Introduction

How can end users — especially casual users without knowledge of or aptitude for conventional programming
— be given the ability to specify and communicate procedures to a computer system? To the extent that they
can, opportunities for system design and implementation are placed where they belong, directly in users’ hands.
A good domain for examining this question is office computing, where the notion of *‘casual user” is more
palpable and there is evident need to automate procedures that would otherwise have to be executed manually
[Raed85). This paper surveys current practice, research, and future prospects for communicating procedures to
office computer systems, placing special emphasis on robustness and suitability for the casual user,

In practice, users of existing systems who have to specify procedures are commonly forced to work
through an intermediary who is an experienced programmer. Failing this, they generally resort to learning some
kind of command language. Explicit forms programming languages, perhaps based on ideas of logic
programming which suppress control structure, offer better prospects, while knowledge-based techniques which
utilize a model of office semantics may provide a solution in the more distant future. Programming by example
is a promising method for specifying procedures but presents difficulties with editing, conditionals, iteration,
nesting, data structures and variables. These can be alleviated by using several example sequences or, possibly,
specifying goals, perhaps with the help of an automated assistant. Altematively, control information may be
provided explicitly by the user through a well-engineered interactive interface.

A neglected aspect of the problem of specifying procedures is the need for robustness. This concerns the
ability of the system to deal with the vagaries of the real world by incorporating methods for handling errors,
inconsistencies, environmental changes, and extraneous information; and by accommodating changes in user
requirements and expectations. In examining casual-user programming systems, it is expedient to draw a
distinction between

o the inherent ability of the conceptual system, and
¢ the ability of an implemented system,

to deal with variability. The first concerns the idea and the second the way it is implemented. The difference is
important because much of the work we discuss is experimental, and implementations often lack robustness
while the ideas underlying them may not.

The next section first introduces office procedures, showing how they pervade routine office work. It then
describes two different user interface paradigms, direct manipulation and command languages, highlighting the
shortcomings of each for casual-user procedure specification. The second section considers the possibility of
grafting procedure specification ability on to other interfaces. It describes four possibilities: the use of a
command language in conjunction with a direct-manipulation interface, forms-based programming, specifying
procedures using logic, and knowledge-based systems. Thirdly, we introduce the idea of programming by
example, and explain four different methods for accomplishing it. In each section we discuss the power of the
procedure specification paradigm, as well as its robustness and suitability for the casual user.



Office systems and the procedure problem

Office procedures

Routine tasks such as clearing one’s desk, opening and filing mail, and sorting lists of names constitute simple
office procedures. More complex jobs such as processing a purchase order are standard institutional procedures
often controlled by a specially-designed form. The fields on the form show the information needed to perform
the procedure, and the principal actions required. For example, a purchase order may involve financial
authorization, tendering, ordering, shipping, customs and duty, consideration of import regulations, and so on.
Each participating department will have its own detailed procedure for dealing with the form. For example,
expected delivery date may be recorded so that appropriate action can be initiated in the event of non-arrival.
Training new employees in the modus operandi is a recognized cost of staff turnover. Much of a newly-hired
clerk’s time and effort is expended in leaming the vital office procedures. Specifying new tasks will always be
important, even to fully trained office workers or sophisticated office computer systems. Whenever regulations,
policies, or superiors change, new or modified procedures will arise.

If office procedures could be automated, much of the cost for teaching and executing them could be
avoided. Of course, some will be just too complex. There is even controversy about the extent to which office
work really does involve executing procedures. In a study of two office tasks, dealing with a missing invoice
and using an unfamiliar copying machine, Suchman [Such85, Such83] found the subjects to be problem-solving.
Once they discovered the solution, subjects rationalized their activity as procedures that ‘‘went wrong’’ in some
respects. Much office work is concemed with handling exceptions to the usual routine; so much so that
Suchman considers the exceptions normal and the procedures mythical! This paper is not about automating
problem-solving in the office, but rather about automating the simple and standard procedures that do occur.
Despite the predominance of problem-solving activity, establishing and performing routine tasks is important in
offices, as the above examples show.

The simplest office procedures are fixed sequences of actions; the task is performed exactly the same on
every occasion. For example, an office user might want to specify a complex sequence for logging on to a large
computer from a personal computer [Poun87). However, many office tasks will be more complex than this. For
example, the procedure for admitting students to a University may revolve around several main events, such as
receiving preliminary and final applications, reviewing stages, and admittance or rejection. Each individual
event can trigger a complex procedure. Late applications must be dealt with; foreign students may be treated
differently; notification of missing documents must be mailed, and so on [Kuni82]. Although specification of
such an elaborate system is beyond the ken of the average office worker, adding or modifying smaller sub-
procedures is not.

Table 1 shows the major constructs required in a system for specifying tasks. Conditionals allow different
actions for different situations. Iteration permits part of a task to be repeated until a specified condition is met.
Nesting embeds one control structure inside another, to many levels. For example, the Table shows one loop
which is inside another. Data structures are needed for conveniently storing and accessing structured
information, and might also be nested. Variables allow different items to be processed by the same procedure.
Table 1 also shows a simple example procedure which employs all of these constructs. The procedure opens the
electronic mail of the user and sorts items into folders by sender name. A new folder is created for each new
sender. The variables used are New-Mail-Item and Sender. An if ... then construct is nested inside a for loop.



Direct manipulation interfaces

The most effective user interfaces to office systems allow pictorial representations of real office objects (files,
folders, documents, text, diagrams, and the like) to be manipulated directly on the screen [Shne83]. This leads
naturally to learnability, robustness, and general ease of use [Lee83, Witt85). The computer system provides a
metaphor of the office environment. This makes it easy for users to execute procedures manually, step by step
[Shne83,Lee83]. Briefly, direct manipulation provides a robust interface suited to the casual user, with these
advantages:

¢ users are enthusiastic

¢ learning effort is reduced

o the system is predictable

o the interface is concrete, not abstract

and [Witt85]

® you can always see what you are working on
¢ you sece the final form of your work, for example text to be printed out
¢ you see all options available to you.

However, current systems do not help when it comes to communicating sequences of actions [Myer86}; indeed,
their very nature makes it difficult for users to specify procedures [Zloo81]. Certainly a fixed string of
operations could be recorded for playback later. However, for any procedure which involves generalizations,
conditionals, controlled iteration, complex data structures, editing and debugging, direct manipulation falls apart.
These are not simple operations on concrete objects. They are abstractions, which are specified to real office
workers using complex natural language constructions. The manipulation is no longer direct.

Command language interfaces

The traditional way of specifying procedures to computer systems is by using an imperative language. Standard
interactive computers implement an operating system command language in which procedures can be specified,
saved in files and executed on demand. These are often clumsily defined and implemented; for example IBM ICL
is renowned for its opacity. The UNIX sh command interface contains better facilities for procedure definition,
but is still far from suitable for a casual office user. In some ways such command languages are more difficult
for a casual user than modemn programming languages, such as PASCAL, C and ADA, because the details of syntax
and semantics are tricky and opaque. For example, this statement in UNIX sh

cat filename | expand | awk *{ printf "%4d %s\n", NR, $0 )’
puts line numbers on the file filename.

Monolingual programming environments, which give a user the facility of specifying command procedures
in a programming language such as LISP (or even BASIC) are more suitable, but presuppose the ability to write
programs in the conventional way. There is some debate on whether this will ever become acceptable to the
casual users (see [Cuff80] and {Ande80] for opposing views). To program in a conventional language one needs
to be able to translate one’s own knowledge of the task into a procedural specification suitable for expression in
the language. One also needs to be able to construct, test, and debug the implementation.

Command languages provide a powerful ability to specify procedures, since they are general purpose
programming languages. However, they are unsuitable for the casual user because of the need to learn tricky
details of computer syntax and semantics, and the difficulty of articulating procedures explicitly. Moreover, they
lack robustness in that programs depend on technical and system characteristics.



Adding procedure specification

Adding a command language to direct manipulation

Some office systems have added the ability to create procedures by grafting linguistic commands on to a direct-
manipulation interface. However, there are clear contradictions between the two paradigms involved. Not only
do these systems fail to escape the above-noted drawbacks to command languages, but they conflict with the
basic metaphor of direct manipulation too.

These problems will be briefly illustrated using the Xerox Star’s CUSP user programming language. This is
an excellent example of a command language designed to be used for office work in conjunction with a direct-
manipulation interface. Programs can operate on text, icons, table and form fields, record files, and other objects
available in the interface [Halb84]. For example, CUSP enables users to express programs such as: [Halb84]

If CreditBalance < 0 Then
Move The Document Whose Name Is *‘PleasePay’* To The Printer Whose Name Is "Gutenburg";

Unfortunately, it departs sharply from the desktop metaphor. The user has to learn a different method of
operating the Star in order to specify procedures. This is amply illustrated by the program (which, its
appearance notwithstanding, does not contain typographical errors)

Store Mean[Families [Row Call It Parent
With Parent.LastName = *‘Smith’).Children.Age Into AverageSmithChild;

for computing and storing the mean age of the Smith children listed in the Families table [Halb84]. The direct-
manipulation user, on the other hand, would accomplish the same task using a very different sequence of
actions. He would call up the appropriate part of the table on the screen, and transfer the numbers to an iconic
calculator to perform the arithmetic involved.

Specifying procedures using forms

Some systems have added the ability to specify procedures by significantly extending a forms metaphor (eg OBE
{Zloo81], OFs [Tsic82], FORMAL [Shu85]). Again, however, the method for procedure specification conflicts with
the original interactive interface. We will discuss two examples.

The QBE — ‘‘query-by-example’” — database retrieval system enables a user to type examples of relations
in a database [Zloo77]. Some example entries in the query are constants, while others stand for variables that
are to be retrieved. For instance a query with the variable N in two name fields of a form will retum entries
with names matching in those two ficlds. OBE, an extension of QBE, is claimed to provide ‘‘two dimensional
programming’’ for non-programmers [Zloo81). The user can write a program to produce a form letter from
database entries, using example elements to specify variables to retrieve. Procedures can be automatically
triggered when set conditions occur in the database; for instance to acknowledge new information, follow up
previous letters, wamn of undesirable conditions in the database, replenish inventory as stocks decrease, and so
on. Queries can be combined with letters, reports and graphs which the user can program to extract the required
data. Automatic triggers, important in office systems, can cause action to be taken under particular
circumstances like low stock numbers. TRIDAILY) PEN < 500 causes a daily trigger to check for the stock of
pens being less than 500.

However, in reality the paradigm of OBE becomes muddled. Despite its name, it is not a programming by
example system. Actions are specified explicitly rather than by giving examples. The syntax is procedural and
resembles that of a rudimentary conventional programming language. To execute something daily one enters



EXECUTE(DAILY), ard to update the sum of the expenses of a manager’s staff, Update.SUM.ALL AMounT.

A second experimental forms system, OFs [Tsic82), has procedures with two parts, a precondition and an
action. Both are specified as forms. The precondition is a request to the system to *‘find a form that looks like
this”. For example, one might specify an automatically triggered procedure for processing an item order by
entering only the item name on an order form. When an order arrives, this precondition is satisfied, and an
action, also specified on a form, can be executed. The procedure might fill in the order form, and do follow-up

actions such as copying the form to appropriate users, filing a copy, and even mailing resulting requests for
parts.

Like OBE, OFs is not really a programming-by-example system. Although preconditions and actions are
specified on forms, the office worker must use special directives within its fields to instruct the system. For
example, consider an action form with fields for price, quantity, and total. The directive #mult !price ?quantity
entered in the total field directs the system to calculate its value by multiplying the updated field value of price
by the original field value of quantity, and to insert it into the total field.

Specifying procedures using logic

Logic programming languages enable users to specify procedures for database enquiry by stating goals rather
than methods. A general control strategy embedded in the language interpreter frees users from having to
consider control structure. For example, programs in the PROLOG [Cloc81] language can be specified generally,
and, according to its proponents, naturally, by anyone who knows ordinary predicate logic {Enna82}.

PROLOG accomplishes goal-directed inference by following a set of *‘rules’” which constitute the program,
and using a collection of facts represented in a database. The user formulates his enquiry by filling in known
fields of a form-like statement, and PROLOG infers the unknown fields. Any set of fields can be left unfilled, and
the system will retrieve all that match the partial specification; or all could be filled and the system will simply
check whether the record is in the database. As well as retrieving records given a partial specification, PROLOG
permits problems to be broken down into components through statements like

Goal is true if Subgoal ; and Subgoa12 and ... and Subgoal, are true.

Read declaratively, this is a statement about the relation between goals and subgoals rather than a specification
of a procedure. However, the same statement can be interpreted procedurally, as

to execute the procedure Goal, execute procedures Subgoal 7 and Subgoal,y and ... and Subgoal

A computation of a logic program amounts to the construction of a proof of an existentially quantified goal from
axioms which are in effect the statements of the program. While this may seem a rather abstract way to view a
procedure, it frees the user from thinking about the control structure of his program and allows him to
concentrate on how the task can be decomposed into successively simpler subgoals.

A raw textual interface to PROLOG is certainly not well suited to the needs of the casual office user.
However, the fundamental idea of a goal-based specification language, with control structure supplied
automatically by the interpreter, could be disguised as a forms interface. Such a scheme has several advantages.
Firstly, user and system would always have an equal opportunity to fill in any slot of any form. It has been
persuasively argued that the principle that “‘everything that can be supplied or demanded by the machine can
also be supplied or demanded by the user”, is a sound guide to user interface design [Runc86]. Secondly, forms
could be “‘active’’, dynamically displaying the contents of unknown fields as the user fills in and removes values
from known fields. Thirdly, PROLOG’s foundation in predicate logic may provide the well-educated casual user
with familiar semantics [Enna82]. Finally, a declarative, goal-oriented language may be more natural than the
procedural paradigm of conventional programming languages or the ad hoc, action-oriented paradigm of the
forms languages described earlier.



There are several unresolved questions in the use of logic programming to enable users to specify
procedures for database enquiry. Implementations of logic programming include some procedural constructs
which undermine the clean declarative semantics. Debugging normally requires a procedural approach too.
Nevertheless, logic programming does seem to offer potential for specifying certain types of procedures using
goals rather than methods.

Knowledge-based systems

Outside the office, research has shown that *‘knowledge bases™ can sometimes effectively support inference and
problem-solving [Haye83). Rather than having to specify a procedure in response to a new requirement, we
may simply be able to consult a knowledge-based system designed for the problem area. This would allow
users to accomplish procedures through informal natural-language descriptions. We anticipate the eventual
emergence of knowledge-based systems which support the specification of office procedures. However, existing
expert systems are confined to narrow, well-defined domains, while office work is varied, wide-ranging, and
open-ended. A survey of sixty odd expert systems lists no office-related ones [Geva83).

Systems which embody detailed semantic models of certain areas of office activity have been constructed
for some highly constrained domains. For example, Barber [Barb83] proposes to support office work with a
knowledge-based system. However, he views office work as problem-solving and is therefore not concerned
with specifying procedures. While certainly conceding that problem-solving is an essential component of office
activity, we nevertheless expect many problems to be more easily solved by specifying procedures than by
having to pose them correctly to a problem-solver, Several examples were given earlier.

Much of the knowledge needed for accomplishing office procedures is also needed to understand natural
language questions. For example, Kaczmarek et al [Kacz83] describe an experimental natural language interface
for interactive computer services such as electronic mail, personal calendar, word processing, and so on. The
interface is customized to a particular set of services, and might include knowledge that

* a meeting can have an owner, some participants, a time interval, and so on
¢ an individual’s schedule is composed of a sequence of meetings
¢ forwarding is an operation valid for messages but not meetings.

A vast collection of such facts would be needed by an “‘intelligent assistant’” which could learn, understand and
use office procedures, and significant research is required before we can understand how to organize this kind of
detailed knowledge.

Programming by example

A promising method of communicating procedures is programming ‘‘by example’’. The user performs an
example of the required procedure, and the system remembers it for later repetition. Simple examples include
text editors that remember a sequence of user keystrokes, and industrial robots that can be *‘programmed’’ by
leading them manually. However, such systems are limited since they can only repeat a fixed sequence. To be
more useful programming by example must also permit the sequence to be edited, conditional, iteration and
recursive nested control constructs to be added, data structures to be formed, and variables to replace certain
objects in the example sequence. Table 1 illustrates these constructs.

Four distinct ways have been proposed to accomplish these requirements:



¢ inference from several example sequences [Witt81, Gain76,And84a)

¢ generalization from example sequences based on specific knowledge of the problem domain
(analogously to existing methods for concept leaming [Mitc82, Samm83,Samm86] and robot
programming [And84b,And84c])

¢ inference from input and output without the intervening trace [Nix83, Nix84]

¢ explicit elaboration of the example sequence by the casual user [Smit75, Halb81, Halb84).

In each case the user gives one or more examples and the system is expected to infer a procedure for performing
the task. To be useful, the procedure must work correctly not only for the original examples but in other
situations too. In this sense the inference is inductive since a general conclusion must be derived from
individual cases. The examples must be generalized. Like any inference, such a procedure may be incorrect in
that it fails in some situations. It is up to the user to give suitable examples in the right way.

A skilled teacher will select illuminating examples himself and thereby simplify the learner’s task. The
benefits of carefully constructed examples were appreciated in the earliest research efforts in learning. Winston
[Wins75] showed how ‘‘near misses” — constructs that differ in just one crucial respect from examples of a
concept being taught — could radically diminish the search required for generalization. Confident that its
teacher is selecting examples helpfully, a learning system can assume that any difference between an example
being shown and its nascent procedure is a critical feature.

Recently, Van Lehn [Lehn83] has formalized this notion of a sympathetic teacher in terms of what he
calls ““felicity conditions’’, constraints imposed on or satisfied by a teacher that make learning better than from
random examples. One obvious condition is that the teacher should not (intentionally or unintentionally) mislead
the student. Another is that the examples given should correctly represent the procedure. If the absence of
something is important, the teacher should point it out explicitly. For example, if the absence of a particular
document is crucial to an office procedure, the user should always check for it when performing examples of the
procedure. More generally, the teacher should show all work and avoid glossing over intermediate results.
Examples should not by coincidence include features that might mislead the leaner: one should not illustrate a
procedure to change the recorded name of newly married women, by using a woman whose original family
name happens to coincide with her husband’s; one should not illustrate the geometric concept of isosceles
triangles with ones that happen to be congruent. Finally, the teacher should introduce one essential new feature
per lesson and not try to teach multiple differences at once — a similar condition to Winston’s ‘‘near miss’’
approach.

But how easy is it for an office worker to provide good examples to a learning system? Office workers are
not trained teachers, When systems expect to be taught through strict felicity conditions, the user requires not
only a deep understanding of the concept, but must be capable of selecting effective examples. Second, in
practice learning systems requiring more than a single example demand ‘‘perfect’”” ones — they cannot infer
effectively from the (typically) noisy traces provided. Third, there is a question of confidence — when does the
user feel he can trust the inferred program? Finally, the notion of ‘‘ease of use’”” may mislead the user into
expectations that cannot be delivered [Thim86].

The general problem of inducing procedures from examples is rather intractable. Inference of rules from
examples has long been studied, is in general very difficult, and requires either the exploration of vast search
spaces or the cooperation of the user in augmenting examples with more general control information. Despite
these difficulties, however, programming by example fits naturally into the paradigm of direct manipulation in
office systems. Indeed, it is hard to see how the potential benefits of direct manipulation can be fully realized in
the absence of a method for showing the system how to do routine procedures. Following an initial introduction
to the easy problem of specifying straight sequences of actions by examples, we report four ways which have
been proposed for demonstrating more complex tasks. The systems described are limited and experimental, but
nevertheless instructive. Although not all are confined to examples of office procedures, their techniques could
be applied to offices in the future.



Macro operations

Programming by example has long been used for specifying procedures that are simply sequences or ‘‘macros”’
of elementary operations. No inference is required since the example is the procedure. For instance, the method
of leading industrial robots ‘‘by the hand™* is a popular way of specifying a movement sequence o a robot
{Alla79,MacD84). Spray-painting robots are taught by being led through the painting sequence, the operator
actually painting a sample object as he goes [Vacc82,Hau74a,Hau74b,Prod82,Indu82]. The robot can then
Tepeat the sequence, painting another object, which must be in the same position and orientation. Even though
this technique can capture only fixed sequences, it overcomes the difficulty of having to specify continuous
painting movements in the six dimensions of robot hand position and orientation.

In another domain, the use of ‘‘start-remembering’, ‘‘stop-remembering’’, and ‘‘do-it” commands
(Gosl81] enable a text editor to learn editing sequences by example. Such sequences can be named and filed for
later use. One sequence can invoke another, allowing a complex hierarchy of nested sequences to be specified.
However, such constructs as iteration, conditionals, variables and data structures are not accommodated. A
practical difficulty with having a special mode — remembering mode — for recording a sequence is that one
frequently has already started the sequence before deciding to record it, and so must retrace one’s steps and
begin again. Also, some mechanism should be available to the user for removing errors as they occur or for
editing them out afterwards. Otherwise, the error will remain in the trace, possibly rendering it useless.

To specify procedures more complex than a fixed sequence, it is not enough to record just one example.
There are two ways to view the problem. On the one hand, we might consider that to create such procedures,
variables, conditional and iterative constructs, and perhaps data structures, are required. Moreover, the resulting
structure should be editable. On the other, we might regard the given sequence as an example of performance
which is to be generalized into the desired procedure. The procedure might still contain variables, data
structures, conditionals, iteration and nesting, since these are all themselves generalizations of elements in the
example.

Inference from traces

Practical systems for inferring procedures from example traces of their execution lie somewhere between two
extremes. One pole involves no knowledge of the semantic domain within which procedures are constructed,
while the other relies on domain knowledge to guide generalization of the examples. And while one might
regard the two poles as similar in principle, differing only in the amount of domain knowledge available, in
practice different techniques are employed. This section introduces three systems with little domain knowledge,

* inference of a sorting procedure
¢ a self-programming calculator
¢ learning to “‘count in the head”’, or internalizing numerical manipulation;

and contains a more extended discussion of one with substantial domain knowledge:

* acquiring robot procedures from examples.

Inference of a sorting procedure. Programming by example can be trivial if the examples are presented
in the right way. Gaines [Gain76] showed how a program to sort a list of numbers can be inferred from a trace
of execution on a single example. The trace is expressed in a programming language notation. The fragment of
Figure 1(a) shows how a particular five element array A can be sorted using a bubble sort in 86 statements, six
of which are reproduced. Figure 1(b) explains how conditionals are included by noting the condition that held
at the time,



Due to the use of variables, many statements are repeated in the trace. The entire 86 statements include
only 15 different ones, six of which appear in the Figure. When these 15 statements are connected into a
directed graph according to their position in the trace, a correct and almost complete flowchart for a bubble sort
appears! Only a link necessary for sorting an empty array is missing, and an example with the empty array
completes the procedure.

While this is an impressive demonstration that programming by example is possible, it does place a heavy
burden on the user. He must choose variables judiciously. For instance, it would be easier to give traces in the
form shown in Figure 1(c), without variables. Then the method would fail completely because almost every
statement in the trace would be different. Generating a trace of the required type for a bubble sort is tedious
and error-prone, particularly since variables must be incorporated and mentally updated when the trace is
compiled.

The system does assimilate control constructs from examples. Still, the user must make all tests explicit.
If .. then ... else is performed by “‘? .. 7 statements which record the results of conditional tests in the
example trace. Branching occurs naturally from this once the directed graph is formed.

Self-programming calculator. Another project studied the inference of iterative computations from
examples executed on an electronic calculator {Wit81]. People who use interactive computers regularly know
that there are many situations in which it is difficult to decide whether to do a minor, but repetitive, task by
hand or to write a program to accomplish it. Slmple repetitive, arithmetic operations frequently present this
quandary. For example, one may wish to plot y = xe % for a dozen or so values of x; should it be done on a
hand calculator or by wmmg a BASIC program? The self-programming calculator watched the keystrokes made
by a person calculating .1e!~! and then 2¢!"2, and inferred the sequence by halfway through the second
iteration. Figure 2 illustrates this example. Once it has inferred the sequence, the calculator behaves as theugh
it had been explicitly programmed for the job, pausing for input of x and then immediately calculating the
corresponding value of y.

The generalization scheme is simple but effective. The calculator must infer that .1 typed by the user is
an input variable, but that the 1 in the exponent is not. It does so by waiting for a second confirmation of a
constam number before accepting it as part of the predictable sequence. Thus the user needs to enter the ‘1’ in
xe!* twice before the system will incorporate it as a constant into its stored procedure. However, the problem is
not so easily solved in general. For example, if the user had entered the sequence given in Figure 2(b), the
calculator would never have realized that the two occurrences of x were the same parameter.

The calculator modelled did not have conditionals, so these were not inferred. Only the outer, infinite
iteration was inferred. Also, the calculator does not enable the sequence to be edited, and has no facility for
such things as single-stepping through the taught program. Although these appear to be implementation
considerations, they may also have implications at the conceptual level.

Internalizing numerical manipulation. A scheme has been described which learns to count with the aid
of an external counter [And84a). It can push buttons to clock over the digits of a three-digit counter, then when
the counter is removed it can count “‘in its head’’, thus internalizing the externally supported counting. The
system’s teacher takes it action by action through an example sequence. As the interaction proceeds, the system
gradually makes more and more decisions for itself, eventually being able to count internally. The leamning
sequences are too long to reproduce here. The summary of Figure 3 only shows crucial events in a trace
fragment; less significant events intervene between all those shown. Actions are for counting “‘out loud”’, or for
pushing buttons on the counter. The values of counter digits are inputs to the system.

Figure 3(a) shows the teaching of a few counting combinations, using the counters. Of the vast number of
possible combinations, only enough are taught to illustrate digit incrementing, names of digits and transfer of
carries. The system is taught to count from zero using a counter with three digits, and a button for mcrementmg
each digit. Teaching is done in a cycle of three main steps:
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e output current count
¢ push an increment button on the counter
o see new count digit.

On being presented with a stimulus for hundreds, tens or units — representing a one, ten or one hundred
value monetary note — the system is able to count without the aid of the counters, by ‘‘imagining’’ the counters
““in its head” (Figure 3(b)).

The system remembers multiple fixed length sequences of events — a multiple context — from the
example counting sequence. Later it uses these remembered sequences to predict and perform actions for
counting monetary values.

We have now seen three systems which infer procedures from traces using little domain knowledge. They
vary widely in suitability for the casual user. The self-programming calculator is easiest to use, while the others
require special knowledge of the user when specifying a procedure. The sorting system required the user to use
variables explicitly and indicate conditiona! tests in trace fragments. The counting system requires the user to
give all actions in the fragment traces, including some required for the internal operation of the learning system
that are not obviously part of the external task. Although the implementations themselves are experimental and
probably somewhat fragile, we regard all three systems as conceptually robust because they deal directly with
traces from the real world rather than relying on built-in knowledge and its inherent fragility in real situations.

Acquisition of robot procedures. The knowledge-based system NODDY [And84b,And84c) acquires robot
procedures, complete with control information which is not explicitly present in the examples. It copes with
problems of action sequencing, and also handles real numbers representing angles and distances. It employs an
explicit, pre-programmed, generalization hierarchy, and pre-programmed information on about 30 basic
mathematical and set-theoretic operators that may be combined to create complex generalizations.

Examples are traces of the desired procedure. The first trace is taken to be the initial version of the
procedure. As further traces are seen they are merged with the nascent procedure, generalizing it in various
ways. The system cannot reconsider generalizations it has made in the current version of the procedure, and
therefore adopts a conservative policy of requiring considerable evidence before generalizing. The elements that
make up the traces are called *‘descriptors’’.

The principal problem is to meld two example traces of execution of a procedure into one augmented
state-transition representation that encompasses them both. In the first stage of generalization, if two descriptors
are identical and unique within each example trace, they are assumed to emanate from the same state. In
particular each trace begins with a start descriptor which forces the initial states of the two sequences to be
merged, and ends with stop which merges final states. This builds one state model from the two traces.
However the parts corresponding to each still remain largely scparate, since descriptors are rarely identical (apart
from start and stop). The second stage of generalization examines states that are different but whose
predecessor states are the same, or whose successor states are the same, and attempts to unify the descriptors
associated with each. If they can be unified, then the states are coalesced. Unification is done through the
generalization hierarchy, and succeeds if the two descriptors have a common generalization. Since two states
may be unified only if their successors or predecessors have been unified, the process proceeds from states
matched at the first stage, propagating both backward and forward. Finally, a third stage examines states that
are different but whose predecessors and successors are the same, and again attempts to unify the descriptors but
this time with a more liberal unification procedure. This uses the same generalization hierarchy as before, but
involves synthesizing functions which unify parameters of the descriptors. Synthesis is accomplished by
searching a function space, possibly using numbers which have been ‘‘mentioned’’ in nearby descriptors as
components of the function. This introduces variables into the state-transition representation, effectively creating
a form of augmented state-transition network [Wood70). It is a very expensive process in terms of search time,
and is only undertaken when there is strong evidence (identical predecessor and successor states) that the
descriptors matcht.
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Figure 4 shows an example of NODDY in action. The system is to be taught how to get from the start
point (-6, 0) to the end point (0, 0), circumnavigating obstacles in the way by retreating perpendicularly to the
collision surface, moving a short distance parallel to it, and then continuing. Figure 4(a) shows three example
traces, both as diagrams and in the form in which they are given to the system. Primitive actions are start, stop,
and a relative move with polar coordinates. Observations are also given to the system: its current position
at(x, y), and any contact with an obstacle contact Q (Q being the angle of contact). From these three examples,
one with no obstacle and two with single obstacles in different orientations, the system can generate the desired
procedure shown in Figure 4(c). Note that the procedure is capable of avoiding several obstacles and even
feeling its way round a large obstacle of any (convex) shapet.

Inspection of the procedure shows that it uses an additional primitive not in the example traces. The
action move-until-contact-toward(x, y) moves towards a point specified in absolute coordinates, stopping on
contact with an obstacle. It was introduced through the generalization hierarchy shown in Figure 4(d). This
hierarchy conveys what the system knows about the various actions available. (Also known are the
transformations between Cartesian and polar coordinates, not shown.)

When the first two traces are merged, the first stage of generalization unifies the start and stop states. The
second stage examines the two states immediately following start, and the two immediately preceding stop, and
tries to merge them. The generalization hierarchy is used at this point. For example, the move 6@90 will be
merged with move 3@90 into move-until-contact 6@90 since the shorter move ends with contact. The result of
this stage of generalization is to merge the middle state of the first trace with both the second and penultimate
state of the second trace, forming a single state out of three. This is shown in Figure 4(b) as the state at(?, ?);
move-until-contact-toward(0, 0), in other words, from anywhere, move toward the goal until contact is made.
As can be seen, this is the point at which the loop in the procedure appears. When the third trace is considered,
state merging is prevented by different parameters appearing in the move actions. However, there are strong
structural reasons for attempting to merge corresponding states, and so NODDY embarks upon the third stage of
generalization, namely functional induction. It rationalizes the difference between the move parameters because
they are functions of the contact angle already observed. This produces the final procedure.

NoDDY has an inherent robustness in requiring considerable justification for its generalizations. However,
once an incorrect generalization is made the mistake cannot be corrected. Still, NODDY is yet an experimental
system.

A problem closely related to programming procedures by example is ‘‘concept leaming’’; for example
leaming the concept of a royal flush poker hand. In fact the distinction between procedure and concepts is
blurred, since descriptions can be executed by modem programming languages such as PROLOG [Witt87].
Established theoretical results for identifying languages show that there is no alternative to searching the space
of candidate descriptions [Gold67, Angl83, Witi87). In general this makes acquiring procedures from examples
intractable, because of the huge spaces that would need to be searched. However, practical systems provide
methods for limiting the search. Andreae’s [And84b,And84c) system effectively uses built-in knowledge and the
requirement for justification to limit this search. The version space method stores the finite upper and lower
lattice edges of the plausible generalization set, attempting to merge the two as examples are presented [Mitc82].
Thus it enables a search of a finitely wide, but perhaps infinitely deep, lattice of generalizations [Witt87].
MARVIN [Samm83, Samm86] synthesizes general purpose computer programs from examples, requiring the
teacher to give considerable guidance about what already known procedures might be used in the new one, thus
drastically limiting the search. Witten and MacDonald [Witt87] investigate the practical and fundamental issues
of concept learning. While holding great promise for the future, concept leaming is not yet a mature technology
suitable for practicing knowledge engineers or office system users.

1 In fact, the procedure does not require both pred and r states to be identical, but is applied to paralle] chains of states
that begin and end in the same state and, if iucccsxful, merges com,spondmg members of the chains. Consequently the merging is only
done if both predecessor and successor states end up being identical

1 NoppY can also negotiate some concave objects. .
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Inference from input and output

All the above systems for programming by example attempt to generalize the user’s action sequences into
procedures. The user’s actions in each case are a single sequence, a “‘trace’’ of an execution of the desired
procedure. But inference need not use traces; instead it could be based solely on the initial and final states
exhibited in the examples. One might say that the user shows the system what to do rather than how to do it.

The Editing by Example system of Nix [Nix83], embedded within a screen editor, allows users to
exemplify a text transformation. The system then attempts to synthesize a procedure for selecting other parts of
the file which contain *‘similar’ text and performing the transformation on them too. If only one example is
specified, the system will seek a literal match with the input elsewhere in the file and simply replace it.
However, other examples serve to show which parts of the text are “‘constant’”” and which may vary. A
template is constructed which distinguishes constant and variable parts, and an editing transformation is built
which re-arranges the variable parts appropriately. The transformation is represented as a ‘‘gap grammar’’, a set
of grammatical rules in which boths gaps and strings appear. Figure 5(a) shows sample input and output texts,
while (b) gives a gap program which implements the transformation and could be inferred from the examples.

The scheme is interesting in that input/output pairs are used to exemplify a procedure. Information about
how the user performs the transformation is discarded. While it seems rash to jettison potentially useful
information, Nix notes that any reasonably rich editor will offer many ways for performing any given job. For
example, a user might search for a string visually and move the cursor to it, or use a search command.
Moreover, users make errors and repair them as they go, perhaps accidently deleting text and retyping it. Such
operations should not be faithfully repeated whenever the procedure is executed! Analyzing traces would be
virtually impossible if users were to define new commands in an extensible editor. Nix concludes that little is
lost in discarding such unreliable information.

This may be so in an environment like an editor, where inputs and outputs are well defined. However, the
argument is unlikely to apply in general. In ill-defined environments it may well be hopeless to attempt to infer
procedures just from input and output. At the very least, traces give clues as to the sequence the procedure
might follow.

Improved explicit methods

An experimental ‘‘programming by example” interface has been constructed for the Xerox Star office
workstation which operates according to the direct manipulation paradigm [Halb81, Halb84]. First, a method for
recording sequences of actions was established, with commands for:

e start-remembering
 stop-remembering
e do-it,

similar to the robot and text editor methods described above. Actions were recorded at a level of abstraction
which matches the user’s conceptualization, as illustrated in Figure 6. Part (a) shows a simple sequence for
moving a file to another folder. Note the level of abstraction in ‘‘select Report’ rather than *“‘move the cursor
to point (260,410)".

When an icon is sclected on the screen, it is necessary to disambiguate the mode of reference. The
significance for the user may be in the icon’s name or its position; alternatively there may be no significance in
that particular selection (for instance, when iterating through all icons). Which choice is make will radically
affect future executions of the procedure. This is the problem of generalization: how does a system infer
general descriptions given only some examples? The self-programming calculator system resolved the question
by waiting until it had seen a couple of iterations and inferring that items that changed were input. A similar
but more sophisticated approach is taken by Mitchell [Mitc82], who assumes a hierarchy for generalization of
items, rather than the calculator’s *‘constant-or-variable’’ dichotomy. However, in the office context this would
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require a strong semantic model.

Instead, one can ask users to indicate explicitly how to generalize example icons, an approach pionecred
originally by Smith [Smit75]. Halbert’s first system [Halb81] had users select the generalization from a pop-up
menu. To open a folder and extract the first item, putting it on the desktop and closing the folder, a user might
perform the steps shown in Figure 6(b). After each selection he would indicate how to generalize the icon using
the choices shown in (d). For example, ‘‘same place” after “‘select To-Smith” indicates that the program
should choose whatever is in that position on the screen. The procedure formed is shown in CUSP notation in
(c), while Figure 7 indicates what the screen might look like when the initial example has been finished.
Unfortunately it is all too easy to forget to generalize an item while recording, so [Halb84] had users specify
this at the end of the example instead. Users manipulated the program itself, using an interface of icons, menus
for generalization and iteration, and so on. For example, when recording the sequence of Figure 6(b), the user
would omit the lines ‘‘ask for a similar object’” and ‘‘same place’’. When he had finished he would be
prompted to select a generalization from Figure 6(d) for each item involved (ie Letters and To-Smitk). Halbert’s
design change reflects his belief that it is hard to denote programming constructs when tracing through an
example, but easy to do so afterwards. Whereas CUSP is hard to write, he considers it easy to edit.

Both Halbert’s systems represent a considerable improvement over other explicit methods such as
command languages. However, they do not avoid the difficulty some users will have in articulating algorithms
for complex procedures.

Two systems have recently appeared for programming by example on personal computers: the TEMPO
system (Affinity Microsystems Ltd) and AUTOMATOR [Poun87]. Both have limited ability for the casual user to
specify control and data structures, sacrificing power for ease of use. TEMPO works within a direct-manipulation
interface. The user selects branches and loops explicitly, but conditions are restricted to simple textual
comparisons; Figure 8 shows an example. AUTOMATOR is more powerful. It incorporates a general-purpose
command language, and thus moves away from the programming by example paradigm. Still, it is claimed that
a casual user can easily teach the system such tasks as logging on to a large computer, awaiting a response,
retrieving mail, and so on.

Conclusion

Table 2 summarizes the issues raised by our study of current and future prospects for casual-user specification of
office procedures. The most effective user interfaces represent real office objects iconically and allow users to
manipulate them directly on the screen. However, the direct-manipulation metaphor — at least as presently
conceived — does not help when it comes to communicating procedures. Command language systems and
monolingual programming environments permit procedures to be specified, but are unsuited to casual users.
Even custom-designed command languages such as CUSP fall far short of the ideal for a casual-user interface.
Forms-based systems which revolve around a database provide an alternative to icon-oriented systems, and forms
programming languages have been defined and implemented. Again, however, these seem to reduce to primitive
command languages, lightly disguised. The root problem is that procedural programming in either icon or
forms-based systems conflicts with the basic metaphor of the interface. There is some hope that logic
programming techniques might be usable within a casual-user forms interface, enabling users to specify
procedures for database enquiry by stating goals rather than methods. Another possibility is that knowledge-
based systems may eventually allow users to specify some office procedures informally through natural-language
descriptions.

A promising method of communicating procedures is programming ‘‘by example”’. To be useful
programming by example must permit the specification of conditionals, iteration, nested structures, variables,
data structures and editing. Four distinct ways have been proposed to accomplish these requirements, and each
has been exemplified by a description of one or more experimental systems. The basic problem is that of
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generalization: an example does not by itself provide enough information to unambiguously define the
procedure. One way of generalizing is to make inferences from several example sequences. Another is to use
specific pre-programmed knowledge of the problem domain. A third is to discard the sequence of steps involved
in executing the examples and concentrate on formalizing the input-output transformation that they exhibit.
Finally, one can ask the user to elaborate the example sequence explicitly, and provide a convenient interface
for him to do so.

The column of Table 2 labelled ‘‘robustness’ is of particular interest. Systems which provide feedback to
the user directly and unambiguously are quite robust since users will seize the opportunity to correct any errors
of interpretation. These include direct manipulation, forms interfaces, and explicit programming by example. In
all these cases users can see what they are doing. This contrasts with command languages, which present great
opportunities for misunderstanding, although in practice human interface technology has developed to the point
where the dangers can be anticipated and defused (by such techniques as alert messages and undo commands).
Programming by example with only non-branching sequences lacks robustness because small changes in the
definition of a problem can easily take it outside the system’s capabilities. Programming by example with traces
has the potential to be highly robust by dispensing with any a priori assumptions and making inferences directly
from actual data. Moreover such systems typically retain almost all the information in examples they have seen,
so conclusions can always be reconsidered. Knowledge-based systems, on the other hand, are likely to lack
robustness at least until knowledge bases are much larger than they tend to be at present.

Although there are no easy solutions to the problem of end-user definition of office procedures,
programming by example — with either explicit or implicit generalization — appears to have considerable
potential in the near future.
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Table 1: Constructs required for specifying procedures

construct form example
if... if Name is "John Doe"
conditionals then... then alert manager
else... else (no action)
iterations are loops for, while, repeat for all files in folder "New Reports

print the file

for all folders
nested control structure | structures within structures for all files in folder
print file
Name John Doe
. . Phone (403) 234-3467
data structures structured information Address 4432 69 St NW
Postal E4A-1S4

variables

set of objects

let file be “‘letter1”

let printer be ‘‘laser’’
(then later)

print file on printer

Example Procedure

Open uMailn

end for loop

for each new mail item (New-Mail-Item)
open New-Mail-Item
let Sender be sender part of data structure New-Mail-Item
if there is no folder called Sender
then create a new folder called Sender
copy New-Mail-Item into Sender folder




Table 2: Summary of methods for specifying procedures to office systems

Method Robustness Suitability for the | Procedure Systems
casual user specification
Direct Manipulation || good excellent no Macintosh, Star
Command no (idea) no powerful Unix sh, IBM JCL,
Languages yes (implementation) BASIC, Lisp,
Pascal, Ada, ...
Forms good good in limited | muddled QBE, OBE, OFS,
domains Prolog
Knowledge-based experimental experimental pose problem in | Barber, Kaczmarek
narrow domain
PBEf — sequences || no good limited Emacs,  industrial
robots
PBE — traces with || good (has all experimental good Gaines, Witten,
little domain || information J.Andreae
knowledge recorded in traces)
PBE — traces with || experimental experimental limited to narrow | P.Andreac
domain knowledge domains
PBE —  from || yes yes limited to well- | Nix
input/output defined  domains
such as  text
transformation
PBE — explicit good yes, so long as the | good Halbert

procedure does not
become complex

PBE stands for Programming-by-example




Figure 1: Inference of a sorting procedure [Gain76]

(a) Fragment showing six of 86 statements in a trace of sorting a particular five element array

(b) Format of the conditionals in the fragment.

(c) A fragment of a more reasonable trace for a user to give. Unfortunately the method would fail
completely with this trace since almost every statement in the trace would be different.

(a)
? A[l+1] < A[I] ? | notes that the next two elements are out of order
x = Ali] swaps them, using temporary variable x
Ali] = Ali+1]
Afli+l] =x
i=i+1
2i<t-17? notes that the end of the array has not yet been reached
(b)
[? Ali+1] < A[i] 7]
means
note that for the present value of i (say 1) and array A’s
present contents (say A[1] = 20 and A[2] = 15), Ali+1]
is less than A[i]
()
? Al2] < A[1] ? | notes that the next two elements are out of order
x = A[l] swaps them, using temporary variable x
All] = A[2]
A2l =x

2<5 notes that the end of the array has not yet been reached




Figure 2: Self-programming calculator [Witt81]

(a) The calculator attempts to predict and push the next key itself. An undo allows
the user to correct.

(b) Learning y=xe Ix y s .1, .2, .3, then .4. The shaded area shows the operations
the calculator performs.

(c) If the user performs the calculation without using the memory, then the calculator
will never realize that the two different inputs for the same variable are the same.

(a)
(" T — — N
: numeric display .
[sm ILCOS“taD HeXpnlog || ] mc clear memory
I ] I W+ Hme|[mr mr retrieve from memory
1]
s s ell x|
| 0 [undo| [ =] [m+=]| m+= add to memory
- J
(b)
(.1 mec m+= +/- + 1 = exp x mr = e \\
5 _ — answer
displayed
3 here
4 \_ Y.
\— _/
(©)
e N
1 =
2 = answer
displayed
3 = here
4 |4 =
\_ predicted )




Figure 3: Internalizing numerical manipulation [Andr84)

(a) Firstly the system is taught to count from zero.
(b) The counters are removed. The system counts monetary values ‘‘in its head”’.

(a)

Action Input

NO HUNDREDS -
NO TENS -
NO UNITS -
push units button | see units digit ‘‘1”’
NO HUNDREDS -
NO TENS -
ONE UNIT -
push units button | see units digit ‘2"’
NO HUNDREDS -
NO TENS -
TWO UNITS -

(the teaching continues on to teach other combinations,
but it is not necessary to teach every one possible)

(b)

Actions Inputs

(the count is presently at 120)

ONE HUNDREDS -
TWO TENS -
NO UNITS see hundred unit note
TWO HUNDREDS -
TWO TENS -
NO UNITS -

(and so om)




Figure 4: Programming a robot by example [And84b].

(a) Three example robot traces
(b) Partially complete procedure
(c) Final, desired procedure
(d) Generalization hierarchy
(@)
4
0, -6)
at (0,-3) contact 90
move 0.5@-90
at (0,-3.5) at (0.35, -3.35)
move 1@0
at (1.06, -2.65)
move 2.87@102
0,0) 0,0)
g
(®) ©
r N\
C a7 )
move-until-contact-toward (0,0) move-until-contact-toward (0,0)
m a1 (0, -3) contact 90 at (7, 7) contact Q
op move 0.5@ -90 op move 0.5@(Q-180)
at (0, -3.5) a®,?
move 1@ 0 move 1@(Q-90)
\ W, \_
0]
r

absolute —§  move-until-contact-

moveto(x,y)

general

specific




Figure 5: Editing by example [Nix83, Nix84]

(a) Example text transformation
(b) A gap program for (a). [J indicates a gap.

(a)
(
Yankees 10, Baltimore 3
Mets 6, Chicago 5
Angels 2, Detriot 0
T
1s transformed into
Baltimore lost to the Yankees, 10 to 3
Chicago lost to the Mets, 6to 5
Detroit lost to the Angels, 2to 0
\
(b)
4

(bol -1-0-2-, O-3- O4-e0l ) Initial State

is rewritten as

v

@ol -3-Olost O tod the O-1-,00 2- Otod 4- eol ) Final State

-




Figure 6: The Xerox Star programming-by-example interface [Halb81,Halb84]

(a) Actions recorded as a straight sequence, as the user performs the task using a mouse.

(b) Specifying generalization during recording. Again these actions are recorded as the user
manipulates a mouse, windows, menus, and function keys (see also Figure 7).

(c) cusp procedure formed for (b) [(Halb81]

(d) The generalizations possible

(a)
Select Report
Move Report to Reports-Folder

(b)

Action Generalization
start recording
select Letters ask for a similar object
opent Letters
select To-Smith same place
movet

set down cursor on the desktop
closet Letters

stop recording
tThese generic system actions are selected by function keys

©

Define A to be the icon asked for by ‘‘Select a Folder, then resume.’’;
Open A;

Define B to be the icon in row 1 of A;

Move B to the Desktop;

Close A;

d

same name

same place

ask for a similar object




Figure 7: A mock-up of Halbert's [Halb81] example task given

Letters

in Figure 6
Letters

To-Smith

To-Smith

To-Jones




Figure 8: Specifying an iteration in Tempo

Tempo is recording user actions in the direct manipulation interface
to the Apple Maclntosh. The user has explicitly selected the option
"Loop If", and selected "=" as the test between the clipboard contents
and the text "Applications”. The clipboard is shown at top right with
that same text in it. So in this case the loop would continue.
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