Quaternions and Motion Interpolation

Rosanna Heise
Bruce A. MacDonald
Department of Computer Science
The University of Calgary

Abstract

‘This paper explains straight-line interpolation of solid object motion, such as rabot end effector trans
[ation and rotation. Smoothly changing orientation is accomplished using quaternions a way of
representing every orientation as four numbers (an angle and an axis of rotation). The first, portion of
the paper clarifies quaternions to provide an intuitive understanding of their role in rotation Inter
polation is then discussed, concluding with some problems in real manipulator implementations 'I'he
interpolation method has been tested on an Excalibur robot.

Introduction

Thin paper addreuses the problem of planning a smooth trajectory for moving an object along a lineas
path. Huch controlled motion is required, for example, in robotics, during obstacle avoldance and
object approach. Often the position of an object is expressed with respect to world coordinaten as

1. a location, (z, y, z), and

2. an orientation, (roll, pitch, yaw), indicating a rotation of roll about the z-axin, followed hy a
rotation of pitch around the y-axis, and finally a rotation of yaw about the s-axls.

An will be shown, it is trivial to interpolate location. The difficulty lies in interpolating the orientation
It is not enough to smoothly change each of the angles (roll, pitch, yaw), since this resulta In an
uneven overall motion. The orientation change must be converted into rotation of a single angle,
which is interpolated, about one axis. Quaternions aid this interpolation process hy providing an
explicit representation and efficient path control.

Recently several publications have appeared (|Brady 1986], [Canny 1988], [Pletincks 1088), [Shoemake
1985, 1087), and |Taylor 1986]) promoting quaternions for rotation in graphica and robaotics. Many
formulae are given indicating the ease with which this is done: how quaternions cause rotations and
how to optimize the calculations to outperform standard matrix techniques. As yet it is difficult, to gain
a clear, intuitive understanding of quaternions, and, as one author comments * <one> may stumble a
bit over quaternions® [Shoemake 1985]. This paper de-mystifies quaternions and their role In rotation
Bection | provides motivation for quaternions and definitions of them and their operations 'I'he next
nection deacribes how quaternion multiplication causes vector rotation. Straight-line interpolation,
using quaternions for orientation change, is discussed in section 3. Finally, the implementation on an
actual robot ie discussed. This includes a section indicating the conversion process hatween robot, joint
angles and quaternions.

Figure 1: Changing u into v

1 What is a Quaternion?

Development of quaternions is due to Sir William R. Hamilton [Hamilton 1969, Kelland 1904], who
sought an easy way to change one vector into another. Given any two vectors, u and v, there must be
some simple quantity! ¢ which transforms u into v:

qu=v.

In one dimension, determining ¢ is easy: ¢ = 2. Generally, ¢ expreases a relative length and direction
between two vectors; it is the quotient of two vectors. In three dimensions, a vector has direction and
magnitude, hence specifying the change in each of these is the minimum information required for g,
as shown in figure 1:

a. Change the length of u to correspond to the length of v. This requires one number (1).

b. Rotate u through an angle in a plane until it is parallel to v. This requires three numbers — the
angle of rotation (2) and the plane in which the rotation is to occur (the offset (3 and 4) from
two known axes).

From this requirement of four numbers comes the name gquaternion. Quaternions are an extension of
the complex numbers to four-space, and are represented as algebraic quantities with three orthonormal
“imaginary” axes (i, j, k), as shown table 1. Since a quaternion is a four-vector, it inherits all vector
properties and operations, including the dot product. This will be helpful during interpolation. Table 1
shows some common quaternion operations, from which it should be noted that quaternions form a
non-abelian division ring [Herstein 1975).

!Matrices are one such quantity, but they are more complex than necessary.

A Quaternion
=S+ Xi1+Yj+ Zk =[S,]
where
P=P=k=ik=-1

addition 91 + ¢2 = [S1, 1] + [S2, 2]
= [Sl + SZ, Wy + "-’2]

additive identity 0 = [0,0]

scalar multiplication || xg = [xS, xiD]

multiplication 9192 = [S1, 91][S2,)
= (8153 — Wy + Wz, Sy) + Sathy + Wy X Wy

multiplicative identity || 1 = [1,0]

multiplicative inverse || ¢~! = %, 'T"]
where ¢ =|| ¢ ||

Table 1: Quaternion operations

2 Quaternion Multiplication and Three-Space

An important use for quaternions is vector rotation. Any three-vector can be mapped into four
space as v = [0, 7] and treated as a quaternion. When such vectors are multiplied by quaternions,
rotation and scaling may occur. This section limits this to rotation by considering a special subset
of quaternions, namely, the unit quaternions, which preserve the vector norm. A rotation of & by ¢
around the unit axis @ is given by qug—! where

q = [cos g, (sin g)ﬁ]

An explanation justifying this expression proceeds below and gives intuitive insight into quaternion
rotation. Any vector ¥ can be decomposed into vectors perpendicular and parallel to any other vector
. It is informative to determine the effect of quaternion multiplication on a three-vector by examining
rotation about a perpendicular axis and about a parallel axis. Combining the two cases results in an

Figure 2: Effect of a quaternion on a perpendicular vector

understanding of general quaternion rotation.

2.1 Case I: Perpendicular

Suppose that the vector ¥ is perpendicular to the vector portion of a unit quaternion ¢ = [S, @), ie.
¥ 1 @. Multiplying on the left by g yields
o =[S, '7"][0’ 9]
[~®-0, So+ @ x ¥
[0, S5+ ® x 9]

As the scalar portion is zero, the result represents another three-vector which is the original & rotated
about @, as illustrated in figure 2. To ascertain what this new vector is, it is necessary to determine
its length and the angle through which it has rotated.

Using Pythagorus’ Theorem, the squared length of the new vector is:
ISo+wxolf = |[Solf+| @xo|!
= SsP+ ool
from Lagrange's Identity, [Appendix A|

= (S+eP) |’

= |o|? since S*+ || @ [’=| ¢|I=1.
The length of the resulting vector is the same as the length of the original vector. It has, however,
been rotated through an angle, 4, about the axis @.
| sell _

=S
ol

cosf =

The angle of rotation determines the first element or scalar portion of the quaternion, while the axis of
rotation determines the vector portion. This vector portion must be chosen to ensure that the norm
of the quaternion is one.

S+lo|P=1
cos’ 0+ || @ |*=1
| @ ||= sin®.

Thus, @ = (sin 4)-(unit axis of the rotation). Multiplying by a unit quaternion causes rotation of a
vector that is perpendicular to the vector portion of the quaternion. The parallel case must now be
considered, after which it shall be necessary to return to the perpendicular case.

2.2 Case II: Parallel

Now assume that the vector v is a scalar multiple of the vector portion of ¢, i.e. Av = @& for some
scalar A. Rotation of a vector, which lies on the axis of rotation, should leave that vector unaltered.
To determine if this happens with quaternions, multiply by ¢:
gv = [S,w][0,7]
= [-w-9, Sv+ @& X9
= [-®-9, SS9}
As the scalar portion of this result is not zero, gv does not represent purely a rotation of v and the
quantity has no intuitive meaning. To obtain a quaternion with a null scalar, one must examine qug~!.
qug”! = [-@-9, T[S, -0
= [~-Sw-9+Sv-w, (0-0)®+S*v - Svx @)
= [0, S*v+ (- v)w).
Further simplification of the vector portion confirms the expected identity.

S+ (w-0)@ = S+ (Av-0)AD

= S+ (Av- AD)D
(S*+lolP)w

It is essential to return to case I and determine how qug~! fares in the perpendicular case. Look at
-1
v

"q—l = [0,9][S,—u]
[v-®,85v— v x o)
= [0,S0+ @ X7

= qv.

In the perpendicular case, gug™! rotates the vector v twice as far about the same axis as gv. Thus qvg~!
is a general method for quaternion rotation. The next section summarizes this discussion, yielding a
general formula for quaternion rotation.

Rotation of vector ¥ by # about the unit axis @ is given by the vector portion of
qug~! = [0, + 2S(@ X) + 2@ X (@ X)]

where
4= [5,8] = [cos 3, (sin 3)3]

Figure 3: Quaternion rotation (See [Funda 1988] for this simplified formula.)

2.3 General Quaternion Rotations

Suppose that ¢ = S, ®] is a unit quaternion, where § = cosa and i = (sina)-(unit axis of rotation).
Any vector v can be written as the sum of two vectors:

1. a part perpendicular to @ and
2. a part parallel to @.2

Combining cases I and II indicates that qug™! is a rotation which leaves the portion of v parallel to
the axis alone and rotates the perpendicular part by 2a. This is summarized in figure 3.

It is possible to formulate quaternion rotation of a vector v as
vew @+
Ie?

= [o, v—wxv+s+lwx(wxv)]

<t

qui+vp = [0, So+(1-5) X @]

—t E|

where g = [S,] = [cos 8, (sinf)u] and ¥, is the part of ¥ which is perpendicular to the axis of rotation
t while ¥) is parallel to . This method of representing rotations should not be used since it results in
problems when 8 is an odd multiple of x, i.e. ¢ = [~1,0]. In this case, the axis of rotation is lost in the
representation, making it impossible to manipulate orientation using quaternions alone. For rotations
of x the axis of rotation must be known in order to perform the transformation. When ¢ = [1,0), 0 is
an even multiple of x and the absence of the axis has no effect since a vector rotated by zero degrees
will always remain the same, independent of this axis. Another problem faced by this formulation
arises during the composition of rotations. This is unmanagable as the quaternions cannot simply be
multiplied. Each rotation must be kept separate and applied sequentially so that new perpendicular
and parallel vectors can be calculated.

Using qug~! for rotations, as shown in figure 3, alleviates the aforementioned uncertainties. Here the
axis of rotation is explicitly present, except when @ is an even multiple of x. No problem arises, since
these rotations do not depend on the axis of the rotation — the orientation of the object remains the

2See any first year algebra textbook, e.g. [Anton 1981].

same. Coniposition of rotations is now well-defined as quaternion multiplication since

aa(qver es ! = (q291)v(eaq) .

Multiplying by the degenerate quaternions, [1,0] and [-1,0], creates no problems since they either
have no effect or change the sign on the final result. But changing the sign on a quaternion preserves
the rotation, as is observed from

(-q)v(~g7) =--qug ' = qvg".

Every orientation can be uniquely expressed as a quaternion lying on one hemisphere of the 4-D unit
sphere. The biggest advantage of using quaternions, rather than matrices, is that the angle and axis
of rotation are explicitly represented.

3 Interpolation

Often when using a manipulator it is necessary to move the end effector on a controlled path, the
simplest of which is a linear path. Moving the “hot spot”3 of a robot smoothly on a straight line is
simple linear interpolation of Cartesian three-space, as shown first in this section. Thought must also
be given to the change in the orientation of the gripper. In some cases, this may not be an issue since
orientation can be changed once — at the end of the move. Other times, such drastic motions are
intolerable anywhere along the path. It is essential that the orientation change evenly throughout.
Any general linear interpolation would combine both location and orientation interpolation.

3.1 Location (Linear) Interpolation

Moving from a location p; to a new location ps, as t goes from one to zero, is given by taking a fraction
of the difference between the two points.

new Jocation(t) = t(p1) + (1 — t)p2 = p2 — t(p2 — p1)-

3.2 Orientation (Spherical) Interpolation

If orientation is specified as roll, pitch, and yaw, it may seem that smooth motion over time can be
accomplished by interpolating each of these angles, changing roll; into roll;, and so forth. When this
is done, the orientation changes radically since the object is revolving about three different axes at
the same time. It is essential to find a single angle which changes the first orientation into the second.
This angle is interpolated for a smooth orientation change.

A natural way to handle orientation is through unit quaternions, since each orientation is represented
as (the cosine of) an angle and an axis. Just as in three-space smooth motion occurs on a straight
line — the shortest path between two vectors — the four space interpolation path must travel the
shortest path between two quaternions. Since orientations lie on the unit 4-D sphere, interpolation
involves traversing the “arc” joining two unit quaternions. Interpolating roll, pitch, and yaw did not
work because the path was jumping all over the unit 4-D sphere, as suggested in the 3-D interpretation

@ ®)

Figure 4: Interpolating on the sphere.

of figure 4(a). Shown in part (b) of the figure is the desired, shortest path. The equation for this arc,
the interpolation path, for moving from ¢; to g3 as ¢ goes from one down to zero is:

new_orientation(t) = %m + _s_in%&_]q’ (1)

where cosf = ¢; - ¢3.

To remove any doubts about the validity of this formula, figure 5 shows that the orientation path
always lies on the unit 4-D sphere. Figure 6 then shows that at any ¢ the angle travelled is (1-¢)9,
indicating that the arc is being followed. The equation does what is required — except when sin = 0,
ie. # =0,x,—x. When 0 is close to zero, the arc between the two quaternions looks much like a
straight line. Linear interpolation of four-space should be done, using the formula of the previous
section. If # = L« then ¢y = —¢s and both quaternions represent the same orientation. Should it
be necessary to move between two equivalent orientations, then the path must be divided into two
rotations, each of § radians: from ¢; to a midpoint quaternion gmig and from gmiq to ga. There are
many choices for gmiq, provided that ¢ - gmia = 0. For example, if ¢ = (S,X,Y,Z), then a simple
choice for gmiq is [X, —S, Z,~Y]. The same interpolation formula (somewhat reduced since sin 9 = 1)
is used on both parts of the path.

[Taylor 1986] provides a brief description of an alternate formulation for quaternion interpolation. He
determines a quaternion g;; which transforms ¢, into g3 through composition, i.e. gins = ¢ lqg. From
gin¢ the angle # and axis of rotation & are determined, so that quaternion interpolation from ¢; to g2
as t goes from one to zero is
(1-¢)0 . (1-1)p
, 8in

2 2
The computational requirements of this algorithm exceeds that of the great arc formula in equation 1.

Q1 [COB l-l].

3The middle point between the two fingers.

Check that the length of the quaternion new_orientation(t) is one for any t € [0, 1].

|| new_orientation ||

new_orientation - new _orsentation

sin® tfsin* gy - g1 + 2sin 19 sin(1 - t)6

ain? 0 q-°q2
i2
sin“(1 —)0
BT
sin’ t9 + 2 sin ¢4 sin(0 —) coe # + sin? (9 — ¢8)
sin’ §

Expand this using the identity
sin(a — B) = sinacos§ — sin fcos
1
sin® 9

(sin? t6 + 2 sin t0 sin f cos t cos — 2 sin? t4 cos® t9
+sin’ 0 cos® t§ — 2sin @ costf sin td cosd + sin® t4 cos? 0)
sin? tf (1 — cos® 0) + sin® 0 coe? t0

sin® §
sin? 4 (sin? t0 + cose? t9)
sin’ ¢

Figure 5:

Ensuring that the orientation path lies on unit sphere.

Showing that the angle travelled at any ¢ is (1 — t)d, thus the orientation path is an arc.

If o is this angle, then

cosa

sin(t4) + sin[(l — t)4]

o (o sng)
sin t0 , sin(0 — 19)

sintd sin(f — t4) cosd

sin 0 sind

8in 0 + sin @ cos tf cos 6 — sin t0 cos? §

sin
sin t9(1 — cos? 6) + sin § cos tf cos §
sin 6
sin (sin 0 sin t6 + cos § cos tf)
sin 0

cos(f — t6).

Asa=0whent=1and a = § when ¢ = 0, the above equation indicates that a = (1—¢)8

for arbitrary ¢ € [0,1].

Figure 6: Interpolation path traces out arc.

10

{ Operation® Quaternions Matrices
Rotating a Vector 15M,12A IM,;6A
Composition of Rotations 16M,12 A 24 M, 15 A
Setting up the rotation from || 4 M, 1 A, 1 Sqrt, 1 Trig | 22 M, 11 A, 1 Sqrt, 1
an angle and a unit axis Trig
Extracting angle and axis from || 4M,1 A, 1 Trig, 1 Sqrt | 10 M, 16 A, 2 Sqrt, 1
rotation Trig
Interpolation — finding the || 8 M, 4 A, 2 Trig 30M,15 A
next rotational knot point

®References to the formulae used in calculating the operation counts appear in appendix B

Table 2: Operation counts for rotation tasks.

Comparisons between quaternions and matrices in rotational tasks are given in table 2. Notice that
the complexity involved in using quaternions is lower than in using matrices for all tasks except vector
rotation. Even here, quaternions are generally the preferred representation since setting up the matrix
is more complex than determining the quaternion for rotation.

4 Implementation on a Robot Arm

Manipulator positions are measured in joint coordinates, that is, the position of each link is an angle
relative to the previous link. The motion interpolation described in this paper assumes that position
is a location and a quaternion, hence joint coordinates must be converted into this form. Software
packages controlling a robot generally contain forward kinematics allowing transformation between
joint coordinates and world coordinates, which are a Cartesian location and an orientation. This
orientation is conventionally specified as:

1. three vectors (i, 3, and @) which form an orientation matrix, or
2. a sequence of angles such as roll, pitch, and yaw.

Details of the conversion between joint angles and these forms of orientation are well-known [Paul
1981], yet expressing orientation as a quaternion is rare. This section bridges the gap, showing the
relation from matrices and sequences of angles to quaternions. Figure 7 diagrams the steps involved
in robot straight-line motion — starting with joint angles, converting to a location and a quaternion,
performing the interpolation, and finally, converting back to joint angles to move the robot. Ideally,
the two extra steps necessary to convert between conventional orientation and quaternions would
be alleviated, resulting in a direct path between joint angles and quaternions. More research in
quaternion kinematics of general manipulators is necessary, but [Funda 1988 provides a good example
in the application of quaternions to solve the inverse kinematics of a Puma robot arm. Following the
conversion between the three equivalent forms of orientation, considerations for implementing straight-
line motion on a robot are presented. A quaternion based interpolation method, following figure 7,
has been implemented on the Excalibur robot.

11

_ conventional
initial and final po- - . world coordi- location +
sition in robot joint| — Iforward kmematlcsl—’ nates (n 3. @ or - quaternion
. ? b
coordinates roll, pitch, yaw)
Pl
interpolation
[
conventional
new location + new| (world i c?ol-di- — [inverse kinematics | — [new robot position
quaternion nates (7, 3, @ or
roll, pitch, yaw)

Figure 7: Robot motion interpolation

4.1 Quaternion to Matrix (#, o, a)

The quickest way to determine the corresponding matrix, M, for any transformation is to investigate
its effects on the standard basis.* Applying ¢ =[S, X, Y, Z] to element m in the standard basis yields
the mth column of the matrix:

|| 1-2Y2-22% 2XY-25Z 2XZ+2SY
M=|n oa|=| 2XY+2§Z 1-2X2-22® 2YZ-28X |. (2)
|| 2XZ -28Y 2YZ+28X 1-2X%-2Y?

4.2 Matrix (i, 9, a) to Quaternion

To convert from an orthonormal matrix to a unit quaternion, assume that the matrix has the form of
equation 2 and find ¢ = [S, X,Y, Z]. This is accomplished by investigating linear combinations of the
matrix components. First, examine the trace

trace+1 = 1-2Y?-22%+1-2X*-22*+1-2X-2Y?+1

= 4-4(X*+Y*+2?)

= 4-4(1-S5% since || ¢|=1

= 45%
Thus, S = %\/ trace + 1. Combining the M;; element with the Mj; element yields the axis of rotation,
which is easily normalized if necessary:
Mjsz — My

45

“In R® this is {(1, 0, 0), (0, 1, 0), (0, 0, 1)} = {i, J, k}. The order of the elements is important.

X =

12

Mys - My,
4S
M2y — M;a

4S

Y =
X =
When S = 0, these equations are undefined and other combinations of the simplified matrix compo-

nents along with the identity X2 + Y2 + 22 = 1 are used to determine the axis of rotation. A full
description appears in [Shoemake 1985].

4.3 Roll, Pitch, and Yaw to Quaternion

A series of rotations is converted into a quaternion by converting each individual rotation into a
quaternion and multiplying them together in the proper order. Expressing each of roll, pitch, and
yaw as a quaternion yields:

roll roll

droll = [cos _2"1 (0: 0,sin '2_)]
itch . pitch
Qpitch = [COS P'2 s (0’ sin P'2) 0)]
aw . aw
Qyaw [COB y_—) (sm !_) 0: 0)]'

2 2

Multiplying these together as qyawdpitchdront = [S, X, Y, Z) gives the desired quaternion with

X = cosy—‘;‘ﬁsinp'—;d—isin';l sing;—wcosp%hcosr;l
Y = cosw;—uisinp‘;c’lcosr;l - siny—(;ﬂcosp';c"sinf;l_l
Z = cos!;—uicos%u—:,:sing;—l! + sianwsingtzih-ct)s:gE.

These formulae® specify the quaternion uniquely, though —g induces the same rotation on a vector as
q.

4.3.1 Quaternion to Roll, Pitch, and Yaw

Conversion in the other direction is much more difficult, since roll, pitch, and yaw angles are not
unique. Inverting the previous equations to solve for roll, pitch, and yaw is practically impossible,
so another method must be sought. If a transformation is represented in matrix form it is easy to
determine the corresponding angles [Paul 1981].

To determine roll, pitch, and yaw, only seven of the matrix elements of equation 2 are required. If M;;
is the element occurring in the ith row and jth column of the matrix, then using the formulae given

SDifferent from [Shoemake 1985), since he does not account for the usual sign on the angles since he treats quaternion
rotation as ¢”lugq.

13

in [Paul 1981] yields:

I = 0 if both My; and Mj; are O
rot = atan(My;, M) otherwise
pitch = atan(—Ms;, Myy(cosroll) + My, (sinroll)))
yaw = atan(M;s(sinroll) — Mas(cosroll), Mjz(cosroll) — Mya(sin roll)).

4.3.2 Choosing the Knot Points

The formulae given in the last two sections assumed ¢ went continuously from 1 down to 0. When
applying these to a machine discrete points from within this interval will have to be used as knot
points. These knot points may need to be chosen in an application specific manner so that any error
made on the path between the points is tolerable. [Brady 1986] suggests a control rate falling in the
range of 20Hz to 200Hz so that the motion is smooth. He further suggests using joint interpolation,
which is computationally less expensive, in between knot points so that the points are much closer in
time than the natural period of the arm. [Taylor 1986] presents an approximate method for bounding
the deviation from interpolated paths, by recursively halving the distance between knot points until a
satisfactory deviation is obtained half-way between the points. The method reasonably assumes the
mid-point deviation to be approximately the worst error over the segment.

4.3.3 Problems in Application to a Robot

In an implementation of straight line motion on a manipulator many problems arise. These difficulties
are primarily due to the geometry of each robot arm. Three such issues, whose solutions are often
manipulator and task dependent, or non-existent, are now described.

Although the manipulator can reach both endpoints, the straight line joining them may contain points
which cannot be attained (because it would cause the robot to move “through itself” or it requires
a joint position beyond the limits of the robot). It is difficult to predict such conditions without
calculating the line and checking that no points are out of reach. This is computationally expensive.
A better solution may be to start the linear path, stopping the manipulator when the unreachable
point occurs. Verifying attainable positions must be done at each step of the path. This problem can
be solved by pre-motion planning, so long as obstacles are known. See for example the recent and
excellent work of [Canny 1988].

Degenerate manipulator configurations and redundant configurations reaching the same position are
another source of problems in any controlled motion, and Cartesian interpolation breaks down under
degeneracy [Paul 1981]. Is it possible to calculate all manipulator configurations which attain the
required position? If so, it will be computationally expensive. Furthermore, how does one know which
joint arrangement should be used?

Finally, small transitions in Cartesian position may cause huge changes in joint positions. This results
in the manipulator moving irregularly. Even though the end effector travels linearly, delays in the
motion may occur. The effects are difficult to predict [Paul 1981]. No solution to this problem exists.
However, when there are additional degrees of freedom, above six, the extra joints might be used to
smooth out these irregularities.

14

5 Conclusion

This paper describes straight line motion of objects, interpolating both location and orientation. Linear
interpolation in Cartesian three-space is well-known, hence orientation was the focus of concentration.
The recently revived method of quaternions is used. Rather than just presenting the formulae, an
intuitive understanding of quaternions is encouraged by our careful explanation, showing how they
relate to vectors, matrices, and roll, pitch, and yaw. Quaternion multiplication plays the main role in
rotation, providing an alternative to the usual matrix multiplication. The greatest advantage quater-
nions have over matrices is the ease of (almost) explicit representation. A quaternion contains four
components — the cosine of half the angle of rotation and the three-vector axis of rotation. It was
shown that the quaternion method is superior to standard matrix techniques in general and in com-
parison of most standard tasks involved in vector rotation. Quaternion interpolation was successfully
used in the implementation of straight-line motion for a robot. Uses for quaternions, however, extend
far beyond roboties.

Acknowledgements

This work is supported by the Natural Sciences and Engineering Research Council of Canada and by
a Province of Alberta Scholarship. Thanks to Jon Rokne for help at an important moment during the
development of this paper.

References

(1] Anton, H., Elementary Linear Algebra, Toronto: John Wiley & Sons, 1981.

[2] Brady, M., “Trajectory Planning,” in Robot Motion: Planning and Control, M. Brady, J.M.
Hollerbach, T.L. Johnson, T. Lozano-Perez, and M.T. Mason (Eds.), Cambridge: The MIT Press,
1986.

[3] Canny, J.F., The Complezity of Robot Motion Planning, Cambridge: The MIT Press, 1988.

[4] Funda, J., Quaternions and Homogeneous Transforms in Robotics, Master’s Thesis, Department
of Computer and Information Science, The University of Pennsylvania, Philadelphia, 1988.

[5] Hamilton, Sir W.R., Elements of Quaternions, Volume I, Third Ed., New York: Chelsea Publish-
ing Co., 1969.

(6] Herstein, LN., Topics in Algebra, 2nd ed., Toronto: Wiley and Sons, 1975.

[7] Kelland, P., and Tait, P.G., Introduction to Quaternions, C.G. Knott (Prep.), New York: The
MacMillan Company, 1904.

(8] Paul, R.P., Robot Manipulators: Mathematics, Programming, and Control, Cambridge: The MIT
Press, 1981.

[9] Pletincks, D., “The Use of Quaternions for Animation, Modelling and Rendering”, in New Trends
in Computer Graphics, Proceedings of CG International ’88, N. Magnenat and D. Thalmann
(Eds.), New York: Springer-Verlag, 1988.

15

[10] Shoemake, K., “Animating Rotation with Quaternion Curves,” in Computer Graphics, 19(3),
Siggraph, 1985.

(11} Shoemake, K., “Quaternion Calculus and Fast Animation,” in Siggraph 87 Course 10: “Computer
Animation: 3D Motion Specification and Control,” 1987.

[12] Taylor, R.H., “Planning and Execution of Straight-line Manipulator Trajectories,” in Robot Mo-
tion: Planning and Control, M. Brady, J. M. Hollerbach, T.L. Johnson, T. Lozano-Perez, and
M.T. Mason (Eds.), Cambridge: The MIT Press, 1986.

A Lagrange’s Identity

Lagrange’s identity states that
laxsl?=lalfs|® (2 9)

This can be shown by working out both sides of the equation from the definition of the parts. If §
is the angle between the two vectors, then substituting the definition for the dot product into the
identity results in

lhax o (*=lal*llol* —(l @ llll ol cos8) =[| & *|| o |* (1 - cosb)®.
This leads to a formula for the length of a cross product
laxsl=lallo] sino.

B Notes on Formulae Used in Operations Counts
This appendix provides extra reference to the formulae used in calculating operation complexity for
table 2.
Rotating a Vector

Quaternion: Using the formula given in figure 3.

Matrices: Pre-multiplying a three-vector by a 3 X 3 matrix.
Composition of Rotations

Quaternion: Using the formula from table 1.

Matrices: The first two columns obtained by matrix multiplication and the last column as
the cross product of the first two.

16

Setting up the rotation from an angle and a unit axis
Quaternion: Specification of ¢ as in figure 3.
Matrices: Formula on page 28 of [Paul 1981].

Extracting angle and axis from rotation
Quaternion: Inverting specification of ¢ in figure 3.
Matrices: Method on page 19 of [Funda 1988].

Interpolation — finding the next rotational knot point

Quaternion: The calculation assumes that the endpoint quaternions have already been

scaled by sinf. An extra 6 M and 1 Trig are necessary for this once at the beginning of
interpolation.

Matrices: It is unclear what the most efficient formulation of matrix-based orientation
interpolation is. If the two endpoints are expressed as the matrices M; and M; then
M = MIT M; is the matrix which changes M; into M. As t goes from zero to one the
interpolated orientation is

M;[f(8)Mini]

where £(t) is a continuous function with f(1) = 1 and f(0) = 0. This formula is used for
the operations counts, which may be higher depending on f(t).

17

