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ABSTRACT 

In this thesis ground-based measurements from the CANOPUS All-sky Imager 

(ASI), the Bistatic Auroral Radar System (BARS) and the Magnetometer And Riometer 

Array (MARIA) are combined to infer a three-dimensional current system of finite width 

and length in the auroral zone using a new method of quantitative analysis. In this new 

method, the auroral emission rates I(427.8nm) and I(630.Onm) were used to calculate the 

Pedersen and Hall height-integrated conductivities in the auroral arc region. Electric 

fields were measured from the BARS. Ohm's law and the current continuity equation 

were used to derive the current system. The resulting current system consisted of 400 

ionospheric (horizontal) current vectors and 400 field-aligned current vectors in the field 

of view. The three cases selected were near midnight. The current system found is a 

combination of two types of Boström current systems within a small region. The 

magnetic perturbations on the ground resulting from the current system were calculated 

and compared with the magnetic observations from MARIA. The good agreement shows 

that the inferred current system is reasonable, and the major current source producing 

the magnetic perturbations on the ground is the current system in the auroral region 

overhead. 
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INTRODUCTION 

Problem Identification: 

In order to obtain the three-dimensional current system in the ionosphere, 

simultaneous observations of ionospheric electric field, the E region conductivities and 

the E region wind profile are needed. However, to obtain all the information needed is 

hardly possible. One can only try to construct a current system that is close to the real 

one. 

In the past there have been many different instruments used to study the real 

three-dimensional current system (ionospheric current and field-aligned current system) 

in the auroral zone, such as ground-based magnetometer networks, coherent and 

incoherent auroral radars, balloon, rockets and satellites. (e.g. Kisabeth and Rostoker 

1971, 1973; Kamide and Akasofu, 1975; Rostoker and Hughes, 1979). There have also 

been many different models developed to estimate the intensity or density of the 

ionospheric current in the system, such as line current approximations and sheet current 

approximations (Baumjohann et al., 1980; Brekke et al., 1974; Chapman and Bartels, 

1940; Nagata and Fukushima, 1971). Since magnetic variations can be easily recorded 

on the ground, ground-based magnetometers have been the primary instruments used to 

study the three-dimensional current system until the last decade. However, using a single 

instrument has limitations. As well, the recent studies by combining ground-based 

magnetometers with another instrument (e.g. an incoherent radar) also indicate some 
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problems due to the limitations of the models developed and the shortage of the 

information supplied from the instruments( e.g. Baumjohann et al., 1980, 1981; Brekke 

et al., 1974). 

Magnetic variations measured by ground-based magnetometers, generally 

speaking, are influenced by many current sources in the ionosphere and magnetosphere 

and even in the interior of the earth. The study based on ground magnetic measurements 

becomes more complicated and more difficult. So, in principle it is impossible to 

determine uniquely the distribution of the ionospheric current density and field-aligned 

current density from magnetic observations made at the earth's surface alone. Brekke et 

al. (1974) overcame this problem by combining data from the incoherent scatter radar 

located at Chtanika, Alaska with data from a magnetometer located at College, Alaska. 

But in their study, they used a sheet current approximation which assumes an infinite 

current sheet flowing in the ionosphere without field-aligned currents. Their currents 

were also derived at only one point from the radar data. The field of view for the radar 

was also different from that for the magnetometer. This difference may give rise to a 

different time variation between the observation of the radar and the magnetometer. 

Another group, Baumjohann et al.(1980), combined electric fields measured by the 

Scandinavian Twin Auroral Radar Experiment (STARE) with magnetic perturbations 

simultaneously measured by the Scandinavian Magnetometer Array (SMA). In their study 

their current vectors were equivalent" overhead ionospheric current vectors deduced 

from observed magnetometer data, which is also equivalent to the sheet current 

approximation. Conventionally, the sheet current approximation has been used to 
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represent the observed ground magnetic perturbations. Therefore, they could only 

qualitatively analyze their three-dimensional current system when comparing the 

"equivalent" overhead ionospheric current vectors with simultaneously measured electric 

field vectors. In addition, it is generally accepted that polar geomagnetic perturbations 

are related to auroral activity, and are caused by current systems in the auroral region, 

but no one has examined directly how much perturbation on the ground is produced by 

the ionospheric current (and field-aligned current) in the auroral region. 

Significance of the Study: 

This study is the first attempt to combine ground-based measurements from the 

CANOPUS All-sky Imager (ASI), Bistatic Auroral Radar System (BARS) and the 

Magnetometer And Riometer Array (MARIA) to infer a three-dimensional current system 

with a finite width and length in the auroral zone. It has established a new method of 

quantitative study on the subject. The CANOPUS means the Canadian Auroral Network 

for the OPEN Program Unified Study. 

In the new method, Ohm's law and the current continuity condition are used to 

derive the current system. Based on ASI auroral emission rates I(630.Onm) and 

I(427.8nm), height-integrated Pedersen and Hall conductivity for each pixel in the auroral 

arc of the BARS field of view can be estimated from the electron energy distribution. A 

background conductivity must be assumed. The corresponding electric field vectors in 

the same field can be measured by the BARS. The resulting current system consists of 

400 ionospheric (horizontal) current vectors and 400 field-aligned current vectors in the 
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field of view. In order to check the current system, the magnetic perturbation calculated 

from the computed current system can be compared with the magnetic observations from 

the MARIA. 

Outline of the Study: 

Seven chapters are included in this thesis. Chapter I contains a review of the 

relevant theory and experimental background including the importance of field-aligned 

currents, the relationship between field-aligned currents and ionospheric currents, 

Boström type 1 and type 2 theoretical three-dimensional current systems, and the 

"Matreshka" model, then more specifically the two advanced modelling codes developed 

by Kisabeth et a! (1979) and Kamide et al.(1981), respectively. Chapter II briefly 

describes the instruments - All-sky Imager(ASI), Bistatic Auroral Radar System(BARS) 

and Magnetometer And Riometer Array(MARIA) - which were used to collect the data. 

In Chapter III a new method to investigate the three-dimensional current system in the 

auroral zone by combining three ground-based instruments (ASI, BARS and MARIA) 

is introduced. The criteria of data selection and the procedure of data processing are 

given in Chapter IV. Chapter IV also contains the computed three-dimensional current 

system in the BARS field of view of the auroral region and the comparison of the 

computed magnetic perturbations with the observation of MARIA for three selected 

cases. Chapter V summarizes the whole thesis, discusses the results and recommends 

further work to be undertaken. 
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CHAPTER I. BACKGROUND 

1.1 Introduction 

Birkeland (1908) first constructed a three-dimensional current system after he 

predicted that there might be field-aligned currents, the existence of which was confirmed 

later by Zmuda et al. (1974). Since then many theoretical and experimental studies have 

been undertaken to infer the real three-dimensional current system including the field-

aligned currents, the relationship between ionospheric currents and field-aligned currents, 

especially the determination of the spatial distributions of ionospheric currents and field-

aligned currents, and so on. 

Boström (1964) constructed the Boström type 1 and type 2 three-dimensional 

current systems which have been very popular. Other theoretical models have been 

constructed by Atkinson (1967), Fukushima (1971), Vondrak (1975), Zmuda and 

Armstrong (1974), and Yusuhara et al. (1975). Progress at inferring the three-

dimensional current system has been mainly based on ground-based magnetic 

observations (Baumjohann, 1980; Hughes and Rostoker, 1979; Kamide et al.,1981; 

Kamide et al., 1982a; Kisabeth, 1979; and others). The most commonly used models to 

infer the intensity of the ionospheric electric current or current density are a line current 

approximation and a sheet current approximation. The line current approximation was 

first used by Birkeland (1913) in estimating the height where the auroral electrojet flows. 

The sheet current approximation is the overhead current with infinitely large width and 
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length that conventionally has been used to represent the observed ground magnetic 

perturbations (Baumjohann et al., 1980; Brekke et al., 1974; Chapman and Bartels, 1940; 

Nagata and Fukushima, 1971). The sheet current approximation with a finite latitudinal 

width has also been used (Walker, 1964; Scrase, 1967; Czechowsky, 1971). The 

equivalent " overhead ionospheric current intensity came from the sheet current 

approximation. Two advanced computer simulation codes were developed by Kisabeth 

et al. (1979) and Kamide et al. (1981) for estimating three-dimensional current systems 

based on ground magnetometer data. Three-dimensional current systems for both steady 

and active magnetic periods have been simulated or modeled. Other methods to estimate 

ionospheric currents have been developed (Oldenburg, 1978; Kamide et al., 1982b). 

There have been many North-South chains of densely spaced magnetometers 

installed in the auroral zone. Such meridian chains were installed in Alaska (Akasofu et 

al., 1971), Canada (Kisabeth and Rostoker, 1971), Greenland (Wilhjelm and Friis-

Christensen, 1976), north-eastern Scandinavia (Maurer and Theile, 1978), and along two 

geomagnetic meridians in the northern part of the Soviet Union (Loginov et al., 1978). 

The results from the Canadian chain have been important in revealing the spatial and 

temporal behaviour of auroral electrojets (Kisabeth and Rostoker, 1971; Kisabeth and 

Rostoker, 1974; Rostoker and Hron, 1975; Hughes and Rostoker, 1977). Data from the 

Alaska chain were used to investigate the relationship between auroral electrojets and 

field-aligned currents (Yasuhara et al., 1975; Kamide et al., 1976; Kamide and Rostoker, 

1977). During the 1980's the Canadian Auroral Network for the OPEN Program Unified 

Study (CANOPUS) network was set up in Northern Canada (for a general description 
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of CANOPUS, see Valiance Jones et al., 1986). This network includes the All-Sky 

Imager (ASI), the Bistatic Auroral Radar System (BARS), the Meridian Photometer 

Array (MPA) and the Magnetometer And Riometer Array (MARIA). 

In this chapter I will state the importance of field-aligned current, the relationship 

of field-aligned current and ionospheric current, and introduce a few very important 

theoretical and empirical models of three-dimensional current systems. Finally I will also 

describe the concept of" equivalent" overhead ionospheric current and the two major 

modelling methods - the" Forward method developed by Kisabeth et al. (1979) and 

the KRM method by Kamide et al. (1981). 

1.2 Importance of Field-aligned Currents 

The existence of the field-aligned currents in the auroral zone gives rise to the 

three-dimensional current system in that region. In fact, the field-align.ed currents are the 

medium which connects the solar wind-magnetosphere system with the ionosphere. 

Birkeland (1908) suggested that observed magnetic disturbances were caused by 

field-aligned currents after he discovered the polar magnetic sub storm during 1902 and 

1903. He first constructed a three-dimensional current system by means of a field-aligned 

current. This was developed further by A1fven (1939) and Boström (1964). Chapman 

(1918) introduced a two-dimensional current system without a field-aligned current, 

which had the same effects on the ground as those from a three-dimensional system. It 

was not clear which current system was correct until the existence of field-aligned 

currents was confirmed (Zmuda et al., 1974 and others). Exploring how field-aligned 
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currents relate to ionospheric currents in the auroral zone can help explain how field-

aligned currents connect the outer magnetosphere to the ionosphere. 

The following are the findings about field-aligned currents, summarized by 

Kamide et al. (1976): 

(1) The field-aligned currents are confined essentially to the region of the 

statistical auroral oval; 

(2) The upward and downward field-aligned currents appear as a pair at all 

local times; 

(3) In the evening sector the upward field-aligned current locates in the 

poleward part of the auroral oval and the downward field-aligned current 

in the equatorward part; the directions of field-aligned currents in the 

morning sector are reversed; 

(4) Intensities of field-aligned currents are in general not equal, so that there 

is a net field-aligned current flowing into or away from the ionosphere 

depending on the local time; 

(5) The closure current of field-aligned currents in the ionosphere is the N-S 

segment of ionospheric currents (ie, the Pedersen current). 

(6) The field-aligned currents appear to be present even during periods of 

very 'low geomagnetic activity. 

1.3 Relationship of Ionospheric and Field-aligned Currents 

The height-integrated ionospheric horizontal current intensity (A/rn) consisting of 
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Pedersen current and Hall current can be expressed by 

ELXB 
= + 'H B 

where and EH are height-integrated Pedersen and Hall conductivities, 

respectively, • is the horizontal electric field and fl is the vertical magnetic field in the 

ionosphere. According to the condition for current continuity, the relationship between 

horizontal current in the ionosphere and field-aligned current can be written as 

jl = VJ..  

where j1 represents field-aligned current density (A/m2) and j represents horizontal 

current intensity (A/rn). 

Figure 1.1 gives the schematic diagram of the relationship between Pedersen 

currents and field-aligned currents (Baumjohann, 1983), in which the arrows show the 

direction of Pedersen current and circles with crosses and dots denote the downward and 

upward field-aligned currents, respectively. The Pedersen current flows northward in the 

afternoon and evening sector, closing the balanced upward field-aligned current poleward 

and downward field-aligned current equatorward. In the postmidnight and morning sector 

the Pedersen current is southward and balanced field-aligned currents provide current 

continuity by flowing upward in the equatorward side of the oval and downward in the 

poleward side. The discontinuity part is more complicated and unclear yet. Figure 1.2 

(Baumjohann, 1983) shows the relationship of the electrojets and field-aligned currents. 

Both eastward and westward electrojets are Hall currents which originate around noon 
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time and are fed by downward 'net' field-aligned currents. Their current intensities (from 

0.5 to 1 A/m) increase toward midnight due to the increasing Hall conductivity. The 

eastward electrojet terminates in the Harang discontinuity region. It partially flows up 

magnetic field lines as net field-aligned current. It also partially diverges northward in 

the region of westward electric fields to join the westward electrojet which typically 

extends into the evening sector along the poleward border of the auroral oval and 

diverges as upward net field-aligned current. The picture presented here seems to be 

almost the same as the result of Kamide et al. (1977) from substorm events. They found 

that in the morning sector both the upward and the downward field-aligned currents are 

in general confined to the region of the westward electrojet, but that in the evening sector 

the upward current could flow away from the ionosphere poleward of the eastward 

electrojet. However, Hughes et al.(1979) found that the westward electrojet penetrates 

up to the dusk meridian for periods of moderate activity even though substorms are not 

necessarily in progress. 

1.4 Boström types of three-dimensional current system 

A simplified picture of BostrOm type 1 three-dimensional current system is shown 

in Figure 1.3 (Boström, 1964). A current flows along the field lines from the outer 

magnetosphere to one end of the arc, continues as ajet current along the auroral arc, and 

returns to the outer magnetosphere where it is closed. This type of current system was 

suggested by Boström (1964) when he considered the magnetosphere as a driving force 

of the current system. As a result of computation, he showed that it was necessary to 
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apply an electric field of 25 mV/rn along the arc to drive the current in the arc. The 

corresponding longitudinal electric field is about 1.5 mV/rn in the magnetosphere. 

A Boström type 2 current system is shown in Figure 1.4 (Boström, 1964), where 

there must be an electric field of the strength 56 mV/rn perpendicular to the arc to 

explain the magnetic disturbances and the motion of irregularities. The current along the 

arc is a Hall current, whereas the current perpendicular to the arc is a Pedersen current. 

The two sheets of field-aligned currents are closed by the Pedersen current perpendicular 

to the arc in the auroral zone. The Hall current that flows along the arc must be closed, 

either by currents in the ionosphere or by currents from the end points of the arc to the 

outer magnetosphere. There is a dynamo in the magnetosphere to drive the field-aligned 

currents. The electric field E in the magnetosphere and the wind velocity V for the 

dynamo are shown in Figure 1.4. 

Timofeev et al. (1990) considered the schematics of auroral electrodynamical 

patterns from various selected experimental data sets. They constructed an extended 

Boström current loop model, called the " Matreshka" model, which is the hierarchy of 

three encircled two sheet Boström current loops of different sizes. The largest current 

loop has the scale of the region 1 or region 2 which are defined respectively as the 

poleward side and the equatorward side in the ionosphere (Jijima and Poternra, 1976). 

The intermediate one has the scale of an inverted-V (the definition is in the reference of 

Lin and Hoffman, 1979) of order of 100 km and the smallest one has an auroral arc scale 

of about 10 km. Each current loop has the same direction. The model is limited to the 

cases of steady conditions with homogenous auroral bands and visual arcs. Dynamic 
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cases with moving and burst-like rayed arcs are not covered. 

In this section several interesting theoretical models have been briefly introduced. 

In fact, the actual ionospheric and field-aligned current system is more complicated than 

any type of current system mentioned above. 

1.5 Equivalent" Overhead Ionospheric Currents 

Relationships of ionospheric currents and components of ground magnetic 

variation have been suggested by many researchers (e.g. Brekke et al, 1974; Chapman 

and Bartels, 1940; Nagata and Fukushima, 1971; Walker, 1964). If a thin spherical 

electric current sheet is assumed to flow in the ionosphere, the current intensity j in 

magnitude is approximately proportional to the magnitude of horizontal ground magnetic 

variation, but rotates 900 clockwise in direction. For example, the E-W ionospheric 

current intensity is related to the N-S component of the ground magnetic variation H, by 

J(A/km) =a H(nT) = k g -10 H(nT) 
2't (1.3) 

where a is a coefficient which includes effects of the induced currents in the earth, the 

field-aligned currents, the latitudinal width of the current sheet and the relative location 

of the magnetic observation with respect to the electrojet centre. Specifically, k is the 

correction factor for the induced current effect and g denotes the effects for all others. 

H is a component in local magnetic coordinate system, where the H component is defined 

as positive northward. The D component is defined as positive eastward and the z 
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component is defined as positive downward. We can choose g = 1 for the infinite 

equivalent ionospheric current approximation ( Chapman and Bartels, 1940). k = 1 

means no induced current and k = 0.5 requires a perfectly conducting earth. When 

assuming k = 0.6 the equation above can be written by 

J,(A/km) = 0.6 xl x---H(nT) = H(nT) 
2ir 

Brekke et al.(1974) made a systematic comparison of the current deduced from 

incoherent scatter radar at Chatanika and the magnetic field at College, and found that 

the E-W D component of the magnetic observation disagreed with the N-S current in a 

manner that cannot be explained, unless currents parallel to the earth's magnetic field 

are present. Kamide et al. (1976) showed that the disagreement can be removed by 

introducing field-aligned currents for which the density is different on the poleward side 

and equatorward side of the auroral oval. It should also be noted that a magnetometer 

observes an integrated magnetic field due to currents flowing in a wide range of the 

ionosphere (and magnetosphere as well as the interior of the earth), while from the radar 

data currents are derived at one point (Brekke et al., 1974). This difference in the field 

of view may result in a different time variation between the observation of the radar and 

the magnetometer. Therefore, it is necessary to average many single measurements in 

order to obtain an accurate relationship between an ionospheric current and the 

corresponding magnetic field (Araid and Schlegel, 1989). 



15 

1.6 Three-dimensional Current Systems Estimated from Ground-based Magnetic 

Measurements 

1.6.1 The " Forward " method 

This method was developed by Kisabeth (1979). Its procedure is summarized in 

Figure 1.5. Ground magnetic components H, D and Z are input and ionospheric currents 

and field-aligned currents are output. A spherical earth with a dipole field is considered. 

The high latitude ionospheric region is divided into 168 cells, configured in seven current 

rings with equal latitude width of 30 extending from 61° to 82° and 24 cells longitudinally 

for each current cell ring. Each cell is associated with two elementary three-dimensional 

current systems - BostrOm type 1 and type 2 current systems mentioned in the above 

sections. It is assumed that the field-aligned currents flow along dipole field lines and 

close in the equatorial plane. The purpose is to find a set of E-W and N-S ionospheric 

currents for all cells and the associated field-aligned currents which best produce the 

input data. 

INPUT OUTPUT 
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The key step in this method is to calculate the magnetic field at 240 observation 

points (10 points along each magnetic local time hour meridian) due to a chosen set of 

unit current intensities in each cell (the "source cell"), 1 AIm for the E-W current and - 

0.5 A/m for the N-S current in this case. This choice of current intensities is equivalent 

to utilizing a height-integrated Hall to Pedersen conductivity ratio of 2.0, in which only 

a N-S ionospheric electric field is present. The current intensity matrix P and the 

corresponding magnetic field matrix B (the input data set) are related to each other by 

the matrix A which is a complicated arrangement of the magnetic field values due to the 

"source" cells. The equation is 

B=AP (1.5) 

In this particular situation, the P, B and A matrices consist of (168 X 1), (720 

X 1) and (720 x 168) elements, respectively. Through a linear inversion the E-W or N-

S component of the horizontal current can be determined by 

P= (A FA) _1ATB 

where AT is the transpose matrix of A. Then the upward or downward field-aligned 

currents can be estimated by calculating the divergence of the horizontal current at the 

corners of the grid cells. It is possible to derive the electric field from the ionospheric 

current using the given ionospheric conductivities. Figure 1.6 shows an example of the 
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equivalent current vectors, calculated ionospheric current vectors, field-aligned currents 

and electric fields obtained from "Forward" method (Akasofu et al., 1981). 

The assumptions considered in this method include (1) geomagnetic field lines are 

equipotentials; (2) the effects of ionospheric winds are ignored; (3) the effects of the 

magnetospheric ring current, the magnetopause current and tail current are ignored; (4) 

all the ionospheric currents are confined to latitudes from 61° to 82°; (5) only the N-S 

component of the electric field is considered. 

1. 6.2 The KRM method 

The KRM (Kamide, Richmond and Matsushita) method was developed by Kamide 

et al. (1981). This method is significantly different from the " Forward." method in 

principle. The procedure is shown in Figure 1.7. The equivalent current system in this 

method is defined as a toroidal horizontal sheet current 4 flowing in a shell at 110 km 
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altitude, whose associated magnetic field matches the external portion of the observed 

magnetic variation field b. A minor portion of b is caused by electric currents induced 

within the earth. The toroidal current 4 can be expressed in terms of an equivalent 
current function 0 as 

1Tflr XV1r 

where iir is a unit radial vector. The equivalent current function has often been 

estimated by assuming that 4 is proportional to the horizontal magnetic variation in 

magnitude, but rotated 900 clockwise in direction (e.g. Nagata and Fukushima, 1971). 

In addition, the height-integrated ionospheric Pedersen and Hall conductivities are 

required. With a given equivalent current function and conductivities, it is possible to 

derive ionospheric electric fields, ionospheric currents and field-aligned currents under 

some assumptions which we discuss later. 

The total height-integrated horizontal current I is the sum of the toroidal (equivalent) 

current 4 and a "potential" current 

= + (1.8) 

The potential component can be considered a closing current for the field-aligned current. 

Since 4 is by definition divergence free, the current continuity gives the field-aligned 

current density as 

(1.9) 
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Note that the current system represented by j 1 and 3:, together produces no ground 

magnetic variations under the assumption of radial geomagnetic field lines, implying that 

the toroidal component of 3: is just the equivalent current. 

Ohm's law relates the horizontal ionospheric current to the electric field by 

3: + 

The electric field can be written as an electrostatic potential 4) by 

A partial differential equation for 4) in terms of t& and ionospheric conductivities 

Ep and E. can be obtained by combining the equations (1.7), (1.8), (1.10) and (1.11), 

taldng the curl of the resulting equation. In spherical coordinates 0 (colatitude) and X 

(east longitude) the equation for 4) is 

A + B - + C + D - = F ae ax 

where the coefficients are give by 

A = sinO ZH 



B = - (sin6H) + ax _p 

sinG 

D_ä Z_ 8 H  

ao aAsine 

F = - (sinG + 1 
sinG 3),2 

(1.15) 

In solving the equation (1.12), the following boundary conditions are adopted: 

4(o,?.) =0 

4 (900 , = 0 
To 

The equation is solved numerically by a finite difference scheme over a network 

of points spaced 10 in colatitude and 15° in longitude. Once the electrostatic potential is 

obtained, the electric field from Eqn. (1.11), the ionospheric current from Eqn. (1.10) and 

field-aligned current from Eqn.(1.9) are obtained. Figure 1.8 gives an example of the 

equivalent current vectors, ionospheric current vectors, field-aligned currents and electric 

fields derived from the KRM method (Akasofu et al., 1981). 

The assumptions considered in this method include (1) the electric field is 
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electrostatic; (2) geomagnetic field lines are equipotential; (3) the dynamo effects of 

ionospheric winds can be ignored; (4) the magnetic conditions of magnetospheric ring 

current, magnetopause currents and tail currents to the equivalent current function can 

be neglected; (5) geomagnetic field lines are effectively radial. 

1.7 The Analysis Method Used in this Thesis 

The analysis method used in this thesis is a first attempt to combine measurements 

from three kinds of ground-based instruments to infer a three-dimensional current system 

with a finite width and length within the field of view of the instruments in the auroral 

region. In this method, the auroral emission rates for the wavelengths of 427. 8nm and 

630.Onm observed by the ASI are used to estimate the Pedersen and Hall height-

integrated conductivities in the auroral region. The conductivities in the background 

region outside the arc are assumed. The electric fields are measured by the BARS. 

Therefore, with the height-integrated Pedersen and Hall conductivities and the electric 

fields as inputs, the horizontal ionospheric current can be calculated by Ohm's law and 

the vertical field-aligned current can be obtained from the divergence of the horizontal 

current. The result can be verified by comparing the magnetic perturbations calculated 

from the current system with the magnetic observations. Brekke et al. (1974) used a 

similar method to construct a current system, but it was a two-dimensional infinite sheet 

current without field-aligned currents. They used Ohm's law and also compared the result 

with the magnetic observation. 
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CHAPTER H. INStRUMENTATION 

2.1 Introduction 

The Canadian Auroral Network for the OPEN Program Unified Study, so-called 

CANOPUS, was set up during the 1980's. It consists of an array of automatic ground-

based instruments located in northern Canada, shown in Figure 2.1. The information 

about the location of those instruments is supplied in Table 2.1. The CANOPUS facility 

provides very high resolution optical auroral and electric field observations together with 

lower spatial resolution but high sensitivity magnetic field observation. The optical 

auroral images are produced by the All-sky Imager (ASI), the electric field observation 

can be estimated from the Bistatic Auroral Radar System (BARS) and the magnetic field 

perturbation can be measured by the Magnetometer And Riometer Array (MARIA). By 

using ASI data, we can estimate energy input and average energy of the precipitating 

electrons from the magnetosphere. Because those observing facilities are all coincidently 

located and complementary, they provide a unique data set for magnetospheric and 

ionospheric studies. In the following sections we will describe those three instruments 

briefly. 

2.2 All-sky Imager (ASI) 

The All-sky Imager is located at Gillam, Manitoba (56.85° N, 265.58° E in 

geographic and 63.9° N, 336.06° E in eccentric dipole field line (EDFL) magnetic 
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Table 2.1 Station Locations of the CANOPUS System 

MAP 

ID 

Station Geographic Eccentric Dipole Site 

Lat.(N) Long.(E) Lat.(N) Long.(E) 

P1 Pinawa 50.20 263.96 57.80 335.02 M, P 

IL Island Lake 53.88 265.32 61.51 336.36 M 

GI Gillam 56.85 265.58 63.90 336.06 M, P, I 

BA Back 57.68 265.77 65.26 336.59 M 

CH Churchill 58.80 265.90 66.43 336.66 M 

EP Eskimo Point 61.10 265.93 68.74 336.47 M 

RI Rankin Inlet 62.80 267.67 70.47 338.66 M, P 

RA Rabbit Lake 58.20 256.33 65.49 324.46 M 

MC Fort McMurray 56.73 248.62 63.53 315.20 M 

FS Fort Smith 58.00 246.00 64.60 311.56 M, P 

CL Contwoyto Lake 65.48 249.65 72.38 312.97 M 

SI Fort Simpson 61.75 238.77 67.71 300.92 M 

DA Dawson 64.07 220.58 67.87 277.57 M 

NI Nipawin 53.47 256.23 60.74 325.28 R 

RL Red Lake 50.90 266.53 58.57 338.05 R 

I = ASI, It = BARS, P = MPA, and M = MARIA. 
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coordinate system ). It consists of two main systems, the camera unit containing the 

optics , image intensifier and CCD (charge-coupled device) detector, and the control 

unit regulating instrument operation. The camera unit is mounted outside on a platform 

and contains an environmental package to control temperatures as well as keep the optics 

clear of snow and ice. The control unit is mounted in an electronics cabinet in the heated 

site structure. The ASI provides quantitative information about visual auroral emissions 

at wavelengths of 427.8nm (N2 ), 557.7nm (O('S)), 630.0nm (O('D)) and background 

channel 440.Onm. It has a spatial format of 256 x 256 CCD pixels and a temporal 

resolution of 20 seconds. In the standard operating mode, images are obtained at 5-s 

intervals from each of the those wavelengths in turn, followed by a background channel 

exposure, giving an image at each wavelength once every 20s. In order to match the 

BARS field of view ( which will be described below), each CCD image has to be 

reduced to a 25 x 16 superpixel auroral image having spatial resolution of 20 km X 20 

km. Thus the total observation area of ASI is equivalent to that of BARS (500 km X 

320 km, from 63.0° to 67.8° in EDFL latitude and from 333° to 340.5° in EDFL 

longitude). 

A CCD detector in ASI is actually a photon-to-electron convertor, so what we 

obtain from ASI is the number of counts. To convert back from counts to intensities of 

the auroral emissions, a calibration process is needed to determine the conversion 

efficiency. Before the ASI was operated in 1986, a set of calibration constants of R(x) 

(x = 1,4) for the four wavelengths were determined experimentally by means of a Low 

Brightness Source (LBS). A procedure to convert raw counts to intensities was used 
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(detailed description is presented in Pao's thesis, 1991). The final result obtained was a 

calibrated dark count corrected and background channel subtracted intensity. After 

conversion, some data were compared with the Meridian Photometer Array (MPA) (Pao, 

1991) and showed a very good agreement. However, after the ASI was broken at the end 

of 1989, the 1990's ASI data required a new set of calibration constants of R(x) which 

were supplied but not obtained experimentally. This set of calibration constants were 

suspect due to the fact that the ASI intensities using this new set of calibration constants 

were not only unreasonably high but also far different from the intensities measured by 

MPA. Since it was not realistic to obtain the calibration constants experimentally, a cross 

calibration was used in this thesis by means of MPA. Assuming the calibration in MPA 

was correct, the intensities obtained from MPA could be used to calculate ASI calibration 

constants of three R(x) (x = 1,3) (except the background channel) which converts counts 

to Rayleigh units. Since MPA does not observe the emission at 427.8nm but 470.9nm 

a theoretical value of a factor of I(427.8nm)/I(470.9nm) = 5 (Vallance Jones, 1974) 

was used for the cross calibration. Then a similar processing procedure was used except 

that the background channel intensity was not subtracted from each auroral channel. 

2.3 Bistatic Auroral Radar System (BARS) 

A dual pulsed Bistatic Auroral Radar System (BARS) in CANOPUS is designed 

for mapping ionospheric electric fields in the auroral region using the STARE techniques. 

The system consists of two radars, one in Nipawin (53.470 N, 256.23° E in geographic, 

60.74° N, 325.28° E in EDFL) in central Saskatchewan and the other in Red lake 
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(50.900 N, 266.53° E in geographic, 58.70 N, 338.050 E in EDFL) in Northwestern 

Ontario. The frequency at which the system operates is 50 MHz. Antenna systems for 

BARS are designed to yield a 16-beam fan with a beam separation of 3.6°, from which 

8 beams are selected for signal processing. The aspect angles from the two BARS radars 

range from 3.6° to 5.2° off-perpendicularity for Red Lake and from 4.7° to 8.9° for 

Nipawin. The field of view formed by the two radar beams shown in Figure 2.2 is a two 

dimensional map of 500 km x 320 km from 63•0D N to 67.8° N in geomagnetic 

latitudes, and from 333° W to 340.5° W in geomagnetic longitudes, with a spatial 

resolution of about 20 km X 20 km. The total measurement points in a BARS map is 25 

x 16 = 400. The temporal resolution of BARS is 30 seconds. The radar system 

measures the radial doppler velocity which is the phase velocity of the plasma waves 

propagating along the radar k-vector. Such plasma waves are usually generated by the 

streaming of electrons relative to the ions in the auroral electrojet region at heights near 

110 km. The measured radial doppler velocity varies as the cosine of the angle between 

the radar wave vector and the irregularity drift direction. The observed radial velocity 

is related to the electron drift by V = . Two doppler measurements from 

different directions will give the electron drift velocity Ve Since the electrons 

are 2 x . drifting at E-region heights, we obtain 

B2 (2.1) 
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The observed doppler shift provides information about the ionospheric ( horizontal ) 

electric field. An electric field vector map consisting of 25 x 16 elements can be created 

at the height of 110 km and within the field of view. The system is described in detail 

by McNamara et al. (1983). 

2.4 Magnetometer And Riometer Array (MARIA) 

The MARIA system consists of 13 sites at each of which is installed a 

magnetometer, a 30 MHz zenith riometer and a 2-component earth current (telluric) 

instrument, shown in Figure 2.1 and Table 2.1. The first 7 sites constitute a meridian 

line and the remaining 6 sites form an east-west line according to their locations. Since 

we are only interested in the magnetometers, the remaining instruments will not be 

described here. The information about them can be found in the MARIA manual (1988). 

Each magnetometer consists of a three-component fluxgate. The resolution of the 

magnetometers is 0.1 nT at 8 Hz and the range of the measurement is from 0 to 100000 

nT for the vertical component and 50000 nT for the horizontal components. 
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CHAPTER M. ANALYSIS METHOD 

3.1 Introduction 

The energetic plasma in the magnetosphere can precipitate into the auroral zone 

in the ionosphere due to the high conductivity along geomagnetic field lines and interact 

with the cold ionospheric plasma. Since the ionospheric plasma is far more dense than 

the magnetospheric plasma and is not collisionless, the ionization produced by energetic 

electrons impinging on the ionosphere causes enhancement of conductivity in the auroral 

region. In addition, the magnetospheric electric fields can be mapped into the ionosphere 

also due to the high conductivity along geomagnetic field lines. Electric fields normal to 

magnetic fields cause differential motion of ions and electrons, giving rise to the 

horizontal current flowing in the ionosphere. Therefore the horizontal current would 

produce magnetic perturbations on the ground, as would the field-aligned currents which 

flow along the geomagnetic field lines. If the current systems around the earth other than 

the aurora-associated current system discussed above are ignored, the perturbation 

observed on the ground is affected only by the ionospheric currents and field-aligned 

currents in the auroral region. Figure 3.1 shows the flow chart of electric dynamic 

processes associated with aurora. 

This chapter introduces a new method, which will utilize data observed from ASI 

and BARS, to construct an ionospheric current and field-aligned current system (three-

dimensional current system) in the auroral region. This current system can be tested by 

comparing the perturbation on the ground calculated from it with the magnetic 
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observations from MARIA. This chapter consists of three parts. Section 3.2 describes 

how to calculate the horizontal current in the auroral region and the field-aligned current 

flowing into or out of the auroral region. Auroral height-integrated Pedersen and Hall 

conductivities can be estimated from ASI column emission rates. Ionospheric electric 

fields in the auroral region can be measured by BARS. Section 3.3 and 3.4 introduces 

magnetospheric 

electric field 

ionospheric 
electric field 

inagnetospheric 

plasma 

particle 
precipitation 

ionospheric 
conductivities 

ionospheric 
current 

magnetospheric 
current 

field-aligned 

current 

perturbation 

on the ground 

Figure 3.1. Flow chart of electric dynamic processes associated with aurora 
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a method comparing the results obtained from ASI and BARS data (Section 3.2 of this 

chapter), with the observations from MARIA. It examines the current system obtained 

from ASI and BARS data and also the consistency and correlation between these different 

observations. Section 3.5 briefly summarizes the new method, which enables a 

quantitative study of the three-dimensional current system in the auroral region. It also 

discusses the limitations of the application of this new method. 

3.2 Ionospheric Current and Field-aligned Current Deduced from ASI and BARS 

Data 

3.2.1 Height-integrated Pedersen and Hall Conductivities in the Auroral Region 

The height-integrated conductivities in the auroral region can be divided into two 

different regions, the high conductivity region associated with the auroral arc in which 

the Pedersen and Hail conductivities are due mainly to precipitating particles, and the 

background region in which the conductivities are the result of solar radiation and cosmic 

rays. 

The height dependent ionospheric Pedersen and Hall conductivities up and CTH, 

respectively, are functions of the height distribution of electron density, ion - neutral 

collision frequency and ion gyro frequency( Brekke et al., 1974). The height-integrated 

values can be represented by 

(3.1) 



11P = f Z2 a  dZ 
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(3.2) 

where Ep and EH are the height-integrated Pedersen and Hall conductivities, respectively, 

integrated from height Z1 to 12. 

In most cases, height-integrated Pedersen and Hall conductivities are estimated 

from equations (3.1) and (3.2) by using the electron density profiles. Vickrey et al. 

(1981) and Vondrak and Robinson (1985) have shown that conductivities can be 

calculated from the electron energy distribution. Robinson and Vondrak et al. (1987) 

found that for conductivities in auroral arcs it is efficient to use simple expressions that 

relate the energy flux and average energy of precipitating electrons to the height-

integrated Pedersen and Hall conductivities by assuming Maxwellian electron energy 

distributions for which the average energy is twice the characteristic energy. The 

expressions relating Pedersen and Hall conductivities to the average energy and energy 

flux of the electrons can be expressed by (Robinson and Vondrak et al., 1987) 

1 
40 EM  

16 + 

TIH = .85 
0.45 EM 

YIP 

(3.3) 

(3.4) 

where E. and EH are the height-integrated Pedersen and Hall conductivities in mhos, 

respectively, EM is the average energy in key and E is the energy flux in ergs I cm2 

s. Ep and EH in the equations (3.3) and (3.4) correspond to the height-integrated 
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Pedersen and Hall conductivities integrated between 80 km and 200 km altitude 

(Robinson et al., 1987). 

Aurora is the light emitted by upper atmospheric species which are excited and 

/or ionized by an oncoming electron beam and also by complicated chains of 

photochemical processes after the electron collision (Chamberlain, 1961; Omholt, 1971; 

Valiance and Jones, 1974). The observed features of the spectrum are almost all due to 

lines and bands of neutral or ionized N2,0, 02 and N roughly in descending order of 

importance (Vallance Jones, 1974). The most familiar lines and bands of the auroral arc 

are: 

the N2 1NG vibrational band at 427. 8nm; 

0('D) - 0('S) line at 557.7nm (the green line); 

O(3P) - 0('D) line at 630.0nm (the red line). 

Rees and Luckey (1974) showed that the emissions from the forbidden red oxygen 

line (0 I (630.Onm)) and from the permitted blue N2 (0,1) first negative band (N2 

(427.8nm)) can be used to infer a characteristic energy E0 and the energy flux of the 

precipitating auroral electrons. Rees and Roble (1986) and Rees et al. (1988) related 

auroral emission rates I(630.0nm), I(427.8nm) and I(557.7nm) to the characteristic 

energy E0 and the energy flux E of'precipitating electrons. One of these expressions is 

written as (Rees and Roble, 1986) 
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4it I(427.8nm) (kR) - O.213E00°735 (kev) 
4( ergs/cm2 s) 

(3.5) 

Steele and McEwen (1990) found that the relationship between the auroral column 

emission rate ratio I(630.0nm)/I(427.8nm) and the characteristic energy E0 is the 

following formula: 

4irl(630.Onm) 3.3E0 21 (key) 
4tI(427 . 8nm) 

(3.6) 

Combining the equations (3.6), (3.5), (3.4) and (3.3), we can find height-

integrated conductivities in the auroral arc region by noting that the average energy is 

twice the characteristic energy. 

The height-integrated conductivities E1, and EH in the background region are solely 

caused by the solar radiation and cosmic rays. Models have been established for 

computing Ep and EH as functions of solar zenith angle ( Brekke et al., 1988; Metha, 

1978; Vickrey et al., 1981, de la Beaujardiere et al., 1982; Robinson and Vondrak, 

1984; Schlegel, 1987; Rasmussen et al., 1987). The models showed that the magnitude 

of the height-integrated Pedersen conductivity decreases with increasing solar zenith 

angle. When the zenith angle is bigger than 90°, there is a background level for Ep 

caused by cosmic rays. In our situation we mostly choose the cases around midnight, 

so the solar zenith angle in our cases is bigger than 90°. Pedersen and Hall 

conductivities of 1 mho and 2 mhos (Brekke, private communication in 1991), 
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respectively for our cases would be reasonable choices for the background levels. 

3.2.2 Ionospheric Current and Field-aligned Current in the auroral region 

The relationship of ionospheric ( horizontal ) current to the height-integrated 

Pedersen and Hall conductivities and electric fields in the auroral region can be expressed 

by Ohm's law, ignoring the ionospheric neutral wind: 

(3.7) 

where 1, is the height-integrated horizontal current intensity (Aim), Bp and EH are the 

height-integrated Pedersen and Hall conductivities in mhos, respectively, .E? is the 

ionospheric electric field in V/rn which can be obtained from Eqn. (2.1) using the electron 

drift velocity that is measured by BARS. fl is the vertical magnetic field at the auroral 

altitude. The magnitude of fl overhead of Gillam is about 5 >< iO T according to the 

earth's dipole magnetic field (user manual for BARS, 1989). In Eqn.(3.7), there is a sign 

difference. The reason is that BARS measures electron flxff drift velocities which are 

opposite to the current direction. 

A geomagnetic cartesian coordinate system shown in Figure 3.3 and 3.4 is chosen 

to solve the problem. The x, y axis in the coordinate system are the geomagnetic north 

east on the BARS map, respectively and the z axis is pointing down to the earth. Then, 

Equation (3.7) can be rewritten as: 

= Mp.E l -  MffEll (3.8) 

where j and jf are the x and y components of j , E1 and E' are the x and y 
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(3.9) 

components of 

According to the current continuity, the field-aligned (parallel) current can be 

obtained by 

= (3.10) 

where j, is the field-aligned current in A/rn2 flowing in or out of the auroral region. 

If making an assumption that j, is perpendicular to the horizontal plane, j1 at a 

certain pixel in the BARS field of view can be estimated by means of 

IT f __ + __ 

2zx 2y 

where j- and are the changes of and T // along the x and y axes for the 

neighbouring two pixels and &x = y = 20 km. In our field of view in the auroral 

region, because there are 25 x 16 pixels, which means there are 400 elements of 

Pedersen, Hail conductances and 400 electric field vectors, respectively, 400 horizontal 

current vectors and 400 parallel current vectors based on the equations (3.8), (3.9) and 

(3.10) can be produced. 
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3.3 Perturbations Produced by the Deduced Three-dimensional Current System in the 

Auroral Region 

3.3.1 Perturbation Produced by the Ionospheric Current 

The perturbation produced at each station in the Churchill line below the BARS 

map can be calculated by using the same geomagnetic cartesian coordinate system as 

above with the origin at the same station, where x, y axes along geomagnetic North and 

East, respectively and z axis pointing down to the earth. For example, Gillam is chosen 

as the origin of the coordinate system shown in Figure 3.3 in order to calculate the 

perturbation at Gillam. In such a coordinate system, let us first determine the position 

of each electric current vector on the BARS map. If m and n are used to represent the 

number of the rows and columns for this electric current vector on the BARS map, the 

coordinate of this current vector will be [(m - m0)Ax, (n0 - n)oy, -hi, where in0 and no 

are the number of rows and columns, respectively, of the pixel just above Gillam, Ax and 

y are equal to 20 km, respectively, and h is equal to 110 km. Then the perturbation on 

the ground produced by each ionospheric current vector overhead can be calculated by 

means of Biot-Savart's law. 

In this coordinate system, the following parameters are defined 

ll 
xm2 = '7mn1 + mnJ 

(3.12) 

where, is the perturbation produced by the ninth ionospheric current vector 

AB 1.1 and AB 1.11 are the x, y and z components of A ff , respectively 
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and j ,T.11 and j are the x, y and z components of TIM , respectively. Then, 

the Biot-Savart's law is expressed as 

where, 

- xo 
flfl2 JmnI 

1= (m-m0)Ax3.+ (no -n)Ay5-hi 

So, Eqn.(3.13) can be rewritten in a matrix format: 

/ I 

AB 

I/f 

JAxAy h 

-JAyAxh 

(no - AyJiXx2+ (m0-m) JAxAy2 

(3.13) 

(3.14) 

Since &x and &y are equal in our case, Equation (3.14) can be changed to 

\ I 
AB 

AB =?12h 

I,, 
mz2/ 

— J1ln 

(no  J12+ (m0 -m) J1;i[3 Ax 
T 

(3 .15) 

Finally, the total perturbation produced by the total ionospheric current vectors 

on the BARS map is equal to 

/ 
AB. 

25 16 

AB' =hV'V'r;Ax 2h 

A B!', 

/ 

[(no-n) (m0 -m) J Ax 

(3.16) 

where AB , AB.ç and A.B" are, respectively, x, y and z components of the total 
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perturbation produced by all the ionospheric current vectors on the BARS map. 

Similar expressions can be found for calculating the perturbation at Back and 

other stations by choosing corresponding m0 and no. 

3.3.2 Perturbation Produced by the Field-Aligned Current 

The same coordinate system as above is chosen, shown in Figure 3.4, to calculate 

the perturbation on the ground produced by the field-aligned current vectors. If the field-

aligned current vectors overhead are assumed to extend an infinite distance above the 

field of view to flow into or out of the ionosphere, the expression of the perturbation 

produced by the field-aligned current vector at the mnth pixel by Biot-Savart's law is 

written as, 

( fi ) LOf (j  Ax Ay dz x 

—Co 
-.1 3 
'inn 

(3 .17) 

where (, ) is the perturbation on the ground produced by the field-aligned current 

vector at the mnth pixel, (j) is the field-aligned current density (A/rn2) at the mnth 

pixel, &x and &y are still equal to 20 km, respectively 

and i= i: (rn-rn0) Ax, (no -n) Ay, - z] 

the origin. Then, 

or 

is the vector from the mnth current source to 

= [(n-ne) (j) AX3 
47c 

-h 

- (MO-M) (j,)Ax35]f dz 
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-h 

= -(j)1x[(n-n0)r- (mo -m)jif dz  

[(m0 -m) 2Ax2+ 2Ay2+z 2] 

= - U41c m) i (n -n o)I- (m0 -m) M 
(m0 -m) 2 x 2 (n - n 0) 2iXy2 

= .2.u), Ax 
(n - n o )3 - (mO m)3 ( h ) (3.18) 

(m0 -m) 2+(n - n 0)2 rmn 

(B) 1 
- (n-n0) (3.19) 

(AB) 47 [(m0 -m) 2 + (n -n 0)2] - (m0 -m) 

where, (B/,) and (B/) are the x and y components of (Afi) . The total 

perturbation produced by the total field-aligned current vectors on the BARS map is equal 

to 

25 16 

1- h—  ( °(3.2O) B(') = (m0_m) 2+(n_n0)2 _(1flo_m)J 

where AB( and are x and y components of the total perturbation A ff, produced 

by all field-aligned current vectors. 

3.4 Comparison of the Deduced Perturbations with the Magnetic Observation by 
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MARIA 

The MARIA data are magnetic perturbations on the ground recorded by the 

Magnetometer and Riometer Array (MARIA), which consists of 13 magnetometers, 

riometers and tellurometers shown in Figure 2.1. 

From ASI and BARS data, the distribution of a three-dimensional current system 

in our field of view of the auroral region can be found, so that the total perturbation on 

the ground produced by such a current system can be calculated. For a selected period 

of time, the time variation of the calculated perturbation at Gillam or Back station can 

be obtained and then it can be compared with observed MARIA data to see if they are 

correlated or consistent with each other and examine the current system derived from the 

method developed. 

3.5 Summary and Discussion 

As shown above, a method to construct a three-dimensional current system in the 

auroral region based on ASI, BARS and MARIA data was introduced. First, ionospheric 

current and field-aligned current vectors are calculated from ASI and BARS data. Then, 

these current vectors are converted into a magnetic perturbation on the ground. Finally, 

the perturbation calculated from ASI and BARS data can be compared with the magnetic 

observations from MARIA data. A flow chart in Figure 3.5 indicates a procedure of this 

analysis. 

This new method of studying three-dimensional current systems in auroral region 

has two limitations: (1) It ignores the disturbances produced by other current sources in 
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MARIA data when comparing, such as the ones in the magnetosphere and those induced 

in the interior of the earth; (2) It neglects the uncertainties of all measurements. These 

two factors may affect the accuracy of the examination. 
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CHAPTER IV. DATA ANALYSIS 

4.1 Data Selection and Data Processing 

4.1.1 Data Selection 

Since we need three kinds of data to solve our problem, the data selection is 

important. 

There are several requirements when selecting data for processing. First, we 

must have ASI images, BARS electric fields and magnetic perturbations from MARIA 

observed at the same time. This condition is hard to satisfy because these three 

measurements may not be consistently obtained. These three instruments function 

differently and the field of view of MARIA is different from that of the other two. 

Second, we require that both 427.8nm and 630.Onm auroral emissions were observed 

over a time period of seven minutes or so. Third, we desire BARS data to have many 

electric field vectors in its field of view. Due to the principle of the Bistatic Auroral 

Radar System, we do not have BARS electric field vectors when the two radars did not 

observe the irregularities of the plasma at the same region. Finally, it is desirable to have 

magnetic perturbations observed by MARIA at the specific station above which BARS 

electric field vectors were observed. 

The above requirements were satisfied by the three cases in 1990 that were 

selected for analysis. The information about these three cases are listed in Table 4.1. 
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Table 4.1 List of the three cases 

Days 
(M,D,Y) 

time period 
(UT) 

Ic.,, index in time 
period 

Max.I(427.8nm), 
I(630.Onm)(kR) 

Electric field 
E1 (V/rn) 

02/24/90 02:09-02:17 5+ 8, 9 —0.01 

02/25/90 04:34-04:40 5 27, 8.8 —0.01 

03/21/90 03:39-03:48 6- 2, 9.4 —0.01 

4.1.2 Data Processing 

Based upon the theory outlined above, a computer code was developed to process 

the data in the BARS field of view which consists of 25 x 16 superpixels. In the first 

step the Pedersen and Hall conductivities for each pixel of the BARS field of view was 

computed. In this step, the BARS field of view was simply divided in two regions, 

auroral arc region and its background region. The conductivity for each pixel in the 

auroral arc was computed based on the empirical formulas of Eqn.3.3, Eqn.3.4, Eqn.3.5 

and Eqn.3.6 provided in Chapter III. Before the computation was begun a background 

value was subtracted from the arc intensities for each column of the' images. The 

conductivities for the background region were assumed to be 1 mho for Pedersen and 2 

mhos for Hall conductivity (Brekke, private conversation in 1991). Any conductivity 

caused by diffuse aurora in this region outside of the arc was not considered. In the 

second step, the horizontal ionospheric current vector and vertical field-aligned current 

vector for each pixel were computed by combining the computed conductivities from the 
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first step and the measured BARS electric field vectors using Equations 3.8, 3.9 and 3.11 

in Chapter III. Since the time resolutions for ASI and BARS are different ( ASI images 

are collected every 20 seconds and BARS vectors are recorded every 30 seconds), both 

ASI and BARS data were averaged over one minute to avoid this problem, which means 

three ASI images and two BARS measurements in one minute were used to calculate the 

average, then ionospheric or field-aligned current vectors in the BARS map could be 

obtained every minute. The last step was to calculate the perturbation at a station caused 

by all calculated ionospheric current vectors and field-aligned current vectors in the 

BARS map. The calculated magnetic perturbation was compared with the observed 

magnetic perturbation from MARIA data. Since all the stations in the entire Churchill 

line except Gillani and Back are at the edge or outside of the field of view, only these 

two stations will be discussed in the following "chapters. 

MARIA observes total magnetic field variations on the ground. To determine 

magnetic perturbations from MARIA data, the choice of a baseline is very important. Dr. 

D. D. Wallis (private conversation, 1992) developed a computing code to use some 

parameters found from all the quiet days in the year of 1990 to calculate baselines. The 

baseline changes during 24 hrs, but it remains the same within a short period of several 

minutes. Another method is to take an average value over 24 hrs. These two methods are 

not very useful for the cases which will be discussed in the following sections. In these 

cases the time period is only about nine minutes, so the baseline cannot change much in 

this period. Besides, the aurora outside this period is weak enough to be relatively 

unimportant. In other words, the magnetic observation outside the period should be the 
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baseline to determine the perturbation within the period. Obviously, this baseline is not 

a DC value, but a value containing some perturbation caused by other current sources. 

As a result, this study tends to compare the magnetic perturbation caused by only the 

current source within the BARS field of view which ASI could observe and avoid the 

part of the perturbation from the current sources outside the field of view as much as 

possible. 

4.2 Feb.24, 1990 

The l, index sum for this day is 32+. The ASI images during the time period 

from UTO2:09:00 to UTO2: 17:00 for the two wavelengths of 427.8nm and 630.0nm on 

this day are shown in Figure 4.2.1(a) and (b), where each image is formed by an average 

value of the three images in each minute, since the temporal resolution of the ASI is 20s. 

Figure 4.2.1 shows the intensities of the auroral emissions for the wavelengths of 

427.8nm and 630.0nm during that time period within the BARS field of view and the 

intensities are colour coded with black indicating the minimum intensity and red 

indicating the maximum intensity. The coordinate system in Figure 4.2.1(a) and (b) is 

in EDFL ( eccentric dipole field line ) latitudes from 63.(Y to 67.8° for the north 

direction and EDFL longitude from 333° to 340.5° for the east direction. The aurora 

during this period is more quiet and narrower for the last six minutes and in a spiral 

situation for the first three minutes according to the counterclockwise rotation of the arc 

(viewed from the magnetic field lines), seen from Figure 4.2.1(a). The aurora before and 

after this time period was relatively weak and hardly visible in the ASI images. The 
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electric field vectors, deduced from the BARS-measured electron drift velocities, overlaid 

on the auroral arc contours for the wavelength 427. 8nm at each minute in the same time 

period are shown in Figure 4.2.2. In Figure 4.2.2 the electric field for each picture is 

an average over one minute (temporal resolution of the BARS is 30s) and the arc's first 

contour is 1 1cR (Kilo-Rayleigh) and the interval between two contours is 2 kR. From 

Figure 4.2.2 the spatial and temporal variation of the electric field in the BARS field of 

view can be studied and the relative location of the electric field vectors and the auroral 

arc can also be seen. The electric field vectors are partially on the north side of the arc 

and partially in the arc for this case. Those on the north side of the arc mainly point 

toward the arc in the southwestward direction for the first six minutes and turn to almost 

northward in the last three minutes. The electric field vectors in the are point toward the 

centre of the spiral arc in the first three minutes and change to cross the are in a 

southwestward direction when the aurora becomes more quiet in the last few minutes. 

The magnitudes of the electric field vectors are not noticeably different outside and inside 

the arc. Figure 4.2.2 also shows that the arc was located almost directly above the 

(3illam station. 

4.2.1 The Calculated Ionospheric (horizontal) Current Vectors and Field-aligned 

Currents in the BARS Field of View 

After calculating the Pedersen and Hall conductivities in the auroral arc for this 

case from the equations of (3.3), (3.4), (3.5) and (3.6), the equations of (3.8) and (3.9) 

were applied to calculate the ionospheric (horizontal) current vectors. The calculated 

ionospheric current vectors overlaid on the auroral arc contours for the wavelength of 
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427. 8nm at each minute in this period of this case are shown in Figure 4.2.3, where the 

arc contours start from 1 kR and increase every 2 kR. The calculated Pedersen and Hall 

conductivities in the auroral arc are high, up to 26 mhos and 55 mhos, respectively. The 

ratio between the two conductivities is about 2 in the arc and also outside the arc. The 

calculated current vectors outside the arc are very small compared to the ones inside the 

arc due to the high conductivities in the arc. The current vectors outside the arc flow 

around the edge of the arc and in the northwestward direction. The current vectors inside 

the arc flow around the spiral pattern counterclockwise for the first three minutes and 

along the arc pattern in the westward direction for the more quiet situation in the last six 

minutes. They become more intense when the auroral arc gets more active. The 

intensities of the current vectors in Figure 4.2.3 are indicated by the lengths of the 

vectors and of the order of 10' A/rn. Figure 4.2.4 shows the calculated field-aligned 

currents from the current continuity of Eqn. (3.11), overlaid on the auroral arc contours 

for the wavelength of 427. 8nm. In Figure 4.2.4 the densities of the field-aligned currents 

are colour coded and the group of the 16 colours are divided to two region by the colour 

labelled zero, where the upper colour region indicates downward field-aligned currents 

and the lower region indicates upward field-aligned currents. The magnitudes for either 

downward field-aligned currents or upward field-aligned currents are represented by 

different colours and increase from the colour labelled zero. The arc contours in Figure 

4.2.4 start from 1 kR and increase every 2 kR. The coordinate system in Figure 4.2.4 

is in EDFL latitudes from 63.00 to 67.8° for the north direction and EDFL longitudes 

from 333.0° to 340.5° for the east direction. In Figure 4.2.4, the field-aligned currents 
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Figure 4.2.1(a) The one-minute averaged ASI images for the wavelength of 
427. 8nm during the time period from UT 02:09:00 to UT 02:17:00 on Feb.24, 1990. 
The intensities in Kilo-Rayleighs are colour coded with black indicating the minimum 
intensity and red indicating the maximum intensity. The coordinate system is in EDFL 
latitudes from 63.0° to 67.8° on the north and EDFL longitudes from 333.0° to 340.5° 
on the east. 
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Figure 4.2.1(b) The one-minute averaged ASI images for the wavelength of 
630.0nm during the time period from UT 02:09:00 to UT 02:17:00 on Feb.24, 1990. 
The intensities in Kilo-Rayleighs are colour coded with black indicating the minimum 
intensity and red indicating the maximum intensity. The coordinate system is in EDFL 
latitudes from 63.00 to 67.8° on the north and EDFL longitudes from 333.0° to 340.5° 
on the east. 
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Figure 4.2.2(a) The electric fields, measured from the BARS, overlaid on the 
auroral contour during the time period of UTO2:09:00 to UTO2: 13:00 on Feb.24, 1990. 
The vector length denotes the magnitudes of the electric field vectors referenced by the 
scale defined on the top. The arc contours start from 1 1cR and increase by steps of 2 1cR. 
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Figure 4.2.2(b) The electric fields, measured from the BARS, overlaid on the 
auroral contour during the time period of UTO2: 14:00 to UTO2: 17:00 on Feb.24, 1990. 
The vector length denotes the magnitudes of the electric field vectors referenced by the 
scale defined on the top. The arc contours start from 1 kR and increase by steps of 2 kR. 
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change their configurations within one minute especially for the first three minutes. The 

field-aligned currents outside the auroral arc are very weak and mainly downward 

currents, but the ones inside the arc are relatively strong. The upward and downward 

field-aligned currents inside the arc are formed mainly in two sheets. The upward current 

is on one side and downward current on the other side. When the arc is relatively quiet, 

such as in the last six minutes, the downward current is on the east side and the upward 

current is on the west side since the ionospheric current flows along the arc in the 

westward direction shown in Figure 4.2.3. When the arc is more active and has a spiral, 

such as the situation in the first three minutes, the upward current is on the north side 

and the downward current is on the south side because there is a northward component 

of the ionospheric current shown in Figure 4.2.3. Therefore, the upward and downward 

field-aligned currents and the ionospheric current consist of a three-dimensional current 

system in the BARS field of view in the ionosphere and satisfy the current continuity. 

For this case the densities of the calculated field-aligned currents are high, up to the 

order of io A/rn2. 

4.2.2 Comparison of the Perturbations at Gillam station 

The time variations of the calculated and observed magnetic perturbations at the 

Gillam station is shown in Figure 4.2.5, where the baseline was chosen to determine the 

observed magnetic perturbation according to the method described in the first part of this 

chapter. In Figure 4.2.5 a factor was used to magnify each of the x, y and z components 

of the calculated magnetic perturbation in order to compare the temporal variation. The 

factors for x, y and z are 2, 2 and 9, respectively. From Figure 4.2.5, it is clearly seen 
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Figure 4.2.3(a) The calculated horizontal ionospheric electric current vectors, 
overlaid on the auroral contour during the time period of UTO2:09:00 to UTO2: 13:00 on 
Feb.24, 1990. The vector length denotes the magnitudes of the current referenced by the 
scale defined on the top. The arc contours start from 1 kR and increase by steps of 2 kR. 
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Figure 4.2.3(b) The calculated horizontal ionospheric electric current vectors, 
overlaid on the auroral contour during the time period of UTO2: 14:00 to UTO2: 17:00 on 
Feb.24, 1990. The vector length denotes the magnitudes of the current referenced by the 
scale defined on the top. The arc contours start from 1 kR and increase by steps of 2 kR. 
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Figure 4.2.4 The calculated field-aligned currents overlaid on the auroral contour 
of the wavelength of 427.8nm during the time period from UT 02:09:00 to UT 02:17:00 
on Feb.24, 1990. The densities in gkm2 are colour coded and the colour labelled zero 
divides the colour region to two region, with top colours indicating downward field-
aligned currents and bottom colours indicating upward field-aligned currents. The 
coordinate system is in EDFL latitudes from 63.0° to 67.8° on the north and EDFL 
longitudes from 333.0° to 340.5° on the east. 
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that the time variation of the calculated magnetic perturbation follows that of the 

observation very well. The calculated horizontal ionospheric current vectors and field-

aligned vectors for this case locate about overhead of the Gillam station (63.9° N, 

336.06° E in EDFL), seen from Figure 4.2.3 and 4.2.4. Those current vectors have a 

strong magnetic influence on the Gillam station. 

4.2.3 Comparison of the Perturbations at Back Station 

Figure 4.2.6 shows the time variations of the calculated and observed magnetic 

perturbations at Back station. The magnifying factor for each of the x, y and z 

components of the calculated perturbation at Back station, shown in Figure 4.2.6, is 2, 

5 and 2, respectively. In Figure 4.2.6, the x component of the computed magnetic 

perturbation agree with the observation, and its z component is only slightly different 

from the observation but an obvious difference exists in the y components. 

4.3 Feb.25, 1990 

The lç, index sum for this day is 33-. The one-minute averaged ASI images during 

the time period from IJTO4:34:00 to TJTO4:40:00 for the two different wavelengths of 

427.8nm and 630.0nm on this day are shown in Figure 4.3. 1. (a) and (b), respectively. 

The colour scales for the intensities of the auroral emissions and the coordinate system 

in Figure 4.3.1(a) and (b) are defined the same as for Figure 4.2.1. It is seen from 

Figure 4.3.1(a) and (b) that the intensities for the two different wavelengths during this 

time period are high, up to 27 kR and 9 IcR, respectively and the auroral arc during this 

time period is not quiet but distorted. An eastward movement of the most intense portion 
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of the arc can be seen in Figure 4.3.1(a). The arc pattern for the wavelength of 630.Onm 

in Figure 4.3.1(b) is a little bit different from Figure 4.3.1(a) and is more uniform. The 

electric fields, deduced from the BARS-measured electron drift velocities, overlaid on 

the auroral arc contours for the wavelength of 427.8nm at each minute are shown in 

Figure 4.3.2, where the arc contours start from 2 kR and increase every 4 kR. In Figure 

4.3.2 the electric field vectors are partially at the north side of the arc and partially in 

the arc for this case. The electric field vectors on the north side mainly point toward the 

south but the lower part tends to be northeastward or northwestward in the later time. 

The electric field vectors in the arc mainly cross the arc in a southwestward direction. 

The magnitudes of the electric field vectors outside and inside the arc are not very 

different in this case. Figure 4.3.2 also shows the relative location of the auroral arc and 

the electric field vectors. 

4.3.1 The Calculated Ionospheric (horizontal) Current Vectors and Field-aligned 

Currents in the BARS Field of View 

Applying the same procedures as to find the ionospheric current vectors in Figure 

4.2.3, the ionospheric (horizontal) current vectors at each minute for this case could be 

calculated and the result of the calculation is shown in Figure 4.3.3, where the auroral 

arc contours for the wavelength of 427. 8nm are overlaid on and the start contour is 2 kR 

and the interval of the contours is 4 kR. The calculated Pedersen and Hall conductivities 

in the auroral arc for this case range up to 20 mhos and 40 mhos, respectively and the 

ratio between the two conductivities is about 2 in the arc and also outside the arc. The 

current vectors outside of the arc, shown in Figure 4.3.3, are very small relative to the 
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Figure 4.2.5 The time variations of the calculated and observed magnetic 
perturbations at Gillam during the time period of UTO2:09:00 to UTO2: 17:00 on Feb.24, 
1990. The dotted lines indicate the calculated perturbation and dash lines indicate the 
observed perturbation. There is a factor multiplying to each component of the calculated 
perturbation shown in the figure. 
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Figure 4.2.6 The time variations of the calculated and observed magnetic 
perturbations at Back during the time period of UTO2:09:00 to UTO2: 17:00 on Feb.24, 
1990. The dotted lines indicate the calculated perturbation and dash lines indicate the 
observed perturbation. There is a factor multiplying to each component of the calculated 
perturbation shown in the figure. 
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ones in the arc. The current vectors outside the arc mainly flow southwestward in the 

first few minutes, then the lower latitude part of it turns to be southeastward and 

southwestward at some times and forms two regions. The current vectors in the arc are 

strong and more active in this case. Since the arc is not uniform at this time, the current 

vectors flow around the most intensive portion of the arc counterclockwise at the time 

of TJTO4:35:OO and tJTO4:36:OO and change to southwestward in the following minute, 

then flow almost westward along the arc in the next minute but continue to change 

northward partially in a minute, and finally back to southwestward. The variation of the 

current is related to the movement of the aurora. When the most intensive portion of arc 

moves to the east, shown in Figure 4.3.1(a), the current vectors change their directions 

from northwestward to southwestward since the current flows around it counterclockwise. 

When the are is more quiet and more uniform the current generally flows along the arc. 

From Figure 4.3.3, it is also seen that the current vectors are overhead of the Gillam 

station at most times. The calculated field-aligned currents from the current continuity 

of Eqn.(3. 11), overlaid on the auroral arc contours for the wavelength of 427.8nm at 

each minute, are shown in Figure 4.3.4. The same colour code and the coordinate system 

in Figure 4.3.4 are defined as in Figure 4.2.4, so the upper colour region indicates the 

downward field-aligned currents and the lower colour region indicates upward field-

aligned current. The EDFL latitudes and longitudes are for the north and east directions, 

respectively, in Figure 4.3.4. For this case the arc is more active and there is an 

eastward movement for the most intensive portion of the arc. The ionospheric current 

shown in Figure 4.3.3 flows mainly in the westward direction but it has a northward or 
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Figure 4.3.1(a) The one-minute averaged AS! images for the wavelength of 
427.8nm during the time period from UT 04:34:00 to UT 04:40:00 on Feb.25, 1990. 
The intensities in Kilo-Rayleighs are colour coded with black indicating the minimum 
intensity and red indicating the maximum intensity. The coordinate system is in EDFL 
latitudes from 63.0° to 67.8° on the north and EDFL longitudes from 333.00 to 340.5° 
on the east. 



ASI INTENSITIES 

Feb25, 1990(63OLOnm 

/ 

Q4-;4;OO 

Q4-;7;QQ 

04-:40:OO 

Q4;.3i;OQ 

/ 

8, 8 kI 

0.3 IcR 

68 

Figure 4.3.1(b) The one-minute averaged ASI images for the wavelength of 
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Figure 4.3.2(a) The electric fields, measured from the BARS, overlaid on the 
auroral contour during the time period of UTO4:34:00 to UTO4:37:00 on Feb.25, 1990. 

The vector length denotes the magnitudes of the electric field vectors referenced by the 
scale defined on the top. The arc contours start from 2 kR and increase by steps of 4 kR. 
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Figure 4.3.2(b) The electric fields, measured from the BARS, overlaid on the 
auroral contour during the time period of UTO4:38:00 to UTO4:40:00 on Feb.25, 1990. 
The vector length denotes the magnitudes of the electric field vectors referenced by the 
scale defined on the top. The arc contours start from 2 kR and increase by steps of 4 1cR. 
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southward component due to the location of the most intensive portion of the arc. For 

this case the upward and downward field-aligned currents are mainly confined to the arc 

region. In the first three minutes there is a northward component of the ionospheric 

current around the most intensive portion of the arc on the southwest corner of the arc, 

so the upward field-aligned current locates at the northwest side and downward field-

aligned current on the southeast side around that region. When this most intensive portion 

of the arc moved to the southeast corner in the following minute, the upward current 

changed to the southwest side since there is a southward component of the ionospheric 

current around that area. In the following two minutes, when the ionospheric current 

flowed in the northwestward direction, the upward field-aligned current returned to the 

northwest side and switched back to the southwest side in the last minute. The upward 

and downward field-aligned currents shown in Figure 4.3.4 and the ionospheric currents 

shown in Figure 4.3.3 consist of a three-dimensional current system in the BARS field 

of view in the ionosphere and satisfy the current continuity. The densities of the field-

aligned currents for this case are of the order of io A/rn2. 

4.3.2 Comparison of the Perturbations at Gillam Station 

The time variations of the perturbations from the calculation and the observation 

at the Gillam station are shown in Figure 4.3.5. The x, y and z components of the 

computed perturbation were multiplied by 2.5, 1 and 8, respectively. In Figure 4.3.5, 

the x component and z component from the calculation match very well with the 

observation, respectively. The calculated y component is in very good agreement with 

the observation in spite of the appearance of a one-minute time delay. 



72 

E
D
F
L
 L

at
it

ud
e 

E
D
F
L
 L

at
it

ud
e 

68 

67 

66 

65 

U104:34:OO 

0.150 
- f A/M 

64 

63  

332 

68 

67 

66 

65 

64 

63 

.. 
.. - 

334 336 338 340 342 
EDFL Longitude 

UTO4:36:OO 

tA7M 

332 334 336 338 340 342 
EDFL Longitude 

E
D
F
L
 L

at
it

ud
e 

E
D
F
L
 L

at
it

ud
e 

U104:35: 00 
68 

67 

66 

65 

64 

63 

340 332 334 336 338 

68 

67 

66 

65 

64 

63 

334 336 338 340 332 

EDFL Longitude 

UTO4:37:00 

EDFL Longitude 

342 

342 

Figure 4.3.3(a) The calculated horizontal ionospheric electric current vectors, 
overlaid on the auroral contour during the time period of UTO4:34:0O to UTO4:37:00 on 
Feb.25, 1990. The vector length denotes the magnitudes of the current referenced by the 
scale defined on the top. The arc contours start from 2 kR and increase by steps of 4 kR. 
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Figure 4.3.3(b) The calculated horizontal ionospheric electric current vectors, 
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Figure 4.3.4 The calculated field-aligned currents overlaid on the auroral 
contour of the wavelength of 427.8nm during the time period from UT 04:34:00 to 
UT 04:40:00 on Feb.25, 1990. The densities in MA/m2 are colour coded and the 
colour labelled zero divides the colour region to two region, with top colours 
indicating downward field-aligned currents and bottom colours indicating upward 
field-aligned currents. The coordinate system is in EDFL latitudes from 63.00 to 67.8° 
on the north and EDFL longitudes from 333.0° to 340.5° on the east. 
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4.3.3 Comparison of the Perturbations at Back Station 

Figure 4.3.6. shows the time variations of the calculated and observed 

perturbations at Back station. The multiplying factors for the x, y and z components of 

the computed perturbation are 1, 2 and 1 , respectively. For the x component, its time 

variation from the calculation follows that of the observation. The calculated y 

component does not differ much from the observation. However, the z components do 

not agree. For this case the calculated ionospheric current vectors and field-aligned 

currents are about overhead Gillam, so the calculated perturbation at Gillam agrees with 

the observation better than that at Back. 

4.4 March 21, 1990 

The k index sum for this day is 46. The one-minute averaged ASI images during 

the time period from UTO3:39:O0 to IJTO3:48:O0 for the two wavelengths of 427.8nm 

and 630.Onm on this day are shown in Figure 4.4.1(a) and (b), respectively. Figure 

4.4.1 shows the intensities of the auroral emissions for the wavelengths of 427.8nm and 

630.Onm and the intensities are colour coded as in Figure 4.2.1(a) and (b). The 

coordinate system in Figure 4.4.1 is also the same as the one in Figure 4.2.1. The arc 

pattern for the wavelength of 630.Onm is similar to that for the wavelength of 427.8nm, 

but is brighter. The intensities for both of the wavelengths in the arc are not uniform. 

The highest intensity is about 2 1cR and 9 kR for the wavelengths of 427.8nm and 

630.Onm, respectively, so the auroral emission for the wavelength of 427.8nm is much 

weaker than that for the wavelength of 630.Onm. The electric fields, deduced from 
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BARS-measured electron drift velocities, overlaid on the auroral are contours for the 

wavelength of 427. 8nm at each minute are shown in Figure 4.4.2, where the auroral arc 

contours start from 1 1cR and increase every 1 kR. Since the auroral intensities in the 

middle portion of the arc are weaker than at the sides, the contour of the are is broken 

into two parts, as seen in Figure 4.4.2. The electric field vectors are mostly at the north 

side of the arc, some are in the arc and very few are south of the are. For this case the 

arc as a boundary divides the electric field vectors into two regions. The electric field 

vectors on the north side region point to the arc in the southwestward direction and those 

on the south side region point to the arc in the northeastward direction. When the arc 

gets weaker, the north side region becomes dominant. Figure 4.4.2 also shows the 

relative location of the arc and the electric field vectors at each moment. 

4.4.1 The Calculated Ionospheric (horizontal) Current Vectors and Field-aligned 

Currents in the BARS Field of View 

Figure 4.4.3 shows the calculated ionospheric (horizontal) current vectors at each 

minute of the time period obtained from the same procedure as that in Figure 4.2.3. Due 

to the fact that the intensities at the wavelength of 427. 8nm are much smaller than at the 

wavelength of 630.Onm in this case, the calculated Pedersen and Hall conductivities in 

the arc are about 5 mhos and are therefore not larger than those outside the arc. The 

oncoming downward electrons to the auroral region were very soft and precipitated 

mainly in the relatively high altitude region. Therefore it is not the same as before in that 

the calculated ionospheric current vectors are present not only in the arc but also outside 

the arc. The current vectors outside the arc flow around the are counterclockwise and 
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Figure 4.3.5 The time variations of the calculated and observed magnetic 
perturbations at Gillam during the time period of tET04:34:0O to UTO4:40:O0 on Feb.25, 
1990. The dotted lines indicate the calculated perturbation and dash lines indicate the 
observed perturbation. There is a factor multiplying to each component of the calculated 
perturbation shown in the figure. 
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Figure 4.3.6 The time variations of the calculated and observed magnetic 
perturbations at Back during the time period of UTO4:34:00 to UTO4:40:0O on Feb.25, 
1990. The dotted lines indicate the calculated perturbation and dash lines indicate the 
observed perturbation. There is a factor multiplying to each component of the calculated 
perturbation shown in the figure. 
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those in the arc tend to flow out of the arc in the northward direction. Figure 4.4.3 also 

shows the relative location of the ionospheric current and the auroral arc. The horizontal 

electric current vectors are located at the region between Gillam station and Back station, 

but are closer to the Back station. The ionospheric current intensity for this case is about 

ten times smaller than that for the former two cases. The calculated field-aligned currents 

from the current continuity of Eqn. (3.11), overlaid on the auroral are contours for the 

wavelength of 427. 8nm at each minute, are shown in Figure 4.4.4. As before the upper 

and lower regions separated by the colour labelled zero indicate the downward and 

upward field-aligned currents, respectively. In Figure 4.4.4, the north direction denotes 

the EDFL latitudes and the east direction indicates the EDFL longitudes. For this case 

the arc is very weak but more active. The contour of the arc is broken into two parts 

since the intensities in the region between the two parts are even weaker. The distribution 

of the field-aligned currents is divided into two regions, inside the arc and outside the 

arc. The field-aligned current outside the arc is relatively small and mainly downward. 

For the stronger arc the upward field-aligned current inside the arc is on the north side 

since there is a northward component of the ionospheric current shown in Figure 4.4.3. 

When the arc gets weaker the ionospheric current tends to flow along the same direction 

as the one outside the arc shown in Figure 4.4.3 and the upward field-aligned current 

appears on the west side and downward current on the east side. The densities of the 

field-aligned currents in this case are about ten times smaller than those for the former 

two cases. The upward and downward field-aligned currents and the ionospheric current 

consist of a three-dimensional current system in the BARS field of view in the ionosphere 
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Figure 4.4.1(a) The one-minute averaged ASI images for the wavelength of 
427.8nm during the time period from UT 03:39:00 to UT 03:48:00 on March 21, 1990. 
The intensities in Kilo-Rayleighs are colour coded with black indicating the minimum 
intensity and red indicating the maximum intensity. The coordinate system is in EDFL 
latitudes from 63.0° to 67.8° on the north and EDFL longitudes from 333.0° to 340.5° 
on the east. 
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Figure 4.4.1(b) The one-minute averaged ASI images for the wavelength of 
630.Onm during the time period from UTO3:39:OO to UT 03:48:00 on March 21, 1990. 
The intensities in Kilo-Rayleighs are colour coded with black indicating the minimum 
intensity and red indicating the maximum intensity. The coordinate system is in EDFL 
latitudes from 63.0° to 67.8° on the north and EDFL longitudes from 333.0° to 340.5° 
on the east. 
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Figure 4.4.2(a) The electric fields, measured from the BARS, overlaid on the 
auroral contour during the time period of UTO3:39:OO to UTO3:43:0O on March 21, 
1990. The vector length denotes the magnitudes of the electric field vectors referenced 
by the scale defined on the top. The arc contours start from 1 kR and increase by step 
of 1 1cR. 
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and satisfy the current continuity. 

4.4.2 Comparison of the Perturbations at Gillam Station 

The calculated and observed perturbations at Gillam station during this time 

period on this day are shown in Figure 4.4.5. Each component of the calculated 

perturbation is multiplied by 14, 3 and 2, respectively. The variation of the calculated 

x component in this case is then very close to what was observed. The y component 

varied with time in a similar manner as the observation. The calculated z component is 

different from the observation and shows no change within the time period. 

4.4.3 Comparison of the Perturbations at Back Station 

Figure 4.4.6 shows the time variations of the calculated and observed perturbation 

at Back station during the same period as above from tJTO3:39:OO to UTO3:48:OO. The 

factors applied to each component of the calculated perturbation at Back is 7, 5 and 10, 

respectively. The calculated perturbation at Back agrees very well with the observation, 

since the current system in this case is located near the Back station. 
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Figure 4.4.3(a) The calculated horizontal ionospheric electric current vectors, 
overlaid on the auroral contour during the time period of UTO3:39:00 to UTO3:43:0O on 
March 21, 1990. The vector length denotes the magnitudes of the current referenced by 
the scale defined on the top. The arc contours start from 1 1cR and increase by step of 
11cR. 
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Figure 4.4.3(b) The calculated horizontal ionospheric electric current vectors, 
overlaid on the auroral contour during the time period of UTO3:44:0O to UTO3:48:0O on 
March 21, 1990. The vector length denotes the magnitudes of the current referenced by 
the scale defined on the top. The arc contours start from 1 kR and increase by step of 
1kR. 
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Figure 4.4.4 The calculated field-aligned currents overlaid on the auroral contour 
of the wavelength of 427.8nm during the time period from UT 03:39:00 to UT 03:48:00 
on March 21, 1990. The densities in /2A/M2 are colour coded and the colour labelled zero 
divides the colour region to two region, with top colours indicating downward field-
aligned currents and bottom colours indicating upward field-aligned currents. The 
coordinate system is in EDFL latitudes from 63.0° to 67.8° on the north and EDFL 
longitudes from 333.0° to 340.5° on the east. 
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Figure 4.4.5 The time variations of the calculated and observed magnetic 
perturbations at Gillam during the time period of UTO3:39:00 to UTO3:48:OO on March 
21, 1990. The dotted lines indicate the calculated perturbation and dash lines indicate the 
observed perturbation. There is a factor multiplying to each component of the calculated 
perturbation shown in the figure. 
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Figure 4.4.6 The time variations of the calculated and observed magnetic 
perturbations at Back during the time period of UTO3:39:00 to UTO3:48:00 on March 
21, 1990. The dotted lines indicate the calculated perturbation and dash lines indicate the 
observed perturbation. There is a factor multiplying to each component of the calculated 
perturbation shown in the figure. 
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CHAPTER V. DISCUSSION AND SUMNIARY 

5.1 Discussion 

5.1.1 Discussion of the results 

From the three evening cases selected for analysis, the important findings are that 

the ionospheric (horizontal) current is confined to the region of the auroral arc when the 

Pedersen and Hall conductivities in the arc are significantly enhanced and the inferred 

three-dimensional current system in the field of view is a combination of both Boström 

type 1 and type 2 current systems on a small scale. For the three cases the auroral arcs 

were observed in the evening sector and they were more active and not uniform at certain 

times. The ionospheric current flowed in the westward direction along the quiet arc or 

counterclockwise around the most intensive portion of the are including the spiral 

situation. The upward and downward field-aligned currents found from the divergence 

of the ionospheric current appeared in pairs and was mainly confined to the are region. 

For a quiet east-west arc the downward field-aligned current was in the east side of the 

arc and upward field-aligned current was in the west side. For a distorted arc the 

downward field-aligned current was in the north side or south side of the arc depending 

on the location of the most intensive portion of the arc in the west side or the east side 

of the arc. The upward field-aligned current was on the other side. This current system 

is distributed over a small region within the area of 500 km X 320 km about overhead 



91 

of Guam. Such a current system was examined by converting it to the magnetic 

perturbation on the ground and comparing it with the observed magnetic perturbation 

from the MARIA. The comparison showed a very good agreement between the time 

variations especially when the calculated current system was about overhead of the station 

at which the comparison was done. However there are still some discrepancies for the 

calculated and observed magnetic perturbation at the other stations and the magnitudes 

for both of the perturbations are also different. There are several things needed to be 

considered. first, for all the cases the auroral arcs appear near the southern edge of the 

BARS field of view, so not all current vectors were recorded. The missing current 

vectors would affect the magnetic field at the Gilam station or other stations because of 

the high conductivities in this region. Second, there is a limitation of BARS 

measurements. Only merged data from the two radars can be used to produce electric 

field vectors, which means if there are no data recorded by one of these two radars no 

electric field vectors are on the BARS map. Fig.5.1 shows such an example for the time 

of TJTO2:15:30 on Feb.24, 1990, where the radar in Red Lake recorded data on the 

south-east side of the map, but no electric field vectors could be obtained. Third, the 

calculated ionospheric current vectors and field-aligned currents refer to a small region 

of the auroral oval. Fourth, the baselines used to determine the observed magnetic 

perturbations are difficult to choose. MARIA recorded a total perturbation on the ground 

caused by many current sources overhead. However the calculated perturbation is related 

only to the current source which could be observed within the BARS field of view of the 

auroral region by the ASI. In order to better compare the perturbations from the same 
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source, the baselines must include the perturbations caused by all the other possible 

current sources except the current within the BARS field of view. However, such a 

baseline may change with time. In other words, there is no simple way to determine it. 

Fifth, there were no measurement uncertainties considered here. The statistical and 

systematical error in ASI data is supplied in Pao's thesis (1991). The systematical error 

is relatively big and is slightly different for different wavelengths. It is estimated to be 

about 17%. The error in BARS measurements is very difficult to determine. Therefore 

the uncertainty in the calculated current system is hard to estimate. Sixth, there exist 

uncertainties in the empirical models which are used to estimate height-integrated 

Pedersen and Hall conductivities in auroral arcs from ASI. The equations (3.3) and (3.4) 

from Robinson and Vondrak et al. are based on the assumption of a Maxwellian energy 

distribution for precipitating electrons. A non-Maxwellian energy distribution may give 

a different result, but their calculation shows that the Maxwellian relations are valid for 

most common auroral electron spectra, and furthermore most auroral electron energy 

distributions are nearly Maxwellian in shape (Robinson and Vondrak et al., 1987). They 

estimated the uncertainty in the use of these equations to be about 20%. 

Due to the reasons given above, it is probable that the determination of the 

baselines is one of the reasons that causes the time variations of some components of the 

calculated perturbations to differ from those of the observed perturbations. For the 

situation in which the calculated current did not locate at the region above the station 

where the perturbation was calculated, there might exist other current sources close to 

that station which affected the perturbation there strongly. For the first case of Feb.24, 
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Figure 5.1 An example of radar measurement at 02:15:30 UT on Feb.24, 1990 
which shows that no electric field was recorded on the south-east side of the field, since 
no echoes were obtained from the radar located at Nipawin. 
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1990 in Figure 4.2.6, the discrepancy that appeared on the y component at the Back 

station may be due to the baseline chosen there. It seems likely that another N-S current 

source existed somewhere close to Back which affected the y component of the observed 

perturbation there. For the case on Feb.25 of 1990 in Figure 4.3.5 and Figure 4.3.6, the 

calculated y component has a one minute delay at Gillam and the calculated z component 

at Back is different from the observations. For the case of March 21, 1990 shown in 

Figure 4.4.5 and Figure 4.4.6, the big discrepancy appears only in the calculated z 

component at Gillam. 

What causes the differences between the calculated and observed perturbations is 

probably a serious problem. At the Gillam station, the factor used to magnify the 

calculated perturbation is small for the x and y components of the perturbation, and very 

big for the z component in the first two cases. The small factors may not be very 

difficult to explain, but the big factors seem very hard. In order to find the causes, 

several possibilities were considered. First, the chosen background intensity, when using 

ASI data to calculate conductivities, was thought to be a possible problem, but a 

calculation showed that a 50% change of this value did not affect the conductivities 

significantly. So, it should not be the reason. Second, the calculated conductivities from 

ASI data and the electric fields estimated from BARS measurements in the arc region are 

consistent with values in the literature (Brekke, 1974). However, the chosen background 

values for the Pedersen and Hall conductivities could be too small and so could the 

resulting current vectors outside the auroral arc. The reason is that the height-integrated 

Pedersen and Hall conductivities for the background caused only by the solar radiation 



95 

and cosmic rays were assumed and the effect of the electron precipitation on that region 

was not considered. If the Pedersen and Hall conductivities on the background should 

increase to 5 and 10 mhos from 1 and 2 mhos, respectively, the calculation shows that 

the x and y components of the perturbation approximately remain the same but the z 

component will increase a factor of 2. For the background Pedersen and Hall 

conductivities of 10 mhos and 20 mhos, respectively, the x and y components of the 

perturbation increase by a factor of 2 and the z component increases by a factor of 4. 

Under this circumstance, the multipliers to the x and y components of the perturbation 

may easily be explained, but the factor for the z component is still not big enough. 

Third, the height of the ionospheric current in the auroral region was chosen as 110 km. 

If this value should be reduced to 90 km, the z component of the perturbation would 

increase by approximately a factor of 1.5 times. The reduced height does not change the 

x and y components very much. Fourth, the calculated ionospheric electric current in this 

study is confined to a small region of the auroral oval. Supposing the current should be 

continuous in the auroral oval, this can increase each component of the perturbation by 

a factor of two. 

In summary, the above estimates can readily account for the x and y multipliers, 

but can not at the same time account for the large z component multiplier. For the 

perturbation at Back station in the third case, the situation is different. The multipliers 

for all the three components in this case are big. The auroral arc is very weak and tie 

conductivities in and outside the are are almost the same. If the conductivities on the 

background should be increased, the conductivities in the arc should also be increased 
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so that the resulting perturbation would increase significantly. For the background 

Pedersen and Hall conductivities of 5 and 10 mhos, respectively, the perturbation at Back 

station increases approximately by a factor of 4 for the x and y components and 5 for the 

z component. For the background Pedersen and Hall conductivities of 10 and 20 mhos, 

respectively, the perturbation increases by a factor of 8 for the x and y components and 

10 for the z component. Using these larger conductivities, the z component of the 

perturbation is very close to the observation but the x and y components are a little bit 

higher, which is consistent with the first two cases. For this case, the continuous 

ionospheric current in the auroral region beyond the field of view could increase the 

perturbation by a factor of 2 which is insufficient to account for multipliers of the three 

components. 

5.1.2 Comparison with Parlier Studies 

There have been a large number of theoretical and experimental studies on 

inferring three-dimensional current systems in the ionosphere. The model estimating the 

intensity of the ionospheric current in the system is usually the sheet current 

approximation (Baumjohann et al., 1980; Brekke et al., 1974; Chapman and Bartels, 

1940; Nagata and Fukushima, 1971). Ground-based magnetometers have been the 

primary instrument to study the three-dimensional current system (e.g. Kisabeth and 

Rostoker, 1971; 1973). The combination of the ground magnetometer with another 

instrument (e.g. an incoherent radar) was also used to study the three-dimensional current 

system (Baumjohann et al., 1980; 1981; Brekke et al., 1974). There are several problems 

in the past work. First of all, it is the concept of " equivalent current or the sheet 
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current approximation. It represents the observed magnetic perturbations on the ground 

and is not the current overhead in the auroral region of the ionosphere. Nevertheless this 

concept was used to derive the current system ( Baumjohann et al., 1980; 1981; 

Kisabeth, 1979; Kamide et al., 1981) or to compare a current system with the 

observation (Brekke, 1974). Second, field-aligned currents could not be obtained and so 

they are ignored (Baumjohann et al., 1980; 1981; Brekke et al., 1974). Third, the very 

good agreement was only obtained for the northward component of the observed 

magnetic perturbation when comparing the calculation with the observation (Brekke, 

1974). The analysis method developed here overcame all those problems. 

The method used here is also different from the earlier studies. The "Forward" 

method (Kisabeth, 1979) used ground-based magnetometer data as input and assumed a 

ratio between Pedersen and Hall conductivities. A linear inversion was used to solve the 

three-dimensional current system. The XRM method (Kamide et al., 1981) also used the 

ground-based magnetic data as inputs and assumed a ratio of Pedersen and Hall 

conductivities. A partial differential equation was used to solve the electrostatic potential. 

The horizontal ionospheric current was obtained by Ohm's law and the field-aligned 

currents were obtained by solving the current continuity equation. In the analysis method 

here, the electric field measured from the BARS and the height-integrated Pedersen and 

Hall conductivities estimated from the auroral emission rates I(427.8nm) and I(630.0nm) 

observed by the ASI are inputs. Ohm's law is used to find the horizontal ionospheric 

current and the current continuity is used to find the vertical field-aligned currents. 

It is found that the current system constructed here is a combination of two 
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Boström types of current system in a small scale since Bosträm types of current system 

distribute infinitely in the auroral oval. In the three cases selected here, the current along 

the arc is a W-E Hall current and is closed by the upward and downward field-aligned 

currents for the quiet auroral arc. The northward or southward component of. the 

horizontal current is Pedersen current and closes the two sheets of field-aligned currents 

on the north and south edges of the arc for the distorted arc. For the combination of the 

quiet and distorted arcs the current system is the combination of the corresponding two 

situations. 

The three-dimensional current system constructed is within the BARS field of 

view which is a small region relative to the whole auroral oval. In addition, whether or 

not this system in this case is independent of the other currents in the oval is an open 

question, since the early theories and experimental studies tried to show that the west-east 

component of the ionospheric current should be continuous in the oval (such as Boström, 

1964; Brekke et al, 1974; Kamide et al, 1981; Kisabeth, 1979 and so on). However, 

Timofeev et al.(1990) constructed an extended Boström current loop model --

"Matreshka" model, which is the hierarchy of three encircled two sheet Boström current 

loops of different sizes shown in Figure 1.5. The smallest loop is within an auroral arc, 

which is very similar to the current system constructed here for the N-S scale, but it still 

has a problem of the E-W scale of the current system. 

For the three cases in the evening sectors, the horizontal ionospheric current 

obtained is mainly northwestward or southwestward current since the electric fields were 

observed mainly southwestward. However, the northeastward ionospheric current was 



99 

also obtained for the case on March 21 of 1990 when the electric field was observed 

northeastward in the lower region relative to the arc. Comparing it with the results of the 

Forward" and KRM methods and other models, such as Figure 1.2, it is known that 

these cases are in the local time region after the Harang discontinuity, so the Hall current 

penetrates from the postmidnight to the premidnight region. One case shows that there 

is an eastward Hall current at the lower region to the arc which connects to the westward 

current, seen in Figure 4.4.3. It was also found that the ionospheric current is located 

within the auroral arc when the conductivities in the arc are significantly enhanced. 

Tsunoda and Presnell (1976) questioned whether the primary electrojet current flows 

within visual arcs. Some evidence showed an anticorrelation between the magnitude of 

the ionospheric electric field and particle precipitation (Aggson, 1969; Wescott et al., 

1969; Maynard et al., 1973; Tsunoda and Presnell, 1976b). For the spiral case on Feb.24 

of 1990, the result of the counterclockwise ionospheric current shows enhanced 

intensities and a similar rotational sense of the spiral which agrees with the result of 

Untiedt et al. (1978). For the locally intensified cases on Feb.25 of 1990 and March 21 

of 1990, the locally intensified aurora existed in the arc and the arc in the W-E direction 

was distorted. The ionospheric current under this circumstance was enhanced locally and 

also flowed counterclockwise around that area, which has not been found in any 

references except spiral cases. For the field-aligned currents, the results have shown a 

combination of two types of BostrOm field-aligned currents within a small region. They 

distribute not only poleward or equatorward but also along the arc, which is different 

from the earlier work, such as the "Forward " method and KRM method. The reason 
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is that the earlier work was all based on the large scale of the whole auroral oval. It is 

noticed that the magnitudes of the field-aligned currents required for the spiral agree with 

the spiral theory (Hallinan, 1976) but the observed electric field in that area is not up to 

or over 100 V/m as given by the theory. According to the theory, the field-aligned 

current in the spiral should be all upward, but the result here shows that there is also a 

downward current existing within that region. The same result was obtained for the 

distorted arc. 

5.2 Summary 

In this thesis, an algorithm was developed to construct a three-dimensional current 

system within the BARS field of view of the auroral region in the ionosphere. A 

background conductivity was assumed and conductivities in the arc were computed from 

the intensities of the two wavelengths 427. 8nm and 630.Onm using equations (3.3), (3.4), 

(3.5) and (3.6). The auroral emission for the wavelength of 557.7nm was not needed in 

this situation. By combining the Pedersen and Hall conductivities calculated above with 

measured BARS data from which electric field vectors were deduced, 400 horizontal 

ionospheric electric current vectors and vertical field-aligned current vectors within the 

field of view could be calculated and a three-dimensional current system within a small 

region was inferred. The current system was tested by determining the perturbation 

produced by all those 400 ionospheric current vectors and field-aligned current vectors 

at the Gillam station and the Back station and comparing with the magnetic observation 

from the MARIA. Three cases were chosen here and the results of the comparison have 
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been shown in the last chapter. The three cases used for analysis are all in the evening 

time before midnight. The aurora in each case is rather disturbed and not uniform at 

most times. The k index during the time period discussed in each case is 5+, 5 and 6-. 

The aurora for the wavelength of 427.8nm is very important in the data analysis, since 

it can be an identification of an auroral arc to classify cases. The data analysis and 

discussions of the three cases can be summarized as follows: 

(1) The observed electric field vectors in all the cases change spatially and 

temporally. The electric fields are observed mainly in the north side of the 

arc and in the arc, and sometimes also to the south of the arc. The electric 

field vectors on the north side of the arc mainly point toward the 

southwest and those on the south side toward the north when they exist. 

The electric field vectors inside the arc mainly cross the arc in the 

southwestward direction for the quiet situation but point toward the centre 

of the spiral pattern for the spiral situation. 

(2) The calculated ionospheric current vectors are distributed in two regions, 

outside the arc and inside the arc. The current vectors outside the arc are 

on the north side and very small compared to the ones in the arc when the 

aurora for the wavelength of 427.8nm is more intense than that for the 

wavelength of 630.Onm. In other words, the horizontal ionospheric current 

is confined to the are region whenever the conductivities in the arc are 

significantly enhanced. 

(3) The calculated ionospheric current vectors outside the arc mainly flow 
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counterclockwise around the edge of the arc and those in the aurora also 

flow counterclockwise around the most intensive portion of the arc when 

the arc is distorted, otherwise the flow is along the arc in nearly westward 

direction when the arc is more quiet, which means that there is a N-S 

component of the ionospheric current for the distorted arc and only a 

component along the arc for the quiet situation. 

(4) The calculated upward and downward field-aligned currents distribute in 

two regions, outside the auroral arc and inside the arc. The currents 

outside the arc generally are very small and the currents inside the arc are 

mainly in two sheets, upward current is on one side and downward is on 

the other side. For the quiet arc the upward field-aligned current is located 

at the west side and downward field-aligned current at the east side since 

the ionospheric current flows in the westward direction. When the arc is 

distorted and more intense locally at certain points the upward field-

aligned current is usually on the north side and downward current is on 

the south side or vice-versa according to the location of this intensive part. 

The upward and downward field-aligned currents and the ionospheric 

current consist of a three-dimensional current system in a small region of 

the ionosphere and satisfy the current continuity. The resulting current 

system is a combination of two types of Boström current system in a small 

region. 

(5) The calculated perturbation produced by the calculated ionospheric and 
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field-aligned current vectors have time variations that agree with the 

observations by the MARIA, especially when the calculated current is 

about overhead the station where the perturbation is calculated. There are 

some disagreements when the current is away from the station, which can 

result from additional currents located near the station that may affect the 

perturbation there strongly. In magnitude, there is a factor difference 

between the calculated and observed perturbations, the calculated 

perturbation is smaller than the observed perturbation. There are several 

reasons to be considered for this. 

(6) From our analysis above it is obvious that the perturbation on the ground 

is mainly caused by the overhead ionospheric current and field-aligned 

current in the BARS field of view. However the currents outside the 

BARS field of view may also affect the perturbation at a certain station on 

the ground when they are close to the station. So, it can be said that the 

overhead ionospheric current and field-aligned current in the auroral 

region is the main source which produces the perturbation on the ground. 

5.3 Further Work 

So far, by combining and utilizing the ASI and BARS data, a three-dimensional 

current system was constructed by means of Ohm's law and the current continuity. The 

result was examined by converting the current to a magnetic perturbation and then 

comparing it with the magnetic observation from MARIA. After the comparison, it is 
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found that there is a very good agreement on the time variation of the perturbations for 

each other. However, the absolute value of the calculated perturbation is much smaller 

than the observation. The reason may be due to the BARS measurements, and especially 

the extent of the calculated ionospheric current and field-aligned current. Further analysis 

should be undertaken. 
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