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ABSTRACT 

The shear behaviours of a granular assembly of rigid particles in simple shear and 

biaxial compression conditions have been studied using the principle of micromechanics. 

Analytical solutions are derived to describe the stress ratio, the change in fabric 

distribution and orientation, and the strain ratio during the process of shearing 

deformation. The stress-strain relations of contact deformation for two-dimensional and 

three-dimensional regular packing assemblies are established. For random packing 

assembly the stress-strain relations under contact deformation are derived considering the 

fabric distribution and orientation, and micromechanics. In addition, a stress-strain model 

has been developed to predict anisotropic swelling behaviour of clay. The model predicts 

that the swelling is dependent of clay particle swelling properties, fabrics and imposed 

principal stresses. 

1'1 
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CHAPTER 1 

INTRODUCTION 

1.1 INTRODUCTION 

The mechanical behaviour of a particulate assembly, including granular sand 

composed of spherical or non-spherical particles and swelling, clay composed of "plate-

like" particles, is significantly influenced by its microstructure. Theories of continuum 

mechanics have limitations when used to describe the strength, stress and strain of these 

particulate assemblies. Hence, mathematical models based on micromechanics are required 

to be established. There are two approaches based on micromechanics, namely, the 

discrete element approach and the microstructural continuum approach. The discrete 

element approach solves the governing equations of each particle interacting with its 

surrounding particle. This simulation method, which stems from the field of molecular 

dynamics, calculates the movements of all particles based on a set of mechanics laws that 

are also simultaneously satisfied for each particle. However, this approach is cumbersome 

for systems composed of a large number of particles because a prohibitive amount of 

computing effort is required to trace the movements and the equilibrating forces of all 

particles. Therefore, it is desirable to represent the discrete system using a more tractable 

continuum model, i.e., the microstructural continuum approach. In this approach, the 

micro-features of the particulate assembly such as the spatial arrangement of particles, the 

distributions of contact normals and inter-particulate forces, are considered using some 

fabric functions. With these fabric functions, the micro-variables (contact force and 
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contact displacement) can be related to the macro-variables (stress and strain). The 

microstructural continuum approach has advantages over the classical continuum method 

because the former approach takes into account the effect of microstructure or fabric on 

the deformation behaviour of particulate assembly. 

1.2 OBJECTIVES 

The main goal of the research is to explore the use of the microstructural 

continuum method to study the deformation behaviour of particulate assemblies such as 

sand and clay. This goal can be fulfilled by achieving the following objectives: 

(1) to quantify the shear deformation of a granular assembly of rigid particles 

under simple shear and biaxial compression conditions, 

(2) to derive stress-strain relations for regular and random packing assemblies of 

deformable particles under general loading conditions, 

(3) to develop 2-D and 3-D anisotropic models for swelling clay, and 

(4) to verify the proposed models with experimental data. 

1.3 LITERATURE REVIEW 

Particulate assemblies typically comprise a large number of particles with a large 

number of degrees of freedom. Development of theories on constitutive mechanics of such 

assemblies are built on two concepts: ( 1) the concept of the mobilized plane which is 

used to analyze the strength feature of the particulate assembly, and (2) the concept of 

the constitutive stiffness which establishes the stress-strain relation in terms of the contact 
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stiffness of particles and fabric parameters of the particulate assembly. 

The concept of the mobilized plane was first introduced by Coulomb (1773) to 

describe the resistance due to internal friction between particles (Figure 1.la). Based on 

this concept, the theory of active and passive pressures was developed by Rankine (1857). 

Roynolds (1885) examined the dilatancy induced by shearing in granular masses 

composed of rigid particles. The corresponding limiting equilibrium for an ideal granular 

wedge was derived (Caquot, 1934). Taylor (1938) proposed that the stress-strain relation 

was specified independently on mobilized planes of various orientations within the 

assembly, and assumed that either the stresses on the mobilized plane are the resolved 

components of the macroscopic stress tensor, or the strains on the mobilized plane are the 

resolved components of the macroscopic strain tensor. In addition, Taylor (1948) and 

Bishop (1950) studied the sliding behaviour by using the mechanism of interlocking 

between particles of granular materials. Interlocking of particles restricts the degree of 

mobilization and the shear strength becomes larger. As a result of the interlocking, 

dilation occurs with sliding. This dilatancy theory was developed by Newland and Allely 

(1957). They suggested that the relative sliding direction between two blocks is not 

parallel to the mobilized plane, but rather at an inclined angle. 

Under the biaxial compressional condition, Rowe (1962) postulated a minimum 

energy principle stating that particles tend to slide along the direction of minimum energy 

and derived the relative direction of sliding between two blocks of particles in a random 

packing assembly subjected to a triaxial loading condition. Based on this postulate, the 

angle between the sliding direction and the mobilized plane is a function of applied stress, 
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(a) Mobilized Plane Concept 

(b) Micromechanical Concept 

Figure 1.1 Two Concepts in Constitutive Mechanics of Particulate Assembly 

(After Chang et al., 1992a) 
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where Op is inter-particle friction angle; a1 and a3 are applied stresses in the vertical 

and horizontal directions, respectively. Later, Borne (1965) studied Rowe's energy 

postulate by considering the sliding between pairs of particles in a random assembly. 

Tokue ( 1979) and Nemat-Nasser (1980) assumed probability distributions function 

for the planes of sliding. Through an integration of this distribution, the average plane of 

sliding can be obtained. Chang (1985) also derived a similar dilatancy equation under 

simple shear condition, based on considering the deformation of a particle chain and 

assuming that the inclination of the mean sliding plane can be related to the mean inter-

particle force vector of the assemblage. The derived dilatancy equation is given by 

de_ a  

dy 1+-tan4 

(1.2) 

where de is vertical strain; dy is horizontal shear strain; a is vertical applied stress; and 

'C is horizontal applied shear stress. 

In the concept of micromechanics (Figure 1.lb), the constitutive relations are 

defined at three levels, namely, contact, micro-element and representative-unit levels, as 

shown in Figure 1.2 and Figure 1.3 (Chang et al., 1992a). 

At the contact level, the constitutive law is determined by micro-variables (contact 

force and contact displacement). At this level, the continuum concept has not yet been 
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MICRO-ELEMENT 

INTER-PARTICLE CONTACT 

Figure 1.2 Schematic Representation of Three Levels of Particulate Assembly 

(After Chang et at., 1992a) 

REPRESENTATIVE 
UNIT 

MICRO-ELEMENT 

INTER-PARTICLE 
CONTACT 

OVERALL 
STRESS-STRAIN 
RELATIONSHIP 

I 
LOCAL 

STRESS-STRAIN 
RELATIONSHIP 

I 
CONTACT 

FORCE-DISPLACEMENT 
RELATIONSHIP 

Figure 1.3 Micromechanics Approach for Modelling Mechanical Behaviour of 

Particulate Assembly (After Chang et al., 1992a) 
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introduced. The analysis at this stage is based on contact theory. If we assume that 

tangential (slip) contact stiffnesses and a normal (compression) contact stiffness being 

independent of one another, the relations between the shear contact forces (f, f) and the 

tangential contact displacements (6,, S) are f, = D,6,, and f, = Dt8,, respectively, where 

D. and D are tangential contact stiffnesses in two directions perpendicular to each 

other, respectively. Likewise, the relation between the normal compressional force f. and 

normal displacement & is determined by f = where D is normal contact 

stiffness. In this case, the stiffness tensor at the contact between particles takes a form 

of (Chang, 1990a, 1990c, 1992a) 

D=D nn1+D3 s+D tt1 (1.3) 

where n, s, and t are basic unit vectors of the local coordinate system of each contact. If 

= l)r, the resultant tangential shear force (fr) is given by f, = Dr6r, where 6, 

is the resultant shear displacement on the contact plane. So the equation (13) becomes 

D=D Yj"r (s1+t) (1.4) 

When the contact force reaches the yield condition defined by the surface friction 

of particles, i.e., f,, =f tan 4, sliding occurs and Dr vanishes. When the contact force 

tends to be in tension, particle separation occurs and D vanishes. If linear behaviour is 

studied, we can choose the contact stiffnesses (D ? D,, and D) to be constants as shown 

in Figure 1.4. However, if we discuss non-linear contact, the contact stiffnesses are 

functions of the contact forces and contact area becomes more complicated. For a contact 

of two smooth spheres, the tangential stiffness under oscillating contact force was studied 
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(a) Normal 

(b) Shear 

Figure 1.4 Force and Displacement Relations (Alter Change et al., 1992a) 
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by Mindlin and Deresiewicz (1953). They summarized some of the difficulties 

encountered and some results obtained in the course of development of a mathematical 

theory of small deformations of granular media. The medium is assumed to be composed 

of discrete, isotropic, elastic granules in direct contact under local forces which, in 

general, vary in the magnitude and in direction. The consideration of the effects of this 

variation served to distinguish the theory from several others (Hara, 1935; lida, 1939; 

Gassmann, 1953) in which only normal components of the contact forces were taken into 

account. 

A general expression for the tangential stiffness of two particles can be written as 

a function of the contact force and the particle properties as follows 

1 D,=C1D(l   fr )3 

fta$ 
(1.5) 

where v is the particle Poisson's ratio; C1=2(1-v)/(2-v). 

Considering the contact area to be circular with a parabolic pressure distribution, 

the deformation at the contact is obtained from the elasticity solution for pressure loads 

on semi-infinite space. This leads to the expression of normal stiffness as follows 

(Johnson, 1985) 

D C2r(1-v)/j 

1-vu r2G 
(1.6) 

where r is the radius of the particles; G is the particle shear modulus; C2 is a constant. 

At the micro-element level, the stress and strain are defined in connection with the 
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resultant contact forces and the resultant displacements, respectively. The stress-strain 

relation is then obtained in terms of the contact stiffnesses. Obviously, for a regular 

packing assembly, the behaviour at the micro-element level is the same as that at 

representative-unit level. Some researchers have obtained different stress-strain relations 

for different regular packing assemblies, namely, Simth et al. (1929) suggested a 

configuration of a mixture of zones composed of face-cantered cubic and simple cubic 

packing. The micromechanical models are developed by Duffy and Mindlin (1957) for 

a face-centred cubic array of elastic spheres in contact, by Deresiewicz (1958) for a 

simple cubic array, and by Makhlouf and Stewart (1967) for a cubic-tetrahedral and a 

tetragonal spheroidal array. 

Computer simulation has been used as a tool for micromechanics analysis at the 

micro-element level. Various types of discrete element methods have been developed 

(Serrano and Rodriguez-Ortiz, 1973; Cundall and Strack, 1979; Kishino, 1988; Bathurst 

and Rothenburg, 1988a and 1988b) and applied successfully to describe the behaviour of 

granular materials under various loading conditions (Cundall and Strack, 1979; Chang and 

Misra, 1989b; Ting and Corkum, 1988). 

At the representative-unit level, since the assembly consists of a large number of 

particles, it is expedient to treat the system as a random packing system, Therefore, from 

the statistical point of view, a density function has to be introduced so that the micro-

mechanical variables (contact force and contact displacement) can be connected with the 

macro-mechanical variables (stress and strain) by the intermediate fabric variables. Such 

a density function is introduced to describe the spatial distribution of branch vectors (the 
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vectors joining the centroids of particles in contact), and of normal vectors at the inter-

particle contacts. These concepts of vector distribution can be found in the work of Oda 

(1972a) and Oda et al. (1982). Along this line, Christofferson et al. ( 1981) defined an 

average stress in terms of inter-particle contact forces. The above micromechanical 

definitions can also be found in the work by Drescher and Dejosseline (1972), and a 

number of papers in Cowin and Satake (1978), Jenkins and Satake (1983), and Satake and 

Jenkins 1988). In addition, Digby (1981) obtained the effective elastic moduli of porous 

rocks by considering them to be composed of spherical particles with no shear force 

acting at the contact. Walton (1987) studied the moduli of isotropic packing of equal 

spheres under axi-symmetrical loading considering both normal and tangential 

compliancies at contact. Jenkins (1988) analyzed the volume change characteristics of 

assemblies of equal spheres under small axi-symmetrical deformation. Bathurst and 

Rothenburg (1988a and 1988b) studied the behaviour of disk packing with linear contact 

interactions. In recent years, the micromechanics of particulate assemblies has been 

greatly developed from a series of work by Chang, namely, a stress-strain theory for 

random packing has been developed (Chang, 1988; Chang et al., 1989a); The theory has 

been verified by computer simulation of disks (Chang and Misra, 1989b). The theory has 

been applied to the behaviour of sand (Chang et al., 1989b) and cemented sand (Chang 

et al., 1990e), with discussions of the fabric effects on initial moduli (Chang and Misra, 

(1990c). 

The study presented in this thesis is based on a micromechanics approach at the 

micro-element (regular packing) and representative-unit levels (random packing). 
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1.4 ORGANIZATION 

Chapter 1 covers the topic of investigation, objectives and literature review. 

Chapter 2 investigates shear deformation of granular assemblies of rigid particles 

under simple shear and biaxial compression conditions. The relations between stress ratio 

and fabric constants, and the relations between strain ratio and fabric constants are 

established by introducing the density function of contact normals. Using the fabric 

constants as the intermediate variables, the relations between stress and strain are 

obtained. These relations are compared to those proposed in previous publications. 

Chapter 3 studies the behaviour of a granular assembly under small strain. The 

relations between micro-mechanical quantities and micro-mechanical variables are 

analyzed, and the proposed stress-strain stiffness tensors are expressed in terms of the 

fabric quantities. 

In Chapter 4 the stress-strain relations of small strain are analyzed for granular 

assemblies of random packing. The corresponding relations between the fabric tensor and 

the stiffness tensor are discussed. Finally the relations between the fabric tensor and the 

moduli of assemblies are given. 

In Chapter 5, the micromechanics approach is used to study the behaviour of 

swelling clay. Constitutive relations for two-dimensional and three-dimensional anisotropic 

swelling are derived. Results predicted from the swelling model are compared to those 

observed in experiments. 

Chapter 6 summarizes the major conclusions from this study and presents 

recommendations for further research. 
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CHAPTER 2 

SHEAR DEFORMATION OF AN 

ASSEMBLY OF RIGID PARTICLES IN SIMPLE 

SHEAR AND BIAXIAL COMPRESSION CONDITIONS 

2.1 INTRODUCTION 

Sand is a particulate, discrete and frictional material forming a discontinuous 

medium. The discrete nature of sand facilitates fabric change or spatial rearrangement of 

particles as a result of external loading. Hence, micromechanics may be an appropriate 

approach to study the granular behaviour of sand. The deformation of an assembly of 

particles may be caused by: ( 1) the sliding and rolling between particles, (2) the 

deformation of solid particles, and (3) the crushing of particles (Ko and Scott, 1967). 

Shear deformation caused by particle sliding and rolling in simple shear and biaxial 

compression conditions will be studied in this chapter. Deformation of solid particles will 

be treated in Chapters 3 and 4. Crushing of sand particles is significant at high stress 

levels (Vesic and dough, 1968) and is beyond the scope of this thesis. 

In this chapter, by introducing the density function of normals at particle contacts, 

the relations between stress ratio and fabric constants, and the relations between strain 

ratio and fabric constants are established. Using the fabric constants as the intermediate 

variables, the relation between stress and strain are obtained for simple shear and biaxial 

compression. 
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2.2 MATHEMATICAL EXPRESSION OF FABRICS 

2.2.1 Distribution of Contact Normals 

The inter-particle forces between two particles are shown in Figure 2.1. The two 

components of contact force are the tangential contact force f' and the normal contact 

force f at the ith contact point, respectively. The tangential contact force f1 is 

parallel to the 1th contact plane and the normal contact force f11 perpendicular to the 

contact plane. The contact normal n is defined as the vector perpendicular to the th 

contact plane of the particles. In order to describe the characteristic of the spatial 

arrangement of particles of a granular assembly, we define a density function: 

E() --_N1nn1 

(2.1) 

=-(N 

+2N+2Nyi+2N,nn) 

where Q is a solid angle; D=4 in the 3-D case and D=1 in the 2-D case; N1 is a second-

order fabric tensor; ni and nj are the components of the contact normal vectors in i and 

j directions, respectively. In two-dimensions, n=cos 0, and n,=sin 0, where 0 is the 

contact angle as defined in Figure 2.1. We let A=N, B=N and C=N, so the contact 

density function in the 2-D case becomes 

E(0) =_J_(ACOS2O +Bsin 20 +Csin20) 
D7C 

(2.2) 

where 0 is the contact angle; The fabric variables A, B, and C change with the change 

of stress or the rotation of principal stress axes caused by external loads. 
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Figure 2.1 Schematic Diagram of Particle Interaction 
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According the statistical theory, the density function of contact normal must 

satisfy 

f 'E(0)dB = 1 
(2.3) 

Obviously, we can consider the integral limits of e to be from 0 to It or from -ir/2 

to ir/2 due to the symmetry of the density function about the original point, i.e., 

E(9)=E(ir+O). In this case, equation (2.3) yields A+B=2 for D=1, A+B=4 for D=2, 

A+B=6 for D=3, and so on. In the following we assume D=1 and the integral limits are 

from 0 to it due to the contact angle varying from 0 to It . The distribution of E(0) is 

shown in Figure 2.2. In this figure, N1 and N2 are the maximum and minimum principal 

fabric values along the principal fabric axes, namely, N1=E(01) and N2=E(02), respectively. 

The principal fabric angles, defined by the angles between the principal fabric axes and 

coordinate axes, are determined from the maximum and minimum values of equation 

(2.2): 

1 2C 
0 =±—arctan 

2 A-B 

Substituting equation (2.4) into equation (2.2) yields 

N1=![1±i-I(A -B)2 +4C2] 
it 2 

J_(1±v/(A_1)2+C2) 

Since N1 ≥ 0 and N2 ≥ 0, from equation (2.5) we have 

(2.4) 

(2.5) 
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(A-1)2+C2≤1 
(2.6) 

Therefore, the upper limits of N1 and N2 are 2/it. In Figure 2.2, the density 

function intersects at A/it along x-axis and at B/it along y-axis. Thus, A≥O and MO. 

Since A+B=2, O≤A≤2 and O≤B≤2. Substituting limits of A into equation (2.6) yields 

-1≤C≤1. In summary, the fabric constants A, B, C, N1 and N2 have limits as follows: 

(2.7) 

0 ≤ N1 2 

If C=O, the principal fabric axes coincide with the coordinate axes. If A=B and 

C=O the distribution of E(8) is a circle. If C * 0 and A = B, 0= 45° and 02 = 1350. The 

magnitudes of deviation of the principal fabric axes from the coordinate axes are 

determined by the term 2C/(A-B). 

Another way to define the fabric function is to use a principal fabric ratio A. 

which is defined as 

AN1E(01) 1+%/(A_1)2+C2 

N2 E(0) 1_V(A_1)2+C2 

The above equation can be rearranged as 

(2.8) 
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(A .l)2 ,C2-  (._1)2 

(.+1)2 

Equation (2.9) requires 

(2.9) 

(2.10) 

The geometric meaning of equation (2.9) is a circle. Its radius equals (?.- 1)/(X+1) 

and its centre is located at ( 1, 0) in axes A and C. If X=1 and C=O, the circle reduces to 

a point which shows isotropic fabric. Obviously, the larger the radius of this circle, the 

larger is the anisotropy of the assembly. 

2.2.2 Number of Contact Points 

During the process of shear deformation, the number of contact points increases 

with shear compression and decreases with shear dilation. The relations among the 

number of contact points, shear strain and fabric constants will be discussed in section 

2.3.3. 

2.3 MODEL OF SIMPLE SHEAR DEFORMATION 

2.3.1 Relation between Stress Ratio and Fabric Constants 

In a test of simple shear on a sand specimen, a normal stress cr and a shear stress 

t are applied to the specimen, as shown in Figure 2.3. The resultant forces in the 

horizontal direction and vertical direction are zero for equilibrium. When the shear 

deformation of a granular assembly occurs due to the action of external forces, the 
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arrangement of the particles will change in succession, searching for a new equilibrium 

state. Therefore, the magnitudes and directions of contact forces change during the period 

of shear deformation. Here we assume that the particles are rigid, hence, the deformations 

of the particle assembly are mainly caused by the movement and rearrangement of 

particles. Every load increment causes a new change in fabrics during the shearing 

process. 

During the process of shear deformation in the simple shear condition, the 

directions of sliding vary randomly from particle to particle, and the average direction of 

the overall sliding is denoted by the horizontal plane, XX' in Figure 2.3. This plane 

represents the inclination of the sliding plane and is related to both the stress conditions 

and the dilatancy behaviour of the assembly. 

From the analysis of external force and inter-particle forces acting on the 

horizontal sliding plane XX' in Figure 2.1 we have 

'OS (2.11) 

iS I= -jcosO+fsinO' 

where SI is the projected area of the ith contact section on XX'; a and r are the effective 

normal stress and shear stress acting on the plane, respectively; M is the number of 

contact points intersected by the plane XX'. 91 is the contact angle at the th contact point. 

Along the plane XX' we obtain 



22 

M 

( -cOSO+? sine' ) 

fn 
o M 

E( sinO+-cosO) 
f, 

(2.12) 

In frictional materials, the maximum ratio of tangent contact force to normal contact 

force is related through an overall coefficient of limiting friction prn,, or friction angle 

At the contacts where there is no relative movement, the ratio is less than or equal 

to Pmax' 

We assume that the friction angle 4) at contacts satisfies 

tan 

ft 

where 4 is the friction angle at the ith contact point and varies from 0 to 4. 

Substituting equation (2.13) into equation (2.12) yields 

-E cos(4+O') 
t_ i=1 

M 

E 
t'1 

(2.13) 

(2.14) 

Because there are a large number of particles on the plane, we assume that the 

distribution of contact angles is continuous. Therefore the summation sign in equation 

(2.14) can be replaced by an integral sign. The integral limit of 9 is from 0 to it, so 

equation (2.14) becomes 
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- _fos(,,,+o)E(oiO 

° f'sin(4+e)E(0)dO 

where is an average mobilized friction angle 

Substituting equation (2.2) into equation (2.15) yields 

(2.15) 

(A+2B)tan m-2C (2.16) 

a A+2B+2Ctdi14 m 

The above equation provides a relationship between the stress ratio and fabric 

constants. It shows that the change of stress ratio will cause the change of the fabric 

distribution for the case of simple shear. For C=O, c/a = tank. For C < 0, the stress 

ratio exceeds the limiting value of tan 4m because of shear dilation. 

2.3.2 Fabric Conditions of Shear Compression and Dilation 

Consider the sliding mechanism between two particles as shown in Figure 2.4, the 

increment of contact angle caused by sliding at the ith contact point is AO' , and L is 

the distance between two centres of the two contact particles and passes the ith contact 

point. The distance LI is also called branch length. The corresponding slip at the th 

contact point is LAO, likewise, for L being the average branch length and AO the 

incremental contact angle. Therefore, the increments of the average horizontal 

displacement Au,1 and average vertical displacement Au., are given by 
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Figure 2.4 Schematic Diagram of Particle Sliding 
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Au= _fLAesinoE(o)Io 

= 

37v 

AU=f:LAeCoSoE(o)do 

=.±-LCAO 
3r 

(2.17) 

(2.18) 

If AO is positive, Au,, is negative and Au,1 is positive. We assume the average 

thickness of the slip plane to be H, i.e., the component of average branch length L in the 

vertical direction, H=L. Therefore we have 

H=fLsinOE(0)dO 

+2B) 
37t 

(2.19) 

According the definition of strain components, the increments of horizontal shear 

strain and vertical strains in simple shear are given by 

Au Au 

L H 

de— Au AUY2CAO 

LY H A+2B 

Comparing equation (2.20) and equation (2.21) yields 

de_  2C  

dy A+2B 

(2.20) 

(2.21) 

(2.22) 

In equation (2.22), compressive and dilative strains correspond to the positive and 
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negative values of C, respectively. Equation (2.18) indicates that there is no vertical 

deformation for C=O, i.e., shear dilation or compression does not occur for C=O. In other 

words, the shear dilation or shear compression is caused by the deviation of the principal 

fabric axes from the coordinate axes. The coordinate axes coincide with the - and r-

shear axes in this simple shear condition. 

Now, we investigate under what condition shear dilation or compression will 

occur. Consider the sliding mechanisms as shown in Figure 2.5. The plane XX' denotes 

the average direction of the overall sliding. The angle 9' is the ith contact angle. The 

angle a' is called the dilatancy angle at the i" contact point and is the angle between the 

contact plane and horizontal plane. Since & = ir/2 - 0', a' varies from - irl2 to ir/2. 

The sign convention of dilatancy angle a' is defined in Figure 2.5. Shear compression 

and dilation occur with positive and negative dilatancy angles, respectively. There is no 

shear compression and dilation for a' = 0. In order to analyze the physical meaning of 

dilatancy angle a' , we define 0 to be an overall dilatancy angle of the concerned 

particulate assembly. According to its definition, we have 

O=f_' a E( 1--a) d(-a)= 

Therefore, equation (2.19) becomes 

(2.23) 



'V 

(a) 

'V 

(b) 

'V 

(c) 

• Figure 2.5 Relation between Dilatancy Angle and Volume Change (a) Shear 

Compression, (b) No Volume Change, and (c) Shear Dilation 
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de 40 

dy A+2B 

(2.24) 

The physical meaning of equation (2.24) is: ( 1) If C=O, i.e., 0 = 0, the principal 

fabric axes do not change, and there is no shear compression and dilation during the 

process of shear deformation. (2) If C < 0 , i.e., 0 > 0, shear dilation occurs, (3) If C> 

0, i.e., 0 < 0, shear compression occurs. 

From the above analyses, it is a requisite condition for the occurrence of shear 

compression and dilation that the principal fabric axes do not coincide with the plane of 

sliding or the normal and shear stress axes in the simple shear condition, i.e., 0 # 0. 

2.3.3 Relation between Contact Number and Shear Strain 

In the process of shear deformation the number of contacts may increase or 

decrease depending on the overall dilatancy angle 0. Five typical cases shown in Figure 

2.6 are explored. 

The dilatancy angles are positive and negative in cases of Figures 2.6a and Figure 

2.6b, respectively. Neither case has gain or loss of contact points during the slip of 

particle I relative to particle J. However, under external loading, dilation occurs in Figure 

2.6a with positive dilatancy angle and compression occurs in Figure 2.6b with negative 

dilatancy angle. Although there is no net gain or loss of contact points in the case of 

Figure 2.6c, the total number of dilatancy points does change and the sign of the dilatancy 



(c) 

T 

(a) 

T 

(b) 

T 

(d) 

Figure 2.6 Gain and Loss of Contact Points 

(e) 
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angle changes from negative to positive. For the case of Figure 2.6d, its number of 

contact points increases and the dilatancy angle changes from negative to positive. During 

the initial process of shear deformation in Figure 2.6d, compression occurs. If the shear 

deformation continues, dilation will occur as shown in Figure 2.6e. It is obvious that 

during the process of shear deformation, the numbers of positive and negative dilatancy 

angles are changing. The distribution of these contact points is described by the density 

function. We attempt to relate the number of contact points with the shear strain in the 

following section. 

We define the initial volume V0 and the deformation volume V. The definition 

of void ratio is given by 

V-VV Ae 

V V1+e 
(2.25) 

where AV and Ae are the increments of the volume and the void ratio of the particle 

assembly, respectively. 

The average number of contact points between two adjacent particles is defined 

by an average coordination number, m. The relation between the coordination number and 

the void ratio satisfies (Field, 1963): 

Cm 

1+e 

(2.26) 

where Cm is a constant. Differentiation of the void ratio e with respect to the coordination 

number m yields 
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(2.27) 

If we define compression strain to be positive, combining equations (2.25), (2.26) 

and equation (2.27) yields 

de =d8=- AV Am AM —=--- 
V M  

(2.28) 

where M is the total number of contact points; dc is the incremental volumetric strain. 

Obviously, de=de, under the simple shear condition. Equation (2.25) shows that 

the number of contact points decreases with the volumetric dilation and increases with the 

volumetric compression. 

The total number of contact points, M, at any stage of the shearing process is a 

function of the initial fabric and the total deformation. The function for the contact 

number is assumed to be (Mogami, 1965): 

--t. 

M=M0e —[y+1)+g(e —l)] 

(2.29) 

where f0 and g0 are constants related to initial fabrics. y is the total shear strain; M0 is 

the initial number of contact points. 

From equation (2.29) we differentiate M with respect to y, and we obtain 
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(2.30) 

Combining equations (2.23), (2.28) and (2.30), the average dilatancy angle can 

be expressed as follows: 

9!(A+2B)(/+1-e O) 

(2.31) 

The constant f0 can be determined from equation (2.31) using the initial conditions, 

e.g., A=A0, B=B0, and O=E when '=0. Hence 

(2.32) 

where constants A0, B0 are initial fabric constants; 00 is the initial dilatancy angle. 

Equation (2.31) means that the average dilatancy angle is a function of the initial fabric 

constants, the induced fabric change, and the shear strain. 

2.3.4 Stress-Strain Relation 

Substitutingthe term 2C/(A+2B) from equation (2.22) into equation (2.16) we 

obtain a relation between the stress ratio and the strain ratio as follows: 
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+tan 
r_  dy  

° 1- de tan4 
dy 

Rearrangement of equation (2.33) yields 

-tan4 
de a 

dy 1+.:tan4fiI 

(2.33) 

(2.34) 

Equation (2.31) is called as the dilatancy equation of a granular assembly in the 

simple shear condition. It is interesting to note that the relation between stress ratio and 

strain ratio is not related to the fabrics. However, the stress-strain relations are related to 

the fabrics, such as equation (2.16) and equation (2.22). Previous researchers (Tokue, 

1979; Nemat-Nasser, 1980; Chang, 1982) have obtained a similar dilatancy equation using 

different methods. However, their shear models can be only used to analyze the relation 

between the stress ratio and strain ratio, not the volumetric strain and shear strains. 

To obtain a stress-strain relation, we have to substitute the term de/dy expressed 

in terms of f0, g0 and y from equation (2.30) into equation (2.33). The stress-strain 

relation for simple shear condition becomes 

r_ tan4,+1+10-e g0 

a 
I +(1 -f0-e O)tn4 

(2.35) 

The stress-strain curves obtained from the above equation are plotted in Figure 2.7 

for different initial fabrics. In these numerical examples, the initial fabric f0 is varied to 
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study its effects on the stress-strain curve while 4m and g0 are kept constant (m =36° 

and g0 =0.01). For f0=-0.6, i.e., the average initial dilatancy angle is negative, shear 

compression is induced at the beginning of shearing. The stress ratio tla reaches to the 

limiting value of tan 4m when deldy = 0. The stress ratio continues to increase with 

increasing dddy, and levels off with no change in dJdy. For f0=0.1, i.e., the average 

dilatancy angle is positive, only shear dilatancy is induced. The stress ratio increases with 

increasing dJdy and y. In both cases of f0 =-0.6 and 0.1, the stress ratio starts from a 

finite value at zero shear strain because the initial fabric is anisotropic. 

In the stress-strain model of equation (2.35), we take the fabrics into full account, 

by taking the fabric constants as the intermediate variables. Thus we can obtain the total 

volumetric strain c and total shear strain y . In fact, during the process of shear 

deformation, the fabric changes with different shearing load. Therefore, equations (2.16), 

(2.22) and (2.35) together describe the shearing process of a granular assembly in simple 

shear condition. 

2.4 MODEL OF BIAXIAL COMPRESSION 

2.4.1 Relation between Stress Ratio and Fabric Constants in Biaxial Compression 

Condition 

In a biaxial compression test, compressive stresses acting on the specimen are a1 

in the vertical direction and (Y3 in the horizontal direction as shown in Figure 2.8. The 

plane of sliding denoted by BC is assumed to follow the direction of the major principal 

fabric axes, N1 because the number of contacts is the least along that direction. The 
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Plane of sliding 

Figure 2.8 Schematic Diagram of Biaxial Compression 



37 

inclined angle of the sliding wedge is O, given by equation (2.4). 

Considering the external forces acting on planes AB and AC, the relations between 

external forces and internal contact forces are given by the two equilibrium equations in 

the vertical and horizontal directions. Therefore, stress ratio a1/a3 can be obtained using 

similar analytical steps to the simple shear case, and can be simplified to a form 

03 •(Asin2itr+Bcos2i.t, -Csin2ir)dijr 

= (A+2B)+2C tan4 mfl0 

(2A+B)-2C thI14m 

where i[r = 0 - 900 

(2.36) 

2.4.2 Stress-Strain Relation 

The derivation method for the strain in the biaxial compression condition is similar 

to that in the simple shear condition. In the biaxial compression condition, the strain ratio 

is expressed in terms of principal strains in the vertical and horizontal directions as 

follows: 

fWSine(ACoS2e+Mn2()+CSin2())d80 1 

Ac3 f"Sin*(ASO *+BCOS24r-CSin2*)d* tanes 

_2A+B 1 

A +2B tan03 

(2.37) 

Substituting equation (2.38) into equation (2.37) yields a relation between the 
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stress ratio and the strain ratio 

c 1+2C(A+2B)tan 1,, Ac3 

03 l-2C(A+2B)tan4 AC1 
(2.38) 

If substituting equation (2.4) into equation (2.38) and using O = O, we have 

a 1+(A-H)(A+2B)tan2O3tan,,, Ac3 
(2.39) 

03 l-(A-B)(A+2B)tan20,tmi4 m Ae I 

Equation(2.39) and equation (2.40) provide a mathematical framework based on 

fabric mechanics to quantify the shearing process of a granular assembly in biaxial 

compression conditions. However, development of a stress-strain relation requires an 

additional relation linking fabric change with total strain (strain ratio with total strain). 

This subject is beyond the scope of this study. 

2.4.3 Comparison with Rowe's Stress-Dilatancy Theory 

Rowe (1962) investigated the shear deformation of a regular packing assembly and 

derived a theoretical relation between stress ratio and strain ratio for the case of biaxial 

compression 

!1 Ac __.i 2 450+ P) 

03 Ac1 2 
(2.40) 

However, Rowe (1962) found that equation (2.41) had to be modified to match the 

test results observed in granular assemblies of random packing. His semi-empirical 

relation becomes 



39 

a Ac  = 2(45o+ 4,J) 

03 Ac1 2 
(2.41) 

In equation (2.41), the friction angle is a variable which is a function of stress 

and strain. Comparison between (2.40) and (2.42) indicate that Rowe's model has several 

limitations: (1) the model does not consider the effect of initial fabrics on the shear 

deformation of granular assembly, (2) the model indicates the effect of fabric change 

implicitly using ()f as a variable, and (3) the interparticle friction angle is not explicitly 

defined. The new stress-dilatancy relation of equation (2.40) is more comprehensive 

because the relation is a function of initial fabric, induced fabric change, and dilation rate. 

2.4.4 Critical State 

When a sand sample is sheared, its void ratio will decrease or increase depending 

on its initial void ratio. If the shear deformation is sufficiently large, the sample, loose 

or dense, will reach a state in which the arrangement of the particles is such that no 

volume change takes place during shearing. This particular void ratio is called the critical 

void ratio, The corresponding stress state is called the critical stress. Based on laboratory 

measurement, the critical stress can be expressed in an empirical correlation (Casagrande, 

1936): 

where 

a ' 
03 2 

(2.42) 

is the friction angle at constant volume. The value of varies among 

materials and is greater than the value of 4. 
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The critical stress can be derived from equation (2.40) based on micromechanics 

by setting Ac1/Ac3=-1, i.e., 

0 1 (2+A)[4A+2(A1)tan2Ostan4 m] 

03 (4—A)1A +22(A1)tan2Ostan m1 
(2.43) 

Equation (2.44) indicates that the critical stress is dependent on the interparticle 

friction angle m' fabric constant A or B, and the critical state fabrics 9 , It can be seen 

that these two parameters m and 8 are implicitly described by the correlation 

parameter k, in the empirical equation (2.43). 

2.5 CONCLUSION 

The shear behaviours of a assembly composed of rigid particles in simple shear 

and biaxial compression conditions have been studied using the principles of 

micromechanics. Analytical solutions are derived to describe the stress ratio, the change 

in fabric distribution and orientation, and the strain ratio during the process of shearing 

deformation. Development of a stress-strain model based on micromechanics requires an 

additional relation linking the change in fabrics, the change in contact number and the 

strain. The main advantages of this micromechanics model are that the model considers 

the effects of the fabric anisotropy, the rotation of principal fabric axes and the rotation 

of principal stress axes on the shear deformation of the granular medium. The model 

provides a sound basis to explain some empirical correlations in soil mechanics such as 

Rowe's stress-dilatancy law and critical state. Since the model includes the effects of 

fabrics, the model can be applicable to any granular assembly of particles of different size 
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distribution. 
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CHAPTER 3 

STRESS-STRAIN RELATION OF A REGULAR 

PACKING ASSEMBLY UNDER CONTACT DEFORMATION 

3.1 INTRODUCTION 

The total deformation of a granular assembly is the resultant of deformation 

caused by particle sliding, rolling, solid deformation, and grain crushing. In this chapter, 

we are concerned with the small strain deformation of a regular packing assembly of 

deformable particles due to solid deformation or contact deformation. This small strain 

deformation depends on the sizes of particles, fabrics of assembly, mechanical properties 

of particles, and loading condition. Recently, mathematical representations of this type of 

• deformation on granular materials have been attempted by several researchers (e.g., 

Walton, 1987; Bathurst, 1985; Rothenburg and Bathurst, 1989). However, their models 

do not take into account the effects of the change of fabrics. In recent years, the 

micromechanics of granular materials has been greatly developed by Chang et al. ( 1990a, 

1990b, 1990c, 1990d, 1992a, 1992b). Here, we take the complete anisotropy of the 

assembly into account. The research work presented in this chapter focuses on the stress-

strain relations from fabric considerations. The relations between micromechanical 

quantities and micromechanical variables are analyzed, and the proposed stress-strain 

stiffness tensor is expressed in terms of the fabric quantities. Because the stress-strain 

relations of granular masses with different fabrics are derived under the condition that the 

directions of principal fabric axes are not the same as the principal stress axes, the 
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relations are valid for general loading both in two-dimensional and three dimensional 

conditions. Five different types of regular packings are analyzed. Although all the stress-

strain relations are derived from the contact theory of small strain, these constitutive laws 

can be used in the analyses of large deformation caused by the change of fabric 

quantities. 

3.2 RELATION BETWEEN MICROMECHANICAL VARIABLES AND 

MACROMECHANICAL VARIABLES 

3.2.1 Principle of Virtual Work for A Particulate Assembly 

It is very difficult to measure contact force between two particles directly, so we 

have to find a description method to establish a relation between micro-mechanical 

quantities and macromechanical variables. Since granular materials form discontinuous 

media, stress at a point defined for a continuum is no longer valid for such media. Here 

the volume average stress quantities are defined. In the previous chapter we introduced 

a density function E(0) for the case of two-dimensions. Here, 13(0) is replaced by E(), 

where 0 is a solid angle in the spherical coordinate system for the case of three-

dimension, i.e., 

dQ=sinlldPdy (3.1) 

where y from 0 to it and 0 from 0 to 2ir are spherical coordinates shown on Figure 3.1. 

Obviously, the number of contact points within the solid angle from 0 to +d 

is given by ME()d, where M is the total number of contact points. We assume f1(r,n) 

to be the 1th component of the qth contact force with position vector rq and unit normal 
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Figure 3.1 Signs of Coordinates 

Figure 3.2 Contact between Particles 
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vector n (i=x, y, z). According to the equilibrium condition, the vector summation of 

contact forces must be zero, i.e., 

M 

0 )=O 
q-1 

(i=x, y, z) (3.2) 

The contact forces in equation (3.2) are assumed to act at a point and 

consequently, transfer of moments across physical contacts is not considered. Obviously, 

we can establish the equilibrium equations of moment for every pair of the adjacent 

particles, and then get the vector summation for the whole assembly 

j(n q )l(n'1 ) f(fl q )lg(n 1) 
q1 q1 

(4 i=x, y, z) 
(3.3) 

where l(n') is the branch vector connecting two centres of adjoint particles, as shown in 

Figure 3.2. ii' is the unit vector of this branch. 

We assume that the overall strain field is uniform (Chang and Misra 1989a, 

1990c), so the relation between the strain tensor r) and the displacement u1(r) is 

given by 

u(r )=c(rQ )1(r, r ) (4 i=x, y, z) 

The virtual work done by the contact forces per unit volume is given by 

W=.-4Ef(r , q )e(r q )11(r q, n") (6 f=X, y, z) 

(3.4) 

(3.5) 

The factor 2 is introduced to account for each contact point being included twice. 

If the sums of contact force components in equation (3.5) are calculated for any subregion 
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of assembly, it would be different from subregion to subregion. However, these 

fluctuations can be expected to become smaller and smaller if the expression is used in 

an assembly consisting of a large number of particles with a large volume. 

The work done by stress per unit volume is 

(3.6) 

where a. is a second symmetric tensor. Symmetry is due to the condition of moment 

equilibrium for each particle. 

3.2.2 Contact Force and Average Stress 

Combining equation (3.5) and equation (3.6) and according to the symmetry of 

stress tensor and strain tensor yields 

M (37) 
°4E [(r q, q )l(r q, n ) +(r q, n q )l(r q, 

Equation (3.7) gives a relation between the macro-mechanical second-order stress 

tensor aij and the micro-mechanical first-order contact force tensor. These equations can 

be used not only in cases of two-dimensions and three-dimensions but also in cases with 

different size and shape particles. However, 11(n') may be a complex expression since it 

must include the influence of particle shape and particle size-distribution. The 

development leading to equation (3.7) shows that the macroscopic stress tensor for an 

assembly can be obtained from consideration of statically admissible contact forces and 

microstructure described by contact vectors. A similar equation has also been reported 

by Christoffersen (1981), and Chang (1990a, 1990b, 1990c). 
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Equation (3.7) can be simplified in an idealized assembly of the idealized particle 

with equal radius r. For the case of three-dimensions, we have 

V=V3(1+e) 

4N7tTS(1) 

3 

(3.8) 

where N is the total number of particles in volume V; V is the total volume of particles; 

e is void ratio. 

Substituting equation (3.8) into equation (3.7) yields 

M 
3  

a = E [Ij(r q , , ) 11(r 1, n") +#r q, 72 9) 1,(r q , 
4/ 16Nitr3(1+e)qi 

Likewise, for the case of two-dimensions, we obtain 

(3.9) 

M (3.10) 1  a - E (/(r q n )l/r q n") +f/r g, 72q)11(7 q, n)] 
V 4N7rr2(1+e)q1 

Figure 3.3 represents a four-point symmetric array in two-dimensions. In this case, 

we have 

- 4r2sin(O-O) 

icr2 

- 4sin(02-01) 

In 

Substituting Equation (3.11) into equation (3.10), we obtain 

(3.11) 
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Figure 3.3 Two-Dimensional Regular Packing 
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M (3.12) 
16Nr2 1  E [f(r , n )l(r , n') +#r , n 9)1,(r , ii")] 

sin(02 0) q=1 

If the contact forces are divided into tangent contact forces f and normal contact 

forces f, we have 

1  
2rsin(02-O) [-f3(s1n02cos02 

-cos01sin01) +O4cos20i +Jcos202)] 

si 1  
ax,, 2rsn(O2_O1)W h102C0502 

-cos01sin0) +(f1sin20 +Jsin202)] 

1  
zt 2rsin(02_Oi)((1102 

-sin201) -.(/ sin201+fsin20)] 

(3.13) 

(3.14) 

(3.12) 

Obviously, e = 4/it-i for 02-01 = irl2. If 0= 0, the principal stress axes are 

coincident with the principal fabric axes, so 

(3.16) 

(3.17) 
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(3.18) 

The above equations show that the stress is equal to the contact force per unit 

length for the square four-point contact 

3.3 STRESS-STRAIN RELATION 

3.3.1 Constitutive Law of Local Contact 

In the previous section we have obtained an expression for the average stress 

tensor from the contact force. However, the calculation of the average stress tensor 

requires exact knowledge of contact forces and contact vector terms for all particles. In 

this section by establishing the relation of contact force with contact displacement and the 

relation of contact force with average stress tensor, the stress-strain relations are then 

derived. The tensor of contact stiffness for three-dimensions is given by Chang (1990a) 

D=D n1 n+D3 s s,+J:1 t4 t1 (1, j=:c, y, z) 
(3.19) 

where D, D and Dt are the local contact stiffnesses ( e.g., D is normal contact stiffness; 

DS and D are tangent contact stiffness ) in the directions of n, s, and t, respectively, as 

shown in Figure 3. 1, and are independent of one another. In addition 

n=sinycos13 

n=sinysin13 

nz=cosy 

(3.20) 
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where 

s=cosycosF3 

s=cosysinf3 

s= -siny 

tx=-sinp 

ty=cosp 

tz=o 

For the case of two-dimensions 

DvDnz n1+D#, sj 

nx=coso ny=sino 

Sx=_sino sy=coso 

(i, j=x, y) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

The incremental form of the local constitutive law describing the relation of 

contact force with contact displacement is given by 

Afj=DAuj (1, j=x, y, z) 
(3.25) 

3.3.2 Constitutive Law of Particulate Assembly 

Combining equation (3.4), equation (3.10), equation (3.19) and equation (3.25), 

we have 
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where 

3  mx 

AsIkJ_2(1+e)NiJtr q-1 

(1, j=x, y, z) 
(3.26) 

(3.27) 

where m1 and N1 represent the numbers of contact points and particles within the 

interested microelement, respectively. If the microelement is an individual particle, m1=m. 

Bijk, and Ejjkj are given by 

B kJ=.(njn1 ; : + ' :Yj 

+ ;2 : + ;q 1'I s) 

EJ*j=-(ng" q + 

+ flj'1 t/ n : + t n, : 

(3.28) 

(3.29) 

Obviously, since the resultant moment is zero, the stiffness tensor of assembly 

satisfies the symmetry of the stress tensor and the strain tensor, i.e., 

(3.30) 
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3.3.3 Stress-Strain Relation for Two-Dimensional Regular Packing 

3.3.3.1 General Stress-Strain Relation for Two-Dimensional Regular Packing 

For the case of two-dimension, equation (3.27) becomes 

Ave— (1 +e)N17V (fl1flJflfl7D +B,D) 
(3.31) 

For a regular packing assembly, the behaviour of a microelement is same as that 

of a representative-unit. Therefore in this case m1 =m. The matrix form of the stress-strain 

relation is 

IC11 C12 C13 'Ac ' 

C21 C22 C23 Ae, 
(3.32) 

\AG y/ \C31 C32 C3, kA YXY/ 

In order to make our model for complicated load directions, we assume the 

principal fabric axes not to coincide with the principal stress axes, such as in Figure 3.3. 

We only discuss an individual particle of regular packing. The angle 0q is the qth contact 

angle, which is equal to 01+(q-1)AO. Therefore we have 
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C11=H1D+H5D3 

C =H2D,+H5D3 

C33 =H5D, +!(H1 -2H)D5 

C31=C13=H3D+ H4H3D 
2 

C32 =C2 =H4D!1 2 H4D 

C21 =C12 =H5(D -D) 

where 

In 
1 

H1  2  E cos4O 
(l+e)n q.,i 

m 

H2-(12)E j114 
q=1 

In 

2 
H  -    ECos 3()qSinoq 

2 

2 

  sin3O cosO 

W 
2 
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3.3.3.2 Four-Point Square Symmetric Contact 

In the case of four-point square symmetric contact as shown in Figure 3.4a. The 

void ratio, e= 4/it-1; and the incremental contact angle AO=90°, 0q=00• The stiffness 

components are 

C33 =-i[D,+(2D.D)sin220o1 

C21 =C12=(D_D)sin2200 

C31 =C12=C23=C32=Dsin200 

If 00 =0, i.e., the principal fabric axes are coincident with the principal stress axes, 

and we have 

1 

2 

Ac 

'2D 0 0 

0 2D 0 

0 0 D 

/ \ 

(3.33) 

3.3.3.3 Six-Point Dense Contact 

For the six-point dense contact packing as shown in Figure 3.4b. The void ratio, 

e=4sin(ir/3)Iir, and AO--W3 , 0=0, so 



(a) Four-Point Contact 

(b) Six-Point Contact 

X 

Figure 3.4 Two-Dimensional Rhombic Packing 
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H =H = ,L H5=Y H3 H4=O 
1 2 

The stress-strain relation is 

'3D+D3 D.-D, o ' 

A GO = 

4 
DR -Ds 3D  +D3 0 

Aa 0 0 D +D3, A 

(3.34) 

3.3.4 Stress-Strain Relation for Three-Dimensional Regular Packing 

3.3.4.1 General Stress-Strain Relation for Three-Dimensional Regular Packing 

In the following expressions, 'yq and y q are the angles between the qth coordinate 

vector ra and coordinate axes x and y, respectively. We define 

I 

P9 arccos( C) 
silly 

Therefore, the stress-strain relation for a symmetric contact assembly is 

(3.35) 



58 

/ 

A GO 

Assuming 

C11 C12 C13 C14 C15 C16 ' 'A 

C21 C22 C23 C24 C25 C26 

C31 C32 C33 C34 C35 C36 

(3.36) 

C41 C42 C43 C44 C45 C46 

C51 C52 C53 C$4 C55 C56 

' C61 C62 C63 C64 C65 C66 / A 

M 
Ct,(y,3)- 2(1+e)tr C(y 3 ) 

The components of stiffness tensor (C1'=C 1') are obtained by 

C;1=sin4ycos4 D +I2cos4I3QD.T+J2sin2yQDC 

C=sin4ycos4D +I2sin43QD3+J2sin2y D 

C3=cos4yD+I2D3 
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C4=J2sin4D +I2J2D3•  S1fl.yJ2 
4 3 

c5=I2cos2pD +  +!cos2ysjn2pD 
4 3 4 

c=I2sin2pD +  ISiD,+ !cos2ycos23D 
n 4 

C1=Jsin4y'D +I2J2D,_Jzsin2yD 

C;1=I2cos2f3(D_D) 

C2=Izsin2f3(D_D) 

C43 =I2J(D -Ii) 

+shij3D 

2 
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" 'pq D J4inpD 
2 

cos 5D3 

nJ IJJ-
C=IJsin 

HJ + LJcosf3¼os2y 

2 2 

II 
1  D   
2 2 

II 
__.sjnpD 
2 

C=IJsin2y'sir43"D IIJ II 

C4=Iz IJ 
JDa+± Ds 

Idsin2y 
4 

JJ sjn2p 
4 
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J1 2p_sin2p 

3.3.4.2 Three-Dimensional Cubic Packing 

The packing model is shown in Figure 3.5. The void ratio, e is 0.9099 and the 

coordination number, m is 6. The stress-strain relation is obtained by 

2(1+e)tr 

Ac yzJ 

2D, 0 0 0 0 O''Ae 

0 W,O 0 0 0 

0 0 W 0 0 0 Ac zz 

0 0 0 D 0 0 

0 0 0 0 D, 0 Ay 

0 0 0 0 0 Dn. Ay, 1 

(3.37) 

3.3.4.3 Three-Dimensional Face-Centred Packing 

The packing model is shown in Figure 3.6. The void ratio, e is 0.6540 and the 

coordination number, m is 8. The stress-strain relation is obtained by 
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(a) 

(b) 

Figure 3.5 Three-Dimensional Cubic Packing 
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Figure 3.6 Three-Dimensional Face Central Packing 
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Ao zz 

Aa, 

where 

3  

2(1+e)rcr 

Cl 

C4 

C4 C5 0 0 0 

C1 C5 0 0 0 

C5 C5 C1 0 0 0 

o 0 0 C2 0 0 

o o 0 0 C3 0 

0 0 0 0 0 

C1=.(2D +D., +3N 

C2 +D3 

C3 =2D +3D) 

C4=2D+D5-3D 

C5=2(D -D) 

3.3.4.4 Three-Dimensional Dense Packing 

C3 

Ae, 

(3.38) 

The packing model is shown in Figure 3.7. The void ratio, e is 0.3504 and 



(a) 

(c) 

65 

x 

x 

(b) 

(d) 

Figure 3.7 Three-Dimensional Dense Twelve Contact Packing 
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coordination number m is 12. The stress-strain relation is obtained by 

'C1 C5 C6 0 0 

Aa, 

Aa 

Ac, 

where 

3  

2(1+e)ivr 

C5 C1 C6 0 0 0 

C6 C6 C2 0 0 0 

0 0 0 C3 

0 0 0 0 

0 0 

C4 0 

Ac> 

0 0 0 0 0 C4 , Ay, 

(2.39) 
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C1=(5D+D3+2D) 

C2---D +D, 

C3=(D+D3+W1) 

C4=(W+D3+D) 

Cs=(Dn+D: W r) 

C6=(D,1-D) 

If D=D,, we have C1-05=2C4. Equation (2.39) shows that five stiffness constants 

are independent. 

3.4 CONCLUSION 

Based on principles of micro-mechanics we have derived the stress-strain relations 

of contact deformation for two-dimensional and three-dimensional regular packing 

assemblies. The derived stiffness constants are functions of the particle size, void ratio, 

coordination number, and interparticle contact stiffness. If the interparticle contact 

interaction is assumed to be linear elastic with no sliding at the contact, the behaviour of 

assembly deformation is elastic. If the nonlinear constant stiffness given by the Hertz-

Mindlin theory of friction contact is used, nonlinear deformation will occur due to 

nonlinear deformation at the contacts. It is noted that the stiffness tensor is derived for 

an increment of load based on the packing structure at the instant of load increment. The 

packing structure, however, changes during the deformation process. Therefore, for the 
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cases with a large change of packing structure such as at high levels of deviatoric stress, 

the evolution of the packing structure with load should be defined in order to obtain the 

complete stress-strain relation. For cases with negligibly small changes in packing 

structure such as for packing under low levels of deviatoric stress, the proposed stress-

strain relation can be directly applied in analyses of practical problems. 

All the solutions can be used in the cases of different complicated load stress 

because here we assume the principal stress axis to be coincident with the principal fabric 

axis. No matter what case, two-dimensions or three-dimensions, if the assembly is 

isotropic and D=D, only two stiffness constants are independent. If the assembly is 

isotropic on the cross plane for the case of three-dimensions, five stiffness constants are 

independent. These conclusions are the same as those obtained by the theory of 

continuum mechanics. In addition, The stiffness constants are dependent on the different 

fabric constants. The mechanical behaviours are controlled by the corresponding 

fabrics. 
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CHAPTER 4 

STRESS-STRAIN RELATION OF A RANDOM 

PACKING ASSEMBLY UNDER CONTACT DEFORMATION 

4.1 INTRODUCTION 

Based on the microconstructed continuum, the relation between the fabric tensor 

and the contact density distribution function, and the relation between the fabric tensor 

and the stress tensor have been analyzed for assemblies of regular packing in the previous 

chapter. In this chapter, the analysis is extended to the cases of two-dimensional and 

three-dimensional random packings. 

4.2 STRESS-STRAIN RELATION FOR TWO-DIMENSIONAL RANDOM PACKING 

Because natural granular assemblies are usually anisotropic and randomly packed, 

it is very important to study the mechanical characteristics of random packing assemblies 

with different fabrics. 

For the random packing, the form of summation in equation (3.31) can be replaced 

by an integral form. For the case of two-dimensions, equation (3.31) becomes 

2m i'2i 

Oki (1 +e)it J (,z1 n n n1 D+ B JD)E(0)dO (4.1) 

where the form of the density function E(9) is the same as that of equation (2.2). 

However, the fabric constants A, B, and C are determined from the total contact normals 

within the concerned representative-unit. 
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4.2.1 Two-Dimensional Isotropic Random Packing 

The contact density function is E(0)=l/it for two-dimensional isotropic packing. 

Therefore, integrating equation (4.1) using E(e)= 1/it, n,A = cos 0 and n, = sin 0, we obtain 

G, i.e. 

and 

1A c 

Aa M 

4(1+e)iv 

' 3D,+D3 D,-D, 0 ' 

3D+Ds 0 
(4.2) 

0 0 D D3, 

From the above equation we can obtain the Bulk Modulus K and Shear Modulus 

K= M   
2(1+e) 

G-  M  (D+D) 
4(1+e),t 

(4.3) 

(4.4) 

Equation (4.3) and equation (4.4) mean that the bulk modulus of the assembly 

relates only to the normal contact stiffness, and the shear modulus relates to both the 

normal contact stiffness and the tangent contact stiffness. 

The corresponding Poisson's ratio is given by 
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V_ 
D,-D, 

3D +D 

-  1-a  
3(1+) 

where 4 (= DJD) is the contact stiffness ratio. Obviously, v =1/3 for 4 = 0. 

4.2.2 Two-Dimensional Anisotropic Packing 

where 

Substituting equation (2.2) into equation (4.1) and integrating we obtain 

Ac 
' xy / 

'Cu 

C21 

\ C31 

C12 c13 ' 

C22 C23 Ae,, 

C32 C33 / 

m  
C11=C - [(5A +B)D +2D3] 

8(1+e)7c 

M  
4(1 +e)T (D, +D) 

M  
C21 =C12- 4(1 +e) (D-D) 

7t 

(4.5) 

(4.6) 
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C=C=C=C_mCD 
31 32 13 4(1+e)it 

Analysing the above stiffness constants we find C33, C21 and C12 are independent 

of the fabric constants. In addition, C31, C13, C32 and C23, which relate to the shear 

deformation, are dependent on fabric constant C. This conclusion is consistent with the 

analysis in Chapter 3. In other words, the shear compression and dilation of an assembly 

is caused by the rotation of principal fabric axes. 

4.3 STRESS-STRAIN RELATION FOR THREE-DIMENSIONAL RANDOM PACKING 

To consider anisotropic random packing in the case of three-dimensions, we 

introduce a spherical harmonious function to describe the distribution of contact normal 

directions. The tensorial representation of the distribution function is given by 

E(Q) = —i— N ' 
4,t 

L(N sin2ycos2p +N,iny2sin2 

+Ncos2y +2N,,sin2ycos13sinP 

+2Ndinycosycosli +2Nsinycosysin3) 

where the fabric tensor can be expressed in terms of matrix, i.e., 

(4.7) 
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Because 

it requires 

N = 

N N N 

N,), N,, 

N N, N, 

f —Nn//K2 =1 . 47r 

fE(Q)dfl = fo2d1fff ' N ii n sinydy 
4 

Therefore 

=_L r2 r(NJinzycos2 3 +N)?),siny2sin21 
47tJ0 Jo 

+Ncos2y +2N 3,sin2ycos5shi +2NsinycosycosI3 

+2N,,sinycosysin)sinydy 

N+N,,+N=3 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

For the case of three-dimensional random packing, considering an assembly of a 

large volume with a large number of particles, the form of summation in equation (3.27) 
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can be replaced by an integral form 

A -  3m  flf 2w 
( +e),tr 0 0 (nn/zknpfl+BUk,DS+EUMD)E(Q)sinydPdy 

'Vkl 21  

where Biju and Eiju are given by 

J ¼ I + it1 Si '¼ S, + n, s, it1 S 4 it1 5j it1 k) 

:, '¼ t1 + flj t1 '¼ ti + ill ti it1 t4 + it1 ç it, t) 

(4.12) 

(4.13) 

(4.14) 

Considering the practical applications of constitutive relations, the following 

solutions can be used in the cases where the principal stress axes are not coincident with 

the principal fabric axes. Substituting the equation (4.7) into equation (4.12), we obtain 

the stress-strain relations for the three-dimensional random packing assembly. The matrix 

form is expressed by 
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ACU 

3m  

8(1+e)itr 

IC11 C'2 C13 C14 C15 C16 ' / 

C21 C22 C23 C24 C25 C26 

C31 C32 C33 

C41 C42 C43 

C51 C52 C53 

\C61 C62 C63 

CM 

C44 

C54 

C35 

C45 

CS5 

C64 C65 

C36 

C445 

CS45 

Ac 

Ay xy 

(4.15) 

If the subscripts x, y, and z are replaced by the subscripts 1, 2, and 3, respectively, 

the stiffness constants in the above equation are given by 
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i', a2w 
C11 =J J [(N11n+N,n'n +N33nj'n)D 

+N33nns)D 

t, +N22n, n2 ti +N33n,24tl5D,]sinydydp 

=3I1D+J1D3+J4D,, 

C22 = 1't2n 2 4 
J [(N11n1 

+(N11n1 222 n2s2 +N4s+N33nns5D3 

+(N11nt: +N4t+N33nnt25D]sinydydp 

=3I2D+J,p3+J4D, 

24 24 C33 =f [(N [(N1 1n1 n3 +N,n2 n3 +N33n3')D 

222 
+(N11nns+Nn2 n3 53 +N33ns)D3]sinydyd13 

=3I3D+&J3D,, 
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42 24 22 
c=fowf:w{4(Nllnl •- 22i n +N33n1 n2n5D+N11(n1 s2 

+nns +2nn2ss,) +N(nns +r4s+2n1ns1s2) 

222 222 2 
+N33(n1 n2s2 i-n2 n3s1 +2n1n2n3s1s2)]D3+[N11(n't 

+nn7t+2nn2t1t2) +N(nn22t2 + 4t+2n1nt1t2) 

+N33(nnt+nnt +2n1n2nt1t2)]D)sinydyd13 

=I4D+J3D,+J4D, 

1 nf ll 2,v c55=_f0  {4(Nnn +Nnnn •N33nn34)D 

+N11(t4s +nns +2nn3s1s) +N(nns +nns 

222+n342 
+2n1nn3s1s3) +N33(n1 n3 s3 s1 

222 
+(N11n1 n2 n3 +N22nnt +N33nt5D)sinydydp 

=I4D8+J3D3+J4D, 
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'f 'xf 2'g{4(Nlln C 66 2 •N4n +N33nn34)D 

+[N11(?4s +nns+2nn3s2s3) +N22(n,24s3+n,2n;s22 

+2nnn3s2s) +N33(nns +ns +2n2ns2s)]D 

+(N11nn t2+N n2Zn t +N33n)D)sinydydf3 

=I6D+J6D,+J8D, 

c21=c12=rr2 4 
, 0 (N11n1n2 +Ni4n+N33nn)D 

222 
+(N11n1 n2s3 +N2274s+N33nns32)D3+(N11nn2t1t2 

+Nn1nt1t2 +N33n1n2nt1t2)D}sinydyd13 

=I4D+Jp3-J4D, 

2 42 222 
c31_c13=f0f0 [(N11n1 n3 •N,2n1 n2n3 +N33ni4)D 

+(N11n1ns1s3 +Nn1n.n3s1s3 

+N33n1ns1s)D3]sinydyd 



79 

222 C32 -C23 =f "f 'EN11n1 n2 +N224, n3+N33nn.)D 

+(N11nn3s13 +Nn1nn3s1s3 

+N33n1ns1s)D,]sinydydt3 

=I6(D-D) 

"ii a2 
C41=C14=j J [N[2i4'nD •(nns1s2+nns5D3 

+(nn2y1t2+nn22ti5D]sinydydI5 

- 4N12  105 (6D +D), 

" 

C42 =C=J J N12[2ni4D +(nns +n1ns1s2)D 

222 3 
+,jj1 n2 t2 +n1n2t1t2)D]sinydydp 

- 4N12 (6D,+2D-D) 
105 

C43 =C=J J N12[2nnnD +(nn2n3.y3 

+n1n22n3s1s)D3]sinydyd 

8N 
- '2(D -D), 

105 
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tw J i'2,v C51=C15 =j N13[2nnD+(nn3s1s3 

222 222 
+fl1 723 sl)D+nl 723 t1 D]smydydf3 

--i(24D -3D,+7D), 
105 

244222 2 c52=c,3=f f 2N13[n1 ' ' 

+n1n2ns1s)D1+n1n2nt1t2D]siriydydp 

=-(8D -D3--7D), 
105 

c53 =c,5=f0EJ0 

+n1ns1s)D5lsinydydl3 

4N13(6D +D), 
105 

1 i2i 222 - c=c45=f I N23[4n123Dft+(njn2n3s2s3 

+72 n n s12 +n1 ns1s3+nns15D, 

+(n1n2ntit2+n7nt3D]sinydyd13 

N 
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P A2W 
C6I=C 16=J J N23[2nnnD+(n1nn3s1s3 

2 22 
+n1n2ns1s)D3+n1 n3 t1 D]sinydydI3 

N 
= 23 (8D.D105 8 3_7D?. 

c=c=f:f:wN23[2nnD +(nn3s1s3 

+nns)D+nntD]sinydydp 

-3D3+7D), 
105 

P, 2n 2 
C6=C=J J N23[2n4D+(nns 

+n2ns2s)D3]sinydydD 

4N 
- 23(6D +D), 

105 

I 2x 2 2 
C64 =C46 =ffN13E4ni n n3 +4(nn2n3s3 

+nns +n1n2ns1s2+n1n2ns1s)D 

222 2 
+(n1 n3 t2 +n1n23 t1t2)D]sinydydp 

-2(8D -D3+7D,)) 
105 
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1 2iv 

fO'x 
j N12[4nnnDft+(nn2n3s2s3 

+njns +n1nns1s2+n1n,n3.s1s)D 

+n1n2nt1t2D]sinydyd13 

NIZ 19 7 
(8D,, -—D --D)), 

105 2 2 

I --1-(5N +N,+N105 ), 

los 

105 

I 
105 
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105 

J1-th(1ON +2N,3,+9N) , 

J -------(2N +1ON,+9N), 
2 105 

J -L(2N +2N,),+3NU), ios 

105 

.15= 1 (57N  +19N,,,.+22N), 
420 

J6=th(19N, +57N,y+22N) 

J,= 1 (N +3N+6N), 
60 

and 

J=(3N+N,,,+6N)60  

If D=D, the stiffness constants become 
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C11=.(4N,+3)D +_!_(6+N)D, 
' 105 

C(4N,,+3)D +J-(6+N,,)D3, 
" 105 

C33 =-3 (4N+3)D" +J-(6+N)D3, 
105 

-N)D3105 35  

C55 (92N)D+2105 5 (8 -N,)D, 

C 66- 4 -N)D3105 35  

C21=C12=.(9 -2N)(Dzz  -D3), 

C3 =C13 --(9 -2N,)(D -D) 105  

C32=C23 =-(9 N)(D-D), 

105 

C43 -D), 
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C51 =C15 C53 =C 

C52 =C=-N(D-D), 

C54=C45 _Ny(2D+D), - 

C61=C16--N(D-D), 

C26  

C =C—Nj2D+105 n .D3) 

and 

4.4 CORRESPONDING RELATIONS BETWEEN THE FABRIC TENSOR AND THE 

STIFFNESS TENSOR 

In the previous section we have obtained the stiffness tensor. It is shown that all 

21 stiffness constants are independent of each other for the case of anisotropic packing 

and D # D * D. In this section we discuss the corresponding relationships between the 

stiffness tensor and the fabric tensor for five different fabrics. The following analyses use 



86 

the previous stress-strain relations for D=D. 

4.4.1 Fully Anisotropic Assembly 

For the fully anisotropic assembly, we have # N, # N  # N # 

0. The corresponding relation is given by 

'C11 C21 C31 Q S C61' 

'N,, N,;, N,' 

N, N, N) 

N, N 1 

Fabric Tensor 

C21 C C32 Q C52 R 

C31 C32 C33 C43 S R 

Q Q C43 C C C64 

S C52 S CM C55 C 

\C61 R R C64 

Three sets of stiffness constants are equal, i.e. 

Q—N,,,(6D+D) 
105 

C65 

Stiffness Tensor 

C66, 

(4.16) 
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(6D +D) 
105 

R=..±N (2D +! 
1O5 2D) 

Therefore, for D = D8, in the case of the fully anisotropic packing the number of 

independent stiffness constants reduces from 21 to 18. 

4.4.2 Anisotropic Assembly 

In this case, N# N,,,# 0, and N= N,= N# 0. The corresponding 

relation is given by 

'N, N N' 

N N,7 N 

N Nzz  N 

Fabric Tensor 

'C11 C21 

C21 C22 

C31 

C32 

C31 C32 C33 

'¼ 

Q Q 5' 

Q S  

S  Q 

Q Q S C R R 

Q S Q R C55 R 

S Q Q R R C 

Stiffness Tensor 

/ 

(4.17) 
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Likewise, three sets of stiffness constants are equal. However the number of the 

constants with equal value increases. The number of independent stiffness constants 

reduces from 18 to 12, where 

Q-N(6D,1+D) 
105 

S--N(6D+D) 
105 

R--iN (2D 
1O5' 2 

4.3 Normal Anisotropic Assembly 

For the normal anisotropic fabrics, N # N # N # 0 and N y = N, = N = 0. 

The corresponding relation is given by 
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'N, 0 0' 

0 N,,, 0 

0 N 1 

Fabric Tensor 

IC11 C21 

C21 C22 

C31 

C32 

C31 C32 C33 

o o 0 C44 0 0 

o o 0 0 C55 0 

0 0 0 0 0 C66 

Stiffness Tensor 

/ 

The number of independent stiffness constants reduces from 12 to 9. 

(4.18) 

4.4.4 Transversely Isotropic Assembly 

The transversely isotropic material symmetry means that the material fabrics are 

in the same directions on a plane perpendicular to the plane of transversely isotropy. Here 

we assume the intersection plane to be perpendicular to the Z axis, so 

3-N 
N=N  -

2 zz 

N=N=N,7=0 
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The corresponding relation is given by 

where 

2 
0 0 

3-N 
0 0 

2 

0 0 N 

Fabric Tenor 

Q 

C21 

C21 S 0 0 0 

Q S 0 0 0 

S S C33 0 

0 0 0 C44 

0 0 

0 0 

0 0 0 0 R 0 

O 0 0 0 0 R 

Stiffness Tensor 

Q=2C44 +C21- 70( m 1 +e)rE3(9 2N D,1 (15 -N)D3] 

M  (6+N)(D-D) 
70(1 +e)7vr 

R-  m  [(6+N )D+.(13+N)D3] 
70(1+e)tr 

The number of independent stiffness constants reduces from 9 to 5. 

(4.19) 
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4.4.5 Isotropic Assembly 

If the fabric tensor is an identity tensor, 8,, Kronecker delta, i.e., N =N, =N 

=1 and N,,y =N =N =0, the stiffness matrix represents a packing with isotropic material 

symmetry. The corresponding relation is given by 

S S 0 0 0' 

'1 0 ON 

0 1 0 

\O 0 1 

Fabric Tensor 

where 

S Q S 0 0 0 

S S Q 0 0 0 

0 0 0 R 0 0 

0 0 0 0 R 0 

\0 0 0 0 0 R, 

Stiffness Tensor 

M  

lO(1+e)irr131"2' 

(4.20) 
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M  

R- 8 
2 

-  m  (2D +3D) 
20(1 +e)icr 

For the isotropic assembly only two stiffness constants are independent. 

4.5 RELATIONS OF FABRICS TO MODULI OF ASSEMBLY 

4.5.1 Moduli of Isotropic Assembly for Three-Dimensions 

The moduli of an isotropic assembly can be directly obtained from equation (4.20). 

The bulk modulus of assembly is: 

The shear modulus is 

The Young's modulus is 

K=S+.aR 
3 

-  m  D 
6(1+e)itr 

mD 
'  (2+3) 

20(1 +e)r 

mD,1 (2+3) 

2(1+e)7cr (4+) 

where 4 =DJD. Obviously, Poisson's ratio is determined by 

(4.21) 

(4.22) 

(4.23) 
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(4.24) 

4-

Obviously, if the packing is made of cemented frictionless particles such that the 

shear stiffness D, =D =0, we obtain a value of 0.5 for the Poisson's ratio v. 

4.5.2 Moduli of Transversely Isotropic Assembly for Three-Dimensions 

Assuming the transverse plane to be perpendicular to the Z axis, we obtain three 

shear moduli on the two different planes. 

On the yoz plane and xoz plane, the shear moduli are 

in  
G),z=G, 7O(l+e)7r 6 N 4(l3 N71)I ' 

G 2 70(1+e)nr [(9 -2N)D +.(8 N,1)Da1 

On the zoz plane, the Young's modulus is 

E - mD 2(18+24N -7N)+(9O+15N)  
ze   

1O(1+e)icr 4(9-2N)+(6+N) 

The Poisson's ratio is 

(4.25) 

(4.26) 

(4.27) 

v- 
(6+N)(l -) (4.28) 

4(9 -2N) +(6 +N) 

The relations among shear modulus, Young's modulus, Poisson's ratio, contact 

siffness ratio, and fabric constant N are plotted in Figure 4.1 to Figure 4.3. It shows that 

G,, is equal to G, only in the case of N = 1. In other words, if assembly is isotropic, 
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G, is equal to G,,. 

4.6 CONCLUSION 

In this chapter, the stress-strain relations of a granular assembly of random 

packing under contact deformation are derived considering the fabric distribution and 

orientation, and micromechanics. The main conclusions are consistent with those from the 

conclusions from the continuum theory. These conclusions include: 

(1) The stress-strain relations are related to fabrics of assembly and to the local 

contact stiffness. 

(2) For a fully anisotropic assembly, if the three local contact stiffness constants 

are not equal to one another, the stress-strain relation is controlled by 21 stiffness 

constants. If the two tangent stiffness constants are equal, i.e., D = D, the independent 

stiffness constants reduce from 21 to 18. 

(3) If the directions of the principal fabric axes are the same as those of principal 

stress axes, though it is anisotropic, the number of independent stiffness constants is only 

nine. 

(4) For the case of the transversely isotropic assembly, only five independent 

stiffness constants determine the stress-strain relation. 

(5) For an isotropic assembly, the number of independent constants is two. 
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CHAPTER 5 

ANISOTROPIC SWELLING MODEL FOR CLAY 

5.1 INTRODUCTION 

In previous chapters we have analyzed the characteristics of the granular materials 

and derived the stress-strain relations by introducing the concepts of fabrics. The stress-

strain models are based on the contact density and contact distribution of the particle 

assembly. The conclusions obtained from these models indicate that the mechanical 

behaviours of granular materials are controlled by the changes of contact stiffness, void 

ratio and fabrics. However, these models have limitations when they are used in the 

analysis of swelling clay. First, the relevant particles in swelling clay are not spherical or 

elliptical particles but "plate-like" particles. Second, the swelling behaviour of swelling 

clay is not controlled by the particle slip or the gain and loss of contact points but by the 

mechanism of " double-layer" swelling. Therefore, we have to find a new model to predict 

quantitatively the swelling deformation behaviour of clay. In this chapter, the constitutive 

relations for two-dimensional and three-dimensional anisotropic swelling are derived. In 

addition, theoretical results and test data are compared. 

5.2 SWELLING MECHANISM IN CLAY 

Natural clays normally contain a significant portion of structured assemblages 

composed of clay mineral particles (Figure 5.1). Clay mineral particles are of "plate-like" 
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Figure 5.1 Fabric Structure of A Nature Clay 
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form having a high specific surface area. The surfaces of clay mineral particles carry 

residual negative charges, mainly as a result of the isomorphous substitution of aluminum 

or silicon atoms of basic clay mineral structural units by atoms of lower valency, but also 

due to dissociation of hydroxyl ions. The negative charges on the clay particles surface 

result in cations present in the water in the void space being attracted to the particles. The 

net effect is that the cations form a dispersed layer adjacent to the particle, the cation 

concentration decreasing with increasing distance from the surface until the concentration 

becomes equal to that in the "normal" water-pore fluid in the void space. The negatively 

charged particle surface and dispersed layer of cations is termed a 'double layer" 

structure. For a given particle, the thickness of the cation layer or double layer depends 

on the valency and concentration of the cations. 

When a natural clay sample is exposed to fresh or pure water, the water molecules 

have a tendency to diffuse into the double layer according to the ionic concentration 

gradient between the void space and the external, i.e., osmotic process. Water molecules 

are adsorbed to the particle surface causing an increase in the double layer thickness, i.e., 

swelling (Figure 5.2). Adsorbed water molecules can move relatively freely parallel to the 

• particle, but movement perpendicular to the surface is restricted. The amount of swelling 

on exposed to fresh water is dependent on the freedom allowed in swelling. A sufficiently 

high external pressure can be imposed on the clay sample to inhibit any water migration 

from outside into the clay particles. This pressure is called swelling pressure, a , at which 

no swelling is induced. If the external pressure a is less than the value of a,, swelling 

will occur. There exists a relation linking the swelling between clay particles 
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Figure 5.2 Negatively Charged Clay Particle and Surrounding Aqueous Solution 



102 

and the external normal pressure. This relation may be linear or non-linear. In this study, 

we assume a linear relation as follows (Figure 5.3): 

ÔCM(a.a) (5.1) 

where 8 is the swell per unit length between clay particles; a is the swelling pressure; 

cr is the imposed normal pressure; and Cse is the slope or coefficient of swell. 

5.3 ANISOTROPIC SWELLING MODEL 

5.3.1 Two-Dimensional Model 

The density function used to describe the clay particle distribution is similar to that 

for a granular particle, except that the orientation of the clay particle is defined by its 

normal instead of the contact angle (Figure 5.4). Here the normal direction is defined as 

the direction perpendicular to the clay particle. So the density function used is similar to 

equation (2.2) 

a(0) =! (Acos2O +Bsjn2O +Csin2O) 
(5.2) 

where A, B, and C are fabric constants, 0 is the angle between the normal and horizontal 

axis. 

When a vertical stress a and a horizontal stress are applied to a sample 

consisting of clay particles (Figure 5.4), the induced normal stress, a', and shear stress, 

t at the ith particle with an angle 0' between the normal and the horizontal plane is 

given by 
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a1 

Figure 5.3 Swell Model for Individual Clay Particle 
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Figure 5.4 Clay Particle Orientation 
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ai(o)_as2Od +a,sin2O' 

(5.3) 

(0)-  °X°XYSjfl2Oi 

It is important to note that stresses, & and t', are average stresses acting on the 

clay particle surfaces. They are not interparticle or contact stresses. It is assumed that 

shear stress has no effect on the swelling. Hence, if the induced normal stress is less than 

the swelling pressure a , swelling will occur. The normal swell strains for the ith clay 

particle is given by 

(5.4) 

Resolving the normal swell into its x- and y- components and summing up all 

components for all particles in a unit volume, the resultant x- and y- swell are obtained 

by integration 

Cf[a3-a(0)]cosO a(0)dB 
2 

="l "2 

8=CMf0'[aS_a(6)]sinO a(0)d6 

=JJ1-JJ2 

where 

(5.5) 

(5.6) 
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fCr, 11, s-e cosO(4cos20+Bsin2O +Csin2O> 
71 

2Cc 
-  R  

37t 

IIf, (acos2o +c),sin2O)(Acos2O +Bsin2O +Csin2O)cosOdO 

C M 

=.1f[ojAcos5o +Bcos3Osin2O +Ccos3Osin2O) 

+a(Asin2Ocos3O +Rj, 4ee +Csin2Osin2OcosO)]dO 

2cst 
= [2c, (4A +B) +c (2A +3B] 

l5ir 

jj=C.fcc, sinO(Acos2O +Bsin2O +Csin2O)dO 

2C c, 
- e 3(4+) 

37; 

"2 j0 00s20 +a n2OX4COS2O +Bthn20 +Csin2O)sinOdO 

=ff'[o (Acos4esine +Bcos2Osin36 i-Cco&20sin20s1n0) 
79 0 

30cos20 +Bsin5O +Csin3Osin2O)]dO 

2C 
-  l5ir [o(3A+2B)+2a (A--4BJ 

Since the integrations in equations (5.5) and (5.6) are performed per unit value, 
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the displacements are equal to the strain. Therefore, in the case of two-dimensions the 

stress-strain relations for swelling soil are given by 

_= 2C5 +B) -[2aj4A +B) +a,,,(2A +3B)]} 
157C 

- 2Cse{j (A +2B) -[a(3A +2B) +2a(A +4B)]} 
' 15t 

(5.7) 

(5.8) 

Equations (5.7) and (5.8) indicate that swelling strains are dependent on the clay 

particle swelling properties, the fabric distribution and the imposed stress. The external 

stresses or swelling pressures, c and cryy, to prevent any swelling ( i.e., e, = = 0) 

are a function of fabrics. 

5.3.2 Three-Dimensional Model 

The density function of the normal directions to clay particles for the case of 

three-dimensions is: 

a(y,fl) _(Ndin2ycos213 +Nsin2ysin2 +Ncos2y) 
4,n YY 

(5.9) 

where y and 0 are coordinate angles as defined and shown in Figure 3.1; N,, Ny,), and 

N are fabric constants. From equation (4.11) we have N + N +N = 3. The normal YY 

stress to the clay particle for three-dimensions is: 

13') = aj1n2y'c0s213'+a,,,sin2y's1n213' + azzcos2Yi (5.10) 

Similar to the case of two-dimensions, the swelling strain components are given 

by 
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where 

e=c_fdpf0'[a3-o(y, )]a(y, )sin2ycosdy 

e =. t'df5f[a3_a(y, )]a(y, P)sin2ysint3dy 
YY 47t 'O 0 

(5.11) 

(5.12) 

(5.13) 
eZ =2!! I2h1dpf02[a,_a(y, )]a(y, )sinycosydy 

4n 0 

Substituting equations (5.9) and (5.10) into equation (5.11) we have 

exc=.:.fff +ci,sin2ysiu213 +acos2y)] 
47r 0 

[Nsin2ycos213 +Nsin2ysin2 +Ncos2y]sin2ycosf3dy 

CM +HX3 +HX4+11X5 +HX6 i-fIX7 i-fIX8 +HX) 

,f 2 f7l(N 
i-N sin4 

ysin2 cosf +Ncos2ysin2ycos)dy 

- (2N +N), +N) 

=.!(N+3) 

(5.14) 
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it oJJ 
HX2=aJç,fd13f0'sin6ycos3psin2f3dy_  12 

- it ciJ1 
IIx3=oNfdpfsin4ycos3pcos2ydy  12 

RX,=CY,N•,f 2 - it 
xdpf 

12 

1 

- it 

2 JO 5 •,Nf ,dp f'fls&ys0PcosPdy  

HX6=cry.vNzcf 2 dof 'SOyCoS2yCoSPsinFPdy - it (1XVNZ  

24' 

Hx=afdpfn4ycos2ycos3idy - it ØZZNXX 

12 2 

HX8=afd3f' sin4ycos2ysin2 IcosPdy - it GzeNyy 
ZtNyy.a 24 

and 

IT 

- it CY IV. 
HXg=afd1f'sin2ycos4ycospdy  8 

So we obtain the strain component in the x-direction 
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where 

e={Ca3(N,+3) 

Substituting equations (5.9) and (5.10) into equation (5.13) we have 

ff'RdPf[a -(asin2ycos2 •a sin2ys1u2t3 +acos2y)] 
) P 40 0 g 

[Njin2ycosf32P +N,sin2ysin2 +Ncos2y]sin2yshidy 

C 
=!(HY0+RY +111' +HY +HY4+JIY +HY +JIY +IJY +HY9) 
47c 2 3 

0 f "dDf "(N sinp 

+N,,in4ysin3 +N,cos2ysin2ysinP)dy 

- (Nxx +2N>,,+N) 

.! (N,+3) 

HY, "dpf 'KsOycoOpsinpdy - ir OXXNXE 

8 

- 7t 

  , 

12 

- 

24 
, 

(5.15) 

(5.16) 
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Ily r)V=f "dpf'xSijPyS&pCOS2 - 

12 

and 

HY =a fdpfrsin6ysin51kIy - 
i 

3 

Ii=a,,.wf'dpfsin4ycos2ysin313dy - 
12 

dPf 'Sin4yCOS2yCos2psinPdy   - 

24 

HY o f79 dpfVsin4ycos2ysin3pdy -  
aN 

- 12 

RY aJq f df3flvsin2ycos4ysinpdy -  zcNzz 

8 

So we obtain the strain component on the y-direction 

e=-{Ca(N71+3) 

+(2a+8a+2a)N +(a+2a+3a)N)]} 

, 

Substituting equations (5.8) and (5.9) into equation (5.12) we have 

(2.17) 
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where 

e =ffdPf02[a3_(o,s1n2Ycos2P +c in2ysin2ll +acos2y)] 

[Nsin2ycos2 +N,sin2ysin2P +Ncos2y]sinycosydy 

C 
47t =—(HZ0+HZ1+HZ2+HZ3 +HZ+HZ5 +HZ6+HZ +HZ3 +HZ9) 

79 

79  Hzo=osf:d1o2(Nsin3ycos2 cosT 

+N,,sin3ysin2 cosy +Ncos3ysiny)dy 

- (Nxx +N,+2N) 

= 1 (N +3) 

HZ1 =aJ f dl5f2sin5ycosycos4l5dy - 7V 
S 

79 

Hzz=c f7df 2sinsycos2psin2pcosYdY - It aN  
24 

1tGXrNZZ HZ3 =aJ,Tf 2W 7T 2sin3ycos2cos3ydy - 12 

HZ4=a#fd13f 2sin5ysin2pcos2f3cosydy   

(5.18) 
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and 

,U =0 'dpf 2s&ysin4Pcosydy   
- It 

5 Y)Vyyfo 0 8 

Hz6=C,Nf:dpf2Sifl3YCOS3YSifl2pdY - It (JYYWZZ 

12 

IT 

HZ7=aNfd13f2sin3ycos3ycos2pdy  12 

IT _7tOZZN, 
HZa=o N,j 2xdDf2sin3ycos3ysin2t3dy 12 

Hz9=aN1:ITdpf02sinycos5ydY   

So we obtain the strain component on the z-direction 

c{Ca(N+3) -.Cj(3o rx+a),,+2au)N xx 

+((;+3c+2o)N+(2a+2a +8(;)N)]} 

We rearrange equations (5.15), (5.17) and equation (5.19), so 

, 

51 

, 

(5.19) 
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CU -{CN clS(NU +3) 

+(2N+3N+N)c, +(2N+N+3N)a]} 

{Ca3(N,,+3)- ' [((3N.+2NYY+N.)a 
YY 16 

+2(N+4N+N)a+(N+2N+3N)a]} YY 

(5.20) 

(5.21) 

e=-j{Cas(N& +3) - o . [((3N+N+2N) (5.22) 

+(N+3N+2N)a+2(N+N•4N)a]} 

In order to obtain the stress-strain relations from the theoretical model we have 

to find the fabric constants N,, NYY, and N. By using the relation N,, + N),), + N =3, 

the constitutive relations become 

eX 96 =.[18o-3(2o +a)Y ZZ' +3c 'i+(6a 

eyy = 96 [18a -3(o+2o,,+3a)-2(a 

e zc = 96 [36a -2(g+a+4cj)-(6a+cj 

The fabric constants are given by 

(5.23) 

(5.24) 

(5.25) 
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N - (92e f3&,)(hl en -fl e) —(1 e,-g1 CUXf3C -h3e) 
xx e,-g3c)(f3e -h3 ) 

N - (h1 e -f1 c) (g3e xx —f2e) -(fe,-g1 e)e -h2 )  

' —(h3c—f3 Xg3c—f2&) 

where 

f1=l8a,_3(2a+a+3a2), 

f2=6a,-(6o+o,,-a), 

g1=18a3-2(a+2a+3a) 

hl=2[l8os_(aU +o),,+4a)] 

and 

(5.26) 

(5.27) 

113= _6a,+a_o,+6o zz 

Equations (5.20) to (5.27) provide a theoretical framework for the anisotropic 

swelling behaviour of clay. The model states that the swelling strains are dependent on 

clay particle swelling properties, clay particle fabrics, and the imposed stresses. The 
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application of stress in one principal direction not only suppresses the swelling in that 

direction but also reduces swelling in the orthogonal directions. The model predicts a 

linear relationship between the imposed stress and the swelling strain because a linear 

stress-strain law for the clay particle is assumed. The power and semi-log laws can be 

introduced to describe non-linear swelling behaviour. 

According the definition of elastic theory, we obtain corresponding Young's 

moduli 

12  

CM(4N+Ny+Nz) 

E-  12  
C(N,+4N+N) 

12  

C(N+N+4N) 

Obviously, for transversely isotropic swelling clay, we have 

E=E-  24  
C(15-3N) 

E-- 
C(1 +N) 

For isotropic swelling soil, the Young's moduli become 

E,E1,E= --CM  

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 

The Poisson's ratio is -0.5 for isotropic swelling clay. The negative value of 
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Poisson's ratio means that the clay sample will swell, instead of contract, in three 

orthogonal directions when the imposed stress is less than the swelling pressure. 

5.4 COMPARISON OF THEORETICAL RESULTS WITH EXPERIMENTAL DATA 

In this section, the proposed anisotropic swelling model will be used to analyze 

the experimental results of swelling tests on Southern Ontario Queenston clay shale cores. 

Details of testing methods and results are reported by Lo and Lee (1990). They found that 

the swelling behaviour is orthotropic and highly stress dependent. The application of 

stress in one principal direction not only suppresses the swelling in that principal direction 

but also in the orthogonal directions. However, they did not bring forward a theory to 

account for the behaviour observed from their tests. 

5.4.1 Experimental Data 

5.4.1.1 Shale Samples 

The samples of Queenston shale studied were obtained at depths between 80m and 

122m from a borehole near Niagara Falls, Southern Ontario. The directions and 

magnitudes of the in situ principal horizontal stresses determined from hydrofracturing 

tests are: 7.9 MPa along the major principal horizontal-stress direction (HM) direction, 

and 5.2 MPa along the major principal horizontal-stress direction (HN direction). The 

direction of the minor principal stress is N45°E. The in situ vertical stress (V direction) 

is due to the overburden of depth about 105m. 

The average unit weight of Queenston shale is 26.7 KN/m3. The water content is 
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about 2.6 %, and the porosity is approximately 7%. The calcite content varies from 3% 

to 7%. The salinity of the pore fluid is in the range of 108-265 g/L. The elastic moduli 

vary from 9 to 13 GPa, with Poisson's ratios of 0.35-0.40. There is no significant trend 

of variation in physical and mechanical properties with depth. 

5.4.1.2 Test Detail and Results 

To study the directional swelling behaviour, two types of swelling tests, the free 

swelling tests and the semiconfined swell test, were used to measure the swelling 

deformations in the directions of the three principal stress, i.e., V, HM, and HN directions 

In the free swelling test, a cylindrical sample (61mm in diameter and 62mm in 

height) was immersed in a bath of water, and no vertical stress, CF., was applied to the 

sample. Eleven free swelling tests were performed on shale samples prepared from the 

vertically drilled cores where orientations Were shown in Figure 5.5a. The test results are 

shown in Table 5.1. 

The swelling strains are expressed in swelling potential, i.e., the swelling strains 

which occurred between 10 and 100 days. The horizontal strains in the major and minor 

principal stress directions (HM and HN directions, respectively) are virtually identical, 
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Table 5.1 Summary of Free Swelling Test Results 

On Queenston Shale from SABNGS No. 3 Site 

Year of 
test 

Sample 
No. 

19. 
(MPa) 

Swelling potential 
HM HN V 

(%) 

1985 FS1 
FS2 
FS3 

0 
0 
0 

0.32 
0.24 
0.24 

0.32 
0.24 
0.24 

0.48 
0.39 
0.45 

1986 FS1 
FS2 
FS3 

0 
0 
0 

0.31 
0.34 
0.27 

0.31 
0.34 
0.27 

0.41 
0.51 
0.42 

1987 FS1 0 0.30 0.30 0.49 
FS2 0 0.34 0.34 0.54 
FS3 0 0.24 0.24 0.38 
FS4 0 0.24 0.24 0.41 
FS5 0 0.22 0.22 0.37 



(a) Free Swelling (b) V Direction 
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HM 

(c) HM Direction (d) HN Direction 

Figure 5.5 Various Specimen Orientation with Respect to Applied Stress Direction 



121 

indicating the swelling behaviour in the horizontal directions is isotropic. It is also 

observed from Table 5.1 that (1) there is no definite trend in variation of vertical and 

horizontal swelling potential with depth, and (2) swelling potentials in the vertical 

direction are approximately 1.6 times these in the horizontal directions. 

In the semiconfined swelling test, a cylindrical sample was immersed in a bath of 

water and a vertical stress, a., was applied to the top of the sample. Test samples of three 

different orientations coaxial with the in situ stress were prepared for the semiconfined 

swelling test, as shown in Figure 5.5b to 5.5d. The swelling potentials measured in 27 

tests were summarized in Table 5.2. Test results indicate that the applied stress in the 

vertical direction suppresses the swelling in the horizontal directions, on which external 

stresses are applied. Swelling potentials in all three directions decrease with increasing 

applied stress. Swelling potentials in the vertical direction are generally higher than 

horizontal swelling potentials, suggesting that the swelling behaviour of Queenston shale 

is transversely isotropic. However, the swelling potentials in the horizontal directions are 

isotropic. 

5.4.2 Model Prediction 

In this section, we determine the swelling pressure a, swelling coefficient C. and 

fabric constants N, Nb,), and N from the free swell results using the model. With these 

determined values, we use the model to predict the swelling potentials under the 

semiconfmed condition and compare the predicted results with those observed in the 

semiconfmed tests. 
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Table 5.2 Summary of Modified Semiconfined Swell Test 

Results on Queenston Shale from SABNGS No.3 Site 

Year of test Sample No. a (MPa) Swelling potential 

HM HN V 

1985 MSCIV1 
MSC/V2 
MSCN3 
MSC/HM1 
MSCIHM2 
MSC/HM3 
MSC/HN1 
MSCIHN2 
MSCIHN3 

0.027 
0.131 
0.691 
0.036 
0.342 
1.855 
0.036 
0.342 
1.860 

0.20 
0.19 
0.17 
0.19 
0.15 
0.04 
0.24 
0.18 
0.11 

0.210 
0.170 
0.155 
0.120 
0.135 
0.115 
0.150 
0.125 
0.040 

0.265 
0.220 
0.140 
0.245 
0.180 
0.150 
0.260 
0.220 
0.145 

1986 MSCIV1 
MSCIV2 
MSCIV3 
MSCIHM1 
MSCIHM2 
MSCIHM3 
MSCIHN1 
MSCIHN2 
MSCIHN3 

0.019 
0.131 
0.687 
0.036 
0.358 
1.866 
0.036 
0.355 
1.868 

0.210 
0.230 
0.140 
0.180 
0.125 
0.040 
0.160 
0.160 
0.060 

0.210 
0.170 
0.140 
0.165 
0.120 
0.125 
0.150 
0.160 
0.025 

0.240 
0.202 
0.195 
0.220 
0.220 
0.165 
0.270 
0.205 
0.160 

1987 MSCIV1 0.025 0.175 0.140 0.220 
MSC/V2 0.250 0.125 0.105 0.185 
MSCIV3 2.380 0.150 0.100 0.080 
MSCIHM1 0.025 0.155 0.210 0.250 
MSCIHM2 0.250 0.125 0.180 0.240 
MSCIHM3 2.420 0.050 0.105 0.190 
MSCIHN1 0.025 0.220 0.195 0.300 
MSCIHN2 0.260 0.220 0.145 0.290 
MSC/HN3 2.420 0.110 0.040 0.130 
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In free swelling conditions, equations (5.26) to (5.27) are simplified to 

N - 3(3e-g,,-g) 

U 

(5.33) 

N - 
3(3e -e -e ) (5.34) 

U 

After averaging the data of swelling potentials listed in Table 5.1 for each year, 

and then substituting those data into the equations (5.33) and (5.34), we obtain the fabric 

constants N, and N.,. The assumed swelling pressure cr., is 3.26 MPa which is larger than 

the in-situ vertical stress. Using the relations N+N+N=3, the swell coefficient C, 

fabric constants N , N,,, and N and elastic moduli E,, Eyy, and E are calculated and 

presented in Table 5.3. 

Table 5.3 Summary of Fabric Constants and C. 

Year 

of test (MPa) 

Cse 

(1/GPa) 

Fabric constants 

N. N),), N 

Elastic moduli 
(GPa) 

E. E E 

1985 3.26 0.2910 0.2879 0.2879 2.4243 10.7 10.7 4.0 

1986 3.26 0.2908 0.4717 0.4717 2.0565 9.3 9.3 4.5 

1987 3.26 0.2216 0.3018 0.3018 2.3963 13.9 13.9 5.3 

The fabric constant N and elastic modulus in the vertical direction are 

larger than fabric constants N and N),), and elastic moduli E. and E in the horizontal 

directions, indicating that the vertical swelling potential is larger than the horizontal. In 
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addition, N =N and E = Es,), suggests isotropic swelling deformation in the horizontal 

directions. 

Using the swelling constants and fabric constants determined from the free swell 

tests, the swelling potential under semiconfined condition listed in Table 5.2 are 

calculated from the model, and plotted in Figures 5.6 to 5.11. In these figures 

experimental data are also plotted for comparison. The predicted swelling behaviour are 

generally consistent with those observed in the tests. However, in some V tests, there are 

differences between the predicted results and experimental measurements. This is probably 

due to the heterogeneity of the samples. The application of confining stress in one 

direction suppresses the swelling in its direction as well as the orthogonal directions. The 

difference between the predicted and observed results are mainly due to the assumption 

of the linear swelling behaviour of clay particles, i.e., C. becomes independent of stress. 

A non-linear behaviour obeying power or semi-log law may yield a better match between 

the predicted and observed results. However, no analytical solution will be obtained and 

numerical analysis is required if a non-linear swell relation is used. 

5.5 CONCLUSION 

In this chapter, a stress-strain model based on micromechanics has been developed 

to predict anisotropic swelling behaviour of clay. The model predicts that the swelling is 

dependent on clay particle swelling properties, fabrics and imposed principal stresses. The 

application of stress in one direction suppresses the swelling in that direction as well as 

in orthogonal directions. The model has been evaluated by comparing the predicted results 



131 

with those from experiments. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 INTRODUCTION 

Particulate, discrete and frictional materials such as sands, form a separate class 

of materials. Stress and strain at a point, as defined for continuous media, are not valid 

for assemblies consisting of granular sands and swell particles. Instead, stress and strain 

have to be redefined for these assemblies, as the force and displacement averaged over 

a representative-unit or a finite volume within the system. This process of averaging is 

performed by summation of the total contact normals for regular packing or integration 

using a density function of contact normals for random packing. 

The constitutive relations are dependent on the microstructure or fabric of a 

particulate assembly. Different types of regular packing have different stress-strain 

relations which can be reflected by the corresponding constitutive coefficients. For a 

random packing assembly, the stiffness tensor can be obtained in an explicit form which 

is expressed in terms of the contact stiffness of the particles and the fabric tensor of the 

assembly. 

Based on analysis of the micromechanics of particulate assemblies, including 

assemblies of rigid particles, deform able particles, and swelling particles, stress-strain 

relations are derived from the concepts of a sliding plane and micromechanical 

continuum. The conclusions presented are applicable to granular sands and swelling clays. 
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6.2 CONCLUSIONS 

The shear behaviour of a granular assembly of rigid particles in simple shear and 

biaxial compression conditions have been studied using the principle of micromechanics. 

Analytical solutions are derived to describe the stress ratio, the change in fabric 

distribution and orientation, and the strain ratio during the process of shear deformation. 

Development of a stress-strain model based on micromechanics requires an additional 

relation linking the change in fabrics, and the change in contact number to the strain. The 

main advantages of this micromechanical model are that the model considers the effects 

of the fabric anisotropy, and the rotation of principal stress on the shear deformation of 

granular medium. The model provides a sound basis to explain some empirical 

correlations in soil mechanics such as Rowe's stress-dilatancy law and critical state. Since 

the model includes the effects of fabrics, the model can be applicable to any granular 

assembly of particles of different size distribution. 

Based on the principles of micro-mechanics we have derived the stress-strain 

relations of contact deformation for two-dimensional and three-dimensional regular 

packing assemblies. The derived stiffness constants are functions of the particle size, void 

ratio, coordination number, and interparticle contact stiffness. If the interparticle contact 

interaction is assumed to be linear elastic with no sliding at the contact, the assembly 

deformation is elastic. If the nonlinear constant stiffness given by the Hertz-Mindlin 

theory of friction contact is used, nonlinear deformation will occur due to plastic 

deformation at the contacts. It is noted that the stiffness tensor is derived for an increment 

of load based on the packing structure at the instant of load increment. The packing 
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structure , however, changes during the deformation process. Therefore, for cases with a 

large change of packing structure such as at high levels of deviatoric stress, the evolution 

of the packing structure with load should be defined in order to obtain the complete 

stress-strain relation. For cases with negligibly small changes in packing structure such 

as for packing under low levels of deviatoric stress, the proposed stress-strain relation 

can be directly applied in analyses of practical problems. All the solutions can be used 

in the cases of different complicated loads because here we assume the principal stress 

axis not to be coincident with the principal fabric axis. No matter what case, two 

dimensional or three-dimensional, if the assembly is isotropic and D=D, only two 

stiffness constants are independent. If the assembly is isotropic on the cross plane for the 

case of three-dimensions, five stiffness constants are independent. These conclusions are 

the same as those obtained by the theory of continuum mechanics. In addition, stiffness 

constants are dependent on the different fabric constants. 

For random packing assemblies the stress-strain relations under contact 

deformation are derived considering the fabric distribution and orientation, and 

micromechanics. The main conclusions are consistent with those from the conclusions 

from continuum theory. These conclusions include: (1) The stress-strain relations are 

related to the fabrics of assembly and to the local contact stiffnesses. (2) For a fully 

anisotropic assembly, if the three local contact stiffness constants are not equal to one 

another, the stress-strain relation is controlled by 21 stiffness constants. If the two tangent 

stiffness constants are equal, i.e. D = D, the independent stiffness constants reduce from 

21 to 18. (3) If the directions of the principal fabric axes are the same as those of 
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principal stress axes, though it is anisotropic, the number of independent stiffness 

constants is only nine. (4) For the case of the isotropic assembly on the intersection plane, 

only five independent stiffness constants determine the stress-strain relation. (5) For an 

isotropic assembly, there are two independent constants. 

In addition, a stress-strain model based on micromechanics has been developed 

to predict anisotropic swelling behaviour of clay. The model predicts that the swelling is 

dependent of clay particle swelling properties, fabrics and imposed principal stresses. The 

application of stress in one direction suppresses the swelling in that direction as well as 

the orthogonal directions. The model has been evaluated by comparing the predicted 

results with these from experiments. 

6.3 RECOMMENDATIONS 

In Chapter 2, the model can be applied to a particulate assembly with any shape 

and size of particles. A versatile three-dimensional model can be obtained using the same 

approach as presented in this chapter. In this case, we have to introduce a three-

dimensional density function same as equation (4.7) and analyze the equilibrium of 

contact forces (f, f11 ,, and f) and external stresses a,.,, and 22). 

In Chapters 3 and 4, the derived stress-stain relations are based on a system of 

equal size spherical particles. It is possible to extend this model to a system with different 

size distribution but still spherical particles if we introduce a density function describing 

particle dimension or void ratio. 

In Chapter 5, we assume the swelling coefficient is a constant and the local 
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constitutive law of swelling particles depends on the first-power of normal pressure. There 

are two ways to improve this model, namely, we assume a local constitutive law 

or 

where il is a test parameter. 
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