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Abstract

State-space models are widely used in engineering, biology, finance and many other
fields. Often, there are two stochastic processes in a state-space model. One, the
signal, is not observed directly and is said to be hidden, but is often observe;i through
a second observation process. Usually, there is noise present in both the unobserved
and observed processes. Hidden Markov models are one of the most popular state-space
models. In hidden Markov models, the hidden process is a Markov process.

In a state-space model, the problem is how to estimate the hidden states and the
parameters of the model, given the observations. In order to estimate the state and
parameters simultaneously, I adopt the EM algorithm and a method called “change of
measure”. Some of these methods were introduced in one of Robert Elliott’s papers in
1994. Later, in 2006, R. J. Elliott and W. P. Malcolm gave some improvements to the
related smoother. In this thesis, I apply the “measure change” and the EM algorithm
to the filtering problem for the Autoregressive hidden Markov model (ARHMM) Using
extensions of the Viterbi algorithm, estimates of the hidden states and parameters are
obtained for a Hidden Markov model where the observed process takes values in finite
discrete state space.

-Sometimes, the hidden signal and the observation process have nonlinear dynamics.
I apply a measure change to obtain an estimate of the joint density of the hidden signal
and the parameters of such a model where the hidden signal and observation process
are scalar processes and have nonlinear dynamics.

In many practical cases, the noise in the observations is correlated and has some
“memory”. In this thesis, I also consider the several state-space models, where the sig-

nal is observed through a real valued process which is corrupted by fractional Gaussian

i
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noise. I derive the exact estimates and approximate recursive estimates for the hidden
signal and the parameters, using the change of measure method.
Simulations and applications to some practical problems are carried out to demon-

strate the performance of the algorithms.
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Chapter 1

INTRODUCTION TO HIDDEN MARKOV MODELS

1.1 Markov Processes

A stochastic process which satisfies Markov property is called a Markov process, i.e., a
stochastic process is a Markov process if its past and future are conditionally indepen-
dent given the present. Markov processes are named after the Russian mathematician

Andrey Markov.

Definition 1.1. Suppose {Xy,t € [0,00)} is a real valued stochastic process on a
probability space (0, F, P). Let {F:}, t € [0,00) be the filtration generated by {X;,0 <
s < t} and write o(X,) to be the o-field generated by X,. Denote B(R) to be the Borel
field on R. Then, {X;,t € [0,00)} is said to be a Markov process if

1. The stochastic précess {Xi,t € [0,00)} is adapted to the filtration {F}, i.e., X;

is Fz-measurable for all t.

2. For any 0 < s <t < oo and any A € B(R), we have

P(X, € AlFs) = P(X; € Alo(X5)).[441144]

1.2 Markov Chain

Usually, a Markov chain means a discrete-time Markov process.
Suppose (2, F, P) is a probability space. On (Q,F,P) we consider a sequence of
random variables X = {X,,,n =0, 1,2, ...} with a finite state space Sx := (21,2, ..., TN)-

Without loss of generaiity, the state space of X can be identified with the set S =



{e1,e2,...,en}, where e; is the unit vector with unity in the ¢th position and zero
elsewhere. At each instant the process X may change its state from the current state
to another state, or remain in the same sta,i',e, according to a certain probability dis-
tribution. The changes of state are called transitions. The conditional probabilities
P(Xpt1 = €| X =€) 2 pji(n), e, e; € S are called transition probabilities, and the
probabilities P(X,, = ¢;), 1 <1 < N, are called marginal probabilities. X is a Markov

chain, if it satisfies the Markov property, that is

P(Xn+1 = €j|Xn = Ci,Xk = €y, k= 1,2, ey — 1) = P(Xn+1 = 6j|Xn = ei)

= pji(n),
V 1<4,j,% <N, and n>0. (1.2.1)
Write I, = (pji(n)), 1 < 4,5 < N. Then,
Xn+1 = Han -+ Mn+1° (122)

Note that

N
B Xn1]Xn] = ZP(Xn+1 = e;|Xn)e;

i=1

N N
= Z Z < X, e >pij(n)e;

i=1 j=1

N N
= Z < Xn, €4 > Zpij(n)ei
Jj=1

i=1

N
= z< Xn,ej > Hnej
j=1
= Han,
where < -, - > means the scalar product.
Then E[Mp11|Xn] = E[Xpq1 — I, X,|X,] = 0. So, M = {M,,n=1,2,..} ¢ RV

is a sequence of martingale increments.



In addition, if the Markov process is (time-) homogeneous, then

PXni1=¢j|Xn=¢;,Xp=¢,k=1,2,..,n—1) = pj,

V 1<4,5,4 <N, and n>0.
Write IT = (pj;), 1 < 4,5 < N, then
X1 =1IIX, + Myyg. (1.2.3)
Otherwise, it is nonhomogeneous. Homogeneous Markov processes form the most

widely used class of Markov processes.

1.3 Continuous-time Markov Chain [36]

Suppose (2, F,P) is a probability space. We consider a continuous-time Markov pro-
cess {X3,t € [0,00)} on (Q, F,P) with a finite state space S = {ej,es,...,en} € RN,

Write pi = P(X; =¢;), 1 <4 < N, and p; = (p},p2,...,pl). Suppose for some matrix

Ay = (a;:(8)), t = 0, p; satisfies the forward Kolmogorov equation

The transition matrix ®(t, s) associated with A; is defined by

d®(t, s)

7 = A®(t,s8), O(s,s)=1I, (1.3.2)
B~ _ssts), ato=1 (133)

where I is the identity matrix.



Then, if X is a Markov process,

EXi|Fs] = BE[X:|X,]

N
= EP(Xt = ei|Xs)ei

i=1

N N
= Y > <X, e >P(Xy = ei| X, = ¢))e;
=1 =1

N N
= Z < X, e; > Z (I)(t, 8)67;
=1 - i=1

N
= Z < X, €; > (I)(t, S)Cj
=1
= ®(t,5)X;.
Write M; .= X; — Xo — f; A X, dr. For 0 < s <t, we have
¢
E[M, — My|F)] = E[X,— X, — / A, X dr|X,]
8
¢
= Ot )X — Xs —/ A ®(r, 8) Xsdr
38

= 0.

We see that {M;}, t > 0, is an R"-valued martingale process with respect to the
filtration generated by {X:}, ¢ > 0.

Therefore, {X;}, t > 0 has the following dynamics:

t
Xt = Xo + / ArerT =+ Mt S RN. (134)
0 .

1.4 Hidden Markov Models

Hidden Markov Models are one of the most widely used stochastic models in engineer-
ing, biology, finance and many other fields. Having introduced Markov processes, we

shall give some descriptions of hidden Markov models.



According to L. R. Rabiner[22], a hidden Markov model (HMM) is doubly stochastic
process, with one Markov process that is not observed directly (hidden), but could be
observed through another noisy process.

Suppose the signal, or state, process {X:}, is a Markov process which cannot be
observed directly. X; is often called a hidden state at time ¢. Information concerning
{X:} is obtained from the observation process {¥;}, which is influenced by the hidden
state, and so gives some information about the hidden states. The state space of {X;},
Sx, is taken as the set S = {ej,ez,...,en} of unit vectors. Denote the state space
of {Y;} as Sy. If Sy is finite, it can be identified with the set Sy = {f1, f2, .-, far}
where f; is the unit vector with unity in the jth position and zero elsewhere. Write
cji = P(Y; = f;|Xs = 1), C = (¢s). Then the dynamics of X and ¥ can be written

as:

Xt+]_ - AXt"i-V;.*_]_, (14:1)

Y;ﬁ+1 = CXt+1+Wt+1. (142)

Here, A is the transition probability matrix of the Markov chain. V; and W; represent
the driving noise and measurement noise respectively. Details of this model are given
in Chapter 4.

Suppose a hidden Markov model is discrete in time, in the state, and continuous
in the measurement space. For example, suppose the observation process is a scalar

process {y;}. Then the dynamics of the model can be expressed as:

Xt+1 = AXt'l"/t-i-la . (14;3)

Y1 = < g, Xt+1 >+ < 0, Xt+1 > Wiy, (144)

where A is the transition probability matrix of the Markov chain; g and o are N-

dimensional vectors; V; and w; are the driving noise and scalar measurement noise



respectively. The filtering and estimation problems regarding this model are discussed
in Chapter 2. ‘

There are three basic problems associated with HMMs: [22]

(1) Given the parameters of the model and the output sequence, compute the
probability that a particular output sequence is produced by the model.

(2) Given the parameters of the model, find the most likely sequence of hidden
states that could have generated a given output sequence.

(3) Optimize the model‘parameters, S0 as to best describe how the observations have
been prodﬁced. In other words, given an output sequence, find the most likely state
transition probability matrix and output probabilities, that is, find the parameters of
the HMM.

L. R. Rabiner gave some classical solutions to the above three problems. For prob-
lem (1), the forward-badkward algorithm is often used; for problem (2), the Viterbi
algorithm is often used; for problem (3), the Baum-Welch algorithm is often used. The
details of these algorithms can be found in [22] and [23]. In this thesis, we mainly
discuss the following problem:

Given an output sequence, find the parameters of the HMM and the most likely
sequence of hidden states which could have generated the output.

We also :discuss more general discrete-time models where the state space of the
scalar hidden states {z;} and the scalar observations {y;} are both continuous. That

is, we consider the dynamics:
Ter1 = [(@) + v, (1.4.5)
Y1 = G(Tt41) + Weaa, (1.4.6)

where the function f(e) may be either linear or nonlinear, and z; and y; have a linear

relationship, i.e., g(e) is a linear function.



1.5 History and Applications of a Hidden Markov Model

Hidden Markov Models, HMMs, were first described by Leonard E. Baum and other
authors in 1960s. HMMS. initially appeared in some statistical papers. Later, in the
second half of the 19705, L. R. Rabiner induced HMMs into speech recognition. This
was an important application of HMMs.[23]

In the late 1980s, HMMs began to be used in computational biology and bioin-
fomatics, to analyze biological sequences, especially the DNA sequence. Since then,
many biological models based on HMMSs have been introduced.

In the last 20 yearsr, HMMs have become important models in temporal pattern
recognition, such as speech, handwriting, gesture and image recognition, classification,
navigation, musical score following, partial disqha,rges and bioinformatics. They are
also useful tools in other fields, such as finance and social science.

In this thesis, we shall discuss two applications of HMMs: tracking and classifica-

tion.



Chapter 2

A FILTER FOR A SIMPLE LINEAR HIDDEN MARKOV
MODEL

2.1 Introduction

In this chapter, we consider a discrete time, discrete finite state Markov chain, observed
through a real valued function vx'rhose values are corrupted by Gaussian noise, and the
relation between the hidden states and the observations is linear. The state space of the
observations is continuous. This is the simplest, but most widely used hidden Markov
model. Many problems in bioinformatics, finance and engineering, such as tracking,
navigation, pattern recognition, and so on, céun be modeled as such a model.

In order to estimate the hidden states and the parameters of the HMM, we derive
the recursive estimates Based on a “change of measure” and the Expectation Maximiza-
tion(EM) algorithm. This method was introduced in one of Robert J. Elliott’s papers
in 1994 [28]. Later in 2006, R. J. Elliott and W. P. Malcolm gave some improvement
to the smoother [37].

In the following sections, I first give a description of this model. Then, a new mea-
sure is constructed, under which the observations are N(0,1) i.i.d random variables.
Working under the new measure, recursive estimates are obtained for the states of the
Markov chain, for the number of jumps from one state to another, for the occupation
time in any state, and for processes related to the observations. Using the EM algo-
rithm, estimates of all the parameters of the model are obtained, including the variance

of the Gaussian noise in the observations. In the last part of the chapter, simulations



are given which demonstrate the effectiveness of the method. I also apply this method

to the problem of classification of DNA copy numbers.

‘

2.2 A Simple Linear Hidden Markov Model

Assume a finite state time-homogeneous Markov chain X = {X:,t=0,1,...} is defined
on probability space (Q, F, P). Without loss of generality, the state process of X can

be identified with the set of unit vectors

S = {61, €9, ...GN},

where ¢; = (0,0,...,0,1,0,...,0) € RV,

We assume the chain is time-homogeneous and write

>

@j i P(Xt-{-l = ej|Xt = ei)

= P(X;=e;|Xo=¢). (2.2.1)
Then A = (a;;), 1 <4< N, 1< 7 <N, is the matrix of transition probabilities.
Lemma 2.1. Write F; = 0{Xo, X1, ..., X3}, and I for the filtration {F;}, then
Xy = AXy_1 + M, (222)

where M, is a (P, F) martingale increment.
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Proof.
N
E[thXt_l] = Z P(Xt = 65]Xt_1)81;

i=1
N N

= Z Z < X1, e; >a;5€;
=1 jel
N N

= Z < Xi1, e; > Zaije,-
=1 i=1
N

= Z < Xt_]_, e > Aej
=1

= AX-[;_]_.

Then

E[Mtlft—l] - E[Xt —_ AXt-—lIFt—-l]
= AXi1—AXi

= 0.
O

We suppose the process X is not observed directly; rather, it is observed through
another function, whose values are corrupted by Gaussian noise. All functions of X

are linear. We suppose the observations {y:} have the form
Y =< g,Xt >4+ < d, Xt > Wy (223)

Here g and d are both N dimensional vectors, and w = {wy, ¢ = 0,1,...} is a sequence
of N(0, 1) independent, identically distributed (i.i.d.) random variables.

Consider a probability measure P on the measurable space (Q, F) such that, under
P,

(1) The process X is a finite state Markov chain with transition matrix A,
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(2) The observation {y;} is a sequence of N(0,1) i.i.d. random variables.

We call the measure P a “reference” probability.

We now construct a probability P, such that, under P, the process X is still a finite
state Markov chain with transition matrix A, and {w; : w; = %2} is a sequence
of N(0,1) i.i.d. random variables.

Write Y, = o{yo,¥1,.--» Yt }, and Gz = 0{Xo, Yo, X1, Y1, ---» X, Y¢}. Then the “histo-
ries”, or filtrations, of the X, y and (X,y) processes are {F;}, {4}, {G:}-

Write

N = ¢(wl)
| =
<d, X; > ¢(w)
(yz <92X;>)
= < X;> (2.2.4)
<d,X;> ¢(yl)
Ay = 1, (2.2.5)
¢
A = I[N t=123,.. , (2.2.6)
where ¢(z) = #emp(f””—;).
Definition 2.1. Define P by putting
e = 2.2.7
= (2.2.7)

Theorem 2.1. Under P, {w;} is a sequence of N(0,1) random variables.

Proof.

P(ws < alGi1) = E[l(w: < a)|Gi]
E[Ad (w; < a)|Gyi]
E[Ay|Gs—1]
EeI(w < a)|Ge]
E[M|Gea]

EDGia] = ElEDGr V X|Goms].



12

The inner expectation

PG vx) = [ )y,
t|Yt—1 t o <4, X > ¢(yt) Yt )OYe
= / d)('wt)dwt
= 1.
Then
E[S\tlgt-—l] = L
Similarly,
EI(w; < a)|Ge1 V Xy /00 k) I(w; < a)g(ys)dy
L (wy < t— t W <L X > Bl t < t) Ayt

= /_: d(w)I(wy < a)dws.

EMI(wy < a)|Gs-1] = E[ENI(w: < a)|Gi1 V X3]|Gii]
- /_: d(we) I (wy < a)dwy.

So,P(w; < a|Gy1) = P(w; < a) = [ ¢p(we)I(wy.< a)dw, and the result follows.

O

Remark: Under P, the process X is still a finite state Markov chain with transition

matrix A.

Proof.

E[At < X, em > ]gt_l]
E[A]Gi1)

B < Xy, em > |Geil
EN\|Gii]

E[< Xy, em > |Gia]

EN|Gi—1] = E[E[M|Go-1 V X4]|Gs_1).
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The inner expectation

o o SRE)

[)\tlgt—lrv‘Xt] = E[<d Xt> ¢(yt)|gt_1\/Xt]
- [ BETR) g

—oo < 0, X > P(ys) i
= [ st
= 1.
Then

E[j\tlgt_l] = 1

Again, using double conditioning, we have

P(Lz582e2)

< d, Xt > ¢(yt)

E[S\t < Xt,em > |gt_1 VXt] = << Xt, em > E[ Igt_l VXt]

= <Xy en> /oo P P(ys)dye
oo < d, Xy > P(y)
= <X en> /oo d(wy)dw
= < X em>. i
Consequently,
B0 < Xpvem > 1G] = BUEDGer V Xi]|Groa]
= E[< Xi em > |Ge-1]
= E[< X, em > |Xei]
= <AXi_1,em>.
So,
El< Xiem > 1Gio1] = < AXi1,em > .
(2.2.8)

Therefore, under P, X is a Markov chain with transition matrix A = (a;;). n)



2.3 Estimation of States and Parameters

The results were provided in [28] and [37].

2.3.1 Recursive Estimation

14

First of all, we shall describe how to estimate the hidden states, given the observations

{yt, t= 0, 1, 2, .}

Given ), write
Xt = E[thyt]

Using a version of Bayes’ rule [36], we have

E[j—\tXtIyt]
B X V| = —————=.
[ tl t] E[Atlyt]
Write
i = E [AtXtIyt]
and .
p(Hiz7L)
ey 0 0
0 0
D(y;) =
¢(ytd_gu
0 - 0 sty

Theorem 2.2. The probability vector q; is computed by the recursion

@=2D (yt)AQt—l-

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

(2.3.5)



Proof.

gs

Note that

So,

E[Atthyt]

Effes < d X, > b(ye) %l

R .20 Z<X & > X[V

7 t1<dXt>¢yt b
v (yt_—y_)
> BlRes < AXpy + Myer > V)~ dilys)
=1

i < BlA 1 AXy a|Vea), e > ¢(M)

3 d; ¢(yt)

D (yt)AQt—l-

< 4, 1> = < E[[\tthyt], 1 >
= E[At < Xt, 1 > |yt]

X=—2
<Qt71>

15

(2.3.6)

Tn order to estimate the parameters in this model, we must estimate several random

processes. In the remainder of this section, we shall introduce these processes and derive

recursive estimates based on these processes.

The first process is the counting process for the number of state transitions e; to

e;. Denote this process by Nt(j A,

Then -

N(”’) = Z < Xp-1,6 >< Xi, 65 >
=1

(2.3.7)



Write
a(Nt(j’i)Xt) 2 E‘[/—&tNt(j’i)XdytL

Theorem 2.3. The vector a(Nt(j’i)Xt) is computed by the recursion

o(NPDX,) = D) Ao (NID Xom1)+ < g1, & > D(y)j5a5¢5.

Proof.

o(NOIX,)
= E[AtNt(yﬂ)thyt]
= BRi (NI 4 < Xy 1,6 >< Xy e >)Xt|yt]

= E[At—l)\t(Nt(i’ )+ < Xt 1,6 >< Xt, 6_7 >) Z < Xt, ] >Xt|yt]
I=1

= 2 < BReo AuNID (AXys + M) Vi) e > e+

E[At_lAt’J < Xt_]_, e >< AXt_ + Mt, €5 > lyt]

16

(2.3.8)

(2.3.9)

= Z < BlRaNEDAX, 1| Vi), e > Mgert < Bl 1 X 1|V, e > Aejazie;
I=1

= D(y)Ao(NZP X, 1)+ < g1, € > D(ys);505:€;-

Now < X;,1 >=1, so
< O’(Nt(j’i),Xt), 1> = < E[l_\tNt(j’i)thytL 1>
= E[< ANIYX,, 1> |y
= E[RNI < X1 > | W]
= ERNF,

and E[ANI|Y)] = o(NP?) by definition.

(2.3.10)



17

The second process J is defined to be the cumulative sojourn time spent by the

process X in state e;.

Then
t
HEN <Xie>.
I=1
Write

Theorem 2.4. The vector o(JiX;) is computed by the recursion

O'(JZXt) = D(yt)AO'(Jti_lXt_l)—*‘ < AQt—l, e; > D(yt),-,ie,-.

Proof.

O'(JZXt)
= EB[AJIX|V]
= E[At_1Xt(Ji_1+ < Xt) €; >)Xt|yt]

N
= E[[_Xt_l:\t(JZ_l-i- < Xt, €; >) Z < Xt, €] >Xt|yt]
=1

N

= Z < E[f_\t_lx_\t,lJi_l(AXt_l -+ Mt)|yt]7 e > e+
=1
BlAi1d; < AXi g + My, e; > | Vie;

(2.3.11)

(2.3.12)

(2.3.13)

N
= Y < Bl 1T AX Vil e > Mt < BlR1AX Vi), e > Nses

=1
= D(y)Ao(Ji_ Xe1)+ < Agi1, & > D(ys)i e

As before, o(Jf) —< o(Ji Xs), 1 >.

Finally, we define Gt to be the observation variance and drift.
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t
G; é Z f(yl) < Xl7 € >, (2314)
=1

where f(y;) is any function of ;.

Write
o(GiX,) £ B[AGIX| V). (2.3.15)
Theorem 2.5. The probability vector o(GiX;) is computed by the recursion
o(GiX) = D) Ar(Gir Xt} < Adisyei > F@)Dlgses.  (2.3.16)
Proof.
o(GEXy)
= BlAGiX|V)]
= E[R1M(Gly + Fys) < Xy e >) X W]

N
= BlRiX(Gioy + Fw) < Xivei >) Y < Xy e >X| V)]
‘ =1

I
M=

{EBlA-10yGiy < Xiyer > e Ve + ElAi1 i f () < Xy es >< Xy, e > el Wi}

o~
i

1

I
M=

< E[At—lj‘t,lGi_l(AXt—l -+ Mt)lyt], e > e+

o~
il

1
1M f () < AXpo1 + My, e; > |Vi)es

= &
=1

= Z < BA1Gi 1 AXy 1| Vi), & > Mgert < E[Ae1AXa| Vi, e > Flye) M
=1

N
= Z < Ao(Gi_1 Xi-1), e > Myert < Age-y, e > Flye)Maes
I=1

= D(y)Ac(Gi_ 1 Xe1)+ < Ags—1, € > F(y:) D(ys)i i€

Again, 0(Gt) =< o(Gt, Xy),1 >.
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2.3.2 Estimation of Parameters

Having introduced the three processes in the above section, we use Expectation Maxi—
mization (EM) algorithm to re-estimate the parameters in this HMM.

The EM algorithm has two main steps. |

(1) E-step: Take the expectation of the Log-likelihood function, given the observa-

tions up to time %.
Qt(67 6*) = EG* [LH* (e)lyt]a (2317)

where 6 is the true value of the parameters, and 6* is an estimate of the parameters at
time ¢ — 1.
(2) M-step: Maximize the above expectation in equation (2.3.17) with respect to 6.
Here, we take the Log-likelihood function to be the logarithm of the Radon-Nikodym

derivative of the new probability measure with respect to the old, see [36]:

dPy
Lg: (6) = log . (2.3.18)
Then,
dP,
Q:(6,6%) = Ep:[log —=-|V]. (2.3.19)
. d Py«

Recall that under Py« = P, X is a Markov chain with transition matrix 4 = (a;;).
Now we shall introduce another probability measure Fj, so that under Fj;, X is a

Markov chain with transition matrix A = (&;;).

Theorem 2.6. Define Ag = 1, Ay = [[i; (Zﬁ:’j=1 (%’f) < Xj,e; >< Xj_1,e; >) for

. dP;
t 2 1. Define Py by putting 75~

7 = Ny. Then under Py, X is a Markov chain with

transition matriz A = (4;,). [36][30]
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Proof.

ElAs < Xo,em > | Fot]
EA| Fi-i]
At—lE[/\t < Xiem > IJ:t—l]
Ay 1 B[N Fea) ‘
E[Zﬁj:l (%ff) < Xipeg >< Xp1,6 > < Xy e > | F1]

E[ZZ=1 (%f’f) < X, e >< X1, 8 >|7:t—1]

Esl< Xy em > |Fi1] =

N
a. .
. E[Z (_-ﬂ) < Xt,ej >< Xt_]_,ei >|.Ft_..1]
ij=1 "
N N

= ZE[(Z (&j’i)a’j,i) < Xi1,; > | Fi-1]

= =1 i

N
E[Z < Xy1,6 >]

i=1

= 1L

N N
iq
E[() (ﬁ) < Xie; >< Xy_1, 6 >) < Xy em > |Fial
ig=1 "It

N
= E[Z (amﬂ.) < Xy em >< Xy1, € >|Fia]
i=1

Ami

N
= E[Z &m,i < Xio1,€; >].

i=1
So,
Po”(Xt = em]Xt_l = ei) = Eé[< Xt, em > |Xt_1 = ei] = &m,i-
Therefore, X is a Markov chain with transition matrix A = (4;;). O

Theorem 2.7. Given the observations up to time t, the EM estimation of a;; is

5 o)
o )

(2.3.20)
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Proof.
dP; b as )
=M =T (F) < Xj,e; >< Xi_1, e >).
d Py :l[:!: l; aji 7
Then,
A dF;
Lg* (0) = ].Og dPo*
= Z Z < Xp,e5 >< Xj_q,e; > (logd,,; — logaj;)
=1 ,j=1
Z Nt(j’i) log @;,; + R(a).

tj=1

Q.(6,60") = E[Le-(9)|V] = Z E[NZ?|y,)log 6;; + R(a).

t,j=1
Notice that Zjil a;; = 1. Write y for the Lagrange multiplier and put
N 3 N
8,7) =Y EINP?|V)logaz; + R(a) + (> 455 —1). (2.3.21)
i,j=1 j=1

Setting the derivative of I(&, ), in &;; and +, to be 0, we have

1
—EINGID] +7 =0,

Jst
N
E aj; = 1.
=1

Solving the above two equations, we get

N
v = =D BINP] = -BlILDI,
j=1
. EBINF] (O

aj; = 7 = 3 .
J" E[J; 4|V o(Ji-1)



22

Theorem 2.8. Given the observations up to time t, the EM estimation of g; is

. _ 9(Giy))

_ 2Gw) 2.3.22
%= () (232)
where f(y;) =y for Gi(y).
Proof. Define
AgO = 17
PEZTHE>)
A = Hz_l <d,X;>¢(y1)
gt = H(USSeX> <9X>)'
<d,X;>

Hl =1 <d,X;>¢(y1)

Set Py« = P. Define P; by puttmg lgt Agi. Then, as in the proof of Theorem
2.1, we can prove that, under P;, (y— < g, X1 >)/ < d,X; > is a sequence of N(0,1)
ii.d. random variables.

Now,

Qu(8,9") = ElLg @)1V
= Fllog a

By
dP,. [V

- E[Z——(yg;_%;’i’ )~ R(g, )|

- B < K> >(-5 (2P - R, )

=1 i=1

Setting the derivative of Q4(§, g*), in Ji, to be 0, we have
‘ - ¢
B < Xiei> (g — &)V =0.

=1

That is,

E[J;3)] = E[Gi(y)]-
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So,

. _ 9(Gi®)

gi = 7 )
o(J})

where f(y) =y, for Gi(y)- O

Theorem 2.9. Given the observations up to time t, the EM estimation of d; is

i ¢0(G§(y2))—2§;cz§%%(y)) Geo(J)) (2.3.23)

where f(y) =y for Gi(y), f(w) = yi for Gi(y?).

Proof. Define

AdO = 17
P(U=2X12)
Ht _ <d, X;>
A = =1 <d X,>¢(y)
@ HUZS2X2)"

Ht <d, X|>
I=1 <d,X;>¢(y1)

Set Py« = P. Define P; by putting %b = Ag. Then, as in the proof of Theorem
2.1, we can prove that, under Pj, (yi— < g,X; >)/ < d, X, > is a sequence of N(0,1)
ii.d. random variables.

Now,

Q:(d, d*)
= E[Lg(d)[V)
~ Ellog 72

- Ly <e Xz g dx sy -
= E[;( 2o xs ) TlE<dX>)~ Ry
t N

1,9 — g; ; y
= B[} < KXo >(5 (") ~logd)|V] ~ B(o,d).

=1 i=1 (4
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Setting the derivative of Qt(ci, d*), in d;, to be 0, we have

E[Zt:< Xpe> (WL Loy g
=1

d @& &
That is,
E[Jid}] = E[Gi(y*) — 2¢:G(y) + g2J1].
So,
i = [2(Giw?) — 26:0(Gi(y)) + G ()
' a(Jf) ’
where f(y) =y for Gi, f(y) = y? for Gi(y?). |

2.4 Simulation and Results

In this section, we shall give an example to show the performance of this method.

Assume the parameters in equation (2.2.2) and (2.2.3) have the following values:

0.9 0.1

101 09
g=1[0.7,0.3],
d=0.2,0.2].

600 data points are generated for the simulation. The estimated results for the

parameters are shown in figure 2.1 and 2.2.

The accuracy -of estimating the hidden states is always higher than 70%.
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2.5 Application in Classification of DNA Copy Numbers

The application of comparative genomic hybridization(CGH)s enabled genome-wide
analysis of gross DNA copy number imbalance. These are key genetic events in the de-
velopment and progression of human cancers. The purpose of array-based Comparative
Genomic Hybridization, (array CGH), is to detect and map chromosomal aberrations,
on a genomic scale, in a single experiment. Since chromosomal copy numbers can not be
measured directly, two samples of genomic DNA, (referred to as the reference and test
DNAs), are differentially labelled with fluorescent dyes and competitively hybridized
to -known mapped sequences, (referred to as BACs), that are immobilized on a slide.
Subsequently, the ratio of the intensities of the two fluorochromes is computed and a
CGH profile is constituted for each chromosome when the logs of fluorescence ratios are
ranked and plotted accérding to the physical position of their corresponding BACs on
the genome. Each profile can be viewed as a succession of “segments” that represent
homogeneous regions in the genome whose BACs éha,re the same relative copy number
on average. [13]

Copy number variants are regions of the genome that can occur at a variable copy
number in the population. In diploid organisms, such as humans, somatic cells normally
contain two copies of each gene, one inherited from each parent. However, abnormalities
during the process of DNA replication and synthesis can lead to the loss or gain of DNA
fragments, leading to variable gene copy numbers which may initiate or promote disease
conditions. For example, the loss or gain of a number of tumor suppressor genes and
oncogenes are known to promote the initiation and growth of cancers. [9] So, detection
of the changes of the DNA copy numbers is very important in cancer research.

Array CGH data are normalized with a median set to be logs(ratio) = 0 for regions

of no change; segments with positive means represent duplicated regions in the test
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sample genome, and segments with negative means represent deleted regions. [13] An

example is shown in figure 2.3.

Duplication

log ratio

Figure 2.3: An example of array-CGH datal9]

If we suppose that different copy numbers belong to different classes, then the
detection of changes of copy numbers becomes a problem of classification of different
copy numbers. The different classes are not observable. What can be observed are the
logy of fluorescence ratios corrupted by noise, which could be considered as a function
of copy number with Gaussian noise. Therefore, this problem could be modeled as a
hidden Markov model. The hidden states X, are the classes of different copy numbers,

and the observations are the CGH data ;. Recall that
Y=< g,X¢ >+ <d, Xy > wy,

Here, g is the log, of fluorescence ratios. Usually, there are four states for the copy
numbers: [41]

(1) a copy number loss (that could be either a single copy loss or a deletion),
loga(ratio) = loga(1/2) = —1;

(2) copy-neutral state, logs(ratio) = logs(2/2) = 0;

(3)a single copy gain, logs(ratio) = logs(3/2) = 0.585;

(4)an amplification (i.e. multiple copy gain), logs(ratio) = logs(k/2), k > 3.
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For the state (4), we take logs(ratio) = 1.5. So, in this problem, g = [—1,0, 0.585, 1.5].
Then the algorithm described in the previous sections could be used to detect the
changes of copy numbers.

The data used in this section is the array CGH profiles of 24 pancreatic adenocar-
cinoma cell lines and 13 primary tumor specimens from [2]. Labeled DNA fragments
were hybridized to Agilent human cDNA microarrays containing 14160 cDNA clones.[2]
Here I use four sample data sets to show the performance of the above method. Figure
2.4, Figure 2.5, Figure 2.6 and Figure 2.7 show the estimated states. The x-coordinate
is the position of the corresponding chromosome. The y-coordinate of the top figure
is the logs of the fluorescence ratios, and the y-coordinate of the bottom figure is the
estimated states, 1, 2, 3, 4 refer to state (1), (2), (3), (4) correspondingly.

The estimated parameters for sample 6, chromosome 12 are as follows:

/0.1223 0.1116 0.2845 0.2980\
0.6151 0.6985 0.3418 0.4264

h
I

0.0788 0.0941 0.2586 0.2230

\0.1838 0.0958 0.1151 0.0526

d = [1.5794,0.3139, 0.0650, 1.5064]',

The estimated parameters for sample 8, chromosome 12 are as follows:

0.2012 0.1052 0.1274 0.2518
0.3957 0.7317 0.3111 0.2892

h Y
I

0.1970 0.0516 0.2566 0.3074

0.2061 0.1115 0.3049 0.1516

d = [1.6287,0.2234, 0.2409, 0.4015],



Figure 2.4:

Figure 2.5: Estimated result for array-CGH data (sample 8, chromosome 12)
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The estimated parameters for sample 9, chromosome 20 are as follows:

(0.2365 0.1799 0.2506 0.1633)

i 0.2985 0.2151 0.3340 0.0971
0.2547 0.2730 0.2487 0.1971
\0.2102 0.3320 0.1666 0.54-24)
d = [1.7497,0.6543, 0.1745, 0.8063]',
2 . .
> L,
5 4L L0 N %‘é‘a TReNE |
.(% 1 %"00 * , ‘:*‘o" + % :.‘~ ~: *
§: UW' ‘I :J; .20;’ A . L i
- v 1
I T S e S
Physical positions of DNA 10
w 4 ' ‘ SN SHEC £
o ,
T BN B MR EE PR W MR RE R e
o
D
2 2 ek SR S S .
E1 B 1 I i1 L 1 -
1 2 3 ~ 5 B
Physical positions of DNA. x 107

Figure 2.6: Estimated result for array-CGH data (sample 9, chromosome 20)

The estimated parameters for sample 22, chromosome 10 are as follows:

0.1726 0.2498 0.2410 0.1377
0.6434 0.6441 0.4063 0.5254

Y
Il

0.1270 0.0646 0.1496 0.1638

\0.0569 0.0415 0.2030 0.1731)

A

d.= [0.8857,0.3553, 0.0950, 0.4474]',

30
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Figure 2.7: Estimated result for array-CGH data (sample 22, chromosome 10)

We see from the above estimates and figures that, although a few states were
misclassified, most of the states could be estimated correctly using the method descibed
in this chapter. We also see that the CGH data contains large noise. In this case,
however, the results obtained by using the methods described in this chapter are still

reasonable.
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Chapter 3

A FILTER FOR AN AUTOREGRESSIVE HIDDEN

'MARKOV. MODEL

3.1 Introduction

Autoregressive(AR) models are widely used in modeling time-varying signals. Combin-
ing a hidden Markov model and an autoregressive model, we obtain an autoregressive
hidden Markov model(ARHMM), which is an extension of a hidden Markov model.
There are already some methods for estimating the states and parameters of an au-
toregressive hidden Markov model. In this chapter, we derive new formulae, following
Chapter 2, to estimate the hidden states and parameters of an ARHMM. As in Chapter
-2, the formulae are recursive in the observation data, and provide on-line estimates.
In the next section, we give a brief introduction to the autoregressive hidden Markov
model. We then derive the formulae for estimating hidden states and parameters
based on a change of measure and the EM algorithm. In section 3.4, we describe an
application of the autoregressive hidden Markov model to classification and give some
simulation results. In the final section of this chapter, we apply these estirﬁates to real

data.

3.2 Autoregressive Hidden Markov Model

In this chapter, the finite state time-homogeneous Markov chain X = {X;,t=0,1,...}

is defined as in Chapter 2. The transition probabilities and dynamics of X are defined
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in equation (221) and (2.2.2).

The process X is nét observed directly. It is observed through another function,
whose values are corrupted by Gaussian noise. Here, we assume the observed process
y={y,t=0,1,..} is thé summation of an autoregressive time series of order p and

Gaussian noise. Then y can be written in the form
Y = o™ + Bty s + Betyn + e+ /BpXtyt—p + %ty (3.2.1)

where w = {w,t =0, 1, ...} is a sequence of N(0, 1) independent, identically distributed
(i.i.d.) random variables.

ot {BFt i = 1,2,..,p} and 0% are parameters for the autoregressive model in
state X;. o is the variance of the Gaussian noise. They all depend on the current
state X; of the chain. Since there are finitely many states, the number of the values

for the parameters is finite. Then we can rewrite equation (3.2.1) as

Y =< 0, Xy >+ < B, Xy > Yp1+ < Bo, Xy > Yoo + o+ < B, Xt > Yppt+ < 0, X > w,

(3.2.2)

where «, {8;,1=1,2,...p}, 0 are N dimensional vectors.

Consider a probability measure P on the measurable space (€2, F ) such that, under
P,

1) The process X is a finite state Markov chain with transition matrix A,

2) The observation {y:} is a sequence of N(0,1) i.i.d. random variables.

As in Chapter 2, the measure P is called a “reference” probability.

We now construct a probability P, such that, under P, the process X is still a finite

_ ye—<o,Xe>—3F | <PBm,

. . . Xe>ys—
state Markov chain with transition matrix A, and {w; : w; = Smel t2Yem ]
¥

is a sequence of N(0,1) i.i.d. random variables.



Write

5\‘ — ¢(wt)
YTO<a X > o)

¢(y,—<a,X[>— et B, X >Y1—m )
<o, X1>

< o, X > d)(yl) ’

Ao = 1,

b
t
A = J[x t=123,.
=1
Definition 3.1. Define P by putting

dP -
Ip-lgg = M.

Theorem 3.1. Under P, {w:} is a sequence of N(0,1) random variables.

Proof.

P(ws < alGi—1) = B[I(w: < a)|Gi—1]
BAJ(we < a)|Gii]
E[A4|Gs—i]
EI(wy < a)|Gyi]
E\|Gi1]

EX|Gi—1) = E[EMN|Ge1V Xi]|Ge).

The inner expectation

(yt—<a,Xt>—- an=1 <Bm Xt>Yt—m

EX|Gia VX = /__ <0, Xy > ¢(vr)

= /_ : $(we)dw
1.

Then

E[S\tlgt_l] - 1

<o, Xt> ¢(yt)dyt

34

(3.2.3)
(3.2.4)

(3.2.5)

(3.2.6)
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Similarly,

. ¢(yt—<a,Xt>— o1 <Bm Xt >Yt—m

Bl S aldsvx) = [ <o o> )

= /oo d(we)I(wy < a)dw;. (3.2.7)

I(ws < a)d(ys)dys

EDu(w < )Gt = BB (we < 0)[Gos V Xi]|Grs]

d(wy) [ {(w < a)dw.

Il
N
g 3

So, P(w; < a|Gi—1) = P(w; < a) = f d(we)I(wy < a)dwy, and the result follows.

a

Remark: Under P, the process X is still a finite state Markov chain with transition
matrix A.

This can be proved similarly as in Chapter 2.

3.3 Estimation of States and Parameters

3.3.1 Recursive Estimation

In this section we shall first describe how to estimate the hidden states, given the

observations {y;, ¢ = 0,1,2}. The notations are the same as Chapter 2.

Write
¢(Ut_°‘1 Em_l Bm, lyt—m)
e 0 ... 0 \
0 cee el 0
D(y) = ' o _ . (33.1)
¢(Ilt any—5P 1/3m Nyt—m)
\ 0 e 0 o) /

Theorem 3.2. The probability vector q; is computed by the recursion

@ = D(y:)Ags—1. (3.3.2)
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Proof.

q = E [f_\tXt|yt]

¢(yt"'<a,Xt>— =1 <Bm,Xt>Yt—m )
<o, Xt>

< 0o, Xt > ¢(yt) thyt]

¢(yt—<a,Xt>— 211;1_:_1 <Bm  Xt>Yt—m ) N

= E [-/—\t—l

= E[A, S0 Xy> N < Xy e > X
B
N ¢(yt—ai—2fn=1 ﬁm,iyt—m)
= ZE[At_l < AXt_l + Mt, e; > Iyt] i €;
P oip(%1)
N - Yt—oi—3 0 4 ﬁm,iyt—m)
= Z < B[A1 AXi 1| Vi-i), 5 > = €
P 0i$(Yz)
= D(y)Agq1.
d
Similarly as in Chapter 2,
O dy
Xpg=————. 3.3.3
TS (3.3.3)

As in Chapter 2, in order to estimate the parameters in the ARHMM, we have to
estimate the random processes Nt(j ’i), J{ and Gt. The recursive estimates of the three

processes are given in Section 2.3.1.

3.3.2 Estimation of Parameters

In this section, we use Expectation Maximization (EM) algorithm to re-estimate the
parameters in the ARHMM. EM algorithm has been introduced in Chapter 2.

The EM estimation of a;; is given in Theorem 2.7.

Theorem 3.3. Given the observations up to time t, the EM estimation of ¢y is

& = U(Gi,o) - %:1 U(Gi,m),ém,i
' o(Jf) ’

(3.3.4)

where f(yi) = Yi—m for G, m=0,1,...,p.
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Proof. Define

AaO = 1a
¢(yl-<a,x,>— 1 <ﬁm,Xl>yl_m)
H <o, X1>
Ay = =1 <o, Xi1>¢(y1)
ot ¢(yl—<a,xl>—2&51 <ﬂm,Xl>yl_m) :
H <o, X1>
l=1 <o, X1>¢(y1)

Set P, = P. Define P, by putting &—lgt = Aq. Then, as in the proof of Theorem
2.1, we can prove that, under Py, (y— < 8, X; > =Y 0 _ < B, Xi > Y1—m)/ < 0, X1 >
is a sequence of N(0,1) iid. random variables.

Now,

Qui(é,a") = E[L(o?)lyt]
~ Bllog ¥

_ 1ly—<8X>=3 0 <BmXi>Ymys
= E[Z 2( %S )* = B(, B,0)| 9]

= EIZ Z < X e; ><——< =8 = Dot Prlomyy 1 B, 6, o).

=1 i=1 03

Setting the derivative of Q¢(&, *), in &;, to be 0, we have
¢
E[Z < X6 > yl &; — Z ﬂm iUl—m lyt] = (.
=1 . m=1
That is,
E[Jjé;) = Z G 1 Bimi]-
So,

G — o( %,o) - an=1 O'(G%,m):ém,i
' o(Jf) ’

where f(y1) = Yi—m for Gi,,, m=0,1,...,p. O
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Theorem 3.4. Given the observations up to time t, the EM estimation of B ; is

5 U(Gi,mo) - O-(Gi,m)&i

e O-( %,mm)

, (3.3.5)

where f(y1) = Yimm for Gipm, F) = Yiomth for Gipo, F(0r) = Y7 for Gipn, m =
0,1,...,p

Proof. Define

Aﬁo == 1,
¢( Yy —<o,Xy>— 22}_21 <[§m,Xl>yl_m)
H <o, X>
Apr = =1 <o, Xi>¢(y1)
Bt ¢(yl—-<o¢,X[>— Z]z,n,El <ﬂm,X[>yl_m) *
H <o, X1>
=1 <o, X1>(y1)

Set Pg« = P. Define Pﬁ by putting -(gf:lgt = Ap;. Then, as in the proof of Theorem
2.1, we can prove that, under P;, (y— < 0, X; > —=> F _ < By X1 > Yiem)/ < 0, X3 >
is a sequence of N(0,1) ii.d. random variables.

Now,

Q:(8,8%) = E[L(B)lyt]

Ell d V]

OgdP
t A~

= Y- < a>Xl > _an=1 < ,BmaXl > Yi—m o _
E[Z 2( < O',Xl > ) R(a’ﬁaa)iyt]

=1

= B Y < Ko (AT D Py ) e, ,0)

0'-
=1 i=1 v

Setting the derivative of Qt(ﬁ, B*), in Bm,i, to be 0, we have

z < Xie > yl - O — Z ﬂm zyl—m)yl—mlyt] = 0.

n=1

That is,

E[ mm:Bm z] E[Gt m0 G;:,mai]‘
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So,

3 U(Gi,mo) B O—(Gi,m)&i

e 0(Cpm)

where f(yl) = Yi-m for Gi,m’ f(yl) = Yi-mYi for Gi,mO) f(yl) = ylz—m for G%,mma m =

0,1,...,p. O

Theorem 3.5. Given the observations up to time t, the EM estimation of o; is

p p
6 = ((o (Gfs,oo) — 280 (Gi,o) -2 Z B0 (Gz,mo) +2 Z Gifmio (G;,m) +

m=1 m=1
p p
&)+ D> Brmibnio (G (0 (TONY?, (3.3.6)
m=1 n=1

where f(y)) = yi for Gioo, F(W1) = Yoom for Gip, (W) = vi—myn for Gi e, Flu) =

yl"‘myl"‘n for Gz.,mn} m, n = 0, 1, o-.,p.

Proof. Define

AaO = 1,
- _sP
| Ht ¢( yp—<o,Xp> E?i}:ﬂm,xl>yl_m)
A _ =1 <6,X1>¢(y1)
ot = & y—<oX;>-xh _, <l3m,Xz>1/l—m) )
Ht <o X1>
=1 <o, X1>¢(y1)

Set P, = P. Define P; by putting %&:lgt = Az Then, as.in the proof of Theorem
2.1, we can prove that, under Ps, (yi— < o, Xy > — > 2 _ < By X1 > Yim)/ < 6, X >

is a sequence of N(0,1) i.i.d. random variables.
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Now,
Qt(a-a 0*)
= E[L(6)|V]
dP;
= Eflog iP.. | V4]
- By (AT SN <P Yem g, 5) - R(a, o)
a o\~ <6',.Xl > g y X "M t

t N 7 o w ' o
= E[ZZ<Xz,e¢>(—%(yl % Zmﬂﬂm’zyl_m)z—log&i)li)ft]—R(oz,ﬂ,a)-

=1 i=1 i

Setting the derivative of Q:(5,c*), in &;, to be 0, we have

Y 2
Y — oy — 1 Bmiyi-m)* 11
( Yo fmstion)’ L Ly,

t
E[z< X, e > (
=1

That is,
E[Ji6?
. . p . p . . p p N
BlGioo—20:Giy — 2  BrniGimo +2 ) iBmiGlm + 2T+ " BmifniGh -
m=1 m=1 m=1 n=1
So,

Y4 p
6 = ((0(Gigo) = 2u0(Glg) =2  Brmio(Gimg) +2 ) &ifmsio(GL,) +

m=1 m=1

G0 (F) + ) > Bmibnio(Gimn))/ (0 (T))2,

m=1 n=1
where f(y;) = y} for Gi,oo’ f) = Yi—m for Gi,m) f@) = Yi—mys for Gi,moa fy) =
Yiem¥i—n for Gt ., m,n=0,1,..,p. O

3.4 (lassification énd Simulation Results

In some classification problems, the object belongs to one class at one time, and may

jump to another class at the next time, according to certain probability. Then, the
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states of the object could be modeled as a Markov chain. However, the states (classes)
may not be observed directly. What possibly can be observed is a sequence of data,
generated by different AR models corresponding to different classes. In this case, we
could use the ARHMM to model the problem, and apply the above method to estimate
the hidden states (classes).

In order to show the effectiveness of the method, we consider an example. Assume

there are two classes, and assign the following values to the parameters.

0.8 0.3
0.2 0.7

a = [0.7,0.3],

B =1[0.4,0.6],

o =1[0.1,0.1]".

We generate 300 data for the simulation. The estimated results for the hidden
classes are shown in Figure 3.1.

The accuracy of estimating the hidden classes is always higher than 75%.

3.5 Application in Predicting EL NINO Phenomenon

One of the applications of the ARHMM for classification is prediction of the EL NINO
phenomenon. What are observed are temperatures of the sea water. The values of the
temperatures could be modeled by two AR models, according to two classes, “there is

an EL NINO phenomenon” and “there is no EL NINO phenomenon”.
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Figure 3.1: Estimated classes

The data are downloaded from the website: “http://www.pmel.noaa.gov/tao/”.
We use the temperature values of the sea water at 0°/V,155°W and 0°N,170°W, from
July 21st, 1991 to January 9th, 1997. Figure 3.2 shows the distribution of temperature
of the sea water from 140°F to 100°W along the equator, ffom July 21st, 1991 to
January 9th, 1997. If the warm tongue takes up most of the area from east to west,
we could say there is an EL NINO phenomenon at that time.[49]

Figure 3.3 shows the estimated result. The points in the first plot of Figure 3.3
show that there are EL NINO at those times. Compare Figure 3.2 and Figure 3.3, we
see that our estimation is consistent with the real situation. For example, the warm
tongue takes up most of the area from east to west on the right in Figure 3.2, so there
is an EL NINO phenomenon during those years. The estimated result in Figure 3.3
also shows that there is an EL NINO phenomenon during the years on the right of the

figure.
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Chapter 4

A VITERBI SMOOTHER FOR A DISCRETE STATE
SPACE MODEL

4.1 Introduction

Recursive estimates for the parameters of discrete time Markov chains observed in
Gaussian noise have been discussed in Chapter 2 and Chapter 3. The recursive estimate
for the hidden Markov model in which both the hidden states and the observations
are discrete is derived in [36]. In this chapter, we derive new filter and smoother
update formulae, based on a change of measure method and extensions of the Viterbi
algorithm. The formulae are recursive in the observation data, and could possibly be
used in biological sequence analysis and communications.

This chapter is organized as follows. In the next section, we give a brief introduction
to the discrete state hidden Markov model. In section 4.3, we derive the filter based
recursive estimates of the parameters in the hidden Markov model. In section 4.4, we
derive the smoother based recursive estimates of the parameters in the hidden Markov
model. In section 4.5, we give the backward Viterbi filter and the simulation results.
In section 4.6, we give the backward Viterbi smoother and the simulation results. In

the final section, we give some conclusions.
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4.2 Hidden Markov Model

In this chapter, the finite state time-homogeneous Markov chain X = {X;,t =0,1,...}
is defined as in Chapter 2. The transition probabilities and the dynamics of X are

defined by equations (2.2.1) and (2.2.2).
We suppose the prdcess X is not observed directly; rather, we observe a second

finite state process Y = {Y;,t =0, 1,...}, where
Y;-H = C(Xt, Wt+1). (421)

Here W = {W;,t = 0,1, ...} is a sequence of independent, identically distributed
(i.i.d.) random variables.
Suppose the range of ¢(:,-) consists of M points; then we can again identify the

range of ¢(.,.) with the set of unit vectors

¥

Q = {fla.f%’”)fM}a (422)

where f; = (0,0, ...,0,1,0,...,0) € RM.

Write G = 0{Xo, Yo, X1, Y1, -y Xz, Yt} Suppose
P(Yi1 = filGe) = P(Yerr = fi| Xe), (4.2.3)
and write

01 2 P(Yos = filXe =), C=(c;i)1<i<N,1<j< M.

Then, E[th+l|Xt] = CXt If M+1 = n_}.l - O.Xt, then

E[Wt+1|gt] = E[?/H-l - Cthgt]
= CXt - OXt

= 0.
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S0, Wi = Y1 — CX, is a (P, Giy1) martingale increment. [36] Therefore,
Y;ﬁ+1 = CXt + Wt+1. (424)
Consider a probability measure P on the measurable space (Q, F) such tﬁat, under
P,
1) The process X is a finite state Markov chain with transition matrix A,
2) The observation {Y;} is a sequence of i.i.d. random variables and

P{Yt{i-l =1|G;} = P{Yéil =1} =1/M. (4.2.5)

We call the measure P a “reference” probability.
We now construct a probability P, such that, under P, the process X is still a finite

state Markov chain with a transition matrix A, and P(Yi41 = f;j|X: = e;) = ¢j;.

Write
M N
A1 = 'Mzzcj,i <Y1, fi >< X6 > . (4.2.6)
j=1 i=1
t
A =[x (4.2.7)
1=1 ‘

Definition 4.1. Define P by putting

dP -
ﬁlg = A, (4.2.8)

Theorem 4.1. Under P, the process X is still a finite state Markov chain with tran-
sition matriz A and {Y;} is a sequence of random variables such that P(Yi,=1X;=

ei) = Cj’i. [36]



Proof.

B1|G]

P(Yf,=1lX=e) =

47

M N
= E[MZZCj,i < 1/,4,_|.1,fj >< Xt, e; > |gt]

j=1 i=1

M
= ME[Z Cii < }/t+1a.fj > ]gt]
j=1

M
= MZCj,iE[< Yir1, 5 > |Gy

Jj=1

Moo
= M} ciip:
=1

= 1L

E[< Y1, fi > | Xe = el
ElApy1 < Vi, fi > 1 X = e
E[As41]X: = e
E[S\t+1 <Y1, 5 > | X = €
E[/_\t+1|Xt = ei]
Ei1 < Yig1, fj > | X = e
M N
E[M Z Zcm,l < Y:‘.+1’ fm >< Xy, e >< Yi+1, fj > IXt = ei]

m=1 [=1

ME[cj; < Yig1, f; > | X = i)

Cj i
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EA141X41]Gi]
E[A+41]G]

EX 1 X11|G)
E[41]Gi]

= EMnXea|G

M N
= ElM Z Zcm,l <Yis1, fn >< X, €0 > Xi41|Gi]

m=1 [=1

N M
= E[Z < X e > Xt+lE[MZCm,l < Yit1, fn > Gl |Gil

=1 m=1

E[X111|G) =

N

= E[Z < Xt) e > Xt+llgt]
=1

= E[Xp1]Xi)

= AXt
So, the result follows. O

The real world dynamics take place under P. However, P is a nicer measure under

which to work.

4.3 Filter Based Estimation

In this section, we shall derive filter based estimates for the parameters A and C.
Following the steps in Chapter 2, we must first estimate the unobserved state process

X and some processes related to X.
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Write
(ng:l emi < Y41, fm> 0 .- 0
0 cee e 0
B(Yy1) =M
” ‘
0 ce 0 Zm:l Cm,N < Y;f+1afm >
(4.2.9)
Theorem 4.2. The unnormalized probability vector g, satisfies the recursion
di+1 = AB(Y:H.]_)qt (4210)

Proof.

di+1 =

M

BEAt1 X1 Vi)

M N
EA(AX: + Myy1) - MZ ch,i < Yir1, 5 >< Xy, €5 > | Vgl

j=1 i=1

E[f_\tAXth,z‘ < Yir1, 5 >< Xpy €5 > | Vo]

M=
M=

1

.
Il
-

2

=
M
M=

ElA; < Xy, 6 > | Vil Aeicis < Yig, fi >

As in Chapter 2,

j=1 i=1
M N
MZZ < E[AX| Vi), e > Aesejy < Yig, f3 >
j=1 i=1
M
MY Y <a,e> Aeicii < Yipr, f5 >
j=1 i=1
AB(Yi41)g:-
O
gt )

Zi=1 < q, e >
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Theorem 4.3. The vector a(Nt(j’i)Xt) is computed by the recursion
o(NID Xp41) = AB(Ye)o (VO X))+ < guy € > ajiei[B(Yerlis,  (4.2.12)
where Nt(j’i) is defined in Chapter 2.

Proof.

o (Nt(ﬁ)XtH)
= B[R NI X1 | Ver]

M N
= ER(N+ < Xy €0 >< Xppr, €5 >) Xpia M D0 emi < Yigs, fn >< Xy > |V

m=1 l=1

M N
= M Z Z < O'(Nt(Jﬂ)Xt), (] > Aelcm,[ < Y;:_H, fm >+

m=1 [=1
M

M z E[./_\t < Xy e > |yt]aj,iejcm,i < Yi1, fm >

m=1

= AB(Yin1)o(NF X))+ < ques > ajie51B(Yagr)ise

Theorem 4.4. The vector o(J:X;) is computed by the recursion
O-(JZ+1Xt+1) = AB(Y;.H_)O'(JZXt)‘f' < @i €5 > Aei[B(Y;_,_l)]i,,-, (4213)

S A
where J} = Zf=1 < X1, >.
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Proof.
o (i1 Xes1)
= BA1 T X1 Vi)

| M N
= EM(Ji+ < Xiyei >)(AXs+ Myy)M Y > ey < Yars, fn >< Xy > |Via]

m=1 =1

M N
= M Z Z < O'(JtiXt)ael > Aelcm,l < Y;-H)fm >+

m=1 [=1
M

M Z < g e > Aeicmi < Y1, fm >

m=1

= AB(Yi1)o(JiXe)+ < as, € > Aei[B(Yegn))iyi-

Theorem 4.5. The probability vector o(GiXy) is computéd by the recursion
0(Gi1Xer1) = AB(Yir1)o(GiXa)+ < gir € > f(YVor1)Aes[B(Yora))is,  (4.2.14)
where GE 2 S F(V)) < X1, €5 >.
Proof.
o (Gi+1Xt+1)
= E[A1Glp 1 Xepa|Vera]
L M N
= ElA(Gi+ F(Yor) < Xy e >)(AXs+ Myd)M D >~ emi < Vi, fn >< Xpy &1 > | Vipa]

m=1 [=1

= AB(YtH)U(Gf;Xt)'i' < gy e > (Vi) Aei[B(Yeqa)lis-

As before,
o(NF) = < oI, X,),1 >,
o(JY) = <o(JXy),1>,

o(G)) = <o(G,LXy),1>.



92

Finally, using the Expectation Maximization(EM) algorithm, the parameters can

be re-estimated by the formulae:

. _ o(NIY)

a’j’i - O'(JZ) ) (4:.2.15)
.. _o(G)
cJﬂ - O-(JZ) ’ ’ (4216)

with f(V1) =<1, f; >.
The details of this algorithm and the derivatives of the estimates are given in [1]

and [36].

4.4 Smoother Based Estimation

In this section, we derive the estimate of X}, given the information Vp, for 0 < k < T.

From Bayes’ Theorem,

E[AorX:|Yr

ElXi|Vr] = —== . 44.1
[ t| T] E[AO,TD)T] ( )
Here
ElAorXe|Yr] = E[Ao s Xe E[Asr 7| Y7 V Fi)|Vr), (4.4.2)
where ./—&t+1,r_p = le;t " .
Using the Markov property, we have
ElAs1g|VrV B = Bl | Vr V o(X)]. (4.4.3)
Write
v = (< vyr, €1 >, ..., < v, ey >, (4.4.4)

where < V.1 €; >é E[I—\H_]_,lefp VX = ei]. We put UrT = 1€ RV,
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Lemma 4.1. The process v is computed by the backward recursion

U, = B(Y;;_*.l)AI’UH_l,T. (445)
Proof.

<vyr, € >

M N
= ElRuorM Y > emi < Yig1, fm >< Xy > [Vr V X, = ¢

m=1 [=1

M
= M Z E[j_\.t+2,T|yT \Y% Xt = ei]cm,i < Y;:+1, .fm >

m=1
M N

= M Z ZE[< Xit1,€; > Mpar|Vr V Xi = eilems < Yigt, fn >

m=1 j=1

M N
= M Z Z E[< Xt+1> €4 > E[./_\H_z,TIyT \% Xt = €; VXH.l = 6j]|yT vV Xt = ei]cm,,- .

m=1 j=1
< Yt+1’ fm >

M N
= M Z ZE[< X1, €5 >< Va6 > |Yr VX = ejlemi < Yiqa, fm >
m=1 j=1

M N
= MZZCLN- < U415,€5 > Cmyi < Y;ﬁ+1afm >
m=1 j=1

Then, v,r = B(Yi41) AV 7. O

Theorem 4.6. The unnormalized smoothed estimate for the process X, at the time-
index k, is given by

E[AO,TthyT] = diag< q, €; >V T (446)

Proof.

E[AO’T < Xt, e; > |37T] = E[Ao,t < Xt, e; > E[At+1,T|yT Vv Xt = ez]lyT]

= <@g e >< T8 > .



54

So,

N
ElAorXe|Vr] = Z < g e ><vr, € > €

i=1

= diag< g, ; >vyr.

Write op (NI X,) £ E[Ror NI X, | V7).
Theorem ‘4.7 . The smoothed estimate for the quantity aT(Nt(j’i)Xt) is given by
aT(Nt(j’i)Xt) = diag< a(Nt(j’i)Xt), e >y (4.4.7)
Proof.

E[AO,TNt(j’i) < Xt, e > D}T]
= ERoiNPY < Xiye > EAti17|Yr V Xy = e))|Vr)

= < U(Nt(j’i)Xt), e ><uvr,e > .
So,

N
= Z < U(Nt(”Z)Xt),el >< v, € > €
=1 :

= diag< U(Nt(j’i)Xt),el >

Write O'T(G;.Xt) é E[I—XO,TG;.XtIyT].
Theorem 4.8. The smoothed estimate for the quantity op(GiX;) is given by

UT(GiXt) = d’iCLg< O'(G;.Xt), €, >V - (448)
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Proof.
ElAorG: < Xy, e > |Vr]
= E[A:Gi < Xi,e1> E[Aar|Vr V X: = ]| V1)
= <o(GiXy), e >< vpp,e1> .
So,

or(GiXz)

N
= Z < O'(GiXt),el >< VyT,€1 > €
=1
- = diag< o(GiXy), e >vpp.

O
Write o7(JiX;) 2 E[RorJiX|Vr).
Similarly,
or(JiXs) = diag< o(JiXs), e1 >vir- (4.4.9)
Similarly to section 3, estimates for the parameters are given by
4ji = %, : (4.4.10)
s, = 97(Cr) (4.4.11)

P op(J)
4.5 Viterbi Algorithm

The basic idea of the Viterbi algorithm is that the expected values represented by
summations in the recursive estimates are replaced by maximum likelihoods. That is,

the sums are replaced by maxima.
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For example, from (4.2.10),
N
g1 () = Y {ajslB(Yer1))j2:()},
i=1

where [B(Yi41)]i = Sy Omyg < Yer1, fn >.

Instead of this summation, we recursively define new unnormalized probabilities

Qf = [q;:k(l)a QZ"(Z), ) Q:(N)]/ by
Gi41(4) = max {a;i[B(Yis1)]iiq: (3) }- (4.5.1)
Certainly,

gi41(J) > 0. (4.5.2)

We can then define Viterbi probabilities by

o) i= E—N‘-’j% (45.3)
So,
N
S pa(i) = 1. (45.4)
=1

pe+1(7) is an estimate of the conditional probability, that X;y1 = e;, given Y3, Ya, ..., Yiqs.
The quantity ¢} is an approximation of ¢. Similarly, we can define o* (Nt(j’i)Xt),

o*(JiX;) and o*(GEX;) by

(N Xewa)(m) = maxamal B(Yis1)lo* (NFIX) (1) + 65 (D)asi0ms[B (Vs

(4.5.5)
O (FirXea)(m) = moxamaBYen)lwo* (JiX) (1) + G () oml B(YVisa)los.  (4.5.6)
o"(GinXer)(m) = maxam [B(Yer)lo* (GiXe) (1) + ¢} (6)f (Vi) amg[ BV i

(4.5.7)
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For example, 0*(N? < X,, e, >) is an estimate of the expected value of N9 and
the probability that X; = e, given Y3, Y5, ..., Y;

Following the results in section 3, estimates for the parameters could then be com-

puted by
. _ 0.*(Nt(.7ﬂ))
Qji = W’ (458)
S i) (4.5.9)

&z = Lc
= ()
To demonstrate the performance of the Viterbi filter presented in this chapter,

we consider an example. Assume there are two hidden states in the model, and the

observations also have two states. The transition matrices A and C are

0.9 0.7\
0.1 0.3)

0.8 0.9

0.2 0.1 ) '
The simulation results for the matrices.A and C, using the original filter and the
Viterbi filter, are shown in Figure 4.1 and Figure 4.2. We can see from the figures that
the estimated values converge to the true values of the parameters. The differences of
the estimated values and the true values are caused by the noisy system.
A method for estimating X; is:
Set X,(I) = 1 and Xy(n) =0, 1 < n < N,n # I, where I = argmax; {o:(j)}.
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Figure 4.1: Estimated parameter A using the original filter and the Viterbi filter
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Figure 4.2: Estimated parameter C using the original filter and the Viterbi filter

4.6 Viterbi Smoother
Recall the backward process v defined by
'Ut,T = E[./_\H_lthyT \Y Ft]

Then from Lemma 4.1, vyp = B(Yiq1)A'Veq1,r, with vpr = 1.
We now define a Viterbi smoother, by again replacing the sum by a maximum.

Define a process vjp = [vfp(1), vip(2), ..., vip(N)] by

Vr(7) = [B(Ye4r)lj5lmax {as 50341 2(9)}], (4.6.1)

'U;:,T - 1. (4:-6.2)
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Motivated by the results of section 4.5, we define Viterbi smoothed estimates in the

following way.

oR(NOVX) = diag(c* (NI X)) - vip. (4.6.3)
op(GiXy) = diag(o*(GiXy)) - vip. (4.6.4)
| op(JiXy) = diag(o*(JiXy)) - vip (4.6.5)

To demonstrate the performance of the Viterbi smoother presented above, we con-
sider the same example as in section 5. The estimated results for the matrices A and
C are shown in Figure 4.3 and Figure 4.4. Again, the estimated values converge to the

true values of the parameters.

Write
g = diag < g, € > v (4.6.6)
.l g (4)
() = =—t—. (4.6.7)
t SN g (n)

The method for estimating X; is:
Set X;(I) =1 and X;(n) =0, 1 <n < N,n # I, where I = argmax; {o}*(j)}.
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4.7 Conclusions

The Viterbi algorithm can be considered as replacing expected values by maximum

likelihoods. We have introduced new Viterbi-type algorithms related to parameter

estimation and smoothing.
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Chapter 5

A FILTER FOR A HIDDEN MARKOV CHAIN OBSERVED
IN FRACTIONAL GAUSSIAN NOISE

5.1 Introduction

In the previous two chapters, we discussed hidden Markov models, where the noise
in the observations is assumed to be Gaussian. However, in many practical cases in
engineering, physics and finance, it has been observed that the noise in the observations
has some long term “memory” correlation. For example, a long-range dependence
structure has been noted in squared stock returns and also exchange rates, such as the
Yen-Dollar rate. Consequently, a long memory stochastic volatility model has been
suggested. [4] [17] Other examples of long term memory are the measurements of
IP (Internet Protocol) traffic and the model of Local Area Network (LAN) Ethernet
traces. [38] [48] In this chapter we consider a discrete tifne, finite state Markov chain,
observed through a real valued process which is corrupted by fractional Gaussian noise.
This is an example of noise with correlation. The relation between the hidden states
and the observations is linear. We derive estimates for the parameters and hidden
states, using the change of measure method and the EM alg(.)rithm. [1] [36] [28] [30]
32] [37]

The chapter is arranged as follows. In the next two sections, we give a description
of fractional Gaussian noise and the model used in this chapter. In section 5.4, we
describe the change of measure method. In section 5.5, we derive the formulae for

estimating the parameters and hidden states. In section 5.6, we derive the formulae
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for approximately estimating the parameters and hidden states. In section 5.7, we give
the Viterbi estimation of the parameters and states. In the final section, we give some

conclusions.

5.2 Fractional Differencing

The results are quoted from the paper of Elliott and Miao [31].

Let Z denote the set of integers, Z = {..., —2,-1,0,1,2,...}, and Z* denote the set
of non-negative integeré, Z =1{0,1,2,...}. We define a set of functions £ = {f} on Z+
with values in R, i.e., f: Zt — R. We suppose that if i < 0, then f(i) = 0. These

functions could be considered as infinite sequences: f(0) = fo, f(1) = f1, £(2) = fayers
F@) = fiyeorn

Definition 5.1. If f* € £ and f? € L, the convolution product f* x f2 is defined by

b f2 Z fifas Xn: filfz—i' (5.2.1)

i=0 =0

Considering the first few terms

(fr= 50 = fif3,
(F* Q) = foff+ i,
(Fr= 22 = ffE+ R+

and
(Fro f2)(n) = fofi+ flfey+ o + fo i f2+ fof2.

If f2=(0,0,0,...,0,...), then for all n € Z¥,

Fr fA)(n) = Zfl

=0
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In this set of functions, consider the function u, which is defined as
U = (uo,ul,ug,...) = (1,1,1,) (522)
Then, for any sequence f = {f;,4=0,1,2,...}, and for any n € Z™,

(W £)n) =D Uifoi=Ffi+ fototfo (5.2.3)
=0

Therefore, convolution with u is the summation operator.

Consider the function I € £ given by
I=(1,0,0,..).
Then for any function f € L,

=0

So, I is the identity operator for convolution multiplication.

The convolution powers of u are

v = wuxu=(1,23,..),
v = wxu?=(13,6,..),
ut = uxud=(1,410,..),
1 2
S = (LE k(k + )>k(k+1)(k+ ),...),

w2l 3!

......

In fact, for any r € R, {u"} could be defined as in [31]

r r(r+1) r(r+D(r+2)
ETHED TR 3! 7

2 = (1,0,0,...,0,..)=1I.

o= (1 ). (5.2.4)
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Theorem 5.1. For any r,s € R,
*u® =yt : (5.2.5)
Proof. Write

v = (vg,v1,0s,...)

T S

= u xu
ror(r+1) s s(s+1)

,ﬂ, 2| ,) % (1,5, 2‘ ,)
r(r+1) s(s+1)

TR TR ) (5.2.6)

= (1

= (17T+37

r+s (r+s)(r+s+1)

rbs _
ut = (1, TR 51 o)

We know that for |z| < 1,

r(r+1) 2, r(r+1)(r+2)$3+

(1—2)™ = 1+rz+ T 3 vy
1 1 2
(1-2)"° = 1+sz+ 8(8;— )x2+ ss+ 3)l(8+ ):1;3+....
However,
—r —s +1 1
1-2z)"(1l—2) =1+ (r+s)z+ ('r'('r2! ) +rs+&2_;_——l)x2+.... (5.2.7)

Also,

(1-2)7"(1 _ 7)™ = (1— x)—(’r+s)

r4+si{ir+s+1
D EIEEN

= ol + Uz a4

= 1+(r+s)z+



Comparing (5.2.6) and (5.2.7), we have

1—2)"(1—2)"° = v+vz+vez®+...

Il

(1 . :II)—(H_S)

= ugt® +uiTr +ubtr 4.

Since z is arbitrary, we have v; = u}*®, for'all i > 1. So, u" * u® = u™*s,

Corollary 5.1. For anyr € R,

5.3 Hidden Markov Model With Fractional Gaussian Noise
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(5.2.8)

In this chapter we consider a finite state time-homogeneous Markov chain X = {X;,t =

1,...} asin Chapter 2. The transition probabilities and the dynamics of X are defined

by equations (2.2.1) and (2.2.2).

Assume w = {wy,t = 0,1,2,...} is a sequence of N(0,1) independent, identically

distributed (i.i.d.) random variables. The fractional Gaussian noise w" =

0,1,2,...} used in this chapter is defined as

A
7'__
’LUt—

u sk w)(t) = Zukwt_k

k=0

{w%‘)t:

(5.3.1)

Then, w" is a sequence of Gaussian random variables which have memory and are
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correlated. Also,

Elw;] = 0,
¢
Var(u)) = Y (4)?
k=0
: -1
Cov(wg,w;_;) = Z Up_gUs_1p + 1,
k=0

Cov(w§, w}_;)
_ VVar(wi)Var(wi_;)
We suppose the process X is not observed directly; rather, it is observed through

C’or(w;", wp_y) =

another process, whose values are corrupted by fractional Gaussian noise. All functions

of X are linear. We consider the following model for the observations:

Y =< g, Xt > +wy, . (5.3.2)

where g is an N dimensional vector, and w" = {w},t = 0,1,...} is a sequence of
fractional Gaussian random variables as described above.

From (5.2.4), w™" is the series

L =T —r(—=r+1) —r(—r+1)(—r+2)
( 7—i_i—) 21 ) 3| ,...).

Then,
W7 xy)t) = (W <g,X >)(t)+ (T xw)(¢)
o (e < g X)) + (T xa w)(B).
By Theorem 5.1,
W xy)(t) = (T < g, X >)(t) + wg.

Write

)

’Yt(XO)Xh'")Xt) = (u-—r* < g)X >)(t)
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Then,
2y = Yo,
21 = Y1 — TYo,
—r(—r+1
Zg = Yo—TY+ —~(2|—)y0,
and so on.
Also,

Yo(Xo) = <g,Xo0>,

71(X07X1) = <g, Xl > —r < g7X0 >,

—r(—r+1
72(-X0>X1)X2) = < 97X2 >-r< g,X1 > +'_T(—2’,;—+—)' < g7X0 >,
and so on.
Then (5.3.2) implies the following equation.
2y = Y + Wy (6.3.3)

These are the dynamics of z under the ‘real world’ probability P.

5.4 Change of Measure

Consider a probability measure P on the measurable space (£, F) such that, under P,
(1) The process X is a finite state Markov chain with transition matrix A,
(2) {2} is a sequence of N(0,1) i.i.d. random variables.
We call the measure P a “reference” probability.
We now construct the ‘real world’ probability P from P, such that, under P, the
process X is still a finite state Markov chain with transition matrix A, and {w} is a

sequence of N(0,1) ii.d. random variables, where w; = 2 — J;
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Write Gf = o{Xo, 20, X1, 21, ..., X, 2}, 50 {GF} is the filtration generated by (X, z).
Write -

¢z — )
A= ——— 5.4.1
l ¢(Zl) ( )
Ao = 1, (5.4.2)
¢
A= [N t=1,23,.. (5.4.3)
where ¢(z) = \/_emp(—%z).
Definition 5.2. Define P by putting
dP
ﬁ@ = Ay (5.4.4)

Theorem 5.2. Define wy = z — 7(Xo, X1, ..., Xz) fort € {0,1,2,...}. Then, under P,

{ws} is a sequence of N(0,1) i.i.d. random variables.

Proof.

P(w; <alGi_;) = E[I(w; < a)|Gi]
E[AI(w; < a)|GE4]
i E[A]GE ]
EMI(wy < a)|GE_4]
ENGE)

BINMIGEL] = E[EMIGE, V XiIGE].
The inner expectation
EnGE, VX = / 4G %)cﬁ(zt)dzt
= /_ _ ¢(wt)d'wt

= 1.
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Then
BN
Similarly,
B <ol vx) = [ =W, < ajg(an
= [ bt < ajdu

EMI(w; < a)lGf,] = BIENI(w < a)|GF, V Xi|GE]
(o]
= / dwe) I (wy < a)dwy.
So, P(w; < a|Gy—1) = P(w; < a) = [ ¢p(wy)I(wy < a)dwy, and the result follows.

That is, under P, wy = 2 — :(Xo, X1, ..., X¢) is an 1i.d. sequence of N(0,1) random

variables. Consequently, 2z = v4(Xo, X1, ..., Xt) + ws. ]
Corollary 5.2. Under P, y == (u" x 2)(t) = (u" * 7)(t) + (v * w)(t). That is,
Yy =< g, X; > +wj.

The process X remains a finite state Markov chain with transition matrix A.

Write

yt = a{yO)y17""yt},
Zt = O'{Zo,Z]_,...,Zt},

gz? = U{XO,yO,Xl,yb'">Xt:yt’Xt+l}-

Then the filtrations of the X, y, z and the (X,y) processes are {F:}, {V:}, {Z:}
and {G}'}. Note that, {Ve} = {2}, {G¥} = {G7}-
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5.5 Exact Estimation of States and Parameters

In this section we shall derive the exact estimates for the parameters and hidden states.

5.5.1 Estimating the Hidden States

First we describe how to estimate the hidden states, given the observations {y;,t =
0,1,2,...}.
Write

@ = B[AX:| 24). (5.5.1)
Assume ¢ is known, then we have the following theorem.

Theorem 5.3. The unnormalized probability vector q; is computed by

N N N
— </>(Zl — ’Yl(XO, eit))"'¢(zt - 'Yt(X07 €iyy ey 6@'1)) o o '
&= Z Z Z ¢(Z1)¢(Zt) Qi y,ig-+ Qi1 123y < qo, €4y >

f1=lio=1 {;=1

(5.5.2)
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a

E[Atth.Zt]

— ¢(Zt - ’)’t(X07 ) Xt))

ElA;_

po TR 2
_ 2 — Ye(Xoy ..., X, al
E[At_l ¢( : fYt( 0 t)) Z < Xta €y >thzt]
¢(zt) 1:1:1

N _ ' e;
Z E[As-10(2e — 1(Xoy o Xom1,€51)) < AXyg + My, 5, > |Zt]@
i1=1

N B €;

Z BlAs1¢(zs — m(Xoy ooy Xem1y €11)) < AXia, €4 > IZt]d)(zt)
i1=1

N

_ 21 — Ype1( X0y vey Xi

ZE[At—2¢( o 1( g : 1))(]5(% - ’Yt(X07 '",Xt—l’eil)) :
= $(2:-1)

N e

Z < Xie, €55 > < AXy1,€5 > |24 =

Pt ¢(z)

N N
Z Z E[At—2¢(zt-—l — VY—1 (X07 ceey Xt—29 6i2))¢(zt - ’Yt(X()) eey Xt—2> €iys 621)) :

@4y 69 €4
<AXi o+ Mig,e5, > |Zt]m

N N N ’
Z Z Z E[Ao¢(21 - ’)’1(X0, 6it))...¢(zt - ’Yt(XO) €igy eery 6i1)) < AXQ, e, > |Zt] .
11=112=1 ig=1
Qiy_1ig - Qiy 2 Ciy

N N N 21— XO) €i))e P2t — Ve XO’ Cigy ++ey Gy
SO 3 H = o ) — ),

3(z1)- () i1t (ig,ig €y < Q05 €3y >

11=1 ig=1 is=1

O

Similarly as before,

=— 5.5.3
< G, 1> ( )
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5.5.2 Estimating the Parameters

In order to estimate the parameters in this model, we have to estimate several random

processes, as in the previous chapters.

Theorem 5.4. The vector o(NPX,) is computed by

O.(Nt(Jﬂ)Xt)
N N
= E : E : {< 0, €1, > [Al(elt—l’elt—2)"')\t(elt—1’ “"ell’ei,ej)a'lt-z,lt—l“'a'l1,lza’i,lla’jiej +
h=1 1=l ‘
et Ar(egs €l g) o Ae(€lmgs oo €lin €1y €5 €Ly - €1 ) *
Ol b - Qi s DO Wy e o+ Bl o €y T+ o]
< qo, € > )\1 (6@', ej))\z(ei, Gj, 6lt_1)...At(€i, €5y€l 15 0n ell)aﬁalt_l,jalt_z,lt_l...alhlzell}.

(5.5.4)
Proof.

o(NPIX,) = E[ANFOX,|2)]

t
= E[At Z < Xj1,e >< Xy, € >Xt|Zt]
=1

t
= ZE[At < Xl_l,ei >< Xl,@j > thzt]
=1
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ElA < Xi1,e, >< Xy, 65 > Xi| 2]

E{As—10(Xoy ooy X)) < X1, € ><‘AXt_1 + My, e; > | Zile;

BlA1)e(Xoy ooy Xoory €5) < Xty €3 >< AXy_1, 05 > |Ze;

ElAs—oXi—1(Xo, .., Koo, €)Ae(Xoy ooy Xisy €3, €5) < AXymo + My, € > | Zi]azie;

N

BElAp-oXi—1(Xo, ..y Xioa, €)Ae(Xoy -onr Xia, €1, €5) z < Xi—gye, > < AXy 9,6, > | 2] -
l1=1

@ji€j

N
> EAoho1(Xo, ooy Xims, €135 €)Me( Koy ooy Xz, €11, €5, €5) < XKoo, €1y > | Zlagy, ajee
=1 .

N N
E E[A())\l(elt_l, 6lt_2)...>\t(elt_1, ey €15 iy ej) < Xo, €Ly > |Zt] .
h=1 [li—1=1
Al _gls—q -+ Ayl Al A5i€5
N N

E _S_ < Qo €1q > M(€lqs €lys) o At(€lp_ysons €15 €35 €5) g 1y g -0y 1 Fily BjiCie
l1=1 li1==1 .
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For 0 <k <t

E[At < Xp_1,6 >< Xk, ej > thzt]

N
= Bl < Xpor,6>< Xp 65> Y < Xy, >X| 2y
1=1

I
M=

E[At_]_)\t(Xo, ...,Xt_]_, ell) < Xk_l, e >< Xk, €; >< AXt_l, e, > |Zt]el1

o~
S
Il

_

ElAs1M(Xos ooy Xe1,€1) < Xpo1, € >< Xi, €5 >

I
M=

o~
i
A

1

Z < Xi1, e > < AXt_l, ey, > |Zt]el1
lo=1
N N

= ZZE[At—ZAt 1(-X07 Xt—27612)>‘t(X0) "')Xt—2ael2)el1) < -ch—laei >< Xk’ej >
l1=11s=1
< AXt—Zaelz > th]a'll,lzell

......

N
Z Ak:)\k:+1(X0) Xk,elt_k)...)\t(Xo, ...,Xk,elt_k, ...,ell) < Xk_l,ei > -

ej >< AXk, e,y > | Z4)at,__y -0l 128l

Mz /b\q JLMZ
Mz

_[Ak:/\lc+1(X0) veey Xk—1> ej, elt_k)...)\t(X(), seey Xk—l, ej, 6lt_k, crey 6[1) .

o~

1=1 L=

< ch 1’61' >< AXp 1,85 > 1Zt]alt—k,ja’lt—k—1,lt—k"'a’ll’lzell

= E ZE[Ak)\Ic+1(XO, s X155, €13, ) oo Ae( X0y ooy Xim15 €55 €14y o €1y) *
L=l =1

< Xp-1,6 > IZt]a’jialt—k7ja'lt—k—17lt—k'“a’ll,lzell

N
. E E[Ak_g)\k_l(Xo,...,Xk_g,ei)...kt(Xo,...,Xk_g,ei,ej,elt_k,...,ell) .
l1=1 lt—k=1

I
Mz

N
E < Xp2 €y > < AXpma, € > | Z4)azi0h, 0o pe-Ola 12l
It pt1=1



......

7

Ak—l(XOa ceey Xk-;3a elt_k+1> ei)"')\t(X07 veey Xk—3) 6lt_.k+17 €5, €5y €l 1y ey 611) *

< Xh—2s €y_pyr > | Ze) @ity g0 @i,y 3Ot ooty 10

N N
E : E : E[AO)‘l elt—176lt 2) At(elt—l’ 1 Cli_gg11 €1y €55 Elyy °~°,el1) < XO)elt—l > ]Zt] :

h=1l L=l
Clgpslem e Cirls oy Vi Pe oy M1 b+ Ml 12 €l
N N )
E E < o, €1y > Al(elt_l,elt_z)...)\t(elt_l,...,elt_,m,ei,ej,elt_k, ...,ell) .
h=1 [li—1=1
Qe gli1 Vil pgr Vil Uy g1l o~ Oly 12 €l -

So,

(4,8
o(N;" X4)
E : E : {< q0, €15y > [Al(elt—ﬂ6lt—-2)“‘At(elt—1’ -y €1y, €4, ej)a'lt—z,lt—1"'a'll,lza’i,llajiej +
=1 li—1=1
e A1y €lg) o At (€lys o ovs €l g1 € €y €lyyy oo €1y) *

a'lt—2ylt—1'”a'islt—k+1 ajialt_k,jalt_k_l,lt_k"'a’ll,lzell + '-'] +

< go, €; > )\1 (Gi, ej))\z(ei, €4, elt_l)...)\t(ei, €5y Cly1y o0 ell)ajialt_l,jalt_z,lt_l ...all,lzell}.

O
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Theorem 5.5. The probability vector o(GiX;) is computed by
o (Gt

i

L X¢)
N
Z < qo, €, > [Al(elt, elt_l)...)\t(elt, €1+ €Uy ei)alt_l,lt...all,lzai,llf(zt)ei +
li=1
(elt, €l ) .)\t(elt, ceny elt_,m, €i, elt_k, ceey 611) .
a'lt-l,lt"'ai,lt—k+1a’lt—k,ia’lt—k—hlt-k'"a'l1,l2f(zk)el1 T ] +
< qo, & > )‘l(eh elt)"‘At(ei’ €lysen el1)a’lt,ia’lt—l,lta’lt—z,lt—1"‘a’ll,lzf(zo)eh}'
(5.5.5)
Proof.
O'(GiXt) = E[AtG;'thZt]

¢
= E[Ath(zl) < Xi, e >Xi| 2]
l__.

t
Z ElAf (2) < Xiye: > X4 Z4).

Il

ElAf(2) < Xy e > Xi| 24

= E[At < Xt, e; > |Zt]f(zt)e,

= BElA (Ko, o, Xim1,€) < AXey + My, e > | 2] f(2e)e
N
= Bhah(Xo, o Xeor ) D < Xpopye, > < AXpoy, > 2] f(z)es
=1
N —
= ZE[At——l)\t(XO) oy Xy €, 85) < Xioa, e, > | Zilaig, f2)e;

oooooo

N N
= Z Z E[Ao)\l (elt, elt_l).../\t(elt, €11+ €ly) 6,;) < Xo, €, > |Zt]alt_1,lt...all,lza,-,llf(zt)e,-

=1 li=
N

N
= Z Z < qo, €1, > A1 (elt, elt_l)...)\t(elt, €105l ei)alt_l,lt...all,lzai,llf(zt)ei.
l1=1 li=1
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For 0 <k <t

E[Atf(zk) < X, e; > Xi| 24
N

Il
les]

(A < Xiyei > Y < KXoy e > X 21]f ()

l1=1

N
= ZE[At—lAt(X(); '“7Xt—1) 6;1) < Xk>ei >< A-Xt—h ey > IZt]f(Zk)eh

N ’ ' N
= Z E[At—l)\t(Xm ...,Xt_l, el1) < Xk,ei > Z < Xt—17 e > < AXt_l, ey > [Zt]f(zk)ell
h=1 lo=1

N N -
= Z Z E[At—lAt(Xm seey Xt—27 €1y, 6[1) < Xk:) e; >< Xt-—l) e, > th]ah,lzf(Zk)ell

......

N N
= Z Z E[Ak)\k_l_l(Xo, Xk_l,ei,elt_k)...)\t(Xo,...,Xk_l,e,;,elt_k,...,6[1) < Xk,ei >

< AXp, e,y > |Zt]a'lt—k—1,lt-k"'a'l1,lzf(zk)el1
N

N
= > . BB er1(Xos ooy Xio1, €65 €1, ) M(Xoy ooy Xipm1, €55 €14y r €1,) -

N N
= Z Z E[Ak_lAk(Xo, veey Xk—l, ei)...)\t(Xo, ceoy Xk—-l, €4y Cly_pr ooy 611) .

l—g=

E : < Xk—l’elt-k+1 > < AXpo1,e > |Zt]alt-k,ia‘lt—k—1,lt-k'“a’ll,lzf(zk)eh
lg—pp1=1
N

N
= E E E[Ak_lAk(Xo,...,Xk_z,elt_k_H,6i)...)\t(Xo,...,Xk_z,elt_k+1,ei,6lt_k,...,611) .

h=1l lLpq1=1
< Xk—l’ Clipir = [Zt]a’iylt—k+1a’lt—-k,":a’lt—k—-l,lt—k"‘all;l2f(zk)el1

......

N N '
= E E AO)\I 6lt, €1 ) .)\t(elt, oy €l pr19 €y Cly_ps oons ell) < Xo, e, > IZt] .

=1 li=1

0 PPN PRTRLY 2 PRPRLC) PAR 107 PRSI MRFARTRL 7 P 2% f (zk) €l
N N

= E E < qo, e, > Al(elt,elt_l).../\t(elt, ooy €l _py1r €is Cly_ps ...,ell) .

I1=1 lt=1

L0 PRRRLY O PP PR 107 PRI RN PN 7% f(zk)ell .
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So,

GiX,)

i

I
Mz

P

1

N
Z < Qo €y, > [)\1(6[“ elt—l)"’At(elt) €lg—y--+1 €ly» ei)a’lt-—l,lt"’a’ll,lza’i7llf(zt)ei +
1 =1
Ax(

€l Clyy ) .)\t(elt, cery elt_kﬂ, €5y Cly_fsy ooy 6[1) .
a’lt—l,lt"'a‘i,lt—k+1a’lt—k,ia’lt—k—hlt-k"'a'lhlzf(zlc)eh + ] +

< Qo, &; > )\1 (ei, 6&)...)\,*,(61;, €lyy -eey ell)alt,ialt_l,ltalt_z,lt_l ...all,lzf(zo)ell}.

In (5.5.5), let f(z) =1,0 <1<t Then

i A
O'(JZXt) = E[AtJtXt]Zt]
= Z Z{< o, €1, > >‘1 (elu €l ) -At(elu €lyq---3 €l ei)a’lt_hlt"~al1,lza'i,l1 e; +
=1 li=1
Ao sy €y ) A€l oy B _rs € €Ly o €1y ) *
(L0 PP PREEL T MEPRLC) PR 107 PO PRPTEL R 21 Y + ] +

< Qo,€; > )\1 (65, elt)...)\t(e,-, €lsy ony ell)alt,ialt_l,ltalt_z,lt_l...all,lzell}.

(5.5.6)
Again,

o(NOY) = <o(NFD,X,),1>,
o(G) = <o(G,X),1

o(J}) = <o(J,Xs),1>.

The parameters are again estimated using the EM algorithm discussed in Chapter
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Given the observations up to time t, the EM estimates of a;; and ;(Xo, X TR, A e;)

are
X U(Nt(j’i))
a;; = ————, 5.5.7
Lo (550
. 5 5 o(G})
Ae(Xo, X1, ooey Xp1,85) = = 5.5.8
t( 0 1 t—1 ) O'(Jt) ( )

where in Theorem 5.5, f(z,) = 2 for Gt. The proof is similar to the proofi of Theorem
2.7 and Theorem 2.8 of Chapter 2.

Then, the estimator. for g; up to time ¢ is

3i(t) = (u" % 4(Xo, X1, ..., Xs—1, €)) (B). (5.5.9)

5.6 Approximate Estimation of States and Parameters

In this section we give recursive approximate estimates of the parameters and hidden

states.

Theorem 5.6. The probability vector §; is approzimately computed by the recursion

¢(Zt - ”Yt(Xo, Xl) ey Xt—h ei))

N
qt = Z< AQt—l7ei >

€, 5.6.1
— $(2) (561)
where, for 0 <1<t, X; = <q§7,‘1>.
Proof.
qt

= E[Atthzt]

_ £ ¢(zt - rYt(XO) X3} Xt))

= F[A () Xi| 24

N
= E[At_1¢(zt — 7;((‘};")’ = X1)) 3 < Xy e > X2, (5.6.2)
t

i=1
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Using X, to approximate X;, i =1,2,...,t — 1 in (5.6.2), we define

G
N -~ ~
- Z E[At_l < AXt—l + Mt, e; > |Zt] ¢(zt — fYt(XO) X17 ceey Xt_l, 61)) e;
i~ $(z)
N o~ ~
=1 ¢(Zt)
N byl ~
D MUY CELTC S (N I
=1 b(2)

where, for 0 <1 <¢t, X; = <—q§1f1—>.

Taking §;—1 as an approximation to ¢;_;, we have

N ~ ~
— v (Xo, X1, o, X1, €5
Qt = Z < Aqt_l’ ei > ¢(Zt ¢ ryt( 0 1 ] t—1, el))e_

i=1 $(z) i
O
Theorem 5.7. The vector O'(Nt(j’i)Xt) is approzimately computed by the Tecursion
. N s ~ ~
FINIIXY) = 3 <E(NIPXe1), e > M(Xo, Ky ooy Koo, e)er +
=1
< Qi—1,€; > )\t(XO, Xl, ey Xt-—-l, ej)aj,iej. (563)
Proof.
o (N t)
= E[AtNt(J’z)XAZt]

= E[A1re(Xoy s X) (NIt < Xy, 0 >< Xiy e >) X 2]

N
= EAaM(Xo, s XY NI+ < Kooty >< Koy >) D < Xy e >X4| 2

=1
N
= Z < E[At—l)\t(XO, ooy Xgm1, el)NLL(i’;) (AXt_l -+ Mt)lzt], e > e+
=1

E[At_])\t(Xo, very X4, ej) < Xi1,6 >< AXi g+ M;, e; > th]ej.
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Similarly as before, we define

F(NPIX,)
N .
= ) < BlAaNED AXy 1|2, 1), e > Mo(Xo Ky oy Ko, €1)er +
< BlAso1 Xe1|V), € > Ma(Xoy Xy ooy Koo, €5) 0565
N -
= Z < AO'(Nt(i’?Xt_l), e > )\t(XO,Xl, -~-,Xt—17 el)el +

=1
< Q1,85 > M( KXoy X1, ooy Xim1, €5) 0565

Taking &(Nt(i’i)Xt_l) as an approximation to o (M, (Z’?Xt_l), and §;—; as an approx-

imation to ¢;_1, we have

M=

F(NFIX,) = < F(NIDXom), 0> M( Ko, Kay ooy Koor, e)er +

l
<

FQH

—1,€6; > )\t(XO, Xl, ceey Xt—l, ej)aj,iej.
O

Theorem 5.8. The probability vector o(GiX;) is approzimately computed by the re-

cursion -

N
&(G;Xt) = Z < A&(Gi_lXt_l), e > )\t(Xo, Xl, ceey Xt—-l, 61)61 +
=1

< Agp-1,e; > F(2)M(Xoy X1, ey Kot €5)e5. (5.6.4)
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o(GiXz)
BINGIX, ) |
E[At—l)‘t(XO, oo Xt)(Gi—l + f(Zt) < Xy, € >)thzt]

N
E[At_;[)\t(Xo, "'7Xt)(Gi—1 + f(Zt) < Xy, € >) Z < Xi, e >thZt]
=1

N
Z{E[At—-lAt(XOa eeey Xt—l’ el)Gi—l < Xt’ e > elIZt] +
I=1

E[As 1 Me(Xo, .o, Xem1, ) f(2) < Xty >< Xy, e0 > €| Z4]}

N .
Z < BlAs-12e(Xoy -y Xom1, @) Gi_1(AXy 1 + M) | 2] €0 > e+
1=1 |

EA1M(Xoy oy Xem1, ) f(2) < AXom1 + My, e > | Zies.

Similarly as before, we define

5(GiXy)

Z < E[At_lGi_lAXt_ﬂZt_l], e > /\t(Xo,Xl, ...,Xt_l, eer +
=1

< E’[At_lAXt_1|Zt], e; > f(zt))\t(Xo, Xl, ey Xt—l, 6i)ei

i < AO'(Gi_lXt_l), e > )\t(X(), Xl, ceny Xt—l, 65)61 -+

=1

< Age-y, e > f(ze)Me(Xo, X1, ey X1, €) e

Taking &(Gi_, X;—1) as an approximation to o(G%_; X;_;), and §,—; as an approxi-

mation to ¢;—;, we have

N
5(GiXy) = Y < AG(Gi 1 Xi), e > M(Xo, Kn, ., Koo, er)er +

1=1
< AGi-1,€; > F(2)M(Xo, X1, ey X1, €)es
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Setting f(y:) = 1 in equation (5.6.4), we obtain

N
F(JiXe) = Y < AG(J1Xem1), e > Me(Xo, Kiy ooy Kimry er)er +

I=1

< Aqt_]_, e; > )\t(Xo,Xl, --~,Xt—l, ei)ei. (565)

'The estimates of a;; and g; are then given by (5.5.7) and (5.5.9).

5.7 Viterbi Estimation of States and Parameters

Following Chapter 4, we shall give the Viterbi estimates in this section.

From (5.6.1),

. o
) = 3 oy AT Ty )

Instead of this summation, we recursively define Vnew unnormalized probabilities
¢ = a5 (1), ¢ (2), ..., (N)] by

gf (j) = max a,-ﬁb(zt — X0, X, -y Xi1,05)) O} (5.7.1)
t d’(zt)

Certainly, ¢f(j) > 0. The Viterbi brobabilities {p:} are defined in (4.5.3). Also,
p:(7) is an estimate of the conditional probability, that X; = e;, given Zy, Zo, ..., Z:.

Write X7 = (p¢(1), 0¢(2), .-, pe(N)). In (5.7.1), instead of X;, we use X} to approx-
imate X;, 4 =1,2,...,t — 1, then |

g (j) = max azji¢(Zt — X0 X, Xy, ) @, (i) (5.7.2)
¢ B(2)

The quantity g; is an approximation of gy. Similarly, we can define o* (N,gj’i)Xk),
o*(JiXy) and o*(G% X)) by
"(NPOX)(m) = max{amo” (NI Xoa)DNe(Xo, Xf, o X1 em)} +

qz—l(i)At(XOa Xf) sery t*—17 ej)aj,i5m,j- (573)
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o"(GiX)(m) = max{amo™ (Gl Xe1) (DA Xo, XF, oy Xip, m)} +

max {aag; 1 (1).f(2) \e(Xo, X1, ) X7 1, €5)0m,i}- (5.7.4)
0*(J;Xt)(m) = mla,x {amlo'*(‘]z:—lxt—l)(l)/\t(X07 X;LF’ ooy X:—b em)} +
mlax {ailq;"_l(l))\t(Xo, Xik, veey X:—l’ ei)ém,i}. (575)

Following the resulﬁs in section 5.5, estimates for the parameters could then be

computed by

Q;; = —, 5.7.6
T ) (579
. . i o* Gz

")’t(X(),Xl,..., t_l,ei) = ﬁ, (577)

where in (5.7.4), f(z) = 2 for Gi.

The estimator for g; up to time ¢ is still given by

gz(t) = (ur * 'S’(XO’XT’ ey Xi 1 el))(t)

5.8 Conclusions

In this chapter we have obtained exact estimates for the parameters and hidden states in
the hidden Markov model, with the noise in the observations being fractional Gaussian
noise. It is shown that, using change of measure method, the parameters can be
estimated based on the history of the observations. We then gave recursive approximate
and Viterbi estimates fbr these parameters and states. For the recursive approximate

estimates we do not need to go back through all the time steps to the values at time 0.
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Chapter 6

A FILTER FOR A STATE SPACE MODEL WITH

FRACTIONAL GAUSSIAN NOISE

6.1 Introduction

State space models are widely used in finance, speech processing, image processing and
control systems. A state space model is an extension of a hidden Markov model. In
such a model the signal of interest is hidden but observed through another stochastic
process. Both the unobservable and the observed processes are corrupted by noise.
However, the hidden signal could be any process, not necessary a Markov process.
Often, the noise in the signal and observations is assumed to be Gaussian. In that
case, the Kalman filter, the extended Kalman filter and the Wonham filter are well
known methods for estimating the hidden signal.

However, as mentioned in Chapter 5, in many practical cases the noise in the ob-
servations has some ‘memory’. In this chapter, we consider a discrete time, state space
model, where the signal is observed through a real valued process which is corrupted
by fractional Gaussian noise. The relation between the signals at different times and
the relation between the hidden signal and the observations are both linear. We derive
the estimates for the hidden signal and the parameters, using the change of measure
method and the EM algorithm.

An important question is ton estimate the error between our approximate filter and
an exact filter. However, without an exact filter, this appears to be a difficult problem.

This chapter is arranged as follows. In the next section, we give a brief description
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of fractional Gaussian noise and the model used in this chapter. In section 6.3, we
derive the filter for estimating the hidden signal. In section 6.4, we derive the formulae
for approximately estimating the parameters and the hidden signal. In the final section,

we give some conclusions.

6.2 State Space Model with Fractional Gaussian Noise

Fractional Gaussian noise is defined in Chapter 5. The real-valued, (one dimensional),

state and observations of the system considered in this chapter satisfy the dynamics
Ty = ATy—1 + b’Ut, (621)
Y = cxy+ dwy. (6.2.2)

Here a, b, ¢ and d are unknown parameters; v = {v;,t = 0,1, ...} is the process noise,
which is a sequence of N(0,1) iid. random variables; w”™ = {w},t = 0,1,...} is the
measurement noise, which is a sequence of fractional Gaussian random variables as
described in Chaioter 5.

As in Chapter 5, Write
z o= (u"xy)(),
Y4(To, T1y ey ) = (U % z)(2).
Then, (6.2.2) implies the following equation.
2 = cve(Toy vy ) + dwwy. (6.2.3)

These remain the dynamics of z under the ‘real world’ probability P.

6.3 Filtering

Consider a probability measure P on the measurable space (Q, F) such that, under P,



(1) {z:} is a sequence of N(0,1) i.i.d. random variables,

(2) {2} is a sequence of N(0,1) i.i.d. random variables,

and {z:} and {2} are independent of each other.

We call the measure P a “reference” probability.

89

We now construct the ‘real world’ probability P from P, such that, under P, {v;}

and {w;} are sequences of N(0, 1) i.i.d. random variables, where v; = b~ (z; — az;_1),

wy = d7 (2 — eyve(zo, ..o, T1))-

Write Gf = o{0, 20,21, 21, ..., T, 2}, s0 {Gf} is the filtration generated by (z, 2).

(However, see the definition of G¥ after Corollary 6.1.)

Write

and for [ > 1,
N

Ay

00) = —emnl-2),
W Bz = cn(@)
’ dp(z)

d(b7 (z — am1—1))d(d7 (2 — cyiwo, -vr 1))
bdg(zi) () ’

t
[Th t=125,..
=0

Definition 6.1. Define P by putting

ar
dP

Theorem 6.1. Define vy = b~ (z; — azs—1), wy = d7 (2 — cyi(wo, 71,

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

.y X)) fort €

{0,1,2,..}. Then, under P, {v;} and {w;} are sequences of N(0,1) i.i.d. random

variables.
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Proof.
z _ E[Atf (vt)g(wt)lgf_l]
E(f(vt)g(wt)lgt—l) - ] E[At|gf—1]
B f(ve)g(we)|GE_]
EM|GE ] .
: Yz — lzt— t\Z0, -+, Lt
BgE) = BE et i gy
e e A )

¢(d 1(Zt cht<xO7 )xt))) z _ ¢(d_ _67t Loy -y & )))
E[ de(z) 191,z = / do(z) ¢(2:)dz;

E[qg(b—l(mt - aZ%4-1)) g7 ] = /_°° p(0~(z, — axt_l))¢($t)d$t

bg(z:) bg(z:)
= 1

EDf (ve)g(we)|Gi-1] ,
_ E[¢(b_1($t — a%y-1))$(d" (2 — en(o, .., 7)) |
bd(ws)P(21)
FO @ — aze1))g(d™ (2 — en(@o, -ory )| GE]

- mf ool (o an).
pA G s 50N 1, — g o )G, G

E[¢(d_1(Zt —d(’Cb’E’tz(i)Bo, veey xt)))g(d;l(zt — cY(@oy ooy ) ) ) GE_1, 4]

/ P(d™ (2 — el wo, M)

dé(z)
- /_ooqs(s

g(d (2 — cyi(wo, -, ) ) P(26) d2s
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B da(wlgi] = / H(OF(Ode / B(E)9(€)de.

The result follows. That is, under P, v; = b~Nz: — ami—1), wy = d (2 —
cv(%o, 1, ..., T1)) are i.i.d. sequences of N(0, 1) random variables. Consequently, under

P, zy = axs_q + bu; and 2z, = eyy(@o, 21, ..., Tt) + dws. O
Corollary 6.1. Under P, y; := (u" x 2)(t) = c(u" * v)(t) + d(u" * w)(t). *That is,
Y = cxy + dw;.

Write

yt = U{yanl,'“ayt}>
Zt = O'{Zo,Zl,...,zt},

Gl = o{0,Y0,Z1,Y1, - Tty Yt }-

Then the filtrations of the , y, # and (z,y) processes are {F}, {V:}, {Z:} and
{Gi'}. Note that, {3} = {2}, so {G} = {Gf}.

First we shall describe how to estimate the hidden states, given the observations
(Yt =0,1,2,..}.

Using a version of Bayes’ rule [36], we have

BlAsg(:)| 2]

Elg(z:)| 2] = E[AZ]

(6.3.5)
Assume
ElAg(w)| 2] = / o(2)ou(z)dz. (6.3.6)

If p;(e) denotes the normalized conditional density, such that Eg(z;)|Zy] = [ g(z)ps(z)da,

then py(z) = ou(z)[f cw(u)du]™ .
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Theorem 6.2. The unnormalized density cy(e) is computed by

oa(e) = 2 = HECor Ny )

where po(x) is the initial density of zo, and fort > 1,

o () |
- btdt¢(zt1)...¢(z1) /.../¢(b‘1(x— aze-1))$(d™ (2 — en(o0; vy 32-1,3))) -
PO (1 — a%4—2)) (A (20-1 — W (Do, ovry Tem1)))-- P71 — o)) :

¢(d—1(251 - C’)’t(xo, xl)))po(xo)dxt_l...dmo. (637) |

Proof. 1t is easy to see ap(z) = Aopo(z). When t > 1,

/ g9(z)oy(z)dx
= E [Asg(z:)| 21

= E[A1)g(ze)| 2
— BlAL S0~z — azi—1))P(d 7L (2s — cye(Toy --ey 7))

N bd¢($t)¢(',zt) 9@l

e Y B e PO OLNES
T (0 (@ — 6mm2))$(d (21 — e (@0, o, B1)))

= b b (zr) $ ()

/ (0™ (5 — 1)) B(d (5 — W20, o T, )0 () dr| 2]

......

1 -1 — QL¢—1 —1ét—ctxo‘...:;:t1x .
T Vdip(z)..d(z) /'“/d)(b (@ 1)) 50, 51, )

SO (@1 — ams—2))P(d " (2mq — Ve(Z0y -y Tim1))) - (07 (21 — azo)) -

¢(d™ (21 — cyi(zo, 21)))po(20) g () drdy_y...do.
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So,

()
= Nz —az "z — eyl Ti-1,2)))
B btdtﬁb(zt)...d)(zl)/ / e — ama))Hd™ (o = onl@o, - 31, 2)))

d(b™Hmy—g — ax.t_g))gb(d"l(zt_l — cYe(Z0y ey Tt1)) ) (6T — ap)) -

¢(d* (21 — eve(To, 71)))Po(20)d2s—31 ... d20.

From Theorem 6.2-and (6.3.5), we have the estimates of z;

E_[Ata:t|Zt] _ [ zoy(z)dz
E[Ay| Z) [ a(z)dz

.’,%t = E[wt|Zt] =

6.4 Approximate Estimation of States and Parameters

6.4.1 Approximate Estimation of the States

In this section, we give recursive approximate estimates of the parameters and hidden

states.

Theorem 6.3. The unnormalized density cy(e) is approzimately computed by the re-

cursion

. _ (A Mz — eyl@o, B,y -ony o1, T))) U e ()
4() = e [ 907 e - euaswin. (64.)

The approzimate normalized densities are defined by

bi(z) = &t(m)//&t(u)du.

The approzimate means are then given as

Z = / zp(x)dz.
R

These means are the quantities used in (6.4.1).
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Proof. The values z, 21, 22, ... are observed sequentially. We have assumed that the
distribution z is described by an a priori density po(z).

The recursion is initialized as follows.

oy P(d7H (20 — cp))
)= T gy )

and To = Cf?o = .’%o = Epo[a;].

For ¢t > 1,
/ 9(z)oy(z)dz
= E[Atg(xt)lzt]

= B [As—1 Mg ()| 24

= E[At"1¢(b_l(xt_amt_lb)ﬁ((i:)z(z;)_ o2 st oo)z). (6.42)

Using Z; to approximate x;, i = 1,2,...,t — 1 in (6.4.2), we define & (e) such that

/g(x)&t(a})dw
~ i, O eI ol Do B 80) )

B 1 - (b~ (z — ame—1))p(d~ (2 — cylwo, Z1) vy Fim1, T))) 22\ dz
bd(ﬁ(Zt)E[At—l/ #(z) sgle)delZ

= bd¢1(2t) //45(5—1(33 — au))p(d~(z — cylzo, F1, --vy Be—1, 7)) 9 () 1 (0)ddu,

where, for 0 <1 < ¢, ;) = %.

Taking &;—1(e) as an approximation to c;_;(e), we have

&y(z) = H(d=1 (2 — ev(To, T1y oovy T,

2)) Nz — au)) @1 (u)du
- A [ 6070~ au)de-s(w)du

O

Note that since the dynamics of z; and y; are both linear, the density f;(e) is also
normally distributed with mean y; = E[z|)}] and variance R, = E[(z:— 1¢)?|y,]. Then

we have the following theorem.



95

Theorem 6.4. The mean yu; and variance Ry are approzimately computed by the re-

cursion

Rt = At’ (64.3)

e = AiBy, (6.4.4)

(1 aZRy—1\—1 _ afle_1Re B __ (a2 1y-1
’th@T'@At-—-(E-z‘—' b‘f ) ;Bt—ﬁ:; anth—(%f-}-I—-z:) .

Proof. By Theorem 6.3,

&t (117)

— ¢(d_1(zt_C’Yt(xo,ﬁl,...,ﬁt_l,x))) "1$_au 5 N
B bdd(z) /¢(b ( )1 (u)d

¢(d_1(zt - C’Yt(xmil""ait—l)w))) __1_ _ 2 _ 1 _ 2

o bdp(z) /ea:p( 55 (z — au) R (v — p—1)*)du
¢(d™* (2 — cve(®o, &1y -y Bi1, 1)) _r Py )

x bdg(z) (3% ~ 3R,

1 2 1 T e
/63720(—5(“2(:—2 + m) — 2u(%é— + ﬁ)))du

Taking (%o, &1, ..., Te—1, aFs—1) as an approximation to vi(zo, %1, ..., Ft-1,2), and .

taking fi_1, Rsq to approximate -1, Ri-1, we have

i} $(d~ (2 — cn(m0, F1, -y For, 080))) & gy
at (x) 8 bd¢(Zt) exp( 2b2 2Rt_1 )

1 2 1 az  fig—
/ea:p(—i(uz(z—2 + m) — Qu(b—2 + Ri_ll)))du

Write
(M (2 — evel@o, Fry vy Fot, 0Fpo1))) 22
K = . bdg(z) e 2p? ZRt—l),
2
=1 _ G 1

ax [
Be(x) = ﬁ_—i—é
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Then,

()

« K(z) / eap(—3 (W Ry — 2uB2()))du

x K(z) /e:z:p(— 1 (u? = 2uBi1(z) Ri—y + (Bo—1(z) Rs—1)? — (Be—1(2) Ri1)?))du

2R;
2 (2)R,- 1 -
s K(x)emp(m—l) / exp(—==—(u — Br_1(z) Re—1)?)du
2 2R; 1
:Btz—l(x)Rt—l =
x K(x)exp(—2—)\/27rRt_1
1, 4,1 a®Riy afis-1Ri—1
1
x Kzemp(—z_At(w - A1By)?),
where K; and K, are constant in z.
So, the result follows. O

6.4.2 Approximate Estimation of the Parameters

Now we shall show how to estimate the parameters a, b, ¢ and d in the model when
they are unknown. The EM algorithm is used.

Similar as Chapter 2, we take

. dPy , . : ‘
Q:(6,6") = Ep-[log —="1G;] (6.4.5)
0*
In our model, we define
Py . T
EM = gm, (6.4.6)
where
d9(d”" (20 — 10)) (6.4.7)

dp(d*~1(20 — c*y0))’
d*¢(d~ (2 — (o, -, ) )0* S0 (1 — a1-1))
dp(d*(z — c*n(o, -, 1)) 0 (0*1 (1 — a*21-1))

m

(6.4.8)
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Then

dPg

Q(6,0%) = Ep [log |gt]

] ¢
= —t logb —(t+1)logd - 5 For [Z b2 (z — az_1)?| 2] —

=1
1 i
§E9* [Z d—2(zl - C’)’l(.’Do, eeey ml))zlzt] + R(G*), (649)
=1
where R(6*) does not contain 6.
Set %ﬂ =0, we get
i t
o = B [Z a;l:cl_1|Zt](Eg* [Z xf_llzt])‘l, (6.4.10)
¥ = —Eg* [Z (z — am_1)? |Zt] (6.4.11)
l—l
t
¢ = Ep [Z 20(T0s -, )| Z(Be [ 2P (o0, - m)|Z])7Y, (64.12)
=1
2 = = 1E9 [Z (2 — cyi(@o, .., 1)) | Z4). (6.4.13)

erteTx(O) El—o zi, T w(l) Zz 1 L1 1aT =(2) -—Zz—oml 1>TN(O) Z§=0712($0,'-

U, = Zl=1 2y (zo, ..., 1), then

o = EplTPO)2)(Ep 17|27, (6.4.14)
B = —E(,*[T’”(O) 24TV + 2T 2], (6.4.15)
¢ = BEplU|Z])(Ee [TV 2) Y, (6.4.16)
2 = al_—IEg*[%Ut-i-fl?(o)-i-i:zﬂZt]. (6.4.17)

=1

Next, we develop the finite - dimensional filter for T} =(M) , M=0,1,2, T7(0) and Ut

'awl)a
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Definition 6.2. Define the processes

a(z) = E[MI(zs € dz)|Z), (6.4.18)
M (z) = BIANTTMI(x, € do)|2], M =0,1,2, (6.4.19)
IO = EATYMI(z, € dz)| 2y, (6.4.20)

6(z) = E[MNUI(z; € do)|Z). (6.4.21)

Then, for any function g(e),

Elhg(ze)| 2] = / ()9 (x)dz, (6.4.22)
BATEMg()|2] = / EY@)g@)ds, M =012  (6423)
BATI*g@)|2) = [ 8@, (6424

E{AUig(z)|2] = / 5,(x)g(w)dz. (6.4.25)

Theorem 6.5. The unnormalized density B (o), M = 0,1,2, 879 (o) and 5,(e) are

approzimately computed by the recursions

~f(0)($) _ (]S(d_l(zt - C7t($0, il, ) i;t—l) x))) [/ ¢(b_1($ _ au)),éw—((i) (’U.)d’llv +

bdd (%)
@ / (67 (z — au)) e (u)dul, (6.4.26)
Za(1 _ pdH(z — enl@o, Ea, ...y Bim, 7)) (1
) = bd () [/ $O™ (@ — au) B3 (w)eu +
z / b (b~ (& — au))ds_1(u)dul, (6.4.27)
Z2(2 ¢(d (Zt - C’)’t(ﬂco, Zyy ey Tpm1, T )) -1 @
) = e [ 6070 — au)BD )+

/ P~z — au))Gy_r (u)dul, (6.4.28)
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3y (z) = H(d (2 — cve(mo, Z1, oy Fm1, 7)) [/ Sz — a@)) 50 (u)du N

bd(2:)
(%0, B, ooy B, B) / S (2 — aw)) s (u)dui, (6.4.29)
St(w) — ¢(d_l(zt - C’YZE;;)(,Z;, m,fft—lax))) [/ ¢(b‘1(ac _ au))gt_l(u)du +
(0, By oy o, 72 / (6~ (& — au))e_r (u)dui]. (6.4.30)

The proof of Theorem 6.5 is similar to the proof of Theorem 6.3.
Write oy = R;Y, 5 = %0t land 8 = a;_llfn’,{lﬁt. Then we have the following

theorems.
Theorem 6.6. The densities 57 (M)(O) , M =0,1,2 and ) (0)(0) are defined by

~Zc(M)(w) _ [af(M)+bf(M)zv+df(M)x2]o"zt(w), M=0,1,2, (6.4.31)

519%) = [0+ 6] + IO (x), (6:4.32)



where a,
0

afil)

0

ag( )

0

bt

dy)

z(1)
Ay q

1
aag( )
1
by

1
Ay

x(2)
Giy1

ag(Z)
2
52

2
aii)

¥(0)
Qe

CLa/(O)

0
7

0
a3

a2 4 Og, 4 @Osmt 4 @O g2

0,

Do (570 +28705,), 2@ =,
a0 +1, &0 =1,

a2 4 0, 4 @Oyt 4 pOge

0,

S (B +24798) + 8, B =0,
22,450 40, d2® =0,

a;? + 58+ Do + (@ +1)8,

0,

- S (F® +2(@ 1+ 1)8,), 5P =y,

2§+1(d”(2) +1), ¥ =0,

o + 508, + A0 + A0S + 2y (@0, B,
3,

Serr (0] + 24775, 5O =0,

=2, dZ(O), dg(O) = 0.

)ﬁt) ait)’
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7(0), bz(o) and d] © gre computed by the following recursions:

(6.4.33)
(6.4.34)

(6.4.35)

(6.4.36)
(6.4.37)

(6.4.38)

(6.4.39)
(6.4.40)

(6.4.41)

(6.4.42)
(6.4.43)

(6.4.44)

Proof. When ¢ = 0, (6.4.19) and (6.4.26) indicate (z) has the form (6.4.31) with

:z:(O)

=0, b0 = 0 and dZ® = 1. Assume (6.4.31) holds at time ¢, then at time ¢+ 1,
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using (6.4.26), (6.4.31) and Theorem 6.4, we have

a:(O)( ) = ¢(d7 (241 — c¥e(2o, &1, oo, B, 1)) )
Pei bd(z111)

/ [a®® 4 57Oy df(o)u2]6zt(u)¢(b‘1(x — au))du + T2@ 41 (z)
= B(z, 241) / 050 + 570 + a2 &, (u) (b1 (z — aw))du + 226441 (z),

(6.4.45)

where q)(:L', Zey 1) $(d- l(ztﬂl;izy(tz(f.fl’;;b ,-’L‘t,w)))

Write & = 9& 4+ 2t Write the first term of (6.4.45) as I.
b2 T R,

I
- ——q’(“”’z”}) exp{_l[b—z@ ) + B = i DHor® + 5 Ou+ 5O
27b\/ Ry
- Ao G Ey.
2mby/ R _
1 ,L& x
/exp{——[(gg-i-ﬁt-)uz 2( 72 Rtt) u) Hay (O)-i-bw(o)u-i—dt(o) ?ldu
_ @(:B zt+1) [—l(m—2+—~—t-)]/ezvp[——(at+1u2—2§t’LL)][af(O)+bf(0)u+df(0)u2]du
27rb1/ 2" b? 2

®(z, z1+1) Lz ,U«t
= ———eTp|— ( 5 + L — o7 hED)] -
V 2’/Tb Rt0't+1 2 b Rt
1 o X
/ exp[_iatﬂ (uw— Jt_+11§1t)2] [az © + b Oy + dtx(o)u2]du

<I>(a:, Zt+1) e:z:p[

\/%b\/ Rtat+1

O(z, 2 1~ . =0) ﬁ
- 2o f+—1)exp[—§Rt+11(x — fiegn) ) [af@ + 6@ t-I-ll( = -};é) +
V 2w Ryyq
o fi
dy (O)(Ut+1 +0 t+1( + ~t) )]

b R,
= Guy1(2)[af + 507y b2m+bf(°) ;_,_11_’;% + &0 d‘”(o)gtﬂ(_x o iz Eiy),

2R, = B

2

1 T
(b2 + /“]% oréd)lar O+ bm(o) b+ d; © (07 + 071ED)]
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So,
B (z)
= [0 1 O Oy O Pt m 01 | o0 2 (O o o Ol By,
Oty b2 t+1Rt O¢41 t+1 b b2Rt R?
%G1 ()

= [6/Q + 50810 + 0708, + 007k + dP (32,22 + 25041 S + 52) + 3G (2)

= [afﬁ) + bfi()l)m + d::-f-ol)m2]at+l(w),

where aw(o) a®® + 5705, 4 #O% it 052 bﬁ? Deg1 (07O + 2420 ,), df_f_ol) =
22,,d50 41,

The result for 7 (s) follows. The proofs for A7 (), M = 1,2 and 57 (e) are
similar. “ ‘\ 0O
Theorem 6.7. The density b;(e) is defined by

8u(z) = [ay + byzldu(z),  (6.4.46)

where @; and b, are computed by the following recursions:

Qg1 = Gp+ 0eSt + Yo (Tos F1y oony Bt aFt) 241,
C_lo = Zp2p, (6447)
biy1 = Dpe1by, Do =0. (6.4.48)

The proofs of Theorem 6.7 are similar to the proof of Theorem 6.6.
Then, finite - dimensional filters for T’”(M) M=0,1,2, TZ’;’(O) and U, are approxi-

mately computed by
BII7™|z) = o™ 45, + M (R, +12), M=0,1,2, (6.4.49)
BII712) = o]+ 0] %+ O R+ D), (6.4.50)
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6.5 Conclusions

In this chapter, we derived estimates for the parameters and hidden states in the
state space model, with the noise in the observations being fractional Gaussian noise.
It is shown that, using change of measure method, the conditional density of the
hidden signal based on the history of the observations can be estimated. We also
developed recursive approximate estimates of the density. The mean and variance of
the approximate density were also estimated recursively. Finally, we derived maximum

likelihood estimates of the parameters, using the EM algorithm.
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Chapter 7

A NONLINEAR FILTER

7.1 Introduction

The Kalman filter is used for models with linear dynamics and additive, Gaussian
noise. For mild non-linearities the extended Kalman filter often provides a good sub-
optimal estimate. Particle filters have recently been popular for calculating Monte-
Carlo estimates. However, when there is no noise in the state dynamics the particle
filter does not work.

In this chaptef we consider a scalar state process with non—li\near dynamics ¢ =
{z,t =0, 1, ...}, where z; = g(0, z;—;) for t = 1,2,.... Here § is an unknown parameter.
The process  is observed in Gaussian noise through a process y = {y,¢t = 0,1, ...},
where y; = z; + wy. Here w = {wy,t = 0,1,...} is a sequence of independent N (0, o)
random variables. |

Write p:(6, ) for the joint conditional density of (8, ) given observations o, ¥1, --., s
By adapting methods from Chapter 2, we obtain a recursion for a discrete approxima-
tion to p:(0, ).

A particular case of our model is when z has Logistic dynamics given by
Ty = 9.’1),4,_1(1 - xt_l). (711)

Previous results for this problem are obtained in the paper [15] by Leung, Zhu and

Ding.
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7.2 Dynamics

Consider a state process ¢ = {z:,t =0, 1,2, ...} whose dynamics depend on an unknown

parameter 6, and whose evolution is described by:
Ty = g(e,xt_l), (721)

for t=1,2,..

For simplicity we suppose the x; and 8 are scalar valued.

The state process ié observed in additive white noise so we suppose we have a
sequence of observations y = {y;,t = 0,1,2,...} such that y; = z; + w;. Here w =
{w, t=0,1,2,...} is a sequence of independent Gaussian random variables defined on
a probability space (£2, F, P). Under P each w; is Gaussian with mean 0 and variance
o.

However, to obtain the recursion we suppose that under another probability measure
P the y = {y;} is a sequence of independent, Gaussian random variables, each having
mean 0 and variance o.

Considering the following o—fields, or “histories” as Chapter 6: .
]:t = U{mOaxlr"axt}’
yt = U{y07y1,"°)yt}7

G = o{0,%0,%1,Y1, -, Tt, Yt }-

m2
Write ¢,(z) = —\/%;e_i?f for the N(0, o) density. Consider, for k = 0,1,2,..., the

variables

bo(y1 —
Ay _H %(yl) : (7.2.2)

Then the following result can be provided as in [36].



Lemma 7.1. Define the probability measure P in terms of P by setting

dpP

3—P|gt_1 = Ay
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(7.2.3)

Then under P the random variables w; := y; — x; are i.i.d. and N(0,0). That is,

under P, as required

Proof.

Write

Then

B =

gz o EEf =g o6,

¢a(yt mt)|gt—1\/il7t] / ¢o—

Y¢ = Ty + Wt

P(w; < alGs-1) = Ellw<alGo-1]
E[AthtSaIGt—l]

E[A¢|Go]
_ Agy E[%d,(ya;:;t)f v<alGs-1]
A B[fesdig, ]
B[ I <ol Goa]

[¢a (i/z;:;:t) Igt—l]

=Y — g

(}Sa( U

= / ¢a(yt - wt)d(mt + wy)
®

= /§R b0 (wy)dwy

= 1

oY) P (Ye)

= 1

¢>a (ye)dys

(7.2.4)
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5 Po ¥ — 20) [ el — )
E[ ¢a (yt) thSa]gt—l vV xt] = /% "*——‘¢a(yt) th5a¢a(yt)dyt

/é}t ¢a(yt - $t)—rwt5ad(ﬂ7t + wy)

- / o () Loy <adty
§Ra/
= /_ gba(wt)dwt.

E ____%(yt _ mt) ' — o ¢a(yt - .’Bt)
E|[ 4000 Ly<alGi1] = E[E[———%(%) Lui<alGi-1 V %] |Gei]

/_Zo do(we)dw;.

Il

So we have

P(wr|G_1) = / " golwe)du,

and the result follows. O

7.3 Filtering

We wish to determine recursive estimates of § and x; given the observations yo, 1, .., %
Consider arbitrary bounded, measurable functions h and f. Then we wish to estimate,
(under the measure P),

E[Ah(6) £ ()| W]
ElM|Ye]

En(0)f(ze)| V] = (7.3.1)

Write the numerator as

0t (h(0) £ (z2)) = E[Adh(6) £ (22)| V). (7.3.2)
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Then o04(1) = E[AY]. 0y is a continuous linear functional on functions (h, f);

suppose it is given by a density ¢; so that
a(b0)f(@) = [ | 1O} (@)a(6,)dod (7.3.3)
Then ¢; is an unnormalized conditional density of (9, z;) given Y; and

PO ecdd,z € dz|Vy) = Ellpedpls,cis|Vi)
qt(e, x)d&dm

= Tt (7:3:4)
We shall obtain a recursion for g:(6, z).
Theorem 7.1.
. bo (Y0 — To)
q0(97x) - ¢G(y0) p0(9)$)7
where po(0, x) is the initial density of (0,x). Fort=1,2,...,
%(97 9(97 .’12)) = ¢0'(yt)—lgm(9a w)_1¢a(yt - 9(9, x))Qt—l(ea 113) (735)
Proof. Tt is easy to see go(0,z) = %y‘(’y—;)”"—)-p (0,z). When ¢ > 1,
oe(h(0)f (z+))
=" E[Ah(0)f(z:)| V]
_ / / 1(6) £ (2)qu(0, ©)dbdw (7.3.6)
= Blfens x 22 =2 16) )
= Bty x PO R D 000, )

_ / / h(9)£(g(6, z)) L2 (g()9 D) 4, (6,2)d0ds.

Substituting z = ¢(0, 2) in (7.3.6) we have that

o (h(6) f(a2)) = /% /% 1(0) £(9(6, 2))ae(6, 9(6, )):(6, 2)d0dlz.



109

As h and f are arbitrary functions we see that

00, 9(6,2))92(0, %) = ¢"(y;:(§ff D) 4, 1(6,)

and the result follows. O

7.4 Numerics

We shall discretize the recursion given in theorem 7.1. Suppose initially the joint
probability distribution of (0, z) is approximated by probability masses located at

points (0;, ), 1 <i < M,1<j<N.

Write
PO(Hi,:z;ij) = P(9 = 9,-,93 = .’L'ij), (74;1)
.’Ew(t) = g(@,xu(k - 1)), k= 1, 2, ceny (743)
(03, 7:5(0)) = ,%(y;a_(yi;j O, @ (7.4.4)
Fort=1,2,..,

albo) = S (749

Given the observations o, y1, -.-, Yz, that is, given ), the unnormalized probability

that 6 = 0; and z(t) = z;(¢) is
qt(H,-, mm(t))gx(&, ZBij(t - 1)) (746)

The normalized probability that § = 6; and z(t) = z;;(¢) is

P06, w:5(2)) = @463, 745 (£)) 9 (61, 745 (t — 1) . (7.4.7)
iy Lij Zgl Z?:l Qt(ela .’l}la(t))gm(eb wl&(t — 1))
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Given Y; the expected value of 6 is:
M N
D 0P6y, mis(t)).- - (7.4.8)
=1 §=1

Given ), the expected value of z(¢) is:

> zis(k) P61, ms(t)). (7.4.9)

=1 é=1

Note that care must be taken to avoid the zeros of g,(0, z).

7.5 Simulation

'To demonstrate the performance of the filter described in this chapter, we consider two
examples with different nonlinear functions of the state dynamics. We find our method
works well for nonlinear functions.

For the first example, we consider the logistic dynamics.
Ty = 93715—1(1 - CBt-—l),

where @ = 3.2. The results for the state estimation and the convergence of the parameter
are shown in figure 7.1.

Next, we consider another non-linear dynamics.
zy = Gcos(0z-1),

where § = 1.2. The results are shown in figure 7.2. \
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Chapter 8

A NONLINEAR FILTER WITH FRACTIONAL GAUSSIAN
NOISE

8.1 Introduction

Following Chapter 7, in this chapter, we consider a discrete time, state space model,
where the signal has non-linear dynamics, and is observed through a real valued process
which is corrupted by fractionél Gaussian noise. We derive a;n exact estimate and an
approximate recursive estimate for the conditional density of the hidden signal and the
parameter, using the change of measure method.

This chapter is arranged as follows. In the next section, we give a brief description of
fractional Gaussian noise and the model used in this chapter. In section 8.3, we derive
the exact estimate for the conditional density of the hidden signal and the parameter.
In section 8.4, we derive an approximate estimate for the conditional density of the

hidden signal and a parameter. In the final section we give some conclusions.

8.2 State Space Model with Fractional Gaussian Noise

'The dynamics of the scalar state process ¢ = {z,t = 0,1, ...} is as described in Chapter
7. Similarly, z is not observed directly, but observed through another scalar process
y = {y;,t = 0,1,...}, whose values are corrupted by fractional Gaussian noise. Here,

we consider only the case where the observations and hidden states have the simple
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linear relation
Y = T4+ wp, (8.2.1)

where w" = {wi,t = 0,1,...} is the measurement noise. This is now a sequence of
fractional Gaussian random variables as described in Chapter 5.

As in Chapter 5, write
z = (W xy)(t),
Ye(Zo, 1, oy zt) = (U7 *z)(t).
Then (8.2.1) implies the following equation.
2y = Y(Zo, .-, Tt) + W (8.2.2)

These are still the dynamics of z under the ‘real world’ probability P.

8.3 Filtering

Consider a probability measure P on the measurable space (£, F) such that, under
P, {#} is a sequence of N(0,1) ii.d. random variables. We call the measure P a
“reference” probability.

We now construct the ‘real world’ probability P from P, such that, under P, {w;}

is a sequence of N(0,1) ii.d. random variables, where wy = z; — Y3(o, .., T1)-

Write
1 x?
P(z) = \/—‘2—;6@9(—7),
and for [ > 0,

(2 — (o, ..., 1))
No= , 8.3.1
l $(z1) (8.3.1)

¢

A= [N t=012,.. .- (8.3.2)

=0
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Definition 8.1. Define P by putting

d_]_)_|gf"1 = (833)

Theorem 8.1. Under P the random variables wy := z; — (%o, ..., 2;) are i.i.d. and

N(0,1).
The proof of Theorem 8.1 is the éame as the proof of Theorem 5.2.
Corollary 8.1. Under P, y; := (u"  2)(t) = (u" x7)(t) + (v * w)(t). That is,
Yt = Ty + Wi,

Write p;(8, ) for the joint conditional density of (8, z) given observations vo, v1, ---, ¥z
In the remainder of this section, we shall obtain an exact estimate for p;(6, z).

Write (7.3.2) to be

ou(h(0)f(ze)) = E[Ah(6)f ()| W]
= E[Ah(0)f ()| 2],

Similarly, o4(h(8) f(z;)) could be given by a density ¢; such that

wb@fe) = | [ 1O @)ao,a)dss
where ¢; is an unnormalized conditional density of (8, z;) given Z; and

PO € db,z € dx|2;) = Ellpecaplv,ealZt)
(0, x)dOdz
Ji J5 @ (u, v)dudv’

Theorem 8.2.

I

%@@—Mﬂ))mW@
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where po(6, ) is the initial density of (6,xo). Fort=1,2, ..., the unnormalized condi-

tional density q:(0, o) is estimated by

39(9 u)

qt(eag(e ))

P20 — ’)’o zo)) (2 — (o, .-, 9(0, T1-1))) -
/ ¢(20) é(2t) h’(e)f(g(eaxt—l))[/ go(, z0)d0)...

[ / Go2(0, T2)d61gs1(6, 1) do...dzss. (334)

Proof. 1t is easy to see q0(0 z) = ‘i’(:s‘zz §’°)p (0,z). When t > 1,

a(h(0) f (21))
= E[Ah(0) () | 23]

5 ¢(Zt - ’)’t(-'EO, ey wt)) p
= FE[Ai 5() h(0) f ()| 2]

- B(2e-1 — Y-1(Z0, -, Te—1)) P(2 — Ye(o, .., T1)) .
i e e OUCIED

= $(20 —Y0(20))  P(2 — (o, -, Te)) z

- pfa gl Sam e bl oozl

_ $(20 — 70(330)) ¢(2 — (o, ---, 9(6, Ti-1))) T .
/ sl e 1(0)£(9(0, 1)) / 00(6, 20)d0]...

[/ qt_z(e, xt_z)de]qt_l(e, .’17t_1)d$0...d$t_1d9.

Also,

a3(R(6) f () -

= [ [ eyt @a(o, v)avas
= [ [ 5566, 206, 900,100 220 dga,
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As h and f are arbitrary functions, we see that

a(0,9(0,) 220

/ / ¢(zo ’70(930)) ¢(zt ’Yt(mt()l;(;:)g

[/ (1)) 0, xt_2)dt9]qt_1(0,'u,)dxl...dxt_Q.

(9’xt‘l)))h(e)f(g(&wt-1))[/ 90(0, x0)d0)...

8.4 Approximate Estimation of States and Parameters

In this section, we derive recursive approximate estimates of g;(8, z:).

Theorem 8.3. The unnormalized density g;(0,e) is approzimately computed by the

TeCcUTsion

qt(e,g(e’u))ag(ai:u) — ¢(zt - 7t($07571'--a it—2au) g(eau)))qt_l(e,u).

¢(2:)
Proof.
Ut(h(e)f(mt))
= [ [ norf@a(o, o)doas
= E[Ath(e)f(xtﬂzt]
TV e A T PP (8.4.1)
B ¢(2) '
Suppose §i, Ga, ..., Ge—1 have been defined, then we define G,(8, o) such that
[ [ vors@ae,s
- ¢(zt — ’Yt(x )*’Z'la i) it—-ZJEt— 7$t))
= B[ ° o) 2 R(0) ()| 2]
— E[At—l ¢(zt - 7t(x0) ml;;z;—;;) Te—1, g(ea wt—l))) h(e)f(g(e, xt—l))IZk]

= [ [ mo)stato,uHeem 2ot Sen sy 5, g
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Here, for 0 <i<t—2, % = f_f%'

Also,

/ / B(0) £ (2)(6, )0
= [ [ 10)7(6(0,4)200,0,0) 228 e,

As h and f are arbitrary functions, we have

qt(e,g(e,u))ag(e’“) _ (& — n(xo, Fr-ery Be2, u, 9(6, u)))

ou &(2) r-1(0,0).

8.5 Conclusions

In this chapter, we considered a state space model where the hidden states have a non-
linear relationship, and the noise in the observations is fractional Gaussian noise. We
introduced a joint density of the hidden states and an unknown pgrameter, and derived
both an exact estimate and an approximate recursive estimate of the conditional joint
density of the hidden state and the unknown parameter, based on the history of the

observations.
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