Interview with Steven Boykey Sidley re:
Entombed

John Aycock
Department of Computer Science
University of Calgary
2500 University Drive N.W.
Calgary, AB, Canada T2N 1N4
aycock@ucalgary.ca

TR 2016-1090-09, October 2016

Preamble

This is an interview with Steven Boykey Sidley, conducted via email on October 1-2,
2016. He programmed the Atari 2600 game Entombed while working at Western Tech-
nologies, which was published by US Games in 1982, and also worked on a number of
other games for different platforms.

This work received ethics approval from the University of Calgary’s Conjoint Facul-
ties Research Ethics Board, file REB16-1235. Both interviewer and interviewee have
agreed to release this interview under a Creative Commons Attribution-ShareAlike 3.0
Unported License.!

Interview

(Interview questions appear in iftalics.)

Tell me the story about how you got involved with Entombed.

I notice that my name was not mentioned in the Wikipedia article? — just Tom and Jeff,
who were game designers at Western Technologies where 1 developed the game. In
any event, there is an interesting story about this game. I am now an award-winning

lhttps ://creativecommons.org/licenses/by-sa/3.0/
2https ://en.wikipedia.org/w/index.php?title=Entombed_(1982_video_game)&oldid=
738614519



novelist, so you are going to hear it, if for no other reason than I never thought I would
have reason to repeat it.

It was around 1980, and I had recently graduated with an MS in Computer Science from
UCLA. Not really wanting to go to IBM or equivalent, I applied for, and was accepted
for a position at Western Technologies in Santa Monica. Video games had just started
— Bushnell was the legend — everyone knew the story of Pong and the jammed coin slot
in the bar.

So Western Technologies, who had been a toy company, decided to climb on the video
games bandwagon. When I arrived, there were a number of realisations that came to
me quickly.

1. The company was peopled with weirdos, awkward eccentrics, nerds, dopers and
misfits. They were a strange menagerie for this South African Jew, recently
arrived in the US. Incredible fun.

2. Atari, in their attempts to hold onto a game monopoly, had provided no manuals
at all. The only way to understand how the 2600 worked was to build an emulator
out of the innards of the videogame machine, wire it up to a very early MS-DOS
PC (maybe it was an Apple II), and literally probe the registers of the 2600’s 6502
and other chips to see what happened on screen. This was reverse engineering at
its most pure.

3. I didn’t have a fucking clue what I was doing. I had never seen an emulator, I
had never programmed in assembly, didn’t know what a chip was. I was armed
with deep knowledge of PL/I and database schemas and mainframe architecture
from my UCLA Masters. All entirely useless.

4. WT was expanding into a new building. No one had moved in yet. They directed
me to a desk in the empty building with the PC/2600 Atari emulator. No humans,
no manual. I nearly quit on the first day.

5. The basic maze generating routine had been partially written by a stoner who had
left. I contacted him to try and understand what the maze generating algorithm
did. He told me it came upon him when he was drunk and whacked out of his
brain, he coded it up in assembly overnight before he passed out, but now could
not for the life of him remember how the algorithm worked. So not only did I
have to reverse engineer the chip, I also had to reverse engineer the algorithm —
there were no comments in the codeset.

I went on to write a few more games for the Atari, TI-99/4A, and Commodore and then
moved off into what seems like 10 or 20 different careers.

How long did it take you to develop Entombed?

It was about three months to first version, and then a month or two for attract screen
and autorun, and score save, and packaging, etc.

What was your development environment like? Obviously you worked in assembly, but



what computer (dumb terminal?), tools, and editor did you use? Was it a line editor or
was it full-screen?

I do not think there there was a full screen editor. I think the master PC was MS-DOS
and a line editor was used. The emulator was built to drop into one of the expansion
slots.

How did you debug your code?

There were no tools except single-step trace. That was it. But assembly is much easier
to debug than high level languages, because as you step through, you can see registers
change. However, real-time bugs that were a function of a given joystick/button com-
bination at a given instant were not possible to debug by any other means than thinking
about it.

Take me through a day in the life of a 2600 programmer at WT.

I had a fairly conservative work ethic (9—5) and sometimes I schlepped the kit home to
program at night. Others in the group were more, um, eccentric, pulling all-nighters,
getting fucked up, disappearing for days, etc. And yes, code printouts were de rigeur.
Because each game was a lone wolf effort, there was little collaboration, except an
occasional ‘hey, anyone know how to transfer some ROM code to RAM’, yelled across
the room.

How far along was the reverse-engineering of the 2600 when you started work at
wT?

I came in very close to the start — they had just finished the emulator and all of the
‘basic’ functions were emulated. We still did quite a lot of reverse engineering, at least
on Entombed. We had it pretty much down after that.

Was there some internal “bible” where everything known about the 2600 was written
down?

Not a thing. We were not disciplined enough. I am sure that they did it later for new
programmers, though.

It looks like the row-generation algorithm in Entombed takes the last two bits generated
in the row, plus the three bits immediately adjacent in the row above, and uses that to
index into a 32-byte table. The table’s value determines whether to produce a 1, a 0,
or a random bit. The question is, where did the values in the table come from? There
doesn’t seem to be an obvious pattern — were these values manually chosen?

Heh heh. .. this was the piece that the other guy did when drunk and stoned. It was a
mystery to me too, I couldn’t unscramble it. I just used it to generate the new row at
the bottom of the screen.

The code for the pseudo-random number generator in Entombed appears to be the
same as the one in Towering Inferno. Would that have been in the maze code you



started with, or was there a standard pool of code at WT to draw upon? Or perhaps
the sharing went the other direction, since the exact release dates of Entombed and
Towering Inferno are both simply given as 1982?

Different code sets, and Towering Inferno was another programmer. We did not really
reuse each other’s code, so I don’t know where he got the random number generator
from. I seem to remember there were a few that were knocking about.

How did programming the 2600 make you feel?

Most fun I have ever had, when I finally understood how to do it. I felt in possession
of secret knowledge.

Looking back, what would you have done to improve Entombed?

It pretty much pushed the edge of the technology of the time. I am not sure there was
much more that could have been done, at least not technically.

You clearly had many challenges developing this game. What was the part of En-
tombed that gave you the most difficulty during its development?

Keeping the code tight enough to execute in 1/30 sec during vertical refresh. This
required continual tightening of logic.

Does the source code for Entombed still exist in any form?

Unlikely.

For a 2600 game, a surprising number of people seemed to have been involved in one
way or another with Entombed. You did the programming, of course. Thinking of
the other people credited (Jeff Corsiglia and Tom Sloper), what roles did they play in
development of Entombed?

They did the original design and sketches and game logic concept, I believe. I think
they also did artwork for packaging.

I unfortunately haven’t been able to find any programming credits for you. What were
the names of the other games you worked on?

If you look up Sidley Mckay on Google, you will find a couple of games I and my
partner, Graham Mckay, developed for a distributor named Tronix. There was Suicide
Strike and Slalom (I developed the latter for Commodore 64 — there are a few screen
grabs on the web somewhere). I cannot remember the names of the others — I think
there were four in total. I also did one for the TI-99/4A, whose name also escapes
me.

Do you have anything to add?

Those of us who programmed 6502 for those games have a special bond. Like climbing
Everest without oxygen.



