
THE UNIVERSITY OF CALGARY

Redundant Number Multiply-Accumulate-Modularized

Digital Filters

by

Vishwas M. Rao

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR

THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

CALGARY, ALBERTA

August, 1996

(jE Vishwas M. Rao 1996

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of

Graduate Studies for acceptance, a thesis entitled "Redundant Number Multiply-

Accumulate-Modularized Digital Filters" submitted by Vishwas M. Rao in partial

fulfillment of the requirements for the degree of Master of Science.

Supervisor, Dr. B. Nowrouzian
Dept. of Electrical and Computer Engineering

Dr. L.T. Bruton
Dept. of Electrical and Computer Engineering

Dr. R.A. Stein
Dept. of Electrical and Computer Engineering

Dr. M. Ahmadi
Dept. of Electrical Engineering,
University of Windsor, Canada.

Date-

11

As a blazing fire burns firewood to ashes,

so does the fire of knowledge burn to ashes

all reactions to material activities

- The Gtä.

ABSTRACT

This thesis presents mathematical and graph-theoretic techniques for the design

and implementation of digital filters incorporating two important practical features,

namely, structural uniformity and fast processing speeds. The desired structural uni-

formity is achieved through multiply-accumulate (MAC) modularization of the digital

filter, where MAC-modularization is defined as the process of translating the filter

algorithm consisting of separate multiplication and addition operations into a corre-

sponding algorithm consisting of MAC operations only. The desired fast processing

speed, on the other hand, is achieved by using redundant number arithmetic to im-

plement the constituent MAC operations. The use of redundant number arithmetic

eliminates the carry-propagation in the corresponding arithmetic operations, leading

to a processing speed which is totally independent of the signal wordlength of the dig-

ital filter. The proposed techniques are illustrated through their application to the

MAC-modularization of a LDI Jaumann digital filter and its implementation using

novel redundant number MAC arithmetic architectures.

I"

ACKNOWLEDGEMENTS

The author is deeply indebted to his supervisor Dr. B. Nowrouzian who has been

his friend, philosopher, and guide throughout the course of this research. This research

was made possible by Dr. Nowrouzian's tremendous support, encouragement, and

motivation. The author also wishes to thank him for the extremely careful reading

of this thesis and for all the valuable suggestions.

The author greatly appreciates the strong encouragement provided by Dr. R. Stein

throughout this program. Many thanks also to the staff within the Department of

Electrical and Computer Engineering for all their help in navigating the administra-

tive maze of being a graduate student.

The author wishes to thank his research colleagues: Thomas Borsodi, Robert

Morris, Arthur Fuller, and Yvan Botteron, for the reviews during the group meetings,

and for the several interesting discussions. A special note of thanks to Umaiyalan

Paramananthan, Sridhar Krishnan, and several other friends for their support during

demanding times.

The author gratefully acknowledges the financial support for this research, pro-

vided in part, by the Department of Electrical and Computer Engineering through

the Graduate Research Scholarship, by the Natural Sciences and Engineering Research

Council of Canada, by Micronet, by Nortel North America, and by the Faculty of

Graduate Studies through the Robert B. Paugh Memorial Scholarship in Engineer-

ing.

The foundation for this research was established by the many researchers whose

technical contributions remain a source of inspiration to the author. The author is

forever indebted to them.

Finally, the author owes a special thanks to his family for being a constant source

of encouragement, support, and optimism throughout.

iv

To

my mother, my father,

and

in the memory of

my grandmother.

V

CONTENTS

APPROVAL PAGE

ABSTRACT

ACKNOWLEDGEMENTS iv

DEDICATION V

TABLE OF CONTENTS Vi

LIST OF TABLES X

LIST OF FIGURES Xi

LIST OF SYMBOLS AND ABBREVIATIONS xiii

CHAPTERS

1. INTRODUCTION

2. THEORETICAL BACKGROUND FOR REDUNDANT NUMBER
ARITHMETIC 8

2.1 Introduction 8
2.2 Arithmetic Schemes for Fixed-Point DSP 9

2.2.1 Number Representation 10
2.2.1.1 Traditional Number Systems 10
2.2.1.2 Non-Traditional Number Systems 12
2.2.1.3 Quasi-Traditional Number Systems 13

2.2.2 Processing Methodology 14
2.3 Redundant Number Arithmetic 15

2.3.1 Signed-Digit Number Representation 15
2.3.1.1 Conversion between SDNR and Traditional Radix-r

Number System 16
2.3.1.2 SDNR Addition and Subtraction 16

2.3.2 Signed-Binary Number Representation 18
2.3.2.1 SBNR Two-Level Encoding 19
2.3.2.2 SBNR Addition and Subtraction Cells 20

2.3.3 Mixed SB/TC Number Addition and Subtraction 22
2.3.3.1 Theoretical Background for Mixed SB/TC Number

Addition and Subtraction 22
2.4 Theoretical Background for High-Speed Multiplication and MAC op-

eration using SB Arithmetic 25
2.4.1 Modified Radix-4 Recoding of SB Numbers 25

2.4.1.1 Theoretical Background for Modified Radix-4 Recod-
ing of SB-Numbers 26

2.4.1.2 Algorithm for Modified Radix-4 Recoding of SB-Numbers 28
vi

2.4.1.3 Implementation of the Modified Radix-4 Recoding of
SB-Numbers 28

2.4.2 Rounding Techniques for SB-Arithmetic 30
2.4.2.1 SB RNU and RNE Techniques 30
2.4.2.2 Algorithms for SB RNU and RNE 38
2.4.2.3 Implementation of the SB RNE Algorithm 40

2.4.3 Overflow Processing for SB Arithmetic 41
2.5 Chapter Summary 43

3. HIGH-SPEED REDUNDANT NUMBER ARITHMETIC ARCHI-
TECTURES 44

3.1 Introduction 44
3.2 High-Speed Mixed SB/TC Digit-Serial Modified-Booth Multiplication 45

3.2.1 Theoretical Background for High-Speed Mixed SB/TC Digit-
Serial Modified-Booth Multiplication 46
3.2.1.1 Algorithm for Mixed SB/TC Digit-Serial Modified-

Booth Multiplication 48
3.2.2 Mixed SB/TC Digit-Serial Addition and Subtraction 49
3.2.3 Architecture for High-Speed Mixed SB/TC Digit-Serial Modified-

Booth Multipliers 51
3.2.3.1 Generic Hardware Module for Mixed SB/TC Digit-

Serial Modified-Booth Unit for General Values of D,
n, and i 53

3.2.3.2 Pre-Rounding Module for the Mixed SB/TC Digit-
Serial Modified-Booth Unit for General Values of D,
n, and i 55

3.2.3.3 Round and Convert Module for the Mixed SB/TC
Digit-Serial Modified-Booth Unit for General Values
ofD,n, and i 57

3.2.4 Re-pipelining 58
3.2.5 Performance Analysis 61

3.2.5.1 Parameterization 61
3.2.5.2 Comparison with Existing Digit-Serial Multipliers 62

3.2.6 Verification 65
3.3 High-Speed Mixed SB/TC Parallel Modified-Booth MAC Arithmetic

Architecture 67
3.3.1 High-Speed Mixed SB/TC Parallel Modified-Booth MAC Op-

eration 71
3.3.2 Mixed SB/TC Parallel MAC Arithmetic Architecture 73

3.3.2.1 Modified-Booth Recoder Modules 74
3.3.2.2 Modified-Booth Decoder Modules 74
3.3.2.3 Mixed SB/TC adder row 75
3.3.2.4 SIGN and STICKY Generation Module 76
3.3.2.5 Correction Logic Module 76

vii

3.3.2.6 Rounding, MSW-addition, and Overflow Correction
Module 77

3.3.2.7 Accumulator Module 78
3.3.2.8 CLA Conversion Module 78

3.3.3 Performance Characteristics 78
3.3.3.1 Hardware Area Requirement 78
3.3.3.2 Computational Time Requirement 79

3.3.4 Verification 80
3.4 High-Speed Fully-SB Parallel MAC Arithmetic Architecture 82

3.4.1 High-Speed Fully-SB Parallel MAC Operation 83
3.4.2 Fully-SB Parallel MAC Arithmetic Architecture 85

3.4.2.1 Modified Radix-4 Recoder Module 87
3.4.2.2 Modified Radix-4 Decoder Module 87
3.4.2.3 SB Adder Row 87
3.4.2.4 SIGN and STICKY Generation Module 87
3.4.2.5 Correction Logic Module 87
3.4.2.6 Rounding, MSW-Addition, and Overflow Correction

Module 87
3.4.2.7 Accumulator Module 87

3.4.3 Performance Characteristics 88
3.4.3.1 Hardware area requirement 88
3.4.3.2 Computational Time Requirement 88

3.4.4 Verification 89
3.5 Chapter Summary 90

4. MAC-MODULARIZATION OF DIGITAL FILTERS 92
4.1 Introduction 92
4.2 Principle underlying MAC-Modularization 95

4.2.1 Co-Tree Multiplier Value Computation 102
4.2.2 Output Multiplier Value Computation 103
4.2.3 Node-numbering in the directed reduced SFG 104
4.2.4 Self-loop Elimination 105
4.2.5 Algorithm for converting a digital filter SFG to its correspond-

ing directed reduced SFG 105
4.2.6 Algorithm for MAC-modularizing the directed reduced SFG 106
4.2.7 Algorithm for converting a MAC-modularized directed reduced

SFG to the corresponding digital filter SFG consisting of MAC
operations 107

4.3 Optimal MAC-Modularized digital filter SFG Selection 108
4.3.1 Fitness Function for MAC-Modularized Reduced-SFGs . . . 109
4.3.2 Overflow and Roundoff Noise Calculations 110

4.4 An Enumerative Approach to MAC-Modularization 114
4.4.1 Algorithm for Directed Reduced Spanning Tree Enumeration 115
4.4.2 Proof of Operation 116
4.4.3 Algorithm for Enumerative MAC-Modularization 120

vi"

4.5 A Heuristic Approach to MAC-Modularization 121
4.5.1 Algorithm for Heuristic Spanning Tree Generation 121
4.5.2 Algorithm for Heuristic MAC-Modularization 123

4.6 Implementation of MAC-Modularization Algorithms 123
4.6.1 Test Cases 124

4.7 Chapter Summary 125

5. DESIGN AND IMPLEMENTATION OF A REDUNDANT NUM-
BER MAC-MODULARIZED LDI JAUMANN DIGITAL FILTER.. 129

5.1 Introduction 129
5.2 MAC-Modularization of the LDI Jaumann Digital Filter 130
5.3 Calculation of the Required MAC Coefficient and Signal Wordlengths 134

5.3.1 Calculation of the Required MAC Coefficient Wordlength . . . 135
5.3.2 Calculation of the Required Signal Wordlength 135

5.4 Number Representation of the Signal and MAC Coefficient 136
5.4.1 Representation of the Signal Word 136
5.4.2 Representation of the MAC Coefficient 137

5.5 Gate-Level Implementation of the MAC-Modularized LDI Jaumann
Digital Filter 137
5.5.1 Gate-Level Implementation of the Data-Path Subsystems 138
5.5.2 Gate-Level Implementation of the Control Unit 140

5.5.2.1 Development of the Control Word 140
5.5.2.2 Implementation of the Control Unit 142

5.6 Viewlogic Verification 143
5.7 Chapter Summary 143

6. CONCLUSIONS 146
6.1 Summary of the Thesis 146
6.2 Contribution of the Thesis 148

6.2.1 Chapter 1 148
6.2.2 Chapter 2 148
6.2.3 Chapter 3 149
6.2.4 Chapter 4 149
6.2.5 Appendix A 149

6.3 Suggestions for Future Related Research 149

APPENDIX

A. ALTERNATIVE PROOF OF MODIFIED-BOOTH RECODING BASED
ON NON-REDUNDANT RADIX-4 NUMBER ARITHMETIC 151

A.1 Introduction 151
A.2 Proof of the Modified-Booth Recoding Algorithm 152

REFERENCES 155

ix

LIST OF TABLES

2J Computation Rule for First Step in Carry-Propagation Free Addition 19

2.2 SBNR Two-Level Encodings 21

2.3 Generation of s 1 and si 23

2.4 RNU for SB-numbers 34

2.5 SBNR RNE for VLSw5'0 36

2.6 SBNR RNE for VLSW = 0 36

2.7 Relationship between TC RNE and RNU 37

2.8 SBNR Correction Generation for RNE 40

3.1 Computation of the Generalized SCj 55

3.2 Step 1 of SBNR Correction 59

3.3 Step 2 of SBNR Correction 60

3.4 Area Requirements 61

3.5 Verification Test Vectors 67

3.6 Hardware Area Requirements 79

3.7 Series of MAC Arithmetic Operations for Verification 82

3.8 Hardware Area Requirements 88

3.9 Verification Test Vectors 89

4.1 Comparison of solutions for Case 1, 125

4.2 Comparison of solutions for Case 2 126

5.1 Control Word Values for Processing One Sample 141

x

LIST OF FIGURES

1.1 Proposed Design Philosophy for DSP Systems 3

2.1 A Generic DSP System 8

2.2 Example of Carry-Free Addition using SBNR 20

2.3 Mixed SB/TC Number Addition 24

2.4 Mixed SB/TC Number Subtraction 24

2.5 Illustration of the Application of the Recoding in Algorithm 1 (Page 28) 29

3.1 Mixed SB/TC Digit-Serial Addition 50

3.2 Mixed SB/TC Digit-Serial Subtraction 51

3.3 Level-i Architecture of Mixed SB/TC Digit-Serial Multiplication Unit 52

3.4 Generic Hardware Mixed SB/TC Digit-Serial Multiplication Module for
Generalized Values of D, n and i 53

3.5 Pre-Rounding Module for Generalized Values of D, ri, and i 56

3.6 Round and Convert Module for Generalized Values of D, n, and i 58

3.7 Principle Underlying the SB Rounding (An Example) 59

3.8 Critical Paths arising from Bit-Serial to Digit-Serial Unfolding 60

3.9 Throughput for F = 4, and I = 0.5, for the proposed multipliers (solid
lines) and the multipliers in [15] (dashed lines) 63

3.10 Hardware Area Requirements for F = 4, and I = 0.5, for the proposed
multipliers (solid lines) and the multipliers in [15] (dashed lines) . . . 65

3.11 Efficiency for F = 4 and I = 0.5, for the proposed multipliers (solid lines)
and the multipliers in [15] (dashed lines) 66

3.12 Viewlogic Simulation Results for D = 2 68

3.13 Viewlogic Simulation Results for D = 3 69

3.14 The Mixed SB/TC Parallel MAC Arithmetic Architecture 75

3.15 Viewlogic Simulation Results for the 8 x 8 + 15 Mixed SB/TC Parallel
MAC Arithmetic Unit 81

3.16 The Fully-SB Parallel MAC Arithmetic Architecture 86

3.17 Simulation Result for the 8 x 8 + 15 Fully-SB Parallel MAC Arithmetic Unit 91

4.1 Principle Underlying MAC-Modularization 96

4.2 Co-tree Multiplier Value Computation 103

4.3 Self-Loop Elimination 106

4.4 Section of Reduced-SFG: Pre-Modularized State 111

4.5 Movement of rnaj across n: Post-Modularized State 112

4.6 Schematic for Proof of Theorem 4.8 119

4.7 Case 1: Unmodularized Original digital filter SFG 125

4.8 Case 1: Optimal MAC-Modularized digital filter SFG 126

.4.9 Case 2: Unmodularized Original digital filter SFG 127

4.10 Case 2: Optimal MAC-Modularized digital filter SFG 127

5.1 Lowpass LDI Jaumann Digital Filter before MAC-Modularization . . . 131

5.2 Optimal MAC-Modularized Lowpass LDI Jaumann Digital Filter . . 132

5.3 Architecture of the MAC-Modularized Lowpass LDI Jaumann Digital Filter138

5.4 Implementation of the Data-Path Subsystems 139

5.5 Control Word for the MAC-Modularized Lowpass LDI Jaumann Digital
Filter 140

5.6 Implementation of the Control Unit 142

5.7 Impulse Response Simulation Results for the Lowpass LDI Jaumann Dig-
ital Filter 144

xl'

LIST OF SYMBOLS AND ABBREVIATIONS

(i-i, p) (negative, positive)

(S' V) (sign, value)

ASIC Application Specific Integrated Circuit

CAD Computer Aided Design

CLA Carry Lookahead Addition

DSP Digital Signal Processing

DFF D-type Flip-Flop

FPGA Field Programmable Gate Array

FSM Finite-State Machine

IEEE Institute of Electrical and Electronics Engineers

LDI Lossless Discrete Integrator

LSB Least-Significant Bit

LSW Least-Significant Word

MAC Multiply-Accumulate

MHz Megahertz

MSB Most-Significant Bit

MSW Most-Significant Word

MUX Multiplexer

RNE Rounding to the Nearest/Even

RNU Rounding to the Nearest/Up

ROM Read Only Memory

SB Signed-Binary

SBNR Signed-Binary Number Representation

SD Signed-Digit

SDNR Signed-Digit Number Representation

XII'

SFG Signal Flow Graph

Ti-Adder Type-1 Adder

TC Two's Complement

TCNR Two's Complement Number Representation

VLSI Very Large Scale Integrated

1.1 Ceiling function

(.j Floor function

r Radix of a given number

a Maximum digit magnitude

Orr Allowable digit set for a radix-r SD number

X Any value from the digit set {I, 0, i} or the digit set {0, i}

+ Addition if any operand is non-boolean, OR operation otherwise

- Subtraction operation

- Negation operation

Exclusive-OR operation

Ini(.) Integer part of the argument

Group of values

(.)r Argument represented in radix-r

d Don't care condition

sign(.) Sign of the argument

Ta Given number is in TCNR

SB Given number is in SBNR

M Multiplicand wordlength

N Multiplier wordlength

D Digit size

lcm(...) Least common multiple of the arguments

xiv

.mod. Modulus operation

0 Re-pipelining interval

T Computational time

max(...) Maximum of the arguments

F Maximum number of inputs-per-gate available in the given technology

I Lookahead factor

Iog(.) Logarithm to the base x

H Maximum throughput of a given multiplier

G(V, E) Directed reduced SFG with vertices V and directed edges E

H(V, E') Directed reduced spanning tree of G(V, E) with E' C E

P Root node of G(V, E)

ni Addition node (ni E V)

eij Directed edge from node ni to node nj

mij Multiplication coefficient associated with the edge ejj

d(v) In-degree of the vertex v

do t(v) Out-degree of the verted v

D In-degree matrix of G(V, E)

S Input node of G(V, B)

gi Gain from s to ni in H(V, B')

fitness(Hk(V, Ek)) Fitness function measuring the fitness of the ktL directed
reduced spanning tree

edg&.fitne.ss(e, Hk(V, Ek)) Fitness of the edge eij with respect to the kth di-
rected reduced spanning tree

O2MAX Li-Norm value of the maximum overflow associated with Hk(V, Ek)

R Sum of Li-Norm contributions of cotree multipliers in Hk(V, Ek)

of Iow..weight User defined overflow weighting in the fitness function

roff.weight User defined roundoff weighting in the fintess function

xv

1

CHAPTER 1

INTRODUCTION

About three decades ago, the introduction of Fast Fourier transform by Cooley

and Tukey [19] and the growing expertise in digital circuit technology led to a new

era in signal processing [27]. This era was marked by the rapid growth of digital

filtering [1] and digital signal processing (DSP) [5].

The field of DSP is concerned with the processing of signals represented in dig-

ital form. It is widely used in digital audio and video processing, sonar and radar

processing, bio-medical signal processing, speech processing, digital communications,

and a host of other applications.

Early developments in the field of DSP borrowed several ideas from analog filter

theory and analog signal processing. This was natural since the fields of analog filter

theory and analog signal processing were already well established. However, with

the passage of time, scientists and engineers quickly realized that digital processing

techniques promised several new important practical features, and, at the same time,

did not suffer from some of the shortcomings (e.g. aging, drift, etc.) of the corre-

sponding analog processing techniques. This permitted the digital implementation of

new and highly sophisticated signal processing algorithms. In addition, the contin-

uing improvements in the allied fields of digital processing technology led to greater

acceptance and increased importance of DSP, culminating in an accelerated growth

in its potential applications.

Along with the developments in DSP, a parallel breakthrough took place in the

field of electronics. Component technology took a major leap forward as it evolved

from discrete transistors to very large scale integrated (VLSI) circuits containing

hundreds of thousands of transistors on a single chip. With the increased complexity

2

of VLSI circuits, there was a need to free the designer from many of the low-level

design details. This resulted in the birth of computer-aided design (CAD) tools which

allowed higher levels of abstraction in VLSI circuit design. These tools permitted

substantial improvements in the productivity on the part of the system designers.

During the past decade, rapid advancements have taken place in the fields of

VLSI circuits and CAD, along with novel mathematical and algorithmic advances

in DSP. This has resulted in a sharp growth in the potential applications of signal

processing. However, the growing complexity of modern DSP systems has placed

an ever increasing demand on performance, sophistication, and real-time processing,

strongly indicating the need for massive computational power.

The availability of low-cost, high-density, fast VLSI circuits makes high-speed pro-

cessing of large volumes of data practical and cost-effective. In addition, the extrac-

tion of concurrency in DSP algorithms results in ultra-high throughputs and permits

major technical advancements in real-time DSP applications. However, it is quite

obvious that the full potential of VLSI circuits cannot be realized with the existing

DSP systems and their underlying arithmetic architectures. This is because the data-

dependency limitations of these systems do not permit highly concurrent operations,

and the speed limitations inherent in the existing arithmetic architectures do not

allow high-speed processing. Furthermore, large design and layout costs suggest the

utilization of a repetitive modular structure. Such a structure is not consistent with

the existing DSP-systems, mainly due to the fact that the conventional DSP algo-

rithms do not inherently possess modularity. Therefore, modern DSP systems must

be designed to possess the desirable features of concurrency, fast processing speeds,

and structural modularity.

In the design of modern DSP systems, there exists a serious need for providing

means of seamless progression from signal processing theory and algorithms to the

corresponding VLSI processor architectures and implementations. This means that

3

there must be a design philosophy which can be employed for the systematic develop-

ment of a high-speed modular DSP system starting from the algorithmic level. The

development of such a design methodology requires a harmonious blend of ideas from

the disciplines of computer engineering and computer science, signal processing, and

VLSI circuit design.

This thesis presents a novel systematic design philosophy for the realization of dig-

ital filters as a class of high-speed modular DSP architectures. This design philosophy

progresses from the algorithmic level to the hardware implementation level achieving

two main goals as illustrated in Fig. 1.1.

1. Modularization of the digital filter algorithm.

2. Use of high-speed arithmetic architectures based on redundant number arith-

metic.

Digital Filter SFG

MAC-Modularization

High-Level Synthesis

Redundant Number
Arithmetic
Architectures

VLSI Implementation
 I

Figure 1.1. Proposed Design Philosophy for DSP Systems

Digital filter algorithms are generally represented in the form of signal-flow graphs

4

(SFGs) consisting of multiplication and addition operations. Unfortunately, the non-

homogeneous nature of these operations does not permit a corresponding straightfor-

ward concurrent implementation. However, it is possible to translate these algorithms

into suitable equivalent forms involving combined multiply-accumulate (MAC) oper-

ations (see Definition 1 below). The translation of a digital filter algorithm consisting

of separate multiplication and addition operations to a corresponding algorithm con-

sisting of MAC operations is referred to as MAC-modularization. The resulting MAC-

modularized digital filter algorithm possesses regularity and modularity, thereby per-

mitting efficient use of the available computing resources, simpler scheduling, and

easier design and implementation. MAC-modularization constitutes the first step in

the proposed design philosophy.

Definition 1 The MAC operation is defined as a composite operation involving the

multiplication of a multiplicand X and a multiplier Y and the addition of an addend

Z in accordance with

P=X.Y+Z. (1.1)

The next step in the above design philosophy involves the high-level synthesis [10]

of the MAC-modularized digital filter SFG. The goal of high-level synthesis is to

produce a register-transfer level implementation of the digital filter subject to certain

specified constraints. This implementation includes a data-path as well as a control-

path design.

High-level synthesis includes the tasks of scheduling and allocation. The process of

scheduling involves the assignments of operations to various time steps. The process

of allocation, on the other hand, involves the binding of the scheduled operations to

the corresponding MAC units, as well as the subsequent allocation of the auxiliary

resources (registers, multiplexers etc.) to facilitate the data transfers.

5

The high-level synthesis information is used for the architectural design of a DSP

processor for the implementation of the digital filter algorithm. The resulting proces-

sor typically consists of a control-unit and a data-path. The control-unit is designed

by using the sequence of operations specified in the schedule, and the data-path is

designed by using the allocation information to allocate the operations to MAC arith-

metic architectures. These architectures achieve high-speed operation by employing

redundant number arithmetic. Redundant numbers allow redundancy to exist in

the number representation, thereby eliminating carry-propagation to result in very

high-speed computation.

Finally, the processor can be implemented in a VLSI circuit by using the full-

custom or semi-custom design techniques.

Chapter 2 presents a theoretical background for fixed-point DSP arithmetic by in-

troducing various number systems and arithmetic processing methodologies. This is

followed by a rigorous mathematical analysis concerning recoding, rounding, and over-

flow processing of redundant numbers. A novel 5-digit overlapped scanning technique

is presented for modified radix-4 recoding [53] of radix-2 redundant numbers [50]. Fur-

thermore, two techniques for product rounding in radix-2 redundant number arith-

metic are developed. Finally, arithmetic overflow processing issues for radix-2 redun-

dant numbers are discussed.

In Chapter 3, the results in Chapter 2 are exploited and applied to the design and

implementation of novel high-speed VLSI arithmetic architectures for multiplication

and MAC operations. This includes a novel approach for very high-speed mixed-

redundant digit-serial [22] modified-Booth [36] multiplication. It is shown that the

area-time efficiency and throughput of the resulting multipliers far surpass those of

the existing digit-serial modified-Booth multipliers [15]. It is also shown that re-

dundant number arithmetic provides best results for fully-parallel multiplication or

MAC operations. Next, a novel architecture for high-speed mixed-redundant parallel

6

modified-Booth MAC arithmetic operation is presented. Finally, this architecture is

extended to handle radix-2 redundant number multiplication by employing the mod-

ified radix-4 recoding technique, and is subsequently used for the design of a high-

speed fully-redundant parallel MAC arithmetic architecture. These parallel MAC

architectures employ new techniques such as partitioned accumulation and concur-

rent rounding and overflow correction. The resulting architectures are subsequently

parameterized in terms of their area-time requirements for corresponding Actel 1.2z

technology implementations, and are verified by using Viewlogic simulations.

Chapter 4 is concerned with a rigorous theoretical approach to MAC-modularization

of digital filter SFGs. This approach consists of graph-theoretic techniques and their

subsequent translation into algorithms for MAC-modularization. Taking into account

the fact that several MAC-modularized digital filter SFGs can result starting from

the same initial SFG, a fitness function is developed for the selection of the optimal

SFG. This fitness function is based on finite-precision arithmetic effects exhibited

by the corresponding MAC-modularized digital filters. Subsequently, enumerative

and heuristic approaches to MAC-modularization are developed on the basis of the

proposed fitness function. Finally, these approaches are incorporated in a software

package called MAC-M for the MAC-modularization of digital filters.

In Chapter 5, the high-speed MAC arithmetic architectures developed in Chap-

ter 3 and the MAC-modularization technique developed in Chapter 4 are illustrated

by applying them to the design and implementation of a practical lowpass LDI [28]

Jaumann [6] digital filter. The optimal MAC-modularized LDI Jaumann digital filter

is obtained by using MAC-M. The resulting Jaumann digital filter is then parti-

tioned into three separate data-path modules by taking into account the inherent

concurrency in the digital filter structure. This concurrency is then exploited to de-

velop a schedule in terms of state equations for each data-path module in order to

facilitate efficient high-speed parallel implementation of the filter. The simulation

7

results demonstrate the achievable operational clock speed of 50 MHz, corresponding

to a maximum permissible sample rate of 8.33 MHz for an Actel 1.2j.t technology

implementation. This implementation is verified by using impulse response simula-

tions. The striking feature of this implementation is that its speed of operation is

completely independent of the signal wordlength within the digital filter.

Finally, Chapter 6 presents the conclusions and suggestions for future related re-

search.

8

CHAPTER 2

THEORETICAL BACKGROUND FOR REDUNDANT
NUMBER ARITHMETIC

2.1 Introduction

A generic DSP system consists of an arithmetic unit interposed between the input

and output sub-systems, and a controller, as shown in the schematic in Fig. 2.1. The

input sub-system accepts digital signals and converts them into a prescribed format

required for further processing by the arithmetic unit. The arithmetic unit processes

these digital signals in accordance with the operations required in the DSP algorithm.

The controller governs the pattern of data flow within the DSP system. The combined

operation of the input sub-system, arithmetic unit, and the controller, results in the

application of the desired DSP algorithm to the internal input signal, generating the

corresponding internal output signal. This output signal is then passed to the output

sub-system which converts it into a format required at the output of the DSP system.

CONTROLLER

Digital
Sample
Input

I
N
P
U Data

flow
Path

ARITHMETIC UNIT

Flow of Processing

'p.

Data
flow
Path

0
U
T
P
U
T

Figure 2.1. A Generic DSP System

Transformed
Digital
Output

9

The main computation-intensive processing in a DSP algorithm is carried out by

the arithmetic unit. It is therefore the computational capability of the arithmetic

unit that has a major impact on the performance of the DSP system. The capability

of the arithmetic unit is affected by a large number of factors, most importantly, the

number representation, the processing methodology, the architecture, and the speed

and density of the available VLSI technology.

Section 2.2 presents a detailed discussion of the various number systems and pro-

cessing methodologies suitable for fixed-point DSP arithmetic functional units. This

discussion is followed by an overview of the concepts underlying redundant number

arithmetic in Section 2.3. Section 2.4 presents a rigorous mathematical approach for

high-speed multiplication and MAC arithmetic operation using redundant number

representations. This approach includes a 5-digit overlapped scanning technique for

the recoding of radix-2 redundant numbers. This is followed by the development of

two techniques to facilitate rounding of radix-2 redundant numbers. Finally, arith-

metic overflow processing issues for these numbers are discussed.

2.2 Arithmetic Schemes for Fixed-Point DSP

The computational capability of the arithmetic functional unit is affected by a num-

ber of factors, most importantly, the number representation, the processing methodol-

ogy, the architecture, and the speed and density of the available VLSI technology. Of

these, the number representation and the processing methodology have a direct bear-

ing on the maximum speed achievable by the DSP system. This section is concerned

with an introduction to the various arithmetic number systems, their features and

properties, followed by an overview of the various available processing methodologies.

10

2.2.1 Number Representation

The main factors involved in the implementation of a DSP algorithm are the

manner in which numerical data are stored in memory, and how they are processed

by the arithmetic functional unit. The choice of an appropriate internal number

representation system has a simultaneous impact on the architecture and performance

of the arithmetic unit as well as on the numerical scope available on the corresponding

DSP system.

Finite-precision digital arithmetic units restrict the permissible numerical repre-

sentations to finite length. Therefore, a good choice for the internal number represen-

tation and the processing methodology, together with a clever architectural design,

affects both the accuracy of approximated real arithmetic as well as the efficient

implementation of the machine operations.

Broadly speaking, arithmetic number systems can be divided into the following

three categories:

1. Traditional Number Systems

2. Non-traditional Number Systems

3. Quasi-traditional Number Systems

2.2.1.1 Traditional Number Systems

The basis for most of the existing arithmetic functional units is the traditional

radix number system. In this system, a radix-r number X is represented by a digital

vector of (n + k)-tuples as [20]

X = , XO.X_l,... X_k)r, (2.1)

where the component xi for —k ≤ i < n - 1 is called the jth digit of the vector X

with xi E {0, 1,... , (r - 1)}, and where r (≥ 2) is the radix of the number system.

11

Moreover, the first n digits , xo) form the integer portion of the number

X, and the remaining k negatively indexed digits (x_i,... , x...,) form the fractional

portion of the number X. A radix-point is used to divide these portions.

Traditional number systems may be further categorized as [20]:

1. Fixed-radix number system

2. Mixed-radix number system

3. Weighted-radix number system

In the fixed-radix number system, all digits assume the same radix value r. A

fixed-radix number A having a radix r is represented as

A = (a_1afl_2 . . . ao),., (2.2)

where a_1 represents the sign digit which assumes the value r - 1 (0) if A < 0 (≥ 0).

For A ≥ 0, an-l= 0, and the magnitude of A may be represented as

JAI = (mfl...2mfl_1 . . . mimo)r, (2.3)

where mi = ai for all i E {(n - 2),... , 1, 0}. For the corresponding negative number

represented by A, on the other hand, there are the following three distinct fixed-point

number representations:

Sign-Magnitude Number Representation

A = ((r - 1)m_2 . . . mimo)., (2.4)

where mi for i E {(n - 2),... , 1, 0} represents the i-th magnitude digit, and where A

and A differ only in their sign digits.

Diminished-Radix Complement Number Representation

1)iYifl2 . . . (2.5)

12

where fni = (r —1)— mi for i E {(n —2),... ,1,O}, and where A = r' —1—A. The

radix-2 version of this number representation is called the one's complement number

representation.

Radix Complement Number Representation

A = (((r - 1)ni_2 ... ihiñio) + 1)r, (2.6)

wherein = (r— 1)—mi for i E {(n —2),... ,1,0}, and where A = r'2 —A. The

radix-2 version of this number representation is called the two's complement number

representation.

Two's complement (TO) number representation (TCNR) is in widespread use

nowadays due to its simplicity in representation, processing, and storage [17]. TCNR

system forms a major topic of discussion in this thesis.

The mixed-radix number system assumes different radix values in different digit

positions, and the weighted-radix number system associates a variable weighting factor

to each digit position [20].

2.2.1.2 Non-Traditional Number Systems

Traditional number representations suffer from the inherent drawback of carry

(borrow)-propagation in the addition (subtraction) arithmetic operation which ad-

versely affects the maximum processing speed achievable by the corresponding arith-

metic functional units. Non-traditional number systems employ unconventional means

of number representation to limit/eliminate carry (borrow)-propagation. These num-

ber systems find application in time-critical DSP systems.

Non-traditional number systems can be mainly categorized as:

1. Residue Number System

2. Logarithmic Number System

13

3. Rational Number System

4. Redundant Number System

Residue numbers [11, 20] have no weighting factor assigned to the digit positions.

The residue digits in a residue number can be processed independently, allowing

totally carry-free computation.

Logarithmic numbers [12, 20] are represented by exponentials in order to speed up

multiplication and division in terms of addition and subtraction operations, respec-

tively. They also enable geometric rounding in order to enhance number accuracy.

However, the addition and subtraction of logarithmic numbers is achieved by using

look-up tables.

Rational numbers [20] allow the representation of numeric quantities as fractions

in terms of numerator-denominator integer pairs. Any arithmetic operation on such

numbers always results in rational numbers. This allows closed operations [20] with-

out resorting to infinite precision arithmetic, leading to extremely high accuracy. The

rational number system is still in the theoretic stage with regards to implementation.

Redundant numbers [2, 20, 35] allow redundancy to exist in the number representa-

tion, thereby permitting a single algebraic value to be represented in several different

ways. This redundancy forms the key to the elimination of carry-propagation, allow-

ing very high-speed computation. Redundant arithmetic forms the main component

of the discussion in this thesis and is dealt with in greater detail in Section 2.3.

2.2.1.3 Quasi-Traditional Number Systems

Quasi-traditional number systems are a hybrid combination of traditional and non-

traditional number systems. A typical quasi-traditional number system is the radix-2

hybrid-redundant number system proposed in [8]. In this number system, parts of

the number are in radix complement representation, while the remaining parts are in

14

redundant number representation, allowing the carry-propagation chains to be limited

only to a certain desired fraction of the complete wordlength. The quasi-traditional

number systems are beyond the scope of the present thesis.

2.2.2 Processing Methodology

The processing methodology dictates the nature of the data-flow within the DSP

system. Therefore, it has a direct impact on the maximum achievable speed and the

hardware area requirement of the DSP system. There are four distinct processing

methodologies available:

1. Bit-Serial Processing

2. Bit-Parallel Processing

3. Digit-Serial Processing

4. Serial-Parallel Processing

Bit-serial implementations process one input bit at a time and are ideal for low-

speed applications [25]. Such implementations require fewer interconnections, less

hardware, and less pin-out. Bit-parallel implementations, on the other hand, process

all the bits of a word/sample in a single clock-cycle, and require the largest amount of

area, interconnection, and pin-out [47, 13]. These implementations are ideal for ap-

plications requiring maximum speed. Digit-serial implementations attempt to strike

a compromise between the bit-serial and bit-parallel implementations by processing

more than one bit per clock-cycle [22]. These implementations are ideal 'for moderate

speed applications, where the bit-serial processing is too slow, and the bit-parallel

processing is more expensive in terms of area than necessary. Serial-parallel imple-

mentations also attempt to take advantage of both bit-serial and bit-parallel imple-

15

mentations by processing one of the operands serially and the other in parallel in a

single clock-cycle [39].

2.3 Redundant Number Arithmetic

Traditional number representation systems suffer from the inherent problems of

carry (borrow) propagation in the addition (subtraction) operation, limiting the per-

formance of DSP systems. Redundant numbers, on the other hand, allow redundancy

to exist in the number representation, thereby permitting a single algebraic value to

be represented in several different ways. This redundancy forms the key to the elim-

ination of carry (borrow) propagation, for very high-speed computation.

2.3.1 Signed-Digit Number Representation

Signed-Digit (SD) Number Representation (SDNR) [2, 7, 20] systems form a class

of number representations which employ redundancy in representation to limit the

carry (borrow) propagation to one digit position to the left (assuming right to left

arithmetic operation) during addition (subtraction) operation, thereby allowing the

elimination of carry (borrow) propagation chains. SDNR may be considered as an

extension of the fixed-radix system in the sense that it permits positive and negative

weighted digits in the allowable digit-set.

Given a radix r, each digit of a SD number can assume the following 2a + 1

values [20]

Or={,... ,I,0,1,... ,a}, (2.7)

where a represents —a, and where the maximum digit magnitude a must be within

the region

r-1
2 1_a_ri. (2.8)

In the above equation, 1.1 denotes the ceiling function. Taking into account the fact

16

that a ≥ 1, Eqn. (2.8) implies that r ≥ 2. In order to ensure minimum redundancy in

the balanced digit set °'r, a must be chosen equal to [11], where L.J denotes the floor

function. The radix-2 SD system has the digit-set 02 = f 1, 0, 1} and is also known as

the signed-binary (SB) number representation (SBNR) [29]. Similarly, the radix-4 SD

system can have the digit-set o = {,], 0, 1, 2} which constitutes the minimum re-

dundancy digit-set and is also known as the modified radix-4 representation. Another

possible digit-set for r = 4 is o = {, , 1, 0, 1,2, 3}.

2.3.1.1 Conversion between SDNR and Traditional Radix-r Number Sys-
tem

Let X = (xe_i,... , xi, Xo)r be a traditional radix-r number, and let

Y = , yj, /)r be the equivalent SD number representing the same algebraic

value. Then, the conversion from X to Y is carried out by generating an interim

difference digit di for every digit xi as [20]

di = xi - (2.9)

where b 1 = 0 (1), if xi <a (>a). The i-th SD .yj is then obtained as

y=d1+b. (2.10)

The conversion of the SD number Y back to the traditional form X is achieved by

x = iYi - IY-1, (2.11)

where + (Yj represents the positive (negative) component of Y, and where

denotes the magnitude function.

2.3.1.2 SDNR Addition and Subtraction

Consider a SD number represented by n+m+1 digits z (i = m,... , 1, 0, —1,... , —n)

and having the algebraic value

M

Z = (2.12)

17

where the values of r and zi are such that the following requirements are satisfied [2].

1. r is a positive integer.

2. The algebraic value Z = 0 must have a unique SD representation.

3. There exist transformations between conventional sign-magnitude rn-digit rep-

resentation and SD rn-digit representation for every algebraic value within the

machine representable range.

4. Totally parallel addition and subtraction is possible for all digits in correspond-

ing positions of the two SD operands.

The arithmetic operations of totally-parallel addition and subtraction of the two

digits zi and yj from the corresponding i-th positions of the representation of the SD

numbers Z and Y are defined as follows [2]:

Definition 2 Addition of digits zi and yj are considered totally parallel if the following

two conditions are satisfied:

1. The sum digit s (i-th digit of the sum S = Z + Y) is a function of only z, y,

and the transfer digit tj from the (i - 1)-th position on the right: si = f(z, y, ti).

2. The transfer digit t 1 at the (i + 1)-th position on the left is a function only of

the augend digit zi and the addend digit yj: t 1 = g(zj, y).

Definition 3 Totally parallel subtraction of yj from zi is performed as the totally

parallel addition of the additive inverse of y, i.e., z - yi = z + ().

The addition of the two digits zi and yj are therefore carried out in two successive

steps. In the first step, an outgoing transfer digit and an interim sum digit Wi

are formed such that

zi + yi = r.t114 + Wi. (2.13)

18

In the second step, the sum digit si is formed in accordance with

w + t. (2.14)

As shown in [2], the above definitions lead to the conditions

IzI ≤ r - 1,

ti E {I,O,1},

and

(wjl<r -2.

Finally, by using Eqns. (2.15) through (2.17), one arrives at [2]

r> 2,

for totally parallel addition using SDNR.

2.3.2 Signed-Binary Number Representation

(2.15)

(2.16)

(2.17)

(2.18)

The requirement for carry-free addition and subtraction places a restriction on the

value of r (c.f. Eqn. (2.18)). However, a need to develop carry-free computation for

the case of r = 2 (which represents SBNR) arose due to the fact that it allows simple

two-level logic realization, and is extremely suitable for VLSI implementation. It has

been demonstrated in [2] that totally carry-free addition is possible for a modified SD

representation if the addition rules in Eqns. (2.13) and (2.14) are modified to allow

for the propagation of the transfer digit over two digit positions to the left. The

resulting addition is executed in three successive steps in accordance with

zi + y = r.t 1 + w,

w+t,=r. Fl +w,

(2.19)

(2.20)

19

and

Si = w + 1', (2.21) 1.

where z, y, and si represent the i-th modified SD positions.

The relationships in Eqns. (2.19) through (2.21) can be translated for a two-step

carry-propagation free addition in SBNR as follows [34]. In the first step, the interme-

diate carry ci E {I, 0, 1} and the intermediate sum digit s E {I, 0, 1} are determined

at each digit position so that they satisfy the relationship z + Yi = 2c +i + s, as

shown in Table 2.1 [34], where X can assume any value from the digit set {I, 0, 1}. In

the second step, s and ci are added to form s, noting that this addition does not

generate any carry. Fig. 2.2 demonstrates an example for such a carry-free addition

in SBNR.

Table 2.1. Computation Rule for First Step in Carry-Propagation Free Addition

Zi Yi Zi_l,Yi_1 Cii sit

1 1 X 1 0

1/0 0/1 both ≥0 1 I
1/0 0/1 either or both <0 0 1

0 0 X 00

1/1 1/1 x 0 0

I/O 0/1 both ≥0 0 I

I/O 0/1 either or both < 0 I 1

I I .x 10

2.3.2.1 SBNR Two-Level Encoding

There are two main methods for the two-level logic encoding of SB numbers for

digital implementation, each of which can be minimally-redundant or maximally-

20

zi

yl

Si

+
10 TO TO

111001

0

1 1

0100

I 000

1 0

111000100

Step 1

Step 2

Figure 2.2. Example of Carry-Free Addition using SBNR

redundant. Minimally-redundant encodings employ a restricted set of two-level logic

values to represent the SB-digits, leading to a unique two-level logic representation

for each SB-digit. Maximally-redundant encodings, on the other hand, exploit the

maximum redundancy available in two-level logic, leading to a non-unique two-level

logic representation for certain SB-digits.

The above mentioned methods for two-level SB number encoding are:

1. Negative-Positive (n, p) Encoding: In the (n, p)-encoding, the digits yj of a SB

number Y are represented in their (negative, positive) form given by (y,yt)

where y,-.represents the negative part and yt represents the positive part of the

digit y.

2. Sign-Value (s, v) Encoding: In the (s, v)-encoding, the digits yj of a SB num-

ber Y, are represented in their (sign, value) form given by (yj, yfl, where y

represents the sign and y' represents the value (magnitude) of the digit y.

These encodings are given in their minimally and maximally redundant forms as

shown in Table 2.2.

2.3.2.2 SBNR Addition and Subtraction Cells

SBNR addition and subtraction cells for minimal two-level encoding have been

reported in [34] and [42].

21

Table 2.2. SBNR Two-Level Encodings

yi minimal: maximal: (yr, yt) minimal: (y', yfl maximal: (! y)
0 (0,0) (0, 0), (1,1) (0,0) (0, 0), (1,0)

1 (0,1) (0,1) (0,1) (0,1)

I (1,0) (1,0) (1,1) (1,1)

Adder Cell for Minimal (n, p)-encoding

[34] formalized the results in Table 2.1 for the addition of Z and Y using minimal

(n, p)-encoding in accordance with

Zid = Z + zt

Yid = Y + yt

Pi =

Ui = Zjd..P i_i + .Yid•Pi-1 + Zt.yjd + Zjd.yt

ti = Zjf.JjrJ.fj_ + Yid'Pi-1 + + Zid.Yzd.Pi_1

=

Si = ti.Ui_l

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

Adder Cell for Minimal (s, v)-encoding

Similarly, [42] formalized the results in Table 2.1 for the addition of Z and Y using

minimal (s, v)-encoding in accordance with

(2.29)

(2.30)

(2.31)

(2.32)

22

= u.3;:T (2.33)

z ED Vi-1 (2.34)

2.3.3 Mixed SB/TC Number Addition and Subtraction

Redundant number arithmetic has found widespread application in TC multipli-

cation due to its carry-free addition property. Several bit-parallel [47] multipliers use

intermediate redundant number representation to achieve high-speed TC multiplica-

tion. These approaches carry out the intermediate partial product summations in

purely redundant number arithmetic. However, such approaches require fully redun-

dant adders which are two to three times more VLSI area expensive compared to

conventional full-adders.

Several methods have been investigated to reduce the area costs of TC multipliers

employing redundant number arithmetic. One such method is to use mixed SB/TC

number addition and subtraction [4, 42].

2.3.3.1 Theoretical Background for Mixed SB/TC Number Addition and
Subtraction

Consider a N-digit SB number Y given by

N-i

(2.35)

and a N-bit TC number X given by

N-2

X = _XN_12N' + x2t Xi E {O, 1}. (2.36)

Let the digits yj in Eqn. (2.35) be represented in their maximal (n, p)-encoding.

The sum S of Y and X is expressed as

S = Y +X. (2.37)

23

Substituting Eqns. (2.35) and (2.36) in Eqn. (2.37), one obtains

N-2

S = (—xN_1 + y-1 - y)2N_i + (x + yt - Yi (2.38)

In order to achieve uniform addition, Y (X) is extended one position to the left by

padding with a zero (sign extension), to yield

N-i

S = XIJ2'V +E (x + yt - yfl21.

Table 2.3. Generation of and s

yi xi st,.1 sl
00

10

To

0

1

0

0

1

1

01 1 1

11 1 0

Ii 0 0

(2.39)

The SB sum terms in their maximal (n, p)-encoded form are generated as shown in

Table 2.3. By using the results in Table 2.3, Eqn. (2.39) yields

N—i
S = _XN 2N +E (2s+ - sfl21. (2.40)

By using the fact that the 2Nth term in Eqn. (2.40) corresponds to a negative power,

one obtains

N-i

= 8-2N + E (2st,. - sfl21 + 4,
1=0

where $ = 0. Eqn. (2.41) can now be written as

N N

S = (s - s1)2 =
1=0 1=0

(2.41)

(2.42)

24

It can be observed that Eqn. (2.42) represents S in its SB format. Moreover, it can

be observed from Eqns. (2.39), (2.40), and Table 2.3 that the process of mixed SB/TC

number addition is totally carry-free. Mixed SB/TO number subtraction Y - X can

be achieved in a similar manner, the only difference being that all the bits of X are

now complemented and $ = 1.

The above addition and subtraction operations can be implemented by using Type-

1 Full-Adders [4, 2OJ. Fig. 2.3 and Fig. 2.4 demonstrate mixed SB/TO number addi-

tion and subtraction, respectively.

- +

5N S

- +

8N 8N

- +

XN1 'N-i 1'N-i

- +

5N-i 5N-i

- +
xi Yi Yi X Yo Yo

- +

S i S i

Figure 2.3. Mixed SB/TO Number Addition

XN1 'N-i 'N-i

- +

5N-i N-1

- +
xi Yi Yi

- +

S 0 S

X Yo Yo

- +

Si Si

- +
s0 S0

Figure 2.4. Mixed SB/TO Number Subtraction

0

i

A similar theoretical approach can be developed for the (s, v)-encoded representa-

25

tion of Y and S. The addition and subtraction circuits for the minimal (s, v)-encoding

based mixed SB/TC number arithmetic are shown in [42].

2.4 Theoretical Background for High-Speed Multiplication
and MAC Operation using SB Arithmetic

This section outlines a theoretical background for high-speed multiplication and

MAC operation using SB arithmetic. A novel overlapped scanning technique for the

modified radix-4 recoding of SB numbers is presented together with its mathematical

proof, algorithm, and implementation. This is followed by a mathematical devel-

opment of rounding techniques for SB arithmetic, resulting in two algorithms for

high-speed SB rounding. Finally, the overflow processing aspects of SB arithmetic

are discussed.

2.4.1 Modified Radix-4 Recoding of SB Numbers

The key point in high-speed multiplication is the reduction of the number of in-

termediate partial-product components, and the carry-free computation of the cor-

responding partial-product sums. While the former involves number transformation,

the latter is achieved by redundant number addition/subtraction.

Number transformations require the recoding of a given N-digit number to a

digit redundant number, where k ≥ 1. Such transformations are called multibit-

recoding and are well known in the case of TC numbers. They permit the recoding of

TC numbers to minimally-redundant radix-r SD numbers (with r ≥ 2). Of these, the

most popular recodings involve the cases of r = 2 (conventional-Booth recoding [3])

and r = 4 (modified-Booth recoding .[36]). The modified-Booth recoding is used in

almost all the recoded-TC multiplication units, and conducts a 3-bit overlapped scan-

ning on a given TC multiplier in order to convert the multiplier into its corresponding

modified radix-4 representation having the digit-set {, I, 0, 1, 2}. This allows the gen-

eration of the intermediate partial-product components by uniform shifting, zeroing,

26

and/or negation of the multiplicand, thereby permitting high-speed and efficient VLSI

implementation. However, there is need for such a recoding scheme for SB numbers

in order to facilitate high-speed fully-SB multiplication.

In the following, a novel 5-digit overlapped scanning technique is developed for

recoding SB numbers to their corresponding modified radix-4 format [49] for high-

speed fully-SB multiplication.

2.4.1.1 Theoretical Background for Modified Radix-4 Recoding of SB-
Numbers

Let Y represent an N-digit SB-number in accordance with

N—i

Y= yE{i3O,1}. (2.43)
1=0

Moreover, let a 5-digit overlapped scanning of the digit-sets

< Y2n+3 Y2n+2 Y2n+1 Y2n Y2n-1 >

be carried out successively for n = —1,0,... , - 1) (taking yj = 0 for i < 0 or

i> (N - 1)) to form the digits

where wn+i

and tfl 1

zn+1 = wn+1 + tn+1,

represents the weight digit in accordance with

Wn i = j 2Y2n+3
+ Y2n+2

if !/2n+3 = Y2n+2

if Y2n+2 = 0 and Y2n+3 = Y2n+i
otherwise

represents the transfer digit in accordance with

- f Int((y2,i + Y2n)/2) if Y2n 0
tn+i - Int((j2+i + Y2n-1)/2) if Y2n = 0,

(2.44)

(2.45)

(2.46)

and where Int(.) represents the integer part of its argument. Finally, let the (ff1 +1)-

digit radix-4 number Z be formed in accordance with

N i 1

= Zn+14fl+i . (2.47)

27

Theorem 2.1 The number Z in Eqn. (2.47) constitutes the modified radix-.4 repre-

sentation of the SB-number Y in Eqn. (2.43).

Proof Consider the case when J2Y2n+1+Y2nI ≥ 2 (including t2Y2n+3+Y2n+21 542

and I2Y2n+3 + Y2n+21 = 2), and the case when I2Y2n+1 + Y2nI < 2. By applying

Eqns. (2.44), (2.45) and (2.46), and by carrying out an exhaustive enumeration, one

obtains

tz+iI <2. (2.48)

Furthermore, by considering the cases, I2Y2n+1 + Y2nI < 2, I2Y2n+1 + Y2n1 = 2, and

I2Y2n+1 + Y2n I > 2, and by applying Eqns. (2.45) and (2.46) exhaustively for every

possible instance of the transfer and weight digit, one obtains

4t+i + Wn = 2Y2n+1 + I/2n.

Eqn. (2.43) can now be expressed as

(11-1)
(2y2+1+y2)4.

i=O

By using Eqn. (2.49) and by partitioning, one obtains

(11-') 1 (11-1)
Y = E t1+14+' +

i=O i=O

(2.49)

(2.50)

(2.51)

By making use of the fact that to = 0, and the fact that w rE21 = 0, and by applying

Eqn. (2.44) to Eqn. (2.51), one obtains

(11-')
Y= z 14'', (2.52)

where the right-hand side corresponds to Eqn. (2.47), leading to

Z = Y (2.53)

The proof is established by the fact that Eqn. (2.48) restricts the magnitude of

each digit to less than 3, and by the fact that Eqn. (2.53) indicates that the algebraic

value of the original number is preserved. U

28

2.4.1.2 Algorithm for Modified Radix-4 Recoding of SB-Numbers

The SB-number Y can now be recoded into its corresponding modified radix-4

form Z by using Theorem 2.1. This can be achieved by using the pseudo-code in

Algorithm 1 below.

Algorithm 1

input: Y in SBNR;

output: Z in modified radix-4 SDNR;

begin

read Y;

initialize Z=O;

set y=O for i<O or i>(N-1);
for n = —1 to (11 —1)
begin

select the digits Y2n+3, !12n+2, Y2n+1 112n, Y2n-1

compute from the selected digits using Eqn. (2.45);

compute t from the selected digits using Eqn. (2.46);

zn+1 = wn+1 +in+1';

Z = Z + Zn+i41

end

write Z;

end.

Fig. 2.5 demonstrates the application of Algorithm 1 (Page 28) to a 16-digit SB-

number Y = (1110100111100011)2 (= (58913)jo). It is clearly observed that the final

output Z = (102221201)4 is the modified radix-4 representation of Y, and that it

preserves the algebraic value (58913).

2.4.1.3 Implementation of the Modified Radix-4 Recoding of SB-Numbers

This section is concerned with the implementation of the above 5-digit overlapped

scanning technique. In what follows, t1 and are derived in terms of their

7n+1

a+1 -

29

1 0 7 2 7 1 0 1

Figure 2.5. Illustration of the Application of the Recoding in Algorithm 1 (Page 28)

(s, v)-encoded forms given by

Wni <sw +1 ,bw +1 ,aw +1 > (2.54)

n+1 E <8t +1 ,at +1 > (2.55)

In these equations, and represent the signs of and respectively.

a +1 and represent the 2°-component of and t,.1, respectively. b +1

represents the 2'-component of

The equations for the (.s, v) representations of and t 1 are developed in

terms of y, y, and y'. Here y, y, and y are used to indicate that the y-th digit

of the input word Y is 0, 1, and I respectively.

_O' 1 0 1 1 0 1 1 0 1
- Y2n+3Y2n+2 T Y2n+3Y2n+2 T Y2n+3Y2n+2Y2n+1 T Y2n+3Y2n.i-2Y2n+1

_____ (2.56)

- Y2n+3Yn+ (2.57)

A (2.58)

s+1 = (2.59)

aj+,
_1 0 1 I 0 I 1 1 I
- Y2n+1Y2n•Y2n-1 r Y2n+1Y2n•Y2n-1 -I- Y2n+1•Y2n 1 Y2n+pY2n (2.60)

Eqns. (2.56) to (2.60) are now used to derive the final output in terms of z, 1. Again,

is represented in its (s, v)-encoded form as shown below

(2.61)

30

In Eqn. (2.61), s 1, b2+1, and a+1 represent the sign, 21-component, and the 20

component of zi respectively, and are given by

s11 - .sfl1 + s t+1 .b +1 .at +1

s 1 a wn+1 .sTt--n+j .atn+1 + .a +1 .s1 .aj +1 + b +1 .aj +1

= a +1 .b +1 .aj+1 + a +1 .at+1 + b +1 .at +1

2.4.2 Rounding Techniques for SB-Arithmetic

(2.62)

(2.63)

(2.64)

The multiplication [47] of two single-precision numbers results in a double-precision

product. For further storage and processing, this double-precision product must be re-

duced to a single-precision result while ensuring minimum deviation from the double-

precision product. This reduction is achieved by rounding [32]. Rounding forms a

critical operation in arithmetic functional units. In order to ensure widespread com-

patibility, current and future arithmetic functional units must adhere to well defined

and efficient rounding schemes. Several such rounding schemes already exist, most

notably the IEEE standard 754 default rounding to the nearest/even (RNE) [32], and

the rounding to nearest/up (RNU) schemes being in widespread use [18].

The following discussion deals with the development of rounding techniques for

SB-arithmetic. A relationship that exists between the number truncation in TC-

arithmetic and the corresponding truncation in SB-arithmetic is derived. This rela-

tionship is subsequently exploited and applied to the development of a pair of novel

techniques for SB rounding. These techniques are then translated into algorithms

suitable for two-level logic implementation.

2.4.2.1 SB RNU and RNE Techniques

The relationship between the number truncation using TC arithmetic and the

corresponding operation using SB arithmetic is derived. This relationship is subse-

31

quently exploited together with the existing TC RNU and RNE techniques [32] to

arrive at the corresponding techniques for RNU and RNE of SB numbers [53].

Truncation of TC numbers and its equivalent in SBNR

The relationship between TC number truncation and the corresponding operation for

SB numbers is presented.

Let U represent a N-bit TC number in accordance with

N-2

U—UN-1 2 +E u2', Ui E {O, 1}.
i=O

Similarly, let V represent a N-digit SB-number

N-i

V= E vj22, vE{I,O,1}.

(2.65)

(2.66)

Moreover, let U (V) be partitioned into its most significant word UMSW (VMSW) and

least significant word ULSW (VLSW) in accordance with

N-2 N-i

UMSW = tN_l2M 1 +E u22 (VMSW = v2),
i=K

K-i K-i

ULSW ti22 (VLSW = E v2),

(2.67)

(2.68)

where the term 2' corresponds to the least significant bit (digit) of UMSW (VMSW),

so that

and

Finally, let

U = UMSW + ULSW,

V = VMSW + VLSW.

(2.69)

(2.70)

U = V. (2.71)

The following lemma establishes the relationship between ULSW and VLSW.

32

Lemma 1 ULSW can be expressed in terms of VLSW as

ULSW VLSW if VLSW ≥O
= VLSW + 2K otherwise.

Proof Let VLSW be expressed as

K-i

VLSW = VK 2K +E i32' ,

where UK E {O, 1, I} represents the sign digit, and v3j E {O, 1}, for VLSW. Then,

K-i
o ≤ f52t < (2K - 1).

(2.72)

(2.73)

(2.74)

Based on Eqns. (2.69) through (2.71), and Eqn. (2.73), a relationship between

ULSW and VLSW can be determined based on the following two cases.

Case (a): VLSW ≥ 0. In this case, Eqns. (2.73) and (2.74) lead to UK = 0. Therefore,

by using 0 ≤ ULSW < (K - 1), together with Eqn. (2.71) and the fact that values in

this range are not expressible in powers-of-2 higher than K - 1, it follows that

ULSW = VLSW. (2.75)

Case (b): VLSW < 0. In this case, Eqns. (2.73) and (2.74) lead to UK = I. Therefore,

by using Eqn. (2.73), one obtains

K

VLSW = _2K + >J21.

From Eqn. (2.74) and case (a), it follows that

K

= Uj,sw.

Substituting Eqn. (2.77) into Eqn. (2.76), one obtains

ULSW = VLSW + 2K

Together, cases (a) and (b) complete the proof.

(2.76)

(2.77)

(2.78)

U

33

Let UTRUN be the result of truncating U by dropping ULSW. Mathematically, this

can be represented as

UTRUN = U - ULSW. (2.79)

Then, UTRUN can be obtained from V in accordance with the following lemma.

Lemma 2 UTRUN can be obtained from V as

IVMSW if VLSW≥O
UTRUN 1. VMSW - 2K otherwise. (2.80)

Proof By using Eqn. (2.79), Eqn. (2.71), and by partitioning V on the basis of

Eqns. (2.69) and (2.70), one obtains

UTRUN = VMSW + (VIJSW - ULSW). (2.81)

The proof is completed at once through the application of Lemma 1 to Eqn. (2.81).

Rounding of TC numbers and its equivalent in SBNR

The existing TC RNU and RNE techniques are exploited together with Lemma 2 to

derive the corresponding operation for SB numbers.

Let ULSW (.VLSW) be represented as

where

ULSW = UK_12K' + ULSW,

11 n K-1 ri
VLSW = VK_1h + VLSW,

K-2
rr -
1)LSW = 2_.. ULz,

i=O

K-2

LSW =
i=O

and where UK-1 (VK_1) represents the round [32] bit (digit).

(2.82)

(2.83)

(2.84)

(2.85)

34

Table 2.4. RNU for SB-numbers

Rounded

Value
1pLsw ≥ 0 Vi,sw <0

Vjc_izO,l VK_1—1 VK_10,l VK_1 = l

VRNU VMSW VMSW + 2K VMSW VMSW - 2K

Theorem 2.2 The RNU value of V as represented by VRNU can be derived from

Eqn. (2.83) and Eqn. (2.70) as given in Table 2..

Proof The proof proceeds by applying TC RNU to U, and by deriving its

corresponding equivalent operation as applied to V through the help of Lemma 2.

It is known that TC'RNU of U is carried out by the addition of a term 2K1 to

U, followed by the truncation of the resulting number up to and including the term

21'_1 [32].

The addition of a 2'' term to U can be mathematically represented by using

Eqns. (2.69) and (2.82) as

(U + 2K_i) = UMSW + (UK-1 + 1)2<_1 + ULSW.

By invoking Eqns. (2.71), (2.70), and (2.83) in Eqn. (2.86) one obtains

(U + 2K_1) = VMSW + (vK_1 + 1)2K_1 +

(2.86)

(2.87)

Next, let (U + 2'< ')TRUN be the result of subtracting the algebraic value of ULSW

from (U + 2K_1) given by

(1/ TT + c h ITT h)TRUN = (() + Ki c) - K-1\ fl

Then, based on Eqns. (2.87) and (2.88), one can distinguish two cases:

Case (a): "z,sw ≥ 0. In this case, Lemma 2 yields

TT K-i\
IU I + h)TRUN TI = VMSW + I,VK.1 + i)L

(2.88)

(2.89)

35

To obtain VRNU from Eqn. (2.89), the effect of (VK_1 + 1)21 _1 must be taken into

account first, followed by the truncation of the resulting 2' 1 th term.

By substituting the possible values of VK_1 in Eqn. (2.89), one obtains

(U + 2K _l)TRUN _ I TI
VMSW +L

VMSW + 2K

VMSW

if VK-1 = 0
if VK...1 = 1
If VK-1 = I

(2.90)

By retaining the terms 2',... , 2N1 in the above equation, and through a second

application of Lemma 2, one obtains

VRNU = I VMSW+2'< if Vj_j>O
VMSW otherwise.

Case (b): i,sw <0. In this case, Lemma 2 yields

ITT nK-1 r,K-1
IV + h)TRUN = VMSW + VK_1

By substituting the possible values of vK_1 in Eqn. (2.92), one obtains

I VMSW if VK_1 = 0
(U + 2K_l)TRUN = VMSW + 2K-1 if vj<....i = 1

I. VMSW - 2K-1 if vK_1 = 1

(2.91)

(2.92)

(2.93)

By retaining the terms 2K ,••• ,2N1 in the above equation, and through a second

application of Lemma 2, one obtains

f V,f$W2' ifvK_1<0

VRNU = 1 VMSW otherwise.

Together, cases (a) and (b) complete the proof. U

Theorem 2.2 forms the basis for the derivation of the RNE value of V.

(2.94)

Theorem 2.3 The RNE value of V as represented by VRNE can be derived from

Eqn. (2.83) as given in Tables 2.5 and 2.6.

Proof The proof is established by demonstrating the validity of the results in

Table 2.5, followed by establishing the validity of the results in Table 2.6.

36

Table 2.5. SBNR RNE for VLSW 54 0

Rounded

Value
LSW > 0 f2 sw <0

VK_i=O,l VK_1 1 VK_1=O,l VK_1=l

VRNE VMSW VMSW + 2K VMSW VMSW - 2K

Table 2.6. SBNR RNE for isw = 0

Rounded

Value VK_1 = 0 VK_1 = 1 VK_i = 1

VRNE VMSW

VK=O VKO VKO VK:/:4 0

VMSW VMSW + 2K VMSW VMSW -

The relationship between RNU and RNE in TC number representation is as given

in Table 2.7 [32], where X can take on any value from the digit set {0, 1}, and where

d represents a don't care condition. Clearly, the results produced by RNU and RNE

are identical when ULSW 0 0. This implies that VLSW 54 0, and consequently the

results in Table 2.5 hold from Theorem 2.2.

From Table 2.7, it can be seen that RNE differs from RNU only when UK = 0,

UK-1 = 1, and ULSW = 0 (the latter implying that i,sw = 0). This leads to the

following three cases regarding V, depending on the possible values for VK_1.

Case (a): VK_1 = 0. This case implies that UK-1 = 0. The use of Theorem 2.2 and

Table 2.7 yields

VRNE = VMSW. (2.95)

37

Table 2.7. Relationship between TC RNE and RNU

Before Rounding Add to

UK-1

UK After

Rounding

UK UK-1 ULSW RNE RNU UK RNE U RNU K

x 0 =0 d 1 x x
x 0 540 d 1 X X

0 1 =0 0 1 0 1

1 1 =0 1 1 0 0

X 1 5140 1 1 x 31

Case (b): VK_1 = 1. In this case, the use of Theorem 2.2 yields

K
VRNU=VMSW+2 . 2.96

By substituting various possible values for vK, and by using the result in Eqn. (2.96),

one obtains the following.

1. vK = 0: This implies that UK = 0 and UK-1 = 1. By using Table 2.7 and

Eqn. (2.96),

VRNE = VRNU - 2K = VMSW. (2.97)

2. vK h 0: This implies that UK = 1 and UK-1 = 1. By using Table 2.7 and

Eqn. (2.96),

VRNE = V TI RNU II = VMSW +

Case (c): VK_i = I. In this case the application of Theorem 2.2 yields

VRNU=VMSW. (2.99)

By substituting various possible values for VK, and by using the result in Eqn. (2.99),

one obtains the following.

38

1. vK = 0: This implies that UK = 1 and UK-1 = 1. By using Table 2.7 and

Eqn. (2.99),

VRNE = VRNU = VMSW. (2.100)

2. vK 54 0: This implies that UK = 0 and UK-1 = 1. By using Table 2.7 and

Eqn. (2.99),

it K
YRNE = VRNU - n = V i, MSW h

The proof for the results in Table 2.6 is completed by cases (a), (b), and (c).

This completes the proof of Theorem 2.3.

2.4.2.2 Algorithms for SB RNU and RNE

Theorems 2.2 and 2.3 are recast into algorithms suitable for RNU and RNE of

SB numbers. These algorithms employ a pair of two-level logic based SIGN and

STICKY indicators for the state of sw, where SIGN is 0 (1) if sw ≥ 0 (<0),

and STICKY is 0 (1) if flLsw = 0 (54 0). The pseudo-code for the algorithms is as

follows.

Algorithm 2 RNU of SB Numbers.

input: V;

output: VRNU;

begin

read V;

decompose V into VMSW, VK_i, and Vi,sw;

compute SIGN from Vi,sw;

VMSW >> K; /* Shift K digit positions right. *1
if (SIGN == 0)

if (vK_1 == 1)

VRNU = VMSW + 1;

else

39

VRNU = VMSW;

endif

else

if == I)

VRNU = VMSW - 1;

else

VRNU = VMSW;

endif

endif

write VRNU;

endif.

Algorithm 3 RNE of SB Numbers.

input: V;

output: VRNE;

begin

read V;

decompose V into VMSW, VK_1,

compute STICKY from Vr,sw;

if (STICKY == 0)

VMSW >> K; /* Shift K digit positions right.

if (VK_1 == 0)

VRNE = VMSW;

else if (VK_1 == 1)

if (VK == 0)

VRNE = VMSW;

else

VRNE = VMSW + 1;

endif

else

if (vK == 0)

VRNE = VMSW;

else

VRNE = VMSW - 1;

endif

and Vr1sw;

*1

40

endif

else

compute VRNU from V using Algorithm 2 (Page 38);

VRNE = VRNU;

endif

write VRNE;

end.

2.4.2.3 Implementation of the SB RNE Algorithm

Generalized equations for the implementation of the SB RNE algorithm (c.f. Al-

gorithm 3 (Page 39)) are developed. In order to obtain VRNE, a correction (CR) is

applied to the least significant digit of VMSW. In order to simplify the implementa-

tion, CR 15 represented in terms of its minimal (n, p)-encoded SB format as (ci, AR).

By using Algorithm 3 (Page 39), one can generate CR as shown in Table 2.8, where X

can take on any value from the digit set {i, 0, 1} for vK, and any value from the digit

set {0, 1} for SIGN and STICKY.

Table 2.8. SBNR Correction Generation for RNE

VK_1 VK STICKY SIGN AR cR Add to VMSW

1

1

x
0
3?:0

x
0

0

x
x
X

0

00

1

0

0

0

0

1.

1 x 1 1 00 0

1 X 1 0 10 1

I 0 0 X 00 0

I x 1 1 01 I
I 5?:0 0 X 0 1 1

1 x 1 0 00 0

41

From Table 2.8, the generalized equations for generating CR are given by

C'R = (vK_i = 1).(VK 54 O).STICKY + (VK_1 = 1).STICKY.SIGN

= (v = I).(vK 0).STICKY + (VK_i = STICKYSIGN

2.4.3 Overflow Processing for SB Arithmetic

(2.102)

(2.103)

Consider the addition of two SB numbers X and Y to generate the final SB repre-

sented sum S. In traditional arithmetic, an overflow occurs if the algebraic value of

X + Y is not representable in the available wordlength of S. However, in the case of

redundant number arithmetic, an overflow can occur even when the algebraic value

of X + Y is within the machine representable length of S. In this way, overflow in

SBNR addition can be categorized as either correctable or non-correctable.

Let the N-digit SB numbers X and Y be represented as

and

N-i

X=x12 xE{J,0,1}
i=O

N-i

Y yE{i3O,1},

respectively. Furthermore, let the SB sum S (= X + Y) be represented as
N-i

S SN2N+ sE{i3O,1},

where SN represents the overflow detection-and-correction digit.

(2.104)

(2.105)

(2.106)

Lemma 3 The overflow indicated by 8N 0 is correctable if the first non-zero digit

to the right, given by Sk, satisfies the condition

.sign(sN) 52 sign(sk), (2.107)

where sign() denotes the sign of its argument.

42

Proof Given that an overflow exists, Eqn. (2.107) indicates that the corrected

digits s through s_ assume the algebraic value given by SN2N - sk2k. Since

this algebraic value is representable in the digit range {k,... , (N - 1)}, the overall

algebraic value of the sum S is representable in the digit range {0,... , (N - 1)}.

Therefore, the overflow is correctable. U

Alternative proofs for correctable overflow can be found in [2] and [35].

Correctable overflows can be corrected by additional processing involving extra

computation cycles or extra hardware resources.

An overflow is left uncorrected, if after the attempted correction, the corrected

digit s 0. Provided that the system is appropriately designed, all the overflows

occurring within the system must be correctable. DSP-systems employing fixed-point

fractional arithmetic are designed to prevent overflows. In such systems, only directly

correctable overflows can occur.

Definition 4 A directly correctable overflow occurs if

(SN 0 SN-1) 54 0. (2.108)

In this case the corrected digit values s and s_ can be determined as

s'=0

s_1 - 23N - SN_i.

(2.109)

(2.110)

Lemma 4 In fixed-point DSP systems based on fractional arithmetic, only directly

correctable overflows can occur.

Proof In fixed-point DSP systems based on fractional arithmetic, the absolute

maximum algebraic value of S (given by ISMAX I) is restricted as

ISMAXI ≤ 1. (2.111)

43

Based on Eqn. (2.111) and the fact that 8N-1 corresponds to the 2°-term in fractional

arithmetic, any resulting overflow must obey Eqn. (2.108). Therefore, the overflow is

directly correctable (c.f. Definition 4).

A different treatment of overflow effects in SBNR can be found in [9].

2.5 Chapter Summary

This chapter has presented a rigorous theoretical background for redundant num-

ber arithmetic for applications in DSP systems.

Section 2.2 has dealt with the arithmetic schemes available for fixed-point DSP.

This included a discussion of the various possible arithmetic number systems, namely,

the traditional, non-traditional, and quasi-traditional number systems. In addition,

a discussion was included regarding the processing methodology fér DSP systems.

In Section 2.3, the theoretical background has been presented for redundant num-

ber arithmetic. The properties of SDNR and the concept underlying carry-free addi-

tion and subtraction have been discussed, leading to the extension of the results to

SB and mixed SB/TC number arithmetic.

In Section 2.4, a rigorous mathematical approach has been presented for high-speed

multiplication and MAC arithmetic operation using SBNR. This approach included

a novel 5-digit overlapped scanning technique for the modified radix-4 recoding of SB

numbers. This has been followed by the development of two techniques facilitating

RNTJ and RNE of SB numbers. These techniques have been established by devel-

oping a relationship between number truncation in SB and TC arithmetic, and by

exploiting this relationship together with the available TC RNU and RNE techniques.

Finally, arithmetic overflow processing issues for SB numbers have been discussed to-

gether with its ramifications regarding directly correctable overflows in fixed-point

DSP systems.

44

CHAPTER 3

HIGH-SPEED REDUNDANT NUMBER ARITHMETIC
ARCHITECTURES

3.1 Introduction

This chapter presents the exploitation of the theoretical results in Chapter 2 for

the development of novel design and implementation techniques for high-speed VLSI

multiplication and multiply-accumulate (MAC) arithmetic operations.

The discussions begin with the development of a technique for very high-speed

mixed SB/TC digit-serial [22] modified-Booth [36] multiplication, where the high-

speed property is realized by eliminating the carry propagation in partial product

sum computation. The resulting multipliers incorporate IEEE Standard 754 default

rounding presented in Algorithm 3 (Page 39). It is shown that the area-time effi-

ciency and throughput of these multipliers far surpass those of the existing digit-serial

modified-Booth multipliers [15]. It is also shown that the use of redundant number

arithmetic is most attractive for fully parallel multiplication and MAC operations.

The discussions proceed by using mixed SB/TC number arithmetic together with SB

RNE technique (c.f. Algorithm 3 (Page 39)) for the development of a high-speed

mixed SB/TC MAC arithmetic architecture. The resulting architecture employs the

new techniques of partitioned accumulation and concurrent rounding and overflow

correction. Subsequently, the modified radix-4 recoding technique (c.f. Algorithm 1

(Page 28)) is used to extend this architecture to handle fully-SB parallel MAC arith-

metic operation.

The above developments also include the parameterization of each of the proposed

architectures in terms of their area-time requirements for the corresponding Actel

1.2/1 technology implementations. The resulting implementations are subsequently

verified by using Viewlogic simulations.

45

The proposed high-speed mixed SB/TC digit-serial modified-Booth multipliers are

developed in Section 3.2. Section 3.3 presents the architecture for high-speed mixed

SB/TC parallel modified-Booth MAC arithmetic operation. Finally, Section 3.4

presents the high-speed fully-SB parallel MAC arithmetic architecture.

3.2 High-Speed Mixed SB/TC Digit-Serial Modified-Booth
Multiplication

In practical DSP applications, it may be desirable to combine the area-efficiency

of a bit-serial architecture with the time-efficiency of a corresponding bit-parallel ar-

chitecture into a single area-efficient and time-efficient digit-serial architecture [16].

Digit-serial architectures [22, 38] process multiple bits of the input data word per

clock cycle, where the number of bits processed in each clock cycle is referred to as

the digit size. A systematic unfolding technique was presented in [22] for the de-

sign of digit-serial architectures. In [16], this approach was exploited and applied to

the design and implementation of TC digit-serial modified-Booth [36, 3] multipliers.

Unfortunately, TC number arithmetic suffers from the inherent carry/borrow propa-

gation problems. For higher values of the digit-size, the carry/borrow chain increases

in length, resulting in an increased critical path length and reduced achievable oper-

ational speed. In addition, the underlying digit-serial unfolding technique increases

the bit-level pipelining distance by the digit-size, forming another propagation path

which is orthogonal to the original carry/borrow propagation path.

The creation of the above propagation paths sets an upper limit on the achievable

operational speed in the existing digit-serial modified-Booth multipliers, rendering

these multipliers area-efficient and time-efficient only for digit-sizes close to 4. In

addition, these modified-Booth multipliers require sign extension of the intermediate

partial product sum components for correct TC multiplication which leads to lengthy

and non-uniform interconnects in the corresponding hardware implementation. Such

interconnects grow with increasing the digit size.

46

This section deals with a novel approach to high-speed digit-serial modified-Booth

multiplication based on mixed SB/TC number arithmetic [48]. The resulting high-

speed property is realized by eliminating the above carry/borrow propagation in the

constituent partial product sum computations. This is achieved by computing the

partial product sum components in SB format, while maintaining the corresponding

intermediate partial product components in TC format. IEEE Standard 754 rounding

of the resulting full-precision SB product is achieved by using Algorithm 3 (Page 39).

The rounded product is subsequently converted into its TC format by employing a

simple high-speed look-ahead conversion.

The salient feature of the resulting digit-serial modified-Booth multipliers is that

they permit very high throughputs for arbitrary values of the digit size. Moreover,

they lead to combined area-efficient and time-efficient implementations even for the

values of the digit size exceeding 4 where the conventional modified-Booth multipliers

begin to become inefficient. In addition, they do not involve any sign extension,

permitting uniform implementations with highly localized interconnections (suitable

for practical implementation in VLSI).

3.2.1 Theoretical Background for High-Speed Mixed SB/TC Digit-Serial

Modified-Booth Multiplication

In the proposed mixed SB/TC digit-serial modified-Booth multiplication approach,

the M-bit TC multiplicand XTC and the N-bit TC multiplier yTC are first de-

composed into a set of D radix-2' components XrC and }CTC, respectively, where

i E 10,11 ... , D— 1}, and where D is the digit size (the mathematical details underly-

ing this decomposition are presented in [15]). The conventional modified-Booth recod-

ing technique is then applied to the decomposed components YTC by an overlapped

scan on triplets.of the multiplier bits Y2n+1,112n, and Y2n.-1 (for n E {O, 1,... , f1-1},

47

with y = 0) to obtain the full-precision TC product as

N i 1

pTa = Z XTC4n ,

- where

n0

Zn = qn (2bn +.a),

where an, b, and the sign bit s, are obtained from the multiplier bits as

an = Y2n-1 Y2n,

= (Y2n-1 Y2n).(Y2nY2n+1),

= Y2n+1,

and where q, is defined in terms of the sign bit s, as

if Sn = 0
if S, = 1.

By representing the full-precision TC product in Eqn. (3.1) in its SB format as

D-1 M+N-1
pSB = E pB = j Pn2nj Pn E {I,o,i},

i=O n=O

one can form the corresponding digit-serial full-precision product components pSB in

accordance with

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

N r
12

PS = E PPTC '

(3.7)

(3.8)

where the constituent intermediate partial product components ppTC are given by [15]

PPT Pn C [anXTC 21(2714 1—t)1Di D + bfl XC2n)modD 2 1(2n—i)/)i
(i-2n-1)mc'dD

(3.9)

for i E {0,1,... ,D— 1}.

The full-precision product components p.SB for each value of i can be determined

as

DS - B DDCSB
I i -11 (3.10)

48

through successive applications of the recursive relationship

PPSSB =PPS+ TC pp

in n.

(3.11)

The salient feature of Eqns. (3.11) is that it permits the computation of the terms

PPSf+1 independently of each other for the various values of i, which is made

possible due to the absence of carry/borrow propagation between the terms PPSf F1

and PPSB1 for ii i2 E {O,1,... ,D - 1}. Then, the corresponding TC product is

obtained as

pT0 = ppS+I - JpSBI (3.12)

The proposed digit-serial modified-Booth multipliers exploit the above parallelism

in terms of i (arising from mixed SB and TC computation) together with that in terms

of n (arising from the nature of digit-serial computation) to secure a very high-speed

multiplication.

3.2.1.1 Algorithm for Mixed SB/TC Digit-Serial Modified-Booth Multi-
plication

The pseudo-code for the mixed SB/TC digit-serial modified-Booth multiplication

is as follows.

Algorithm 4

input: XTC,YTC,M,N,D ;

/* M and N are multiplicand and multiplier wordlengths, respectively. *1
/* D is the digit size. */

output: RNE;

begin

read XTC, yTC M, N, D;

for i = 0 to D-1 do

begin

49

PPS 3 =0

decompose XTC and yTC into radix2' components X/' C and yTC

end

for n = 0 to f] - 1 do

begin

z, = (-'2Y2n+1+y2n+y2n-1);

evaluate Pn, an and bn from Z;

for i0toD-ldo

begin

pp7' = p1 (bnX(i....2n_1)modD 21(2n+1-i)/D1 D + anX(i....2n)modD 2 1(2 i)/D] D) ;

pD8SB - PPSf +ppT,; .L -

end

end

initialize pSB =0•

for ± = C to D-1 do

begin

DSB_DDOSB
.Lj 11 it

pSB = pSB + .FB2i;

end

decompose pSB into its MSW and LSW;

Apply Algorithm 3 (Page 39) to pSB and obtain

PT - DSB+ SB-
1 RNE £RNE - .LRNE

•- DTC write 1RNE'

end.

DSB
.L RNE'

3.2.2 Mixed SB/TC Digit-Serial Addition and Subtraction

The architecture of a mixed SB/TC digit-serial adder for a digit size of D is as

shown in Fig. 3.1, where A denotes the bit-delay operator. This architecture shows

the addition of a TC number X and a SB number Y. There are lcm(N, D)/N two-

input multiplexors associated with this adder, where lcm() denotes the lowest common

multiple of its arguments. The multiplexors are shown in dotted lines since they exist

50

only when the condition i = NmodD, 2NmodD, ..., [(lcm(N, D)/N - i)N]modD is

satisfied. If the condition is not satisfied, the associated multiplexor does not exist

and the signal ct is directly connected to the output st. It can be observed that the

absence of any carry-propagation path from one Ti-adder to another ensures constant

addition time (equal to the delay through a Ti-adder), regardless of the digit-serial

unfolding factor D.

0

9
Si

S -1

Figure 3.1. Mixed SB/TC Digit-Serial Addition

The architecture of a mixed SB/TC digit-serial subtractor is as shown in Fig. 3.2.

The subtraction is achieved by complementing all the bits of the TC number X to

be subtracted from the SB-number Y. When the LSB signal is indicated by the

SELj signal, a i is fed to the st output. Again, it can be seen that the subtraction

operation is totally borrow-free.

51

1

Figure 3.2. Mixed SB/TC Digit-Serial Subtraction

3.2.3 Architecture for High-Speed Mixed SB/TC Digit-Serial Modified-

Booth Multipliers

This subsection is concerned with the translation of Algorithm 4 (Page 48) into

an architecture for the design and implementation of very high-speed mixed SB/TC

digit-serial modified-Booth multipliers. The proposed implementation consists of a

tandem connection of ({N/21 + 1) modules as shown in the schematic diagram in

Fig. 3.3. The first (IN/21 - 1) modules in this diagram are structurally identical.

Furthermore, the {N/2]-th module is the same as its predecessor modules save for the

fact that it contains an additional pre-rounding circuit. Finally, the (1 N/2] + 1)-th

module contains the circuit for rounding and digit-serial SB to TC conversion.

The communication between the (IN/21 + 1) modules in the proposed digit-serial

52

multiplier occurs as follows. The first [N/21 modules have Xli, Y11, MSWI1, LSWI,

CI, and CLI as their input signals, while having XO, YO, MSWO, LSWO1, CO,

and CLO as their corresponding output signals (except for the output signals of the

I N/2]-th module which will be discussed later). Here, X11 (X01) and YI (Y01) rep-

resent the decomposed TC multiplier input (output) and TC multiplicand input (out-

put) components, respectively. Moreover, MSWI1 (MSWO1) and LSWI1 (LSWO)

represent the SB most-significant digit input (output) and SB least-significant digit

input (output) components, respectively. Finally, CI (CO) represents the multiplica-

tion control signal input (output), and CLI (CLO) represents the rounding control

signal input (output).

The IN/21-th module generates the output signals MO1, Sticky, Sign, and CO,

which are then consumed as input signals by the (IN/2 + 1)-th module. Here,

MO1 represents the truncated product, and Sticky and Sign represent the rounding

correction to be applied to MO1 to result in the final rounded SB product. The

(IN/21 + 1)-th module generates the IEEE Standard 754 rounded TC product P1

with its least significant bit synchronized to the rising edge of the signal CO.

lut Module

xxi xoi xxi

yli Yoi yxi

MSWXI MSWOi MSWXI

LSWII LSWOI LSWIi

CX Co CX

CLI CLO CLI

xoi Mu

RND

Sticky

Sign

CO

(N/2 + l)-th
Round-and-
Convert
Module

Figure 3.3. Level-i Architecture of Mixed SB/TC Digit-Serial Multiplication Unit

501

Each of the modules are described in the following, for generalized values of D, n

and i.

CL.'

53

3.2.3.1 Generic Hardware Module for Mixed SB/TC Digit-Serial Modified-
Booth Unit for General Values of D, n, and i

The generic hardware module constitutes the modules 1 through (1 N/2] - 1), as

shown in Fig. 3.4 for general values of D, n, and i. This module has D vertically

stacked sub-cells for computation of the partial product sum components in terms of

LSWO(i+l)modD and MSWO(j+l)modD. The dotted elements are present only if the

condition given is satisfied. If the condition fails, the output of the preceding element

is directly connected to the input of the current element. The heavy lines represent

the pair of signals required to carry a single S13-digit.

C3n-1)mc.a o •
D r'

(3n)mod 0 • 0-1

Cxx

((3n+i)mod D)+1

P.....S

((3n+i)rnod P)+i

B(,d p.....0

D-1, ..., ((3n+l)uod 0)-il

(3n.i)nod 0.....0

Si

(n)mod P • P-i

CLO

Cii-. Si

(3n,2)bcd P

d y

Cii4

J4SWIi-

HSWII,

7 i • 0-1. 2 (i+2)iod P • 7 P-i

ci

7 1
i • 0-i f't!

Ct(i41)ro 0-.

Do
(i XI *3)znod P

2X (1.3) D

yl i

P-i

[j
0 iD-i

L1- ri
•i)irod P

._r LZj

C'

I (in.2. 3)mod P

0-1

LSWU LSWO (11)

Cxx

H Co

So
(i4i)mod P

Figure 3.4. Generic Hardware Mixed SB/TC Digit-Serial Multiplication Module for
Generalized Values of D, n and i.

The decomposed multiplier components Y shown in the module in Fig. 3.4, are

54

used to form the terms A, Bi and S, which are then used to form the intermediate TC

partial-product components pp. The i-th Ti-adder sums the pp-th component with

the MSWI-th component. This addition generates the components C and Ct 1.

The component Ct is subsequently combined with Cit to generate the (i+ i)modD-

th SB-digit in the form of PPSO(i+l)modD. The assertion of the signal CI forces the

first digit of the corresponding PPSO1 to be sent out as the LSWO. The component

CI 1 however, constitutes the positive part of the next higher power-of-two digit,

and is generated in the same or the next clock cycle depending on the value of i (c.f.

Fig. 3.4).

The control signals associated with the modules are given by [15]

Cl-,= CI[[(3n + 1)/DJ - [(3 - D)n/Dj - n] (3.13)

ci - f CI[[(3n + 2)/DJ - [(3 - D)n/Dj - n] for i = (3n + 2)modD

- GND otherwise (3.14)

Ciz - .1 CI[L(3n + 2)/D] - [(3 - D)n/Dj - n] for i = (3n + 2)modD
- CI[[(3n + 3)/DJ - [(3 - D)n/Dj - n] for i = (3n + 3)modD (3.15)

In addition, the control-signal CLI is passed through these modules with the delay

existing only if the specified condition is satisfied. This signal indicates the compu-

tation of the least-significant-digit of the product.

It can be observed that the partial product sum is in SBNR. This means that there

is no sign-extension required for the MSW0j components. Therefore, it is sufficient

to attach zeros to the most-significant part of MSWOi during the assertion of CL.

This is unlike traditional TC multiplication, where sign-extension is required. The

absence of sign-extension in the proposed multipliers results in local interconnections

of short length within the modules. This is a definite advantage in comparison to

the fully TC digit-serial modified-Booth multipliers, where sign-extension introduces

global connections of large lengths within the corresponding modules.

55

From Fig. 3.4, it can be observed that the PPSO1 components are computed in

parallel, with the computation time being independent of the digit-size (due to the

absence of carry-propagation)-

3.2.3.2 Pre-Rounding Module for the Mixed SB/TC Digit-Serial Modified-
Booth Unit for General Values of D, n, and i

The architecture of the Pre-rounding module (which corresponds to the F1-th

module) is shown in Fig. 3.5. This module consists of three sections, namely, the

Encoder, the Decoder and the Pre-Round section. The Encoder and Decoder sections

operate in the manner described in the previous section except for the fact that

PPSOi redirection towards LSWOj does not occur in the Decoder. Furthermore, the

MSW of the product is directed towards MOj once C4 is asserted in the Decoder.

SB The round-digit corresponding to pf2 is extracted and passed separately to the

next module in the form of RND. This digit is formed at the (3n + 2)modD-th

cell in the Decoder on the assertion of CI.. Simultaneously, the Pre-Round section

computes the SIGN and STICKY bits. SIGN is generated by first computing a

generalized bit-value SCj for the i-th LSWI by taking into consideration the sign of

the its immediate least-significant word. Table 3.1 depicts the encoding scheme for

the generalized SC, where X can take on any value from the digit set {O, 1}.

Table 3.1. Computation of the Generalized SC

LSWI Intermediate SIGN upto LSWI SC

0

0

1

1

0

1

1

0

56

(3n-1)mod B

11 (3n-2)..d 0

CIX

11 (3n)od 0

11 (3ncl).od 0

I (3n)eod 0 • 0-1

CIX

0-l.....((3n,l)ood 01.1

A(3 1)—d D.....0

B01((3n,1)ood 0).1

B13 lId 0.....0

0-1. ((3n.1)ood 0),1

5 (3n.1),od B.....0

LSWIi

LSWIi,1

LSWID-1

Si

Cti-+ Si

(3n,2)eod 0

CI

HSWI.

Sign
Lookehoed

Section 1

Cti,

cti

iD-14

Ct(i.l)ood 0-.

o (3n.2)oodD 0-I

BO(j I)ood

(n,2)ood 0. for 0 , 2

blood 0, for 0 = 2

Sign
Looktheod

Section

SC
0-1

C

i 0-1

3 3
i 0-1, 2 (i,2)o0d 0 0-1

xo
X1 I A (i,3)mod 0
i L. 1(1,2)mod L_..l 21 (i,3),.od 0

CI

(3n+2)mod 0

i 0-1

 [T2]

STICKY

SIGN

 [K

CLI

10
(i.1)ood 0

(nc2)mod 0 0. 1

-HAl CLI.

H Co

Figure 3.5. Pre-Rounding Module for Generalized Values of D, n, and i.

The components SC1 are all generated in parallel using a lookahead section [20].

This is achieved by examining the positive and negative parts of each LSWI1 as

shown in Fig. 3.5. The computation of the least-significant SB-component (pgB) of

the product is indicated by the assertion of the signal CLL. This initializes the SIGN

and STICKY-bit generation logic. SIGN corresponds to the last SC1 generated on

the assertion of CI,,. STICKY is also generated from the lookahead section. It can

.57

be observed that, computing the STICKY-bit is very simple since all the LSWIs

are in S13-format. The assertion of CI, causes the SIGN and STICKY-bits to be

latched for further processing by the (1 N/21 + 1)-th module.

3.2.3.3 Round and Convert Module for the Mixed SB/TC Digit-Serial
Modified-Booth Unit for General Values of D, n, and i

The outputs of the Pre-round module are fed to the Round and Convert module.

This module carries out the following functions:

Rounding (IEEE Standard 754 RNE) of the SB-MSW.

. Conversion of the final S13-RNE result into its corresponding TC-form.

The IEEE Standard 754 RNE is carried out by using the (N - 1)-th digit (i.e.

LS-digit of the SB-MSW) in conjunction with the SIGN, STICKY and RND in-

formation generated by the Pre-Round module. The correction CR (c.f. Eqns. (2.102)

and (2.103)) is generated as shown in Fig. 3.6, and is subsequently applied to the

MSW of the product in two steps. The principle underlying this two-step correction

is explained with an example in Fig. 3.7, which depicts the application of a correction

of +1 ((ci, cj) = (0, 1)) to the SB-number 1101.

The incoming SB-MSW is first recoded in Step-1 as shown in Table 3.2. This

allows the negative component of the correction (ci) to be applied without generating

a carry/borrow. The resulting SB-number after the negative correction is re-recoded

as shown in Table 3.3, to allow the positive component of the correction (AR) to be

consumed without generating a carry/borrow. Fig. 3.7 depicts the process.

The rounding is triggered on the assertion of the signal CIX, by the application of

the two-step correction to W. R02 are generated in parallel, and are subsequently

consumed by the lookahead converter [20] in order to form the TC-result PTG'. The

degree of lookahead possible for a given digit-size depends upon the number of inputs

58

MI1+

NIl

RND
RND+

STICKY
SIGN

RND
STICKY
RND*

N-1

RND*
SIGN

STICKY
KNO-

RND.
STICKY

RND-

N-1

7.1
c1- c C C

\i =(3n.1)mod II \\ [•_ (3n,1)mod D

CI CI

HIi-

tookahead
Subtractor

Section 1

SC(i. ;) 1)mld D

Loekahead
Subtracter

Section 2

0

SC
0-1

I
i = 0-1

_..

pp0

PP

Cj+ l) !,,oa

D- 1

pp i P(j ,j)
mod D

CI__ 1

Figure 3.6. Round and Convert Module for Generalized Values of D, n, and i.

Co

per gate available in the given technology, and the position of the multiplexer as shown

in the lookahead section of Fig. 3.6. The least significant bit of PTc is synchronized

with the CO signal.

3.2.4 Re-pipelining

Digit-serial structures are generated by systematic unfolding [22] of the correspond-

ing bit-serial structures. However, the unfolding process also increases the critical

path lengths by spreading them over the digit-size.

The unfolding of conventional fully TC bit-serial multipliers to result in the cor-

responding TC digit-serial multipliers gives rise to two critical paths as shown in the

59

1

Step 1

Step 2

+ I - + I - + I -

L 1 L L L
01 10 10 00 10

J I J J

1 1

+

0 0 1 1 1 1 1 0 0 1 1 1
LJ LJ LJ LJ LJ LJ

0 0 0 1 0

1C

Figure 3.7. Principle Underlying the SB Rounding (An Example).

Table 3.2. Step 1 of SBNR Correction

Incoming SB - digit Recoded set

0

1

1

0,0

0,1

schematic in Fig. 3.8. The first critical path is the carry-propagation path which

is shown by vertical dotted lines. This is eliminated in the proposed mixed SB/TC

digit-serial modified-Booth multipliers by utilizing the carry-free addition/subtraction

property of mixed SB/TC number arithmetic. The second critical path is the partial-

product sum computation path which is shown by horizontal heavy lines. This path

arises due to the spreading of the bit-level pipeline over the digit-size after unfold-

ing. Re-pipelining is employed to break these horizontal propagation paths (achieved

by inserting latches judiciously at certain intervals between modules). The required

re-pipelining interval is determined in terms of the desired speed, look-ahead circuit

speed, chip area, and permissible latency.

60

Table 3.3. Step 2 of SBNR Correction

Incoming SB - digit Recoded set

0

1

1

0,0

0,1

Affo

Unfolding by 3

Figure 3.8: Critical Paths arising from Bit-Serial to Digit-Serial Unfolding.

The optimal re-pipelining interval 0 required to maximize the efficiency of the

multipliers can be computed as

where

0 = max[(T - io)/tTlj , OMIN],

to = 3t+ tDFF + 2tMUX,

(3.16)

(3.17)

and where tT1, tG, tDFF, and tMUX represent the delays through a Ti-adder, gate,

D-flip-flop (DFF), and multiplexer (MUX), respectively. Moreover, 0MIN represents

the minimum re-pipelining interval (which is equal to 1 in the present discussion),

and T represents the minimum allowable clock period (c.f. Eqn. (3.19)).

61

3.2.5 Performance Analysis

In this section, the proposed digit-serial multipliers are first parameterized in terms

of their hardware and time requirements. Subsequently, their throughputs and effi-

ciencies are compared with those of the existing digit-serial modified-Booth multipliers

both for various wordlengths and for various digit sizes.

3.2.5.1 Parameterization

Hardware Requirements

The hardware requirements for the digit-serial multipliers are calculated in terms of

the number of DFFs, Ti-adders, two-input MUXs, and auxiliary gates. The results

are as shown in Table 3.4, where

1 if (IN/21 + 1)modD = 0, 1,
0 otherwise,

(3.18)

where F represents the maximum number of inputs-per-gate available in the target

technology, and where 1 represents the look-ahead factor such that 0 < 1 < 1.

Table 3.4. Area Requirements

Type of Hardware Cell Requirement

Ti-Adders D(N/2 + 1)

2-input Multiplexors [(12— 4L1/D])(N/2 - 1)] + 10
D-Flip-Flops 14(N/2)+12+ L(3 - D)N/(2D)j + (6D+2)(f(N/(2 x))1

-

3 - EN/2-1 1) + / o fi3n + 1)modD/D1

AND, OR and XOR gates (4D + 3 - L1/DflN/2 + 10 + 5D + FD/(F - 1)1 +
2{Dl/(F - ')l + 2' 12 f(i + 1)/(F - 1)1 +

(D-DI-1)/2
F(i+1)/(F-1)1

i(D1-1)/21 E j
=0 f(k + 1)/(F - 1)

f(D-D1-I)/21

+
+

Minimum Allowed Clock Period

The minimum allowed clock period T can be calculated through a worst-case analysis

62

(involving the remaining critical path) in accordance with

T = (flogF(DI + 1)1 + flogF(D - Dl + 1)1)tG + 4tG + tMUX + tDFF,
(3.19)

if 0 is to be chosen as given in Eqn. (3.16). However, if 0 is chosen otherwise, the

minimum allowed clock period is given by T' in accordance with

= max[T, (to + IjltTi) 1. (3.20)

Computational Delay

The computational delay of the proposed multipliers is given by [(3N)/(2D)] +[]+1 20

bit-clock periods. Here, the computational delay refers to the time interval between

the arrival of the least significant bit of the multiplicand (starting with CI to the first

module being asserted) and the departure of the most-significant bit of the LSWO

(i.e the least-significant bit of the rounded and converted product), starting with CO

having been asserted.

3.2.5.2 Comparison with Existing Digit-Serial Multipliers

Fig. 3.9 shows the maximum possible throughput

H = D/(MT) (3.21)

for various values of the multiplicand wordlength M and the digit-sizes D with F = 4,

1 = 0.5, and M = N. Here, F = 4 represents the maximum available inputs-per-gate

for the Actel 1.29 technology, and I = 0.5 represents the average degree of lookahead

possible for the various values of D and n.

From Fig. 3.9, it can be seen that the throughputs of the proposed modified-

Booth multipliers increase linearly with increasing the digit size. This is due to the

totally carry/borrow-free nature of the partial product sum computation, the look-

ahead nature of the final SB to TC conversion, and the re-pipelining employed in

63

the partial product sum formation. It can also be observed that the throughputs of

the proposed multipliers (solid curves) are more than 2 to 3 times higher than those

of the modified-Booth multipliers in [15] (dashed curves). In this way, the former

multipliers are suitable for DSP applications requiring very high processing speeds.

Figure 3.9. Throughput for F = 4, and I = 0.5, for the proposed multipliers (solid
lines) and the multipliers in [15] (dashed lines)

Fig. 3.10 shows the hardware area requirement of the proposed multipliers (solid

64

lines) for various values of the multiplicand wordlength M and the digit-sizes D with

F = 4, 1 = 0.5, and M = N. A comparison with the corresponding hardware

area requirements of the modified-Booth digit-serial multipliers in [15] (dashed lines)

shows that the proposed multipliers require substantially higher hardware area. The

hardware area requirement for the proposed multipliers shows sharper increase with

increasing digit-sizes compared to the existing multipliers due to the increased need

of repipelining latches.

Fig. 3.11 shows the efficiency of the proposed multipliers for various values of the

multiplicand wordlength M and the digit-sizes D with F = 4, 1 = 0.5, and M = N,

where the efficiency is defined as throughput per unit area. By comparing the effi-

ciencies for the novel modified-Booth multipliers (solid lines) with the corresponding

efficiencies for the modified-Booth digit-serial multipliers in [15] (dashed lines), it can

be observed that the efficiencies of the former multipliers increase monotonically with

increasing the digit-size, whereas those of the latter decrease after a digit-size of 4.

This indicates that the novel multipliers are most suitable for digit sizes greater than

4. Moreover, the efficiencies of the novel multipliers reach their maxima at D =

indicating that the most area-time efficient radix-2 mixed SB/TC multiplier is the

fully parallel multiplier.

In summary, once the digit-size D and the multiplicand and multiplier wordlengths

M and N are selected, one can use the design parameters F and 0 to arrive at the

desired throughput and efficiency. This is in contrast to the existing digit-serial

modified-Booth multipliers where the throughput and efficiency are fixed given D,

M, and N. Moreover, most DSP algorithms require N < M, in which case there

is marked reduction in the number of re-pipelining latches required in the proposed

multipliers. This is predicted to result in a substantial reduction in the required

area for a fixed achievable throughput, leading to a corresponding increase in the

efficiency. The above predicted reduction is due to the strong dependence of the area

65

M=32

M=22

Figure 3.10. Hardware Area Requirements for F = 4, and I = 0.5, for the proposed
multipliers (solid lines) and the multipliers in [15] (dashed lines)

requirements of the proposed multipliers on the value of N.

3.2.6 Verification

The proposed digit-serial modified-Booth multipliers are verified through Viewlogic

simulations using the Actel 1.2k technology. The simulation results for a digit-size of

2 (3) are as shown in Fig. 3.12 (3.13), with the corresponding test vectors being as

66

Figure 3.11. Efficiency for F = 4 and I = 0.5, for the proposed multipliers (solid
lines) and the multipliers in [15] (dashed lines)

given in Table 3.5.

In Figs. 3.12 and 3.13, XI[. 0] and YI[. : 0] represent the decomposed com-

ponents of the multiplicand and multiplier, respectively, and PO[. : 0] represents

the decomposed components of the final TC product. Moreover, CI represents the

input control signal with which the LSBs of the multiplicand and multiplier compo-

nents are aligned. In addition, SIGN and STICKY bits are indicated by SIGN and

67

Table 3.5. Verification Test Vectors

Test Vector XTC yTC IEEE Rounded Product (TC)

1 0.0011010 0.1010110 0.0010001
2 1.1101001 0.1010110 1.1110001

3 0.0011010 1.0110111 1.1110001
4 1.1101001 1.0110111 0.0001101

5 0.0011000 0.0011000 0.0000100

SKY, respectively. Finally, MO[. 0] indicate the SB-MSW components in their

non-rounded form and RND indicates the SB round-digit. RO[. : 0] indicate the

rounded S13-components. The LSB of PO[. : 0] is synchronized with the rising edge

of the CO-signal. All the SB-signals are indicated in their two-bit bus format using

the maximal (n, p)-encoding. Therefore, the bus values of 3, 2, 1, and 0 indicate the

SB-digit values of 0, I, 1 and 0, respectively. Note that the above multipliers have

been built with 0 = 3.

The functionality of the above multipliers is verified by comparing the simulation

results in Fig. 3.12 and Fig. 3.13 with the expected results in Table 3.5. Further,

the maximum operational speed and the computational delays of these multipliers

have also been verified to be in agreement with the theoretically calculated values.

Details regarding the architecture and operation of the above multipliers for D = 2

and D = 3 are available in [46].

3.3 High-Speed Mixed SB/TC Parallel Modified-Booth MAC
Arithmetic Architecture

The operation of many DSP algorithms is based on repetitive accumulation of

independently formed multiplication products. In such algorithms, the multiplica-

tion and accumulation operations can be combined naturally into a single indivisible

200n 300ri 400n 500fl 600n 706.

fsmr fl •e.1fltd2r_,,±e fi%t ...t,,'

Figure 3.12. Viewlogic Simulation Results for D = 2

X12

xli

xIO

Y12

'hi

CI

CO

sxy

MO2

M01

MOO

RHO

R02

Rol

RoO

P02

P01

P00

CU(

0

9

a 0

0

0

200n 300n 400n 500n 600fl 700n 600n

/u 'ne 'b' .. 2'A20SZgQCPflciA1...,. ofl.t#ttd3r ..,,fle ti,_t '-c,,

Figure 3.13. Viewlogic Simulation Results for D = 3

70

MAC [47] operation. This operation permits finite-precision arithmetic architectures

which are less susceptible to the harmful effects of roundoff noise. The resulting ar-

chitectures lead to reduced chip bussing [40] and increased speed of computation in

the corresponding VLSI implementations. Therefore, designing fast MAC arithmetic

architectures is of key theoretical and practical importance on the part of computer

scientists and engineers.

The existing DSP systems usually employ TC number arithmetic [20]. The prob-

lems associated with the use of TC number arithmetic have already been discussed.

These problems result in considerable reduction in the computational speed of DSP

systems having large wordlengths. Redundant number arithmetic, on the other hand,

features totally carry-free addition and subtraction, permitting the corresponding ar-

chitectures to be clocked at very high speeds. However, a design based on fully

redundant number arithmetic is expensive in terms of VLSI chip area. This is the

reason why redundant number arithmetic is used only in the intermediate processing

stages in TC arithmetic functional units [4].

In [34], redundant number arithmetic was incorporated in the modified-Booth al-

gorithm [36] for the computation of the intermediate partial product sums, leading to

the design of a high-speed bit-parallel TC digital multiplier. However, this technique

requires the use of fully redundant number digital adders. Such adders are more

expensive in terms of chip area than the conventional full-adders.

Mixed SB/TC number arithmetic has shown a lot of promise for high-speed multi-

plication using minimum VLSI chip area. In, the previous section, it was shown that

the most area-time efficient mixed SB/TC modified-Booth multipliers are the parallel

multipliers. In this section, mixed SB/TC arithmetic is exploited together with the

SB RNE technique (c.f. Algorithm 3 (Page 39)) for the development of a high-speed

mixed SB/TC MAC arithmetic architecture [50].

71

3.3.1 High-Speed Mixed SB/TC Parallel Modified-Booth MAC Opera-

tion

Consider a MAC operation involving a M-bit TC multiplicand XTC, a N-bit TC

multiplier yTC, and a M + N - 1-digit SB addend ASB, in accordance with

pSB = XTC.YTC + ASB,

where XTC, yTC and As' are given by

and

M-2

XTC = _XM _12M 1 x12 xi E {O, 1},

yTC = _YM_12N 1 +E yi2 y E {O, 1},

M+N-2

ASB = E a2 ai E {,O,1}.
i=O

(3.22)

(3.23)

(3.24)

Furthermore, let ASB be partitioned into its most-significant word (MSW) MS and

least-significant word (LSW) As' w in accordance with

and

M+N-2
ASB -

"MSW - L1 a,.
iN-1

N-2
ASB _V' C)1
'LSW - a..

i=O

(3.25)

(3.26)

In the MAC arithmetic operation, the modified-Booth recoding is applied to the

multiplier yTa by an overlapped scan on triplets of bits Y2n+1, Y2n, and Y2n-1 (for

n E {O, 1,... , f] - 1}, with y = 0), to obtain the full-precision MAC result pB

as

ff1 1 M+N-2

pSB = zxTc472 + ASB = p2 p E {i, 0, 1},

where z, is computed in accordance with Eqn. (3.1).

(3.27)

72

The mixed SB/TC parallel MAC arithmetic operation is initiated by applying the

modified-Booth recoding technique to the multiplier yT0 to generate the recoded dig-

its z,. These digits are used to compute the intermediate partial product components

z XTc4 in TC format, while computing the intermediate partial product sums pSB

in their SB formats by using the recursive relationship

pSB = ZnXTC4fl + DSB
•

where pSB - ASB LSW''DnS<B1 = 0 and where P,j0 is given by 1

n
PnSB 3 ASB = z3XTc4 + '1LSW

(3.28)

(3.29)

It is interesting to note that the generation of the intermediate partial product com-

ponents Zn X TC4n need not entail any loss of computational time as these components

can be obtained as hard-wired shifted versions of the multiplicand XTC. It is also

interesting to note that the the intermediate partial product sum components P do

not require any sign-extension as they are already in their SB formats. Therefore, it

suffices to use, instead, zero insertion at the most significant part of P,, simplifying

the corresponding implementation.

The recursion in Eqn. (3.28) proceeds for successive values of m = {O, 1,... , f] -

1}, to generate the resulting SB-product P_1 = SB - ASB W . This SB-product MS

is then decomposed into its constituent MSW PmffW and LSW Pfj. Subsequently,

pSB' ASB MSW t1MSW and CR are added concurrently using a radix-2 fully-redundant addition

in accordance with

PS t1 B nSB' ASB
rRNE = rMSW + MSW + CR, (3.30)

where CR represents an IEEE Standard 754 rounding correction. The rounded result

RNE is converted to its TC format by using

DTC - DSB+ DSB
2 RNE 1RNE - 1 RNE (3.31)

73

where PE constitutes the final MAC result.

In the case of DSP algorithms involving repetitive MAC arithmetic operations,

the full-precision SB results obtained from the intermediate (i.e. all but the last)

MAC operation(s) serve as the full-precision addends for the subsequent operations.

Therefore, CR = 0 for the intermediate MAC operations, while CR E {O, 1, I} for the

last operation. The last operation also involves the conversion of the overall SB result

to its TC format in accordance with Eqn. (3.31).

3.3.2 Mixed SB/TC Parallel MAC Arithmetic Architecture

In this section, the theoretical results in Section 3.3.1 are exploited for the devel-

opment of an architecture for high-speed MAC arithmetic operation. The resulting

MAC architecture is as shown in the schematic diagram in Fig. 3.14.

In the above MAC arithmetic architecture, the TC multiplier Y is fed to a bank

of Modified-Booth Recoder modules. These recoder modules convert the multiplier Y

into its corresponding modified radix-4 redundant number representation [49]. The

TC multiplicand X is fed to a bank of Modified-Booth Decoder modules within the

MAC arithmetic functional unit kernel. The modified-Booth decoded outputs are fed

in their TC formats to the Mixed SB/TO Adder rows. The first row of mixed SB/TC

adders has the LSW of the result accumulated in the previous clock cycle (ALS w) as

its input. The full-precision result pSB is generated from the least significant digit Po,

at the top-right corner, to the most significant digit PM+N-2, at the bottom-left corner

of the MAC kernel. Each mixed SB/TC adder row generates the intermediate partial

product sums pSB which contain the two digits P2n+1 and P2n belonging to Paw.

These digits are consumed by the SIGN and STICKY Generation module to generate

the indicators SIGN and STICKY. These indicators are fed to the Correction Logic

module in order to generate the rounding correction CR. The (ff1 - 1)-th mixed

SB/TC adder row generates Pj/s'w which is fed to the Rounding, MSW Addition,

74

and Overflow Correction module, to generate the IEEE Standard 754 rounded result

RNE• The rounding operation for PRSNBE is controlled by the RND signal. The result

RNE is subsequently accumulated by the MSW Accumulator while the LSW P T

is accumulated by the LSW Accumulator. The content of the MSW Accumulator is

subsequently converted to its TC format PENC E by the CLA Conversion module.

In the proposed architecture, the overflow correction, rounding, and MSW-addition

all occur concurrently. This is because redundant number arithmetic permits the

addition operations at the most-significant part of the MSW-adder to be decoupled

from those at the least-significant part of the MSW-adder. The overflow correction is

applied at the most-significant part, while the rounding correction is applied at the

least-significant part of MSW, to facilitate concurrency in computation. Additional

information regarding the various modules in the architecture in Fig. 3.14 is given in

the following subsections.

3.3.2.1 Modified-Booth Recoder Modules

The modified-Booth recoders carry out the 3-bit overlapped scan of the TC mul-

tiplier Y to generate z, in Eqn. (3.27) in terms of a, b, and si in accordance with

Eqns. (3.3), (3.4), and (3.5).

3.3.2.2 Modified-Booth Decoder Modules

The modified-Booth decoders generate 0, ±1 and ±2 times the multiplicand X

depending on the output of the modified-Booth recoders at the corresponding row

position. The modified-Booth decoders in the n-th row generate the partial product

components

N-i

zX4' = (oN 2V +E oi2')4 n,

where the decoded components oi are determined in accordance with

(3.32)

oi = s (ax_i + bx), (3.33)

75

Multiplicand X Multiplier Y Modified Booth Recoders

Modified-Boothbecoders
+

Mixed Adder Row
I I
Modified-Booth Decoders

Mixed Adder Row

KERNEL

Modified -booth Decoders

LSW Accumu ator

Mixed Adder Row

• f1'

Rounding, MSW Addition
and

Overflow Correction

4

• $ a a

+ $ ++

L_MSW Accumulator -

S I I

:

Corre
ction
Lo

CLA Converter

SIGN and
STICKY
Generator

CLK CLR

Final Rounded and Accumulated Product

AND

CLK CLR

Figure 3.14. The Mixed SB/TC Parallel MAC Arithmetic Architecture

where 0N = XN_1, and where x = 0. Moreover, si is fed as a carry to the corre-

sponding n-th mixed SB/TC adder row.

3.3.2.3 Mixed SB/TC adder row

The terms p.SB are generated by the mixed SB/TC adder for the n-th row.

76

3.3.2.4 SIGN and STICKY Generation Module

As mentioned above, the MAC kernel generates the least significant digits two at

a time. In this way, the SIGN and STICKY Generator computes the SIGN and

STICKY indicators by considering two least significant digits at a time. Each two-

digit computation cell consumes sticky, signin, the jth least significant digit p, and

the i - 1' least significant digit pi-1 as its inputs, and generates stick Yout and signout

in accordance with

stick Yout = p '_1 + p.sticky, (3.34)

signout = pj + ;_1.y + signj.p 1.p/. (3.35)

In this way, the output of the last (leftmost) computation cell corresponds to STICKY

and SIGN.

It can be observed from Eqns. (3.34) and (3.35) that the time required to compute

.sticky0j and signotz2 for each pair of least significant digits is less than the time re-

quired for the mixed SB/TC addition. This means that for the (s, v) representation,

stick Youi and sign,. can be computed faster than the least significant digit genera-

tion process, and consequently this operation can be carried out concurrently with

the partial product addition operation. In contrast, the (n, p) representation requires

longer time and a greater number of gates for such a computation. Therefore, the

(s, v) representation is particularly attractive on the part of the SIGN and STICKY

Generator. Moreover, it can be observed that the generation of the STICKY indi-

cator is much faster and easier in this case as compared to the cases of the traditional

multipliers.

3.3.2.5 Correction Logic Module

The correction logic examines the round digit PN-2, the least significant digit of

the MSW PN.i, SIGN, and STICKY and generates the correction information

77

required for proper rounding of the SB MSW. The RND signal enables rounding

when high (logic 1), and disables rounding when low (logic 0). During intermediate

repetitive MAC operations in a DSP algorithm, RND is held low to permit full-

precision accumulation. During the last MAC operation in the algorithm, RND is

pulled high in order to round the SB result. Rounding is achieved by generating CR

through the use of PN-1 and PN in accordance with

cj = p 2.p_2.p 1.STICKY + p 2.p 2. STICKY. SIGN
(3.36)

and

c = p 2.p 2.p 1.STICKY + p_2.p,_2. STICKY. SIGN

(See also Eqns. (2.102) and (2.103)).

3.3.2.6 Rounding, MSW-addition, and Overflow Correction Module

(3.37)

This module carries out the rounding and overflow correction of the result of the

addition of PMSBSW to AP w. The central part of this module is a fully redundant

MSW adder [42] which adds P'M, to Ajw. However, SBNR addition in fixed-point

fractional arithmetic DSP-systems can result in a directly correctable overflow [49],

requiring overflow correction immediately after the addition. An overflow occurs if

the digit PN+M-1 generated by the MSW adder is non-zero. The overflow is always

directly correctable if the absolute value of the final result is less than one. This occurs

if P•M-1 and IpN+M—.1 I = IPN+M-2 I 0. The sign and value components

of the most-significant digit of the final result after overflow correction are given by

-'S
rnSu correced

7nsd ' corrected

= P.r+M_1 + PY\TM_1.PsjM_2, (3.38)

(3.39) P,r+M-1 + PYq-j-M_1.Pr—.

The computation of msd orrected and msd rrecjed occurs concurrently with the appli-

cation of the rounding correction to the MSW, permitting very high-speed operation

78

in the resulting MAC arithmetic implementations.

3.3.2.7 Accumulator Module

This module accumulates the N + M - 1-digit result. It is divided into two parts,

namely the MSW Accumulator and the LSW Accumulator. In this module, the pN-th

digit is required for the MSW Accumulator because it forms a part of PSMBSW and is

also required for the LSW Accumulator because it forms a part of pfrW (the latter

is in turn used to compute the rounding correction cR).

The MSW Accumulator and LSW Accumulator are both clocked by using the

CLK signal and can be cleared (initialized) by using the CLR signal.

3.3.2.8 CLA Conversion Module

The CLA module is a high-speed carry-lookahead converter [20], used for con-

verting the final rounded SB result into its TC form. This module is separated from

the MAC-kernel by the MSW Accumulator, thereby creating a pipeline facilitating

high-speed operation.

3.3.3 Performance Characteristics

In this section, the performance characteristics of the MAC arithmetic architecture

in Fig. 3.14 are discussed in terms of the hardware area and computational time re-

quirements. These requirements are parameterized at the gate-level for corresponding

ASIC implementations.

3.3.3.1 Hardware Area Requirement

The hardware area requirement of the above arithmetic architecture in terms of

gate-equivalents is as shown in Table 3.6. Here, nj refers to the number of digits

input to the jt1 CLA block, nib is the number of lookahead blocks in the converter, F

79

Table 3.6. Hardware Area Requirements

Type of Hardware Cell Requirement Gate Equivalents per Cell

Modified-Booth Recoders F 11 6
Modified-Booth Decoders M f1 4

Mixed Adders (M + 1)11 5

SIGN and STICKY Generators rN - 1 5

Correction Generator 1 8

Overflow Corrector 1 4

Redundant Adders (M + 1) 10

CLA Converter 1

>'

+ 1)/(F - 1)1
jf(k + 1)/(F -

+

+

1)1)
DFFs with Reset 2(M + N - 1) 6

Auxiliary Gates 1 2ff]

is the maximum number of inputs per gate permitted by the underlying technology,

and M and N are the multiplicand and multiplier wordlengths, respectively.

3.3.3.2 Computational Time Requirement

The computational time requirement of the MAC arithmetic architecture is given

in terms of the minimum achievable clock period T. By considering the worst case

critical path in the architecture, T is obtained as

T = max[{tDFF + tRECODE + tDEcoDE + tUR + I 11tMADD + tRADD},
nib

{tDFF + tG(4 + ({logF(nj + 1)1 + 1)}].
j=1

(3.40)

In Eqn. (3.40), tRECODE (tDECODE) represents the time required for modified-Booth

recoding (decoding), tCR represents the time required for generating the rounding

correction CR, tMADD (tRADD) represents the time required by the mixed SB/TC

(radix-2 fully-redundant) addition, tDFF represents the delay through a D-Flipflop,

80

and tG represents the delay through a logic gate.

3.3.4 Verification

An 8 x 8+15 parallel MAC arithmetic functional unit was designed for implemen-

tation using the Actel 1.2ji technology parameters. This arithmetic functional unit

was simulated using the maximum achievable clock rate of 40 MHz for a correspond-

ing implementation having a typical logic gate delay of 1 nanosecond. The Viewlogic

simulation results shown in Fig. 3.15 depict the intermediate signals generated in the

course of the MAC operations together with the last operation which also includes

rounding. In Fig. 3.15, buses Y (X) represent the 8-bit TC multiplier (multiplicand).

RND (CLR) represents the rounding (clear) signal, and CLK represents the system

clock. Furthermore, (MSWS, MSWV) represent the MSW Ps'w in its minimal-

(s, v) form. Finally, RNDS and RNDV represent the p%_1 and p_2 digits, and

(LSWS, LSWV) represent the LSW PfJ14, of the result. The overall TC result after

CLA conversion is given by ANS (which corresponds to PE)'

The test vectors associated with the simulation results in Fig. 3.15 are given in

Table 3.7 together with the expected full-precision MAC results, accordingly. The

simulation begins with the MSW and LSW accumulators being cleared by setting

CLR = 1. Subsequently CLR is set to zero and four successive multiplications are

carried out with accumulation in full-precision. The RND signal is pulled up with

the rising edge of the 4th clock cycle to enable the IEEE standard 754 rounding of

the multiplied and accumulated result collected during the first 4 clock cycles. This

result is converted to its TC form by using the CLA converter and is available on the

ANS bus during the 52h clock cycle (made possible by the inherent pipelining in the

architecture).

The simulation results in Fig. 3.15 are in complete agreement with the correspond-

ing expected results in Table 3.7.

RND

CLR

X

Y

MSWS

MSWV

RNDS

RNDV

LSWS

LSWV

ANS

CLK

T(RND)

t

son lOOn

00

2

00

0

limp om$PPi)-o I raov/work/pp

iSOn

asynch/sdnr/88sv

Figure 3.15. Viewlogic Simulation Results for the 8 x 8 + 15 Mixed SB/TC Parallel MAC Arithmetic Unit

82

Table 3.7. Series of MAC Arithmetic Operations for Verification

CLKCycle yTC XTC MAC Result

0 0.0000000 0.0000000 0.00000000000000

1 0.1010110 0.0011010 0.00100010111100

2 0.1010110 1.1101001 0.00000100000010

3 1.0110111 0.0011010 1.11100110011000

4 1.0110111 1.1101001 0.00000000100111

3.4 High-Speed Fully-SB Parallel MAC Arithmetic Archi-
tecture

The previous section dealt with the application of redundant number arithmetic

to TC MAC architectures. However, the resulting architectures prove to be slow for

certain time-critical DSP applications. This is due to the overhead in conversion of

the final SB result to its corresponding TC form, becoming a major bottleneck for

applications requiring large signal wordlengths.

This section presents a technique for high-speed parallel MAC operation based on

fully-SB arithmetic [49]. In this technique, SBNR is employed throughout to represent

the multiplier and the multiplicand, the intermediate partial products, and the final

multiply-accumulated result.

The above technique combines the power of the 5-digit overlapped scanning tech-

nique (c.f. Section 2.4.1) and the carry-free addition property of SB numbers to

achieve high multiplication speed at reduced hardware requirement. This is coupled

with partitioned accumulation and concurrent high-performance rounding and over-

flow correction to result in an overall fast multiplication and accumulation. This

resulting MAC architecture finds use in critical high-speed DSP applications.

The proposed MAC technique consists of three distinct functions. The first func-

83

tion involves a 5-digit overlapped scanning technique for the parallel recoding of the

multiplier into a corresponding modified radix-4 redundant number representation

(c.f. Algorithm 1 (Page 28)). The recoded multiplier is subsequently used to gen-

erate the intermediate partial products by uniform shifting, negation, or zeroing of

the SB-multiplicand. The advantage of this recoding scheme is that it leads to a

reduction in the number of intermediate partial products by a factor of two. This

facilitates fast multiplication, and, at the same time, leads to a reduced hardware

requirement.

The second function is the addition of the intermediate partial products for the

generation of the full-precision multiplication result prior to rounding. This addition

is achieved in an entirely carry-free manner, facilitating very high multiplication speed

independently of the multiplicand wordlength.

Finally, the third function is accumulation, rounding, and overflow processing of

the resulting full-precision multiplication product to generate the IEEE standard 754

RNE result (c.f. Algorithm 3 (Page 39)).

3.4.1 High-Speed Fully-SB Parallel MAC Operation

Consider a MAC operation involving a M-digit SB multiplicand XSB, a N-digit

SB multiplier ySB and a M + N - 1-digit SB addend A B , in accordance with

pSB = XSB.YSB + ASB,

where XSB , ySB and ASB are given by

and

M-i
XSB = x22 xi E {I,O,i},

i=O

N-i

ySB. y2i y Ell, O,1},
i=O

M+N-2

ASB = a22 ai E 0, 11.
1=0

(3.41)

(3.42)

(3.43)

84

Furthermore, let ASB be partitioned into its MSW and LSW ASB in accor-

dance with Eqn. (3.25) and (3.26), respectively.

In the MAC arithmetic operation, the 5-digit overlapped scanning technique (c.f.

Algorithm 1 (Page 28)) is applied to ySB to obtain the full-precision MAC result

pSB as

1'1-2 M+N-2

pSB = z+1x5B4n+1 + ASB = p2 pi E {i, 0, 1},
n=—' i=o (3.44)

where the digits z,1 are computed in accordance with Eqn. (2.44).

The fully-SB parallel MAC arithmetic operation is initiated by applying the mod-

ified radix-4 recoding technique to the multiplier ySB to generate the recoded digits

These digits are used to compute the intermediate partial product components

z+iXTc4 1 in TC format, while computing the intermediate partial product sums

in their SB formats by using the recursive relationship

PSB = z+jX4' + pSB

where PS,B_ ASB pSB
- LSW n<-1 = 0, and where P,>.0 is given by

n
DSB SB
n+1≥O = zJ+iXsB4i+l + Aw.

(3.45)

(3.46)

It is interesting to note that the generation of the intermediate partial product com-

ponents z+iXsB4 l need not entail any loss of computational time as these compo-

nents can be obtained as hard-wired shifted versions of the multiplicand XSB. It is

also interesting to note that the intermediate partial product sum components pSB do

not require any sign-extension as they are already in their SB formats. Therefore, it

suffices to use, instead, zero insertion at the most significant part of pSB simplifying

the corresponding implementation.

The recursion in Eqn. (3.45) proceeds for successive values of n = 1-1, 0, 1,... f1 -

2}, to generate the resulting SB-product Pj pSB _1 = - This SB-product

85

is then decomposed into its constituent MSW I MSW and LSW P!sBw . Subsequently,

Pf/,, and CR are added concurrently using a radix-2 fully-redundant addi-

tion in accordance with

DSB DSB1 SB
RNE MSW +MSW+CR,

where CR represents an IEEE Standard 754 rounding correction.

3.4.2 Fully-SB Parallel MAC Arithmetic Architecture

(3.47)

In this subsection, the theoretical results in Section 3.4.1 are exploited for the de-

velopment of an architecture for high-speed MAC arithmetic operation. The resulting

MAC architecture is as shown in the schematic diagram in Fig. 3.16.

In the above MAC arithmetic architecture, the SB multiplier Y is fed to a bank of

Modified Radix-4 Recoder modules. These recoder modules convert the multiplier V

into its corresponding modified radix-4 redundant number representation [49]. The SB

multiplicand X is fed to a bank of Modified Radix-4 Decoder modules within the MAC

arithmetic functional unit kernel. The modified radix-4 decoded outputs are fed in

their SB formats to the SB Adder rows. The first row of SB adders has the LSW of the

result accumulated in the previous clock cycle (ALS w) as its input. The full-precision

result pSB is generated from the least significant digit po, at the top-right corner, to

the most significant digit PM+N-2, at the bottom-left corner of the MAC kernel. Each

SB adder row generates the intermediate partial product sums pSB which contain the

two digits P2n+I and P2n belonging to P sBw . These digits are consumed by the SIGN

and STICKY Generation module to generate the indicators SIGN and STICKY.

These indicators are fed to the Correction Logic module in order to generate the

rounding correction CR. The (fe] - 1)-th SB adder row generates P BSIW which is

fed to the Rounding, MSW Addition, and Overflow Correction module, to generate

the IEEE Standard 754 rounded result E• The rounding operation for PROBE is

86

controlled by the RND signal. The result is subsequently accumulated by the

MSW Accumulator while the LSW P, is accumulated by the LSW Accumulator.

Note that in the proposed architecture, the overflow correction, rounding, and

MSW-addition all occur concurrently.

SB Multiplicand X SB Multiplier V Modified-Radix-4 Recoders

+
Modified-Radix-4 Decoders

SB Adder Row
I I

Modified-Radix-4 Decoders
SB Adder Row

KERNEL

Modified-Radix-4 Decoders

LSW Accumu ator
A £4

SB Adder Row

+
Rounding, MSW Addition

and
Overflow Correction

:.

Corre
ctlon
Loq1ic

CLK CLR

Final Rounded and Accumulated Product

Figure 3.16. The Fully-SB Parallel MAC Arithmetic Architecture

SIGN and
STICKY
Generator

AND

CLK CLR

The details of each of the modules in Fig. 3.16 are as given below.

87

3.4.2.1 Modified Radix-4 Recoder Module

The modified radix-4 recoders recode the SB-multiplier Y into its corresponding

modified radix-4 number Z by using Algorithm 1 (Page 28). The components z 1 of

Z are encoded in accordance with Eqn. (2.61) and are fed to separate rows of decoders

to generate the intermediate partial products.

3.4.2.2 Modified Radix-4 Decoder Module

The modified radix-4 decoders have z, 1 and the SB-multiplicand X as their in-

puts, and generate the corresponding intermediate SB partial product as their output.

The decoders generates their output by appropriate shifting, negation or zeroing of

the SB-multiplicand based on the value of z,1.

3.4.2.3 SB Adder Row

The terms are generated by the SB adders (c.f. Section 2.3.2.2) for the n-th

row.

3.4.2.4 SIGN and STICKY Generation Module

The operation of this module is as described in Section 3.3.2.4.

3.4.2.5 Correction Logic Module

The operation of this module is as described in Section 3.3.2.5

3.4.2.6 Rounding, MSW-Addition, and Overflow Correction Module

The operation of this module is as described in Section 3.3.2.6.

3.4.2.7 Accumulator Module

The operation of this module is as described in Section 3.3.2.7

88

3.4.3 Performance Characteristics

In this subsection, the performance characteristics of the MAC arithmetic archi-

tecture in Fig. 3.16 are discussed in terms of the hardware area and computational

time requirements. These requirements are parameterized at the gate-level for corre-

sponding ASIC implementations.

3.4.3.1 Hardware area requirement

The hardware area requirement of the above arithmetic architecture in terms of

gate-equivalents is as shown in Table 3.8.

Table 3.8. Hardware Area Requirements

Type of Hardware Cell Requirement Gate Equivalents per Cell

Modified-Radix-4 Recoders 1] 25

Modified-Radix-4 Decoders Mr L21 12

Fully-Redundant Adders (M + 1)[(1 + 1) 10

SIGN and STICKY Generators - 1 ri. i 5

Correction Generator 1 8

Overflow Corrector 1 4

DFFs with Reset 2(M + N - 1) 6

3.4.3.2 Computational Time Requirement

The computational time requirement of the MAC arithmetic architecture is given

in terms of the minimum achievable clock period T. By considering the worst case

critical path in the architecture, T is obtained as

T = (iDFF + tRECODE + tDECODE + tCR + (F1 + 1)i5BADD)
(3.48)

89

In Eqn. (3.48), tRECODE (tDECODE) represents the time required for the modified-

radix-4 recoding (decoding), tCR represents the time for generating the rounding

correction cR, tSBADD is the time required for SB addition, and tDFF represents the

delay through a D-Flip-flop.

3.4.4 Verification

An 8 x 8 + 15 parallel fully-SB MAC arithmetic unit employing minimal-(s, v)-

encoding was designed for implementation using the Actel i.2p technology. The

Viewlogic simulation results shown in Fig. 3.17 depict the intermediate signals gener-

ated in the course of the MAC operations. In Fig. 3.17, the buses YO (XO) through

Y7 (X7) represent the SB digit-components of the 8-digit multiplier Y (multiplicand

X). The accumulate input has been shown using the buses RO through R14. The

IEEE standard 754 rounded and accumulated result is given as P using the buses P0

through P7, with P7 representing the most significant digit after overflow detection

and correction.

The test vectors associated with the simulation results in Fig. 3.17 are given in

Table 3.9 together with the full-precision and the expected RNE SB MAC results,

accordingly. The computational time required by the above MAC unit was also

verified by comparing it with the theoretically expected result.

Table 3.9. Verification Test Vectors

Test Vector (Y)SB (X)SB (Accumulate Iflput)SB RNE SB Result

1 0.1111010 0.1101010 I.iiioiooiooiooi 0.0001010

2 0.1011010 I.iiilill 0.00010100101000 0.0001101

3 1.0111001 0.0101010 0.11010011010110 1.1101110

4 0.1110111 1.1101111 0.11010001010001 1.1111010

90

3.5 Chapter Summary

In this chapter, the theoretical results in Chapter 2 have been exploited for the de-

velopment of novel design and implementation techniques for high-speed VLSI arith-

metic multiplication and MAC arithmetic operations.

In Section 3.2, a technique has been developed for very high-speed mixed SB/TC

digit-serial modified-Booth multiplication. The salient feature of the resulting mul-

tipliers is that they permit very high throughputs for arbitrary values of digit size.

Moreover, they do not involve any sign extension, permitting uniform implementa-

tions with highly localized interconnections. It has been shown that the area/time

efficiency and throughput of the resulting multipliers far surpass those of the existing

digit-serial modified-Booth multipliers. It has also been shown that mixed SB/TC

number arithmetic is most attractive for fully parallel multiplication and MAC arith-

metic operations.

In Section 3.3, an architecture has been presented for high-speed mixed SB/TC

parallel modified-Booth MAC operation. This architecture features new techniques

such as partitioned accumulation and concurrent rounding and overflow correction.

It is most suitable for DSP algorithms that employ repetitive accumulation of inde-

pendently formed multiplication products.

In Section 3.4, the modified radix-4 recoding technique has been used to extend

the architecture in Section 3.3 to handle fully-SB parallel MAC arithmetic operation.

The above multiplication and MAC arithmetic architectures have been param-

eterized in terms of their area-time requirements for the corresponding Actel 1.2

technology implementations. The resulting implementations have been verified by

using Viewlogic simulations.

Y7

Y6

Y5

Y4

Y3

Y2

Yi

y0

X7

X6

05

04

X3

X2

0I.

00

014

R.3

R12

011

Rio

09

08

07

06

05

04

R3

02

RI.

00

P7

P6

P5

P4

P3

P2

P1

Po

ROUND

T(07)

I

 x
0 3

0

I
0 • Y a 1 a 1

p

p

0 X X •

I Y -

4

J)

0

.3

.0

k it

•0

It
0 3

3u 4u 5u

Time (Seconds)

Figure 3.17. Simulation Result for the 8 x 8 + 15 Fully-SB Parallel MAC Arithmetic Unit

92

CHAPTER 4

MAC-MODULARIZATION OF DIGITAL FILTERS

4.1 Introduction

In the VLSI implementation of digital filter algorithms, it is often desirable to

employ uniform building blocks in conjunction with regular and modular architec-

tures [44, 21]. Such architectures have several advantages in terms of localized in-

terconnections, pipelinability, ease in scheduling, and simplification of design and

implementation effort.

Recent advances in VLSI technology have led to the availability of highly parallel

processing elements (e.g. systolic arrays) for demanding modern digital filter appli-

cations [14]. The resurgence of non-traditional arithmetic has led to an increase in

the computing power available by such parallel processing elements. The exploitation

of the available computing power for efficient high-speed processing depends on the

regular distribution of the data dependencies, and the regularity of basic operations

in the digital filter algorithm.

Digital filter algorithms are generally represented in the form of signal-flow graphs

(SFGs) [1], consisting of multiplication and addition operations. Unfortunately, the

non-homogeneous nature of these operations does not permit straightforward parallel

and systolic realization. However, it is possible to translate these algorithms into

suitable equivalent forms involving combined multiply-accumulate (MAC) arithmetic

operations [52]. The translation of a digital filter algorithm consisting of separate

multiplication and addition operations to a corresponding algorithm consisting of

MAC operations only is referred to as MAC-modularization. The resulting MAC-

modularized digital filter algorithm possesses regularity and modularity, thereby per-

mitting efficient use of the available computing elements, simpler scheduling, and

easier design and implementation.

93

There are however certain limitations of digital filter SFGs which prevent the

application of MAC-modularization techniques to them. Consequently, digital filter

SFGs need to be converted to a more suitable representation called the directed

reduced SFG.

MAC-modularization is based on the application of graph-theoretic [33, 24, 41]

techniques to the directed reduced SFG. These techniques achieve MAC-modularization

by exploiting certain properties of the directed reduced spanning tree of the directed

reduced SFG. Multiplication operations are moved in a systematic manner along

the directed reduced spanning tree in order to result in the corresponding MAC-

modularized directed reduced SFG. Finally, the resulting SFG is converted back to its

corresponding MAC-modularized digital filter SFG. In all, the MAC-modularization

procedure can be summarized as follows.

1. Generate a directed reduced SFG for the given digital filter SFG,

2. Generate a directed reduced spanning tree for the directed reduced SFG,

3. Apply MAC-modularization techniques to the directed reduced SFG using the

directed reduced spanning tree, and

4. Generate a digital filter SFG consisting of MAC operations using the resulting

MAC-modularized directed reduced SFG.

It should be pointed out that there exists a unique MAC-modularized digital filter

SFG corresponding to a given directed reduced spanning tree. However, a directed

reduced SFG can have several directed reduced spanning trees. This results in sev-

eral MAC-modularized solutions for a given digital filter SFG. Although all these

solutions are equivalent in terms of infinite-precision arithmetic realization, they ex-

hibit remarkably different properties for the corresponding finite-precision arithmetic

realizations.

94

In this thesis, the finite-precision arithmetic effects of overflow and roundoff noise

are taken into account to develop a fitness function in order to facilitate the selec-

tion of an optimal MAC-modularized solution. This fitness function is then used to

develop two different techniques for MAC-modularization, one based on exhaustive

enumeration of all the possible solutions, and the other based on a heuristic approach.

The enumerative approach generates all the possible solutions and then employs the

fitness function to select the optimal solution. This approach is suitable for small

and medium size problems. However, large problems are computationally intractable

because of the rapid enlargement of the solution space. Therefore, a heuristic ap-

proach is also developed. This heuristic approach operates by the local application

of the fitness function in order to generate a near optimal solution at the expense of

minimal computational effort. It is shown that this heuristic approach generates a

solution which is indeed close to the optimal solution.

Finally, the above techniques are implemented in the form of a powerful object-

oriented software package for MAC-modularization. This software has weights associ-

ated with the finite-precision effects of overflow and roundoff noise, thereby permitting

a certain degree of user control on the fitness function. This software package imple-

ments both, the enumerative, and the heuristic approaches. It has been tested with

a variety of dense and sparse multiplication problems, and the results are presented

in this chapter.

Section 4.2 deals with the theoretical basis and techniques for MAC-modularization

of digital filter SFGs. Graph-theoretic techniques are developed using the directed

reduced SFG and the directed reduced spanning trees, and are supported with the

help of mathematical theorems and proofs. These techniques are subsequently trans-

lated into algorithms for MAC-modularization. However, these techniques result in

several solutions for a given digital filter SFG, necessitating the development of a

fitness function for the selection of the optimal solution. Section 4.3 is concerned

95

with the development of such a fitness function based on finite-precision arithmetic

effects. Sections 4.4 and 4.5 present enumerative and heuristic approaches to MAC-

modularization. Finally, these techniques are used for the development of a powerful

object-oriented MAC-modularization software package in Section 4.6.

4.2 Principle underlying MAC-Modularization

The first step in the process of MAC-modularization involves the conversion of a

given digital filter SFG into its corresponding directed reduced SFG as defined in the

following.

Definition 5 A directed reduced SFG is a class of single-input single-output con-

nected SFGs consisting of directed edges and vertices (nodes), having

• one input node with no incoming edges,

. one output node with no outgoing edges,

• addition nodes with two incoming edges,

• one multiplication operation per edge, and

• no self loops.

Note that by definition the directed reduced SFG is devoid of any delays.

Let G(V, E) represent a directed reduced SFG, where V is a set of vertices and

E is a set of directed edges. Every vertex v (E V) represents an addition node.

Every directed edge e1 (€ E) is associated with a multiplication coefficient mij, and

a signal-flow and precedence relationship from the node ni to the node nj. Let d(v)

represent the in-degree of the vertex v, and be defined as the number of directed

edges which have v as their terminating vertex. Similarly, let d0 (v) represent the

out-degree of the vertex v, and be defined as the number of directed edges which have

v as their originating vertex. Further, let the direct-addition input of a node n3 E V

be defined as the directed edge eij with a multiplication coefficient of unity. Lastly,

96

let the multiplication input of the node nj be defined as the directed edge ehj with

a multiplication coefficient other than unity. Then, one can define a root node for

G(V, E) as follows.

Definition 6 The root node p is defined as a unique node associated with G(V, E)

such that

1.EV,

2. d1 (p) = 0, and

3. every other node in the set V is reachable from p along a directed path consisting

of the edges contained in the set E.

In the MAC-modularization procedure, a reduced SFG consisting of the operations

of multiplication and addition is converted to a corresponding SFG consisting of MAC

operations (c.f. Definition 1) as follows.

M . n. in..
aa. 1

in bi

Direct-add

n
a

MAC -Modu1ari zation

..

II fl \in * m
1 1 ai

/

/ I

11
/

in / m ai b i 0) MAC
-.,

Figure 4.1. Principle Underlying MAC-Modularization

J

97

Let the schematic in Fig. 4.1 represent a section of G(V, E), consisting of the

nodes Ina, nb, n, n} E V, and the directed edges {eaj, e&, e} E E. Fig. 4.1 shows

the conversion of the edge eai into a direct-addition input to the node n1 in order

to achieve the MAC-modularization of the node n. By taking into account the fact

that the addition node ni has two incoming edges cal and ebl, the process of MAC-

modularization can be seen as the procedure of moving the multiplication coefficient

on one of the incoming edges to translate that edge into a direct-addition input, while

suitably adjusting the multiplication coefficients on the other incoming edge and the

outgoing edges of the node n. From a graph-theoretic viewpoint, if Cal represents a

tree edge, then ej would represent the co-tree edge. At the same time, every other

edge Cj would represent an outgoing edge from nj to an arbitrary node n E V. In

summary, the MAC-modularization can be described as the conversion of eaj into a

direct-addition edge, the scaling of the multiplication coefficient on CU by i--ai , and the
scaling of the multiplication coefficient on ej by mal. The multiplication operation

on the co-tree edge Cbj can now be combined with the addition operation on the node

n1 itself, to result in one composite MAC operation.

The MAC-modularization procedure is developed in terms of a corresponding di-

rected reduced spanning tree associated with the directed reduced SFG. The directed

reduced spanning tree is defined as follows.

Definition 7 The directed reduced spanning tree is a directed tree of a directed reduced

SFG in which every node except the input node has an in-degree of unity.

A directed graph is a directed tree if it has a root node and its underlying undirected

graph is a tree, i.e., it is connected and circuit free. A subgraph H of G(V, E) is

called a directed reduced spanning tree of G, if H is a directed tree which includes

all the vertices of G. Therefore, H can be designated as H(V, E'), where E' C E.

Furthermore, every vertex v E V in H(V, E') has a unique directed path from the

98

root p to itself, consisting of the edges in the set E.

Theorem 4.1 The root node of a directed reduced SFG is the input node.

Proof Let the input node of the directed reduced SFG be denoted by s. Since

the directed reduced SFG is defined to be connected (c.f. Definition 5), there exists

at least one directed path from the node s to every other node in the directed reduced

SFG. However, the node s has no incoming edge on account of the fact that d(s) = 0.

Therefore, it can be seen that no other node nj qualifies to be the root because there

exists no directed path from any node nj to the node s. Hence, the node s qualifies

as the root node. U

MAC-modularization of a directed reduced SFG is carried out by translating the

tree arcs to direct-addition arcs, requiring the existence of at least one directed re-

duced spanning tree.

Theorem 4.2 There exists at least one directed reduced spanning tree in a given

directed reduced SFG.

Proof By contradiction.

Let U denote the set of un-visited nodes and S denote the set of visited nodes.

Starting with the input node s, with U = V - {s} and S = {s}, add nodes to S in

accordance with the following procedure:

while (U 54 0) do

begin

choose a node n E S;

choose u E U such that n and u are connected by an arc

S=S+{u};

U=U—{u};

end

e;

99

In the above procedure, each node is visited only once. This results in a directed

reduced spanning tree of G which is constructed systematically by adding the the

arcs e, in each iteration. Therefore, each node except the node s has an in-degree

of unity.

This procedure fails to terminate if there exists at least one node in U which is not

reachable from any node in S. This means that such a node is not connected to any

other node in G. Therefore, G is not a directed reduced SFG (c.f. Definition 5),

leading to a contradiction.

It can be noted that the above procedure can be used exhaustively to generate all

the possible directed reduced spanning trees of G rooted in the node S.

By using Theorems 4.1 and 4.2, it can be shown that MAC-modularization is

possible if and only if the spanning tree of G is a directed reduced spanning tree

rooted in the node s. In order to demonstrate this, let the in-degree matrix D of G

be defined as

- f d(n) if ni = n
-k if flj5tflj

where k is the number of edges in G from ni to n. Then,

(4.1)

Lemma 5 A finite directed graph with no self loops is a directed tree with root g if

and only if its in-degree matrix D satisfies the following properties:

1.

l
D(n1,n)=1 o1

if ni = p
if ni 54 p.

(4.2)

2. The co-factor resulting from the erasure the p-th row and column of D yields 1.

Proof See [41].

It can be seen easily that the directed reduced spanning tree satisfies Lemma 5.

100

Theorem 4.3 The given directed reduced SFG C can be MAC-modularized if and

only if its underlying spanning tree is a directed reduced spanning tree rooted in the

node s.

Proof

a) If part: From first principles. If the underlying spanning tree is a corresponding

directed reduced spanning tree rooted in the node s, the multipliers from the tree edges

can be moved to the corresponding co-tree edges, and the resulting multiplication

operations on the co-tree edges can be combined with the corresponding additions at

the nodes to form MAC operations (c.f. Fig. 4.1). This begins at the input node s

and progresses along the given directed reduced spanning tree towards the leaf nodes,

resulting in a MAC-modularized reduced SFG. This establishes the if part of the

theorem.

b) Only if part: By contradiction. The proof is developed along the lines of the proof

of Lemma 5.

Define a graph H'(V, E') which spans all the nodes of the C starting at the input

node s, with the arcs consisting of the direct-addition arcs corresponding to a MAC-

modularized reduced SFG of G. Further, assume that H'(V, E') is not a directed

reduced spanning tree of C.

Let D be the in-degree matrix of H'(V, E'). Then D(s, s) = 0, since the input

node has no predecessors. Furthermore, D(n, n) = 1 if ni 0 s, since each node in

a MAC-modularized directed reduced SFG has only one direct-addition input by the

definition of H'(V, E'). Thus, property (1) of Lemma 5 holds.

Now, let the vertices of H'(V, E') be remembered in such a manner that the root

node s is numbered 1, and if n -+ n, then i <j. This is achieved by numbering

the vertices which are successors of 1 as 2, 3, ... and sequentially numbering vertices

which are the successors of 2, 3, etc. till all the vertices have been numbered. The new

101

in-degree matrix D' is derivable from the original in-degree matrix D by performing

some permutations on the rows and some permutations on the columns. Since such

permutations do not change the determinant, the new in-degree matrix will satisfy

the following properties.

10 ifi=j=lori>j
D'(i,j) = 1 if i -j and i = 2,3,... ,n (4.3)

Therefore, the co-factor resulting from the erasure of the first row and column of D'

yields 1. Thus, property (2) of Lemma 5 also holds. This implies that H'(V, E') is

indeed a directed reduced spanning tree of G, contradicting the assumption.

As demonstrated earlier (see proof of Theorem 4.2), a directed reduced SFG can

have several directed reduced spanning trees rooted in s. Theorems 4.1 and 4.3 can

easily be used to show that any of these directed reduced spanning trees can be used

to MAC-modularize the directed reduced SFG.

Theorem 4.4 A given directed reduced SFG can be modularized into an equivalent

SFG consisting of MAC operations by any one of the directed reduced spanning trees

rooted in the node s.

Proof MAC operations are three input operations (c.f. Definition 1), where Z

corresponds to the direct-addition input (tree arc), X corresponds to the multiplied

input (co-tree arc), and Y corresponds to the multiplication coefficient on the co-tree

arc. These operations are combined together to represent a single node in a given

MAC-modularized directed reduced SFG. Each such node is reachable from the input

node s, but the node s in not reachable from any other node. Therefore, the directed

reduced spanning trees must be rooted in the node s. This, in conjunction with

Theorems 4.1 and 4.3, completes the proof.

The number of MAC operations resulting from the MAC-modularization of a di-

rected reduced SFG is given in accordance with the following theorem.

102

Theorem 4.5 A directed reduced SFG with n addition operations can be modularized

into an equivalent SFG consisting of (n + 1) MAC operations using any of the directed

reduced spanning trees, except in the case when the directed path from the root node

to the output node in the corresponding directed reduced spanning tree has unity gain.

In such a case only n MAC operations are required.

Proof For MAC-modularization, all incoming arcs to addition nodes in a given

directed reduced spanning tree must be made direct-addition arcs. The resulting

incoming arc to the output node reflects the total gain from the root node to the

output node along that directed reduced spanning tree. This output edge may have a

non-unity gain since the output node has an out-degree of 0. Therefore, a redundant

direct-addition edge with an addend of zero must be augmented to the output node,

and the output node, output edge, and the redundant direct-addition edge must be

combined into a MAC operation, resulting in (n + 1) MAC operations.

In the case that the directed path from the root node to the output node has

a gain of unity, no such redundant direct-addition is required, resulting in n MAC

operations.

4.2.1 Co-Tree Multiplier Value Computation

One can exploit the directed reduced spanning tree in conjunction with the directed

reduced SFG in order to determine the co-tree multiplier values in the corresponding

MAC-modularized directed reduced SFG.

Lemma 6 Any co-tree multiplier mij between the nodes ni and nj corresponding to

the arc eij in the directed reduced SFG assumes a new value given by

= mjj.(gj/gj), (4.4)

where gk represents the gain from the input node to the node nk along the correspond-

ing directed reduced spanning tree.

103

Proof Consider an arbitrary directed reduced spanning tree of G(V, E), with a

pair of nodes ni and nj shown explicitly, in Fig. 4.2. Let the co-tree edge eij have an

initial gain of m3. Let the unique paths from the node s to the node ni and from the

node s to the node nj have the gains gj and gj, respectively.

n.
1

input

S

Figure 4.2. Co-tree Multiplier Value Computation

I

n

MAC-modularization involves the systematic movement of the multiplications along

these paths in order to make these path gains unity. Therefore, the effective multi-

plication coefficient movement across n (nj) is gj (g3). Since mij corresponds to the

output (input) multiplication coefficient of n (nj), m = mjj.(gj/gj). This completes

the proof.

4.2.2 Output Multiplier Value Computation

The value of the output multiplier is equal to the gain from the root (input) node

to the output node along the directed reduced spanning tree. If this gain is not unity,

an additional MAC operation is required at the output node (c.f. Theorem 4.5) with

104

its addend input of zero.

4.2.3 Node-numbering in the directed reduced SFG

Let N and U represent a set of numbered and un-numbered nodes. Let G(V, E)

be the directed reduced SFG whose nodes are to be numbered. Let s be the input

node of G.

Algorithm 5

begin

node_nurn = 0;

assign the number nodenum to the node s;

N={s}; U=V—{s};

while (U 0) do

begin

B = {n,... , flk} such that

a) n,... ,nkEU

b) n,... ,flk are connected as terminating nodes by unit edges

with N;

U=U— B;

while (B 0) do

begin

node..num = node-mum + 1;

assign the number node_num to nj, where nj E B;

N= N+{n};

B = B -

end

end

end.

105

4.2.4 Self-loop Elimination

The conversion of a digital filter SFG to a corresponding directed reduced SFG

requires delay removal. However, delay removal can result in the creation of self-loops

at certain nodes. Such self-loops prevent the successful application of the graph-

theoretic techniques for MAC-modularization.

The above problem is best resolved by eliminating these self-loops. This is achieved

by disconnecting the outgoing part of the self-loop edge from the originating node, and

connecting it to the input node. Fig. 4.3 demonstrates the elimination of the self-loop

at the node n1. The self-loop is eliminated by breaking the self-loop and connecting

the outgoing part of the self-loop edge to the input node with the multiplier m,j given

by

m 3 - { 1 if = 1
- 0 otherwise.

(4.5)

This technique of self-loop elimination permits the generation of all the directed

reduced spanning trees with e,,i as the co-tree arc when mjj = 1 (allowing the self-loop

to be a direct-addition input to ni). Note that the original self-loop multiplication

coefficients must be remembered as they need to be restored after generating the

required directed reduced spanning trees.

4.2.5 Algorithm for converting a digital filter SFG to its corresponding

directed reduced SFG

Let V denote the set of all the nodes in the given digital filter SFG. The algorithm

for converting a digital filter SFG to its corresponding directed reduced SFG is as

follows.

Algorithm 6

begin

106

S

Tagged Arc

ai

n

'S S

'S
'S
5S S

'S S
'S

\ 11
m. M ii \ .® --

5'11

5_ I

n n
i j

F
F

Figure 4.3. Self-Loop Elimination

Eliminate all the delays and short their corresponding connection

points;

Eliminate all the self-loops using the technique in Sec. 4.2.4;

Assign a tag to each eliminated self-loop arc;

Remember the original multiplication coefficient values of each of

the self-loop arcs;

Number each node ni E V using Algorithm 5 (Page 104);

end.

4.2.6 Algorithm for MAC-modularizing the directed reduced SFG

The following algorithm converts a given directed reduced SFG (generated using

Algorithm 6 (Page 105)), into a corresponding MAC-modularized directed reduced

107

SFG.

Algorithm 7

begin

Construct a directed reduced spanning tree for the

directed reduced SFG (see the following);

Compute the new co-tree multiplier values by using the constructed

tree and Lemma 6;

Insert the output MAC operation using the technique in Sec. 4.2.2;

Convert all the tree arcs (except the output arc) to

direct-addition arcs;

Combine the resulting tree and co-tree;

Combine the node additions and their corresponding co-tree

multiplications into composite MAC operations;

end.

4.2.7 Algorithm for converting a MAC-modularized directed reduced

SFG to the corresponding digital filter SFG consisting of MAC

operations

The following algorithm converts the given MAC-modularized directed reduced

SFG (generated using Algorithm 7 (Page 107)) into its corresponding digital filter

SFG consisting of MAC operations.

Algorithm 8

begin

Reconstruct the self-loops using the tagged arcs;

Restore self-loop multipliers for tagged arcs with m,i = 0;

Insert the delays on the appropriate arcs;

end.

108

4.3 Optimal MAC-Modularized digital filter SFG Selection

In the previous section, it was shown that one can use any of the directed reduced

spanning trees of a given directed reduced SFG in order to carry out the MAC-

modularization of the corresponding digital filter SFG. Since each of these spanning

trees leads to a unique MAC-modularized solution, one can obtain a family of solutions

for a given digital filter SFG. Although the resulting solutions are all equivalent in

terms of infinite-precision arithmetic, they exhibit remarkably different properties

for the corresponding finite-precision arithmetic implementations. In this thesis, the

finite-precision behaviour of the solutions is used as a criterion to arrive at the optimal

MAC-modularized digital filter SFG.

There are primarily three finite-precision arithmetic effects in fixed-point digital

filter implementations. These are [37]:

1. Transfer function deviation due to coefficient quantization.

2. Overflow oscillations (limit cycles) due to signal growth within the system.

3. Roundoff noise caused by multiplication product rounding.

The first of the above three effects is linear in nature and simply leads to errors

in the time-domain and frequency-domain response characteristics of the implemen-

tation. The second and third effects, on the other hand, are non-linear in nature and

influence the stability of the digital filter. Furthermore, they determine the dynamic

range and the signal-to-noise ratio of the system. The finite-precision arithmetic ef-

fects associated with the overflow oscillations and roundoff noise serve as a valuable

criteria for the selecting the optimal MAC-modularized digital filter SFG.

It is important to note that, since the linear effects (measured using sensitivity

characteristics) are strongly influenced by the topology, and since the MAC modular-

ization preserves the general topology of the SFG, the proposed MAC modularization

does not degrade the sensitivity features of the original digital filter.

109

In the following, the Li-norm calculations [25] for the possible degree of overflow

and roundoff noise are used to select the optimal MAC-modularized digital filter SFG.

The possible degree of overflow is determined by the maximum gain from the input

node to the addition nodes within the digital filter. The roundoff noise is determined

by summing the gains from the multiplier outputs to the output node of the digital

filter. The possible degree of overflow affects the number of bits/digits to be allocated

to the most-significant part of the signal word, whereas the roundoff noise affects the

number of bits/digits to be allocated to the least-significant part of the signal word.

This section is concerned with the development of a fitness function for finding

the optimal MAC-modularized solution for a given digital filter SFG. This fitness

function is developed in terms of the possible degree of overflow and roundoff noise in

the digital filter. It is also shown that the overflow and roundoff noise characteristics

of the MAC-modularized solution can be determined by using the corresponding

directed reduced spanning tree in conjunction with the overflow and roundoff noise

characteristics of the original digital filter SFG.

4.3.1 Fitness Function for MAC-Modularized Reduced-SFGs

The fitness function for any given kth MAC-modularized digital filter SFG can be

determined by

fitness(Hk(V, Ek)) = (oflowweight x °MAX) + (roffweight x >I R) (4.6)

In this equation, Hk(V, Ek) represents the k21 directed reduced spanning tree associ-

ated with the directed reduced SFG G(V, E) of the original digital filter SFG, with

Ek C E. Moreover, °MAX represents the Li-norm value of the maximum over-

flow at the addition nodes in the MAC-modularized digital filter SFG. In addition,

R represents the sum of the Li-norm values of the roundoff noise contributions

of each of the co-tree arcs of Hk(V, Ek) that have non-unity absolute gains. Finally,

1

110

of low-weight and rof f_weight are the user specified weights associated with the

overflow and roundoff noise contributions, respectively.

The fitness function in Eqn. (4.6) is used for the selection of a MAC-modularized

solution that inherently minimizes the harmful finite-precision effects of overflow os-

cillations and roundoff noise. Such a solution is optimal in terms of the user defined

weights for overflow and roundoff noise.

4.3.2 Overflow and Roundoff Noise Calculations

In this subsection, a technique is developed to determine the Li-norm values of

the possible degree of overflow and roundoff noise in any MAC-modularized solution.

This technique is based on the corresponding directed reduced spanning tree and the

Li-norm values of the possible degree of overflow and roundoff noise in the original

digital filter SFG. The resulting technique permits the computation of the fitness

function in a very simple and straightforward manner.

The possible degree of overflow and the roundoff noise in a given digital filter SFG

are computed in terms of the maximum gains from the input to any addition node and

the sum of the gains from the multiplier outputs to the output node, respectively. To

facilitate the discussion, it is shown that the MAC-modularization of a node affects

the gain at that node only, leaving the gains at all the other nodes unchanged. This

property is subsequently used to develop the technique for computing the possible

degree of overflow and roundoff noise in the MAC-modularized digital filter SFG.

Theorem 4.6 MAC-modularization of an arbitrary node ni in given digital filter SFG

results in a change in the gain at that node only, leaving the gains at all other nodes

unchanged.

Proof Let the schematic in Fig. 4.4 represent a section of a digital filter SFG

with a node ni in its pre-modularized state. Let gp represent the gain from the

111

input node s to the node n. Moreover, let the digital filter under consideration be

infinite-precision linear.

I g.
"a

input n

gb

n.
.1

bi

S
S

g k k g4 \ output

CD
n. , 0

3 $

I

-

Figure 4.4. Section of Reduced-SFG: Pre-Modularized State

Further, let the application of MAC-modularization to the node ni by the movement

of the multiplier maj result in the configuration as shown in Fig. 4.5. Let g, now

represent the corresponding new gain at the node n,,.

Due to the fact that the system is linear, the movement of the multiplier rnaj (c.f.

Fig. 4.5) does not disturb any of the loop gains in the system. Moreover, since the

nodes n,, and nb can be reached from ni through feedback paths only, the gains at

nodes n, and rib remain unchanged in accordance with

= g.

and

= gb,

respectively.

(4.7)

(4.8)

112

input

'

ai

M . m
13 al

g; \ output
J

ED ® DO
n.
3

-

Figure 4.5. Movement of rnaj across n: Post-Modularized State

0

The gain from the input node .s to the node n before MAC-modularization can be

expressed as

gi = mzg + mbigb. (4.9)

The corresponding gain after modularization becomes

g = g + mbl
— g
Mai

By using Eqns. (4.9) and (4.10), one obtains

1
g

Mai

(4.10)

(4.11)

Similarly, the gain from the input node s to the node nj before MAC-modularization

can be expressed as

= mjjgj + rnkjgk. (4.12)

The corresponding gain after modularization becomes

g = mjjmajg + mkigk. (4.13)

113

By using Eqn. (4.11) in Eqn. (4.13), one obtains

g = flu. (4.14)

Therefore, from Eqns. (4.7), (4.8), (4.11), and (4.14), it can be seen that MAC-

modularization of the node ni changes the gain at that node only, leaving the gains

at all other nodes unchanged. This completes the proof.

Let n, represent an arbitrary node in a given directed reduced SFG. Moreover, let

Oi represent the Li-norm value of the possible degree of overflow at node n. Further,

let R11 and R21 represent the Li-norm values of the roundoff noise caused by each

of the two incoming edges to n. Then, the node ni is characterized in terms of its

overflow and roundoff noise contributions with the 3-tuple

< 0,R1,R21 > . (4.15)

The same node n, after MAC-modularization is characterized by a corresponding

3-tuple

< 0,R' 1,R' 1> . (4.16)

Note that R'11 or R'21 is zero if the corresponding multiplier in the MAC-modularized

directed reduced SFG is 1 or —1. The 3-tuple in Eqn. (4.16) can be derived from the

corresponding 3-tuple in Eqn. (4.15) in accordance with the following theorem.

Theorem 4.7 Given a directed reduced SFG with the Li-norm values of the possible

degree of overflow and roundoff noise for each node ni represented using the 3-tuple in

Eqn. (4.15), the corresponding Li-norm values after MAC-modularization, as given

in Eqn. (4.16), can be derived as

(4.17)

114

and

R' I giRi if jmI 0 1
= 0 otherwise,

(4.18)

where gi is the gain from the root (input) node to node ni along the corresponding

directed reduced spanning tree, and m.,i is the multiplier coefficient along the directed

edge e.

Proof MAC-modularization of a given directed reduced SFG is carried out by

moving the multipliers along the directed reduced spanning tree starting at the root

node and moving towards the leaf nodes until all the tree edges (except for the output

edge) become direct-addition edges. This procedure results in a multiplier movement

of gj across node n1. Since the overflow is computed as a function of the maximum

gain from the input to that node n, the multiplier movement of 9t across ni results

in c = (t)° in accordance with Eqn. (4.11). On the other hand, the roundoff error

is computed using the gain from the multiplier output incoming to the node ni to the

output node. A multiplier movement of gi across the node ni increases this gain by

gj, thereby resulting in = g1R,;. However if ImjJ = 1, then the roundoff error

contribution becomes 0 since multiplication by 1 or —1 does not induce any roundoff

error. This, in conjunction with Theorem 4.6 completes the proof. U

In summary, the directed reduced spanning tree can be used to compute the new

overflow and roundoff error values for the corresponding MAC-modularized digital

filter SFG.

4.4 An Enumerative Approach to MAC-Modularization

For digital filter SFGs having small to medium sizes, it is possible to perform an

exhaustive enumeration of MAC-modularized solutions for finding the optimal solu-

tion. This exhaustive enumeration involves, the generation of all the corresponding

directed reduced spanning trees of the given directed reduced SFG, and the selection

of the optimal solution based on the fitness function in Eqn. (4.6).

115

4.4.1 Algorithm for Directed Reduced Spanning Tree Enumeration

Let S represent the set of all the nodes in a given directed reduced SFG. At

each iteration of the following algorithm, let the set S be partitioned into two sets,

namely V signifying the set of visited nodes, and U signifying the set of unvisited

nodes. Moreover, let T represent a set of partial directed reduced spanning trees at

each iteration of the algorithm. Further, let maxnode..num(P) return the maximum

number associated with a node in the given set of nodes P, and let num(n;) return the

node number of the node n. Also, let adj(e) return the adjacent incoming edge to

the edge ejt at node n. Finally, let mu1t(e) return the multiplier coefficient rnjj along

the edge eji. Then, the algorithm for directed reduced spanning tree enumeration is

as follows:

Algorithm 9

read the directed reduced SFG with nodes S;

read the root node r of the directed reduced SFG;

begin

Step .1:

T=Ø; V={r}; U=S—V;

Step :

Find node ni E U such that

num(n) == maxiode_num(V) + 1;

Step 3:

Add ni to every ti E T separately for each edge e3 (with rnu1t(e) 54 0)

from V to n;

/ If T had k trees, it now has k or 2k trees (forward direction). */
Step :

/* Now for the trees generated in the backward direction. /
for (every edge es,, (with mu1t(e) 54 0) from ni to V) do

begin

Tiemp = 0
for (every tree tj E T) do

116

begin

t2,P =

if ((ttemp has no edge e) && (adj(e) does not arise from ni))

tiemp = ttcmp + eip - adj(e1);

if (ttemp is a valid directed reduced spanning tree)

Tiemp Ttemp + {ttemp};

end

T= T+Ttemp;

end

Step 5:

V=V+{n2}; U—U—{n};

Step 6:

if (U 0)

repeat steps 2 through 6;

end.

4.4.2 Proof of Operation

The proof of working of Algorithm 9 (Page 115) is established through the following

theorem.

Theorem 4.8 The application of Algorithm 9 (Page 115) to a directed reduced SFG

results in a set T of all the possible directed reduced spanning trees of that directed

reduced SFG.

Proof The proof is deferred until Lemmas 7, 8, and 9 are established.

The following lemma deals with the directed reduced spanning trees of the set

V + {n1} with the newly added node ni as the leaf node.

Lemma 7 The addition of the node rtj in Step 3 of Algorithm 9 (Page 115) results in

all the possible partial directed reduced spanning trees associated with the set V + {n}

having ni as one of the leaf nodes.

117

Proof By contradiction. Let ti € T for i = 1,2,... , p represent all the possible,

say p, partial directed reduced spanning trees associated with the visited set V. Then,

after the application of Step 3 of Algorithm 9 (Page 115), one obtains the new set

T of either p new partial directed reduced spanning trees if only one directed edge

connects V to n, or 2p partial directed reduced spanning trees if two directed edges

connect V to n. If the new set T is not the exhaustive set of partial directed reduced

spanning trees associated with V + {n} having ni as one of the leaf nodes, then

three cases can arise. Either ni is not connected directly to V, or T is not the

exhaustive set of partial directed reduced spanning trees associated with the set V,

or both. The former case is not possible since ni is numbered one higher than the

max_node_num(V), meaning that ni is directly connected to V. The latter case leads

to the violation of the assumption that T is the exhaustive set of partial directed

reduced spanning trees of the set V before the application of Step 3. All these lead

to a contradiction, completing the proof. I

Lemma 8 The addition of an outgoing edge e1 from the node ni to V in Step 4 of

Algorithm 9 (Page 115) results in all the possible partial directed reduced spanning

trees associated with the set V + {n}, having ni as one of the non-terminating nodes,

and having a single outgoing edge e1 from ni to V.

Proof By contradiction. At the beginning of Step 4 (i.e. after the completion of

Step 3), the set T contains p (or 2p) partial directed reduced spanning trees associated

with the set V + {n}. By applying the inner for loop of Step 4 for all tj E T, one

obtains the set Temp of partial directed reduced spanning trees, where each ti E Tiemp

contains ni as the non-leaf node having e1 as the corresponding outgoing edge.

Assume that there exists a tree t1 such that

1. t1 is a partial directed reduced spanning tree associated with the set V + {n},

118

2. tj contains ni as a non-leaf node having e1 as the corresponding outgoing edge

towards the set V, and

3. ti Ttemp

Then, Step 4 of Algorithm 9 (Page 115) leads to any, some, or all of the following

conditions. a) ej1 does not connect ni to V, b) e1 has no adjacent incoming edge in

the set V + {ni l, or c) T is not an exhaustive set of partial directed reduced spanning

trees of V. Condition a violates our assumption regarding the tree ii. Condition

b means that the set V has an unconnected node in it, leading to a contradiction.

Condition c leads to a direct contradiction by using Lemma 7. This completes the

proof.

The above lemmas can be used to prove that the addition of a new node to an

already existing set partial directed reduced spanning trees of nodes V in accordance

with Algorithm 9 (Page 115) results in all the possible directed reduced spanning

trees of V + {n}.

Lemma 9 The addition of arbitrary edges e1, e2,... , eik from node ni to the set V

in Step j of Algorithm 9 (Page 115), results in all the possible partial directed reduced

spanning trees associated with the set V + {n}.

Proof From Lemma 7 and 8, one can obtain an exhaustive set of two types of

partial directed reduced spanning trees of the set V + {n}. The first type has ni as

the leaf node, and the second type has ni as the non-leaf node and also has e1 as its

corresponding outgoing edge.

Let e2 be added to connect ni to V. Then by applying Step 4 of Algorithm 9

(Page 115) for e2, and reasoning along the lines as for Lemma 8, one obtains the set

Tiemp of two types of partial directed reduced spanning trees. The first type has e2 as

the only outgoing edge from the node ni to the set V, and the second type has both

119

e1 and e2 as the outgoing edges from the node ni to the set V. Therefore, the set

T + Ttemp is an exhaustive set of partial directed reduced spanning trees associated

with the set V + {n} having the edges e1 and e2.

In this way, one can show that the addition of the edges e3,... , eik leads to all

the possible partial directed reduced spanning trees associated with the set V + {n}

having eil, e2,... , ejj as their corresponding outgoing edges. This completes the

proof. U

Finally, one can use the above lemmas to establish the proof of Theorem 4.8.

Proof of Theorem 4.8: By induction. Consider a section of a directed reduced

SFG with nodes r, n1, and n2, numbered as 0, 1, and 2, respectively, as shown in the

partial SFGs in Fig. 4.6. These SFGs show all the possible ways of connecting the

nodes r, n1, and n2.

V
2

r ni

T

V

T

2
V

r n
1,

T

r

.c
r

"2

Figure 4.6. Schematic for Proof of Theorem 4.8

2

Since r connects only to n1, after the first iteration of Algorithm 9 (Page 115) one

obtains, T = {}, V = {r,ni}, and U = S - V. Here, t1 is the only possible partial

120

directed reduced spanning tree associated with the visited set V. The addition of n2

to the set V in the second iteration of Algorithm 9 (Page 115) results in the updated

set T of one or two trees as shown in Fig. 4.6. It is clear that the set T still remains

an exhaustive set of partial directed reduced spanning trees associated with the set

V through the first and second iterations.

Assuming that T is the exhaustive set of directed reduced spanning trees for

V = {r, m1, n2,... , flk-1}, the application of Algorithm 9 (Page 115) to nk in conjunc-

tion with Lemma 9 results in the updated set of trees T which contains all possible

partial directed reduced spanning trees of the set V = {r,ni,n2,... ,rlk_1,flk}. This

completes the proof.

4.4.3 Algorithm for Enumerative MAC-Mo dularization

Algorithm 9 (Page 115) is used for the design of an algorithm for enumerative

MAC-modularization as follows.

Algorithm 10

begin

input: The digital filter SFG;

convert the digital filter SFG to G(V,E);

1* G(V, E) is the directed reduced SFG /
Determine all n directed reduced spanning trees of G(V,E) given by

Hk(V,Ek), k=1,2,... ,n in accordance with Algorithm 9 (Page 115);

V Hk(V,Ek) do

select the best H(V,E) based on Eqn. (4.6);

MAC-modularize the digital filter SFG using H(V,E), Algorithm 7

(Page 107), and Algorithm 8 (Page 107);

end.

121

4.5 A Heuristic Approach to MAC-Modularization

This section presents an heuristic approach to MAC-modularization for problems

having medium to large sizes. This heuristic operates on the basis of a locally optimal

edge selection based on the fitness function. This heuristic is shown to generate near-

optimal solutions very rapidly.

4.5.1 Algorithm for Heuristic Spanning Tree Generation

Let S represent the set of all nodes in a given directed reduced SFG. At each iter-

ation of the following algorithm, let the set S be partitioned into two sets, namely V

signifying the set of visited nodes, and U signifying the set of unvisited nodes. More-

over, let Hheur(V, Ehew.) represent the heuristically obtained partial directed reduced

spanning tree at each iteration of the algorithm. Further, let edge..f itness(e, Hheur)

represent the fitness index of the edge ej3 due to the movement of the multiplier m 5

from the node ni E V to the node nj E U, by using the partial directed reduced

spanning tree Hhe,r(V) Eheur), given by

edge_fitness Hheur (V, Eheur)) =
1

(of low_weight x O) + (rof f_weight x Rtarj_flode(adj(ejj)),j) (4.19)

Then, the algorithm for heuristically obtaining a near-optimal directed reduced

spanning tree is given by the following pseudo-code.

Algorithm 11

read the directed reduced SFG with nodes 5;

read the root node r of the directed reduced SFG;

begin

U=S—{r}; V={r}; D=E={};

construct Hheur (V, E);

while (U 0) do

begin

122

V (n1 E U) do

if ((2 n. E V) && (na, == predecessor(n1)))

D = D + {(n,n)};

select an arbitrary edge e E D;

D = D - {eap};

while (D 54 0) do

begin

select an arbitrary edge epq E D;

if (edge_f itness(epq, Hheur(V, E)) > edge_f itness(eap, Hheur(V, E)))

eap = Cpq;

D=D—{epq};

end

/ np is the terminating node of the resulting e /
U=U—{np};

V=V+{n};

E = E +

construct Hheur (V, E);

end

output Hheur(V,E);

end.

The above algorithm progresses successively from the root (input) node onwards,

and at each iteration, updates the set of visited nodes V by adding the node ne E U

which is connected from V to U with the edge having the best edge fitness in accor-

dance with Eqn. (4.19). Therefore, at each iteration of the algorithm, a new locally

optimal edge (and its corresponding node) is added to the already existing partial

directed reduced spanning tree Hheur(VI E). The final resulting heuristically obtained

directed reduced spanning tree Hheur(V) Eheur) is the locally optimal solution, and can

be employed for MAC-modularization of the directed reduced SFG as shown in the

following algorithm.

123

4.5.2 Algorithm for Heuristic MAC-Modularization

Algorithm 11 (Page 121) is used for the design of an algorithm for heuristic MAC-

modularization as follows.

Algorithm 12

begin

input: The digital filter SFG;

convert the digital filter SFG to G(V,E);

/* G(V, E) is the directed reduced SFG /
Use Algorithm 11 (Page 121) to determine Hhur(V,E);

MAC-modularize the digital filter SFG using Hheur(V,E), Algorithm 7

(Page 107), and Algorithm 8 (Page 107);

end.

4.6 Implementation of MAC-Modularization Algorithms

Algorithms 10 and 12 (Pages 120 and 123) have been applied successfully to the

design and development of a software package called MAC-Modularizer (MAC-M)

for automated MAC-modularization of digital filter SFGs. This package has been

developed by employing an object-oriented design strategy and has been implemented

using the C++ programming language. MAC-M has been applied to a variety of

digital filters having SFGs with dense or sparse multiplication operations. MAC-M

consists of two modules:

1. Enum module: In this module, Algorithm 10 (Page 120) is used to exhaustively

generate all the possible solutions and then select the optimal solution. This

module provides the user with a list of all the possible solutions together with the

Li-norm values for the possible degree of overflow and roundoff noise. Further,

it can identify the optimal and the worst solutions.

124

2. Heur module: In this module, Algorithm 12 (Page 123) is used generate the

heuristic solution rapidly. This module also provides the Li-norm values for

the possible degree of overflow and roundoff noise in the heuristic solution.

4.6.1 Test Cases

In the following, the usefulness of MAC-M is demonstrated through its applica-

tion to the MAC-modularization of a pair of digital filters, one having dense, and

another sparse multiplication operations.

1. Case 1: This case constitutes a digital low-pass filter in [21] having a SFG

with dense multiplication operations. The low-pass filter schematic is shown in

Fig. 4.7. The corresponding optimal MAC-modularized realization is shown in

the schematic in Fig. 4.8. The Enum module generated 25600 solutions for this

case, taking a CPU time of approximately 14 minutes on a Sun SPARC-b. The

Heur module generated the heuristic solution within approximately 5 seconds.

In this case, the fitness functions (c.f. Eqns. (4.6) and ((4.19)) were evaluated

by using of low-weight = roff..weighi = 1.0.

2. Case .2: This case constitutes a digital LDI-Jaumann low-pass filter in [6] having

a SFG with sparse multiplication operations. The LDI-Jaumann low-pass filter

schematic is shown in Fig. 4.9. The corresponding optimal MAC-modularized

realization shown in the schematic in Fig. 4.10. The Enum module generated

4612 solutions for this case, taking a CPU time of approximately 5 minutes

on a Sun SPARC-b. The Heur module generated the heuristic solution within

approximately 3 seconds. In this case, the fitness functions were again evaluated

by using of lowweight = roff..weighi = 1.0.

A comparison of the solutions obtained by using MAC-M for Cases 1 and 2 in

terms of the Li-Norm measures of their overflow and roundoff noise values is as shown

125

Figure 4.7. Case 1: Unmodularized Original digital filter SFG

in Tables 4.1 and 4.2, respectively. It is observed from the results that the optimal and

worst solutions differ greatly in their fitness values, and that the heuristic algorithm

produces a near-optimal result.

Table 4.1. Comparison of solutions for Case 1

Li-Norm Values Optimal Worst Heuristic

Overflow 8.79888 5586.37 19.9865

Roundoff 10.8912 7.67213 10.7343

Total 19.69008 5594.04213 30.7208

4.7 Chapter Summary

This chapter has presented a rigorous theoretical approach to the MAC-modularization

of digital filter SFGs.

126

-1.34123

-1.0000

1.0000

0.1974 0.974755 1.!

0

1.000

-1.000

-0.074456

Figure 4.8. Case 1: Optimal MAC-Modularized digital filter SFG

H

-0.22

Table 4.2. Comparison of solutions for Case 2

Li-Norm Values Optimal - Worst Heuristic

Overflow 5.53031 183.289 5.53031

Roundoff 13.4639 6.7878 14.8879

Total 18.99421 190.0768 20.41821

0.562703

R

-I

0.000

Section 4.2 has dealt with the theoretical basis and techniques for MAC-modularization

of digital filter SFGs. This includes graph-theoretic techniques for MAC-modularization

using the directed reduced SFG and the directed reduced spanning trees. These tech-

niques have subsequently been translated into algorithms for MAC-modularization.

In Section 4.3, it has been recognized that the above techniques result in several

solutions for a given digital filter SFG. This has necessitated the development of a

fitness function for the selection of the optimal solution. The fitness function has been

127

Figure 4.9. Case 2: Unmodularized Original digital filter SFG

Figure 4.10. Case 2: Optimal MAC-Modularized digital filter SFG

128

developed based on the finite-precision arithmetic effects of overflow and roundoff

noise.

Section 4.4 has presented an enumerative technique for MAC-modularization. This

technique permits the generation of all the directed reduced spanning trees of a given

directed reduced SFG, facilitating an exhaustive consideration of all the possible

MAC-modularized digital filter SFGs.

The above enumerative technique is suitable for small and medium size problems.

However, large problems are computationally intractable because of the rapid en-

largement of the solution space. This has led to the development of a corresponding

heuristic technique in Section 4.5 for MAC-modularization. This technique has been

based on local application of the fitness function in order to generate a near optimal

solution, reducing the required computational effort substantially.

Finally, the enumerative and heuristic techniques have been used for the devel-

opment of a powerful object-oriented MAC-modularization software package called

MAC-M in Section 4.6. The usefulness of MAC-M has been demonstrated through

its application to a pair of digital filters, one having dense, and the other sparse mul-

tiplication operations. It has also been demonstrated that the heuristic technique

produces a near-optimal result.

129

CHAPTER 5

DESIGN AND IMPLEMENTATION OF A REDUNDANT
NUMBER MAC-MODULARIZED LDI JAUMANN

DIGITAL FILTER

5.1 Introduction

This chapter is concerned with an illustration of the results obtained in Chapters 3

and 4, and their application to the design and gate level implementation of a practical

LDI [28] Jaumann [6] digital filter.

The initial step in the above design involves MAC-modularization of the digital

filter which yields a uniform and modular structure, lending itself to efficient VLSI

implementation. The next step involves the exploitation of the inherent parallelism

in the Jaumann digital filter structure by identifying subsystems which can operate

concurrently. This is followed by the development of the state update equations for

characterizing the operatiqn of the overall filter in terms of the identified subsystems.

The digital filter obtained after MAC-modularization may suffer from the harmful

effects of finite-precision arithmetic, namely, the transfer function errors (linear phe-

nomenon), and the overflow saturation and roundoff noise (non-linear phenomena).

Transfer function errors are brought within acceptable limits by selecting the appro-

priate MAC coefficient wordlengths. Overflow saturation is counteracted by adding

upper guard bits/digits to the signal word while roundoff noise is counteracted by

adding lower guard bits/digits. This is followed by the selection of the proper num-

ber representations for the signal and MAC coefficient words in order to maximize

the operational speed of the digital filter.

The state update equations involving finite-precision arithmetic are subsequently

translated into a gate-level implementation of the digital filter. This consists of sep-

arate data-paths for the implementation of each of the subsystems together with a

130

global control unit. The implementation is simplified due to the modularity in the

filter structure resulting from MAC-modularization. The constituent MAC architec-

tures are implemented using redundant number arithmetic in order to exploit the

maximum speed available by the given implementation technology.

Section 5.2 deals with the MAC-modularization of a fifth-order Iowpass LDI Jau-

mann digital filter [25], together with the development of the corresponding state

update equations for the constituent subsystems. The signal and MAC coefficient

wordlengths required for the finite-precision arithmetic implementation of the MAC-

modularized LDI Jaumann digital filter are calculated in Section 5.3. Section 5.4

presents the number representations adopted for the signal and MAC coefficient

words. The data-path and control unit implementations for the Jaumann digital

filter are presented in Section 5.5. In Section 5.6, the resulting Actel l.2p technology

implementation is verified by using its impulse response Viewlogic simulations. The

simulation results demonstrate an achievable clock rate of 50 MHz yielding a sample

rate of 8.33 MHz. The striking feature of this implementation is that its speed of

operation is completely independent of the signal wordlength within the digital filter.

5.2 MAC-Modularization of the LDI Jaumann Digital Filter

The schematic in Fig. 5.1 shows the SFG of a fifth-order lowpass LDI Jaumann

digital filter [6]. This Jaumann digital filter can be visualized as consisting of three

different subsystems, namely, the top and bottom subsystems A 1I and JtI incorporat-

ing forward and backward Euler digital integrators, and the central interconnection

subsystem JV. The top subsystem Al1 contains 3 digital integrators, and the bottom

subsystem./V2 contains 2 digital integrators.

The digital filter in Fig. 5.1 has an important property of offering a high degree of

parallelism in the constituent arithmetic operations. There are several ways to exploit

this parallelism for achieving a corresponding high-speed implementation. For exam-

131

K®
-0.78125

I

0
0.46875

Q J

0.25

A B

N
0

C D
 C

 T -

1.375

0

.21875

M

Figure 5.1. Lowpass LDI Jaumann Digital Filter before MAC-Modularization

pie, the top and bottom subsystems N'1 and Al2 can operate concurrently, permitting

separate data-path implementations.

The MAC-modularization of the digital filter in Fig. 5.1 is carried out by us-

ing the software package MAC-M introduced in Chapter 4. The resulting optimal

MAC-modularized SFG is shown in the schematic diagram in Fig. 5.2. In this way,

the subsystems A/, All, and Ar2 are translated to the new subsystems Al0, N'1, and

, respectively. The subsystems Al1 and R2 consist of 5 and 3 MAC operations,

respectively. In order to achieve the maximum possible operational speed, the fil-

ter is implementing by using two pieces of hardware redundant number arithmetic

MAC units. One MAC unit is dedicated to the subsystem , and the other to the

132

M 2

Figure 5.2. Optimal MAC-Modularized Lowpass LDI Jaumann Digital Filter

subsystem

It is observed that the process of MAC-modularization maintains all the MAC co-

efficients in the subsystem to either +1 or —1. Therefore, the resulting subsystem

is implemented by using a single redundant arithmetic combinational unit.

The state variables associated with the MAC-modularized digital filter are shown

in Fig. 5.2. The state variables C!v11 and CM2 are used for communicating from

to and NO to R2 , respectively. Similarly, the state variables MCI and MG2

are used for communicating from Al1 to)f'o and A/'2 to A/3, respectively. The input

to the filter is represented by the variable IN, and its output is represented by the

variable OUT. In addition, each subsystem is also associated with a corresponding

133

set of internal variables. The subsystem has Z1, Z2, Z3, and Z4 as its internal

set of variables. The subsystem Au has M1 , M1y, X, and Xv as its internal set of

variables. Similarly, the subsystem .A/T has M2x and YU as its internal set of variables.

The relationships between the above variables are expressed in terms of state

update equations which describe the operation of the overall MAC-modularized digital

filter. The state update equations for this digital filter in terms of those of AIO, H1,

and R2 are combined and presented in the following algorithm.

Algorithm 13

input: IN;

output: OUT;

begin

/* The inputs to the subsystems *1

input MC, MC, IN to

input CMV, MC,, Mrx , M' to

input CM, MC, Mx to .N;

/ Equations characterizing the operation of subsystem *1

compute Zi using Zi = IN + IN';

compute Z2 using Z2 = MC + MC;

compute Z3 using Z3=MCr—MC;

compute Z4 using Z4 = Z, - Z2;

compute CM' using CM' = Z4 + Z3

compute CMr' using CM' = Z4 - z3

compute OUT using OUT=;

/ State update equations characterizing the operation of subsystem

compute Xv using Xv = MC + (—O.78125)Mry;

134

compute M' using M' = Mx + (O.46875)Xv;

compute Xu using XU = CM ± (—l.0)Mx;

compute using M1'1 = M' + (l.0)M x ;

compute MC 1 using MCr+l = MC + (O.25)Xu;

/ State update equations characterizing the operation of subsystem AI

compute M' using M' = + (1.0)MC;

compute Yu using Yu=CM+(-1.375)Mx;

compute MC' using MC' = MC + (O.21875)Yu;

/ The outputs of the subsystems *1

output CM', CM', OUT from

output MC 1 from Al1;

output MC' from Al2;

write OUT;

end.

*1

In the above algorithm, the superscript n - 1, n, or n + 1 associated with any

variable indicates the value of that variable in the n - 1, nth , or n + l' operation

cycle.

5.3 Calculation of the Required MAC Coefficient and Signal
Wordlengt hs

In this section, the harmful effects of finite-precision arithmetic are investigated for

the calculation of the required wordlengths for the MAC coefficients and the internal

signals.

135

5.3.1 Calculation of the Required MAC Coefficient Wordlength

In a fixed-point digital filter implementation, the values of the constituent MAC

coefficients must be quantized to a finite wordlength. The quantized MAC coefficients

give rise to errors in the time-domain and the frequency-domain response of the digital

filter. Therefore, the MAC coefficient wordlengths must be determined in such a

manner that the above errors are confined to acceptable limits.

The lowpass LDI Jaumann digital filter exhibits exceptionally low passband sen-

sitivity [25] with respect to coefficient quantization errors. Therefore, it is possible

to quantize the MAC coefficient values to only 6 bits/digits as demonstrated in [25]

and [15].

5.3.2 Calculation of the Required Signal Wordlength

Let °MAX represent the Li-norm value of the maximum signal gain from the

digital filter input to any node within the filter and let E R represent the sum of

the Li-norm values of the signal gains from each MAC node (having a coefficient

other than +1 or —1) to the output node of the digital filter. Furthermore, let ISigna1

represent the input signal wordlength, and let lUpper and 1Lower represent the upper

and lower guard bits/digits required to counteract the effect of overflow and roundoff

noise, respectively. Then, lUpper can be determined by using °MAX in accordance

with

tUpper = 11og2(O1)1.

Similarly, I Lower can be determined by using F, R in accordance with

- f f1og2(> R + g') for truncation 2
Lower - flog2(R + ')1 for rounding,

where g' is determined in terms of the input to output gain gj0 as

- gjo if the filter output is obtained by truncation 5 3 9 - if the filter output is obtained by rounding.

136

The minimum required internal wordlength of the filter 1lnternal is determined by using

Eqns. (5.1) and (5.2) as

1lnternal = lUpper + 1Signa1 + 1Lower, (5.4)

where lUpper and lLower add to the most-significant and least-significant part of the

signal word, respectively.

For the optimal MAC-modularized lowpass LDI Jaumann digital filter shown in

Fig. 5.2, °MAX = 5.53031, >2R = 13.4639, and ,qo = 2.02602. By using Eqns. (5.1)

and (5.2) one obtains lUpper = 3, and 1Lower = 4. Since the signal wordlength is given

to be iSignal = 12 bits/digits, Eqn. (5.4) yields 1lnternal = 19 bits/digits.

5.4 Number Representation of the Signal and MAC Coeffi-
cient

This section presents the number representation adopted for the signal and coeffi-

cient word.

5.4.1 Representation of the Signal Word

In this implementation, the signal is represented by using SB number represen-

tation (c.f. Section 2.3). The SB signal is represented in two-level logic using the

minimal-(n,p) encoding (c.f. Table 2.2). This has two advantages.

1. It permits simple two-level logic realization, and

2. It permits simple and straightforward negation of the signal word.

The latter can be achieved by simply swapping the ii and p bits at each digit posi-

tion without incurring any hardware cost. SBNR is employed because it eliminates

carry/borrow propagation in addition/subtraction, thereby permitting the digital fil-

ter to operate at a very high speed independently of the signal wordlength.

137

5.4.2 Representation of the MAC Coefficient

Algorithm 1 (Page 28) is employed to convert the given MAC coefficients into

their corresponding modified radix-4 representation (c.f. Section 2.4.1). The result is

encoded in two-level logic by using Eqn. (2.61). Such a representation of the MAC

coefficients eliminates the need for the modified radix-4 recoders in the corresponding

MAC architectures leading to an increase in the maximum achievable speed in the

resulting implementation. Moreover, this representation also permits multiplication

by unity, which is otherwise not possible using TCNR.

5.5 Gate-Level Implementation of the MAC-Modularized LDI
Jaumann Digital Filter

The optimal MAC-modularized digital filter in Fig. 5.2 is used together with Al-

gorithm 13 (Page 133) to arrive at gate-level implementation of the digital filter. The

resulting implementation can be visualized as consisting of three separate data-paths

implementing the subsystems k7, , and , and a global control unit as shown

in the schematic in Fig. 5.3. The data-path subsystems communicate by using the

data buses MCI, MC2, CM1, and CM2 which consist of the 19 x 2-bit wide signals

associated with the corresponding state variables in accordance with Algorithm 13

(Page 133).

The global control unit controls the operation of the digital filter by communicating

with each of the data-path subsystems through the Control Bus, COEFF1 Bus, and

COEFF2 Bus. The Control Bus transmits the digital filter control word from the

control unit to the data-path subsystems. This control word carries the information

regarding the state updates required in each clock cycle of the digital filter operation.

The details regarding the control word are discussed in subsection 5.5.2. The COEFF.1

Bus and COEFF2 Bus carry the 3 x 3-bit wide .signals associated with the MAC

coefficients for the subsystems A7j and Al2, respectively.

138

COEFF1 Bus

Data-path
Subsystems

MC

Control
Unit

Control
Bus

IN

N0

NC Cm

COEFF2 Bus

N2

OUT

Figure 5.3. Architecture of the MAC-Modularized Lowpass LDI Jaumann Digital
Filter

The implementation of the data-path subsystems and control unit by using the

basic hardware cells given in [45] is discussed in the following.

5.5.1 Gate-Level Implementation of the Data-Path Subsystems

The implementation of the data-path subsystems .N, JVJ, and A/, is shown in

the schematic in Fig. 5.4. This implementation is developed by exploiting the corre-

sponding set of state update equations given in Algorithm 13 (Page 133). The heavy

lines in the schematic diagram in Fig. 5.4 represent the data buses associated with

the state variables, while the other lines represent the control signals. The labels

CLK and CLR represent the clock and reset signals to the data-path subsystems,

respectively.

The implementation of the A/ data-path subsystem is shown in the central portion

139

510

511

620

521

510

511

NIX
sly —

xUy Cu

MIX

Al a

2 0

CR 1 ..*3

1?
Al

COEPI'l

NIX

B

DECODER DECODER

Ad

S

SAC

C20

CII

CII

C23

STATE

I 0

(CIO .C20 •C 2.C22)

STATE

1 O MIX

LD

Cli .CZI

STATE

C13 .C23

STATE

 eLK

Cli .C20

STATE

I 0 Cu— B

A

A
S

A-B

A

B

A

A

B

A+B

A
S

A - B

 CA

S

 KB

STATE

0

eLK

STATE

'II 0

-H

NIX

NIX

-.1

CR 2 -.

WC 2 -K
A

N
2

COEPK2 - V N

B

0

DECODER

1 CO

II 2—Cl

II 3—Cl

STATE

1 0

as

CO

STATE

I 0

Cl

STATE

I ONC 2

— N21

— Vu

Ct-C

CI

Figure 5.4. Implementation of the Data-Path Subsystems

140

of the schematic in Fig. 5.4. The input signals to this subsystem are IN, MCI, and

MC2. The output signals generated by this subsystem are OUT, CM1,and CM2.

The control signal associated with this subsystem is LD.

The implementation of the Al1 data-path subsystem is shown in the top portion

of the schematic in Fig. 5.4. It consists of 1 MUX-3, 1 MUX-4, 1 MAC unit, 2

DECODERs, and 4 STATE registers. Observe that the variables Xu and Xv time-

share the same state register representing the new state variable Xuv. The control

signals associated with this subsystem are S11, S10, S21, and S20.

The implementation of the)V2 data-path subsystem is shown in the bottom portion

of the schematic in Fig. 5.4. It consists of 2 MUX-3s, 1 MAC unit, 1 DECODER,

and 3 STATE registers. The control signals associated with this subsystem are Si

and SO.

5.5.2 Gate-Level Implementation of the Control Unit

The control unit is implemented after developing the control word required for the

MAC-modularized digital filter.

5.5.2.1 Development of the Control Word

The control word carries the information regarding the state updates required in

each clock cycle of the digital filter operation. It is derived by using the state update

equations in Algorithm 13 (Page 133).

LD Si SO S11 S1O S21 S20

Figure 5.5. Control Word for the MAC-Modularized Lowpass LDI Jaumann Digital
Filter

The control word is as shown in Fig. 5.5 and is a 7-bit value formed by using

141

the control signals LD, 811, 810, 521, 520, Si, and SO. These control signals are

required for the proper operation of the data-path subsystems and are as shown in

Fig. 5.4. The sequence of control word values required for processing one sample of

the input signal is derived as follows. In the first clock cycle, the input sample is

read, and the data-path subsystem JVj computes the state variables OUTS, CMr,

and CM. In the subsequent five clock cycles, the data-path subsystems Al1 and A/Ta

operate concurrently. The state variable MC 1 is computed by the subsystem Rl-

by using five of these clock cycles, while the state variable MC' is computed by

by using three of these clock cycles. Therefore, six clock cycles are the subsystem iV

required for processing one single sample of the input signal.

The value of the control word changes periodically with a period of 6 clock cycles.

The sequence of the control word values for one period of operation is as shown in

Table 5.1. Therefore, it is very simple to build the control FSM for this filter as there

is only a repetitive pattern of six 7-bit signals to be generated.

Table 5.1. Control Word Values for Processing One Sample

Clock Cycle Control Word Value

0

1

2

3

4

5

1000000

0000000

0010101

0101010

0111011

0110100

142

5.5.2.2 Implementation of the Control Unit

The control unit is implemented as shown in the schematic in Fig. 5.6. The

COUNTER-05 cell counts from 0 to 5 repetitively, thereby enabling the execution

of the 6 control instructions in Table 5.1.

COUNTER

CLK—CLK 0

:1-

CLR—.CLR 2

Instruction
ROM

7-bits X 6

- 0
1 —4-----g-4 I I

I I

—i
0-5

6-1 MUX

Register

COEFF1
ROM

9-bits X 6

0
1 6-1 MUX
2

Register

V

COEFF2
ROM

9-bits X 6

0
1 6-1 MUX
2

V

Register

Control Word COEFF1 COEFF2

Figure 5.6. Implementation of the Control Unit

The schematic in Fig. 5.6 also contains three ROM banks, namely the Instruction

ROM, COEFF-1 ROM, and the COEFF-2 ROM. The Instruction ROM stores the

control instructions shown in Table 5.1. The COEFF-1 ROM and COEFF-2 ROM

store the MAC coefficients required for the operation of .A1 and A/, respectively.

These ROMs are connected to 6 - to - 1 multiplexers to allow the correct data to

be fed to the corresponding control and coefficient buses. These multiplexers are

controlled by the six-state counter COUNTER-05. Finally, the control word bits and

the MAC coefficient bits for each cycle are latched before being fed to the data-path

143

subsystems.

5.6 Viewlogic Verification

The above lowpass LDI Jaumann digital filter was successfully verified using the

Viewlogic simulations of the corresponding impulse response for an Actel 1.2k tech-

nology implementation.

The simulation results are shown in Fig. 5.7, where LD, S1[1 : 0], S1JO[1 : 0],

and S2_10[1 : 0] represent the control word components LD, (Si, SO), (811, 810),

and (521, S20), respectively. Y1[8 : 0] and YO[8 : 0] represent the 9-bit (representing

3 digits) MAC coefficients fed to the subsystems T and , respectively. The input

signal IN is represented in its minimal-(n, p) format using the bus INPP[18 : 0]

for the p-part of the digits, and the bus INPN [18 0] for the n-part of the digits.

Similarly, the output signal OUT is represented in its minimal-(n, p) format using

the bus OUTP[18 : 0] for the p-part of the digits, and the bus OUTN[18 : 0] for

the n-part of the digits. The final output is derived by removing the overflow and

roundoff digits from OUT. The signals CLR and CLK are used to reset and clock

the registers within the digital filter, respectively.

The simulation results presented in Fig. 5.7 have been carried out at the maximum

clock rate of 50 MHz. Since each sample requires 6 clock cycles to be processed,

the maximum sample rate achievable by this implementation is 8.33 MHz. These

simulations employed a typical delay of 1 nanosecond per gate. Therefore, it is seen

that the choice of redundant arithmetic permits the exploitation of the maximum

speed available by the given technology. It is again worth mentioning that this sample

rate is totally independent of the siglial wordlength of the digital filter.

5.7 Chapter Summary

In this chapter, the high-speed MAC arithmetic architectures developed in Chap-

ter 3 and the MAC-modularization technique developed in Chapter 4 have been il-

LD

G1_10

020

02

XNPP

20010

0000

00010

ct1

CLR-

0 o o o o •• ° °

0 a a: :o0 0 0o :o a

000 000 000 000 DOO 000 000 000 004 Poo 000

oiopoo x : 00000

00000 :

0000po : 000000 000048 : OO290 000ao P01441 001205 002009 : 0000 000s

000000 : 001000 001220 004484 005402 004824 004822 000010 004490 001102

_pJU_Ju1JuuJUuwu1J1JwJlJu1J1J1J1Ju1J1JU1J1J1Ju.u1Ju1J1

J

OILS)
0 SOOn lu

T1. (O.cor

Figure 5.7. Impulse Response Simulation Results for the Lowpass LDI Jaumann Digital Filter

145

lustrated by applying them to the design and implementation of a practical lowpass

LDI Jaumann digital filter. Section 5.2 has dealt with the MAC-modularization of

the LDI Jaumann digital filter, together with the development of the corresponding

state update equations for the constituent subsystems. The signal and MAC coeffi-

cient wordlengths required for the finite-precision arithmetic implementation of the

MAC-modularized Jaumann digital filter have been calculated in Section 5.3. In Sec-

tion 5.4, the number representations adopted for the signal and MAC coefficient words

have been defined. The data-path and control unit implementations for the digital

filter have been presented in Section 5.5. In Section 5.6, the resulting Actel l.2p

technology implementation has been verified by using its impulse response Viewlogic

simulations. The simulation results demonstrate an achievable clock rate of 50 MHz

yielding a sample rate of 8.33 MHz. The striking feature of this implementation is

that its speed of operation is completely independent of the signal wordlength within

the digital filter.

146

CHAPTER 6

CONCLUSIONS

6.1 Summary of the Thesis

This thesis has presented the theoretical foundation underlying a novel system-

atic design philosophy for the realization of digital filters as a class of high-speed

modular DSP architectures. Mathematical and graph-theoretic techniques have been

presented for incorporating two important practical features in the resulting digital fil-

ters, namely, structural uniformity and fast processing speeds. The desired structural

uniformity has been achieved through multiply-accumulate (MAC) modularization

of the digital filter. The desired fast processing speed, on the other hand, has been

achieved by using redundant number arithmetic to implement the constituent MAC

operations.

In Chapter 2, a theoretical background was presented for fixed-point DSP arith-

metic by introducing various number systems and arithmetic processing methodolo-

gies. This was followed by a rigorous mathematical analysis concerning recoding,

rounding, and overflow processing of redundant numbers. A novel 5-digit overlapped

scanning technique was presented for modified radix-4 recoding of SB numbers. Fur-

thermore, two techniques for product rounding in SB number arithmetic were devel-

oped, namely, the RNU and RNE techniques. Finally, arithmetic overflow processing

issues for SB numbers were discussed together with the concept of directly correctable

overflow in fixed-point DSP systems.

In Chapter 3, the results in Chapter 2 were exploited and applied to the design and

implementation of novel high-speed VLSI arithmetic architectures for multiplication

and MAC operations. This included a novel approach for very high-speed mixed

SB/TC digit-serial modified-Booth multiplication. It was shown that the area-time

147

efficiency and throughput of the resulting multipliers far surpass those of the existing

digit-serial modified-Booth multipliers. It was also shown that redundant number

arithmetic provides best results for fully parallel multiplication or MAC operations.

Next, a novel architecture for high-speed mixed SB/TC parallel modified-Booth MAC

arithmetic operation was presented. Finally, this architecture was extended to handle

SB number multiplication by employing the modified radix-4 recoding technique,

and was subsequently used for the design of a high-speed fully-SB parallel MAC

arithmetic architecture. These parallel MAC architectures employ new techniques

such as partitioned accumulation and concurrent rounding and overflow correction.

The resulting architectures were subsequently parameterized in terms of their area-

time requirements for corresponding Actel 1.2k technology implementations, and were

verified by using Viewlogic simulations.

Chapter 4 was concerned with a rigorous theoretical approach to MAC-modulariza-

tion of digital filter SFGs. This approach consists of graph-theoretic techniques and

their subsequent translation into algorithms for MAC-modularization. Taking into

account the fact that several MAC-modularized digital filter SFGs can result start-

ing from the same initial SFG, a fitness function was developed for the selection of

the optimal SFG. This fitness function is based on finite-precision arithmetic effects

exhibited by the corresponding MAC-modularized digital filters. Subsequently, enu-

merative and heuristic techniques for MAC-modularization were developed on the

basis of the proposed fitness function. These techniques have been incorporated in a

software package called MAC-M for the MAC-modularization of digital filters. Fi-

nally, the usefulness of MAC-M was demonstrated through its application to a pair

of digital filters, one having dense, and another sparse multiplication operations.

In Chapter 5, the high-speed MAC arithmetic architectures developed in Chap-

ter 3 and the MAC-modularization technique developed in Chapter 4 were illustrated

by applying them to the design and implementation of a practical lowpass LDI [28]

148

Jaumann [6] digital filter. The optimal MAC-modularized LDI Jaumann digital filter

was obtained by using MAC-M. The resulting Jaumann digital filter was then par-

titioned into three separate data-path modules by taking into account the inherent

concurrency in the digital filter structure. This concurrency was then exploited to

develop a schedule in terms of state equations for each data-path module in order

to facilitate efficient high-speed parallel implementation of the filter. The simulation

results demonstrated the achievable operational clock speed of 50 MHz, correspond-

ing to a maximum permissible sample rate of 8.33 MHz for an Actel i.2p technology

implementation. This implementation was verified by using impulse response simu-

lations. The striking feature of this implementation is that its speed of operation is

completely independent of the signal wordlength within the digital filter.

6.2 Contribution of the Thesis

To the best of the author's knowledge, the following contributions of the present

thesis are original.

6.2.1 Chapter 1

• The systematic design philosophy for the realization of digital filters as a class

of high-speed redundant number arithmetic modular DSP architectures.

6.2.2 Chapter 2

• The 5-digit overlapped scanning technique for modified radix-4 recoding of SB

numbers (Section 2.4.1).

• The techniques for RNU and RNE of SB numbers to facilitate high-speed round-

ing (Section 2.4.2).

• The concept of SB directly correctable overflow for fixed-point DSP systems

(Section 2.4.3).

149

6.2.3 Chapter 3

• The high-speed mixed SB/TC digit-serial modified-Booth multipliers featuring

very high throughputs and efficiencies (Section 3.2).

• The architecture for high-speed mixed SB/TC parallel modified-Booth MAC

arithmetic operation (Section 3.3).

• The architecture for high-speed fully-SB parallel MAC arithmetic operation

based on the modified radix-4 recoding technique (Section 3.4).

• The concepts of partitioned accumulation and concurrent rounding and overflow

processing (Sections 3.3 and 3.4),

6.2.4 Chapter 4

• The graph-theoretic approach for MAC-modularization of digital filters (Sec-

tion 4.2).

• The enumerative technique for MAC-modularization (Section 4.4).

• The heuristic technique for MAC-modularization (Section 4.5).

• The software package MAC-M for automated MAC-modularization (Section 4.6).

6.2.5 Appendix A

• The proof for the modified-Booth recoding technique based on non-redundant

radix-4 and modified radix-4 representation of TC numbers (Section A.2).

6.3 Suggestions for Future Related Research

This work has led to the opening of several windows of opportunity for future

related research in redundant number arithmetic, MAC-modularization, and the allied

fields of their potentialities.

150

There is a need for the development of mathematical techniques in the areas of re-

coding, rounding, and overflow processing of higher-radix redundant numbers. These

techniques can be exploited in conjunction with most-significant-digit-first [30] digit-

serial processing [31] for low latency ultra-fast DSP applications. The area/time

tradeoffs in such systems must be carefully weighed against that of least-significant-

digit-first systems. Moreover, area/time benefits can potentially be enhanced through

the introduction of limited redundancy in the number representation. This can be

achieved by employing quasi-redundant number representation [8] which is still an

unexplored area.

From the implementation point of view, advances in ternary logic [43] can lead to

a breakthrough in the applications of SBNR. This is because ternary logic forms a

natural implementation, platform for SBNR.

The use of genetic algorithms for MAC-modularization of digital filters is a logical

extension of the research presented in this thesis. Automated high-level synthesis of

MAC-modularized digital filters is also an interesting topic for further research. This

is because, unlike the conventional synthesis approaches which use two-input one-

output addition and multiplication operators, this approach will involve three-input

one-output MAC operators. Moreover, the identification of chained accumulations in

MAC data-flow graphs and their exploitation in building the schedules can result in

potential benefits in terms of increased speed of operation and lower roundoff errors.

In addition, there is scope in the area of scheduling MAC DSP algorithms for mapping

to systolic array MAC arithmetic processors.

Asynchronous architectures have gained renewed popularity due to their low power

consumption property. The design and high-level synthesis of asynchronous MAC-

modularized digital filters is yet to be explored and, is a candidate for future research.

The initial work in this area has been carried out in [47], where several novel asyn-

chronous parallel MAC arithmetic architectures have been developed and compared.

151

APPENDIX A

ALTERNATIVE PROOF OF MODIFIED-BOOTH
RECODING BASED ON NON-REDUNDANT RADIX-4

NUMBER ARITHMETIC

Al Introduction

The modified-Booth recoding algorithm was developed by Macsorley [36] more

than three decades ago. This recoding algorithm finds important practical appli-

cations in two's complement (TC) multiplication, particularly due to the fact that

it reduces the number of intermediate partial product components generated during

the course of multiplication by a factor of two. This leads not only to a substantial

reduction in the multiplication time, but also to a marked economy in terms of the

real-estate area in a corresponding VLSI hardware implementation.

Consider a N-bit number Y represented in TC format in accordance with

N-2

Y = _YN_l2N 1 +
n=O

(A.1)

where the bits y, E {O, 1}, and where N is an even integer. Then, through the appli-

cation of the above recoding algorithm, the number Y is replaced by a corresponding

modified radix-4 signed-digit (SD) representation [49] given by [36]

N-2
2

Z = zn4'1, (A.2)
n=O

where the digits z, E {O, ±1, ±2}. These digits are determined by using

Zn = 2Y2n+1 + Y2n + Y2n-1, (A.3)

with y-1 = 0.

The salient feature of the number representation in Eqn. (A.2) is that all of the

digits Zn take on values from the same balanced digit-set {0, ±1, ±2}, making the

corresponding summation uniform.

152

In 1975, Rubinfield [26] presented a proof of the modified-Booth recoding algorithm

by establishing the algebraic equivalence of the number Y in Eqn. (A.1) and the

number Z in Eqn. (A.2). This equivalence was established by splitting Eqn. (A.1)

as

N-2 N-3

Y_YN_l2Nl+ Yn2"+ > (A.4)
n=O(even) n=1(odd)

followed by the addition and subtraction of the summation E N-3 y,2' to yield

N—i N-2 N-3

Y - - y2' + L + 2 E Yn2n. (A.5)
n=i (odd) n=O(even) n=i(odd)

Subsequently, Eqn. (A.5) can be simplified to

N-2

(A.6)
n=O(even)

by combining the constituent summations. Finally, Eqn. (A.2) was established by

changing the summation index from ii to 2n in Eqn. (A.6), and by invoking Eqn.

(A.3) in the result.

In this thesis, an alternative proof for the modified-Booth recoding algorithm is

established [51] by successively transforming the number Y from its TC to its non-

redundant radix-4 [23], and from its non-redundant radix-4 to its modified radix-4

SD representation.

A.2 Proof of the Modified-Booth Recoding Algorithm

The TC number Y in Eqn. (A.1) can be expressed in its non-redundant radix-4

representation in accordance with [23]

N-4

Y = (2yNi + YN_2)4 2 2 + >(2y2n+1 + y2n)4 , (A.7)

where the term (-2yN-1 + yN-2) represents the sign, and the terms (2y2fl+1 + Y2n)

represent the magnitude of the number Y. Unfortunately, the representation in

Eqn. (A.7) suffers from two different (but interrelated) problems:

153

1. The sign term (-2yN-1 + yN-2) takes on values from the digit-set {O, ±1, —2},

whilst the magnitude terms (2y2n+1 + Y2n) take on values from the digit-set

{ 0,1,2, 3}, making the number representation non-uniform.

2. The permitted value of 3 for the magnitude terms (2y2.+1 + Y2n) can make a

corresponding hardware implementation potentially impracticable.

In this contribution, it is proposed to recast Eqn. (A.7) into an equivalent repre-

sentation in such a manner that the resulting sign term and magnitude terms all take

on values from the same balanced digit-set. This is achieved through the introduction

of the transformation

4t +1 + w = 2Y2n+1 + Y2n (A.8)

in Eqn. (A.7), where the transfer digits t1 and the weight digits w, can be de-

termined uniquely from Eqn. (A.8). In particular, by recalling that Yn E {0, 1},

Eqn. (A.8) can be solved for t+1 and w,-, to yield

and

tn+1 = Y2n+1

Wn = 2Y2n+1 + Z/2n,

implying that t,, 1 e {0, 1} and w, E {O, ±1, —2}.

By invoking Eqns. (A.9) and (A.10), Eqn. (A.7) can be transformed to

N-2

Y= >J(wn+tn)4.

(A.9)

(A.10)

(A.11)

By taking into account the possible values for the transfer and weight digits t, and

w, it can be shown that (w + t) E {0, ±1, ±2}, making Eqn. (A.11) a uniform

154

representation of the number Y. In order to complete the proof, it remains to be

shown that

W n + jn = Zn . (A.12)

By invoking Eqn. (A.1O) for the sign term and Eqn. (A.8) for the magnitude

summation terms in Eqn. (A.7), one obtains

N.-4

N-2

Y = WN-242 + E(4t+i +w)4',
n0

(A.13)

where the term w represents the transformed sign term. By splitting the summa-

tion in Eqn. (A.13), one can write

N-I N-4

N-2
Y = wN-24 + E i,+i4" 4 + -i-- w,,4' . (A.14)

n=0 n=O

In order to proceed further, Eqn. (A.14) is simplified by making use of the fact

N-I N-2
—r-

N-2

WI4 + = E w4' . (A.15)
n0 n=O

Moreover, by substituting = 0 in Eqn. (A.9), one obtains to = 0, implying

N-I
22

=
n=O n=O

(A.16)

Then, by substituting Eqns. (A.15) and (A.16) in Eqn. (A.14), and by combining

the resulting summations, one immediately arrives at Eqn. (A.11). But, by us-

ing Eqns. (A.9) and (A.10), the terms w, + tn appearing under the summation in

Eqn. (A.11) are given by

W n + tn = — 2Y2n+l + Y2n + Y2n-I. (A.17)

Finally, by comparing Eqns. (A.17) and (A.3) one arrives at Eqn. (A.12), establishing

the proof.

REFERENCES

[1] A. ANToNIou, Digital Filters - Analysis, Design, and Applications, McGraw-

Hill, Inc., (1993).

[2] A. AVIZIENIS, Signed Digit Numbe(r) Representation for Fast Parallel Arith-

metic, IRE Transactions on Electronic Computers, (September 1961), pp. 389-

400.

[3] A. D. BOOTH, A Signed Binary Multiplication Technique, Quart. J. Mech. Appl.

Math., 4 (1951).

[4] A. VANDEMEULEBROECKE, B. VANzJELEGHEM AND P. JESPERS, A New

Carry-Free Division Algorithm and its Application to a Single-Chip 1021j-bit RSA

Processor, IEEE Journal on Solid-State Circuits, 25 (June 1990), pp. 748-755.

[5] A. W. OPPENHEIM AND R. SCHAFER, Digital Signal Processing, Prentice-Hall

Ltd., (1994).

[6] B. NowRouzlAN, N.R. BARTLEY AND L.T. BRUTON, Design and DSP-Chip

Implementation of a Novel Bilinear-LDI Digital Jaumann Filter, IEEE Transac-

tions on Circuits and Systems, CAS-37 (June 1990), pp. 695-706.

[7] B. PARHAMI, Generalized Signed-Digit Number Systems: A Unifying Framework

for Redundant Number Representations, IEEE Transactions on Computers, 39

(January 1990), pp. 89-98.

[8] D. S. PHATAK AND I. KOREN, Hybrid Signed-Digit Number Systems: A Unified

Framework for Redundant Number Representations with Bounded Carry Propa-

gation Chains, IEEE Transactions on Computers, 43 (August 1994), pp. 880-890.

[9] D. TIMMERMANN AND B.J. HOSTICKA, Overflow Effects in Redundant Binary

Number Systems, Electronics Letters, 29 (March 1993), pp. 440-441.

156

[10] D.E. THOMAS, E.D. LANGNESE, R.A. WALKER, J.A. NESTOR, J.V. RAJAN,

AND R.L. BLACKBURN, Algorithmic and Register-Transfer Level Synthesis: The

System Architect's Workbench, Kuiwer Academic Publishers, (1990).

[11] F. J. TAYLOR, A VLSI Residue Arithmetic Multiplier, IEEE Transactions on

Computers, C-31 (June 1982).

[12] G.-K. MA AND F. J. TAYLOR, Multiplier Policies for Digital Signal Processing,

IEEE ASSP Magazine, (January 1990), pp. 6-19.

[13] G. PANEERSELVAM AND B. NOWROUZIAN, Multiply-Add Fused RISC Archi-

tecture for DSP Applications, Proceedings of IEEE Pacific RIM on Communi-

cations, Computers and Signal Processing, Victoria, B.C. Canada, (May 1993),

pp. 108-111.

[14] H.T. KUNG, Why Systolic Architectures, IEEE Computer, (January 1982),

pp. 37-42.

[15] J. H. SATYANARAYANA, A Powerful Genetic Algorithm for the High Level Syn-

thesis of Globally Optimal Digit-Serial Digital Filters, M.Sc. Thesis, Dept. of

Electical and Computer Engineering, The University of Calgary, Canada, (June

1994).

[16] J. H. SATYANARAYANA AND B. NOWROUZIAN, Design and FPGA implemen-

tation of Digit-Serial Modified Booth Multipliers, Journal of Circuits, Systems

and Computers, (In Press).

[17] , A Comprehensive Approach to the Design of Digit-Serial Modified Booth

Multipliers, Proc. 26th IEEE South-eastern Symp. on System Theory, Athens,

OH, (March 1994), pp. 229-233.

157

[18] J. M. YoHE, Roundings in Floating Point Arithmetic, IEEE Transactions on

Computers, C-22 (June 1973), pp. 577-586.

[19] J.W. COOLEY AND J.W. TuKEY, An Algorithm for Machine Computation of

the Complex Fourier Series, Math. Computation, 19 (1965), pp. 297-301.

[20] K. HWANG, Computer Arithmetic - Principles, Architecture and Design, John

Wiley & Sons, 1979.

[21] K. ITo AND H. KUNIEDA, VLSI System Compiler for Digital Signal Process-

ing: Modularization and Synchronization, IEEE Transactions on Circuits and

Systems, CAS-38 (April 1991), pp. 423-433.

[22] K.K. PARHI, A Systematic Approach for the Design of Digit-Serial Signal Pro-

cessing Architectures, IEEE Transactions on Circuits and Systems, CAS-38 (June

1991), pp. 358-375.

[23] K.K. PRIMLANI AND J. L. MEADOR, A Nonredundant-Radix-j Serial Multi-

plier, IEEE Journal of Solid-State Circuits, 24 (December 1989), pp. 1729-1736.

[24] L. M. MAXWELL AND M. B. REED, The Theory of Graphs - A Basis for

Network Theory, Pergamon Press, (1971).

[25] L. M. SMITH, Design and Bit-Serial Implementation of LDI-Jaumann Digital

Filters, M.Sc. Thesis, Dept. of Electical and Computer Engineering, The Univer-

sity of Calgary, Canada, (September 1993).

[26] L. P. RUBINFIELD, A Proof of the Modified Booth's Algorithm for Multiplication,

IEEE Transactions on Computers, (October 1975), pp. 1014-1015.

[27] L. R. RABINER AND B. GOLD, Theory and Application of Digital Signal Pro-

cessing, Prentice-Hall Ltd., (1993).

158

[28] L.T. BRuToN, Low Sensitivity Digital Ladder Filters, IEEE Transactions on

Circuits and Systems, CAS-22 (March 1975), pp. 168-176.

[29] M. ANDREWS, A Systolic SBNR Adaptive Signal Processor, IEEE Transactions

on Circuits and Systems, CAS-33 (February 1986), pp. 230-238.

[30] M. J. IRWIN AND R. M. OWENS, Design Issues in Digit Serial Processors,

International Symp. on Circuits and Systems, (1989), pp. 441-444.

[31] , Fully Digit On-Line Networks, IEEE Transactions on Computers, C-32

(April 1983); pp. 402-406.

[32] M.R. SANTORO, G. BEWICK AND M. A. HOROWITZ, Rounding Algorithms for

IEEE Multipliers, Proceedings of the 9-th Symposium on Computer Arithmetic,

Santa Monica, CA, USA, (September 1989), pp. 176-183.

[33] N. CHRISTOFIDES, Graph Theory - An Algorithmic Approach, Academic Press,

(1975).

[34] N. TAKAGI, H. YASuuRA AND S. YAJIMA, High Speed VLSI Multiplication

Algorithm with a Redundant Binary Addition Tree, IEEE Transactions on Com-

puters, C-34 (September 1985), pp. 789-796.

[35] 0. SPANIOL, Computer Arithmetic, John Wiley & Sons, (1981).

[36] O.L. MACSORLEY, High Speed Arithmetic in Binary Computers, Computer

Arithmetic, Dowden Hutchinson and Ross Inc., 21(1980), pp. 100-104.

[37] R. A. ROBERTS AND C. T. MULLIS, Digital Signal Processing, Addison-wesley

Publishing Company, (1987).

[38] R. HARTLEY AND P. CORBETT, Digit-Serial Processing Techniques, IEEE

Transactions on Circuits and Systems, CAS-37 (June 1990), pp. 707-719.

159

[39] R.F. LYON, Two's Complement Pipeline Multipliers, IEEE Transactions on

Communications, (April 1976), pp. 418-425.

[40] R.K. MONTOYE, E. HOKENEK AND S.L. RUNYON, Design of the IBM RISC

System/6000 Floating-Point Execution Unit, IBM Journal Res. Develop., (Jan-

uary 1990), pp. 59-70.

[41] S. EVEN, Graph Algorithms, Computer Science Press, (1979).

[42] S. KUNINOBU, H. EDAMATSU, T. TANiGIJCHI AND N. TAKAGI, Design of High

Speed MOS Multiplier and Divider using Redundant Binary Representation, Proc.

of the 8-th Symp. on Computer Arithmetic, (May 1987), pp. 80-86.

[43] S. L. HURST, Multiple-Valued Logic - Its Status and Its Future, IEEE Trans-

actions on Computers, C-33 (December 1984), pp. 1160-1179.

[44] S.-Y. KUNG, H.J. WHITEHOUSE AND T. KAILATH - EDITORS, VLSI and

Modern Signal Processing, Prentice-Hall Information and System Sciences Series,

(1985).

[45] V. M. RAO, Design and Implementation of a High-Speed Redundant Number

Multiply-Accumulate-Modularized LDI-Jaumann Digital Filter, Internal Techni-

cal Report, Dept. of Electrical and Computer Engineering, The University of

Calgary, Canada, (July 1996).

[46] , Design and Implementation of Novel High-Speed Digit-Serial Modified-

Booth Multipliers, Internal Technical Report, Dept. of Electrical and Computer

Engineering, The University of Calgary, Canada, (July 1996).

[47] V. M. RAo AND B. NOWROUZIAN, Design and Implementation of Asyn-

chronous Parallel Multiply-Accumulate Arithmetic Architectures, Proceedings of

160

the 38th Midwest Symposium on Circuits and Systems, Rio de Janeiro, Brazil,

(August 1995), pp. 761-764.

[48] , A Novel Approach to the Design and Implementation of Very High-Speed

Digit-Serial Modified-Booth Multipliers, Proceedings of the 39th Midwest Sym-

posium on Circuits and Systems, Ames, Iowa, U.S.A., (August 1996), p. in press.

[49] , A Novel High-Speed Parallel Multiply-Accumulate Arithmetic Architecture

Employing Modified Radix-4 Signed-Binary Recoding, Proceedings of the 39th

Midwest Symposium on Circuits and Systems, Ames, Iowa, U.S.A., (August

1996), p. in press.

[50] , Novel High-Speed Bit-Parallel Multiply-Accumulate Arithmetic Architec-

ture., Proceedings of the Advanced Signal Processing Algorithms, Architectures

and Implementations Conference of the SPIE VI, Denver, CO, U.S.A., (August

1996), p. in press.

[51] , Alternative Proof of Modified-Booth Recoding, submitted to the Electronics

Letters, (July 1996).

[52] , A Novel Modularization Approach to the Design and Implementation of

High-Speed Redundant Arithmetic DSP Architectures, Proceedings of the Mi-

cronet Annual Workshop, Ottawa, Canada, (March 1996), pp. 45-46.

[53] , Rounding Techniques for Signed Binary Arithmetic, Proceedings of the

1996 Canadian Conference on Electrical and Computer Engineering, Calgary,

Canada, (May 1996), pp. 294-297.

