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ABSTRACT

The shear behaviours of a granular assembly of rigid particles in simple shear and
biaxial compression conditions have been studied using the principle of micromechanics.
Analytical solutions are derived to describe the stress ratio, the change in fabric
distribution and orientation, and the strain ratio during the process of shearing
deformation. The stress-strain relations of contact deformation for two-dimensional and
three-dimensional regular packing assemblies are established. For random packing
assembly the stress-strain relations under contact deformation are derived considering the
fabric distribution and orientgtion, and micromechanics. In addition, a stress-strain model
has been developed to predict anisotropic swelling behaviour of clay. The model predicts
that the swelling is dependent of clay particle swelling properties, fabrics and imposed

principal stresses.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

The mechanical behaviour of a particulate assembly, including granular sand
composed of spherical or non-spherical particles and swelling clay composed of “plate-
like" particles, is significantly influenced by its microstructure. Theories of continuum
mechanics have limitations when used to describe the strength, stress and strain of these
particulate assemblies. Hence, mathematical models based on micromechanics are required
to be established. There are two approaches based on micromechanics, namely, the
discrete element approach and the microstructural continuum approach. The discrete
element approach solves the governing equations of each particle interacting with its
surrounding particle. This simulation method, which stems from the field of molecular
dynamics, calculates the movements of all particles based on a set of mechanics laws that
are also simultaneously satisfied for each particle. However, this approach is cambersome
for systems composed of a large number of particles because a prohibitive amount of
computing effort is required to trace the movements and the equilibrating forces of all
particles. Therefore, it is desirable to represent the discrete system using a more tractable
continuum model, i.e., the microstructural continuum approach. In this approach, the
micro-features of the particulate assembly such as the spatial arrangement of particles, the
distributions of contact normals and inter-particulate forces, are considered using some

fabric functions. With these fabric functidns, the micro-variables (contact force and



2

contact displacement) can be related to the macro-variables (stress and strain). The
microstructural continuum approach has advantages over the classical continuum method
because the former approach takes into account the effect of microstructure or fabric on

the deformation behaviour of particulate assembly.

1.2 OBJECTIVES

The main goal of the research is to explore the use of the microstructural
continuum method to study the deformation behaviour of particulate assemblies such as
sand and clay. This goal can be fulfilled by achieving the following objectives:

(1) to quantify the shear deformation of a granular assembly of rigid particles
under simple shear and biaxial compression conditions,

(2) to derive stress-strain relations for regular and random packing assemblies of
deformable particles under general loading conditions,

(3) to develop 2-D and 3-D anisotropic models for swelling clay, and

(4) to verify the proposed models with experimental data.

1.3 LITERATURE REVIEW

Particulate assemblies typically comprise a large number of particles with a large
number of degrees of freedom. Development of theories on constitutive mechanics of such
assemblies are built on two concepts: (1) the concept of the mobilized plane which is .
used to analyze the strength feature of the particulate assembly, and (2) the concept of

the constitutive stiffness which establishes the stress-strain relation in terms of the contact



stiffness of particles and fabric parameters of the particulate assembly.

The concept of the mobilized plane was first introduced by Coulomb (1773) to
describe the resistance due to internal friction between particles (Figure 1.1a). Based on
this concept, the theory of active and passive pressures was developed by Rankine (1857).
Roynolds (1885) examined the dilatancy induced by shearing in granular masses
composed of rigid particles. The corresponding limiting equilibrium for an ideal granular
wedge was derived (Caquot, 1934). Taylor (1938) proposed that the stress-strain relation
was specified independently on mobilized planes of various orientations within the
assembly, and assumed that either the stresses on the mobilized plane are the resolved
components of the macroscopic stress tensor, or the strains on the mobilized plane are the
resolved components of the macroscopic strain tensor. In addition, Taylor (1948) and
Bishop (1950) studied the sliding behaviour by using the mechanism of interlocking
between particles of granular materials. Interlocking of particles restricts the degree of
mobilization and the shear strength becomes larger. As a result of the interlocking,
dilation occurs with sliding. This dilatancy theory was developed By Newland and Ailely
(1957). They suggested that the relative sliding direction between two blocks is not
parallel to the mobilized plane, but rather at an inclined angle.

Under the biaxial compressional condition, Rowe (1962) postulated a minimum
energy principle stating that particles tend to slide élong the direction of minimum energy
and derived the relative direction of sliding between two blocks of particles in a random
packing assembly subjected to a triaxial loading condition. Based on this postulate, the

angle between the sliding direction and the mobilized plane is a function of applied stress,



(a) Mobilized Plane Concept

Inter-Particle Contact

(b) Micromechanical Concept
Figure 1.1 Two Concepts in Constitutive Mechanics of Particulate Assembly

(After Chang et al., 1992a)
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9; &
where ¢, is inter-particle friction angle; 6, and o, are applied stresses in the vertical
and horizontal directions, respectively. Later, Horne (1965) studied Rowe’s energy
postulate by considering the sliding between pairs of particles in a random assembly.

Tokue (1979) and Nemat-Nasser (1980) assumed probability distributions function
for the planes of sliding. Through an integration of this distribution, the average plane of
sliding can be obtained. Chang (1985) also derived a similar dilatancy equation under
simple shear condition, based on considering the deformation of a particle chain and
assuming that the inclination of the mean sliding plane can be related to the mean inter-
particle force vector of .the assemblage. The derived dilatancy equation is given by

T
tan —_—
de _ d)“ o

oot AP (1.2)
dY 1+%tan¢p

where de is vertical strain; dy is horizontal shear strain; ¢ is vertical applied stress; and
7 is horizontal applied shear stress.

In the concept of micromechanics (Figure 1.1b), the constitutive relations are
defined at three levels, namely, contact, micro-element and representative-unit levels, as
shown in Figure 1.2 and Figure 1.3 (Chang et al., 1992a).

At the contact level, the constitutive law is determined by micro-variables (contact

force and contact displacement). At this level, the continuum concept has not yet been



MICRO-ELEMENT

INTER-PARTICLE CONTACT

Figure 1.2 Schematic Representation of Three Levels of Particulate Assembly

(After Chang et al., 19922)
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LOCAL
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INTER-PARTICLE ‘ CONTACT
CONTACT ] FORCE-DISPLACEMENT
RELATIONSHIP

MICRO-ELEMENT

A4

Figure 1.3 Micromechanics Approach for Modelling Mechanical Behaviour of

Particulate Assembly (After Chang et al., 1992a)
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introduced. The analysis at this stage is based on contact theory. If we assume that
tangential (slip) contact stiffnesses and a normal (compression) contact stiffness being
independent of one another, the relations between the shear contact forces (£, f) and the
tangential contact displacements (8, 8,) are f, = D8, and f, = D8, respectively, where
D, and D, are tangential contact stiffnesses in two directions perpendicular to each
other, respectively. Likewise, the relation between the normal compressional force £, and
normal displacement §, is determined by f, = D,§,, where D, is normal contact
stiffness. In this case, the stiffness tensor at the contact between particles takes a form

of (Chang, 1990a, 1990c, 1992a)

D=D, nn+D, s5;+D, tg, (1.3)
where n, s, and t are basic unit vectors of the local coordinate system of each contact. If
D, = D, = D, , the resultant tangential shear force ( £, ) is given by f. = D,5,, where &,

is the resultant shear displacement on the contact plane. So the equation (1.3) becomes

Dy=D, nn+D, (ss;*tt) (1L4)
When the contact force reaches the yield condition defined by the surface friction
of particles, i.e., f, =f, tan ¢,, sliding occurs and D, vanishes. When the contact force
tends to be in tension, particle separation occurs and D, vanishes. If linear behaviour is
studied, we can choose the contact stiffnesses (D,, D,, and D,) to be constants as shown
in Figure 1.4. However, if we discuss non-linear contact, the contact stiffnesses are
functions of the contact forces and contact area becomes more complicated. For a contact

of two smooth spheres, the tangential stiffness under oscillating contact force was studied



(a) Normal

+fr

fn tan 0“ """

(b) Shear

Figure 1.4 Force and Displacement Relations (After Change et al., 1992a)
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by Mindlin and Deresiewicz (1953). They summarized some of the difficulties
encountered and some results obtained in the course of development of a mathematical
theory of small deformations of granular media. The medium is assumed to be composed
of discrete, isotropic, elastic granules in direct contact under local forces which, in
general, vary in the magnitude and in direction. The consider_ation of the effects of this
variation served to distinguish the theory from several others (Hara, 1935; Iida, 1939;
Gassmann, 1953) in which only normal components of the contact forces were taken into
account.

A general expression for the tangential stiffness of two particles can be written as

a function of the contact force and the particle properties as follows

f 1
D =C,D (1-—'—)?3 (1.5)
r 1 n( f;‘tand)u)

where v, is the particle Poisson’s ratio; Ci=2(1-v ) (2-v,).

Considering the contact area to be circular with a parabolic pressure distribution,
the deformation at the contact is obtained from the elasticity solution for pressure loads
on semi-infinite space. This leads to the expression of normal stiffness as follows
(Johnson, 1985)

1 CyG,

1
Dn=33 [(1 —v“)fn]? (1.6)

1-v, rsz

where r is the radius of the particles; G, is the particle shear modulus; C, is a constant.

At the micro-element level, the stress and strain are defined in connection with the
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resultant contact forces and the resultant displacements, respectively. The stress-strain
relation is then obtained in terms of the contact stiffnesses. Obviously, for a regular
packing assembly, the behaviour at the micro-element level is the same as that at
representative-unit level. Some researchers have obtained different stress-strain relations
for different regular packing assemblies, namely, Simth et al. (1929) suggested a
configuration of a mixture of zones composed of face-cantered cubic and simple cubic
packing. The micromechanical models are developed by Duffy and Mindlin (1957) for
a face-centred cubic array of elastic spheres in contact, by Deresiewicz (1958) for a
simple cubic array, and by Makhlouf and Stewart (1967) for a cubic-tetrahedral and a
teirag(‘)nal spheroidal array.

Computer simulation has been used as a tool for micromechanics analysis at the
micro—elefnent level. Various types of discrete element methods have been developed
(Serrano and Rodriguez-Ortiz, 1973; Cundall and Strack, 1979; Kishino, 1988; Bathurst
and Rothenburg, 1988a and 1988b) and applied successfully to describe the behaviour of
granular materials under various loading conditions (Cundall and S:track, 1979; Chmé and
Misra, 1989b; Ting and Corkum, 1988).

At the representative-unit level, since the assembly consists of a large number of
particles, it is expedient to treat the system as a random packing system, Therefore, from
the statistical point of view, a density function has to be introduced so that the micro-
mechanical variables (contact force and contact displacement) can be connected with tﬁe
macro-mechanical variables (stress and strain) by the intermediate fabric variables. Such

a density function is introduced to describe the spatial distribution of branch vectors (the
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vectors joining the centroids of particles in contact), and of normal vectors at the inter-
particle contacts. These concepts of vector distribution can be found in the work of Oda
(1972a) and Oda et al. (1982). Along this line, Christofferson et al. (1981) defined an
average stress in terms of inter-particle contact forces. The above micromechanical
definitions can also be found in the work by Drescher and _Dejosseline (1972), and a
number of papers in Cowin and Satake (1978), Jenkins and Satake (1983), and Satake and
Jenkins 1988). In addition, Digby (1981) obtained the effective elastic moduli of porous
rocks by considering them to be composed of spherical particles with no shear force
acting at the contact. Walton (1987) studied the moduli of isotropic packing of equal
spheres under axi-symmetrical loading considering both normal and tangential
compliancies at contact. Jenkins (1988) analyzed the volume change characteristics of
assemblies of equal spheres under small axi-symmetrical deformation. Bathurst and
Rothenburg (1988a and 1988b) studied the behaviour of disk packing with linear contact
interactions. In recent years, the micromechanics of particulate assemblies has been
greatly developed from a series of work by Chang, namely, a stress-strain theory for
random packing has been developed (Chang, 1988; Chang et al., 1989a); The theory has
been verified by computer simulation of disks (Chang and Misra, 1989b). The theory has
been applied to the behaviour of sand (Chang et al., 1989b) and cemented sand (Chang
et al., 1990e), with discussions of the fabric effects on initial moduli (Chang and Misra,
(1990c).

The study presented in this thesis is based on a micromechanics approach at the

micro-element (regular packing) and representative-unit levels (random packing).



12
1.4 ORGANIZATION

Chapter 1 covers the topic of investigation, objectives and literature review.

Chapter 2 investigates shear deformation of granular assemblies of rigid particles
under simple shear and biaxial compression conditions. The relations between stress ratio
and fabric constants, and the relations between strain ratio and fabric constants are
established by introducing the density function of contact normals. Using the fabric
constants as the intermediate variables, the relations between stress and strain are
obtained. These relations are compared to those proposed in previous publications.

Chapter 3 studies the behaviour of a granular assembly under small strain. The
relations between micro-mechanical quantities and micro-mechanical variables are
analyzed, and the proposed stress-strain stiffness tensors are expressed in terms of the
fabric quantities.

In Chapter 4 the stress-strain relations of small strain are analyzed for granular
assemblies of random packing. The corresponding relations between the fabric tensor and
the stiffness tensor are discussed. Finally the relations between the fabric tensor and the
moduli of assemblies are given.

In Chapter 5, the micromechanics approach is used to study the behaviour of
swelling clay. Constitutive relations for two-dimensional and three-dimensional anisotropic
swelling are derived. Results predicted from the swelling model are compared to those
observed in experiments.

Chapter 6 summarizes the major conclusions from this study and presents

recommendations for further research.
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CHAPTER 2

SHEAR DEFORMATION OF AN
ASSEMBLY OF RIGID PARTICLES IN SIMPLE

SHEAR AND BIAXIAL COMPRESSION CONDITIONS

2.1 INTRODUCTION

Sand is a particulate, discrete and frictional material forming a discontinuous
medium. The discrete nature of sand facilitates fabric change or spatial rearrangement of
particles as a result of external loading. Hence, micromechanics may be an appropriate
approach to study the granular behaviour of sand. The deformation of an assembly of
particles may be caused by: (1) the sliding and rolling between particles, (2) the
deformation of solid particles, and (3) the crushing of particles (Ko and Scott, 1967).
Shear deformation caused by particle sliding and rolling in simple shear and biaxial
compression conditions will be studied in this chapter. Deformation of solid particles will
be treated in Chapters 3 and 4. Crushing of sand particles is significant at high stress
levels (Vesic and Clough, 1968) and is beyond the scope of this thesis.

In this chapter, by introducing the density function of normals at particle contacts,
the relations between stress ratio and fabric constants, and the relations between strain
ratio and fabric constants are established. Using the fabric constants as the intermediate
variables, the relation between stress and strain are obtained for simple shear and biaxial

compression.
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2.2 MATHEMATICAL EXPRESSION OF FABRICS
2.2.1 Distribution of Contact Normals
The inter-particle forces between two particles are shown in Figure 2.1. The two
components of contact force are the tangential contact force f! and the normal contact
force f! at the i™ contact point, respectively. The tangential contact force £ is
parallel to the i™ contact plane and the normal contact force f,! perpendicular to the
i™ contact plane. The contact normal n is defined as the vector perpendicular to the i®

contact plane of the particles. In order to describe the characteristic of the spatial

arrangement of particles of a granular assembly, we define a density function:

=1
E(Q) Dn aninj

1 2.1
=E(Nnrnxnx+Nyynyny+Nunznz

+2N,,ﬂ}l,+2Nnn,n, +2Nyznynz)

where Q is a solid angle; D=4 in the 3-D case and D=1 in the 2-D case; N;; is a second-
order fabric tensor; n; and n; are the components of the contact normal vectors in i and
j directions, respectively. In two-dimensions, n=cos 8, and n,=sin O, where 0 is the
contact angle as defined in Figure 2.1. We let A=N,,, B=N,, and C=N,,, so the contact

density function in the 2-D case becomes

1 2 . 2 , 2.2
E(©) =E—(Acos 0 +Bsin“0 +Csin20)
n

where © is the contact angle; The fabric variables A, B, and C change with the change

of stress or the rotation of principal stress axes caused by external loads.



Figure 2.1 Schematic Diagram of Particle Interaction
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According the statistical theory, the density function of contact normal must

. 23
fo E@©)dp=1 23)

Obviously, we can consider the integral limits of 8 to be from 0 to = or from -7t/2

to 7/2 due to the symmetry of the density function about the original point, i.e.,

E(0)=E(n+0). In this case, equation (2.3) yields A+B=2 for D=1, A+B=4 for D=2,

A+B=6 for D=3, and so on. In the following we assume D=1 and the integral limits are

from O to 7 due to the contact angle varying from O to © . The distribution of E(0) is

shown in Figure 2.2. In this figure, N, and N, are the maximum and minimum principal

fabric values along the principal fabric axes, namely, N,=E(6,) and N,=E(8,), respectively.

The principal fabric angles, defined by the angles between the principal fabric axes and

coordinate axes, are determined from the maximum and minimum values of equation

(2.2):

2.4
0, ’2=:tlarctan—g—g 24)
2 A-B

Substituting equation (2.4) into equation (2.2) yields

N, 2=%[lt—;-\/(A—B)2+4C2]
-Las/@-12+cod
K1Y

(2.5)

Since N, 2 0 and N, = 0, from equation (2.5) we have
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2.
A-1)2+C2%<1 26)

Therefore, the upper limits of N; and N, are 2/x. In Figure 2.2, the density
function intersects at A/n along x-axis and at B/m along y-axis. Thus, A>0 and B=0.
Since A+B=2, 0<A<2 and 0<B<2. Substituting limits of A into equation (2.6) yields

-1<C<I1. In summary, the fabric constants A, B, C, N, and N, have limits as follows:

0<A<2

0<B<?2

2.7
-1<sCx1

0_<.N1'zs2

T

If C=0, the principal fabric axes coincide with the coordinate axes. If A=B and
C=0 the distribution of E(B) is a circle. If C # 0 and A = B, 6, =45° and 6, = 135°. The
magnitudes of deviation of the principal fabric axes from the coordinate axes are
determined by ther term 2C/(A-B).

Another way to define the fabric function is to use a principal fabric ratio A

which is defined as

a1 _EG) _1+/@A-17+C? (2.8)
N, E®) 1-Jd-17+c?

The above equation can be rearranged as
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@-12sc2=G 29
(A+1)?
Equation (2.9) requires
- 2.10
ik o

The geometric meaning of equation (2.9) is a circle. Its radius equals (A-1)/(A+1)
and its centre is located at (1, 0) in axes A and C. If A=1 and C=0, the circle reduces to
a point which shows isotropic fabric. Obviously, the larger the radius of this circle, the

larger is the anisotropy of the assembly.

2.2.2 Number of Contact Points
During the process of shear deformation, the number of contact points increases
with shear compression and decreases with shear dilation. The relations among the

number of contact points, shear strain and fabric constants will be discussed in section

2.3.3.

2.3 MODEL OF SIMPLE SHEAR DEFORMATION
2.3.1 Relation between Stress Ratio and Fabric Constants

In a test of simple shear on a sand specimen, a normal stress ¢ and a shear stress
T are applied to the specimen, as shown in Figure 2.3. The resultant forces in the
horizontal direction and vertical direction are zero for equilibrium. When the shear

deformation of a granular assembly occurs due to the action of external forces, the
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arrangement of the particles will change in succession, searching for a new equilibrium
state. Therefore, the magnitudes and directions of contact forces change during the period
of shear deformation. Here we assume that the particles are rigid, hence, the deformations
of the particle assembly are mainly caused by the movement and rearrangement of
particles. Every load increment causes a new change in fabrics during the shearing
process.

During the process of shear deformation in the simple shear condition, the
directions of sliding vary randomly from particle to particle, and the average direction of
the overall sliding is denoted by the horizontal plane, XX’ in Figure 2.3. This plane
represents the inclina}tion of the sliding plane and is related to both the stress conditions
and the dilatancy behaviour of the assembly.

From the analysis of external force and inter-particle forces acting on the

horizontal sliding plane XX in Figure 2.1 we have

as ‘¥_;',fsine‘ +f:cos6‘ (2.11)
8 '=~flcosd' +f'sin6’
where §' is the projected area of the i contact section on XX ; o and 7 are the effective
normal stress and shear stress acting on the plane, respectively; M is the number of
contact points intersected by the plane XX'. 8! is the contact angle at the i" contact point.

Along the plane XX we obtain
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M f‘
Y. ( -cost'+—sin6' )

T_" Ja (2.12)
c M f,‘ i
Y ( smﬂ’+—-tcose )

i=l n

In frictional materials, the maximum ratio of tangent cont-act force to normal contact
force is related through an overall coefficient of limiting friction p,, or friction angle
¢, . At the contacts where there is no relative movement, the ratio is less than or equal
0 Moo -

We assume that the friction angle ¢ at contacts satisfies

\—-

tan ¢'= 2 (2.13)

|

where ¢! is the friction angle at the i contact point and varies from 0 to b,
Substituting equation (2.13) into equation (2.12) yields

M
Y cos(¢'+0")
i=1

T 2.14)

M
Y sin(¢*+6"

i=1

Because there are a large number of particles on the plane, we assume that the
distribution of contact angles is continuous. Therefore the summation sign in equation
(2.14) can be replaced by an integral sign. The integral limit of 6 is from 0 to =, so

equation (2.14) becomes
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- f:OOS(ﬁb,.,‘*e)E(ﬁ)dﬂ (2.15)
fo "sin(¢,, +6)E(6)d0

x
o
where ¢, is an average mobilized friction angle

Substituting equation (2.2) into equation (2.15) yields

¢ _(A+2B)tand,-2C (2.16)
o A+2B+2Ctand,,

The above equation provides a relationship between the stress ratio and fabric
constants. It shows that the change of stress ratio will cause the change of the fabric
distribution for the case of simple shear. For C=0, t/6 = tan ¢,. For C < 0, the stress

ratio exceeds the limiting value of tan ¢, because of shear dilation.

2.3.2 Fabric Conditions of Shear Compression and Dilation

Consider the sliding mechanism between two particles as shown in Figure 2.4, the
increment of contact angle caused by sliding at the i® contact pointis A8, and L' is
the distance between two centres of the two contact particles and passes the i™ contact
point. The distance L' is also called branch length. The corresponding slip at the i®
contact point is L'A6', likewise, for L being the average branch length and A8 the
incremental contact angle. Therefore, the increments of the average horizontal

displacement Au, and average vertical displacement Au, are given by



Figure 2.4 Schematic Diagram of Particle Sliding
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Au =~ "LABsinBE(8)dB

=—iL(A +2B)A0
3n

Au,=["LABCOSOE(B)dD

-4 1ch0
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(2.17)

(2.18)

If A8 is positive, Au, is negative and Au, is positive. We assume the average

thickness of the slip plane to be H, i.e., the component of average branch length L in the

vertical direction, H=Ly. Therefore we have

H= fo " LsinOE(0)d0

=2 1(4+2B)
3n

(2.19)

According the definition of strain components, the increments of horizontal shear

strain and vertical strains in simple shear are given by

Auy _ Auy _2CA8

Ly H A+2B

Comparing equation (2.20) and equation (2.21) yields

de___2C

dy A+2B

(2.20)

(2.21)

(2.22)

In equation (2.22), compressive and dilative strains correspond to the positive and
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negative values of C, respectively. Equation (2.18) indicates that there is no vertical
deformation for C=0, i.e., shear dilation or compression does not occur for C=0. In other
words, the shear dilation or shear compression is caused by the deviation of the principal
fabric axes from the coordinate axes. The coordinate axes coincide with the o- and 71-
shear axes in this simple shear condition.

Now, we investigate under what condition shear dilation or compression will
occur. Consider the sliding mechanisms as shown in Figure 2.5. The plane XX denotes
the average direction of the overall sliding. The angle 6' is the i® contact angle. The
angle o is called the dilatancy angle at the i contact point and is the angle between the
contact plane and horizontal plane. Since of = n/2 - 6', o varies from - 72 to 7/2.
The sign convention of dilatancy angle o is defined in Figure 2.5. Shear compression
and dilation occur with positive and negative dilatancy angles, respectively. There is no
shear compression and dilation for o = 0. In order to analyze the physical meaning of
dilatancy angle of , we define © to be an overall dilatancy angle of the concerned

particulate assembly. According to its definition, we have

= . 2.23
0= % « E(C-0) d(-a)= € @29
-2 7T 2

Therefore, equation (2.19) becomes



a,>0 0;

.Figure 2.5
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Relation between Dilatancy Angle and Volume Change (a) Shear

Compression, (b) No Volume Change, and (c) Shear Dilation
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de_ 48 (2.24)
dy A+2B

The physical meaning of equation (2.24) is: (1) If C=0, i.e., ® = 0, the principal
fabric axes do not change, and there is no shear compression and dilation during the
process of shear deformation. (2) If C <0, i.e., © > 0, shear dilation occurs, (3) If C >
0, i.e., ©® < 0, shear compression occurs.

From the above analyses, it is a requisite condition for the occurrence of shear
compression and dilation that the principal fabric axes do not coincide with the plane of

sliding or the normal and shear stress axes in the simple shear condition, i.e., © # 0.

2.3.3 Relation between Contact Number and Shear Strain

In the process of shear deformation the number of contacts may increase or
decrease depending on the overall dilz;tancy angle ©. Five typical cases shown in Figure
2.6 are explored.

The dilatancy angles are positive and negative in cases of Figures 2.6a and Figure
2.6b, respectively. Neither case has gain or loss of contact points during the slip of
particle Irelative to pﬁcle J. However, under external loading, dilation occurs in Figure
2.6a with positive dilatancy angle and compression 6ccurs in Figure 2.6b with negative
dilatancy angle. Although there is no net gain or loss of contact points in the case of

Figure 2.6¢, the total number of dilatancy points does change and the sign of the dilatancy
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angle changes from negative to positive. For the case of Figure 2.6d, its number of
contact points increases and the dilatancy angle changes from negative to positive. During
the initial process of shear deformation in Figure 2.6d, compression occurs. If the shear
deformation continues, dilation will occur as shown in Figure 2.6e. It is obvious that
during the process of shear deformation, the numbers of positive and negative dilatancy
angles are changing. The distribution of these contact points is described by the density
function. We attempt to relate the number of contact points with the shear strain in the
following section.

We define the initial volume V, and the deformation volume V. The definition

- of void ratio is given by

V-Vo_AV_ Ae (2.25)
| 4 V 1l+e

where AV and Ae are the increments of the volume and the void ratio of the particle
assembly, respectively.

The average number of contact points between two adjacent particles is defined
by an average coordination number, m. The relation between the coordination number and

the void ratio satisfies (Field, 1963):

C (2.26)

where C, is a constant. Differentiation of the void ratio e with respect to the coordination

number m yields
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(2.27)

If we define compression strain to be positive, combining equations (2.25), (2.26)

and equation (2.27) yields

AV_Am_AM (2.28)
Vv m M

de =de=-

where M is the total number of contact points; de, is the incremental volumetric strain.
Obviously, de=de, under the simple shear condition. Equation (2.25) shows that
the number of contact points decreases with the volumetric dilation and increases with the
volumetric compression.
The total number of contact points, M, at any stage of the shearing process is a
function of the initial fabric and the total deformation. The function for the contact

number is assumed to be (Mogami, 1965):

-1 (2.29)
M=M.e 10a*Date ©-DI
0

where f, and g, are constants related to initial fabrics. v is the total shear strain; M, is
the initial number of contact points.

From equation (2.29) we differentiate M with respect to ¥, and we obtain
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-X (2.30)
aM %
—Y = —M%+1 —-€ )

Combining equations (2.23), (2.28) and (2.30), the average dilatancy angle can

be expressed as follows:

1 2 (2.31)
8=Z(A+ZB)(fo+1—e by

The constant f; can be determined from equation (2.31) using the initial conditions,

e.g., A=A, B=B,, and ©=0, when y=0. Hence

(2.32)

where constants Ay, B, are initial fabric constants; ©, is the initial dilatancy angle.
Equation (2.31) means that the average dilatancy angle is a function of the initial fabric

constants, the induced fabric change, and the shear strain.

2.3.4 Stress-Strain Relation
Substituting - the term 2C/(A+2B) from equation (2.22) into equation (2.16) we

obtain a relation between the stress ratio and the strain ratio as follows:
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de
— +tan
T _dy n (2.33)
o de
1-—tan
dy O
Rearrangement of equation (2.33) yields
T
— ~tan
de_ o n (2.34)
dY l +1tan¢m
o

Equation (2.31) is called as the dilatancy equation of a granular assembly in the
simple shear condition. It is interesting to note that the relation between stress ratio and
strain ratio is not related to the fabrics. However, the stress-strain relations are related to
the fabrics, such as equation (2.16) and equation (2.22). Previous researchers (Tokue,
1979; Nemat-Nasser, 1980; Chang, 1982) have obtained a similar dilatancy equation using
different methods. However, their shear models can be only used to analyze the relation
between the stress ratio and strain ratio, not the volumetric strain and shear strains.

To obtain a stress-strain relation, we have to substitute the term de/dy expressed
in terms of f,, g, and 7Y from equation (2.30) into equation (2.33). The stress-strain
relation for simple shear condition becomes

-X
1 _ tand,+lif-e ©

X
1+(1-f;-e ©)tand,,

(2.35)

The stress-strain curves obtained from the above equation are plotted in Figure 2.7

for different initial fabrics. In these numerical examples, the initial fabric £ is varied to
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study its effects on the stress-strain curve while ¢, and g, are kept constant (¢,, =36°
and g, =0.01). For f;=-0.6, i.e., the average initial dilatancy angle is negative, shear
compression is induced at the beginning of shearing. The stress ratio /¢ reaches to the
limiting value of tan ¢, when de/dy = 0. The stress ratio continues to increase with
increasing de/dy, and levels off with no change in de/dy. For £,=0.1, i.e., the average
dilatancy angle is positive, only shear dilatancy is induced. The stress ratio increases with
increasing de/dy and ¥. In both cases of f; =-0.6 and 0.1, the stress ratio starts from a
finite value at zero shear strain because the initial fabric is anisotropic.

In the stress-strain model of equation (2.35), we take the fabrics into full account,
by taking the fabric constants as the intermediate variables. Thus we can obtain the total
volumetric strain € and total shear strain <y . In fact, during the process of shear
deformation, the fabric changes with different shearing load. Therefore, equations (2.16),
(2.22) and (2.35) together describe the shearing process of a granular assembly in simple

shear condition.

2.4 MODEL OF BIAXTAL COMPRESSION
2.4.1 Relation betweén Stress Ratio and Fabric Constants in Biaxial Compression
Condition
In a biaxial compression test, compressive stresses acting on the specimen are o,
in the vertical direction and o, in the horizontal direction as shown in Figure 2.8. The
plane of sliding denoted by BC is assumed to follow the direction of the major principal

fabric axes, N, because the number of contacts is the least along that direction. The



Plane of sliding

Figure 2.8 Schematic Diagram of Biaxial Compression
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inclined angle of the sliding wedge is 6,, given by equation (2.4).

Considering the external forces acting on planes AB and AC, the relations between
external forces and internal contact forces are given by the two equilibrium equations in
the vertical and horizontal directions. Therefore, stress ratio ¢,/0, can be obtained using

similar analytical steps to the simple shear case, and can be simplified to a form

o, [ 0;sin®+fcosB)(Acos’®+Bsin’0+Csin20)d

e tanB,
O3 f ™ (f siny +f.cosy) (Asin’y +Beos?y -Csin2y)dy
0" f (2.36)
_(4+2B)+2C tand,,
@A+B)-2C tang,  °

where y = 0 - 90°.

2.4.2 Stress-Strain Relation

The derivation method for the strain in the biaxial compression condition is similar
to that in the simple shear condition. In the biaxial compression condition, the strain ratio
is expressed in terms of principal strains in the vertical and horizontal directions as

follows:

Ae, [sinB(Acos?8 +Bsin0+Csin20)d0 |

Ae, [ sinw(Asin®y +Boos™y -Csin2)dip tan6,

(2.37)

- 24+B 1
A+2B tan0,

Substituting equation (2.38) into equation (2.37) yields a relation between the
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stress ratio and the strain ratio

o, 1 +2C(A+2B)tand,, Ae,
o, 1-2C(A+2B)tand, Ae,

(2.38)
If substituting equation (2.4) into equation (2.38) and using 0, = 0,, we have

o, _1+A-B)4 +2B)tan20 tand, Ae, (2.39)
0; 1-(A-B)(A+2B)tan26tand, Ae,

Equation(2.39) and equation (2.40) provide a mathematical framework baséd on
fabric mechanics to quantify the shearing process of a granular assembly in biaxial
compression conditions. However, development of a stress-strain relation requires an
additional relation linking fabric change with total strain (strain ratio with total strain).

This subject is beyond the scope of this study.

2.4.3 Comparison with Rowe’s Stress-Dilatancy Theory
Rowe (1962) investigated the shear deformation of a regular packing assembly and
derived a theoretical relation between stress ratio and strain ratio for the case of biaxial

compression

f_1=__A_°2m2(45°+3’2_&) (2.40)

o, Ae,
However, Rowe (1962) found that equation (2.41) had to be modified to match the
test results observed in granular assemblies of random packing. His semi-empirical

relation becomes
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o1 At 2us Y (2.41)
o, Ae, 2

In equation (2.41), the friction angle ¢, is a variable which is a function of stress
and strain. Comparison between (2.40) and (2.42) indicate that Rowe’s model has several
limitations: (1) the model does not consider the effect of ir_litial fabrics on the shear
deformation of granular assembly, (2) the model indicates the effect of fabric change
implicitly using ¢, as a variable, and (3) the interparticle friction angle is not explicitly
defined. The new stress-dilatancy relation of equation (2.40) is more comprehensive

because the relation is a function of initial fabric, induced fabric change, and dilation rate.

2.4.4 Critical State

When a sand sample is sheared, its void ratio will decrease or increase depending
on its initial void ratio. If the shear deformation is sufficiently large, the sample, loose
or dense, will reach a state in which the arrangement of the particles is such that no
volume change takes place during shearing. This particular void ratio is called the critical
void ratio, The corresponding stress state is called the critical stress. Based on laboratory

measurement, the critical stress can be expressed in an empirical correlation (Casagrande,

1936):

1 iantases doy (2.42)
o, 2

where ¢, is the friction angle at constant volume. The value of ¢, varies among

materials and is greater than the value of ¢, .
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The critical stress can be derived from equation (2.40) based on micromechanics
by setting Ag,/Ae,=-1, i.e.,

0, _(2+A)[4-4+2(A-1)tan26 tand, |

(2.43)
o, (4-A)[A+2-2(A-1)tan26 tand ]

Equation (2.44) indicates that the critical stress is dependent on the interparticle
friction angle ¢,,, fabric constant A or B, and the critical state fabrics 6, , It can be seen
that these two parameters ¢, and O, are implicitly described by the correlation

parameter ¢, in the empirical equation (2.43).

2.5 CONCLUSION

The shear behaviours of a assembly composed of rigid particles in simple shear
and biaxial compression conditions have been studied using the principles of
micromechanics. Analytical solutions are derived to describe the stress ratio, the change
in fabric distribution and orientation, and the strain ratio during the process of shearing
deformation. Development of a stress-strain model based on micromechanics requires an
additional relation linking the change in fabrics, the change in contact number and the
strain. The main advantages of this micromechanics model are that the model considers
the effects of the fabric anisotropy, the rotation of principal fabric axes and the rotation
of principal stress axes on the shear deformation of the granular medium. The model
provides a sound basis to explain some empirical correlations in soil mechanics such as
Rowe’s stress-dilatancy law and critical state. Since the model includes the effects of

fabrics, the model can be applicable to any granular assembly of particles of different size



distribution.
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CHAPTER 3

STRESS-STRAIN RELATION OF A REGULAR

PACKING ASSEMBLY UNDER CONTACT DEFORMATION

3.1 INTRODUCTION

The total deformation of a granular assembly is the resultant of deformation
caused by particle sliding, rolling, solid deformation, and grain crushing. In this chapter,
we are concerned with the small strain deformation of a regular packing assembly of
deformable particles due to solid deformation or contact deformation. This small strain
deformation depends on the sizes of particles, fabrics of assembly, mechanical properties
of particles, and loading condition. Recently, mathematical representations of this type of
.deformation on granular materials have been attempted by several researchers (e.g.,
Walton, 1987; Bathurst, 1985; Rothenburg and Bathurst, 1989). However, their models
do not take into account the effects of the change of fabrics. In recent years, the
micromechanics of granular materials has been greatly developed by Chang et al. (1990a,
1990b, 1990c, 1990d, 1992a, 1992b). Here, we take the complete anisotropy of the
assembly into account. The research work presented in this chapter focuses on the stress-
strain relations from fabric considerations. The relations between micromechanical
quantities and micromechanical variables are analyzed, and the proposed stress-strain
stiffness tensor is expressed in terms of the fabric quantities. Because the stress-strain
relations of granular masses with different fabrics are derived under the condition that the

directions of principal fabric axes are not the same as the principal stress axes, the
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relations are valid for general loading both in two-dimensional and three dimensional
conditions. Five different types of regular packings are analyzed. Although all the stress-
strain relations are derived from the contact theory of small strain, these constitutive laws

can be used in the analyses of large deformation caused by the change of fabric

quantities.

3.2 RELATION BETWEEN MICROMECHANICAL VARIABLES AND
MACROMECHANICAL VARIABLES

3.2.1 Principle of Virtual Work for A Particulate Assembly

It is very difficult to measure contact force between two particles directly, so we
have to find a description method to establish a relation between micro-mechanical
quantities and macromechanical variables. Since granular materials form discontinuous
media, stress at a point defined for a continuum is no longer valid for such media. Here
the volume average stress quantities are defined. In the previous chapter we introduced
a density function E(0) for the case of two-dimensions. Here, E(6) is replaced by E(£2),
where Q is a solid angle in the spherical coordinate system for the case of three-

dimension, i.e.,

dQ=sinpdBdy G.1)

where v from 0 to 7t and f from 0 to 27 are spherical coordinates shown on Figure 3.1.
Obviously, the number of contact points within the solid angle from Q to Q+dQ
is given by ME(Q)dS, where M is the total number of contact points. We assume f;(ri,n?%)

to be the i component of the q" contact force with position vector r? and unit normal



Figure 3.1 Signs of Coordinates

Figure 3.2 Contact between Particles
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vector n (i=x, y, z). According to the equilibrium condition, the vector summation of

contact forces must be zero, i.e.,

M
Y f(r4, n?)=0 @i=x, y, 2) (3.2)
q=1

The contact forces in equation (3.2) are assumed to act at a point and
consequently, transfer of moments across physical contacts is not considered. Obviously,
we can establish the equilibrium equations of moment for every pair of the adjacent

particles, and then get the vector summation for the whole assembly

& - . . (3.3)
X feOUE Y SEOKT) G 5,2
q!

g=1

where 1(w) is the branch vector connecting two centres of adjoint particles, as shown in
Figure 3.2. o is the unit vector of this branch.
We assume that the overall strain field is uniform (Chang and Misra 1989a,

1990c), so the relation between the strain tensor g;(r%) and the displacement u(r?) is

given by
‘ 3.4)
u(r?)=e (r)e%, n) G j=x, 3, 2)
The virtual work done by the contact forces per unit volume is given by
M (3.5
W= S5 w0 )er e, n') G, j% 3, 2
q=1

The factor 2 is introduced to account for each contact point being included twice.

If the sums of contact force components in equation (3.5) are calculated for any subregion
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of assembly, it would be different from subregion to subregion. However, these
fluctuations can be expected to become smaller and smaller if the expression is used in
an assembly consisting of a large number of particles with a large volume.

The work done by stress per unit volume is

W=o,e, (3.6)
where o; is a second symmetric tensor. Symmetry is due to the condition of moment

equilibrium for each particle.

3.2.2 Contact Force and Average Stress
Combining equation (3.5) and equation (3.6) and according to the symmetry of

stress tensor and strain tensor yields

-1" 4 na g4 nt 4 nd a4 pnt 3.7
og-ﬁ,?_,: Uird n? )L, no )ofr?, n?)i(rs, n )]

Equation (3.7) gives a relation between the macro-mechanical second-order stress
tensor o; and the micro-mechanical first-order contact force tensor. These equations can
be used not only in cases of two-dimensions and three-dimensions but also in cases with
different size and shape particles. However, L(n') may be a complex expression since it
must include the influence of particle shape and particle size-distribution. The
development leadir;g to equation (3.7) shows that the macroscopic stress tensor for an
assembly can be obtained from consideration of statically admissible contact forces and
microstructure described by contact vectors. A similar equation has also been reported

by Christoffersen (1981), and Chang (1990a, 1990b, 1990c).
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Equation (3.7) can be simplified in an idealized assembly of the idealized particle

with equal radius r. For the case of three-dimensions, we have

V=V (1+€)

3.8
_4N=r? 3-8)

3

(1+e)

where N is the total number of particles in volume V; V, is the total volume of particles;
¢ is void ratio.

Substituting equation (3.8) into equation (3.7) yields

3 SN, 0L, mYfe, n 0l Y] )
0,= re, nDl(r9, n)+f(r? nH(r 9, n
Y 16Nmrire)e " g i !
Likewise, for the case of two-dimensions, we obtain
1 (3.10)

M
°v=mq§ K% nOLrs, nhY s, n9ire, 1)

Figure 3.3 represents a four-point symmetric array in two-dimensions. In this case,

we have

1+e=£
s
_ 4r%sin(6,-9,)
- 2

(3.11)
nr

_4sin(8,-8,)

L

Substituting Equation (3.11) into equation (3.10), we obtain



Figure 3.3 Two-Dimensional Regular Packing
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- : ™ e q q ¢ s (312)
™ o, oy T U wr S, mOLS, ]

If the contact forces are divided into tangent contact forces f; and normal contact

forces £, we have

1

= [f/(sinB,cos0
Tex 2rsin(62—61)[ 7(sin6;c0s0,

(3.13)

~cos0,sin,) +(f,c0s’8, +fcos’8,)]

1

=L f(sinB,cosd
T»” 2rsin(8,-0)) U/(sin6;cost,

(3.14)
~cos0,sind,) +(f,sin?0, +f sin’0,)]

1

L i
O orsin(e, By L 2

(3.12)

si 291)-%(f,}sinze,+ffsinzem

Obviously, e = 4/a-1 for 0,-0, = n/2. If 6,= 0, the principal stress axes are

coincident with the principal fabric axes, so

fl" (3.16)
o = —
= 2
. - f_z" (3.17)
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S (3.18)
g =%
. 2r

The above equations show that the stress is equal to the contact force per unit

length for the square four-point contact

3.3 STRESS-STRAIN RELATION
3.3.1 Constitutive Law of Local Contact

In the previous section we have obtained an expression for the average stress
tensor from the contact force. However, the calculation of the average stress tensor
requires exact knowledge of contact forces and contact vector terms for all particles. In
this section by establishing the relation of contact force with contact displacement and the
relation of contact force with average stress tensor, the stress-strain relations are then

derived. The tensor of contact stiffness for three-dimensions is given by Chang (1990a)

- (3.19)
D,=D, n, n+D, s, s+D, ¢, ¢, G, j=x, ¥, 2

where D,, D, and D, are the local contact stiffnesses ( e.g., D, is normal contact stiffness;
D, and D, are tangent contact stiffness ) in the directions of n, s, and t, respectively, as
shown in Figure 3.1, and are independent of one another. In addition

n_=sinycosp
S (3.20)
n,=sinysinf

n,=cosy
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s, =cosycosf
. (3.21)
sy=cosysmﬁ
s, =-siny
=-sinp
3.22
 =cosp (3.22)
t,=0
For the case of two-dimensions
e (3.23)
Dy=D,n, n+Dg, s @, j=x, y)
where
nx=cos6 ny=sin6 (3.24)

s =-sin0 sy=cos6

The incremental form of the local constitutive law describing the relation of

contact force with contact displacement is given by

.. (3.25)
Af=D,Au, G, Jj=x, 5, 2

- 3.3.2 Constitutive Law of Particulate Assembly
Combining equation (3.4), equation (3.10), equation (3.19) and equation (3.25),

we have
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o (3.26)
Ao =4, Ae, G, j=x, ¥, 2)

where

g 3.27)
-3 3 (nfnnfniD,+BLD,+E] (
Ay 2(1+e)N,nr o s e D"+BWD'.+EWD')

where m; and N, represent the numbers of contact points and particles within the
interested microelement, respectively. If the microelement is an individual particle, m,;=m.

By, and Ey, are given By

e_1.qa a _4qa 4 q.49,49 .4
kal'z(”i S B S; o+t nlsgomg s

(3.28)
+nlsinlsd +nfsinls)
1
quu-_-'z(niq tjq n: th + njq t‘q n: th

(3.29)
+nlfnl el +nfltfnfel)

Obviously, since the resultant moment is zero, the stiffness tensor of assembly

satisfies the symmetry of the stress tensor and the strain tensor, i.e.,

(3.30)
Ay~App~Ay
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3.3.3 Stress-Strain Relation for Two-Dimensional Regular Packing
3.3.3.1 General Stress-Strain Relation for Two-Dimensional Regular Packing

For the case of two-dimension, equation (3.27) becomes

(3.31)

Ao (1+e)N1 qZ; (inoini Dy Bl

For a regular packing assembly, the behaviour of a microelement is same as that
of a representative-unit. Therefore in this case m, =m. The matrix form of the stress-strain

relation is

(3.32)

Ao, Gy G Gyl
In order to make our model for complicated load directions, we assume the
principal fabric axes not to coincide with the principal stress axes, such as in Figure 3.3.

We only discuss an individual particle of regular packing. The angle 8 is the q™ contact

angle, which is equal to 0,+(q-1)A8. Therefore we have



Cll =H1DH+H5D3
C22 =H2Dn +H5D,
C33=H5Dn+%(Hl +H,-2H)D,

H,-H,
C51=Cyy=H;D n+TD’

HH,

]

Cy=Cp=HD,+

Cu=Cyy=Hy(D,-D)

where

, 2
H= D cos’e?

(1+e)n g
fisd
2
- 2 4ng
2 (1+e)nq2,;
Rl
_ 2 2 3agq
o= cos~0%in0?
m
2
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3.3.3.2 Four-Point Square Symmetric Contact
In the case of four-point square symmetric contact as shown in Figure 3.4a. The
void ratio, e= 4/n-1; and the incremental contact angle A8=90°, 6°=0,. The stiffness

Components are
cu=c22=%[2u,,-(pn—21>,)sin226;,]
o .1 3 D rvains
33“’5[Ds+(2Dn"5Ds)sm 6,1

Cy =C12=%(Dn—D_‘)sin7’26°

C31=C1,=C13=C3,=D,sin28,

If 6, =0, i.e., the principal fabric axes are coincident with the principal stress axes,

and we have

1
Ao | = > 0 2D, 0 ||Ae, (3.33)
LA oxy} \ 0 0 Ds / \AYx.v/

3.3.3.3 Six-Point Dense Contact
For the six-point dense contact packing as shown in Figure 3.4b. The void ratio,

e=4sin(1/3)/w, and AB=n/3, 6,=0, so



(a) Four-Point Contact

*y

':4

(b) Six-Point Contact

Figure 3.4 Two-Dimensional Rhombic Packing
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The stress-strain relation is

(Ac_) 3D+D, D,-D, 0 )(Ae,)
Ao | = 43 D,-D, 3D,+D, 0 ||Ae, (3.34)
A0,) . 0 0 D,+D, ) \Avy,

3.3.4 Stress-Strain Relation for Three-Dimensional Regular Packing
3.3.4.1 General Stress-Strain Relation for Three-Dimensional Regular Packing
In the following expressions, ¥, and Y*% are the angles between the g™ coordinate

vector r*and coordinate axes x and y, respectively. We define

cosy”) (335)

B < arccos(

Therefore, the stress-strain relation for a symmetric contact assembly is
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( / /
Ao, ) Ch Cp C5 Cy Ci Cy ) Aexx\
Aa,, Cy Cp Cu Cu G Cy |l|Ae,
Ao, Cu Cp Gy Cy Gy Gy ||Ae,

(3.36)

Ac,, Cu Cu Cu Cu G Cu|l|Ae,
Ao, Ch GCs; Cy Cgy Cy Gy ||Ae,

(20, ) | Cq Co Co Cu Cos Cs)\Bey,

Assuming

C,¥» p)—za v E Cy(v%B9

q-l
The components of stiffness tensor (C;’=C;’) are obtained by
C;,=sin*y%cos*p?D, +I*cos*B9D, +J%sin’y?D,

C;,=sin*y%cos*BD, +I*sin*BID, +J sin*yD,

Cjs=cos*y?D +I’D,
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s 2.4
c;4=12sin‘y¢D,+1212D,+ﬂ4LﬂD,
v _12enc2pan JACos Pl 1 o oo
Css=I“cos*p Dn+——-—4————D_,+Zcos v9sin“BID,
2cin2Rd -
C&:Izsinzqun.g.%Dn-{-%coszchoszﬂth
C;y=J%in*yD_+I%1*D,-J’sin’yD,
C3y=I*cos’p%D,-D,)
Ci,=I*sin’p%D,-D,)

» — TointnloneZd 2 2ng Ul~2q
C41=Jsin*y9cos“BD, +I°Jcos“P D,+—2—sm vD,
s — ToindndcinZ g 2 Tein2R4 "Jl~24
Ci=Jsin y%in*BID +IJsin“p Ds—-—z—sm viD,
Cis=I>JD,-D)

I
C,‘l=Isinzy“cos3BqD”+—zlcos3B“D,+%’sinB“Dt



60

11 JsinB?
_L_B D,—L’sianDt
2 2

Ci,=Usin?y%sinpD, +

/4
c;3=Ucos2y4cosp¢D,,—7‘cosp«D,

C:,=Usin*y%cosp?D +ﬂcospvn -ﬂ‘c'ospm
54 Y nt T A

D

t

Ci, =Usinzy¢coquun+”711coqups+ ”C"SB;WSZ Y

IIsin"' 21 3R90a2yd
1 BD+IschosyD

Ci,=Isin®y9sin®B9D, + ] . ,

, 2.,9:in B9 m q
Cez=Icos*“y9sinp D,,——Z-smﬂ D,

T i IIIJ,q /A q
Cgs=IJsin“y%sinf Dn+7smp D,+Tcosﬂ D,
’ 2 IIJ
C65=I JD"+TD"

1.
=_81n2 q
4 Y
J=Lsin2pe

4

Il=coszy‘—sinzyq



J, =cos? B4 -sin?p¢

3.3.4.2 Three-Dimensional Cubic Packing
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The packing model is shown in Figure 3.5. The void ratio, e is 0.9099 and the

coordination number, m is 6. The stress-strain relation is obtained by

(Ao )

xx

-3
2(1+e)nr

3.3.4.3 Three-Dimensional Face-Centred Packing

\AY,;)

(3.37)

The packing model is shown in Figure 3.6. The void ratio, e is 0.6540 and the

coordination number, m is 8. The stress-strain relation is obtained by



"‘<

(a)

"<

(b)

Figure 3.5 Three-Dimensional Cubic Packing
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),

Figure 3.6 Three-Dimensional Face Central Packing
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2(1+e)nr

where

64

xx

(3.38)

6 0 0 o0 ) Ay,

1
C, =—4—(2Dn +D_+3D)
CZ =2Dn +D s

C,=2D, +% D, +3D)

C,=2D,+D_-3D,
C,=2(D,-D,)

3.3.4.4 Three-Dimensional Dense Packing

The packing model is shown in Figlire 3.7. The void ratio, e is 0.3504 and
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@

Figure 3.7 Three-Dimensional Dense Twelve Contact Packing



coordination number m is 12,

where

(Ac.)

xx

Ac

Ac

Ao

Ac

Aoc,,)

=_ 3
2(1+e)nr

The stress-strain relation is obtained by

¢

A7,

66

(2.39)
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1
Cl=z(5Dn +D +2D)
C,=D,+D,

1
C3=Z(DR+D,+2D,)
c,.=1@D. +D +D)

4 4 n 3 t

1
CS:Z(D”+D’—2D')

1
Co=5D,D)

If D=D,, we have C,-Cs=2C,. Equation (2.39) shows that five stiffness constants

are independent.

3.4 CONCLUSION

Based on principles of micro-mechanics we have derived the stress-strain relations
of contact deformation for two-dimensional and three-dimensional regular packing
assemblies. The derived stiffness constants are functions of the particle size, void ratio,
coordination number, and interparticle contact stiffness. If the interparticle contact
interaction is assumed to be linear elastic with no sliding at the contact, the behaviour of
assembly deformation is elastic. If the nonlinear constant stiffness given by the Hertz-
Mindlin theory of friction contact is used, nonlinear deformation will occur due to
nonlinear deformation at the contacts. It is noted that the stiffness tensor is derived for
an increment of load based on the packing structure at the instant of load increment. The

packing structure , however, changes during the deformation process. Therefore, for the
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cases with a large change of packing structure such as at high levels of deviatoric stress,
the evolution of the packing structure with load should be defined in order to obtain the
complete stress-strain relation. For cases with negligibly small changes in packing
structure such as for packing under low levels of deviatoric stress, the proposed stress-
strain relation can be directly applied in analyses of practical problems.

All the solutions can be used in the cases of different complicated load stress
because here we assume the principal stress axis to be coincident with the principal fabric
axis. No matter what case, two-dimensions or three-dimensions, if the assembly is
isotropic and D=D,, only two stiffness constants are independent. If the assembly is
isotropic on the cross plane for the case of three-dimensions, five stiffness constants are
independent. These conclusions are the same as those obtained by the theory of
continuum mechanics. In addition, The stiffness constants are dependent on the different
fabric constants. The mechanical behaviours are controlled by the corresponding

fabrics.
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CHAPTER 4

STRESS-STRAIN RELATION OF A RANDOM

PACKING ASSEMBLY UNDER CONTACT DEFORMATION

4.1 INTRODUCTIbN

Based on the microconstructed continuum, the relation between the fabric tensor
and the contact density distribution function, and the relation between the fabric tensor
and the stress tensor have been analyzed for assemblies of regular packing in the previous
chapter. In this chapter, the analysis is extended to the cases of two-dimensional and

three-dimensional random packings.

4.2 STRESS-STRAIN RELATION FOR TWO-DIMENSIONAL RANDOM PACKING
Because natural granular assemblies are usually anisotropic and randomly packed,
it is very important to study the mechanical characteristics of random packing assemblies
with different fabrics.
For the random packing, the form of summation in equation (3.31) can be replaced
by an integral form. For the case of two-dimensions, equation (3.31) becomes

_ 2m 2=
W o [ @, n, n, n D+ ByDIE®)® 4.1
where the form of the density function E(8) is the same as that of equation (2.2).
Howeyver, the fabric constants A, B, and C are determined from the total contact normals

within the concerned repreSéntative—unit.
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4.2.1 Two-Dimensional Isotropic Random Packing
The contact density function is E(0)=1/r for two-dimensional isotropic packing.

Therefore, integrating equation (4.1) using E(8)= 1/x, n, = cos 6 and n, = sin 8, we obtain

(Ao_) ( 3D,+D, D,-D, 0 [ Ae,)
(4.2)
m
Aoyy = Ao D,-D, 3D,+D, 0 Ae”
\Aoy,) \ 0 0 D,+D, |\ Av,, )

From the above equation we can obtain the Bulk Modulus K and Shear Modulus

G, ie.

m_ (4.3)
21+e)n "

and

_ m 4.4)
= Wrom (D,+D)

Equation (4.3) and equation (4.4) mean that the bulk modulus of the assembly
relates only to the normal contact stiffness, and the shear modulus relates to both the
normal contact stiffness and the tangent contact stiffness.

The corresponding Poisson’s ratio is given by
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_D,-D,
3D, +D, 4.5)
= 1-€
3(1+8)
where & (= D/D,) is the contact stiffness ratio. Obviously, v =1/3 for € = 0.
4.2.2 Two-Dimensional Anisotropic Packing
Substituting equation (2.2) into equation (4.1) and integrating we obtain
( \ (
A“u \ i Ci, Cy | [ Ae,
(4.6)
Ao, [ =| Cy C,, Cys || Ae,
\ ony /7 N\ Car Ca Css /\ Ayxy /

where

_ _ m
Cu=Cu=g o= {GA*BID, 42D

Cyy=———(D,+D
33 4(1+e)1t( n .1‘)

= :..___.m— —
CZI Clz 4(1+e)7t (Dl‘l DA‘)
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mCD

C3,=C5,=C13=Cps= al+eym "

Analysing the above stiffness constants we find C;;, C,; and C,, are independent
of the fabric constan;s. In addition, C;;, C;3, C;, and G, v.vhich relate to the shear
deformation, are dependent on fabric constant C. This conclu_sion is consistent with the
analysis in Chapter 3. In other words, the shear compression and dilation of an assembly

is caused by the rotation of principal fabric axes.

4.3 STRESS-STRAIN RELATION FOR THREE-DIMENSIONAL RANDOM PACKING
To consider anisotropic random packing in the case of three-dimensions, we
introduce a spherical harmonious function to describe the distribution of contact normal

directions. The tensorial representation of the distribution function is given by

1
EQ) = ™ Nv non

=ZIE(N nsinzycoszﬂ +N”sinyzsinzﬂ @.7

+N_cos?y +2N, sin*ycosPsinp
+2N, sinycosycosf +2N, sinycosysinp)

where the fabric tensor can be expressed in terms of matrix, i.e.,
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N, N, N
(4.8)
\ Na Nyz sz /
Because
1 _ 4.9)
fn ym S =1
it requires
_ 1 p2n x .
an(Q)dQ =i j; dp ]; NU nm sinydy
1 pampn 0 Lo )
rmif fo (N, sin’ycos®p +N, siny’sin®p
(4.10)
+N,cos’y +2N, sin’ycosPsinp +2N, sinycosycosp
+2Nwsinycosysinp)sinydy
=LV N +N)
3 xx b4 E/4
Therefore
4.11
N“+N”+Na=3 (@.11)

For the case of three-dimensional random packing, considering an assembly of a

large volume with a large number of particles, the form of summation in equation (3.27)
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can be replaced by an integral form

2% . (4.12)
A 2(1+e)mf Jo @apnD,+ByD,+EyDYE@)sinydpdy
where By, and Ey, are given by
1 - (4.13)
B#kl:Z("l Sy M S; + By S RS+ By S S + My S By S
4.14)

1
EUH=Z(n‘ tj nt + nj Ln tj nt + nj Lm tk)

Considering the practical applications of constitutive relations, the following
solutions can be used in the cases where the principal stress axes are not coincident with
the principal fabric axes. Substituting the equation (4.7) into equation (4.12), we obtain
the stress-strain relations for the three-dimensional random packing assembly. The matrix

form is expressed by
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[ /
Ag,, ) Cu Ci Cis Cu Cis Ce Y ( Ae,, )
Ao, Ci Cu Gy Cu Gy Cyllae,
Ao, Cy Cay Cy Cu Cys Css Ae,,
- _ 3m__
8(1+e)nr
Ao, Ca Co Cu Cu Cs Cgl| Ay,
Ag,, Ca Co Css Css Css Css Ay,,
| Ao, | Cq Co Cu Cu Ce  Co)lAv,)
(4.15)

If the subscripts x, y, and z are replaced by the subscripts 1, 2, and 3, respectively,

the stiffness constants in the above equation are given by



%2 6 4 2 4
Cu= fo j; [(Nyyny +Nognin; +Nygnin3)D,

42 222 2.2
+(Ny sy +Nygniny sy + 33"1"3312)D,
22,2

+(Ny n it +N,n2n2e2 + N n2n2tHD Jsinydydp
=3I,D,+J,D,+J,D, ,
(2 4 6 4
C,= L) j; "[(Nnnlz ny +Nyony +Nyany n32)Dn
+(N, 11"12 n22s22 "'sz";sz2 +N::,:;”zz"?,2 sz?')Ds
+(N, nnl2 n22 t:? +N, 22”24 tzz +N, 33”22 "32 tzz)D,]SinYdep
=3IZD [ +J2Ds +J4Dt ’
= (2 2 4 2_4
C33=fo ,{; "[Vyyning +Npghzng +Nign)D,
+(Nyyninysy +Npgnyng's; +Nygni's)D Jsinydydp

=313Dn +8‘ISD.1 ’
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Cum [ [} i Nogning +NonnindaD, oy (ol

+ninys; +2n; 1,85y +N, 22(”12 nyS; +1yS; "'2"1”23 515
N D
snimyt 2nintt) Ny (nimyty +mgty "';"1"23 tt)
+Ny(ninit2+ninit? +2n n,n3t1)1D Jsinydydp
-I,D_+1,D,+],D, ,

1pxp2n 4 2 22 2 2
csfz j; fo YNy nyng +Nyyny ny ng +Nygny ";)D,.

42 222 4.3 2.22 222
+Ny, (1 83 +n 03y +20,n,8,55) +Noo(ry 0y 55 +ny 0354

+2,17n,5,59) +Nyy (i n3'5; +ny's; +2myn3s:s) 1D,

+(Ny ninin +Nnanats +Nynst)D Jsinydydp

=I4Dn +‘ISD.! +"4Dt ’
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1 2
C66=Z]:-/;> aa, 11"12 "22”:«12 +1\"22"24”32 + 33"22 "3‘)Dn
+[Nyy(nyss +nnass +2n3ns8,5,) +Noy(ninlsy +niny's;
+211y158,5) +Nyg(nanisy +nys; +2nn35,5) 1D,
+(Nyyninst2+Nyninity +Nygnst)D Jsinydydp
=ID,+J D +JeD, ,
25 4 2 4 2
Cu=Cp= _!;" ]; yning *sz"z”’sz *Nss"zn:)un
+(N, 1nlznzzss2 +N22n.",'s32 +N33n22n32s_,,2)Ds+(Nunf ntt,
+Nyn,natt, +Ny,n.n,n2t,t )D sinydydp
=LD,+J,D,-1,D, ,
n (2 4 2
Cyy=Cy5= j; _’; "[(Nnnl ”32 +Nyony "22 "32 "Nsa"lz "34)Dn
3 2
Ny 115155+ Noght 1y 15, S
+N33nlngsls3)D,]sinydydB

=I(D,-D,) ,



n r2x
Cy= 23"']‘0]; [(Nu"lz"zz"sz*' 22”24":52+N33"22”34)Dn

3
+(Ny s 5+ Noghy i s,
+N,n,n3s,5,)D Jsinydydp

=l¢D,-D,) ,
2
Ca=Ci= j: j; “[sz[znf ";Dn +(”f ”231S2+”12 "22312)Ds

+(ninyy b, +ninyt)D Jsinydydp

-4N‘2(6D +D
105 °*P0 >

2 2 4 222 3
Coa=Cy= foﬂ fo "Ny2n 1, D, +(n{nysy +nmy,5,)D,

+(ny n: 1) +n11123 t,t,)D Jsinydydp

4Ny,
=55 (6D,+2D,-D) ,

T r2x
Ci=Cyy= fo fo N, 12[2”12 "22”32Dn+(n12 RyN3S2S3

+n1n22 n,s,s,)D Jsinydydp

_8N,2(D b
105 * 9
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2 42 3
Cs1=Cis =f o".l;; "Nyl2n{nsD, +(nin;s;s,
+ninys)D,+nynyty D Jsinydydp

s 04D -3D,41D) ,
105" ¢

C=Cys= f oﬂ 02"2N 13["12 nn; D, +("12 N N3S,S3
+nln2n: slsQD,-mlnzn: t,t,D Jsinydydp
s p D 1) ,

105
Cs3=Css= fox _I:RN 13[2”12 ny Dn+(n12 133
+n,n3s,s.)D Jsinydydp
=%(6D"+D,) R
C“=C45=l f: f:“st[“"lz nyn3 D+ (i Sy,
RS S, MRS Syt STD,
+(nln2n32 Lt +n22 n32 tzz)Dt]sinydydﬁ

) +1D) ,
105 "°*
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2 2.2 2 2
Car=Cis= [ Nyl2n{n;niD, +(nn;nss;s,

+n1n2n32 s,8,)D, +n12;132 tlz D Jsinydydp

)
105

&D,-D,-7D) ,

Cea=Cas= foﬂ szst[Z”;"aan“("zs"sslss
+n;ny5)D,+nngt; D Jsinydydp
M 4p 3D +1D) ,

105
Ces=Cas= f: j;,zustlz"zz";Dﬁ(nzznszssz
#n;n35;5)D Jsinydydp
an,,

26p +D) ,
105 O0»*DY)

1p=p2x 2.2 2 2
C“=C46=5 ]; fo N,;[4n;n;n; D, +4(n;n,n,s,

222 2 2
RNy MRS SS, H 1y S 5))D,

+(n12 n: t22 +n1n2n32 t,t,)D Jsinydydf

¥ ep - +1DY)
105 n s v/



1 2
. C65=C56='2' f: j;, "N, 12[4"12 "22 ”32Dn+(”12 RyN,SoS,

222 2 2
RNy 3+ N S, S) 1y 1S S)D,
+nln2n32tltzD,]sinydydB

19

N
=—16!§-(8Dn—-2—D,—ZD,)) :

11=-1-‘§.§(5N3+N”+Na) ,

4
IZ:ES-( n:+5Nyy+sz) ’

_ 4
L= =N N +5N,)

_ 4
L= ONL 3N, +N,)

1 4

5=ﬁ(3Nn+Nyy +3sz) ’
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and

4

6=‘E(Nn+3N”+3Na) ’

1
Jl=ﬁ(10Nn+2N”+9Na) ’
1
JZ—E(ZNn"'ION”"‘gNu) ’
1
Jy= = @N 42N, 43N,)
J ==L @N_+2N,+N) ,
4105 = Ty
1
JS='42_0(57N3+19Nyy+22Nu) ’

1
Js':a)-(lngx'*'s’/Nyy +22sz) ’

1
=g Nect3N,, +6N,)

J,=é(3N“+Nw+6Na) ,

If D,=D,, the stiffness constants become
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(4N OLRELS 8

(6+N )D_,
Cp=— (4N, +3)D, +—>_(6+N,)D, ,
2 35 W TR 105 s
C..=2 4N _+3)D +- 8 (6+N D
33——3-5( a+) n+-i-6§( + 8) s
C,=—2 (©-2¥)D +-28-N D, ,
44 105 zZ/n 35 /s
C..=—2 92N )D +2(8-N_)D
5577050 2Pt 35 @ -ND;
---—(9 2N D, (8 -N_)D, ,

4
Ca "Clz"i‘ég(g -2N,)D,-D) ,
4
CSI—CIS—EE(g—ZNyy)(Du_D:) ’

C,y=Cpy=—-(®-N_)D,-D)) ,

o= 105

AN
Car=Cra=Cap=Coy=— 105 N,(6D,+D) ,

8
Ci3=Ca=—= 105 N, (D, D)
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4

Cy=Cy5=Cy;=Cys=—_N_ (6D, +D)) ,
55105 8Px*D)
Cyy=Cp=—-N_(D,-D,) ,
2 105

4
Coy=Cas=1o=N, (2D, + D,)

Ce=C N,(D,-D ,

167 105 ¥

4
C62=C%=C63=C36=-1—0—5—Nn(6Dn+D,) ’

4 3
C“=C“=ENR(2DR+ED‘) ’

and

4

Ces=Css™ 105

N, (2D, 21),)

4.4 CORRESPONDING RELATIONS BETWEEN THE FABRIC TENSOR AND THE |
STIFENESS TENSOR

In the previous section we have obtained the stiffness tensor. It is shown that all

21 stiffness constants are independent of each other for the case of anisotropic packing

and D, # D, # D,. In this section we discuss the corresponding relationships between the

stiffness tensor and the fabric tensor for five different fabrics. The following analyses use



the previous stress-strain relations for D=D,.

4.4.1 Fully Anisotropic Assembly

86

For the fully anisotropic assembly, we have N,, # N, # N,, # N,, # N,, # N, #

0. The corresponding relation is given by

(N, N, N
N, N, N,| =
LNU‘ NZ)’ Na /

Fabric Tensor

(Cll CZI
C2l C22
C31 C32
Q Q G,
s ¢, &

Ca R R
-

Three sets of stiffness constants are equal, i.e.

-4
105

N,(6D,+D)

Ca e s Ce1 |

Ca Q Co R

Ca Cas S R
Ch Cou Cq
Cs4 Css Ces
Ces Ces Ces)

4.16)

Stiffness Tensor
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_4

105 N_(6D,+D)

R—-—-——N 2D, + D
105 nl )

Therefore, for D, = D,, in the case of the fully anisotropic packing the number of

independent stiffness constants reduces from 21 to 18.

4.4.2 Anisotropic Assembly

In this case, N,, # Ny, # N,, # 0, and N,; = N,, = N,, = N 3 0. The corresponding

relation is given by

(4.17)
N N, N o

e @ § ¢, R R
N N N

Fabric Tensor & Stiffness Tensor
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Likewise, three sets of stiffness constants are equal. However the number of the
constants with equal value increases. The number of independent stiffness constants
reduces from 18 to 12, where

4

Q=105

N(6D,+D)

4

S=
105

N(6D,+D))

4 3
R=——N_(2D +=D
105 @D 2 )

4.3 Normal Anisotropic Assembly
For the normal anisotropic fabrics, N, # N,, # N,, # 0 and N,, = N,, = N,, = 0.

The corresponding relation is given by
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4,18
0 N” 0| = ( )
0 0 0 Cyu 0 0
\0 0 N, y
0 0 0 0 Ces 0
\ 0 0 0 0 ] Ces )
Fabric Tensor = Stiffness Tensor

The number of independent stiffness constants reduces from 12 to 9.

4.4.4 Transversely Isotropic Assembly
The transversely isotropic material symmetry means that the material fabrics are
in the same directions on a plane perpendicular to the plane of transversely isotropy. Here

we assume the intersection plane to be perpendicular to the Z axis, so
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The corresponding relation is given by

( A
3-N
z o 0
2
s § €, 0 0 0
- (4.19)
0 z o %
2
o 0 0 ¢, 0 O
0o o N, |

Fabric Tensor = Stiffness Tensor

where

Q=2C,,+C. [39-2N)D,+(15-N, )D_‘]

2" 70(1 eynr

S= W(ﬁ +N_)(D,-D)

The number of independent stiffness constants reduces from 9 to 5.



4.4.5 Isotropic Assembly
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If the fabric tensor is an identity tensor, §;, Kronecker delta, i.e., N, =N, =N,,

=1 and N,, =N,, =N,, =0, the stiffness matrix represents a packing with isotropic material

symmetry. The corresponding relation is given by

where

Fabric Tensor

1 0 0
0 1 0
0o 0 1)

@ S
s Q@
s s

) 0 o0
0 0
o o
-~

Q m

“10(1+e)nr

0

0

0\

R,

Stiffness Tensor

[3D,+2D]

(4.20)
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10(1+e)1tr( » D)

R-25
2

N
20(1 +e)1tr(2D" +3D,)

For the isotropic assembly only two stiffness constants are independent.

4.5 RELATIONS OF FABRICS TO MODULI OF ASSEMBLY

4.5.1 Moduli of Isotropic Assembly for Three-Dimensions
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The moduli of an isotropic assembly can be directly obtained from equation (4.20).

The bulk modulus of assembly is:

K=S+2R
3

=—m__.D
6(+eymr "

The shear modulus is

G*-—-———mD" (2+3%)
" 20(1+e)mr

The Young’s modulus is

mD,  (2+3F)
2(1+e)xr (4+E)

where £ =D/D,. Obviously, Poisson’s ratio is determined by

(4.21)

(4.22)

(4.23)
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_1-E (4.24)

vV = —

-£
Obviously, if the packing is made of cemented frictionless particles such that the

shear stiffness D, =D, =0, we obtain a value of 0.5 for the Poisson’s ratio v.

4.5.2 Moduli of Transversely Isotropic Assembly for Three-Dimensions
Assuming the transverse plane to be perpendicular to the Z axis, we obtain three
shear moduli on the two different planes.

On the yoz plane and xoz plane, the shear moduli are

(4.25)
G, =G_=———[(6+N_)D 13+N_)D
=Gty )r[( ) +( +ND]
QR.__m_ 19-9N)D +38-N)D (4.26)
» o2 70(1+e)1rr[( = Dn 2( Dd
On the zoz plane, the Young’s modulus is
£ . "D, 2(18+24N_~TN2)+(90+15N)E 4.27)
Z 10(1+e)nr 4(9-2N_ ) +(6+N, )&
The Poisson’s ratio is
(6+N_)(1-E) (4.28)

4(9-2N_)+(6+N)E
The relations among shear modulus, Young’s modulus, Poisson’s ratio, contact
siffness ratio, and fabric constant N,, are plotted in Figure 4.1 to Figure 4.3. It shows that

G,, is equal to G,, only in the case of N,, = 1. In other words, if assembly is isotropic,
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G,y is equal to G,,.

4.6 CONCLUSION

In this chapter, the stress-strain relations of a granular assembly of random
packing under contact deformation are derived considering the fabric distribution and
orientation, and micromechanics. The main conclusions are consistent with those from the
conclusions from the continuum theory. These conclusions include:

(1) The stress-strain relations are related to fabrics of assembly and to the local
contact stiffness.

(2) For a fully anisotropic assembly, if the three local contact stiffness constants
are not equal to one another, the stress-strain relation is controlled by 21 stiffness
constants. If the two tangent stiffness constants are equal, i.e., D, = D, , the independent
stiffness constants reduce from 21 to 18.

(3) If the directions of the principal fabric axes are the same as those of principal
stress axes, though it is anisotropic, the number of independent stiffness constants is o.nly
nine.

(4) For the case of the transversely isotropic assembly, only five independent
stiffness constants determine the stress-strain relation.

(5) For an isotropic assembly, the number of independent constants is two.
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CHAPTER 5

ANISOTROPIC SWELLING MODEL FOR CLAY

5.1 INTRODUCTION

In previous chapters we have analyzed the characteristics of the granular materials
and derived the stress-strain relations by introducing the concepts of fabrics. The stress-
strain models are based on the contact density and contact distribution of the particle
assembly. The conclusions obtained from these models indicate that the mechanical
behaviours of granular materials are contrélled by the changes of contact stiffness, void
ratio and fabrics. H9wever, these models have limitations when they are used in the
analysis of swelling clay. First, the relevant particles in swelling clay are not spherical or
elliptical particles but "plate-like" particles. Second, the swelling behaviour of swelling
clay is not controlled by the particle slip or the gain and loss of contact points but by the
mechanism of "double-layer" swelling. Therefore, we have to find a new model to predict
quantitatively the swelling deformation behaviour of clay. In this chapter, the constitutive
relations for two-dimensional and three-dimensional anisotropic swelling are derived. In

addition, theoretical results and test data are compared.

5.2 SWELLING MECHANISM IN CLAY
Natural clays normally contain a significant portion of structured assemblages

composed of clay mineral particles (Figure 5.1). Clay mineral particles are of "plate-like"



Figure 5.1 Fabric Structure of A Nature Clay
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form having a high specific surface area. The surfaces of clay mineral particles carry
residual negative charges, mainly as a result of the isomorphous substitution of aluminum
or silicon atoms of basic clay mineral structural units by atoms of lower valency, but also
due to dissociation of hydroxyl ions. The negative charges on the clay particles surface
result in cations present in the water in the void space being attracted to the particles. The
net effect is that the cations form a dispersed layer adjacen; to the particle, the cation
concentration decreasing with increasing distance from the surface until the concentration
becomes equal to that in the "normal" water-pore fluid in the void space. The negatively
charged particle surface and dispersed layer of cations is termed a ’double layer"
structure, For a given particle, the thickness of the cation layer or double layer depends
on the valency and concentration of the cations.

When a natural clay sample is exposed to fresh or pure water, the water molecules
have a tendency to diffuse into the double layer according to the ionic concentration
gradient between the void space and the external, i.e., osmotic process. Water molecules
are adsorbed to the particle surface causing an increase in the double layer thickness, i.e.,
swelling (Figure 5.2). Adsorbed water molecules can move relatively freely parallel to the

“particle, but movement perpendicular to the surface is restricted. The amount of swelling
on exposed to fresh water is dependent on the freedom allowed in swelling. A sufficiently
high external pressure can be imposed on the clay sample to inhibit any water migration
from outside into the clay particles. This pressure is called swelling pressure, o, , at which
no swelling is induced. If the external pressure o is less than the value of o, swelling

will occur. There exists a relation linking the swelling between clay particles
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Figure 5.2 Negatively Charged Cléy Particle and Surrounding Aqueous Solution
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and the external normal pressure. This relation may be linear or non-linear. In this study,

we assume a linear relation as follows (Figure 5.3):

8=C,(0,-0) (5.1)

where 8 is the swell per unit length between clay particles; o, is the swelling pressure;

o is the imposed normal pressure; and C,, is the slope or coefficient of swell.

5.3 ANISOTROPIC SWELLING MODEL
5.3.1 Two-Dimensional Model

The density function used to describe the clay particle distribution is similar to that
for a granular particle, except that the orientation of the clay particle is defined by its
normal instead of the contact angle (Figure 5.4). Here the normal direction is defined as
the direction perpendicular to the clay particle. So the density function used is similar to

equation (2.2)

I (5.2)
a(0)=-—(Acos?0+Bsin?0+Csin20)
T

where A, B, and C are fabric constants, 6 is the angle between the normal and horizontal
axis.

When a vertical stress ©,, and a horizontal stress ©,, are applied to a sample
consisting of clay particles (Figure 5.4), the induced normal stress, 6° , and shear stress,
7' at the i particle with an angle 6' between the normal and the horizontal plane is

given by
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o'(0)=0,_cos’6'+0_sin’6!
(5.3)
o._-0
7(0)=—2=—25in26’
2
It is important to note that stresses, 6 and T, are average stresses acting on the
clay particle surfaces. They are not interparticle or contact stresses. It is assumed that
shear stress has no effect on the swelling. Hence, if the induced normal stress is less than
the swelling pressure o, , swelling will occur. The normal swell strains for the i" clay

particle is given by

3'=C_[o,-0'(6' )] 54
Resolving the normal swell into its x- and y- components and summing up all
components for all particles in a unit volume, the resultant x- and y- swell are obtained

by integration

8 =C, f_i[o,—a(e)]cose a(6)db (5.5)
2
-11,-11,
5, =C. j:[ 0,-0(0)]sin® a(6)do | (5.6)
=JJ,-JJ,

where



106
C x
1,=—* [ o, cos6(Acos™+Bsin?0+Csin20)d0
Lo
2C_o

B T

C -X
1= [ (00058 +0, 5in"6)(Acos 8 +Bsin’® +Csin26)cos6dd
2

C X
=—* [ ? [0,,(Acos "8 +Bcos 0sin® +Ccos0sin26)
n - —
2
+0, (Asin*8cos’0 +Bsin*8cosd +Csin?Bsin26cos6)]do

2C,,
= 32{20, (44 +B)+0,,(24+3B)]

C
Ja=—= , O, SinB(4cos’+Bsin?0+Csin20)d

2C
-2t u2m)
3n

Co 7
=== [(0,,c05°8 +0, sin’8)(Acos 8 +Bsin’@ +Csin26)sin6do

c
=—2 [ "[0,,(4cos*Bsind +Bcos*sin’® +Ccos*Bsin2Bsind)
T
+0, (Asin*6c0s’0 +Bsin °0 +Csin*0sin26)]d0
2C
=15 10,(34+2B)+20, (A+4B)]

Since the integrations in equations (5.5) and (5.6) are performed per unit value,
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the displacements are equal to the strain. Therefore, in the case of two-dimensions the

stress-strain relations for swelling soil are given by

e;——zc"{Sa (2A+B)-[20_(4A+B)+0o, (24 +3B)]} (5.7)
157 °* xx w )
s A +4B)]} (5.8)
8)’)‘ B 15% os(A +2B) ‘[On(SA "'ZB) +20”(A +4B)] -

Equations (5.7) and (5.8) indicate that swelling strains are dependent on the clay
particle swelling properties, the fabric distribution and the imposed stress. The external
stresses or swelling pressures, ©,, and O,,, to prevent any swelling ( ie., &, = &, = 0)

are a function of fabrics.

5.3.2 Three-Dimensional Model
The density function of the normal directions to clay particles for the case of

three-dimensions is:

a(Y,B)=%(aninzycos’B +N, sin*ysin®p +N cos>y) (5.9)

where vy and P are coordinate angles as defined and shown in Figure 3.1; N, N;,,, and
N, are fabric constants. From equation (4.11) we have N,, + N, +N,, = 3. The normal

stress to the clay particle for three-dimensions is:

o'(y',p)=0_sin’y'cos’p +o”sinzy‘sinzp‘+ouooszy‘ (5.10)

Similar to the case of two-dimensions. the swelling strain components are given
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(5.11)
ex=C f =dB f [o,-o(y, B)la(y, B)sin’ycosBdy
(5.12)
S~ 2 L dp f [o,-o(y, B)la(y, P)sin’ysinBdy
(5.13)
e, "ap f [o,-a(v, P)la(y, B)sinycosydy
Substituting equations (5.9) and (5.10) into equation (5.11) we have
Cu % x . . .
3;;:'4: f "';idp j; [0,~(o_sin®ycos*p +awsmzysmzp +0,,cos™Y)]
(5.149)

[N_sin?ycos?f +N, sin*ysin’B +N cos’y]sin’ycosPdy

C
=.Z:.:‘;(HXO+HXI +HX, +HX;+HX,+HX + HX+ HX,+ HX +HX))

where

r
HXy=0,[ 5dB [ "N sin*ycos®B +N, sin'
2

ysin?Bcosp +N, cos?ysin®ycosp)dy

N2

HX -on,an dBf smycos’ﬂdy-no’“N’“ ,



and

HX -o,dNyyf dpf sinSycos®Psin de———I‘;—IYf 8
7 T . TOo

HX,=0 N, [ adp [’ SIn‘YOOS’BcoszvdF—l";N =,
2

BX,=o N[ dpf smysm%cos’pdy-“”” =

HXf“»”»’f _-idﬂ f:SinGYSin“BCOSﬂdY: ﬂO,S,N,, ,
2
T g (" . 2 ~o, N,
HX¢=0 N, f _wdp fo sin*ycos*ycosPsin’fdy —
2
HX,= ouN“f dﬂf sin’ ycos’ycos%dy- ”N"" ,

HX, ouN”f ~dp f sin®ycos?ysin’pcosPdy = 0;4Nyy

HX,=0 N, f __id[} fo “sin?ycos*ycosPdy =£(_’§1_1_V§
2

So we obtain the strain component in the x-direction

]

109



1 1
en=l—6{Cna,(Nxx+3)——G—C“[(803+20”+20u)Nn
+(2an+3oyywa)N”+(202x+a”+3au)Na)]}
Substituting equations (5.9) and (5.10) into equation (5.13) we have

C ;
= " L e 2, o2 $ 2, e 2 2
e”—-zi’- o dp j; [o,-(o_sin“ycos p+o”sm ysin“p +0_cos®y)]

[N, sin*ycosP?B +N, sin*ysin’p +N,cos’yIsin’ysinpdy

=2 (HY, +HY, +HY, +HY, + HY + HY + HY g HY, + HY + HY)

where

HY,=o, fo "dp fo " (N,_sin*ycos*Psinp

+N sin*ysin’p +N_cos>ysin*ysinf )dy

nOo,
y (N +2N,+N,)

T0,
4

®,,+3)

® . . RO N,
HYf%ano"dﬁ fo sin®ycos*psinBdy = ’;N ,

no
HY =0, ["dB [ "sin®ycos*psinpay =22

HY,=0, N, ["dp [ "sin*ycos’Beos’ysinpdy =-’%’fﬁvﬁ ,
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(5.15)

(5.16)
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HY,=o N, fo"dﬂ fo"sin‘ysin"‘pcoszpdy =ffi”—2N—’i‘— ,
HY;=o,N,, f:dﬂ f;"sins'vsins pdy =%”N”’ .
HYg=0, N, ["dp [ “sin*ycosysin®Bdy =ng;& :
HY,=0 N, ]; "dp fo "sin%ycos?ycos?PsinBdy =%‘TN’“ ,

HYg=0 N, [ "dp [ "sin*ycos’ysin®pdy =M—QN’—’ ,

x ® . . no
HY,=0 N, [db [ "sisPyoostysinpdy =2

So we obtain the strain component on the y-direction

1
e”=E{C”o,(N”+3)-%C”[(30“+20”+oa)Nxx
+Q0,,+80 +20 )N, +(0_+20 +30_ )N )1}

Substituting equations (5.8) and (5.9) into equation (5.12) we have
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(2.17)
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K73 2%

€2 Jo dp fo _i[o,—(ozsinzycoszﬂ +0, sin’ysin®p +a_cos’y)]

[N_sin*ycos?p +N, sinysin?p +N, cos?yJsinycosydy (5.18)

C
=-‘-‘-i"'-:-(HZo +HZ,+HZ,+HZ +HZ +HZ +HZ +HZ,+HZ;+HZ)

where

HZ,=o, f; > dp fo_i(Nn,sin'“’ycoschosy

+N, sin*ysin’Bcosy +N_ cos’ysiny)dy

nao,
2 (N *N,,+2N,)

O,
2 (N.*3) ,

‘ 2n > ©o
HZ,=0 N, [ "dp fozmn’*{cosvcoS‘de=—§‘N—’f"- ,

nonN”,
24

b

2% > R .
Hz2=o,,1v”fo dp fo 2sin’ycos?Psin?Pcosydy =

2x 2 R To
HZ,=0, N, [7"ap [ sinPyoopoosydy -

’

1.1 1 . . no XX
H2, 0N, [ b [ sistysis?BoosBoosydy =" 2=
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x 2 .. no
HZS=0»N”L) 2 dp j;) 2sin’ysin*Pcosydy = ’8"N 2,

2x > . R o
HZg=o N, [ "dp fozsmsvcossvsmzﬁdv—l’;& ,

- z %o
HZ,=0 N, [""dp [ Zsin’ycosycos®pdy=—2= 1“2N z,

. 2 z ) . no
HZ8=odN”J; "dp fozsxnsycos3ys1nzl3dy= ;‘ZN »

and

n
2 = nwo, N
HZ,=o N, fo "dp L 2sinycos’ydy =-——§——‘5

So we obtain the strain component on the z-direction

1 1
oo 1g Cat NP~ CallBar0, 20N, 519

+(0,,+30,+20, )N, +(20,,+20, +80 )N, )]}

We rearrange equations (5.15), (5.17) and equation (5.19), so
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C
exx=1_15{C,.0,(Nxx+3)'T'[(Z(“Nn*lv N0k

(5.20)
+(2N, +3N, +N_)a, +(2N_+N,_ +3N_)o ]}
L o (N +3)-S2[(BN_+2N_+N
®=16 e 0N+ )-—6-[(( 2N, +N )o
} (5.21)
+2(Nu+4N”+Nu)o”,+(Nxx+2N”+3Na)oz]}
e =~—1—{C o (N, +3)-—C£[((3N +N_+2N )o
Z 16 s = 6 xx yy /" xx (5.22)

+(Nn+3N”+2Nu)o”+2(Nn+N”+4Na)ou]}
In order to obtain the stress-strain relations from the theoretical model we have
to find the fabric constants N, N,,, and N,,. By using the relation N,, + Ny, + N,, =3,

the constitutive relations become

C
e =?;-[180,-3(2on+0”+30u)+(608

- (5.23)
=60,,-0,,+0)N,,-2(0,,~6 )N, |
c
£~ 5 [189,73(0,+20,,+30,)-2(0, (5.24)
~0 )N, +(66,-0,-60,+0, )N, ]
c
0= gg 1360, 20, +0,,+40,)-(60, 40, -
(5.25)

“0,,"60a)N,“'(60,‘°n+°,,'5°a)N,,]

The fabric constants are given by
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= @28“—‘68)})(}'1 exx—flea) —(fl €y 81 8:::)(f38a _hgen)
= (fégyy_g?'exx)(féezz—h?»exx) "(hzan‘ﬁea)(gzen-f;e”) - (5:26)

_ (hl en_flezz)(gsen—fzeyy) -(fleyy—gl exx)(fzezz_hZexx)

(5.27)
» (fi.’:ayy_gZBn)(fZSzz—hzen)-(h38xx-f;8a)(338xz—~éeyy)

where
f1=18o,—3(203+o”+3ou) ,

f;=60,-(60

n+°yy—°zz) ,

f5=2(0,-0,) ,
g8,~180,-2(0,,+20,,+30,) ,
8,=60,-0, -60 +0,_,

8:=2(0,-0,) »

h,=2[18¢, (o +0  +40 )] ,

h2=—6o,—(an—o”-—60u) ,

and

h3=-6o,+on—o”+60u
Equations (5.20) to (5.27) provide a theoretical framework for the anisotropic
swelling behaviour of clay. The model states that the swelling strains are dependent on

clay particle swelling properties, clay particle fabrics, and the imposed stresses. The
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application of stress in one principal direction not only suppresses the swelling in that
direction but also reduces swelling in the orthogonal directions. The model predicts a
linear relationship between the imposed stress and the swelling strain because a linear
stress-strain law for the clay particle is assumed. The power and semi-log laws can be
introduced to describe non-linear swelling behaviour.

According the definition of elastic theory, we obtain corresponding Young’s

moduli

12
E_=- 5.28
x* Co (N +N +N) (5-28)

12
E_=- (5.29)
» Ca(N*4N +N)
12 '
E =- 5.30)
% C (N, +N,+4N) (
Obviously, for transversely isotropic swelling clay, we have
24
E =E =— 2%
=P C(15-3N))
(5.31)
.
“ C(+Ny)
For isotropic swelling soil, the Young’s moduli become
E_-E, <E_=-—2 (532)
x “yy Ym
»

The Poisson’s ratio is -0.5 for isotropic swelling clay. The negative value of
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Poisson’s ratio means that the clay sample will swell, instead of contract, in three

orthogonal directions when the imposed stress is less than the swelling pressure.

5.4 COMPARISON OF THEORETICAL RESULTS WITH EXPERIMENTAL DATA
In this section, the proposed anisotropic swelling mo_del will be used to analyze
the experimental results of swelling tests on Southern Ontario Queenston clay shale cores.
Details of testing methods and results are reported by Lo and Lee (1990). They found that
the swelling behaviour is orthotropic and highly stress dependent. The api)lication of
stress in one principal direction not only suppresses the swelling in that principal direction
but also in the orthogonal directions. However, they did not bring forward a theory to

account for the behaviour observed from their tests.

5.4.1 Experimental Data
5.4.1.1 Shale Samples

The samples of Queenston shale studied were obtained at depths between 80m and
122m from a borehole near Niagara Falls, Southern Ontario. The directions and
magnitudes of the in situ principal horizontal stresses determined from hydrofracturing
tests are: 7.9 MPa along the major principal horizontal-stress direction (HM) direction,
and 5.2 MPa along the major principal horizontal-stress direction (HN direction). The
direction of the minor principal stress is N45°E. The in situ vertical stress (V direction)
is due to the overburden of depth about 105m.

The average unit weight of Queenston shale is 26.7 KN/m>. The water content is
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about 2.6 %, and the porosity is approximately 7%. The calcite content varies from 3%
to 7%. The salinity of the pore fluid is in the range of 108-265 g/L. The elastic moduli
vary from 9 to 13 GPa, with Poisson’s ratios of 0.35-0.40. There is no significant trend
of variation in physical and mechanical properties with depth.
5.4.1.2 Test Detail and Results

To study the directional swelling behaviour, two types of swelling tests, the free
swelling tests and the semiconfined swell test, were used to measure the swelling
deformations in the directions of the three principal stress, i.e., V, HM, and HN directions

In the free swelling test, a cylindrical sample (61mm in diameter and 62mm in
height) was immersed in a bath of water, and no vertical stress, G,, was applied to the
sample. Eleven free swelling tests were performed on shale samples prepared from the
vertically drilled cores where orientations were shown in Figure 5.5a. The test results are
shown in Table 5.1.

The swelling strains are expressed in swelling potential, i.e., the swelling strains
which occurred between 10 and 100 days. The horizontal strains in the major and minor

principal stress directions (HM and HN directions, respectively) are virtually identical,



Table 5.1 Summary of Free Swelling Test Results

On Queenston-Shale from SABNGS No. 3 Site
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Year of Sample o, Swelling potential

test No. (MPa) HM HN V
(%)

1985 FS1 0 032 032 048

FS2 0 024 024 039

FS3 0 024 0.24 045

1986 FS1 0 031 031 041

FS2 0 034 034 0.51

FS3 0 027 0.27 042

1987 FS1 0 030 0.30 0.49

EFS2 0 034 034 0.54

FS3 0 024 0.24 0.38

FS4 0 024 0.24 041

FS5 0 022 0.22 0.37
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indicating the swelling behaviour in the horizontal directions is isotropic. It is also
observed from Table 5.1 that (1) there is no definite trend in variation of vertical and
horizontal swelling potential with depth, and (2) swelling potentials in the vertical
direction are approximately 1.6 times these in the horizontal directions.

In the semiconfined swelling test, a cylindrical sample was immersed in a bath of
water and a vertical stress, ,, was applied to the top of the sa;nple. Test samples of three
different orientations coaxial with the in situ stress were prepared for the semiconfined
swelling test, as shown in Figure 5.5b to 5.5d. The swelling potentials measured in 27
tests were summarized in Table 5.2. Test results indicate that the applied stress in the
. vertical direction suppresses the swelling in the horizontal directions, on which external
stresses are applied. Swelling potentials in all three directions decrease with increasing
applied stress. Swelling potentials in the vertical direction are generally higher than
horizontal swelling potentials, suggesting that the swelling behaviour of Queenston shale
is transversely isotropic. However, the swelling potentials in the horizontal directions are

isotropic.

5.4.2 Model Prediction

In this section, we determine the swelling pressure o, swelling coéfﬁcient C,. and
fabric constants N,,, N,, and N,, from the free swell results using the model. With these
determined values, we use the model to predict the swelling potentials under the
semiconfined condition and compare the predicted results with those observed in the

semiconfined tests.



Table 5.2 Summary of Modified Semiconfined Swell Test

Results on Queenston Shale from SABNGS No.3 Site

Year of test Sample No. o, (MPa) Swelling potential
HM HN \%

1985 MSC/V1 0.027 020 0.210 0.265
MSC/V2 0.131 0.19 0.170 0.220
MSC/V3 0.691 0.17 0.155 0.140
MSC/HM1 0.036 0.19 0.120 0.245
MSC/HM2 0.342 0.15 0.135 0.180
MSC/HM3 1.855 0.04 0.115 0.150
MSC/HN1 0.036 024 0.150 0.260
MSC/HN2 0.342 0.18 0.125 0.220
MSC/HN3 1.860 0.11  0.040 0.145

1986 MSC/V1 0.019 0.210 0.210 0.240
MSC/V2 0.131 0.230 0.170 0.202
MSC/V3 0.687 0.140 0.140 0.195
MSC/HM1 0.036 0.180 0.165 0.220
MSC/HM2 0.358 0.125 0.120 0.220
MSC/HM3 1.866 0.040 0.125 0.165
MSC/HN1 0.036 0.160 0.150 0.270
MSC/HN2 0.355 0.160 0.160 0.205 .
MSC/HN3 1.868 0.060 0.025 0.160

1987 MSC/V1 0.025 0.175 0.140 0.220
MSC/V2 0.250 0.125 0.105 0.185
MSC/V3 2.380 0.150 0.100 0.080
MSC/HM1 0.025 0.155 0.210 0.250
MSC/HM2 0.250 0.125 0.180 0.240
MSC/HM3 2.420 0.050 0.105 0.190
MSC/HN1 0.025 0220 0.195 0.300
MSC/HN2 0.260 0220 0.145 0.290
MSC/HN3 2.420 0.110 0.040 0.130
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In free swelling conditions, equations (5.26) to (5.27) are simplified to

N __3(38,“-8”—%) (5.33)
T e te e,

N =3(3e”-en—eu) (5.34)
» B e, tE,

After averaging the data of swelling potentials listed in Table 5.1 for each year,
and then substituting those data into the equations (5.33) and (5.34), we obtain the fabric
constants N,, and N,,. The assumed swelling pressure o, is 3.26 MPa which is larger than
the in-situ vertical stress. Using the relations N,,+N,,+N,,=3, the swell coefficient C,,
fabric constants N,, , Ny, and N,, and elastic moduli E,,, E,,, and E,, are calculated and
presented in Table 5.3.

Table 5.3 Summary of Fabric Constants and C,,

Year C, C,. Fabric constants Elastic moduli
(GPa)

of test (MPa) | (1/GPa) Ny N, N, E,x E, E,

1985 3.26 0.2910 0.2879 0.2879 2.4243 10.7 10.7 40

1986 3.26 0.2908 04717 04717 2.0565 93 93 45

1987 3.26 0.2216 0.3018 0.3018 2.3963 139 139 5.3

The fabric constant N,, and elastic modulus in the vertical direction E,, are
larger than fabric constants N,, and N, and elastic moduli E,, and E,, in the horizontal

directions, indicating that the vertical swelling potential is larger than the horizontal. In
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addition, N, =N, and E,, = E,, suggests isotropic swelling deformation in the horizontal
directions.

Using the swelling constants and fabric constants determined from the free swell
tests, the swelling potential under semiconfined condition listed in Table 5.2 are
calculated from the model, and plotted in Figures 5.6 to 5.11. In these figures
experimental data are also plotted for comparison. The predicted swelling behaviour are
generally consistent with those observed in the tests. However, in some V tests, there are
differences between the predicted results and experimental measurements. This is probably
due to the heterogeneity of the samples. The application of confining stress in one
direction suppresses the swelling in its direction as well as the orthogonal directions. The
difference between the predicted and observed results are mainly due to the assumption
of the linear swelling behaviour of clay particles, i.e., C,, becomes independent of stress.
A non-linear behaviour obeying power or semi-log law may yield a better match between
the predicted and observed results. However, no analytical solution will be obtained and

numerical analysis is required if a non-linear swell relation is used.

5.5 CONCLUSION

In this chapter, a stress-strain model based on micromechanics has been developed
to predict anisotropic swelling behaviour of clay. The model predicts that the swelling is
dependent on clay particle swelling properties, fabrics and imposed principal stresses. The
application of stress in one direction suppresses the swelling in that direction as well as

in orthogonal directions. The model has been evaluated by comparing the predicted results
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with those from experiments.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 INTRODUCTION

Particulate;, discrete and frictional materials such as sands, form a separate class
of materials. Stress and strain at a point, as defined for continuous media, are not valid
for assemblies consisting of granular sands and swell particles. Instead, stress and strain
have to be redefined for these assemblies, as the force and displacement averaged over
a representative-unit or a finite volume within the system. This process of averaging is
performed by summation of the total contact normals for regular packing or integration
using a density function of contact normals for random packing.

The constitutive relations are dependent on the microstructure or fabric of a
particulate assembly. Different types of regular packing have different stress-strain
relations which can be reflected by the corresponding constitutive coefficients. For a
random packing assembly, the stiffness tensor can be obtained in an explicit form which
is expressed in terms of the contact stiffness of the particles and the fabric tensor of the
assembly.

Based on analysis of the micromechanics of particulate assemblies, including
assemblies of rigid particles, deformable particles, and swelling particles, stress-strain
relations are derived from the concepts of a sliding plane and micromechanical

continuum. The conclusions presented are applicable to granular sands and swelling clays.
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6.2 CONCLUSIONS

The shear behaviour of a granular assembly of rigid particles in simple shear and
biaxial compression conditions have been studied using the principle of micromechanics.
Analytical solutions are derived to describe the stress ratio, the change in fabric
distribution and orientation, and the strain ratio during the process of shear deformation.
Development of a stress-strain model based on micromechanics requires an additional
relation linking the change in fabrics, and the change in contact number to the strain. The
main advantages of this micromechanical model are that the model considers the effects
of the fabric anisotropy, and the rotation of principal stress on the shear deformation of
granular medium. The model provides a sound basis to explain some empirical
correlations in soil mechanics such as Rowe’s stress-dilatancy law and critical state. Since
the model includes the effects of fabrics, the model can be applicable to any granular
assembly of particles of different size distribution.

Based on the principles of micro-mechanics we have derived the stress-strain
relations of contact deformation for two-dimensional and three-dimensional regular
packing assemblies. The derived stiffness constants are functions of the particle size, void
ratio, coordination number, and interparticle contact stiffness. If the interparticle contact
interaction is assumed to be linear elastic with no sliding at the contact, the assembly
deformation is elastic. If the nonlinear constant stiffness given by the Hertz-Mindlin
theory of friction contact is used, nonlinear deformation will occur due to plastic
deformation at the contacts. It is noted that the stiffness tensor is derived for an increment

of load based on the packing structure at the instant of load increment. The packing
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structure , however, changes during the deformation process. Therefore, for cases with a
large change of packing structure such as at high levels of deviatoric stress, the evolution
of the packing structure with load should be defined in order to obtain the complete
stress-strain relation. For cases with negligibly small changes in packing structure such
as for packing under low levels of deviatoric stress, the proposed stress-strain relation
can be directly applied in analyses of practical problems. All the solutions can be used
in the cases of different complicated loads because here we assume the principal stress
axis not to be coincident with the principal fabric axis. No matter what case, two
dimensional or three-dimensional, if the assembly is isotropic and D=D,, only two
stiffness constants are independent. If the assembly is isotropic on the cross plane for the
case of three-dimensions, five stiffness constants are independent. These conclusions are
the same as those obtained by the theory of continuum mechanics. In addition, stiffness
constants are dependent on the different fabric constants.

For random packing assemblies the stress-strain relations under contact
deformation are derived considering the fabric distribution and orientation, and
micromechanics. The main conclusions are consistent with those from the conclusions
from continuum theory. These conclusions include: (1) The stress-strain relations are
related to the fabrics of assembly and to the local contact stiffnesses. (2) For a fully
anisotropic assembly, if the three local contact stiffness constants are not equal to one
another, the stress-strain relation is controlled by 21 stiffness constants. If the two tangent
stiffness constants are equal, i.e. D, = D, , the independent stiffness constants reduce from

21 to 18. (3) If the directions of the prihcipal fabric axes are the same as those of
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principal stress axes, though it is anisotropic, the number of independent stiffness
constants is only nine. (4) For the case of the isotropic assembly on the intersection plane,
only five independent stiffness constants determine the stress-strain relation. (5) For an
isotropic assembly, there are two independent constants.

In addition, a stress-strain model based on micromec_hanics has been developed
to predict anisotropic swelling behaviour of clay. The model predicts that the swelling is
dependent of clay particle swelling properties, fabrics and imposed principal stresses. The
application of stress in one direction suppresses the swelling in that direction as well as
the orthogonal directions. The model has been evaluated by comparing the predicted

results with these from experiments.

6.3 RECOMMENDATIONS

In Chapter 2, the model can be applied to a particulate assembly with any shape
and size of particles. A versatile three-dimensional model can be obtained using the same
approach as presented in this chapter. In this case, we have to introduce a three-
dimensional density function same as equation (4.7) and analyze the equilibrium of
contact forces (f, f,,, and f,;) and external stresses (0,,, Oy, and ,;).

In Chapters 3 and 4, the derived stress-stain relations are based on a system of
equal size spherical particles. It is possible to extend this model to a system with different
size distribution but still spherical particles if we introduce a density function describing
particle dimension or void ratio.

In Chapter 5, we assume the swelling coefficient is a constant and the local
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constitutive law of swelling particles depends on the first-power of normal pressure. There

are two ways to improve this model, namely, we assume a local constitutive law

8'=C, (0)[o,-0(v,p)]

or

3'=C_[o,-o(y,p)I"

where 1) is a test parameter.
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