fm >< Xt, e1> JYT V Xt = e] 
M=1 1=1 

.[At+2,TIYT V Xt = ei]cm,i <Yt+i, fm> 

(4.4.5) 

M=1 

MN 

= M E  E  E[< X +1, ej > At+2,TIYT V Xt = Ci]Cm,i <Y+1, fm> 
m=1 j=1 

MN 

= M .[< Xt+i, > .[At+2,TIYT V Xt = e V = ej]IYT V Xt = Cj]Cm,j• 

m=1 3=1 

<Yt+i ,frn > 
MN 

= M>E[<Xt+1,ej><vt+l,T,ej>IYTVXt= 
M=l j=1 

MN 

= M a <Vt+1, Cj > Cm ,i <Y+i, fm>. 
M=l j=1 

Then, Vt,T = B(Yt+l)A'vt+l,T. 

Ci}Cm,i <Yt+i, fm> 

11 

Theorem 4.6. The unnoi-,nalized smoothed estimate for the process X, at the time-

index k, is given by 

Proof. 

E[Ao,TXtIYr] = diag< qt, ej >Vt,T. 

E[AO,T <X1 e> IYT] = B[AO,t<Xt,ei > B[At+I,TIYT VXt = ei] IYT] 

(4.4.6) 

= <qt, e >< Vt,T, e>. 
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So, 

N 

E[Ao,TXtIYT] = < qt, ej >< Vt,T, ei > e 
i=1 

= diag< q, ej >Vt,T. 

Write UT (N'X) IYT1. 

Theorem 4.7. The smoothed estimate for the quantity uT(N'Xt) is given by 

Proof. 

So, 

= diag< el >Vt,T. 

.[AO,TN 2Z) <Xi, e1> JYTI 

= .[Ao,tN (ji) <xt, el > E[At+l,TIYT V Xt = el]IYT] 

= <U(N'Xt), Cj >< Vt,T, e1 > 

= < u(N'Xt),ez >< v,T,e1 > e1 

= diag< a(N'X), el >Vt,T. 

Write oT(GXt) 4 E[AO,TGXtIYT]. 

Theorem 4.8. The 'smoothed estimate for the quantity uT(GXt) is given by 

uT(GXt) = diag< cr(GXt), e1 >Vt,T. 

D 

(4.4.7) 

(4.4.8) 
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Proof. 

E[AO,TG <Xt, e1> YT] 

= E[A0,G <Xt,e1 > E[At+1,TIYT V Xt = e1]IYT} 

= <(GX), e1 >< Vt,T, el>. 

So, 

aT(GXI) 

<(GX), e1 >< Vt,T, 61 > e1 

diag< u(GX),ej >Vt,T. 

Write 0T(JXt) 2[Ao,TJtXtIYTI. 

Similarly, 

OT(JX) = diag< o(JXj), el >Vt,T. (4.4.9) 

Similarly to section 3, estimates for the parameters are given by 

0T (N4')  
= , 

7T(JT) 

If-li 

4.5 Viterbi Algorithm 

The basic idea of the Viterbi algorithm is that the expected values represented by 

summations in the recursive estimates are replaced by maximum likelihoods. That is, 

the sums are replaced by maxima. 
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For example, from (4.2.10), 

qt+i (j) = {a [B (Yt+i)],qt(i) }, 
i=1 

M 
where [B(Y+i)], = Im=1 Cm,j <+i, fm  >. 

Instead of this summation, we recursively define new unnormalized probabilities 

q = [q(1), q(2), ..., qt* (N)]' by 

Certainly, 

q 1 (j) = max {a,[B(Y+i )]1,1q(i)}. 
i 

q 1(j) > 0. 

We can then define Viterbi probabilities by 

So, 

N 

:= q1(j)  
E N 

+i(n) 

p1(j) = 1. 

(4.5.1) 

(4.5.2) 

(4.5.3) 

(4.5.4) 
j=1 

pt+i(j) is an estimate of the conditional probability, that X 1 = e, given Yi, Y2, ..., Yt+i. 

The quantity q is an approximation of qt. Similarly, we can define o*(Nt 2X), 

cy*(J,iXt) and o.*(Gx) by 

(NX +1) (m) = max am ,z [B (Yt+i)] 1,zcT* (1) + q (i)aj,jöm ,j [B (+i)]. 

(4.5.5) 

(J +1X +1) (m) = max am,l [B(Yt+i )] t,10* (JX) (1) + q (i)am ,j [B (Y+1 )],. (4.5.6) 

o (G 1X +1) (m) = m ax am ,l [B(Yt+i)]i,icr* (GX) (1) + q (i)f(Y +i)am,j [B(Y+1 )],. 

(4.5.7) 
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For example, u* (N 21 <Xe, e1 >) is an estimate of the expected value of and 

the probability that X, = e1, given Y1, Y2, ..., 

Following the results in section 3, estimates for the parameters could then be com-

puted by 

aj,i = 

o.*(Gi) 
Ôii 

(4.5.8) 

(4.5.9) 

To demonstrate the performance of the Viterbi filter presented in this chapter, 

we consider an example. Assume there are two hidden states in the model, and the 

observations also have two states. The transition matrices A and C are 

A= (0-9 0.701 0.3) 

(0.8 0.9 
C=I 

0.2 0.1 

The simulation results for the matrices .A and C, using the original filter and the 

Viterbi filter, are shown in Figure 4.1 and Figure 4.2. We can see from the figures that 

the estimated values converge to the true values of the parameters. The differences of 

the estimated values and the true values are caused by the noisy system. 

A method for estimating Xt is: 

Set .k(I) = 1 and .t (m) = 0, 1 < n < N,n 54 I, where I = argmaxj {p(j)}. 
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Filter: 
8l . 
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Figure 4.1: Estimated parameter A using the original filter and the Viterbi filter 
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Filter: 

0.9 
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Figure 4.2: Estimated parameter C using the original filter and the Viterbi filter 

4.6 Viterbi Smoother 

Recall the backward process v defined by 

Vt,T - E [At+lXtIYT V Jt]. 

Then from Lemma 4.1, Vt,T = B(Yt+l)A'vt+l,T, with VT,T 

We now define a Viterbi smoother, by again replacing the sum by a maximum. 

Define a Process VT = [vT(1), vtT(2), ..., vtT (N)1 by 

Vt,T(i) = [B (Y+1 )],1, [max {a,v+lT(i) }1, 
i 

(4.6.1) 

V,T 1. (4.6.2) 
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Motivated by the results of section 4.5, we define Viterbi smoothed estimates in the 

following way. 

= V. (4.6.3) 

a(GXt) = diag(cT*(GXt)) V. (4.6.4) 

o'(JX) = diag(cr*(JX)) V. (4.6.5) 

To demonstrate the performance of the Viterbi smoother presented above, we con-

sider the same example as in section 5. The estimated results for the matrices A and 

C are shown in Figure 4.3 aid Figure 4.4. Again, the estimated values converge to the 

true values of the parameters. 

Write 

q* =diag <q,ej > v. (4.6.6) 

qt*(i)  
Pt N (4.6.7) 

The method for estimating X, is: 

Set fC(I) = 1 and.(n) = 0, 1 ≤ m ≤ N,n 0 I, where I = argmaxj { pt* (j)}. 
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Figure 4.3: Estimated parameter A using the original smoother and the Viterbi 
smoother 
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Smoother: 
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Figure 4.4: Estimated parameter C using the original smoother and the Viterbi 
smoother 

4.7 Conclusions 

The Viterbi algorithm can be considered as replacing expected values by maximum 

likelihoods. We have introduced new Viterbi-type algorithms related to parameter 

estimation and smoothing. 



63 

Chapter 5 

A FILTER FOR A HIDDEN MARKOV CHAIN OBSERVED 

IN FRACTIONAL GAUSSIAN NOISE 

5.1 Introduction 

In the previous two chapters, we discussed hidden Markov models, where the noise 

in the observations is assumed to be Gaussian. However, in many practical cases in 

engineering, physics and finance, it has been observed that the noise in the observations 

has some long term "memory" correlation. For example, a long-range dependence 

structure has been noted in squared stock returns and also exchange rates, such as the 

Yen-Dollar rate. Consequently, a long memory stochastic volatility model has been 

suggested. [4] [17] Other examples of long term memory are the measurements of 

IF (Internet Protocol) traffic and the model of Local Area Network (LAN) Ethernet 

traces. [38] [48] In this chapter we consider a discrete time, finite state Markov chain, 

observed through a real valued process which is corrupted by fractional Gaussian noise. 

This is an example of noise with correlation. The relation between the hidden states 

and the observations is linear. We derive estimates for the parameters and hidden 

states, using the change of measure method and the EM algorithm. [1] [36] [28] [30] 

[32] [37] 

The chapter is arranged as follows. In the next two sections, we give a description 

of fractional Gaussian noise and the model used in this chapter. In section 5.4, we 

describe the change of measure method. In section 5.5, we derive the formulae for 

estimating the parameters and hidden states. In section 5.6, we derive the formulae 
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for approximately estimating the parameters and hidden states. In section 5.7, we give 

the Viterbi estimation of the parameters and states. In the final section, we give some 

conclusions. 

5.2 Fractional Differencing 

The results are quoted from the paper of Elliott and Miao [31]. 

Let Z denote the set of integers, Z = {..., —2, —1,0,1,2, ...b and Z denote the set 

of non-negative integers, Z = {0, 1, 2, ...}. We define a set of functions £ = {f} on 

with values in R, i.e., f: Z -+ R. We suppose that if i < 0, then f(i) = 0. These 

functions could be considered as infinite sequences: f(0) = fo, f(1) = f, f(2) = f2,..., 

f(i) = f..... 

Definition 5.1. If f' E.0 and f2 E £, the convolution product f' * f2 is defined by 

00 

(f' *f2)(n) = flt2 Jn—i 

Considering the first few terms 

and 

i=O i=O 

(f'*f2)(0) =  fol f02' 

(f'*f2)(1) = f 01 f 12 +f 11 f, 

(f'*f2)(2) = 

1 
Ji Jn2—i• 

(f' * f2) (n) =01 fn2+ f'.f_1+ ... +f_1f 12 + 

1ff2 = (0,0,0, ... ,0, ... ), then for all n 

(f' * f2)(n) = 
n 

i=O 

f1 . 0 = 0. 

(5.2.1) 
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In this set of functions, consider the function u, which is defined as 

u= (uo,ui,u2,...) = (1,1,1,...). 

Then, for any sequence f = {f, j = 0, 1,2, ...}, and for any n E 

Therefore, convolution with u is the summation operator. 

Consider the function I E £ given by 

I=(1,0,0,...). 

Then for any function f € 

So, I is the identity operator for convolution multiplication. 

The convolution powers of u are 

U2 

U4 

= 

= 

= 

k k(k+1) k(k+1)(k+2)  
= (1, 1!' 2! ' 3! 

In fact, for any r E R, {r} could be defined as in [31] 

r r(r-i--1) r(r-i--1)(r--i-2)  
= (1,, 2! ' 3! 

= (1,0,0,...,0,...)=I. 

(5.2.2) 

(5.2.3) 

(5.2.4) 
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Theorem 5.1. For any r, s E R, 

Proof. Write 

* r+ s 

V = (vo,vi,v2) ... ) 

= 

- r r(r+1) * s s(s+1)  
- '1!' 2! '•• '1!' 2! 

r(r+ s(s+1)  
= (1,r+s, 1) 2! +rs+ 2! 

U 
r+s (r+s)(r+s+1) ) 

= (1, 1! ' 2! 

We know that for lxi <1, 

1+ X + )2 +  )(') 3 
3! 

(1 —x) 8 1+ sx +81)x2+ 8(8 + 18 + 2) 3 
3! 

However, 

(5.2.5) 

(5.2.6) 

(1 - x)(1 - x)_s = 1 + (r + s)x + ' r(r + 1) S(8+1) )x2 + .... (5.2.7) 
2! +rS+ 2! 

Also, 

= 

(r + s)(r  
= 1+(r-i-s)x+ 

- r8 + r+s + r+s 
- U0 U2 X+.... 
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Comparing (5.2.6) and (5.2.7), we have 

(1_ x)_r(1_ x)_s = V0 + V1X + V2X2 + 

= (I -

= u +8 + u+sx + u +8x +. 

Since x is arbitrary, we have vi = u, for all i ≥ 1. So, u' * u8 = U'+8. 

Corollary 5.1. For any r E R, 

r*_r ='i ° =1. (5.2.8) 

5.3 Hidden Markov Model With Fractional Gaussian Noise 

In this chapter we consider a finite state time-homogeneous Markov chain X = {X, t = 

0, 1, ...1  as in Chapter 2. The transition probabilities and the dynamics of X are defined 

by equations (2.2.1) and (2,2.2). 

Assume w = {Wt, t = 0, 1, 2, ...} is a sequence of N(0, 1) independent, identically 

distributed (i.i.d.) random variables. The fractional Gaussian noise W' = {w ', t = 

0, 1, 2, ...1  used in this chapter is defined as 
00 

4 (ui' * w)(t) = UWt_k. (5.3.1) 

Then, Wr is a sequence of Gaussian random variables which have memory and are 
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correlated. Also, 

E[wfl 

Var(wfl 

=0, 

k=O 

Cov(w,w_1) = 

Cor(w, W, _) 
Cov(w, w_1) 

/Var (wfl Var (w'_j) 

We suppose the process X is not observed directly; rather, it is observed through 

another process, whose values are corrupted by fractional Gaussian noise. All functions 

of X are linear. We consider the following model for the observations: 

Vt =< g' Xt > (5.3.2) 

where g is an N dimensional vector, and Wr = {w, t = 0, 1, . . .} is a sequence of 

fractional Gaussian random variables as described above. 

From (5.2.4), u is the series 

—r —r(—r + 1) —r(—r + 1)(—r +2)  

'1!' 2! ' 3! 

Then, 

(U-r * y)(t) = 

By Theorem 5.1, 

Write 

(u* <g,X >)(t) + (r *wr)(t) 

(_r* <g, x >)(t) + r * * w)(t). 

(u *y)(t) = (U-r* <g,X >)(t) +Wt. 

Zt = (u*y)(t), 

= (u-T*<g,X>)(t). 
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Then, 

Zo= Yo, 

z1 = Y1 — TYo, 

z2 = Y2TY1+ 1) YO) 
2! 

and so on. 

Also, 

ryo(Xo) = <g,X0 >, 

'yi(Xo,XI) = <g,X1>—r<g,Xo>, 

'y2(Xo,X1,X2) = <g,X2> —r <9X1> +—r(—r+1) 2! 

and so on. 

Then (5.3.2) implies the following equation. 

Zt = 'Yt + Wt. (5.3.3) 

These are the dynamics of z under the 'real world' probability P. 

5.4 Change of Measure 

Consider a probability measure P on the measurable space (Q, .F) such that, under .P, 

(1) The process X is a finite state Markov chain with transition matrix A, 

(2) {Zt} is a sequence of N(O, 1) i.i.d. random variables. 

We call the measure P a "reference" probability. 

We now construct the 'real world' probability P from P, such that, under P, the 

process X is still a finite state'Markov chain with transition matrix A, and {'wt} is a 

sequence of N(O, 1) i.i.d. random variables, where Wt = Zt - 
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Write = u{Xo, zo, X1, z1, ..., X, Zt}, so {} is the filtration generated by (X, z). 

Write 

- q5(z1—'y1)  

- q5(zi) 

At = A1, t=1,2,3,... 

where q(x) = exp(—ç ). 

Definition 5.2. Define P by putting 

dP 
- A. 

(5.4.1) 

(5.4.2) 

(5.4.3) 

(5.4.4) 

Theorem 5.2. Define Wt =Zt - 'y(Xo, X1, ..., Xt) fort E {0, 1, 2, ...}. Then, under P, 

{Wt} is a sequence of N(0, 1) i.i.d. random variables. 

Proof. 

P(wj≤alG_i) 

The inner expectation 

E[I(w ≤ a)IC_] 
E[AI(w ≤ a)G_]  

E[AtIG1] 
E[AI(w ≤ a)G_1]  

E[E[AIg:_1 V xfig_1]. 

IE[AtIG_i VX] = q5(zt) q(zt—yt)  cb(zt)dzt 

P00 

= I cb(wt)dwt 
J-00 

=1. 
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Then 

E[Atl9f 1] = 1. 

Similarly, 

°°  -  

E[AtI(wt ≤ a)G_1 VXt] = f <a)(zt)dzt 

00 

= (wt)I(wt < a)dwt. 

E[AI(w ≤ a)_1] = ≤ a)_1 VXt]jg_1] 
00 

= 00 

≤ a)dwt. 

So, P(wt ≤ alGt_i) = P(wt ≤ a) = J° q5(wt)I(wt ≤ a)dwt, and the result follows. 

That is, under P, 1,1 t = Zt - yt(Xo, X1, ..., X,) is an i.i.d. sequence of N(O, 1) random 

variables. Consequently, Zt = 'y(Xo, Xi, ..., X) + wt. 0 

Corollary 5.2. Under P, Yt := (U? * z)(t) = (U? * (t) + (Ur * w)(t). That is, 

Yt =< g, X, > +w. 

The process X remains a finite state Markov chain with transition matrix A. 

Write 

Yt = 

= o{zo,zi,...,zt}, 

= 

Then the filtrations, of the X, y, z and the (X, y) processes are {J}, {Y}, {Z} 

and {g'}. Note that, {Y} = {Z}, {'} = {}. 
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5.5 Exact Estimation of States and Parameters 

In this section we shall derive the exact estimates for the parameters and hidden states. 

5.5.1 Estimating the Hidden States 

First we describe how to estimate the hidden states, given the observations {y,t = 

Write 

qt = 

Assume q0 is known, then we have the following theorem. 

Theorem 5.3. The unnormalized probability vector q, is computed by 

N N N 

qt = 
i1=1 i2=1 jt=1 q5(zi)...q5(zt) < qo, e >. 

(5.5.2) 
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Proof. 

qt 

E[AX IZt] 

- 'y(X0, •••Xt))xtizti 
q(zt) 

-  'YL(Xo, ...,X))  
q(zt) 

<Xt, e1 >XZ] 

- 7(X0, ..., X_1, e11 )) < AX-1 + M, e1 > 
ii=1 

N 

1  

,tJ 
q(zt) 

E[A_1q(z - y(Xo, ..., X_1, e1)) <AX.. i, e > lZt1 
çb(zt) 

N - _1(X0, ..., X_1)) (Zt - (X0, ..., Xt_i, e)) 

ii=1 

N 

<Xt_i, ei 
i2=1 

= E 1: - _1(Xo) ..., X_2, e 2))(z - (X0) ..., X_2, e2, Cj)) 
ii=1 i2=1 

a 1,2 e 1 

> <AX_1, cii > IZt]_e1 
q5(zt) 

<AX_2 + e2 > IZt] 

N N N 

> - 'y1(Xo, e)) ... q(zt - 'y(Xo, ...) e1)) <AX0, eit > 
i1=1 i2=1 jt=1 

.. .2 1,2e1 

q(z) ... q(zt) 
N N 

ii=1 i2=1 jt=1 

- 71(X0, ej)) ... q(zt - 'y(Xo, ...) e 1 )) 

Similarly as before, 

q(zi) ... q(zt) 

qt 

<qt, 1> 

< q0, eit > 

(5.5.3) 
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5.5.2 Estimating the Parameters 

In order to estimate the parameters in this model, we have to estimate several random 

processes, as in the previous chapters. 

Theorem 5.4. The vector u(N 2t)X) is computed by 

N N 

li=1 lt-1=1 

+ A1(et_1, et_2) ... At(e_1, ...) e, e, el_k, ..., 611) 

< qo, ej > )1(e, e))2 (e, e, ez_1) ... At(ej, e, ej_1, ..., 

Proof. 

= E[AtN2)XtIZt] 

= E[A < X1_1, e >< X1, Cj >XIZt] 

<X1_1, e > < X1, e > X IZt]. 
1=1 

< qo, ej_1 > [A I (64-11 ej_2) ... A (el-1, ..., e 1, e1, e)ai_2,i_ 1 . . .a11,12a,1 + 

(5.5.4) 
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B[At <X 1, e1 >< X, ej > XtIZt] 

..., X) <X_1, e >< AX_1 + M, e > 

X 1, e) <X_1, ei >< AX-1, e> IZt]e 

..., X_2, e))t(Xo, ..., e, e) < AX-2 + M_1, ei > IZt1ae 

li=1 

N 

ajiej 

E 
li=1 

..., Xt_2, e)A(Xo, ..., X_2, e1, e) <X_2, e11 > <AX_2, e > IZt1. 



76 

For 0 < k <t, 

E[At < Xk—I, ei >< X,ej > XtIZt] 

= E[A <Xk_1, Ci >< Xk, Ci > 

li=1 

N 

<X,ej1 >XtIZt] 
11=1 

E[At_1A(Xo, ..., X_1, e11) < Xk-I, e >< Xk, e >< AX—I, e11 > IZt]ejj 

E[A_1A(Xo,...,X_1,ell) < Xi_,e >< > 

li=1 

<X_1, e12 > <AX_1, ell > IZt]eii 
121 

N N 

= .[A_2A_1(Xo, ..., Xt_2, ez2)A1(Xo, ...) Xt_2, e12  Ci1) < Xk—j, e >< Xk, Ci > 
11=112=1 

< AX-2, Cj2 > IZt]azi,12e11 

N N 

= ::• .[AkAk+l(Xo, ..., Xk, Cl_k)...At(XO) ..., Xk, Cit_k, ..., e11) <Xk_1, Cj > 
li=1 lt_k1 

< X, C >< AXk, Cit_k > IZt]a1_k_l,l_k ... a1l,12Cll 
N 

,li1 

N 

E(AkAk+l(Xo) ...) Cj, C1_k)...At(Xo, ..., C, Clt_k Cl1) . 

It-kl 

<Xk_1, ej >< AXk_l, ej > Zt]a1_k,az_k_l,l_k ... a1l,12ell 

= ..* E[AkAk+l(Xo, ..., e, el_k)...t(Xo, ..., C, eli_k, .. C) 

li=1 tt-k' 

<Xk_1, e > 

= ... E[Ak_2Ak_l(Xo, ..., Xk_2, e)...At(Xo, ..., Xk-2, e, e, eli_k, ..., e11) 
lj=1 1t-k' 

N 

< Xk-2, Clt_k+l <AXk_2, e > IZt]a,Za1_k,3al_k_l,l_k...a1l,l2ell 
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N N 

E[Ak_2 . 
li=l 1t-k+1 1 

Ak_l(XO, ...,Xk.3, el-k+1, e) ... At(Xo, ...,Xk_3, el_k+l) e, e, eli_k, ..., ell) 

< > I Z,] aZ,1_k+l aJZal_k ,3a1_k_l ,tt-k • .a11,12e11 

E[AoAi(ej_1, ej_2) ...At(ei_1, ..., e, e, elk, ... , e11) <X0, e1_ 1 > Z] 
ti=1 lt_i=l 

.a,l_k+l a2Zal_k ,2a1_k_l ,1t-k .a11112 e11 

N N 

= < q0, ez_1 > Ai(ei et2 ) ...At(ei_1, ..., e, e, e_k, ..., e11) 
11=1 lt_1=l 

at_2,z_1 a1,_+ aJat_k,... a  ,12 ei1. 

So, 

< qo, > [.\i(et_, ei_2) ... At(ej_1, ..., e, e, + 
li=1 lt-i=l 

+ A1(ci el,-2) .A((3z_1, ... 1_.44) ei, e, elf_k, c11) 

az_2,z_1 ... aZal_k,al_k_l,1 tk .a11,i2e11 + ..] + 

< q, ej > )(e, e)A2(e, ej, ei_1) ... A(ej, e, el_, ..., 

0 
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Theorem 5.5. The probability vector GX) is computed by 

a(GXt) 
N N 

< qo, e1 > [A1 (ej, ei_1) ...At(ej, ej_1..., e11, e)ai_1,j ...a11,12a,11 f(zt)e + 
li=1 lt=l 

+... + Ai(ei, ez_1) ... At(ej, ..., el -+ , e, el-k, ..., e11 ). 

< q0, ej > Ai(e, ej) ... At(ej, ei, ..., 

Proof. 

cr(GXt) = E[AtGXtIZt] 

= [At f(zt) <X1,e >XtlZt] 

= [Atf(zj) <X1,e > XtIZt]. 
1=1 

E[Atf(zt) <Xi, ej > XlZt] 

B[At <Xe, ej > Zt]f(zt)ej 

E[A_1A(Xo, ..., X 1, e) <AX_1 + M, ej > I Zt]f(zt)ei 
N 

X_1, e)) <X_1, e11 > <AX_1, e> IZt]f(zt)ei 
li=1 

•.., .Kt2, e11, e) < .Xt , e11 > IZt1ai,11f(zt)ei 
li=1 

(5.5.5) 

N N 

E[AoA1(e, ej_1) ... At(ei, ei_1 ... ) e11, e) <Xo, 61t > 
11=1 lt=l 

N N 

< q0, ei > Ai(ei ) et-1) ... At(ej, el, ... , e11, e)at_1,i . ..a11,12a,11 f(zt)e. 
li=1 lt=l 



79 

For 0 ≤ k <t, 

E[Atf(zk) <Xk, ei > XtIZt] 

= E[A <Xk, c> <X,e11 >XtlZt]f(zk) 
li=1 

= ..., X_1, e11) < Xk,ej >< AX-1, e11 > IZt]f(zk)e11 
ti=1 

N 

E[A_1A(Xo,...,X_1,ell) < Xk) ei > 
121 

<X_1, e12 > <AX_1, e11 > JZt1f(zk)eji 

IV IV 

..., X_2, e2, e11) <Xk, e1 >< X_1, ej2 > IZt]at1,12f(zk)eli 

N IV 

..., e, et_k) ... At(Xo, ..., j, elt , , ..., e11) <Xk, e > 
i 1 

< AXk, 6k > IZt]at_k_l,t_k ... atl,t2f(zk)etl 

= ..., e, elt_k) ... At(Xo, ..., ej, Ctk ••• e1) 
1i1 ltkil 

< )Ck, ej > IZt]at_k,az_k_l,t_k ... atl,z2f(zk)ezl 

N N 

= ..., e1) ... At(Xo, .... Cj, elk, ..., e1) 
li=l lt-k 1 

N 

N 

el...k+l > <AXk_l, e 

N 

> IZt1 al_k,Za1_k_l ,tt-k ... ai1,i2 f(zk)e11 

= •.. i E[Ak_lAk(Xo, ..., e_ 44, e)...)t(Xo, ..., Xk_2, el_k•l, e, 6lt-k ..., e) 
li=1 t-k+1' 

< Ctt_k+1 > I Z] a,1_k+l az_k,Za1_k_l ,tt-k ... a ,12 f (Zk) e11 

= E[AoAi(ej, ej_1)... At (ej, ..., e_ +1 , e, eli_k, ..., e11) <X0, elt 
lt=' 

at_1,i . . .aZ,1_k+l al_k,a1_k_l ,tt-k .a11,12 f (Zk) e11 
N N 

li=1 

< qo, elt > A1(e1, ej_1) ... At(ei) ..., e_k+l, e, Clt_k I •• e) 
1j1 tt=1 

.. . a,z_k+l al_k,Zat_k_l ,tt-k .a11,12 f (zk) ell . 
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So, 

o(GXt) 
N N 

qo, el, > [i(e, ej_1) ... Melt, ei_1 ... , e11, e) ai_1,i...aj1,t2a,i1f (zt)e + 
li=1 l=1 

+... + Ai(el) ej1) ... At(ei, ...) e_ +1 , e, el k, ... , e11 ). 

+ ...] + 

< qo, ej > A1 (e, et, ..., 

0 

In (5.5.5), let f(z1) = 1, 0 ≤ 1 < t. Then 

o(JXt) = .[AtJ,XtlZt] 
N N 

= qo, el, > {)i (el,, et_1) .. ..Xt(ez, e1., e)a_1,z ...a 1,12a,11 e + 
11=1 lt=l 

+... + Ai(ez, ej_1) ... A(ej, ..., e, elk, ... 

+ ...] + 

< qo, ej > A(e, ez)...At(e) e, ..., e 

(5.5.6) 

Again, 

= 

01 (G') = 

U(J) = 

The parameters are again estimated using the EM algorithm discussed in Chapter 

2. 
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Given the observations up to time t, the EM estimates of aj,j and 7t(Xo, .j, ..., .t_1, e) 

are 

aj,i 

'5't(Xo, -;-) ..., k_1, e) 

(5.5.7) 

(5.5.8) 

where in Theorem 5.5, f(z1) = z1 for G. The proof is similar to the proof of Theorem 

2.7 and Theorem 2.8 of Chapter 2. 

Then, the estimator, for gj up to time t is 

= (ur*5,(Xo,.ki,...,.kt_i,ej))(t). (5.5.9) 

5.6 Approximate Estimation of States and Parameters 

In this section we give recursive approximate estimates of the parameters and hidden 

states. 

Theorem 5.6. The probability vector qt is approximately computed by the recursion 

qt= 
i=1 

(Zt - 'y(X0, .'i) ... , e)) 
e > cb(zt) e, 

where, for O<l≤t,Xt=  '11  
<i,1> • 

Proof. 

qt 

= E[AtXtIZt] 

cb(zt —'yt(Xo,...,X))  xtlztl 
= q(zt) 

— 'y(Xo, ..., Xi)) 
= E[A_1 q(zt) 

i=1 

< ':Ct' ej >XtIZt]. 

(5.6.1) 

(5.6.2) 
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Using X1 to approximate X,, i = 1, 2, ..., t - 1 in (5.6.2), we define 

= 

i=1 q(zt) 

where, for 0<1 < t, X1 qj 

Taking as an approximation to qt—i, we have 

E[A_1 < AX_i + M, e> Iz](Zt — (X0, XI, ..., ft-1, e)) 
q(zt) e 

Pr AY. 157,1 
c(zt) 

(t — 'y  (X0) ..., -it_i, e))  

N 
= <A....1, ej > çb(zt y(X0, .&, ..., ..k_1, e))  

i=1 q5(zt) 
e. 

e 

Theorem 5.7. The vector o(N'Xt) is approximately computed by the recursion 

&(NX) = 

Proof. 

>< &(N2)X_1),e1 > ... ,.t_i,ej)ej + 

< t-i, ej > A(Xo, ki, ..., .t_i, e)aej. 

= 

= E[A1A(X0, ..., X)(N+ <Xt_i, e >< X, e >)XtIZt] 

= E[A_1A(X0, ..., X)(N+ <X_i, e >< X, ei >) 
N 

1=1 

1-1 

(5.6.3) 

<Xi, e1 >XtIZt] 

...,X_1, e1)N(AX_1 + Mt)IZt], e1 > e1 + 

E[A_1A(Xo, ..., X_1, e) <X_1, ej >< AX-1 + M, e> IZt]e. 
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Similarly as before, we define 

N 

<E[At_iNAXt_iIZt_i], e1 > A(Xo, i, ..., t-i, ei)ez + 
l=1 

< E[A_1Xt_1IY], ej > A(Xo) ..., e)ae 

e1 > A(X0, X1) ... , X_1, e1)ej + 
N 

t1 

< qt- 1) ej > A(Xo, X1, ..., Xt1, 

Taking &(NX_1) as an approximation to u(NX_1), and as an approx-

imation to qt—i, we have 

= <&(NX_1), el > (Xo, i, ..., it-i, e)ei + 

< ej > A(Xo, .ki, ..., 

Theorem 5.8. The probability vector cr(GXt) is approximately computed by the re-

cursion 

6(GX) = 

J-

1=1 

e1 > A(Xo, -i) ..., &_i, e1)e1 + 

ej > f(zt)At(Xo, X1, ...) Xii, e) e. (5.6.4) 
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Proof. 

cr(GXt) 

= 

= E[A_1A(X0, ..., X)(G_ + f(zt) < X, ej >)XtIZt] 
iv 

= E{A_1A(x0, ..., X)(G_1 + f(zt) <Xe, e >) < Xt, e1 >XtIZt} 
1=1 

N 

X_1, el) G_1 <Xe, e1 > ejlZt] + 

1=1 

..., X•t_i, e)f(z) < )C, e >< Xt,ei > e1ZtJ} 

..•, + Mt)IZtJ, el > e + 

..., Xt_i, e)f(zt) <AX_1 + Mt, ej > Izt1e. 

Similarly as before, we define 

6(GX) 

Cj > A(Xo, 1) ...,i_i, et)ej + 
1=1 

< E[At_iAXt_iIZt], ej > f(zt)A(Xo, ..., e)e 
N 

<A0(G_1Xt_i), Cj > A(Xo) .k1, ..., .k 1, ei)ei + 
1=1 

<Aqt_1, ej > f(zt)At(Xo, i, ..., e)e. 

Taking &(G_1X_1). as an approximation to o(G_1Xt_i), and as an approxi-

mation to qt-i, we have 

&(GX) = e1 > A(X0, -ii) ... , ei)ei + 
1=1 

<A_1, ej > f(zt)At(Xo) .&, ..., -it_i, e)e. 

0 
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Setting f(yt) = 1 in equation (5.6.4), we obtain 

&(JX) = <A&(J_1X_1), 61 > A(X0) X1, ..., X1, ei)et + 
1=1 

< A_1, ej > )(.Xo, -ii) •.., .t_1, e)e. 

The estimates of aj,j and gj are then given by (5.5.7) and (5.5.9). 

5.7 Viterbi Estimation of States and Parameters 

Following Chapter 4, we shall give the Viterbi estimates in this section. 

From (5.6.1), 

= 

N 

i=1 

— 'y(Xo) J1, ..., es)) - 
(/.)(Zt)  

(5.6.5) 

Instead of this summation, we recursively define new unnormalized probabilities 

qt* =[q(1), qt* (2),..., qt* (N)]'by 

qt* (j) = max a3 
cb(zt — 'y(Xo) .j) ..., ei)) q_1 

i  (Zt) 
(5.7.1) 

Certainly, qt (j) > 0. The Viterbi probabilities {,ot} are defined in (4.5.3). Also, 

Pt (j) is an estimate of the conditional probability, that Xt = e, given Z1, Z2, ...., Z,. 

Write X = (pt (1), pt (2), ..., pt (N)). In (5.7.1), instead of X, we use Xt to approx-

imate X, i = 1,2,...,t —1, then 

cb(zt (5.7.2) qt* (j) = max a3   
1 q(zt) 

The quantity q,*, is an approximation of q,. Similarly, we can define o*(N/ Xk), 

u*(Jxk) and o.*(cix ) by 

(N'X) (m) = max {amla*(NXt_i)(l)At(Xo,X, ...,,X 1) em )} + 

( q_1 * i)At(Xo, X, ..., X_1, ej)aj,jöm ,j. (5.7.3) 
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.*(Gix) (m) = max {amjo *(G_iXt_i)(l).Xt(Xo, X, ..., X_1, e)} + 

max {ajq_1(l)f(z) )(Xo, X, ..., X_1, ej)6rn,j}. (5.7.4) 

u*(JiX) (m) = max {amio *(J_iXt_i) (l)At(Xo, X, ..., X_1, em )} + 

max {aitq_i(l)At(Xo,X,...,X_ i) ei)8m,i}. (5.7.5) 

Following the results in section 5.5, estimates for the parameters could then be 

computed by 

i't(Xo,X, ...,X_1,e) 

where in (5.7.4), f(z1) = z1 for G. 

The estimator for 9j up to time t is still given by 

= (r *.5,(xo,x* V 

5.8 Conclusions 

(5.7.6) 

(5.7.7) 

In this chapter we have obtained exact estimates for the parameters and hidden states in 

the hidden Markov model, with the noise in the observations being fractional Gaussian 

noise. It is shown that, using change of measure method, the parameters can be 

estimated based on the history of the observations. We then gave recursive approximate 

and Viterbi estimates for these parameters and states. For the recursive approximate 

estimates we do not need to go back through all the time steps to the values at time 0. 
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Chapter 6 

A FILTER FOR A STATE SPACE MODEL WITH 

FRACTIONAL GAUSSIAN NOISE 

6.1 Introduction 

State space models are widely used in finance, speech processing, image processing and 

control systems. A state space model is an extension of a hidden Markov model. In 

such a model the signal of interest is hidden but observed through another stochastic 

process. Both the unobservable and the observed processes are corrupted by noise. 

However, the hidden signal could be any process, not necessary a Markov process. 

Often, the noise in the signal and observations is assumed to be Gaussian. In that 

case, the Kalman filter, the extended Kalman filter and the Wonham filter are well 

known methods for estimating the hidden signal. 

However, as mentioned in Chapter 5, in many practical cases the noise in the ob-

servations has some 'memory'. In this chapter, we consider a discrete time, state space 

model, where the signal is observed through a real valued process which is corrupted 

by fractional Gaussian noise. The relation between the signals at different times and 

the relation between the hidden signal and the observations are both linear. We derive 

the estimates for the hidden signal and the parameters, using the change of measure 

method and the EM algorithm. 

An important question is to estimate the error between our approximate filter and 

an exact filter. However, without an exact filter, this appears to be a difficult problem. 

This chapter is arranged as follows. In the next section, we give a brief description 
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of fractional Gaussian noise and the model used in this chapter. In section 6.3, we 

derive the filter for estimating the hidden signal. In section 6.4, we derive the formulae 

for approximately estimating the parameters and the hidden signal. In the final section, 

we give some conclusions. 

6.2 State Space Model with Fractional Gaussian Noise 

Fractional Gaussian noise is defined in Chapter 5. The real-valued, (one dimensional), 

state and observations of the system considered in this chapter satisfy the dynamics 

xt = axt_i + bv, 

Yt = CXt + dw. 

(6.2.1) 

(6.2.2) 

Here a, b, c and d are unknown parameters; v = {Vt, t = 0, 1, ...j is the process noise, 

which is a sequence of N(0, 1) i.i.d. random variables; W? = {w, t = 011, .. .} is the 

measurement noise, which is a sequence of fractional Gaussian random variables as 

described in Chapter 5. 

As in Chapter 5, write 

Zt = (u_r * y)(t), 

..., Xt) = (_r * x)(t). 

Then, (6.2.2) implies the following equation. 

Zt = C'yt(Xo, ..., Xt) + dw. 

These remain the dynamics of z under the 'real world' probability P. 

6.3 Filtering 

(6.2.3) 

Consider a probability measure P on the measurable space (1, .F) such that, under .P, 
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(1) {Xt} is a sequence of N(O, 1) i.i.d. random variables, 

(2) {Zt} is a sequence of N(O, 1) i.i.d. random variables, 

and {Xt} and {Zt} are independent of each other. 

We call the measure P a "reference" probability. 

We now construct the 'real world' probability P from P, such that, under P, {Vt} 

and {Wt} are sequences of N(O, 1) i.i.d. random variables, where Vt = b'(x - axt_i), 

wt = d'(z - C'yt(Xo, ...,Xt)). 

Write = a{x0, zo, x1, z1, ..., X, z}, so {fl is the filtration generated by (x, z). 

(However, see the definition of ' after Corollary 6.1.) 

Write 

and for 1 ≥ 1, 

At 

(x) = 
1 

- C'yo(Xo)))  
dq5(zo) 

- axj_i))q(d'(z1 - c'y1(x0, ...,  
= bd(x1)(z1) 

(6.3.1) 

(6.3.2) 

t=1,2,3,... (6.3.3) 

Definition 6.1. Define P by putting 

dP 
- A. (6.3.4) 

Theorem 6.1. Define Vt = b'(x - axt_i), Wj = d'(z - C7t(Xo,Xi, ...,Xt)) fort E 

{ 0, 1, 2, ...j. Then, under P, {Vt} and {'wt} are sequences of N(0, 1) i.i.d. random 

variables. 
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Proof. 

- E[Atf(v)g(w) Icz_11 
T?IA z 
.I-1Li-t t_1 

- 

.LJL/\t 19 t_1 

- ax_i))q(d' (Zt - cyt(xo, ...,Xt))) 
bd(x)(z) 

E[  cb(b'(xt - - C'yt(Xo, ...,Xt))) 
= 

bq(xt) dçb(zt) 

00 
- ...  ig:_1, Xt] f (d'(z - C7t(Xo, ..., q(zt)dzt 
dq(zt) d(z) 

=1. 

- - axt_i))  c_1i = foo q(b'(x - axt_1)) (X )dX 
bq(x) bçb(xt) 

=1. 

= (Xt - ax_i))q(d' (Zt - c'yt(xo, ...,Xt)))  
bdq(xt)q(zt) 

f(b'(xt - ax_1))g(d' (Zt - C'yt(Xo, ..., 

- axt_1)) f(b_1( - axt_i)). 
bcb(xt) 

dq(zt) 

dq5(zt) 

= - c(x0, ... x ))) g(d_1(z - Ct(XO, ...,xt)))(zt)dzt 
00 dcb(zt) 
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00 00 
E[Atf(vt)g(wt)g1] = f-00 0(()f (()d( foo 0(•)g(•)d6-

The result follows. That is, under P, Vt = b'(x - axt_i), wt = d'(z - 

C'yt(xo, x1, ..., Xt)) are i.i.d. sequences of N(O, 1) random variables. Consequently, under 

P, Xt = axt._i + bvt and Zt = c'yt(xo, X1, ..., x) + dw. 

Corollary 6.1. Under P, Yt := (Ur * z)(t) = C(Ur * -y)(t) + d(ur * W) (t). That is, 

yt=cxt+dw. 

Write 

Yt = o{yo,yi, ... ,yt}, 

zt 

ft 

= o{zo,zi, ... ,zt}, 

= 0{xo, YO) xi,yi,...,xt,yt}. 

0 

Then the filtrations of the x, y, z and (x, y) processes are {J}, {Yt}, {Z} and 

Note that, {Yt} = {Z}, so {'} = {}. 

First we shall describe how to estimate the hidden states, given the observations 

{yt,t= 0, 1, 2, 

Using a version of Bayes' rule [36], we have 

E[g(x)Zt] =  [A g(x) IZt]  
E[AIZ] 

Assume 

(6.3.5) 

E[Atg(xt)Zt] = f g(x)at(x)dx- (6.3.6) 

If p,(.) denotes the normalized conditional density, such that E[g(x)JZt] = f g(x)pt(x)dx, 

then pt(x) = at(x)[fat(u)du]'. 
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Theorem 6.2. The unnormalized density at(.) is computed by 

1o(x o))) p0(X) ao(x) = = - c dq5(zo) 

where po(x) is the initial density of x0, and for t ≥ 1, 

at(x) 

1  
= 0(b—'(x - axt_i))(d'(zt - ct(xo, ..., x))). 

btdt(zt) ... (zi) f ... f  

- axt_2))(d'(zt_i - c'yt(xo, ..., xt_j))) ... cb(b'(xj - axo)) 

- c'yt(xo, xi)))po(xo)dx_1 ... dxo. (6.3.7) 

Proof. It is easy to see ao(x) = )opo(x). When t ≥ 1, 

f 
= 

= 

B[A -  axt_i))(d'(zt -  0yt(xo, ..., Xt))) 
= bdçb(xt)cb(zt) g(xt)IZt] 

= bd \t_1 1 I 0(b-1 (x -  ax_1))cb(d' (zt - c7t(xo, ...,Xt_i,X))) 
(z) q(x) g(x)q(x)dxIZt] 

1  - q(b'(x_1 - ax_2))q(d'(z_1 - c'yt_i(xo, ..., Xt_i)))  
= bdt) bd(x_i)(z_i) 

f0(b—'(x - axt_i))(d'(zt - ct(xo, ..., x1, 

1 
- btdt(zt) ... (z1) f ... f0(b—'(x - axi))(d'(z - ct(xo') ..., x1, x))). 

- axt_))(d'(zt_i - c'yt(xo, ..., xj1))) ... q(b'(x1 - axo)) 

- c'yt(xo, xi)))po(xo)g(x)dxdx_1 ... dxo. 
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So, 

1 
= btdt(zt)...(zi) f ... f0(b-'(x - axt_i))(d' (zt - Ct(X0, ..., X_l, x))). 

- ax_2))c/(d'(zt_i - C'yt(Xo, ..., x_i))) ... (b'(x1 - axo)) 

- c7t(xo,xi)))po(xo)dx_i ... dxo. 

D 

From Theorem 6.2-and (6.3.5), we have the estimates of Xt 

= E[x,Z] = [AtxtIZt] fxat(x)dx  
.[AtIZt] I at(x)dx 

6.4 Approximate Estimation of States and Parameters 

6.4.1 Approximate Estimation of the States 

In this section, we give recursive approximate estimates of the parameters and hidden 

states. 

Theorem 6.3. The unnormalized density c(.) is approximately computed by the re-

cursion 

- c'yt(xo,i, ...,Xt.i,X))) 

= bdcb(zt) f 0(b-'(x - au)) i(u)du. 

The approximate normalized densities are defined by 

AW = at W/ f ät(u)du. 

The approximate means are then given as 

= j x15t(x)dx. 

These means are the quantities used in 

(6.4.1) 
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Proof. The values z0, z1, z2, ... are observed sequentially. We have assumed that the 

distribution x0 is described by an a priori density po(x). 

The recursion is initialized as follows. 

= çb(d'(zo - cx)) 
ao(x) äo(x)  dq(zo) po(x), 

and x0 = &o = = E 0 [x}. 

For t ≥ 1, 

f 
= E[Ag(xt)lzt] 

= 

=  t-I -  axt_i))(d'(zt - C'yt(Xo, ..., Xt)))121 (6.4.2) 
bdq(xt)cb(zt) 

Using to approximate x, i = 1, 2, ..., t - 1 in (6.4.2), we define t(•) such that 

f 
= 2[A_1 /_(b' (x - ax_1))ç(d1(zt -  C7t(xo, ..., it_i, Xt)))  g(xt) I ztl 

bdq(xt)q(zt) 

- bd/(z) E[At1 f 0(b-'(x -  ax_1))q(d' (Zt -  c'yt(xo, ..., _i, x))) q(x) g(x)q(x)dxZt] 

- bd(z) ff0(b-'(x - au))(d' (zt - cj(xo, , ..., t_i,x)))g(x) t_i(u)dxdu, 

where, for o < 1 < t, i - fx&z()dx  
- fa1(x)dx 

Taking as an approximation to a(.), we have 

t(x) = q(d'(z - c'yt(xo, Xt.i, x))) f ('( - au))5t_i(u)du. 
bdq(zt) 

0 

Note that since the dynamics of x, and Yt are both linear, the density 25t(•) is also 

normally distributed with mean pt = E[xtlyt] and variance Rt = E[(x -fLt)21yt]. Then 
we have the following theorem. 
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Theorem 6.4. The mean and variance Rt are approximately computed by the re-

cursion 

Rt = A, (6.4.3) 

At = (6.4.4) 

where A / 1 a2Rt_i 1 B - ajt.iRt_i and = (- + ---'—'. 
— i" ) — Rt 1 

Proof. By Theorem 6.3, 

= q5(d1(z - C')'t(X,i, x))) f 0(b—'(x — au))&t_i(u)du 
bdcb(zt) 

oc cb(d 1(zt — e'yt(xo, i, ..., ft—i, x))) f exp(—(x — au)' — 2R1 ('a — /.Lt_-i)2)du 
bd q5(zt) Tb2 

xp x2 /.L_1 
 e 

bdcb(zt) 2b2 —  2R 1 

1 f a 2  Pt_1 )))du  exp(_.(u2( + ) 2u( ax -- + 

Taking 'yt(xo) i, ..., t—i, a_) as an approximation to 'yt(xo, j., ..., it—i, x), and 

taking to approximate R, we have 

x2 Itt_i  

bdq(zt ) exp(- 2b2 - 2R_1 

fexp(_(u2( a 2 + - 1 ) 2u( ax — 
2 b2 

Write 

t-1  

(d'(z — C'yt(Xo, i, ..., it—i) a_i))) x2 fl_1  
K(x) = bdq5(z) exp(— 2R_1 ' 

a2b2 Rt 
1 

= 

ax At 
Pt(x) = 
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Then, 

oc K(x) f exp(_(u21 - 2u,8t1(x)))du 

oc K(x) f exp(- 2 (u2 - 2ufii(x)Li+ (i(x)Li)2 (ti(x)t1)2))du 

cx K(x)exp(t11) f exp(—  - Pt—i(x)Li)2)du 

cx K(x)exp(t11) \/2t 

1 2 1 aRt_i 2; ) 2 aItt_lRt_l)) 
- cc Kiexp(— (x i - b4 

' cx K2exp(- 1 -(x-AtB)2 ), 

where K1 and K2 are constant in x. 

So, the result follows. 

6.4.2 Approximate Estimation of the Parameters 

Now we shall show how to estimate the parameters a, b, c and d in the model when 

they are unknown. The EM algorithm is used. 

Similar , as Chapter 2, we take 

Qt(O,O*) = dP0 

dPo-

In our model, we define 

where 

?7o 

771 

t 

dP0 dPo- Igz = It H 771) 
1=0 

d*cb(d_l(zo - c'yo))  

dq(d*_l(zo - c*y0))' 

d*(d_l(zi - c'yi(xo, ..., xj )))b* (b' (x1 - axi_1)) 

- c*y1(x0) ..., xj)))b(b*_l (x1 - a*xj_i)) 

(6.4.5) 

(6.4.6) 

(6.4.7) 

(6.4.8) 
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Then 

Q(9,O*) = Eo*[log  dP9  lt] 

= —tlogb—(t+1)logd— 
1=1 

t 

b2(x - axi_i)2IZt] - 

- c'y1(x0, ..., xz))2JZt] + R(O*), 
1=1 

where R(G*) does not contain 0. 

Set 80 = 0, we get 

a = Eo*[xixj_iIZt](Eo*[ 

b2 = Eo*[E (xi _axl_l)2IZt], 

C = Eo*[z1y1(xo,.. 
1=1 

x - ) 1IZt1'' , 
1=1 

.,xj)IZt](Eo*[Ey?(xo, ...,xj)IZt])', 
1=1 

t 
= 1 CyI  

t+1 
1=1 

(6.4.9) 

(6.4.10) 

(6.4.11) 

(6.4.12) 

(6.4.13) 

Write T° =  Et  x, EL1 11_1, 1-x(2) = E=0  X t x?_1, 1(0) = =o 'y?(xo) ..., 

= E 1=1 z1'yj(xo, ..., x1), then 

a 

C 

d2 

x(2) 
Z])', 

= E0 [T ° - 2aT' + a2T 2) IZt], 

= E0 [UtIZt] (E0 [T,7 °'lZ])', 

1 t 

-   +z?lZt]. 
1=1 

(6.4.14) 

(6.4.15) 

(6.4.16) 

(6.4.17) 

Next, we develop the finite - dimensional filter for T M), M = 0, 1, 2, T ° and U. 
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Definition 6.2. Define the processes 

at(x) = E[AI(x E dx)IZt], 

= E[AT M I(x E dx)IZt], M -= 0,1,2) 

,2Y(0) , (x) = E[AtT(M)I(x E dx)Z], 

öt(X) = E[AUI(x E dx)IZt]. 

Then, for any function g(.), 

E[Atg(xt)Zt] = 

= 

= 

[AtUtg(xt)Zt] = 

(6.4.18) 

(6.4.19) 

(6.4.20) 

(6.4.21) 

fa(x)g(x)dx, (6.4.22) 

fM) (x)g(x)dx, M =0,1,2, (6.4.23) 

f,8°) (x)g(x)dx, (6.4.24) 

föt(x)g(x)dx. (6.4.25) 

Theorem 6.5. The unnormalized density ,T (M)(.) M = 0, 1, 2, O)(.) and 8(.) are 

approximately computed by the recursions 

= q(d'(zt - c'yt(xo, i, ..., it_i, x))) 1r 0(b-1 (x x( 
x - au))/3_O)1 ('u)du + 

bdcb(zt) 

x2 f 0 (b'(x - au)) t_i(u)du], (6.4.26) 

(i 
- c'yt(Xo, i, ..., it-i, x))) [f 0(b-1 (x - au))13tx_i) (u)du + 

bdcb(zt) 

x  u(b'(x - au)) t_i(u)du], (6.4.27) 

( 
- c'yt(xo, i, ..., it_i, x))) [f 0(b-'(x - au))fi x_2)1 (u)du ± 

bdcb(zt) 

fu 2 0(b- '(x - au))-i(u)du], (6.4.28) 
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A,101 (X) cb(d'(zt - C'yt(Xo, i, ..., it_i, x))) [f çb(b'(x - au))1ãZ(u)du + 
bdq(zt) 

(x0)1, ... ,t_i,X) f0(b—'(x - au)) i(u)du], (6.4.29) 

(X ) 
= cb(d'(zt - C'yt(Xo, i, ..., it—i, x))) [f çb(b'(x - au))_i(u)du + 

t bdq5(z) 

t(XO ) , ..., —i, X)Zt f0(b—'(x - au)) t_i(u)du]. (6.4.30) 

The proof of Theorem 6.5 is similar to the proof of Theorem 6.3. 

Write = = -cr, 1 and S = uT+1jk 1Pt.Then we have the following 

theorems. 

Theorem 6.6. The densities 4M)(.), M = 0,1,2 and /?°'(.) are defined by 

- [a + bM)x + dM)x2](x), M 0, 1, 2, 
-  

= [a ° + b7 °x + 

(6.4.31) 

(6.4.32) 
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x(0) 
a0 = 

100 

where a x(M) bx(M) , d x(M) , a b ° and d7 ° are computed by the following recursions: ,  

X(0) - 0 x() 
a + b °S + d ° oj. 1 + at St, 

x(0) - E + 2d °S) x(0) ot+i - t+i(o , O = 0, 

= 1d ° + 1, d ° = 1, t+1 

x(1) x(1) 
a 1 = a + b'S + d°)o 11 + 

X(I) = 0, 

- E+1(b7'1 + 2d'S)+ S, b' = 0, 

- E2 d' + d 1 = 0, t+]. - t+1 

v(2) - a 2 + b7 2 St + d 2 1 + (d 2 + 1)S, at+l - 

x(2) - 

a0 - 0, 

b 2 - t+1 - + 2(d 2 + 1)S) Da(2) = 

d 2 = E•1(d 2 + 1), d 2 = 0, t+1 

- + b °S + + d7 °S + 'y 1(xo, i, ..., t, a), a+1 - 

-1(0) - a0 - 

- J+1(b ° + 2d7 ° S), b ° = 0, t+1 - 

— E 2 & '° c1 ° = 0. 
t+1 - t+1 t ' 0 

(6.4.33) 

(6.4.34) 

(6.4.35) 

(6.4.36) 

(6.4.37) 

(6.4.38) 

(6.4.39) 

(6.4.40) 

(6.4.41) 

(6.4.42) 

(6.4.43) 

(6.4.44) 

Proof. When t = 0, (6.4.19) and (6.4.26) indicate (0)(x) has the form (6.4.31) with 

a 0 = 0, b ° = 0 and d ° = 1. Assume (6.4.31) holds at time t, then at time t + 1, 
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using (6.4.26), (6.4.31) and Theorem 6.4, we have 

x(0) - C'yt(Xo, i, ..., t, x))) 

t+l () = bd(zt+i) 

f[a ° + b °u + d O)u2Jt(u)(b_1(x - au))du + 

I + b ° x(0) 2 - (x, z) [at u+d u]at(u)(b'(x — au))du+x25 +1(x), 

(6.4.45) 

where ''(x , Zt+1) =   
bdcb(z+i) 

Write t = ax ± Write the first term of (6.4.45) as I. 
b2 Rt 

Il 

(x, Zt+1)  
27rb\/ I p{—[b-2(x — au)2 + '(u — t)2]}[aO) + b °u + d°)u2]du 

1 X2 
 2irbV' exp[—(.-. + 

ax + )u]}[a7° + b7°u + d°)u2]du f exp{—[(j a 2 + ' )u 2 —2(  

1 Rt 
x2 At2 [ 1 

21rb\/ exp[—(-- + j xp[—(ut+iu2 - 2etu)I[a7'° + b °u + do)u2]du 

1 x2 
+ - 0,7   expl— 2(b2  •j•tot+j 

fexp[—t+i(u — iet)2][a o) + b7 °u + dO)u2]du 

1 x2 /ii 1 -1 
=  exp[—( + -z- — + bx(0) + dx(0) (o + o 14t2)] 

2 b2 f t  

r x(0) x(0) ax 
 exp[ = (x, Zt+i) —1(x - it+1)2]La + b + At 

) + Rt 
/27rRt+1 

x(0) -1 ,2 ,(ax d + cr(-- + /t)2)] 

a2 2 apt x(0) -1 X2 
= öt•i(x)[at + b °a 1 x cT•1 -=-- + + d ° 1(-- b2 

-2 
Pt 

D2 
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a(0) a2 2 alit X2  
= [at + b ° 1 x + b ° - lit + d °a 1 + b2R p2 

X2]at+i(X) 

X(0) 
= [a + b7°E +1x + b °S + + d o)(>j+1x2,+ 2IJ+1Sx + S) + X2]ôt+i(x) 

x(0) x(0) 
= [at+i + x + d?x2 b+1 1at+i (x), 

where a 0 = a7 ° + b7°S + d °o 1 + d°)S2 b ° - + 2d ° S), d ° t, t+i - t+i 

+ 1. 

The result for /3 x(0) (.) follows. The proofs for /3M)(.), M = 1,2 and $Z °(•) are 

similar. 

Theorem 6.7. The density ) is defined by 

= [t + btx]at(x), 

where dt and bt are computed by the following recursions: 

= a+ tSt + 'yt+1(xo,1, ...,, a)z1, 

a0 = 

bt+i = E+1b, 60 = 0. 

D 

(6.4.46) 

(6.4.47) 

(6.4.48) 

The proofs of Theorem 6.7 are similar to the proof of Theorem 6.6. 

, Then, finite - dimensional filters for T x(M) , M = 0, 1, 2, T y(0) and U are approxi-

mately computed by 

E[T M) lZt] a(M) x(M)_ 
= a +b ILt+d M) (Rt+ILt), M=0,1,2, (6.4.49) 

E[T ° IZ] - + b2'°'li + (0)(j + (6.4.50) - 

E[UtIZt] = at + tJit. (6.4.51) 
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6.5 Conclusions 

In this chapter, we derived estimates for the parameters and hidden states in the 

state space model, with the noise in the observations being fractional Gaussian noise. 

It is shown that, using change of measure method, the conditional density of the 

hidden signal based on the history of the observations can be estimated. We also 

developed recursive approximate estimates of the density. The mean and variance of 

the approximate density were also estimated recursively. Finally, we derived maximum 

likelihood estimates of the parameters, using the EM algorithm. 
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Chapter 7 

A NONLINEAR FILTER 

7.1 Introduction 

The Kalman filter is used for models with linear dynamics and additive, Gaussian 

noise. For mild non-linearities the extended Kalman filter often provides a good sub-

optimal estimate. Particle filters have recently been popular for calculating Monte-

Carlo estimates. However, when there is no noise in the state dynamics the particle 

filter doe6 not work. 

In this chapter we consider a scalar state process with non-linear dynamics x = 

{Xt, t = 0, 1, ...}, where Xt = g(9, Xt_i) for t = 1, 2,.... Here 9 is an unknown parameter. 

The process x is observed in Gaussian noise through a process y = {yt, t = 0, 1, ...}, 

where Yt = Xt + wt. Here w = {w,, t = 0, 1, ...1 is a sequence of independent N(0, a) 

random variables. 

Write Pt (0, x) for the joint conditional density of (0, x) given observations Yo, Yi, ..., 

By adapting methods from Chapter 2, we obtain a recursion for a discrete approxima-

tion to pt(O, x). 

A particular case of our model is when x has Logistic dynamics given by 

Xt = 0x_(1 - Xti). (7.1.1) 

Previous results for this problem are obtained in the paper [15] by Leung, Zhu and 

Ding. 
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7.2 Dynamics 

Consider a state process x = {Xt, t = 0, 1,2, ...} whose dynamics depend on an unknown 

parameter 8, and whose evolution is described by: 

Xt = g(O,x_1), (7.2.1) 

for t=1,2,... 

For simplicity we suppose the xt and 0 are scalar valued. 

The state process is observed in additive white noise so we suppose we have a 

sequence of observations y = {yt, t = 0, 1, 2, ...} such that lit = Xt + 'Wt. Here w = 

{Wt, t = 0, 1, 2, ...} is a sequence of independent Gaussian random variables defined on 

a probability space (, J, P). Under P each wt is Gaussian with mean 0 and variance 

0. 

However, to obtain the recursion we suppose that under another probability measure 

.P the y = {Yt} is a sequence of independent, Gaussian random variables, each having 

mean 0 and variance o. 

Considering the following cr—fields, or "histories" as Chapter 6: 

Yt 

= o-{xo,xi,...,xt}, 

= cr{yo,yl, ... ,yt}, 

= a{xo, YO, xi,yi,...,xt,yt}. 

S 2 

Write q(x) =  ira e=2a for the N(0, a) density. Consider, for k = 0, 1, 2, ..., the 

variables 

A fti — xi  

1=0 

Then the following result can be provided as in [36]. 

(7.2.2) 
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Lemma 7.1. Define the probability measure P in terms of P by setting 

dP 
dplct_1 := A. (7.2.3) 

Then under P the random variables 'Wt := Yt - Xt are i.i.d. and N(0, a). That is, 

under P, as required 

Proof. 

Write 

Then 

P(wt ≤ a9_1) 

Yt = Xt + Wt. (7.2.4) 

= E[Iwt<agt_iI 

E[Atlwt<a Ict-il 
= 

A - 1[(Vt_Xt)  
(yt) Iw.<aIgt_iJ 

A - 1E[tt) 
cb0(yt) 

f(Yt2t)1Wt <algt-il 
-  I  

- 2[cbo (Yt —xt)  
(YO Igt- il 

Wt = Yt - Xt. 

- Xt) ic1 V Xt] 
c(Yt) 

Ia  0, (Yt - Xt)  
= cb(yt) 

= fn (yt - x)d(x + Wt) 

f(wt)dwt 

=1. 

-  

 19t-11 =  RA  v xtfigt_i] 
cb.(yt) E 4(t) 

=1. 
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- Xt) I. <.19t-1 V xtl 
(it) 

= f cb(yt -  Xt)  1w<aqcy(yt)dyt 
Yt) 

= fR (t - Xt)Iwt<ad(Xt + Wt) 

= fn (wt)Iw<adwt 

= fçb(wt)dw. 
oo 

B[ Myt u(Yt — Xt)  
- = (t) Iwt<algt_i V xt]Igt_i] 

c(Yt) 

So we have 

f a 
00 

q(wt)dwt. 

P(wg_1) =00 q(w)dw, 

and the result follows. El 

7.3 Filtering 

We wish to determine recursive estimates of 8 and Xt given the observations Yo, Yi, ..., Yt• 

Consider arbitrary bounded, measurable functions h and f. Then we wish to estimate, 

(under the measure P), 

E[h(9)f(xt)IYt] = E[A h(9)f(x) IYt1 E[AtIy] 

Write the numerator as 

ut (h(0) f (xt)) = E[Ath(0)f(xt)lYt]. 

(7.3.1) 

(7.3.2) 
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Then crt(1) = E [At IY]. ut is a continuous linear functional on functions (h, f); 

suppose it is given by a density qt so that 

crt(h(0)f(xt)) = in in h(G)f(x)qt(0,.x) dOdx. (7.3.3) 

Then qt is an unnormalized conditional density of (0, Xt) given Y, and 

P(0Ed0,xtEdxIYt) = E[IoEdoIXEIYtJ 

=  qt(0,x)d0dx (734) 
j f qt (y, z)dydz 

We shall obtain a recursion for qt(0, x). 

Theorem 7.1. 

qo(0,x) - 7i(Yo - x0) 
- 0, (YO) 

po (0,x), 

where po(O, x) is the initial density of (0, x0). Fort = 1, 2, 

qt (0, g(0, x)) = cb-(yt 'g(0, x 1q(yt - g(0, x)) qt— i(0, x). (7.3.5) 

Proof. It is easy to see qo(0, x) =   b0_0)po(0) x). When t ≥ 1, 
c5oyo) 

ot(h(0)f(xt)) 

= E[Ath(0)f(xt)IYJ 

= fR h(0)f (x)qt(O, x)dOdx 

- (Yt -  

= cb(yt) 

- (Yt _Y(OXt1)) h(0)f(g(0 xl))ly] = x  

= I f h(0)f(g(0,x))Yt -  g(0,  
q(yt) 

Substituting x = g(0, z) in (7.3.6) we have that 

ct(h(0)f(xt)) = fn fn h(0)f(g(0, z))qt(0, g(0, z))g(0, z)d0dz. 

(7.3.6) 
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As h and f are arbitrary functions we see that 

qt(O,g(O,x))g(O,x) = q (yt - g(O, x))  qt-i(0, x) 

and the result follows. 0 

7.4 Numerics 

We shall discretize the, recursion given in theorem 7.1. Suppose initially the joint 

probability distribution of (0, x0) is approximated by probability masses located at 

points 1 ≤ i ≤ M, 1 ≤ j ≤ N. 

Write 

P0(0,x) = P(0 = 9,x = (7.4.1) 

x(0) = x, (7.4.2) 

x1(t) = g(O, xij  - 1)), k = 1, 21 ..., (7.4.3) 

q5 (yo - x(0))  qo(O,x (0)) = c5(vo) 5(x). (7.4.4) 

For t=1,2, ... , 

qt(6,x I ij (t))  -  x(t)) qt- i(0, xij  - 1)) 
= 

(yt)g(Oj, Xij  - 1)) 
(7.4.5) 

Given the observations Yo, Yi, Yt, that is, given Yt, the unnormalized probability 

that 0 = Oi and x(t) = xij  is 

q(0, xij  xij  - 1)). (7.4.6) 

The normalized probability that 0 = Oi and x(t) = xij  is 

xij (0) =  qt(, -  1))  
>'= qt(Ot, xj5(t))g(0j, xio(t - 1)) 

(7.4.7) 
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Given Yt the expected value of 0 is: 

MN 

81P(01, x15 (t)). 
1=1 5=1 

Given Yt the expected value of x(t) is: 

MN 

1=1 5=1 

(7.4.8) 

x15 (k) P(01, xjs(t)). (7.4.9) 

Note that care must be taken to avoid the zeros of g(0, x). 

7.5 Simulation 

To demonstrate the performance of the filter described in this chapter, we consider two 

examples with different nonlinear functions of the state dynamics. We find our method 

works well for nonlinear functions. 

For the first example, we consider the logistic dynamics. 

Xt - 0x_1(1 - 

where 0 = 3.2. The results for the state estimation and the convergence of the parameter 

are shown in figure 7.1. 

Next, we consider another non-linear dynamics. 

xt = 0cos(0x...i), 

where 0 = 1.2. The results are shown in figure 7.2. \ 
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Figure 7.1: Estimation for logistic function 
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Figure 7.2: Estimation for Cosine function 
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Chapter 8 

A NONLINEAR FILTER WITH FRACTIONAL GAUSSIAN 

NOISE 

8.1 Introduction 

Following Chapter 7, in this chapter, we consider a discrete time, state space model, 

where the signal has non-linear dynamics, and is observed through a real valued process 

which is corrupted by fractional Gaussian noise. We derive an exact estimate and an 

approximate recursive estimate for the conditional density of the hidden signal and the 

parameter, using the change of measure method. 

This chapter is arranged as follows. In the next section, we give a brief description of 

fractional Gaussian noise and the model used in this chapter. In section 8.3, we derive 

the exact estimate for the conditional density of the hidden signal and the parameter. 

In section 8.4, we derive an approximate estimate for the conditional density of the 

hidden signal and a parameter. In the final section we give some conclusions. 

8.2 State Space Model with Fractional Gaussian Noise 

The dynamics of the scalar state process x = {Xt, t = 0, 1, ...} is as described in Chapter 

7. Similarly, x is not observed directly, but observed through another scalar process 

= {yt, t = 0, 1, ...}, whose values are corrupted by fractional Gaussian noise. Here, 

we consider only the case where the observations and hidden states have the simple 
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linear relation 

yj = Xt+W ', (8.2.1) 

where Wr = {w, t = 0, 1, . ..} is the measurement noise. This is now a sequence of 

fractional Gaussian random variables as described in Chapter 5. 

As in Chapter 5, write 

zt = (U—, Y) 

yt(xo) x1, ..., x) = (u' * x)(t). 

Then (8.2.1) implies the following equation. 

Zt—'yt(Xo,...,Xt)+Wt. 

These are still the dynamics of z under the 'real world' probability P. 

8.3 Filtering 

(8.2,2) 

Consider a probability measure P on the measurable space (Q, .F) such that, under 

P, {z1} is a sequence of N(0, 1) i.i.d. random variables. We call the measure j5 a 

"reference" probability. 

We now construct the 'real world' probability P from P, such that, under P, {w} 

is a sequence of N(0, 1) i.i.d. random variables, where Wj =zt -  'yt(xo, ..., Xt). 

Write 

and for 1 ≥ 0, 

1  
q(x) = exp(--), 

2 

q(z1 -  'y1(x0, ...,x1))  
'1 =  

çb(z1) 

At fj Al, t=0,1,2,... 

(8.3.1) 

(8.3.2) 
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Definition 8.1. Define P by putting 

dP 
dP'°z =A. (8.3.3) 

Theorem 8.1. Under P the random variables 'Wt := Zt - 'yt(xo) ..., X) are i.i.d. and 

N(O, 1). 

The proof of Theorem 8.1 is the same as the proof of Theorem 5.2. 

Corollary 8.1. Under P, Yt := (Ur * z)(t) = (u' * )(t) + (Ur * w)(t). That is, 

Yt = Xt + W. 

Write Pt (0, x) for the joint conditional density of (9, x) given observations Yo, Yl, ••, Y. 

In the remainder of this section, we shall obtain an exact estimate for Pt (0, x). 

Write (7.3.2) to be 

ot(h(0)f(xt)) = .{Ath(0)f(x)Iyt] 

= E[Ath(0)f(xt)IZt]. 

Similarly, ot(h(9)f(xt)) could be given by a density qt such that 

at(h(0)f(xt)) = f fh(0)f (x)qt(O,  x)d0d, 

where qt is an unnormalized conditional density of (0, Xt) given Zt and 

Theorem 8.2. 

P(0 E dO, Xt e dxIZ) = E[IoEdoIEdtZt] 

qt(0, x)d9dx 

= fazfaz qt (u, v)dudv 

qo(9,x) - q(zo - x0)  
po(O, x), 

- q(zo) 
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where po(O, x) is the initial density of (0, x0). Fort = 1, 2, ..., the unnorrnalized condi-

tional density qt(0,.) is estimated by 

q(9, g(0, u)) 0g(0, u)  
9u 

- I f (z0 - 0(x0)) (Zt - t(XO, 
- ON) O(zt) h (0) f (g (0, xt-1)) [f qo (0, xO) dO] ... 

[f qt-2(0, xt_2)d0]q_1(0, u)dxo ... dxt2. (8.3.4) 

o) zo—x  Proof. It is easy to see qo(0, x) = q5(q5(o) Po( , x). When t ≥ 1, 

o(h(0)f(xt)) 

E[Ath(0)f(xt) IZt1 

- (x0, ..., Xe)) h(0)f(xt) IZt] 
q(zt) 

E[A2 "  

- 'yt_i(xo, •, x_1)) cb(zt - 'yt(xo, ..., Xt)) h(0)f(xt)lZt] 

q(zt) 

- q(zo — 'yo(xo)) 

= E{  (ZO) 

- q(zo —'yo(xo)) cb(zt - 'yt(xo,  
= E{  (ZU) 

I I (zo — 'yo(xo)) (z _Yt(Xo•••9(OXt_1))) h(0)f(g(0xtl))[f qo(0xo)do] 
= (z) 

[f qt-2(0, xt_2)c10]q_1(0, 
Also, 

at(h(0)f(xt)) 

= ff h(0)f(x)qt(0, x)d0dx 
ff h(0)f(g(0, xt_i))q(0, g(0, Xt_i)) 5g(0,  d0dx_1. 
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As h and f are arbitrary functions, we see that 

qt(O,g(9,u)) ag 0' 
0u I f (zo — 0(x0)) (Zt - t(XO, 

=  O(ZO) Xzt) j 

[f qt_2(O, xt_2)dO] qt- i(9, 

8.4 Approximate Estimation of States and Parameters 

In this section, we derive recursive approximate estimates of q (0, Xt). 

Theorem 8.3. The unnormalized density qt(0,.) is approximately computed by the 

recursion 

Proof. 

g(9, u)) g(9, u) = - yt(xo, Xi•••) Xt..2, u, 9(0, u)))  
t-i(O u). 

5u 

crj(h(0)f(xt)) 

= I I h(0)f(x)q(0, x)d0dx 

= E[Ath(0)f(xt)IZt] 

-  t(XO, 

q5(zt) 

Suppose , , ..., have been defined, then we define (0,.) such that 

f f oxo, x) dOdx 
E[A_1 

- 'yt(xo, Xi, •..) Xt_2.Xt_1, Xt))  h (0) f (xt) I Zt] 
= q(zt) 

= f f h(0)f(g(0, u))  (Zt 
- 't(xo, ii..., Xt.2, u, 9(0, u))) 

-i(O u)d0du. 

(8.4.1) 

q5(z) 
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Here, for 0 < 1 ≤ t - 2, Jci = ffxq(8,x)dO&e  
ftj(6,x)dOdx 

Also, 

ff h(0)f(x) qt (O, x) dOdx 
= ff h(0)f(g(O, u))(O, g(9, u)) ag 9' d9d. 

au 

As h and f are arbitrary functions, we have 

= q(zt t(xo,xi ... )xt_2) u,g(0, u)))  

0 

8.5 Conclusions 

In this chapter, we considered a state space model where the hidden states have a non-

linear relationship, and the noise in the observations is fractional Gaussian noise. We 

introduced a joint density of the hidden states and an unknown parameter, and derived 

both an exact estimate and an approximate recursive estimate of the conditional joint 

density of the hidden state and the unknown parameter, based on the history of the 

observations. 
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