https://prism.ucalgary.ca

The Vault

Open Theses and Dissertations

2020-08-12

The Effects of Cannabis and Alcohol on Driving Performance and Driver Behaviour: A Systematic Review and Meta-Analysi

Simmons, Sarah Michelle

Simmons, S. M. (2020). The effects of cannabis and alcohol on driving performance and driver behaviour: a systematic review and meta-analysis (Doctoral thesis, University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. http://hdl.handle.net/1880/112405 Downloaded from PRISM Repository, University of Calgary

UNIVERSITY OF CALGARY

The Effects of Cannabis and Alcohol on Driving Performance and Driver Behaviour:

A Systematic Review and Meta-Analysis

by

Sarah Michelle Simmons

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN PSYCHOLOGY

CALGARY, ALBERTA

AUGUST, 2020

© Sarah Michelle Simmons 2020

Abstract

Cannabis is the most frequently used drug in the world, and it is commonly detected in fatal crashes. Epidemiological research indicates that cannabis is associated with an increase in crash risk, but the mechanisms underlying this association remain unclear. The objective of the current systematic review and meta-analysis is to provide insight into these mechanisms by synthesizing experimental research focused on the effects of cannabis on driving performance and behaviour. Additionally, the experimental literature focused on the effects of alcohol on driving performance and behaviour is synthesized for comparative purposes. The four key aims of this dissertation are to (1) quantify the magnitude of the effect of cannabis on driving performance and behaviour; (2) compare the influence of cannabis to that of alcohol; (3) assess the effect of the combination of cannabis and alcohol on driving performance and behaviour; and, (4) identify knowledge gaps and quality limitations in the extant literature to direct the conduct of high quality research in the future. Academic Search Complete, CINAHL, Embase, Scopus, MEDLINE, PsycINFO, SportDISCUS and TRID were systematically searched in May 2018. Driving performance and behaviour data from experimental driving studies involving healthy participants of any age and sex collected in driving simulator, closed-course and on-road studies involving cannabis and/or alcohol administration, published in any language, were eligible for inclusion. Of 120 eligible studies, 81 were ultimately included in the meta-analysis. Most notably, cannabis was associated with impaired lateral control and decreased driving speed. Alcohol was associated with a variety of driving performance decrements and increased driving speed. The combination of drugs was associated with greater driving performance decrements than either drug in isolation. Finally, indirect comparisons indicated that the effects of cannabis on experimental driving measures were generally similar to low blood alcohol concentrations.

However, imprecision in effect size estimates limits interpretation, and more research in the area is needed. Future research directions and quality recommendations are identified and described to aid in this endeavour. Nonetheless, the meta-analysis indicates that cannabis, like alcohol, impairs driving, and the combination of the two drugs is more detrimental to driving performance than either in isolation.

Keywords: cannabis, marijuana, alcohol, impaired driving, driving under the influence, driving performance, driver behaviour, experimental driving studies, driving simulator, simulated driving, meta-analysis, systematic review, research synthesis

Acknowledgements

There are many individuals to thank for their contributions to this work. First, this research would not have been possible without the support of several individuals at the University of Calgary Library. Thank you to Associate Librarian Laura Koltutsky for guidance related to database selection, electronic search strategy development and study screening. I am also indebted to DDS Specialists Lorraine Baker, Kathleen James, Glenda Magallon, Kathy McDonnel, Lana Wong and Judy Zhao, who processed my (many) interlibrary loan requests.

Next, I am deeply grateful for the work of many volunteers. Thank you to Franci Sterzer, Dongzhao Shelley Liu, Gabby Janikian, Louisa Krile and Adam Turner, who volunteered their time to assist with abstract screening, full-text reviews and study quality and risk of bias assessments, and to Liz Suessenbach, Qing Li, Kari Smedstad, Caitlin Lang Faerevaag, Mélanie Paulin and Chelsea Hart, who volunteered their time to assist in reviewing the non-English studies for content.

I would like to thank the researchers who responded to my requests for clarification, elaboration and data related to their work. In particular, I want to recognize Thomas Arkell, Mark Fillmore, Arne Helland, Danielle McCartney, Nicola Starkey and Mark Vollrath, who provided missing data.

Many thanks to my supervisor, Dr. Jeff Caird, for providing mentorship, guidance and unparalleled support over the years, and to my supervisory committee, including Drs. Tom O'Neill, Piers Steel, Fiona Clement, Brent Hagel and Mark Asbridge, for providing guidance, advice and feedback on this project. Additionally, I would like to thank Dr. Michael Borenstein for volunteering time to provide technical advice. Finally, I would like to acknowledge and thank my friends in the Department of Psychology at the University of Calgary including Devon Currie, Clark Amistad, Tim Wingate, Maria Pavlova, Kirsti Toivonen, Emilie Lacroix, Chelsea Hart and Alberto Umiltà – all of whom I credit with making my time in the doctoral program the most enjoyable and rewarding period of my life – for their friendship and support. I am also eternally grateful for the encouragement and support of my family at home in Saskatchewan.

This research received financial support from a URGC SSH Faculty Seed Grant. The funder did not have a role in the design of the study, its execution, its reported findings or publication.

Table of Contents

Abstract	1
Acknowledgements	3
Table of Contents	5
List of Tables	7
List of Figures and Illustrations	11
Chapter 1: Introduction	25
Driving Under the Influence of Cannabis: A Theoretical Perspective	
Cannabis, Driving Performance & Driver Behaviour	
Previous Research	
Current Study	49
Chapter 2: Method	53
Eligibility Criteria	
Information Sources	
Search Strategy	
Study Selection	
Data Items	
Data Collection Process	
Study Quality & Risk of Bias	
Summary Measures	
Synthesis of Results	
Risk of Bias Across Studies	
Additional Analyses	
Chapter 3: Results	72
Study Selection	72
Study Characteristics	74
Primary Meta-Analysis	143
Subgroup Analyses	204
Study Quality & Risk of Bias	
Chapter 4: Discussion	221
Results of the Meta-Analysis	221
Theoretical Implications	231
Practical Implications	234
Limitations.	240
Future Research	
Conclusion	
References	253
Appendix A: Search Strategy	285

Appendix B: Eligible Studies Excluded for Insufficient Data	
Appendix C: Forest Plots (Primary Meta-Analyses)	299
Appendix D: Forest Plots (Subgroup Analyses)	404
Appendix E: Funnel Plots	422
Appendix F: Study Quality and Risk of Bias Assessment	454
Appendix G: Copyright Permissions	463

List of Tables

Table 1. Overview of studies included in the meta-analysis.	75
<i>Table 2.</i> Overview of participant drug use inclusion criteria and reported frequency, and drug driving conditions.	
Table 3. Effect of cannabis on crashes (compared to baseline).	. 145
Table 4. Effect of cannabis on hazard RT (compared to baseline)	. 146
Table 5. Effect of cannabis on headway (compared to baseline).	. 147
Table 6. Effect of cannabis on headway variability (compared to baseline).	. 148
Table 7. Effect of cannabis on lateral position variability (compared to baseline)	. 149
Table 8. Effect of cannabis on lane excursions (compared to baseline)	. 150
Table 9. Effect of cannabis on time out of lane (compared to baseline).	. 151
Table 10. Effect of cannabis on speed (compared to baseline)	. 152
Table 11. Effect of cannabis on speed variability (compared to baseline).	. 153
Table 12. Effect of cannabis on speed exceedances (compared to baseline)	. 154
Table 13. Effect of alcohol on crashes (compared to baseline).	. 155
Table 14. Re-analysis of the effect of alcohol on crashes (compared to baseline)	. 157
Table 15. The relationship between Hedge's g and SE, with and without BAC	. 158
Table 16. Effect of alcohol on hazard RT (compared to baseline).	. 159
Table 17. Effect of alcohol on headway (compared to baseline)	. 161
Table 18. Effect of alcohol on headway variability (compared to baseline).	. 161
Table 19. Effect of alcohol on lateral position variability (compared to baseline)	. 162
<i>Table 20.</i> Re-analysis of the effect of alcohol on lateral position variability (compared to baseline).	. 164
Table 21. The relationship between Hedge's g and SE, with and without BAC	. 165
Table 22. Effect of alcohol on lane excursions (compared to baseline).	. 166

Table 23. Re-analysis of the effect of alcohol on lane excursions (compared to baseline) 167
Table 24. The relationship between Hedge's g and SE, with and without BAC168
Table 25. Effect of alcohol on time out of lane (compared to baseline)
Table 26. Effect of alcohol on speed (compared to baseline)
Table 27. Effect of alcohol on speed variability (compared to baseline)
Table 28. Effect of alcohol on speed exceedances (compared to baseline)
Table 29. Effect of alcohol on time speeding (compared to baseline)
Table 30. Effect of cannabis on crashes (compared to alcohol)
Table 31. Effect of cannabis on hazard RT (compared to alcohol)
Table 32. Effect of cannabis on lateral position variability (compared to alcohol) 176
Table 33. Effect of cannabis on lane excursions (compared to alcohol)
Table 34. Effect of cannabis on time out of lane (compared to alcohol)
Table 35. Effect of cannabis on speed (compared to alcohol)
Table 36. Effect of cannabis on speed variability (compared to alcohol)
Table 37. Effect of cannabis on speed exceedances (compared to alcohol)
Table 38. Effect of cannabis combined with alcohol on crashes (compared to baseline) 182
Table 39. Effect of cannabis combined with alcohol on Hazard RT (compared to baseline) 183
Table 40. Effect of cannabis combined with alcohol on lateral position variability (compared to baseline). 184
Table 41. Effect of cannabis combined with alcohol on lane excursions (compared to baseline). 185
Table 42. Effect of cannabis combined with alcohol on speed (compared to baseline)
Table 43. Effect of cannabis combined with alcohol on speed variability (compared to baseline). 186
<i>Table 44.</i> Effect of cannabis combined with alcohol on speed exceedances (compared to baseline)

Table 45. Effect of cannabis combined with alcohol on time out of lane (compared to baseline). 18	38
Table 46. Effect of cannabis combined with alcohol on crashes (compared to alcohol)	39
Table 47. Effect of cannabis combined with alcohol on hazard RT (compared to alcohol) 19) 0
Table 48. Effect of cannabis combined with alcohol on lateral position variability (compared to alcohol). 19	91
Table 49. Effect of cannabis combined with alcohol on lane excursions (compared to alcohol). 19) 2
Table 50. Effect of cannabis combined with alcohol on time out of lane (compared to alcohol). 19) 3
Table 51. Effect of cannabis combined with alcohol on speed (compared to alcohol)) 4
Table 52. Effect of cannabis combined with alcohol on speed variability (compared to alcohol). 19) 5
Table 53. Effect of cannabis combined with alcohol on speed exceedances (compared to alcohol). 19) 6
Table 54. Effect of cannabis combined with alcohol on crashes (compared to cannabis) 19) 7
Table 55. Effect of cannabis combined with alcohol on hazard RT (compared to cannabis) 19) 8
Table 56. Effect of cannabis combined with alcohol on lateral position variability (compared to cannabis). 19) 9
Table 57. Effect of cannabis combined with alcohol on lane excursions (compared to cannabis). 20)0
Table 58. Effect of cannabis combined with alcohol on time out of lane (compared to cannabis). 20)0
Table 59. Effect of cannabis combined with alcohol on speed (compared to cannabis))1
<i>Table 60.</i> Effect of cannabis combined with alcohol on speed variability (compared to cannabis))2
<i>Table 61.</i> Effect of cannabis combined with alcohol on speed exceedances (compared to cannabis))3
Table 62. The effects of varying levels of alcohol on crashes (relative to baseline))5

Table 63. The effects of varying levels of alcohol on hazard RT (relative to baseline)	207
<i>Table 64.</i> The effects of varying levels of alcohol on lateral position variability (relative to baseline).	209
Table 65. The effects of varying levels of alcohol on lane excursions (relative to baseline)	211
Table 66. The effects of varying levels of alcohol on speed (relative to baseline)	213
Table 67. The effects of varying levels of alcohol on speed variability (relative to baseline)	215
<i>Table 68.</i> Summary of the effects of cannabis on driving performance and behaviour relative to baseline.	222
Table 69. Summary of the effects of cannabis on driving performance and behaviour relative to alcohol.	224
<i>Table 70.</i> Summary of the effects of cannabis on driving performance and behaviour relative to baseline, compared to the effects of alcohol on driving performance and behaviour relative to baseline.	226
<i>Table 71.</i> Summary of the effects of the combination of cannabis and alcohol on driving performance and behaviour, relative to baseline.	228
<i>Table 72.</i> Summary of the effects of the combination of cannabis and alcohol on driving performance and behaviour, relative to alcohol	229
<i>Table 73.</i> Summary of the effects of the combination of cannabis and alcohol on driving performance and behaviour, relative to cannabis	230
Table A1. Search strategy for PsycINFO, Embase and MEDLINE.	285
Table A2. Search strategy for Academic Search Complete, CINAHL and SportDISCUS	285
<i>Table B1</i> . Studies that met inclusion criteria but did not report enough data for effect size computation.	286
Table F1. Study quality and risk of bias judgements	454
Table F2. Interrater agreement for study quality and risk of bias judgements	462

List of Figures and Illustrations

Figure 1. Fuller's (2005) Task-Capability Interface (TCI) model of driving	29
Figure 2. Study selection process.	73
<i>Figure C1</i> . Forest plot illustrating <i>Cannabis v. Baseline: Crashes</i> (missing pre-post correlations set to $r = $ zero).	299
<i>Figure C2.</i> Forest plot illustrating <i>Cannabis v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.5$).	299
<i>Figure C3</i> . Forest plot illustrating <i>Cannabis v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.9$).	300
<i>Figure C4</i> . Forest plot illustrating <i>Cannabis v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = $ zero).	301
<i>Figure C5.</i> Forest plot illustrating <i>Cannabis v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$).	302
<i>Figure C6.</i> Forest plot illustrating <i>Cannabis v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$).	303
Figure C7. Forest plot illustrating Cannabis v. Baseline: Headway.	304
Figure C8. Forest plot illustrating Cannabis v. Baseline: Headway Variability	304
<i>Figure C9.</i> Forest plot illustrating <i>Cannabis v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = $ zero).	305
<i>Figure C10.</i> Forest plot illustrating <i>Cannabis v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$).	306
<i>Figure C11</i> . Forest plot illustrating <i>Cannabis v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$).	307
<i>Figure C12</i> . Forest plot illustrating <i>Cannabis v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = \text{zero}$).	308
<i>Figure C13</i> . Forest plot illustrating <i>Cannabis v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$)	308
<i>Figure C14</i> . Forest plot illustrating <i>Cannabis v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.9$).	309

<i>Figure C15</i> . Forest plot illustrating <i>Cannabis v. Baseline: Time Out of Lane</i> (missing prepost correlations set to $r = $ zero).	. 309
<i>Figure C16.</i> Forest plot illustrating <i>Cannabis v. Baseline: Time Out of Lane</i> (missing prepost correlations set to $r = 0.5$).	. 310
<i>Figure C17.</i> Forest plot illustrating <i>Cannabis v. Baseline: Time Out of Lane</i> (missing prepost correlations set to $r = 0.9$).	. 310
<i>Figure C18.</i> Forest plot illustrating <i>Cannabis v. Baseline: Speed</i> (missing pre-post correlations set to <i>r</i> = zero).	. 311
<i>Figure C19.</i> Forest plot illustrating <i>Cannabis v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.5$).	. 312
<i>Figure C20.</i> Forest plot illustrating <i>Cannabis v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.9$).	. 313
<i>Figure C21</i> . Forest plot illustrating <i>Cannabis v. Baseline: Speed Variability</i> (missing prepost correlations set to $r = $ zero).	. 314
<i>Figure C22</i> . Forest plot illustrating <i>Cannabis v. Baseline: Speed Variability</i> (missing prepost correlations set to $r = 0.5$).	. 315
<i>Figure C23</i> . Forest plot illustrating <i>Cannabis v. Baseline: Speed Variability</i> (missing prepost correlations set to $r = 0.9$).	. 316
<i>Figure C24</i> . Forest plot illustrating <i>Cannabis v. Baseline: Speed Exceedances</i> (missing prepost correlations set to <i>r</i> = zero)	. 316
<i>Figure C25</i> . Forest plot illustrating <i>Cannabis v. Baseline: Speed Exceedances</i> (missing prepost correlations set to $r = 0.5$).	. 317
<i>Figure C26.</i> Forest plot illustrating <i>Cannabis v. Baseline: Speed Exceedances</i> (missing prepost correlations set to $r = 0.9$).	. 317
<i>Figure C27.</i> Forest plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero).	. 318
<i>Figure C28.</i> Forest plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.5$)	. 319
<i>Figure C29.</i> Forest plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.9$)	. 320
<i>Figure C30</i> . Forest plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero). Excludes Bernosky-Smith et al. (2012)	. 321

<i>Figure C31</i> . Forest plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.5$). Excludes Bernosky-Smith et al. (2012)	. 322
<i>Figure C32</i> . Forest plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.9$). Excludes Bernosky-Smith et al. (2012)	. 323
<i>Figure C33</i> . Forest plot illustrating <i>Alcohol v. Baseline: Hazard RT</i> (missing pre-post correlations set to <i>r</i> = zero).	. 324
<i>Figure C34</i> . Forest plot illustrating <i>Alcohol v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$).	. 325
<i>Figure C35.</i> Forest plot illustrating <i>Alcohol v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$).	. 326
<i>Figure C36</i> . Forest plot illustrating <i>Alcohol v. Baseline: Headway</i> (missing pre-post correlations set to <i>r</i> = zero).	. 327
<i>Figure C37.</i> Forest plot illustrating <i>Alcohol v. Baseline: Headway</i> (missing pre-post correlations set to $r = 0.5$).	. 327
<i>Figure C38.</i> Forest plot illustrating <i>Alcohol v. Baseline: Headway</i> (missing pre-post correlations set to $r = 0.9$).	. 328
<i>Figure C39.</i> Forest plot illustrating <i>Alcohol v. Baseline: Headway Variability</i> (missing prepost correlations set to $r = $ zero).	. 328
<i>Figure C40.</i> Forest plot illustrating <i>Alcohol v. Baseline: Headway Variability</i> (missing prepost correlations set to $r = 0.5$).	. 329
<i>Figure C41</i> . Forest plot illustrating <i>Alcohol v. Baseline: Headway Variability</i> (missing prepost correlations set to $r = 0.9$).	. 329
<i>Figure C42</i> . Forest plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = $ zero). Includes Study 1 from Veldstra et al. (2012)	-
<i>Figure C43</i> . Forest plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$). Includes Study 1 from Veldstra et al. (2012)	
<i>Figure C44</i> . Forest plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$). Includes Study 1 from Veldstra et al. (2012)	-
<i>Figure C45</i> . Forest plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = $ zero). Excludes Study 1 from Veldstra et al. (2012)	
<i>Figure C46.</i> Forest plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$). Excludes Study 1 from Veldstra et al. (2012)	

<i>Figure C47</i> . Forest plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = 0.9). Excludes Study 1 from Veldstra et al. (2012)
<i>Figure C48.</i> Forest plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = zero). Includes Berthelon & Gineyt (2014) and Weiler et al. (2000). (2000).
<i>Figure C49.</i> Forest plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$). Includes Berthelon & Gineyt (2014) and Weiler et al. (2000).337
<i>Figure C50.</i> Forest plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.9$). Includes Berthelon & Gineyt (2014) and Weiler et al. (2000).338
<i>Figure C51</i> . Forest plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = zero). Excludes Berthelon & Gineyt (2014) and Weiler et al. (2000).
<i>Figure C52.</i> Forest plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$). Excludes Berthelon & Gineyt (2014) and Weiler et al. (2000)
<i>Figure C53.</i> Forest plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = 0.9). Excludes Berthelon & Gineyt (2014) and Weiler et al. (2000)
<i>Figure C54</i> . Forest plot illustrating <i>Alcohol v. Baseline: Time Out of Lane</i> (missing pre-post correlations set to <i>r</i> = zero)
<i>Figure C55.</i> Forest plot illustrating <i>Alcohol v. Baseline: Time Out of Lane</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C56.</i> Forest plot illustrating <i>Alcohol v. Baseline: Time Out of Lane</i> (missing pre-post correlations set to $r = 0.9$
<i>Figure C57</i> . Forest plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlations set to <i>r</i> = zero)
<i>Figure C58.</i> Forest plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C59.</i> Forest plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlations set to <i>r</i> = 0.9)
<i>Figure C60.</i> Forest plot illustrating <i>Alcohol v. Baseline: Speed Variability</i> (missing pre-post correlations set to <i>r</i> = zero)

<i>Figure C61</i> . Forest plot illustrating <i>Alcohol v. Baseline: Speed Variability</i> (missing pre-post correlations set to $r = 0.5$).	. 348
<i>Figure C62</i> . Forest plot illustrating <i>Alcohol v. Baseline: Speed Variability</i> (missing pre-post correlations set to $r = 0.9$).	. 349
<i>Figure C63</i> . Forest plot illustrating <i>Alcohol v. Baseline: Speed Exceedances</i> (missing prepost correlations set to <i>r</i> = zero).	. 350
<i>Figure C64.</i> Forest plot illustrating <i>Alcohol v. Baseline: Speed Exceedances</i> (missing prepost correlations set to $r = 0.5$).	. 350
<i>Figure C65</i> . Forest plot illustrating <i>Alcohol v. Baseline: Speed Exceedances</i> (missing prepost correlations set to $r = 0.9$).	. 351
<i>Figure C66.</i> Forest plot illustrating <i>Alcohol v. Baseline: Time Speeding</i> (missing pre-post correlations set to <i>r</i> = zero).	. 351
<i>Figure C67.</i> Forest plot illustrating <i>Alcohol v. Baseline: Time Speeding</i> (missing pre-post correlations set to $r = 0.5$).	. 352
<i>Figure C68.</i> Forest plot illustrating <i>Alcohol v. Baseline: Time Speeding</i> (missing pre-post correlations set to $r = 0.9$)	. 352
<i>Figure C69.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero).	. 353
<i>Figure C70.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Crashes</i> (missing pre-post correlations set to $r = 0.5$).	. 353
<i>Figure C71</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Crashes</i> (missing pre-post correlations set to $r = 0.9$)	. 354
<i>Figure C72</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Hazard RT</i> (missing pre-post correlations set to <i>r</i> = zero).	. 354
<i>Figure C73</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$).	. 355
<i>Figure C74</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$).	. 355
<i>Figure C75</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = zero).	. 356
<i>Figure C76.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$).	. 356

<i>Figure C77.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$).	. 357
<i>Figure C</i> 78. Forest plot illustrating <i>Cannabis v. Alcohol: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = zero).	
<i>Figure C79.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$).	
<i>Figure C80.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Lane Excursions</i> (missing pre-post correlations set to $r = 0.9$).	
<i>Figure C81</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Time Out of Lane</i> (missing pre-pos correlations set to <i>r</i> = zero).	
<i>Figure C82</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Time Out of Lane</i> (missing pre-pos correlations set to $r = 0.5$).	
<i>Figure C83</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Time Out of Lane</i> (missing pre-pos- correlations set to $r = 0.9$)	
<i>Figure C84</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Speed</i> (missing pre-post correlations set to <i>r</i> = zero).	. 360
<i>Figure C85</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Speed</i> (missing pre-post correlations set to $r = 0.5$)	. 361
<i>Figure C86.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Speed</i> (missing pre-post correlations set to $r = 0.9$)	. 361
<i>Figure C87</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Speed Variability</i> (missing pre-pos- correlations set to $r = \text{zero}$).	
<i>Figure C88.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Speed Variability</i> (missing pre-pos- correlations set to $r = 0.5$).	
<i>Figure C89.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Speed Variability</i> (missing pre-pos- correlations set to $r = 0.9$).	
<i>Figure C90.</i> Forest plot illustrating <i>Cannabis v. Alcohol: Speed Exceedances</i> (missing prepost correlations set to <i>r</i> = zero).	. 363
<i>Figure C91</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Speed Exceedances</i> (missing prepost correlations set to $r = 0.5$).	. 364
<i>Figure C92</i> . Forest plot illustrating <i>Cannabis v. Alcohol: Speed Exceedances</i> (missing prepost correlations set to r = 0.9)	. 364

<i>Figure C93</i> . Forest plot illustrating <i>Combination v. Baseline: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero)	365
<i>Figure C94.</i> Forest plot illustrating <i>Combination v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.5$)	365
<i>Figure C95.</i> Forest plot illustrating <i>Combination v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.9$)	366
<i>Figure C96.</i> Forest plot illustrating <i>Combination v. Baseline: Hazard RT</i> (missing pre-post correlations set to <i>r</i> = zero)	366
<i>Figure C97.</i> Forest plot illustrating <i>Combination v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$)	367
<i>Figure C98.</i> Forest plot illustrating <i>Combination v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$)	367
<i>Figure C99.</i> Forest plot illustrating <i>Combination v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = zero)	368
<i>Figure C100.</i> Forest plot illustrating <i>Combination v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$)	368
<i>Figure C101</i> . Forest plot illustrating <i>Combination v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$)	369
<i>Figure C102</i> . Forest plot illustrating <i>Combination v. Baseline: Lane Excursions</i> (missing prepost correlations set to <i>r</i> = zero)	369
<i>Figure C103</i> . Forest plot illustrating <i>Combination v. Baseline: Lane Excursions</i> (missing prepost correlations set to $r = 0.5$)	370
<i>Figure C104</i> . Forest plot illustrating <i>Combination v. Baseline: Lane Excursions</i> (missing prepost correlations set to $r = 0.9$)	370
<i>Figure C105</i> . Forest plot illustrating <i>Combination v. Baseline: Speed</i> (missing pre-post correlations set to <i>r</i> = zero)	371
<i>Figure C106.</i> Forest plot illustrating <i>Combination v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.5$)	371
<i>Figure C107.</i> Forest plot illustrating <i>Combination v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.9$)	372
<i>Figure C108.</i> Forest plot illustrating <i>Combination v. Baseline: Speed Variability</i> (missing pre-post correlations set to <i>r</i> = zero)	372

<i>Figure C109.</i> Forest plot illustrating <i>Combination v. Baseline: Speed Variability</i> (missing pre-post correlations set to $r = 0.5$)	. 373
<i>Figure C110.</i> Forest plot illustrating <i>Combination v. Baseline: Speed Variability</i> (missing pre-post correlations set to $r = 0.9$).	. 373
<i>Figure C111</i> . Forest plot illustrating <i>Combination v. Baseline: Speed Exceedances</i> (missing pre-post correlations set to <i>r</i> = zero).	. 374
<i>Figure C112.</i> Forest plot illustrating <i>Combination v. Baseline: Speed Exceedances</i> (missing pre-post correlations set to $r = 0.5$).	. 374
<i>Figure C113</i> . Forest plot illustrating <i>Combination v. Baseline: Speed Exceedances</i> (missing pre-post correlations set to $r = 0.9$).	. 375
<i>Figure C114</i> . Forest plot illustrating <i>Combination v. Baseline: Time Out of Lane</i> (missing pre-post correlations set to <i>r</i> = zero).	. 375
<i>Figure C115.</i> Forest plot illustrating <i>Combination v. Baseline: Time Out of Lane</i> (missing pre-post correlations set to $r = 0.5$).	. 376
<i>Figure C116.</i> Forest plot illustrating <i>Combination v. Baseline: Time Out of Lane</i> (missing pre-post correlations set to $r = 0.9$).	. 376
<i>Figure C117.</i> Forest plot illustrating <i>Combination v. Alcohol: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero).	. 377
<i>Figure C118.</i> Forest plot illustrating <i>Combination v. Alcohol: Crashes</i> (missing pre-post correlations set to $r = 0.5$).	. 377
<i>Figure C119.</i> Forest plot illustrating <i>Combination v. Alcohol: Crashes</i> (missing pre-post correlations set to $r = 0.9$).	. 378
<i>Figure C120.</i> Forest plot illustrating <i>Combination v. Alcohol: Hazard RT</i> (missing pre-post correlations set to <i>r</i> = zero).	. 378
<i>Figure C121</i> . Forest plot illustrating <i>Combination v. Alcohol: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$).	. 379
<i>Figure C122.</i> Forest plot illustrating <i>Combination v. Alcohol: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$).	. 379
<i>Figure C123</i> . Forest plot illustrating <i>Combination v. Alcohol: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = zero).	. 380
<i>Figure C124</i> . Forest plot illustrating <i>Combination v. Alcohol: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$).	. 381

<i>Figure C125.</i> Forest plot illustrating <i>Combination v. Alcohol: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$).	. 382
<i>Figure C126.</i> Forest plot illustrating <i>Combination v. Alcohol: Lane Excursions</i> (missing prepost correlations set to $r = $ zero).	
<i>Figure C127.</i> Forest plot illustrating <i>Combination v. Alcohol: Lane Excursions</i> (missing prepost correlations set to $r = 0.5$).	
<i>Figure C128.</i> Forest plot illustrating <i>Combination v. Alcohol: Lane Excursions</i> (missing prepost correlations set to $r = 0.9$).	
<i>Figure C129.</i> Forest plot illustrating <i>Combination v. Alcohol: Time Out of Lane</i> (missing prepost correlations set to $r = \text{zero}$).	
<i>Figure C130.</i> Forest plot illustrating <i>Combination v. Alcohol: Time Out of Lane</i> (missing prepost correlations set to $r = 0.5$).	
<i>Figure C131</i> . Forest plot illustrating <i>Combination v. Alcohol: Time Out of Lane</i> (missing prepost correlations set to $r = 0.9$).	
<i>Figure C132.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed</i> (missing pre-post correlations set to <i>r</i> = zero).	. 385
<i>Figure C133.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed</i> (missing pre-post correlations set to $r = 0.5$).	. 386
<i>Figure C134.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed</i> (missing pre-post correlations set to $r = 0.9$).	. 386
<i>Figure C135</i> . Forest plot illustrating <i>Combination v. Alcohol: Speed Variability</i> (missing prepost correlations set to <i>r</i> = zero).	
<i>Figure C136.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed Variability</i> (missing prepost correlations set to $r = 0.5$).	
<i>Figure C137.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed Variability</i> (missing prepost correlations set to $r = 0.9$).	
<i>Figure C138.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed Exceedances</i> (missing pre-post correlations set to <i>r</i> = zero).	. 388
<i>Figure C139.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed Exceedances</i> (missing pre-post correlations set to $r = 0.5$)	. 389
<i>Figure C140.</i> Forest plot illustrating <i>Combination v. Alcohol: Speed Exceedances</i> (missing pre-post correlations set to $r = 0.9$)	. 389

<i>Figure C141</i> . Forest plot illustrating <i>Combination v. Cannabis: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero)
<i>Figure C142</i> . Forest plot illustrating <i>Combination v. Cannabis: Crashes</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C143</i> . Forest plot illustrating <i>Combination v. Cannabis: Crashes</i> (missing pre-post correlations set to $r = 0.9$)
<i>Figure C144</i> . Forest plot illustrating <i>Combination v. Cannabis: Hazard RT</i> (missing pre-post correlations set to <i>r</i> = zero)
<i>Figure C145</i> . Forest plot illustrating <i>Combination v. Cannabis: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C146</i> . Forest plot illustrating <i>Combination v. Cannabis: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$)
<i>Figure C147.</i> Forest plot illustrating <i>Combination v. Cannabis: Lateral Position Variability</i> (missing pre-post correlations set to $r = \text{zero}$)
<i>Figure C148.</i> Forest plot illustrating <i>Combination v. Cannabis: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C149.</i> Forest plot illustrating <i>Combination v. Cannabis: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$)
<i>Figure C150.</i> Forest plot illustrating <i>Combination v. Cannabis: Lane Excursions</i> (missing pre-post correlations set to $r = $ zero)
<i>Figure C151</i> . Forest plot illustrating <i>Combination v. Cannabis: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C152.</i> Forest plot illustrating <i>Combination v. Cannabis: Lane Excursions</i> (missing pre-post correlations set to $r = 0.9$)
<i>Figure C153.</i> Forest plot illustrating <i>Combination v. Cannabis: Time Out of Lane</i> (missing pre-post correlations set to $r = \text{zero}$)
<i>Figure C154.</i> Forest plot illustrating <i>Combination v. Cannabis: Time Out of Lane</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure C155.</i> Forest plot illustrating <i>Combination v. Cannabis: Time Out of Lane</i> (missing pre-post correlations set to $r = 0.9$)
<i>Figure C156.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed</i> (missing pre-post correlations set to <i>r</i> = zero)

<i>Figure C157.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed</i> (missing pre-post correlations set to $r = 0.5$)	399
<i>Figure C158.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed</i> (missing pre-post correlations set to $r = 0.9$).	400
<i>Figure C159.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed Variability</i> (missing pre-post correlations set to $r = zero$).	400
<i>Figure C160.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed Variability</i> (missing pre-post correlations set to $r = 0.5$).	401
<i>Figure C161</i> . Forest plot illustrating <i>Combination v. Cannabis: Speed Variability</i> (missing pre-post correlations set to $r = 0.9$).	401
<i>Figure C162.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed Exceedances</i> (missing pre-post correlations set to <i>r</i> = zero).	402
<i>Figure C163.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed Exceedances</i> (missing pre-post correlations set to $r = 0.5$).	402
<i>Figure C164.</i> Forest plot illustrating <i>Combination v. Cannabis: Speed Exceedances</i> (missing pre-post correlations set to $r = 0.9$).	403
<i>Figure D1</i> . Forest plot illustrating the effects of varying levels of alcohol, and THC, on crashes. Missing pre-post correlations set to $r = \text{zero.}$	404
<i>Figure D2.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on crashes. Missing pre-post correlations set to $r = 0.5$	405
<i>Figure D3.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on crashes. Missing pre-post correlations set to $r = 0.9$	406
<i>Figure D4</i> . Forest plot illustrating the effects of varying levels of alcohol, and THC, on hazard RT. Missing pre-post correlations set to $r = \text{zero.}$	407
<i>Figure D5.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on hazard RT. Missing pre-post correlations set to $r = 0.5$	408
<i>Figure D6.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on hazard RT. Missing pre-post correlations set to $r = 0.9$	409
<i>Figure D7.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on lateral position variability. Missing pre-post correlations set to $r = $ zero	410
<i>Figure D8.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on lateral position variability. Missing pre-post correlations set to $r = 0.5$	411

<i>Figure D9.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on lateral position variability. Missing pre-post correlations set to $r = 0.9$
<i>Figure D10.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on lane excursions. Missing pre-post correlations set to $r = zero$
<i>Figure D11</i> . Forest plot illustrating the effects of varying levels of alcohol, and THC, on lane excursions. Missing pre-post correlations set to $r = 0.5$
<i>Figure D12.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on lane excursions. Missing pre-post correlations set to $r = 0.9$
<i>Figure D13.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed. Missing pre-post correlations set to $r = \text{zero.}$
<i>Figure D14.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed. Missing pre-post correlations set to $r = 0.5$
<i>Figure D15.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed. Missing pre-post correlations set to $r = 0.9$
<i>Figure D16.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed variability. Missing pre-post correlations set to $r = \text{zero.}$
<i>Figure D17.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed variability. Missing pre-post correlations set to $r = 0.5$
<i>Figure D18.</i> Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed variability. Missing pre-post correlations set to $r = 0.9$
<i>Figure E1</i> . Funnel plot illustrating <i>Cannabis v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = zero$)
<i>Figure E2</i> . Funnel plot illustrating <i>Cannabis v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure E3</i> . Funnel plot illustrating <i>Cannabis v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$)
<i>Figure E4.</i> Funnel plot illustrating <i>Cannabis v. Baseline: Speed</i> (missing pre-post correlations set to <i>r</i> = zero)
<i>Figure E5.</i> Funnel plot illustrating <i>Cannabis v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.5$)
<i>Figure E6.</i> Funnel plot illustrating <i>Cannabis v. Baseline: Speed</i> (missing pre-post correlations set to $r = 0.9$)

<i>Figure E7.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to <i>r</i> = zero). Includes Bernosky-Smith et al., 2012	427
<i>Figure E8.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.5$). Includes Bernosky-Smith et al., 2012.	428
<i>Figure E9.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.9$). Includes Bernosky-Smith et al., 2012.	429
<i>Figure E10.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = $ zero). Excludes Bernosky-Smith et al., 2012.	430
<i>Figure E11.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.5$). Excludes Bernosky-Smith et al., 2012.	431
<i>Figure E12.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Crashes</i> (missing pre-post correlations set to $r = 0.9$). Excludes Bernosky-Smith et al., 2012.	432
<i>Figure E13.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Hazard RT</i> (missing pre-post correlations set to r = zero).	433
<i>Figure E14.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.5$).	434
<i>Figure E15.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Hazard RT</i> (missing pre-post correlations set to $r = 0.9$).	435
<i>Figure E16</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = zero). Includes Study 1 from Veldstra et al. (2012).	436
<i>Figure E17.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$). Includes Study 1 from Veldstra et al. (2012).	437
<i>Figure E18.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.9$). Includes Study 1 from Veldstra et al. (2012).	438
<i>Figure E19</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = zero). Excludes Study 1 from Veldstra et al. (2012).	439
<i>Figure E20.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to $r = 0.5$). Excludes Study 1 from Veldstra et al. (2012).	440

<i>Figure E21</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lateral Position Variability</i> (missing pre-post correlations set to <i>r</i> = 0.9). Excludes Study 1 from Veldstra et al. (2012).	. 441
<i>Figure E22</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = zero). Includes Berthelon and Galy (2014) and Weiler et al. (2000).	. 442
<i>Figure E23</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$). Includes Berthelon and Galy (2014) and Weiler et al. (2000)	. 443
<i>Figure E24</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.9$). Includes Berthelon and Galy (2014) and Weiler et al. (2000)	. 444
<i>Figure E25</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = zero). Excludes Berthelon and Galy (2014) and Weiler et al. (2000).	. 445
<i>Figure E26.</i> Funnel plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to $r = 0.5$). Excludes Berthelon and Galy (2014) and Weiler et al. (2000).	. 446
<i>Figure E27</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Lane Excursions</i> (missing pre-post correlations set to <i>r</i> = 0.9). Excludes Berthelon and Galy (2014) and Weiler et al. (2000).	. 447
<i>Figure E28</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlation set to <i>r</i> = zero).	
<i>Figure E29</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlation set to $r = 0.5$).	
<i>Figure E30</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlation set to $r = 0.9$)	is . 450
<i>Figure E31</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Speed Variability</i> (missing pre-post correlations set to <i>r</i> = zero).	
<i>Figure E32</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlation set to $r = 0.5$).	
<i>Figure E33</i> . Funnel plot illustrating <i>Alcohol v. Baseline: Speed</i> (missing pre-post correlation set to $r = 0.9$).	

Chapter 1: Introduction

Cannabis is the most commonly-used drug in Canada (Statistics Canada, 2018) and in the world (United Nations Office on Drugs and Crime, 2019). Recently, cannabis has received increased attention as a contributor to motor vehicle crashes after efforts have been made to decriminalize or legalize the drug for medical and recreational use in countries across the world. Cannabis refers to both the cannabis plant (i.e., *cannabis sativa*) and to preparations made from it, including marijuana (or marihuana), hash, resin and oil (Ashton, 2001). The most prominent component of cannabis is delta-9-tetrahydrocannabinol (THC), which is the chief cannabinoid responsible for the cannabis high (Ashton, 2001; Huestis, 2007) and thus is most relevant to discussions and empirical work focused on cannabis-involved driving. As of October 2018, two common cannabis preparations - namely dried marijuana and cannabis oil - are legal for recreational use in Canada, and as of October 2019, edible cannabis products are also legal for recreational use (Government of Canada, n.d.-a). Given the characteristics of the typical cannabis high (e.g., changes in alertness, mood, perception, motor skill, memory and attention) (Ashton, 2001; Broyd et al., 2016; Grotenhermen, 2003; Hall & Solowij, 1998), and increased availability of the drug, there is a natural concern that these changes will have consequences for road safety.

Early evidence suggests that since the legalization of cannabis for recreational purposes in Canada, there have been no significant changes in rates of self-reported driving within two hours of using the drug (Rotermann, 2020). However, driving under the influence of cannabis (DUIC) is already relatively common. In 2019, 26% of respondents to the Canadian Cannabis Survey who had used cannabis in the previous 12 months indicated that they had ever driven a vehicle within two hours of smoking or vaporizing cannabis, and 16% indicated that they had ever driven a vehicle within four hours of ingesting cannabis (Government of Canada, n.d.-b). Of those respondents, the prevalence of driving within two hours of smoking or vaporizing cannabis was 31%, and the prevalence of driving within two hours of ingesting cannabis was 39%, in the previous 12-month period (Government of Canada, n.d.-b). Additionally, cannabis is the most commonly implicated drug, with the exception of alcohol, in crashes (Compton & Berning, 2015). The bulk of the epidemiological evidence indicates that cannabis increases the risk of crashing by about two-fold (Asbridge et al., 2012; Li et al., 2012; Elvik, 2013; Rogeberg et al., 2018). However, as will be discussed in more detail later in this chapter, the epidemiological evidence does not allow inferences to be made about the precise mechanisms that link cannabis to an increased risk of crashing. The experimental literature, which can provide insight into that mechanism, suffers from a lack of standardization in operational definitions and measures of impairment. Unresolved discord in the scientific literature about operational definitions and measures needlessly generates mixed messages about the safety of cannabis with respect to driving. It is unsurprising that cannabis-using individuals in Canada have varying opinions on whether the drug is detrimental to driving ability (e.g., Government of Canada, n.d.-b).

The primary objective of the current systematic review and meta-analysis is to synthesize the available literature on the effects of cannabis on driving performance and behaviour as measured in experimental studies. Additionally, a synthesis of the experimental literature focused on the effects of alcohol on driving performance and behaviour is incorporated. Data from healthy participants of any age and sex collected in driving simulator, closed-course and on-road studies involving cannabis and/or alcohol administration were eligible for inclusion. There are four essential research goals of the current study: (1) to quantify the magnitude of the effect of cannabis on driving performance and behaviour; (2) to compare the influence of cannabis to that of alcohol; (3) to assess the effect of the combination of cannabis and alcohol on driving performance and behaviour; and, (4) to identify knowledge gaps and quality limitations to direct the conduct of productive, high-quality scholarly inquiry focused on cannabis- and alcohol-involved driving in the future. In addition, experimental driving study measures in the current study are selected based on theoretical considerations, and an operational definition of impairment – based on those theoretical considerations – is offered. Thus, the overarching goal of the current study is not only to make sense of discordant findings within the literature, but to also rectify conceptual disagreements related to the measurement of impairment. Disagreements between the influence of cannabis on driving, stemming from ambiguity in the literature, must be resolved to the benefit of researchers interested in advancing the field focused on drug-involved driving and to the benefit of real-world, cannabis-using drivers seeking to make informed decisions about safe driving practices.

This chapter is organized as follows. First, the epidemiological evidence focused on the crash risk associated with cannabis is reviewed and critiqued. Second, the need to consult the experimental literature is discussed. Third, previous meta-analytic work focused on the experimental literature, and in particular the limitations of that work, are examined. Finally, the research questions of the current study are considered, and the hypotheses are listed.

Driving Under the Influence of Cannabis: A Theoretical Perspective

The bulk of the epidemiological evidence indicates that cannabis has a negative effect on traffic safety. A number of meta-analyses have examined the relationship between a positive test for cannabis and crash risk, and most (Asbridge et al., 2012; Li et al., 2012; Elvik, 2013; Rogeberg et al., 2018), but not all (Hostiuc et al., 2018) indicate that cannabis is associated with an increase in crash risk. Although estimates vary somewhat from analysis to analysis, increased

crash risk estimates range from a less than doubling of crash risk (Asbridge et al., 2012; Elvik, 2013; Rogeberg et al., 2018) to a more than doubled crash risk (Li et al., 2012).

The increase in crash risk associated with cannabis has important implications for public health. In addition to immediate injuries and fatalities, crashes can have long-term health consequences for survivors in the form of disability (Krug et al., 2000). Worldwide, the most common injuries that occur in crashes leading to disability are fractures of the patella, tibia, fibula, and ankle; the second leading cause of disability is traumatic brain injuries (James et al., 2020). However, even less severe crashes that do not result in traumatic brain injuries can have long-lasting consequences: Fitzharris and colleagues (2007) report that even "otherwise healthy people of working age involved in a traffic crash, with the absence of moderate-severe head injury and spinal cord injury" (p. 311) – who, they report, comprise a large portion of individuals admitted to hospitals in Victoria, Australia due to crashes – may experience longterm detriments to quality of life, including enduring pain, difficulties performing daily activities, and diminished physical and mental health. In Canada, cannabis has been estimated to have led to 75 deaths and 4,407 injuries in crashes in the year 2012 (Wettlaufer et al., 2017). An earlier study reported that road traffic injuries involving cannabis are estimated to have led to 94 deaths, 4,481 years of life lost due to premature mortality and 364 years of life lost due to disability in Canada in the same year (Imtiaz et al., 2015).

To understand the association between cannabis and increased crash risk, researchers must consult more than just the epidemiological evidence. The full scope of literature focused on the effects of cannabis and driving must be considered. However, different study methods and measures have different benefits and limitations, yield different types of information, and are of varying degrees of usefulness with respect to understanding the mechanisms underlying the relationship between cannabis and increased crash risk. Decisions about which evidence to consult, and how to interpret that evidence – particularly when assessing the degree to which evidence converges – requires a theoretical foundation for analysis. In this dissertation, Fuller's (2005) Task-Capability Interface (TCI) model of driving provides this foundation. The model is illustrated below.

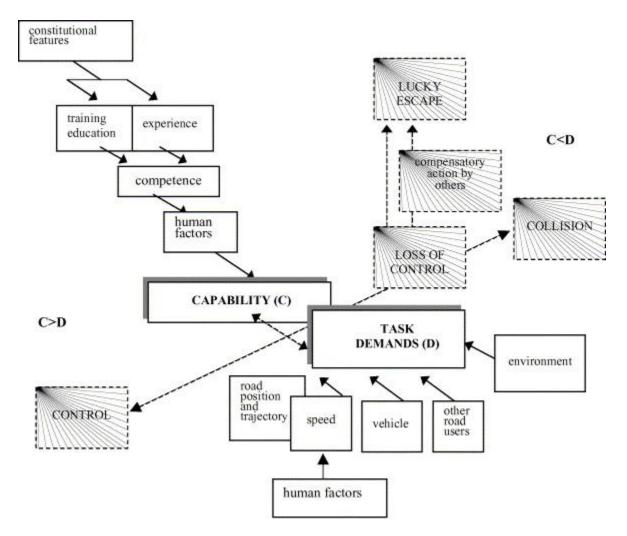


Figure 1. Fuller's (2005) Task-Capability Interface (TCI) model of driving¹.

¹ Reprinted from Accident Analysis & Prevention, Vol. 37, Fuller R., Towards a general theory of driver behaviour, Page No. 465, Copyright 2005, with permission from Elsevier.

First, the mechanisms by which cannabis increases crash risk can be predicted by consulting Fuller's (2005) model. Fuller (2005) suggests that drivers attempt to achieve a comfortable range of effort expenditure or workload while driving, and the degree of workload in a given situation is determined by the discrepancy between the *Capability* of the driver and driving *Task Demands*: the greater the discrepancy, the easier the driving task feels, and the lesser the discrepancy, the more difficult the driving task feels. According to Fuller (2005), *Capability* is "initially constrained by biological characteristics of the driver, such as information processing capacity and speed, reaction time, physical reach, motor coordination and perhaps flexibility and strength" (pp. 463-464) and enhanced with knowledge and skills attained through training, education and experience. However, *Capability* can be momentarily diminished by transient Human Factors, including "attitude, motivation, effort, fatigue, drowsiness, time-ofday, drugs, distraction, emotion and stress" (Fuller, 2005, p. 464). On the other side of the model are Task Demands, which are determined based on the driving Environment, Other Road Users, the "operational features" of the driven Vehicle, its Road Position and Trajectory, and its Speed. Fuller (2005) suggests that speed is the greatest determinant of task difficulty: "it is self-evident that the faster a driver travels, the less time is available to take information in, process it and respond to it" (p. 464). Thus, when *Task Demands* increase, drivers attempting to keep their workload within a comfortable range will likely slow down to reduce *Task Demands*; failing this, workload will increase, and the driving task will feel more effortful and more uncomfortable (Fuller, 2005). Left unchecked, at some point in time the driving task may start to feel dangerous (Fuller, 2005). Based on the model, crashes – including those that involve cannabis – occur when driving Task Demands overwhelm a driver's Capability (Fuller, 2005).

Thus, two mechanisms of action are readily apparent in Fuller's (2005) model that may prevent a driver from meeting the demands of the driving task while intoxicated by cannabis. First, cannabis may work to diminish the *Capability* of the driver through its influence as a transient Human Factor. Specifically, the state of acute cannabis intoxication may serve to diminish a driver's ability to retain control over the driving task and consequently increase crash risk. Based on the crash risk meta-analyses discussed above, this would suggest that cannabis intoxication is associated with an approximate doubling in crash risk. However, owing to the complicated pharmacokinetics and pharmacodynamics of cannabis, this may not necessarily be the case; although the increase in crash risk associated with testing positive for cannabis is commonly interpreted to mean the increase in crash risk associated with *driving while high* (e.g., Asbridge et al., 2012), a positive test for cannabis does not indicate that an individual was intoxicated or under its influence at the time of the test (Ashton, 2001; Huestis, 2007). The inability to know for certain whether a driver who tests positive for a drug was actually under the influence of the drug is a known issue in studies that seek to quantify crash risks associated with drugs (Compton & Berning, 2015; Gjerde et al., 2019).

Additionally, Fuller's (2005) model also points to a second contributor to losses in control – specifically, the *Constitutional Features* of the driver. Through this mechanism, individuals who use cannabis and drive may possess qualities that independently place them at an elevated risk of crashing. The existence of such a mechanism is known among alcohol-involved drivers. For example, Evans (2004) reports that increases in crash severity, which are a product of increased speed and risk-taking, occur with incrementally higher blood alcohol concentrations. Evans (2004) reasons that because of this, there must be an incrementally greater contribution of risk-taking (i.e., a *Constitutional Feature* of the driver) in crashes with

incrementally higher implicated blood alcohol concentrations (BAC). Just as with alcohol, it is possible and has been speculated that there are underlying characteristics of individuals who use cannabis and drive that increase their risk of crashing independently of acute cannabis intoxication (e.g., Walsh & Mann, 1999; Rogeberg & Elvik, 2016). However, although it is possible to stratify the crash risk and crash severity associated with alcohol across multiple levels of intoxication (i.e., multiple BAC levels) to glean insight into the contribution of risk-taking to alcohol-involved crashes, the same cannot be done with cannabis. This is because, as previously discussed, THC concentration is not a reliable indicator of cannabis intoxication.

Overall, epidemiological studies indicate that cannabis is associated with an increased risk of crashing, but they are limited in that they do not indicate why. Theoretically, two distinct but non-mutually exclusive mechanisms exist: (1) the acute state of cannabis intoxication diminishes driver *Capability*, leading to difficulties meeting driving *Task Demands*, and/or (2) drivers involved in cannabis-involved crashes belong to a special subpopulation of drivers predisposed to crashing. To investigate the contribution of acute cannabis intoxication to crashes, the experimental literature – wherein researchers attempt to place participants in a state of acute cannabis is intoxication – must be consulted. The experimental literature focused on the cannabis is discussed next.

Cannabis, Driving Performance & Driver Behaviour

Experimental driving studies complement epidemiological studies focused on quantifying crash risk. They measure elements of drivers' abilities and behaviours, and their purpose is to provide insight into how drivers will perform in the real world (Caird & Horrey, 2011; Mullen et al., 2011). In surveying the literature, however, it is clear that some experimental measures offer more insight than others when it comes to evaluating the extent to which acute cannabis

intoxication affects driving. There are an abundance of tasks and measures used to make inferences about drivers' abilities and behaviours, many of which have ambiguous relationships with safety. The answer to the question, "does cannabis impair driving?" depends entirely on which measures are selected, so it is prudent to select the most defensible measures in answering the question. Given that crashes are of paramount importance to traffic safety, and experimental driving studies are limited in that they cannot measure them directly (Irwin et al., 2017; Gjerde et al., 2019), experimental driving study measures used to answer the impairment question should at the very least have a solid theoretical relationship with crashes. Fuller's (2005) model provides a useful theoretical framework for the selection of measures and the interpretation of the effects of cannabis on those measures with respect to traffic safety. Additionally, the framework allows for hypotheses to be generated to direct future study.

A number of measures commonly included in experimental driving studies focused on the effects of drugs, alcohol or secondary tasks involving mobile devices have theoretical relationships with safety based on Fuller's (2005) model. These measures, commonly referred to as *driving performance* measures, are related to elements such as hazard or target detection and response, lateral control of the vehicle, longitudinal control of the vehicle, speed and headway. Driving performance is commonly conceptualized as driving skill and ability (Evans, 2004). However, within the context of Fuller's (2005) model, these measures are perhaps more correctly conceptualized not as indicators of *Capability*, but rather – like crashes – as indicators of the difference between *Task Demands* and *Capability*. For example, the greater the degree of lane weaving, the greater the demands of the driving task relative to the ability of the driver to meet those demands. Although, as previously discussed, experimental driving study measures do not translate into crash risk directly, the ability to detect and respond to on-road hazards, keep the vehicle in the centre of the lane, and maintain control over speed and following distance (i.e., longitudinal control) all have face validity as indicators of safe driving. For example, if a driver is unable to detect or respond to an on-road hazard in a timely manner, a collision with an obstacle, road user or other surface is likely to occur. If a driver is unable to effectively lane keep, a lane departure may occur, leading to a single-vehicle off-road collision, a lane departure into the path of an oncoming vehicle, or general susceptibility to loss of control given less than optimal road conditions. And, if a driver is unable to effectively maintain longitudinal control, a rear-end collision may occur. Thus, for the purposes of the current meta-analysis, experimental driving measures related to the detection and response to on-road hazards, to lane keeping and to longitudinal control are conceptualized as serving as objective, behavioural indicators of the discrepancy between Task Demands and Capability. Only these measures are referred to in this dissertation as *driving performance* measures. Speed and headway, in contrast, can be conceptualized as elements of what is known in the literature as *driver behaviour*. Whereas driving performance refers to a driver's abilities, driver behaviour refers to how individuals go about completing the driving task – or behave – given those abilities (Evans, 2004). Fuller (2005) posits that adjustments to driving speed are the primary means by which drivers regulate the difficulty of the driving task. Reductions in headway (i.e., following distance) may also, in certain circumstances, allow drivers to compensate for heightened task demands (Fuller, 2005). Both decreases of speed and increases in headway are commonly conceptualized as compensatory behaviours within the driving performance literature, even in studies that make no specific reference to any particular theory of driving. For the purposes of the current metaanalysis, speed and headway are conceptualized as measures of *driver behaviour* that reflect adjustments to driving task demands.

Finally, in answering the question, "does cannabis impair driving?" it is critical to consider what should serve as the operational definition of impairment. For the purposes of this meta-analysis, there is a distinction between *intoxication* and *impairment*. Here, intoxication refers to the state of experiencing the acute effects of a substance (i.e., cannabis or alcohol), with no specific reference to the effects of that substance on driving. In contrast, driving performance decrements – that is, changes in hazard detection and response, lateral control or longitudinal control that demonstrate a loss of control (i.e., an inability to meet the demands of the driving task) – are conceptualized as indicators of impairment and impaired driving. Changes in speed and headway, which indicate how drivers alter their behaviour to attempt to meet the demands of the driving task, are not conceptualized as indicators of impairment per se. For example, decrements in lateral control indicate impaired driving regardless of whether a driver also demonstrates slowed driving speed and increased following distance. Although changes in speed and headway do not indicate impairment, they are important because they indicate whether drivers perceive or are aware of increased task demands and whether they attempt to adjust their driving to meet those demands. This is an important consideration within the context of alcoholinvolved driving where part of the danger associated with driving under the influence, in addition to temporary loss of skill, is thought to be increased risk-taking (i.e., acceptance of greater task demands) (e.g., Evans, 2004).

Previous Research

The experimental literature focused on the effects of cannabis on driving performance and behaviour is discordant not only in terms of findings, but also in terms of methodological approaches (see Sewell et al., 2009 for a review). This state of affairs indicates a clear need for a systematic review and meta-analysis, which serves to both rectify discordant research findings and to lay the groundwork for future scholarly inquiry in the area. However, the current study is not the first research synthesis focused experimental driving studies involving cannabis (or alcohol). However, previous research syntheses are fundamentally limited, and the current metaanalysis presents a timely update to the field. Similarities and differences between the current meta-analysis and previous research syntheses are discussed next.

Berghaus, Krüger and colleagues. Some of the most notable and cited meta-analytic work focused on the effects of cannabis on driving was conducted by Berghaus, Krüger and colleagues. In these meta-analyses, eligible studies were required to be experimental, involve the measurement of at least one measure related to driving, involve at least five human participants, administrate only one drug at a time, be written in English or German, report the data needed to estimate the THC concentration associated with a specific effect, and report the data needed for vote-counting purposes (Berghaus et al., 1998a). Overall, cannabis was found to have negative effects on a variety of skills deemed relevant to the driving task (Berghaus et al., 1998a; Berghaus et al., 1998b). These findings were later incorporated into Grotenhermen and colleagues' (2005; 2007) analysis that focused on developing THC limits for applications in drugged driving legislation. Although Berghaus, Krüger and colleagues' meta-analyses were and continue to be influential, they have numerous limitations.

Before these major limitations can be discussed, an important caveat should be noted. A number of papers are linked to Berghaus, Krüger and colleagues' meta-analytic work, but it is unclear which paper contains the most authoritative report. Citations for papers linked with the project often point readers to several more meta-analyses, many of which cite each other. For example, Shinar (2007, pp. 661-663) discusses the results of Berghaus and colleagues' meta-analyses as they appear in a 1998 book (i.e., Berghaus et al., 1998a, 1998b) based on descriptions

provided by secondary sources – Ward and Dye (1999), and Ramaekers et al. (2004) – likely because the 1998 book is written in German. However, those two meta-analyses, after being electronically translated from German into English, were found to refer to several older reports, one of which (Krüger, 1993) is an English language summary that redundantly refers to two of the other cited reports (Krüger et al., 1990; Krüger, 1990). Krüger (1993) – but neither Krüger et al. (1990) nor Krüger (1990) – is referred to in a second English-language summary (Berghaus et al., 1995), which is the original version identified by this author while reviewing the literature. Of all the reports related to the Berghaus meta-analyses discussed thus far, Krüger et al. (1990) appears² to be the only one that lists citations for included studies. Subsequent meta-analyses do not list included (or excluded) research so it not possible to determine the overlap from metaanalysis to meta-analysis. This lack of transparency is concerning. During attempts to identify an original and complete report of their meta-analytic project, over a dozen citations potentially linked to the meta-analytic project were identified.

Given uncertainty about the most authoritative version of the work, and for simplicity's sake, Berghaus et al. (1998a) and Berghaus et al. (1998b), which are the two versions cited in Grotenhermen et al. (2005), are critiqued here. Grotenhermen et al. (2005) is an important policy paper that tries to establish a cutoff for THC blood concentration while driving that is based, in part, on these meta-analyses. The following critiques are based on electronic translations³ of Berghaus et al. (1998a) and Berghaus et al. (1998b), as well as descriptions from two secondary sources: Berghaus et al. (1995), and Grotenhermen et al. (2005). Given that none of these

² Based on a cursory scan of the paper. The report is over 400 pages long and written in German, and given time constraints, it was not translated for inspection.

³ Methods for electronically translating non-English studies are described in *Chapter 2: Method* of this dissertation.

sources offers a comprehensive description of meta-analytic methods, the following critique will be somewhat constrained.

Inclusion of driving-related skills. First, it is difficult to generalize Berghaus and colleagues' (1998a, 1998b) findings to real-world driver behaviour due to their incorporation of driving-related skills in their meta-analyses. Purported measures of driving-related skills, which appear to be implicitly operationalized as any laboratory experimental task that assesses any aspect of human information processing, frequently appear in the literature focused on the effects of alcohol and drugs on driving in addition to measures of driving performance and behaviour. Within the experimental literature focused on alcohol- and drug-involved driving, there does not appear to be a generally-accepted, comprehensive list of essential driving-related skills. Berghaus and colleagues focused on "published experimental investigations testing at least one effect of THC connected with the ability of safely driving a vehicle" (as described in Berghaus et al., 1995, p. 404), including tracking, psychomotor control, reaction time, "visual functions," attention, divided attention, "encoding" and "decoding", and "simulator driving." Berghaus et al. (1998a, 1998b) provide examples of tasks that fall into these categories, but the specific criteria used to make judgements about the allocation of experimental tasks to categories are not reported in-text⁴.

Despite their frequent use in studies within the field of research focused on alcohol and drugs, "driving-related skills" do not have a clear relationship with traffic safety (Shinar, 2017, p. 659). Theoretically, there is no clear reason that they should. Within the context of Fuller's (2005) model, driving-related skills can be conceptualized as one of the elements of the driver's

⁴ Readers are instead referred to Krüger (1990), Krüger et al. (1990) and Krüger (1993).

Capability or ability to maintain control over the driving task. Specifically, they align with the *Constitutional Features* of the driver. However, it is generally accepted that drivers do not perform to the best of their abilities all the time; instead, they try to regulate the difficulty of the driving task so that task demands do not exceed their capability (Fuller, 2005). Consequently, driving-related skills and driver behaviour are inescapably inter-related, and it is not possible to infer the point at which a driver, suffering driving-related skill decrements, will be incapable of keeping driving task demands in check. The reality is that drivers will, to some extent, experience fluctuations in driving ability over hours or days (e.g., differences in arousal throughout the day, disruptions to sleeping schedules, etc.), which will require varying degrees of adjustment to driving task demands. Furthermore, given variations in driving task demands, certain driving-related skills will likely be more instrumental to a driver's capability than others at varying moments in time. Overall, it does not make sense to focus solely on "the upper limit of the competence of the driver" (i.e., *Capability*; Fuller, 2005, p. 464), and there are serious limitations to making inferences or generalizations about driver safety based on the results of Berghaus and colleagues' meta-analyses. The current meta-analysis differs from Berghaus and colleagues' in that only theoretically-defensible measures of driving performance and behaviour (i.e., products of the interface between *Task Demands* and *Capability*) are included as outcomes of interest, whereas driving-related skills (i.e., measures of *Capability*) are excluded.

Analytical approach. Berghaus et al. (1998a, 1998b) apply a meta-analytic method known as vote-counting. Within categories of driving-related skills, effects were categorized as "significantly deteriorated," "significantly improved" or unaffected (i.e., "no significant effect"; as described in Berghaus et al., 1995). The proportion of significantly deteriorated effects was calculated across multiple THC concentrations (i.e., Berghaus et al., 1998a). Additionally, the

pattern of task performance deterioration across a range of THC concentrations was compared to the pattern of task deterioration across a range of BAC concentrations based on the results of a second, methodologically-similar meta-analysis focused on alcohol (i.e., Berghaus et al., 1998b), which allows "equivalent levels of impairment" to be identified (Grotenhermen et al., 2005, p. 25). There are two important limitations to this approach.

First, vote-counting as a meta-analytic method is fundamentally flawed. Essentially, votecounting involves making comparisons between the number of statistically significant effects and the number of statistically non-significant effects across studies in order to make judgements about the evidence for the existence of that effect (Borenstein et al., 2009, pp. 251-255). Berghaus and colleagues' (1998a, 1998b) took a vote-counting approach by counting and comparing the number of "significantly deteriorated" effects, "significantly improved" effects and "no significant effect[s]" in their included studies. According to Borenstein and colleagues (2009, pp. 251-255), the underlying assumption of the vote-counting approach is that statistically significant effects are evidence of the presence a genuine effect, and statistically non-significant effects are evidence of the absence of a genuine effect. However, these assumptions are not necessarily valid. Borenstein and colleagues (2009, pp. 251-255) criticize vote-counting primarily on the basis that the lack of a significant effect does not necessarily mean that no genuine effect exists. Alternatively, a study may simply have been incapable of detecting an effect due to a lack of statistical power. When underpowered studies that have failed to detect a genuine effect are submitted to a formal meta-analysis rather than a vote-count, the genuine effect may be elucidated, but a vote-count, in contrast, might leave the opposite impression – specifically, that the bulk of the evidence suggests no effect exists (Borenstein et al., 2009, pp. 251-255). For this reason, Borenstein and colleagues (2009) dismiss vote-counting as a method

that "has no validity whatsoever" (p. 325). Given the marginal and underpowered studies that have examined cannabis and driving, a number of studies are likely to fall into the no effect category, which would underestimate the true effect if vote counting is to be believed. In contrast, the inclusion of experimental studies where tasks have no relationship to driving, but may be sensitive to drugs and alcohol, would result in an overestimate of true effects if vote counting is relied upon.

Furthermore, in addition to the issues identified by Borenstein and colleagues (2009), recent work by Ioannidis (2005) and the Open Science Collaboration (2015) highlights the fact that statistical significance does not necessarily indicate the presence of a genuine effect. For example, the Open Science Collaboration (2015) recently reported that after a major collaborative effort to reproduce findings published in top-tier journals in psychology, a substantial proportion were irreproducible. Although spurious effects can be published in any scientific literature, the prevalence of potentially spurious effects in psychology may have implications for meta-analyses focused on driving-related skills because many driving-related skills studies fall within the domain of or borrow methods from cognitive psychology. In addition, there is an elevated risk of spurious effects in research domains with greater "flexibility" in measures and in studies focused on controversial or political topics (Ioannidis, 2005). Given the lack of standards as to what constitutes a driving-related skill or its measurement, and the political nature of cannabis, alcohol and driving under the influence, the potential for spurious effects in the extant literature is considerable. Finally, smaller effects including null effects – may be less likely than larger, positive effects to be published in the first place, leading to further bias in the published literature available to researchers (Borenstein et al., 2009, pp. 277-280). To reiterate, the underlying assumptions of vote-counting methods – namely

that statistical significance indicates the presence of a genuine effect, and the absence of statistical significance indicates the absence of a genuine effect – are incorrect. As a result, the use of vote-counting is inappropriate for summarizing the effects of cannabis and/or alcohol on driving.

In addition, there are logical issues with attempting to identify "equivalent levels of impairment" based on an equivalent proportion of "significantly deteriorated" effects at a certain BAC concentration and at a certain THC concentration. Although the purpose of Berghaus and colleagues' (1998b) analysis is to identify equivalent alcohol and THC concentrations with respect to driving ability, their approach is incompatible with that goal. To illustrate, Berghaus and colleagues (1998b) report that a BAC of 0.73% and a THC concentration of 11 ng/mL of plasma are both associated with the same proportion of significantly deteriorated effects specifically, half of all effects included in their meta-analysis were significantly deteriorated at these concentrations. It is important to understand that the observation of the same proportion of significantly deteriorated effects at two different drug concentrations does not necessarily mean that the two concentrations are equally detrimental, as Berghaus and colleagues (1998b) and others (Grotenhermen et al., 2005) have suggested. Hypothetically, if 50% of the effects were found to be significantly deteriorated at both a BAC of 0.73% and at a THC concentration of 11 ng/mL, but each of the effects associated with a BAC of 0.73% were additionally reported to be twice as strong as the effects associated with a THC concentration of 11 ng/mL, then it would not make sense to conclude that the two are equally detrimental. Essentially, Berghaus and colleagues' (1998b) analysis fails to incorporate practical significance, which is a fundamental aspect of meta-analysis (Borenstein et al., 2009).

Overall, the analytic approach taken by Berghaus, Krüger and colleagues is logically flawed. Vote-count approaches to meta-analyses lack validity, and equivalence between levels of impairment should be made on the basis of effect size rather than on the proportion of statistically-significant effects to non-statistically-significant effects within in a group of studies. The current meta-analysis differs from Berghaus and colleagues' in that a formal meta-analysis involving effect sizes is conducted. This allows for the influence of cannabis on driving performance and behaviour to be quantified relative to both sober driving and to driving under the influence of alcohol in experimental studies.

Reporting standards. It is unclear how a number of important decisions were made in Berghaus, Krüger and colleagues' meta-analyses. Firstly, the interpretation of statisticallysignificant effects with respect to safety requires consideration. The criteria for making judgements about whether an effect should be categorized as "significantly deteriorated," "significantly improved" or "no significant effect" for the purposes of the vote count, is not reported in Berghaus and colleagues' (1998a, 1998b) meta-analyses. Such judgements are not necessarily intuitive because significant improvements or deteriorations in *scores* on laboratory tasks do not always correspond to meaningful improvements or detriments in driving safety. For example, "tracking" and "psychomotor skills" could potentially include experimental measures where a speed-accuracy trade-off could occur. It is unclear whether such trade-offs are implicated in measures included in these meta-analyses, and if so, how those effects would be extrapolated to safety. For example, if a participant under the influence of cannabis was significantly slower at performing a tracking task, but no less accurate, would this be considered "significantly deteriorated" performance or not? Additionally, "simulator driving" is not elaborated upon, and it is unclear which types of measures were included. As previously

discussed, not all measures should be conceptualized as indicators of impairment per se. Finally, Berghaus and colleagues' "simulator driving" category may have included measures from flight simulators, though it is not entirely clear whether this is the case from the descriptions provided (e.g., Berghaus et al., 1998a). Flying and driving involve different tasks and time constraints, and the extent to which changes in simulated flying measures predict changes in driving performance and behaviour is not clear.

Second, studies included in Berghaus' and colleagues' analyses may have each contributed multiple effects. If multiple effects from the same set of participants are deemed to measure the same construct and included a single analysis, an underlying assumption of metaanalysis is violated – namely, that included effects are independent of one another. It is not clear whether multiple effects from a single paper could contribute to the same driving-related skill category, so it is unclear whether the assumption of independence was violated in either of these meta-analyses.

Third, it should be noted that often, THC concentrations in included studies were not reported, so Berghaus and colleagues estimated THC concentration for experimental effects based on a method by Sticht and Käferstein (1998). Unfortunately, the validity of this method is not clearly described, and based on an inspection of the estimated THC concentrations reported over time in their paper, it does not appear to have a high degree of precision. It is unclear how specific estimated THC concentrations were linked with included effects in either of the two meta-analyses by Berghaus and colleagues (1998a, 1998b).

Finally, the reports discussed here would likely fail to meet the standards outlined in modern guidelines for conducting and reporting systematic reviews and meta-analyses, such as the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA; Moher et al., 2009). However, as previously discussed, it is unknown whether there is an alternative version that completely describes study methodologies, and if so, whether that version would meet those standards. The current meta-analysis adheres to PRISMA guidelines throughout.

Summary. Previous meta-analyses conducted by Berghaus, Krüger and colleagues have a number of limitations that threaten the validity of the reported findings. Additionally, since the appearance of the meta-analyses by Berghaus, Krüger and colleagues, numerous empirical studies have been published. Overall, the literature focused on the effects of cannabis on driving performance and behaviour is in need of an update. The current meta-analysis seeks to update the literature and avoid some of the limitations associated with previous work.

Studies focused on alcohol. The current study is also not the first research synthesis of experimental driving studies involving alcohol. As previously discussed, Krüger and colleagues conducted a meta-analysis utilizing a vote-count methodology focused on alcohol, and its results were later incorporated into Berghaus and colleagues' comparative analysis (Berghaus et al., 1998b). Moskowitz and Fiorentino (2000) also conducted a meta-analysis focused on alcohol, and it shares many of the same limitations as those of Berghaus, Krüger and colleagues: the criteria used to make judgements about the allocation of experimental tasks to "driving-related behavior" categories, and the criteria used to make judgements about whether an effect constitutes impairment, are vague and limit replicability; a vote-count is conducted rather than a formal meta-analysis involving effect sizes; and, it is unclear how multiple measures from a single study eligible for a single category were handled, which affects the independence of multiple included measures from individual studies.

There are at least three more recent research syntheses focused exclusively on the effects of alcohol on driving performance and behaviour measures recorded in simulators, on closed

courses and in on-road studies. During the search for studies to be included in the current study, three systematic reviews and meta-analyses of the effects of alcohol on driving performance and behaviour were identified. All were published in the year 2017 and differ from the current analysis in important ways.

Irwin et al., 2017. In Irwin and colleagues' (2017) meta-analysis, data from healthy adults aged eighteen and older with no clinical conditions or recent drug use were eligible for inclusion. Experimental driving measures including standard deviation of lane position (SDLP), lane crossings, average speed and the standard deviation of speed were targeted. Overall, alcohol increased SDLP, lane crossings and standard deviation of speed, but there was no statistically significant change in speed.

The current meta-analysis is similar to Irwin et al. (2017) in that it involves comparisons of experimental driving measures while under the influence of alcohol to experimental driving measures either during a placebo treatment or a during non-alcohol control drive, in the absence of secondary task distraction or other experimental manipulations such as fatigue. However, the current study differs from Irwin et al. (2017) in several important ways. In general, Irwin et al. (2017) has a narrower scope than the current study. First, only experimental driving studies utilizing repeated measures designs and driving simulators, published in peer-reviewed sources such as journals and conference proceedings, were eligible for inclusion in Irwin et al. (2017). The current meta-analysis is broader in scope because both within-subjects and between-subjects designs, and studies involving simulators, closed courses or on-road were all eligible for inclusion. Grey literature that did not appear in peer-reviewed sources was also eligible for inclusion in the current analysis. Second, studies included in Irwin and colleagues' (2017) analysis were required to meet a minimum quality score. The practice of using a study quality

tool to make judgements about inclusion or exclusion in a systematic review and/or metaanalysis is generally discouraged (Siddaway et al., 2019). The current study included study quality assessments but not for the purposes of judging eligibility for inclusion. Finally, Irwin et al. (2017) targeted only four experimental driving measures. The current study targeted the same four measures, as well as seven additional measures, to more fully characterize the nature of the effect of alcohol on driving performance and behaviour.

Rezaee-Zavarah et al., 2017. Randomized controlled trials (i.e., between-subjects studies) involving participants of all ages and backgrounds were eligible for inclusion, and seven experimental driving measures related to lane position, speed and "accidents" were targeted. Unlike the current study, a meta-analysis was not conducted as part of Rezaee-Zavarah and colleagues' (2017) review. Based on a qualitative review of 13 studies, Razaee-Zavarah et al. (2017) reported that a majority of included studies reported significant effects of alcohol on driving performance and behaviour measures related to lane position and speed. However, they also identified "troublesome heterogeneity" among the included studies, resulting in "inconclusive" evidence that "can only generate the lowest grade of recommendations" (Rezaee-Zavarah et al., 2017, p. 170).

Again, there are some notable differences between the current study and Rezaee-Zavarah et al. (2017). Although the current study also targeted participants of all ages and backgrounds, the current study did not exclusively target between-subjects designs. Next, the current study synthesizes the literature by aggregating effect sizes generated for each study, rather than by calculating the proportion of included studies that reported statistically significant effects. Finally, the current analysis overlaps in terms of some targeted driving measures, but the current meta-analysis also targets additional driving measures related to constructs other than lane position, speed and collisions.

Jongen et al., 2017. Finally, Jongen and colleagues (2017) conducted a study involving meta-analytic methods that applied a very narrow scope with respect to alcohol doses, study methods and experimental driving measures. Jongen et al. (2017) focused exclusively on the effect of alcohol on SDLP. Only nine studies, all from Maastricht University, where healthy participants were dosed to a target BAC of 0.05% prior to on-road driving – no lower, and no higher – in studies utilizing within-subjects designs, were included in the analysis. Alcohol was found to increase SDLP by 2.5 cm in these studies (Jongen et al., 2017). Jongen and colleagues (2017) suggested that an increase of 2.5 cm "can be reliably used to determine clinical relevance of drug-induced driving impairment in the standardized highway driving test" (p. 843).

Although Jongen et al. (2017) incorporated some meta-analytic methods, the analysis is limited. First, it does not appear that a systematic search for studies was conducted. Consequently, Jongen et al. (2017) shares many similarities with an informal literature review, but their results are presented quantitatively as in a typical meta-analysis. Second, although individual effect sizes were computed for each study, these effect sizes were not actually aggregated to yield an overall effect size estimate. Instead, the raw data from each of the individual studies were pooled, and an effect size representing the entirety of the raw data was generated. This approach is discouraged in meta-analysis because it can yield an inaccurate result via a phenomenon known as Simpson's Paradox (Borenstein et al., 2009, pp. 303-309). The current study is fundamentally different than that of Jongen et al. (2017) in that a systematic search was conducted, and decisions about inclusion and exclusion of data were made based on systematic judgements against inclusion criteria with the goal of minimizing bias. Second, effect sizes were aggregated across studies in the current study. Finally, a broader range of BAC levels, study settings and methods were targeted, and driving performance was not assessed solely based on SDLP.

Summary. Previous research syntheses focused on the effects of alcohol on driving in experimental studies, as with previous research syntheses focused on the effects of cannabis on driving in experimental studies, have important limitations. To date, Irwin and colleagues' (2017) analysis of alcohol-involved driving is the most rigorous within the existing literature and shares the most similarities with the current study. However, the scope of the current study is considerably more comprehensive than any research synthesis focused on the effects of cannabis or alcohol on driving in experimental studies to date. The aims of the current study are revisited next.

Current Study

The current systematic review and meta-analysis has four key objectives: (1) to quantify the magnitude of the effect of cannabis on driving performance and behaviour; (2) to compare the influence of cannabis to that of alcohol; (3) to assess the effect of the combination of cannabis and alcohol on driving performance and behaviour; and, (4) to identify knowledge gaps and quality limitations to direct the conduct of productive, high-quality scholarly inquiry focused on cannabis- and alcohol-involved driving in the future. More generally, the current study also seeks to outline a standardized approach to studying the effects of drugs on driving in experimental studies in the future. Although the dissertation is primarily exploratory in nature, objectives one through three test the robustness of some general tenets related to the influence of cannabis, alcohol and the combination of the two within the experimental driving literature. Each of these objectives is discussed in turn. The first objective of the current study is to assess the extent to which cannabis impairs driving performance and changes driver behaviour. Within the literature, cannabis is generally reported to increase response times to targets and hazards, diminish lateral and longitudinal control, and lead to decreases in speed and increases in headway (Hartman et al., 2015, 2016; Lenné et al., 2010; Ramaekers et al., 2000a; Ronen et al., 2008). Consequently, these general effects were hypothesized to occur within the context of the current meta-analysis. To date, however, no meta-analyses focused on the effects of cannabis on driving in experimental studies have reported effects in terms of effect size (i.e., magnitude or degree of impairment). Nonetheless, it was additionally hypothesized that the effects would be small to moderate in magnitude because such effects are typically observed in experimental driving studies focused on other crash contributors such as cell phones and other technological distractions (Caird et al., 2018; Simmons et al., 2017).

The second objective of the current study is to assess the similarities and differences between the effects of acute cannabis intoxication and acute alcohol intoxication on driving performance and behaviour. Approaches to the understanding of and response to cannabisinvolved driving often implicitly treat cannabis and alcohol as analogous, and the current study capitalizes on this analogy to offer an intuitive benchmark to judge the influence of cannabis on driving performance and behaviour against. In the existing literature, cannabis and alcohol are generally reported to have some similarities, but also some differences with respect to driving performance and behaviour. With respect to similarities, both cannabis and alcohol have been reported to slow response times and negatively affect lateral control (e.g., Smiley, 1986; Sewell et al., 2009). Thus, both cannabis and alcohol were hypothesized to exhibit these effects in the current meta-analysis. However, no specific hypotheses were made about similarities and differences between cannabis and alcohol in terms of effect size magnitude. With respect to differences between cannabis and alcohol, cannabis is generally reported to slow driving speed and increase following distance, whereas alcohol is reported to lead to *faster* driving speeds (e.g., Smiley, 1986; Sewell et al., 2009). Again, these general effects are hypothesized to occur within the current meta-analysis.

The third aim of the current study is to assess how the combination of cannabis and alcohol on driving performance and behaviour compares to sober driving, as well as to either drug in isolation. Research indicates that it is not uncommon for drivers to operate vehicles while under the influence of both cannabis and alcohol simultaneously. For example, in Canada, 7.0% of individuals surveyed as part of the Road Safety Monitor reported driving within two hours of using cannabis, and 3.0% reported driving within two hours of using both alcohol and cannabis, in 2019 (Woods-Fry et al., 2019). Similarly, of the cannabis-using respondents of the Canadian Cannabis Survey who reported driving within two hours of using cannabis, 20% reported ever driving within two hours of combining cannabis and alcohol; of those, 34% reported doing so within the previous 12-month period (Government of Canada, n.d.-b). The combination of cannabis and alcohol is generally thought to be more detrimental to driving than either alone, but the literature is divided (e.g., Hartman & Huestis, 2013). Thus, with respect to the influence of the combination of cannabis and alcohol on driving performance relative to baseline or either drug in isolation, it is difficult to make any specific hypotheses. Potentially, the combination of cannabis and alcohol could lead to even greater performance decrements in terms of response time, lateral control and longitudinal control relative to sober driving and relative to driving under the influence of only cannabis or alcohol. Speculatively, this could be accompanied by greater speed reductions and longer following distances for drivers under the influence of the

combination of drugs relative to baseline or either drug in isolation. However, it is also possible that the speed-increasing effect of alcohol may counter-act the speed-reducing effect of cannabis, if those effects exist (Ronen et al., 2010; Hartman et al., 2016). Overall, the combination of cannabis and alcohol is anticipated to have more detrimental effects on response time, lateral control and longitudinal control relative to baseline or either drug in isolation, but no particular hypotheses are made with respect to speed or following distance.

The final objective of the current study is to assess the quality and validity of the extant literature and to make recommendations for future scientific inquiry in the area. Although the literature focused on the effects of cannabis on driving performance and behaviour is not new, it is small, and the legalization of cannabis for recreational use in Canada should allow for easier access to cannabis for research purposes in the future. In addition to providing recommendations related to conceptual issues in drug-involved driving research, including the measurement of impairment, the current study critically reviews the extant literature to make recommendations for quality research practices and future directions. Given that this aim is not associated with a specific research question, there are no hypotheses associated with this aim.

Chapter 2: Method

The following section describes the study protocol including eligibility criteria, information sources, the search strategy, study selection, data items, the data collection process, study quality and risk of bias assessments, summary measures, the synthesis of results, risk of bias across studies and additional analyses, in accordance with PRISMA guidelines (Moher et al., 2009). The study protocol is unregistered.

Eligibility Criteria

Eligibility for inclusion in the systematic review and meta-analysis was based on six inclusion criteria. Any studies that failed to meet any of the six inclusion criteria during the full-text review were excluded.

Study design. First, all papers eligible for inclusion were required to report on an original empirical study (*Criterion 1*). Papers that reported on qualitative reviews of previously published studies, as well as letters to editors, comments or opinion papers, lists and guidelines, and overviews of laboratory activities, were not eligible for inclusion. Secondly, all original empirical studies were required to report on an experimental driving study with human participants who drove in a simulated four-wheeled vehicle or in a real four-wheeled vehicle on a test track, closed course or actual road (*Criterion 2*). Observational studies based on police report or real-world crash data, which aim to quantify crash risk, were not eligible for inclusion. As previously discussed, numerous meta-analyses of observational studies focused on the effect of cannabis on crash risk have been published in the past.

Finally, quantitative research syntheses of experimental driving studies were not eligible for inclusion. However, relevant systematic reviews and meta-analyses (i.e., those focused on the effects of cannabis and/or alcohol on eligible measures of driving performance and behaviour) were marked so that their included studies could be located, reviewed and considered for inclusion in the current systematic review and meta-analysis.

Participants. Experiments eligible for inclusion could not exclusively recruit and select participants with a clinical diagnosis that could interfere with the ability to operate a real or simulated vehicle (*Criterion 3*). However, participants with cannabis and/or alcohol use behaviours such as alcohol dependence or drug addiction were not excluded under this criterion. If a study included a healthy control group in addition to a non-eligible clinical sample, the study was included but only healthy control data was deemed eligible for inclusion.

There were no restrictions on demographics such as participant age, sex, or experience with cannabis or alcohol. This information was extracted and reported in Table 1 and Table B1 (Appendix B).

Experimental conditions. Eligible studies were required to include one or more of the following comparisons to be made with respect to driving performance and behaviour measurements (*Criterion 4*):

- 1. Cannabis v. control;
- 2. Alcohol v. control;
- 3. Cannabis and alcohol in combination v. control;
- 4. Cannabis and alcohol in combination v. cannabis;
- 5. Cannabis and alcohol in combination v. alcohol;
- 6. Cannabis v. alcohol.

To allow these comparisons to be made, the experiment had to include one or more of the following assignments:

- 1. The researchers allocated participants to an experimental condition wherein participants were administered cannabis and no other active drug;
- 2. The researchers allocated participants to an experimental condition wherein participants were administered alcohol and no other active drug;
- The researchers allocated participants to an experimental condition wherein participants were administered a combination of cannabis and alcohol, and no other active drug;

And, one or more of the following elements:

- The researchers allocated participants to an equivalent control condition wherein they were administered an equivalent placebo to an eligible experimental condition (e.g., placebo cannabis for the purposes of a cannabis v. control comparison);
- 2. The researchers allocated participants to a control condition where they received no treatment. This condition could include pre-test baseline driving.

Both within-subjects and between-subjects comparisons were eligible for inclusion.

Finally, it is important to note that in some studies, cannabis and alcohol were not the only drugs under study. In cases where participants received cannabis and/or alcohol with an additional non-cannabis or non-alcohol placebo drug, the "no other active drug" criterion was still met. However, the two conditions in an eligible comparison were still required to be equivalent when additional non-cannabis or non-alcohol placebo drugs were administered. For example, a non-equivalent (and thereby ineligible) comparison could involve comparing a condition wherein participants received only cannabis (and no additional placebo drug) to a condition wherein participants received only the placebo of some other drug. Additionally, when study conditions were suspected to also involve secondary, non-driving task distraction (e.g., cell

phone tasks) or other forms of impairment (e.g., sleep deprivation or fatigue), those conditions were not eligible for inclusion.

When a study reported both a placebo comparison and a non-treated comparison (e.g., a pre-drive baseline), the placebo comparison was targeted for inclusion. When between-subjects studies reported two non-treated comparisons (i.e., a time-matched control, and a pre-drive baseline), the between-subjects comparison was targeted for inclusion. The specific comparisons that were ultimately included in the meta-analysis are reported in Table 2.

Driving performance and behaviour measures. Eligible studies were required to include and report upon measures related to certain elements of driving performance and behaviour in association with the aforementioned experimental conditions (*Criterion 5*). When an otherwise eligible paper reported that relevant driving performance and/or behaviour data was collected but not reported on, and readers were instead directed to another source, the paper was excluded under this criterion. This occasionally occurred when studies used multiple types of measures and results were reported in multiple focused publications.

Hazard RT. Hazard RT was operationalized as the amount of time taken to respond to a tangible hazard. Responses might include braking or evading, and hazards might include situations such as slowing forward vehicles, on-road obstacles and intersecting pedestrians or vehicles. However, gain, coherence and phase shift, which are measures used to describe how well participants adjust their own speeds to match the speeds of forward vehicles (e.g., Veldstra et al., 2012), were not eligible for inclusion under hazard RT or any other category. Response times to artificial targets, such as flashing LED lights appearing in the periphery of the driver's view, were also ineligible for inclusion. Finally, distance travelled after responding to a hazard were not eligible for inclusion because the distance travelled would be influenced not only by

response time, but also by the participant's chosen speed up until that point, the force with which they applied the brakes, and the braking response of the vehicle.

Lateral position variability. Lateral position variability was operationalized as the amount of variability around either the participant's chosen lane position or around their deviation from a reference point, such as the centre of the lane. A common measure within the experimental driving literature that falls into this category is standard deviation of lane (or lateral) position (SDLP). The mean lane position or mean offset from a reference point was not eligible for inclusion.

Lane deviations or excursions. Lane deviations or excursions were operationalized as the number of times that participants' vehicles intersected with the boundaries of a driving lane.

Time out of lane. Time out of lane was operationalized as the amount of time that participants were engaged in a lane deviation or excursion.

Driving speed. Driving speed was operationalized as the velocity of the participant's vehicle while driving. Average speed collected across driving segments and at discrete moments within the drive were both eligible for inclusion under driving speed. However, speed measured at the moment of a collision was not eligible for inclusion given that the velocity of the vehicle would be affected not only by the participant's chosen speed up until that point, but also by their response time to the obstacle and the braking response of the vehicle. In some cases, a difference score (e.g., participants' average deviation from a posted speed limit or instructed driving speed) was used to make inferences about average driving speed differences between study conditions. Participants' average minimum speed and average maximum speeds were excluded.

Driving speed variability. Speed variability was operationalized as the amount of variability around the participant's average speed. A common measure within the experimental driving literature that falls into this category is standard deviation of speed.

Speed violations. Speed violations were operationalized as the number of times that participants' driving speed exceeded the posted speed limit. Subjective measures, such as cases of "driving too fast" based on the opinion of expert evaluators, were not eligible for inclusion under speed violations. Additionally, cases where the participant was deemed to be driving too slow were not eligible for inclusion.

Time speeding. Time speeding was operationalized as the amount of time that participants drove above the speed limit.

Headway. Headway was operationalized as the participants' following distance from a forward vehicle. Both time headway and distance headway were eligible for inclusion. However, participants' average minimum and average maximum headways were excluded. Additionally, time to collision (TTC), which refers to time headway at the moment that a participant brakes in response to a forward obstacle (e.g., Strayer et al., 2006) was excluded because it would be influenced not only by the participant's average following distance up until that point, but also by their response time to the hazard and the braking response of the vehicle.

Headway variability. Headway variability was operationalized as the amount of variability around the participant's average headway. A common measure within the experimental driving literature that falls into this category is standard deviation of headway.

Crashes. Crashes referred to collisions, crashes and accidents, generally with other road users or in the form of single-vehicle collisions resulting from lane departures. However, contact with pylons used to denote lane boundaries in closed-course studies were not generally eligible

for inclusion under crashes given that the situation could also be conceptualized as a lane deviation or excursion.

Original data. Eligible studies were required to report unique data (*Criterion 6*). When multiple studies that otherwise met inclusion criteria reported on the same set of data, only the most recently published, accurate and/or accessible paper was included. For example, peer-reviewed papers were usually preferred over earlier conference papers reporting on the same project. In some cases, data from papers excluded on this criterion were used to supplement any information missing in the included paper. When this occurred, the supplemental data was indicated with the appropriate citation. Additionally, when two publications reported both overlapping and unique data, both publications were retained to extract unique data from each publication.

Information Sources

A list of electronic databases to search for studies was developed with the assistance of a subject librarian. Academic Search Complete, CINAHL, Embase, Scopus, MEDLINE, PsycINFO, SportDISCUS and TRID were searched in May 2018. Later, a non-systematic search for new studies was conducted using Google Scholar in August 2019. Finally, lists of citations of studies included in previously published systematic reviews and meta-analyses located in the formal electronic search were generated. Specifically, titles appearing in the reference lists of Berghaus et al. (1995), Irwin et al. (2017), Jongen et al. (2017), Reimann et al. (2014) and Rezaee-Zavarah et al. (2017), which were identified as part of the electronic database search, were considered for follow-up.

In addition to these searches, studies were occasionally identified serendipitously, such as through informal internet searches or while reading through other papers.

Search Strategy

The electronic search strategy was also developed with the assistance of a subject librarian. First, informal preliminary searches were conducted to identify "model" studies that were judged to meet inclusion criteria. These model studies provided fundamental keywords and served as test items during the development of electronic search strategies. The search strategy ultimately included keywords associated with model studies, keywords related to cannabis, alcohol and driving, synonyms for other keywords, and indexing terms used by the databases of interest.

While developing the electronic search, it became apparent that the electronic indexing of this particular body of literature is imprecise. For example, we could not develop a search strategy that could reliably discriminate experimental driving studies from observational driving studies. We elected to adopt a more liberal search designed to maximize hits, with the trade-off that a large number of false positives would be returned. The electronic search strategies for each database are listed in Appendix A.

Study Selection

The present systematic review and meta-analysis is notable in that non-English studies were not excluded during study selection. The consideration of non-English studies required a unique approach, outlined below.

Screening. Two coders (SS, FS) independently screened the abstracts of identified studies based on general adherence to the inclusion criteria. The goal of abstract screening was to eliminate studies which were obviously unrelated to the research question and would clearly fail to satisfy inclusion criterion; thus, coders were liberal in passing studies on for full-text review. Although reviews were ineligible for inclusion, studies that appeared to be reviews of experimental driving studies focused on the effects of cannabis and/or alcohol were flagged for advancement to full-text review. This allowed for the identification of systematic reviews and meta-analyses that could later be reviewed for the identification of additional relevant citations. Studies identified in the systematic search were not screened based on the content of their titles. Disagreements between coders were resolved through discussion.

Approximately 8% of the citations identified in the electronic search did not have abstracts. Rather than pass these on to full-text review directly, studies without abstracts were screened using a slightly different approach based on advice from a subject librarian. Full-texts were obtained and effectively skimmed to identify section heading content (which occasionally required electronic translations when the paper was not in English) and the overall structure of the paper. Two coders independently made judgements about whether the paper was likely to report on an original empirical study (*Criterion 1*). In cases where the paper clearly appeared to be a comment, letter to the editor, review or other non-empirical paper, the paper failed screening. In cases where it was unclear whether the paper followed an empirical formatting structure, the paper was flagged for advancement to full-text review. Disagreements between coders were resolved through discussion.

Full-text review. Studies that passed screening were advanced to full-text review. Two coders (SS, FS) independently judged the texts of studies that passed screening against the inclusion criteria. Studies that failed to satisfy all of the inclusion criteria were excluded. It was possible for a study to fail to meet inclusion criteria for several reasons. For example, an empirical paper that does not report on an experimental driving study (*Criterion 2*) is not likely to include a relevant driving performance or behaviour measure either (*Criterion 4*). The first criterion that a paper clearly failed to adhere to was marked as the reason for its exclusion.

Disagreements among coders were resolved though discussion. When a consensus could not be reached, a third coder (JKC) was consulted and a final consensus was made.

Non-English studies were subjected to additional processing. It was not financially feasible to commission professional translations of non-English full-texts. Instead, the method section (or the entire text, if the method section could not be reliably located or did not provide enough information) were electronically translated using Google Translate, which has shown promising utility for the purposes of systematic review (Jackson et al., 2019). However, in many cases, non-English papers were delivered in the form of photocopies, which precluded transcribing text directly from the PDF viewer to Google Translate using standard copy and paste functions. When this occurred, relevant sections of photocopied text were extracted from PDF files using the Microsoft Windows Snipping Tool and saved as JPEG image files. JPEG image files were then processed using Tesseract optical character recognition software, which yielded text files that could be read by Google Translate. Given that errors in optical character recognition often occurred, leading to imperfect translations, the translations were treated in a similar manner as were study abstracts. That is, coders adopted a liberal bias in their electronic translation screening judgements: the purpose of the translations was to eliminate studies which were obviously unrelated to the research question and would clearly fail to satisfy inclusion criterion. Disagreements between coders were resolved through discussion.

When translations passed screening, attempts were made to locate students and local volunteers who spoke and read the language of the study. In some cases (e.g., short papers), volunteers translated the study directly, and these translations were judged against inclusion criteria by the two coders. In other cases, it was more feasible to provide the native reader with an overview of the inclusion criteria and consult them on the contents of the paper using

informal, unstructured interviews. The interviewing coder (SS) then attempted to judge the study against inclusion criteria through consultation with the native reader.

Systematic review and meta-analysis. All studies that met inclusion criteria, except for the non-English studies, were subjected to study quality assessments, risk of bias assessments and qualitative data reporting as part of the systematic review. Additionally, all studies that met inclusion criteria, except for the non-English studies, were mined for statistical data relevant to the computation of effect sizes (see *Summary Measures*, below). However, insufficient or incompatible data reporting often precludes the computation of effect sizes. Only studies for which effect sizes could be computed could be included in the meta-analysis. Studies that were eligible for inclusion, but that did not contain enough data for effect size computation, are described in Appendix B.

Data Items

General descriptive data including study setting (i.e., simulator, on-road or closedcourse), overall included sample size, participant age, eligible drug driving conditions and eligible driving performance and behaviour measures were collected (see Table 1). Additionally, information on inclusion criteria related to drug use, participant drug use frequency, specific drug driving conditions and methods of drug administration from individual studies was collected (see Table 2).

For the purposes of effect size computation, means, standard deviations, standard errors, 95% confidence intervals, sample sizes, measurement units, comparison types (i.e., between- or

within-subjects), t statistics and relevant F statistics⁵ were extracted, when available in tables or figures. Data was extracted from figures using Microsoft Paint (to identify co-ordinates of means and error bars) and Microsoft Excel (to transform those co-ordinates into useable statistics). Data was extracted to two decimal places further than the number of decimal places included in the axes of the figure. Additionally, for studies using repeated-measures designs, correlations between participants' scores in the drug driving condition and the comparison condition, known as the *pre-post correlation*, were required to compute effect sizes. Often, this correlation is unreported and cannot be derived from data reported in the paper. Initially, the plan was to estimate missing pre-post correlations from all available pre-post correlations collected from papers and from raw data supplied by study authors (Borenstein et al., 2009, p. 29). However, few pre-post correlations were recovered, and those that were recovered were highly variable in magnitude between comparisons, measures and studies. Consequently, the plan to estimate missing pre-post correlations was abandoned. Instead, for all comparisons where the correlation was missing, sensitivity analyses were conducted using a range of pre-post correlations (Borenstein et al., 2009, p. 29). Ultimately, pre-post correlations of zero, 0.5 and 0.9 were chosen to capture a wide range of possible correlations between pairs of scores in included studies. Attempts were made to retrieve data from studies published in the previous five years by contacting the authors of those studies.

In addition to effect size data, information related to the type of statistical analysis conducted and whether study conditions may have been contaminated due to the influence of

⁵ Only *F* statistics from analyses comparing two conditions, with no additional factor in the analysis, were eligible for inclusion. See Hullett and Levine (2003).

secondary driving-related tasks on driving performance and behaviour, such as target detection, was also collected. Finally, for the purposes of subgroup analysis, pre-drive BAC, post-drive BAC and average BAC throughout the drive were extracted when available for the purposes of sorting effect sizes into BAC bins (i.e., non-zero BAC levels up to 0.03%, 0.04% to 0.06% BAC, 0.07% to 0.09% BAC, and 0.10% to 0.12% BAC).

Data Collection Process

Most of the data, including the data appearing in Table 1 and Table 2, and the data extracted for effect size computation, was extracted by a single-coder (SS) and double-checked for accuracy. This data was entered into electronic spreadsheets and text files.

Study quality and risk of bias data was collected by multiple coders (SS, GJ, LK, AT, DSL) who completed study quality and risk of bias assessments independently. All studies were reviewed by SS as well as at least one other coder. All disagreements were resolved through discussion until a final judgement was agreed upon.

Study Quality & Risk of Bias

Study quality and risk of bias was assessed for two purposes: first, to contextualize the results of the meta-analysis; and second, to generate recommendations for good research practices in future studies. Study quality and risk of bias was assessed using an original dictionary based on the Quality Assessment Tool for Quantitative Studies (Effective Public Health Practice Project, 2007), as well as the Cochrane Risk of Bias Tool (Cochrane Collaboration, 2011a). The Quality Assessment Tool for Quantitative Studies was designed for health research and is recommended by the Cochrane Collaboration, and the Cochrane Risk of Bias tool is recommended for use in systematic reviews and meta-analyses of randomized controlled trials (Cochrane Collaboration, 2011b). The latter is designed to appraise risk of

selection bias, detection bias, performance bias, attrition bias and reporting bias (Cochrane Collaboration, 2011a). However, given the overlap with the Quality Assessment Tool for Quantitative Studies on four of these sources of bias, only the reporting bias section of the Cochrane Risk of Bias tool was used.

Initially, multiple coders independently judged included studies using the Quality Assessment Tool for Quantitative Studies and with the risk of reporting bias item from the Cochrane Risk of Bias Tool. However, it became apparent that the Quality Assessment Tool for Quantitative Studies tool had limited utility when used to appraise quality in experimental driving studies. For example, disagreements often arose due to differences in interpretation of dictionary items within the context of the included studies. For this reason, relevant items from the tool were adapted into a dictionary that used language specific to experimental driving studies involving alcohol and cannabis to guide coding decisions more effectively. Ultimately, only the judgements made by three of the five coders using this dictionary (SS, AT, DSL) were included in the final study quality and risk of bias assessment (see Table F1 in Appendix F). Specifically, coders evaluated whether the sample was likely to be representative (adapted from Component A, Question 1 of the Quality Assessment Tool for Quantitative Studies); what percentage of participants agreed to participate (adapted from Component A, Question 2); whether drug-driving conditions were randomized (adapted from Component B); whether counterbalancing or randomization of orders was utilized in repeated measures studies (adapted from Component B); whether there were important differences between groups prior to the driving assessment (adapted from Component C, Question 1); whether driving assessors were aware of the participants' drug treatment (adapted from Component D, Question 1); whether participants were aware of the study hypothesis (adapted from Component D, Question 2);

whether the driving data collection was reliable (adapted from Component E, Question 2); whether numbers and reasons for withdrawals and drop-outs within the context of relevant measures were clearly reported (adapted from Component F, Question 1); what percentage of participants completed the study within the context of relevant measures (adapted from Component F, Question 2); whether consistent drug administration across participants was reported (adapted from Component G, Question 2); and whether there was reason to believe that contamination may have occurred during drug administration (adapted from Component G, Question 3).

Additionally, an item related to risk of reporting bias, which was adapted from the risk of reporting bias section of the Cochrane Collaboration's Risk of Bias Tool, was also included in the dictionary. Coders (SS, AT, DSL) assessed whether all driving performance and behaviour measures reported in the method section were reported on in the results section. When there was a match, this was deemed low risk of bias. When a pre-specified measure was not reported on in the results, or a measure reported on in the results was not pre-specified (including cases where no measures were pre-specified), this was deemed high risk of bias. When it was unclear whether all driving measures reported in the method section were reported on in the results section (e.g., categories of measures were reported in the method, rather than specific measures), this was deemed unclear risk of bias.

Finally, an item related to sample size, which does not appear in the original Quality Assessment Tool for Quantitative Studies, was added to the adapted dictionary. Coders assessed whether the study reported enrolling a targeted sample size based on an a priori power assessment involving a hypothesized effect size.

Summary Measures

The principal summary measure was Hedge's g. Hedge's g is a bias-corrected form of Cohen's d (Borenstein et al., 2009, pp. 27-28). Like Cohen's d, Hedge's g quantifies differences between conditions in units of standard deviations, and the small (0.2), medium (0.5) and large (0.8) effect size conventions associated with Cohen's d (Cohen, 1992) also apply to Hedge's g. In addition to Hedge's g, average effects were also reported in the form of r. Effect sizes were generated automatically by entering extracted data into Comprehensive Meta Analysis (CMA) Version 3.3.070.

In some cases, the architecture of the CMA program required performing calculations on data used in effect size computation before the data could be entered into the program. Specifically, when a study reported data for one control group and multiple eligible drug driving conditions, data for the multiple drug driving conditions needed to be aggregated before they could be compared to the control group. Otherwise, data for the control group would be counted twice (for a discussion of this issue, see Borenstein et al., 2009, pp. 239 – 241). Charlton and Starkey (2015), Starkey and Charlton (2014), Beard (2012) and Chen et al. (2016) each contained three subgroups – two that received different levels of alcohol, and one control. For the primary meta-analysis, data for participants in low and high alcohol dose treatments were aggregated prior to entry into CMA to avoid counting the control group twice. The sample size for the aggregate alcohol group was computed using Equation 23.1 from Borenstein et al. (2009),

$$n_1 = n_{11} + n_{12}$$

the overall mean for the aggregate alcohol group was computed using Equation 23.2 from Borenstein et al. (2009),

$$\overline{X}_1 = \frac{n_{11}\overline{X}_{11} + n_{12}\overline{X}_{12}}{n_{11} + n_{12}}$$

and the overall standard deviation for the aggregate alcohol group was computed using Equation 23.3 from Borenstein et al. (2009).

$$S_1 = \sqrt{\frac{(n_{11} - 1)S_{11}^2 + (n_{12} - 1)S_{12}^2 + \frac{n_{11}n_{12}}{n_{11} + n_{12}}(\overline{X}_{11} - \overline{X}_{12})^2}{n_{11} + n_{12} - 1}}$$

A similar approach was taken with Sklar et al. (2014) and Price et al. (2018). These studies each contained six subgroups – two older groups that received different levels of alcohol, two younger groups that received different levels of alcohol, and two controls (one per age group). Low and high alcohol dose treatments were aggregated within young and older participant age groups.

Finally, when data loss occurred in within-subjects studies that resulted in unequal sample sizes represented in conditions (e.g., Sexton et al., 2002), the smaller sample size was used to compute the effect size (advice of Dr. Michael Borenstein, personal communication dated September 10, 2019).

Synthesis of Results

Random-effects meta-analyses were conducted in CMA with subgroup as the unit of analysis. For each analysis, the average effect, 95% confidence interval and 95% prediction interval were generated. Prediction intervals, which represent the plausible range of true effect sizes in a random-effects meta-analysis (Borenstein et al., pp. 127-133), were computed using the prediction interval worksheet available on the CMA website.

Risk of Bias Across Studies

The potential for publication bias was assessed by testing the presence of small study effects within each meta-analysis that included at least ten effect sizes (Cochrane Collaboration, 2011c). Specifically, the relationship between Hedge's g and its standard error was assessed. Tests of small study effects included visual inspection of funnel plots (i.e., Hedge's g by standard error) and Egger's regression tests. For Egger's regression test, the standard error of the effect size was set as the predictor and Hedge's g was set as the criterion in weighted least squares regression, wherein the inverse variances of the effect sizes served as weights (Sterne & Egger, 2005). Funnel plots are illustrated in Appendix D.

In post-hoc tests, significant Egger's regression tests were followed up by adding BAC as a second predictor to the regression. In all cases, these post-hoc tests were conducted on a smaller subset of the original effect sizes, occasionally with fewer than ten effect sizes, due to a lack of data required to verify the average BAC associated with each effect size. These post-hoc tests are described in more detail within *Chapter 3: Results*, below.

Additional Analyses

This dissertation sought to quantify the magnitude of the effect of different alcohol doses on driving performance and behaviour. Two approaches were considered: subgroup analysis, and meta-regression. It was noted that in the case of studies using within-subjects designs to assess the influence of multiple levels of alcohol on driving, the same participants may be represented in multiple effect sizes within the same analysis. Similarly, in the case of between-subjects designs with multiple BAC groups and a single control group, participants in the control group may be represented in multiple effect sizes in a comparison. For this reason, formal statistical tests – including meta-regression – were judged to be inappropriate.

Rather than conducting formal statistical tests, subgroup analyses were conducted to assess the magnitude of the effect of specific ranges of BAC on driving performance and behaviour. Effect sizes were parsed into bins as follows: Bin 1, any non-zero BAC up to 0.03%; Bin 2, BAC 0.04 - 0.06%; Bin 3, BAC 0.07 - 0.09%; Bin 4, BAC 0.10 - 0.12%. These bins were chosen for pragmatic reasons. Specifically, these bins most neatly captured the average BAC levels calculated for each effect size. The subgroup analyses only included comparisons for which there were ten or more effect sizes in the primary meta-analysis, and they only included effect sizes that could be reliably associated with an average BAC level. This required the reporting of an average BAC specifically associated with the driving component of a test battery, or an average pre-drive BAC and an average post-drive BAC (which allowed an average BAC for the driving component to be computed). Again, owing to participant overlap in multiple effect sizes included in a single analysis, differences between effect sizes associated with different BAC levels in the subgroup analysis were not subjected to formal statistical tests. Additionally, cannabis was not subjected to subgroup testing because unlike alcohol, there is no clear way to parse effect sizes by degree of intoxication.

Chapter 3: Results

Study Selection

The electronic search for studies, which was conducted in May 2018, yielded 5,923 citations. Additionally, studies were found via Google Scholar (n = 7; August 2019), in the references of research syntheses identified in the electronic search (n = 12), and through other informal means (n = 18). Altogether, 5,960 citations were identified. Of these, 2,266 were identified as duplicate citations, yielding 3,964 unique citations that were subjected to screening. Six-hundred sixteen citations passed screening and were subjected to full-text review. For an illustration of the study selection process, see Figure 1, below.

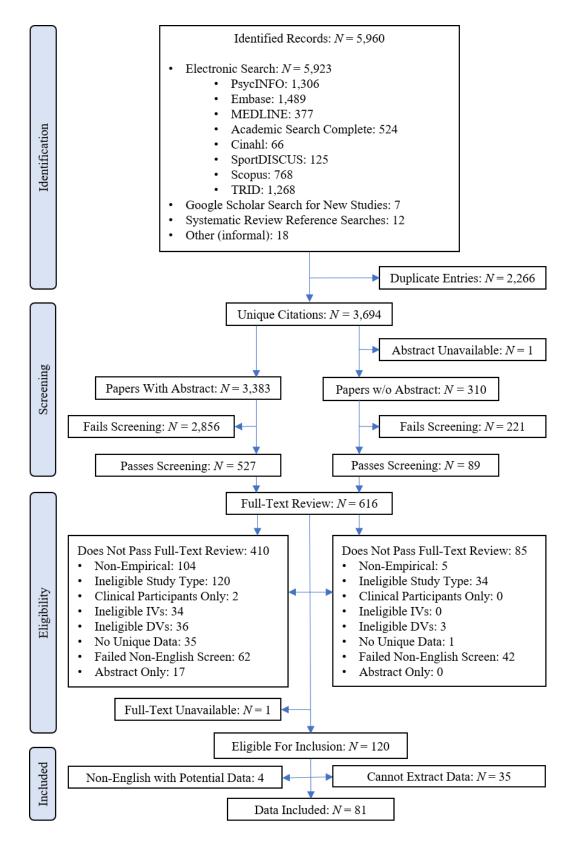


Figure 2. Study selection process.

At the end of the study selection process, 120 citations were judged to meet inclusion criteria. Of these, four were identified as non-English citations that were judged to possibly contain relevant data (Doenhoff, 1970; Bartl et al., 1998; Stephan et al., 2004; Schumacher, 2014 [Study 5]). However, due to the small number of identified non-English citations and some uncertainty in the accuracy of the electronic translations, these were not subjected to data extraction. Of the remaining 116 citations, 35 did not contain the necessary data for effect size computation (e.g., missing standard deviations, standard errors, etc.), or the data was not reported in a way to facilitate effect size computation (e.g., statistical data collapsed across eligible and ineligible conditions). Eighty-one citations were ultimately included in the meta-analysis.

Study Characteristics

The meta-analysis represents approximately 2,418 participants. For the slightly smaller subset of included studies where the number of female participants relative to all included participants could be identified (n = 2,183; see Table 1), the sample was approximately 43% female. Of the studies where the mean age of the included participants could be identified (n = 1,724; see Table 1), the sample had a mean age of 28.5 years. It should be noted that there is an overlap of four participants who participated in both Sexton et al. (2000) and Sexton et al. (2002). Additionally, participants from Ramaekers et al. (2000a) and from Study 1 of Ramaekers et al. (2000b) overlap and are counted only once in the meta-analysis. Both studies are included because they each contribute different measures. Additional study characteristics including setting, sample size, participant age, general drug conditions and driving performance and behaviour measures are reported in Table 1, below.

Study Anderson et al., 2010	Setting Simulator	Included N 73 (24 F)	M Age (SD) M = 19.8 (2.1) for males in Placebo Cannabis condition (n = 25); M = 21.0 (2.6) for females in Placebo Cannabis condition (n = 15); M = 20.2 (2.6) for males in Active Cannabis condition (n = 24); M = 21.4 (3.6) for females in Active Cannabis condition (n = 9)	Eligible IV's Cannabis, Placebo Control	Eligible DV's RT: <i>Time to First Reaction</i> [Hazard] Speed: <i>Mean Speed in MPH</i> Long. Control: <i>SD of Mean</i> <i>Speed in MPH</i> Crashes: <i>Crash</i>
Arkell et al., 2019	Simulator	14 (3 F)	M = 27.5 (4.5), Range 21 – 38.	Cannabis, Placebo	Lat. Control: SDLP Speed: Mean Speed Headway: Mean Headway Long. Control: SD of Headway, SD of Speed
Arnedt et al., 2001	Simulator	18 (0 F)	M = 19.9 (2.3), Range 19 - 35	Alcohol, Non- Alcoholic Drink Control	Lat. Control: Tracking Variability, Off-Road Incidents Speed: Speed Deviation Long. Control: Speed Variability
Beard, 2012	Simulator	30 (16 F)	M = 40.03 (12.63), Range 20 – 64.	Alcohol, Placebo	RT: Brake Reaction Time [Hazard] Lat. Control: Centerline Crossings Collisions: Crashes

Table 1. Overview of studies included in the meta-analysis.

Study Bernosky-Smith et al., 2011	Setting Simulator	Included N 59 (59 F)	M Age (SD) Unclear. For original $N = 60$, M = 23.8 (2.4), Range 21 – 29.	Eligible IV's Alcohol, Placebo	Eligible DV's Lat. Control: Centerline Crossings, Road Edge Excursions Speed: Speed Exceedances Crashes: Collisions, Off- Road Accidents, Pedestrians Hit
Bernosky-Smith et al., 2012	Simulator	40 (20 F)	Not reported.	Alcohol, Non- Treated Control	Speed: <i>Mean Driving</i> <i>Speed, Time Spent Speeding</i> Crashes: <i>Collisions</i>
Berthelon & Galy, 2018	Simulator	30 (Unclear F)	Age 18 (for $n = 15$ young novice drivers), 21 (for $n =$ 15 young experienced drivers)	Alcohol, Non- Alcohol (unclear if placebo or untreated control)	Lat. Control: SDLP Speed: Speed Long. Control: SD Speed
Berthelon & Gineyt, 2014	Simulator	16 (8 F)	M = 25.31 (2.87), Range 21 – 29	Alcohol, Placebo	RT: Highway Scenario, Urban Scenario [Hazards] Lat. Control: SDLP, Off- Lane Incidents Speed: Mean Speed Headway: Intervehicular Time Long. Control: SD of Speed Crashes: Collisions
Bosker et al., 2012	On-Road (Highway)	24 (10 F)	M = 23.6 (SE = 0.6)	Dronabinol, Placebo Control	Lat. Control: SDLP Speed: Mean Speed Long. Control: SD Speed
Brands et al., 2019	Simulator	91 (26 F)	For $n = 30$ placebo group, M = 21.9 (2.2); for $n = 31$ Low THC group, M = 22.2 (1.8); for $n = 30$ High THC group, M = 22.3 (2.0).	Cannabis, Placebo	Lat. Control: Lateral Control Speed: Mean Speed

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Burns et al., 2002	Simulator	20 (10 F)	M = 32 (7.8), Range 21 – 45	Alcohol, Placebo	Lat. Control: Lane Departures, SDLP, RMSE from Lane Centre Speed: Mean Speed Long. Control: SD of Speed, RMSE Speed, SD of Following Time Headway, RMSE of Time Headway
Charlton & Starkey, 2015	Simulator	44 (23 F)	M = 32.84 (8.49), Range 20 – 47	Alcohol, Placebo	Lat. Control: SDLP, Number of Centreline Crossings, Time Spent Over Centreline Speed: Mean Time Over 100 km/h
Chen et al., 2016	Simulator	18 (Unclear F)	Range 18 – 24	Alcohol, Placebo	Speed: Speed
Christoforou et al., 2012	Simulator	49 (23 F)	M = 23.2 (2.7), Range 20 - 30	Alcohol, Untreated Control	RT: [Hazards] Lat. Control: Variation in Within-Lane Position Speed: Average Traveling Speed Long. Control: Speed Variation

Study Downey et al., 2013	Setting Simulator	Included N 80 (31 F)	M Age (SD) M = 26.45 (5), Range 21 -	Eligible IV's Cannabis,	Eligible DV's RT: <i>Reaction Time to</i>
			35	Alcohol, Combination, Placebo Control	<i>Emergencies</i> [Hazard] Lat. Control: <i>Steering</i> <i>Straddle Barrier Line,</i> <i>Violation Traffic Law Solid</i> <i>Line</i> Speed: <i>Violation Traffic</i> <i>Law Speed Limit, Initial</i> <i>Speed Freeway, Initial</i> <i>Speed City</i> Crashes: <i>Collisions</i>
Fillmore et al., 2008	Simulator	14 (7 F)	M = 23.5 (3.2), Range 21 – 30	Alcohol, Placebo	Lat. Control: LPSD, Line Crossings Speed: Driving Speed Crashes: Off-Road and Other Vehicle Impacts
Freydier et al., 2014	Simulator	32 (15 F)	Age 18 (for $n = 16$ novice drivers), 21 (for $n = 16$ experienced drivers)	Alcohol, Placebo	Lat. Control: SDLP
Harrison & Fillmore, 2005	Simulator	14 (7 F)	Unclear. For original <i>N</i> = 24, M = 23.8 (2.9), Range 21 – 31.	Alcohol, Baseline ¹	Lat. Control: Within-Lane Deviation Speed: Speed Crashes: Crashes
Harrison & Fillmore, 2011	Simulator	20 (Unclear F; for original N = 40, 20 F)	Unclear. For original <i>N</i> = 40, M = 24.0 (3.8), Range 21 – 35	Alcohol, Placebo	Lat. Control: SDLP Speed: Drive Speed
Harrison et al., 2007	Simulator	10 (5 F)	Unclear. For original <i>N</i> = 30, M = 22.5 (1.9).	Alcohol, Untreated Control	Lat. Control: Within-Lane Deviation Speed: Speed Crashes: Crashes

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Hartman et al., 2015	Simulator	18 (5 F)	M = 26.3 (4.2), Range 21 - 37	Cannabis, Alcohol, Combination, Placebo Control	Lat. Control: <i>SDLP, Lane</i> <i>Departures per Minute</i>
Helland et al., 2016	Simulator and Test Track	18 (0 F), simulator; 20 (0 F), test-track	Unclear. $M = 28.7$, Range $25 - 35$ for original sample $(N = 20)$.	Alcohol, Placebo	Lat. Control: SDLP Speed: Average Speed Long. Control: SD of Speed Crashes: Collisions
Horne & Baumber, 1991	Simulator	24 (24 F)	Range 20 - 25	Alcohol, Placebo	Lat. Control: Position Variability Long. Control: Following Distance Variability Headway: Mean Following Distance
Howard et al., 2007	Simulator	16 (Unclear F)	M = 46.2 (10.7)	Alcohol, Untreated Control	RT: Braking Reaction Time [Hazard] Lat. Control: Variation in Lane Position Crashes: Crashes
Howland et al., 2011	Simulator	67 (Unclear F; 47% F of unclear <i>N</i>)	Unclear; M = 22.9 (2.23), Range 21 – 30 for unclear <i>N</i>)	Alcohol ² , Placebo ²	Lat. Control: Lane Position Variability Speed: Speed Deviation Long. Control: Speed Variability Crashes: Crashes
Huemer & Vollrath, 2010	Simulator	23 (11 F)	M = 25.3 (5.9), Range 19 – 45.	Alcohol, Baseline ³	Lat. Control: SDLP
Jelen et al., 2011	Simulator	6 (0 F)	Not reported.	Alcohol, Untreated Control	RT: <i>Red Traffic Lights</i> [Hazard]

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Kay et al., 2013	Simulators	18 (Unclear F)	Range 21 – 34	Alcohol, Placebo	Lat. Control: SD of Lane Position, Out of Lane Long. Control: SD of Speed
Kenntner-Mabiala et al., 2015	Simulator	24 (11 F)	M = 30 (8.3), Range 23 – 53	Alcohol, Placebo	Lat. Control: Lane Departures, SDLP Speed: Mean Speed Crashes: Collisions
Kuypers et al., 2006	On-Road	18 (9 F)	M = 26.6 (5.4)	Alcohol, Untreated Control	RT: <i>BRT</i> [Hazard] Lat. Control: <i>SDLP</i> Speed: <i>Speed</i> Long. Control: <i>SD Speed</i>
Laude & Fillmore, 2015	Simulator	34 (20 F)	Range 21 – 34	Alcohol, Placebo	Lat. Control: SDLP Speed: Average Drive Speed Crashes: Accident Frequency
Laude & Fillmore, 2016	Simulator	40 (21 F)	M = 24.08 (4.03), Range 21 - 34	Alcohol, Placebo	Lat. Control: SDLP Speed: Average Drive Speed Crashes: Accident Frequency
Laude, 2016 (Study 3)	Simulator	12 (6 or 7 F)	M = 23.08 (6.35)	Alcohol, Placebo	Lat. Control: SDLP Speed: Drive Speed

Study Lee et al., 2010	Setting Simulator	Included N 108 (54 F)	M Age (SD) For $n = 18$ males aged 21- 34, M = 26.56; for $n = 18$ females aged 21-34, M = 26.83; for $n = 18$ males aged 38-51, M = 43.22; for n = 18 females aged 38-51, M = 44.72; for $n = 18$ males aged 55-68, M = 59.56; for $n = 18$ females aged 55-68, M = 61.06.	Eligible IV's Alcohol, Placebo	Eligible DV's Lat. Control: Lane Deviation (SDLP) Speed: Average Speed Long. Control: Speed Deviation (SD of Speed)
Lenne et al., 1999	Simulator	28 (14 F)	For $n = 14$ inexperienced drivers, $M = 18.9$ (0.7), Range 18 – 20; for $n = 14$ experienced drivers, $M =$ 27.4 (1.8), Range 25 – 35.	Alcohol, Placebo	Lat. Control: SDLP Speed: Mean Speed Long. Control: SD of Speed
Lenne et al., 2003	Simulator	21 (12 or 13 F)	M = 34.1	Alcohol, Untreated Control	Lat. Control: SD of Position Speed: Mean Speed Long. Control: SD of Speed
Leung et al., 2012	Simulator	12 (10 F)	M = 26.20 (2.58), Range 23.5 – 30.8	Alcohol, Untreated Control	RT: Braking Episodes [Hazard] Speed: Time Spent Speeding Crashes: Number of Crashes
Liguori & Robinson, 2001	Simulator	15 (9 F)	M = 32, Range $21 - 45$	Alcohol, Placebo	RT: <i>Brake Latency</i> [Hazard]
Liguori et al., 1998	Simulator	10 (3 F)	M = 29 (6)	Cannabis, Placebo Control	RT: Brake Latency [Hazard] Speed: Mean Speed

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Liguori et al., 1999	Simulator	18 (10 F)	M = 32 (6)	Alcohol, Placebo	RT: <i>Brake Latency</i> [Hazard]
Liguori et al., 2002	Simulator	12 (4 F)	M = 24 (3), Range 21 – 45	Cannabis, Alcohol, Combination, Placebo Control	RT: <i>Brake Latency</i> [Hazard]
Louwerens et al., 1987	On-Road	24 (12 F)	Range 22 – 45	Alcohol, Untreated Control	Lat. Control: SD of Lateral Position Long. Control: Speed Variability
Marczinski & Fillmore, 2009	Simulator	28 (12 F)	M = 22.6 (2.3), Range 21 – 28	Alcohol, Placebo	Lat. Control: Within-Lane Deviation, Number of Center Line Crossings, Number of Edge Excursions Long. Control: Speed Deviation Crashes: Number of Accidents
Marczinski et al., 2008	Simulator	40 (20 F)	M = 22.3 (2.0), Range 21 – 29	Alcohol, Placebo	Lat. Control: Within-Lane Deviation, Number of Center Line Crossings, Number of Edge Excursions Speed: Speed, Number of Speed Limit Exceedances Long. Control: Speed Deviation Crashes: Number of Accidents

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
McCartney et al., 2017	Simulator	22 (0 F)	M = 23 (3)	Alcohol, Placebo	Lat. Control: SDLP, Number of Lane Crossings Speed: Average Speed Long. Control: SD of Speed Headway: Distance Headway
Mets et al., 2011	Simulator	27 (13 F)	M = 22.8 (1.4)	Alcohol, Placebo	Lat. Control: SD Lateral Position Speed: Mean Speed Long. Control: SD of Speed Crashes: Collisions
Price et al., 2018	Simulator	66 (28 F)	For $n = 33$ younger group, M = 27.59 (2.71). For $n =$ 33 older group, M = 60.06 (3.76).	Alcohol, Placebo	Speed: Average Speed
Ramaekers et al., 1992	On-Road	16 (8 F)	Range 22 – 35	Alcohol, Placebo	Lat. Control: SDLP Long. Control: SD Speed
Ramaekers et al., 2000a ⁴	On-Road	18 (9 F)	Range 20 – 28.	Cannabis, Alcohol, Combination, Placebo	Lat. Control: SDLP, Percentage Time Out of Lane Long. Control: SD of Headway
Ramaekers et al., 2000b (Study 1) ⁴	On-Road (Highway)	18 (9 F)	Not reported.	Cannabis, Alcohol, Combination, Placebo Control	RT: <i>Decelerations in Car-</i> <i>Following Test</i> [Hazard]
Robbe, 1998 (Study 1)	On-Road (Closed Highway)	23 (12 F)	Not reported.	Cannabis, Placebo Control	Lat. Control: SDLP Speed: Mean Speed Long. Control: SD Speed

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Robbe, 1998 (Study 2)	On-Road (Open Highway)	15 (7 F)	Not reported.	Cannabis, Placebo Control	RT: Movements of Preceding Vehicle [Unclear] Lat. Control: SDLP Speed: Speed Headway: Mean Distance Long. Control: SD Distance
Roberts, 2016 (Exp. 2)	Simulator	40 (13 F)	For $n = 20$ controls, M = 24.9 (3.7); for $n = 20$ DUI offenders, M =23.4 (2.7).	Alcohol, Placebo	Lat. Control: LPSD, Line Crossings Speed: Average Speed Long. Control: Speed SD Crashes: Collisions
Ronen et al., 2008	Simulator	14 (4 F)	M = 26.1 (1.3)	Cannabis, Alcohol, Placebo Control	Lat. Control: RMS Lane Position Speed: Average Speed Long. Control: RMS Longitudinal Speed Crashes: Number of Collisions
Ronen et al., 2010	Simulator	12 (5 F)	M = 26.1, Range 24 - 29	Cannabis, Alcohol, Combination, Placebo Control	Lat. Control: RMS Lane Position Speed: Average Speed Long. Control: RMS Speed Crashes: Number of Collisions
Rupp et al., 2007	Simulator	26 (18 F)	Unclear. For original <i>N</i> = 29, M = 22.6 (1.2), Range 21 – 25.	Alcohol, Placebo	Lat. Control: Lane Variability, Off-Road Events Long. Control: Speed Variability

Study Schumacher et al., 2017 ⁵	Setting On-Road	Included N 17 (Unclear F; 7 F for original 19)	M Age (SD) Unclear. For original $N =$ 19, M = 43 (11.07), Range 23 - 58.	Eligible IV's Alcohol, Placebo	Eligible DV's RT: Brake RT [Hazard] Speed: Mean Speed Lat. Control: SDLP
Sexton, 1997	On-Road, Simulator	18 (18 F)	Not reported.	Alcohol, Placebo	Long. Control: SD Speed RT: Pulling-In Events, Pulling-Out Events [Hazards] Lat. Control: SD of Lateral Deviation Long. Control: SD of Following Distance Headway: Mean Following Distance
Sexton et al., 2000	Simulator	15 (0 F)	M = 27.0 (7.52)	Cannabis, Placebo Control	RT: Pulling Out RT [Hazard], Braking RT [Hazard] Lat. Control: SDLP Speed: Average Speed
Sexton et al., 2002	Simulator	21 (0 F)	M = 24.9 (3.51)	Cannabis, Alcohol, Combination, Placebo Control	RT: Pulling-Out Events [Hazard], Braking Events [Hazard] Lat. Control: SDLP Speed: Average Speed

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Simons et al., 2012	Simulator	16 (4 F)	M = 25.7, Range 21 – 37.	Alcohol, Non- Alcohol ⁵	Lat. Control: SDLP, Number of Line Crossings Speed: Average Speed, Violating Speed Limit, Ramp Entry Velocity, Velocity When Merging Headway: Time Headway, Distance Headway Long. Control: SD of Speed Crashes: Accidents
Sklar et al., 2014	Simulator	72 (31 F)	For $n = 12$ younger adults in placebo condition, $M = 27.75$ (2.1); for $n = 13$ younger adults in 0.04% BAC condition, $M = 28.69$ (3.3); for $n = 11$ younger adults in 0.065% BAC condition, $M = 27.18$ (2.0); for $n = 12$ older adults in placebo condition, $M = 62.25$ (4.5); for $n = 13$ older adults in 0.04% BAC condition, $M = 58.54$ (2.8); for $n = 11$ older adults in 0.065% BAC condition, $M = 60.55$ (4.1).	Alcohol, Placebo	Speed: Average Speed Lat. Control: LPSD Long. Control: SD of Average Speed

Study Starkey & Charlton, 2014	Setting Simulator	Included N 49 (Unclear F; for original <i>N</i> = 61, 28 F).	M Age (SD) Unclear. For original $N = 61$, M = 31.11 (8.34), Range 20 – 50.	Eligible IV's Alcohol, Placebo	Eligible DV's Speed: Seconds Over 100 km/hr Lat. Control: Edge Line Crossings, Seconds Over Edge Line, SD of Lane Position, Centre Line Crossings, Seconds Over Centre Line
Strayer et al., 2006	Simulator	40 (15 F)	M = 25, Range 22 – 34	Alcohol, Untreated Control	RT: Brake RT [Hazard] Speed: Speed Long. Control: SD Following Distance Headway: Mean Following Distance Crashes: Total Accidents
Subramaniyam et al., 2018	Simulator	8 (0 F)	M = 29.63 (3.16)	Alcohol, Untreated Control	Speed: Over Speed Rate Collisions: Accident Rate/Crash Rate
Tremblay et al., 2015	Simulator	16 (6 F)	For $n = 8$ experimental group, M = 21.6 (2.32); for n = 8 control group, M = 20.9 (2.35).	Alcohol, Time- Matched Untreated Control	Speed: <i>Percentage of Time</i> <i>Spent Over Speed Limit</i>
van der Sluiszen et al., 2016	On-Road (Highway)	25 (13 F)	M = 33.4 (8.9)	Alcohol, Untreated Control	Lat. Control: SDLP Long. Control: SD of Speed
Van Dyke & Fillmore, 2014	Simulator	50 (14 F)	For $n = 25$ DUI offenders, M = 25.95 (4.11); for $n =$ 25 controls, M = 24.65 (3.41); for all (N = 50), Range 21 – 34.	Alcohol, Placebo	Speed: Drive Speed Lat. Control: LPSD, Centerline and Road Edge Crossings

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Van Dyke & Fillmore, 2015	Simulator	50 (14 F)	Range 21 – 34	Alcohol, Placebo	Lat. Control: SDLP, Lane Exceedances Speed: Average Speed Crashes: Traffic Accidents
Van Dyke & Fillmore, 2017	Simulator	20 (10 F)	M = 24.0 (3.0), Range 21 – 35	Alcohol, Placebo	Speed: Average Drive Speed Crashes: Accident Frequency
Veldstra et al., 2012 (Study 1)	Simulator	17 (8 F)	M = 23.6 (3.8)	Alcohol, Placebo	Lat. Control: SDLP Speed: Average Speed Long. Control: SD of Speed Crashes: Crashes
Veldstra et al., 2012 (Study 2)	Simulator	19 (9 F)	M = 30.8 (5.65), Range 21 - 40	Alcohol, Placebo	Lat. Control: SDLP Speed: Average Speed Long. Control: SD of Speed Crashes: Crashes
Veldstra et al., 2015 ⁶	Simulator	24 (10 F)	M = 23.6 (3.0)	Dronabinol, Placebo Control	Lat. Control: SDLP
Vermeeren & O'Hanlon, 1998	On-Road	24 (12 F)	M = 31.5 (8.5)	Alcohol, Untreated Control	Lat. Control: SDLP
Vermeeren et al., 2002a	On-Road	19 (10 F)	M = 34.4 (7.5)	Alcohol, Untreated Control	Lat. Control: SDLP
Vermeeren et al., 2002b (Part 1)	On-Road (Highway)	30 (15 F)	M = 31.6 (6.9), Range 21 – 45	Alcohol, Placebo	Lat. Control: SDLP Long. Control: SD of Speed
Verster et al., 2002 (Part 1)	On-Road (Highway)	30 (15 F)	M = 24.0 (2.4)	Alcohol, Placebo	Lat. Control: SDLP Long. Control: SD Speed

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Vollrath & Fischer, 2017 (Study 1)	Simulator	48 (0 F)	Unclear. For all <i>N</i> = 48, M = 23.2 (2.0), Range 20 – 29	Alcohol, Placebo	RT: Parking Car, Pedestrian [Hazard] Speed: Speed Crashes: Number of Accidents
Vollrath & Fischer, 2017 (Study 2)	Simulator	42 (0 F)	Unclear. For $N = 63$ (includes one additional non-eligible group ³), M = 23 (2.3).	Alcohol, Placebo ⁷	RT: Parking Car, Pedestrian [Hazard] Speed: Speed Crashes: Number of Accidents
Wan et al., 2017	Simulator	28 (14 F)	M = 23.43 (3.12), Range 21 - 36	Alcohol, Placebo	RT: Yellow Lights [Hazard] Lat. Control: SDLP Long. Control: SD of Driving Speed Crashes: Accidents
Weafer & Fillmore, 2012	Simulator	20 (10 F)	M = 23.2 (2.6), Range 21 – 31	Alcohol, Placebo	Lat. Control: LPSD, Number of Line Crossings
Weafer et al., 2008 (Study 1)	Simulator	23 (10 F)	M = 22.0 (1.7)	Alcohol, Placebo	Lat. Control: Deviation of Lane Position Speed: Average Driving Speed Long. Control: SD of Average Speed Crashes: Off-Road Crashes/Impacts

Study	Setting	Included N	M Age (SD)	Eligible IV's	Eligible DV's
Weafer et al., 2008 (Study 2)	Simulator	8 (3 F)	M = 23.1 (1.2)	Alcohol, Placebo	Lat. Control: Deviation of Lane Position Speed: Average Driving Speed Long. Control: SD of Average Speed Crashes: Off-Road Crashes/Impacts
Weiler et al., 2000	Simulator	40 (25 F)	M = 31, Range 25 – 44	Alcohol, Placebo	RT: Blocking Vehicle [Hazard] Lat. Control: Root Mean Square Deviation, Left-Lane Excursions Crashes: Collisions
Zhang et al., 2014	Simulator	22 (0 F)	Unclear. For original <i>N</i> = 25, M = 25 (4.1), Range 20 – 35.	Alcohol, Placebo	Lat. Control: LPSD Speed: Average Speed Long. Control: SD of Speed

Note that this table describes all studies meeting inclusion criteria for the meta-analysis prior to data extraction attempts. Likewise, *Eligible IV's* describes relevant drug driving conditions included in a study (i.e., whether a study includes cannabis, alcohol or both; for more specific details on drug driving conditions, see Table 2), and *Eligible DV's* describes all relevant driving performance and behaviour measures included in a study (i.e., in the method section, results section, or both). It should be noted that any given DV that was identified as contributing only duplicate data with a DV from another study was ineligible for inclusion under *Criterion 6* and was therefore omitted from this table. Due to incomplete or incompatible reporting, not all relevant study data is included in the meta-analysis. Additionally, *Included N* describes the maximum number of participants represented in the meta-analysis per study, but does not necessarily correspond to the number of participants represented in each *Eligible IV* and/or *Eligible DV* (e.g., as in between-subjects designs, or as a consequence of attrition or data loss). Please refer to individual forest plots for specific information on data included in the meta-analysis.

1. This is a between-subjects study where one group of participants received alcohol and one received placebo; and, both groups completed baseline testing. Data was reported in terms of change scores, which complicated effect size computation. Ultimately, the change score comparing alcohol to baseline was used to compute the effect size included in the meta-analysis.

2. Caffeinated beverage conditions excluded from meta-analysis.

3. This is a totally within-subjects study where participants received both alcohol and placebo in a counterbalanced order; and, they completed baseline testing prior to consuming beverages. However, data was reported in terms of change scores, which complicated effect size computation. Ultimately, the change score comparing alcohol to baseline was used to compute the effect size included in the meta-analysis.

4. Studies report upon a common participant dataset.

5. In the alcohol condition, alcohol, along with a placebo drug, was administered within orange juice. In the non-alcohol condition, participants received a placebo drug with orange juice. It is unclear if the orange juice in the non-alcohol condition was meant to act as placebo for alcohol.

5. Data for this study was extracted and included from Schumacher et al. (2011). However, Schumacher et al. (2017) was ultimately deemed an *included* study because it contained more useable information (other than statistical data) than the 2011 poster.

6. Veldstra et al. (2015) and Bosker et al. (2012) report on a common dataset. Specifically, Bosker et al. (2012) reports driving data collected on-road, and Veldstra et al. (2015) re-reports the same on-road data; thus, the on-road data reported in Bosker et al. (2012) is eligible for inclusion, but the same data reported in Veldstra et al. (2015) is not eligible for inclusion. However, Veldstra et al. (2015) also reports on driving data collected during driving simulation; this data is not reported in Bosker et al. (2012). Thus, only the driving data collected during driving simulation is eligible for inclusion from the Veldstra et al. (2015) paper. 7. This study had both a placebo and a sober group. Participants in the sober group received a beverage but were informed that it did not contain alcohol. The placebo group was included, but the sober group was excluded from the meta-analysis.

Studies that were eligible for inclusion, but which were not included due to the inability to compute standardized mean difference effect sizes, are reported in Appendix B. Notable recent studies that investigated the effects of cannabis on driving performance and behaviour, but which did not report data needed for effect size computation, included Hartley et al. (2019), Micallef et al. (2018), Hartman et al. (2016) and Lenne et al. (2010). Attempts were made to recover the original data from study authors, but as of the time of this writing, the data have not been received. Additionally, older studies that investigated the effects of cannabis on driving performance and behaviour, but which did not report data needed for effect size computation, included Smiley et al. (1987), Smiley et al. (1985), Stein (1985), Sutton (1983), Attwood et al. (1981), Moskowitz et al. (1976a) and Rafaelsen et al. (1973a, 1973b). Finally, some notable studies that investigated the effects of cannabis on driving, but which were not deemed eligible for inclusion, included Crancer et al. (1969), Moskowitz et al. (1976b) and Ménétrey et al. (2005), which involved tasks that were not deemed sufficiently similar to simulated or on-road driving (*Criterion 2*); Krueger and Vollrath (2000), in which researchers did not experimentally control the administration of cannabis (Criterion 4); and Biasotti et al., (1986), in which driving measures were combined using factor analysis to yield composite measures (Criterion 5).

In addition to study characteristics, participant drug use inclusion criteria, reported drug use frequency, specific drug driving conditions and drug administration details are reported in Table 2, below. Participants were typically occasional, non-dependent users of the drugs administered in the studies. Alcohol was administered in doses up to 0.12% BAC, and cannabis was typically low-strength in terms of THC, with concentrations increasing in more recent studies.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Anderson et al. 2010	 For all eligible participants: Cannabis: "Occasional marijuana smokers" who use 1 – 10 times per month. Alcohol: No current or previous alcohol dependence. 	Cannabis: For $n = 25$ males in placebo group, average 4.6 (2.8) times using marijuana per month. For $n = 15$ females in placebo group, average 4.5 (2.9) times per month. For $n = 24$ males in Active THC group, average 4.9 (2.8) times per month. For n = 9 females in Active THC group, average 4.1 (3.0) times per month. Alcohol: For $n = 25$ males in placebo group, average 11.0 (6.3) drinks per week. For $n =$ 15 females in placebo group, average 7.4 (8.7) drinks per week. For $n = 24$ males in Active THC group, average 12.6 (8.1) drinks per week. For $n = 9$ females in Active THC group, average 9.1 (7.4) drinks per week.	Comparison: 1. 0% (~0 mg) THC cannabis Cannabis: 1. 2.9% (~22.9 mg) THC cannabis	Cannabis: Cannabis cigarettes (average weight 0.790 grams), including placebo, smoked in a structured smoking paradigm until totally consumed. Alcohol: N/A

Table 2. Overview of participant drug use inclusion criteria and reported frequency, and drug driving conditions.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Arkell et al., 2019	<i>For all eligible participants:</i> Cannabis: Ten or more previous experiences using cannabis; less than twice weekly use of cannabis in the past three months; no history of "clinically significant adverse response" during cannabis use; no "moderate or severe substance use disorder as assessed by an addiction medicine specialist" (p. 2714); and no interest in treatments to reduce cannabis consumption. Required to abstain from illicit drugs (assumed to include cannabis) throughout the entirety of the study. No positive oral fluid screen for cannabis prior to start of study sessions. Alcohol: Not reported. Required to abstain from alcohol from the night prior to testing. No positive test for breath alcohol prior to start of study sessions.	For all eligible participants: Cannabis: Participants used cannabis on $M = 4.5$ (4.8) days in the past 28 days and M = 11.2 (8) days in the last three months. Alcohol: $M = 7.1$ (5.3) drinking occasions per month.	 Comparison: Placebo THC (from <1% THC, <1% CBD cannabis) Cannabis: 125 mg THC (from 11% THC, <1% CBD cannabis) 125 mg THC (from 11% THC, 11% CBD cannabis) 	Cannabis: Vapor from cannabis, including placebo, inhaled in a structured vaporization paradigm for 5 minutes or until no vapor wa visible during vaporization (whichever was later). Alcohol: N/A

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
2001 Cannabis: Score <5 Abuse Screening Te evidence of drug abu assumed to include of Required to abstain to drugs (assumed to in cannabis) from 48 ho	<i>For all eligible participants:</i> Cannabis: Score <5 on Drug Abuse Screening Test (no evidence of drug abuse; assumed to include cannabis). Required to abstain from drugs (assumed to include cannabis) from 48 hours prior to start of first study session to end of study.	For all eligible participants: Cannabis: Not reported. Alcohol: Not reported.	Comparison: 1. Non-alcoholic drink control ¹ Alcohol: 1. Target BAC 0.05% 2. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose consisted of 100% ethanol in tonic water, divided into two beverages. Non-alcoholic drink control consisted of tonic water.
	Alcohol: Score <9 on Alcohol Dependence Scale (no evidence of alcohol abuse). Required to abstain from 48 hours prior to start of first study session to end of study.			
Beard, 2012	 For all eligible participants: Cannabis: No substance use disorder (assumed to include cannabis). Alcohol: No alcohol use disorder. Required to abstain from alcohol for 24 hours prior to testing. 	<i>For all eligible participants:</i> Cannabis: Not reported. Alcohol: All "had a history" of drinking alcohol at least weekly; M = 5.90 (6.31) alcoholic drinks weekly.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.02% 2. Target BAC 0.05%	Cannabis: N/A Alcohol: Alcohol dose consisted of vodka in orange juice. Placebo consisted of pure orange juice.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Bernosky- Smith et al., 2011	 For all eligible participants: Cannabis: No illicit or psychoactive drug use currently or in the previous six months (assumed to include cannabis); no positive urine test for illicit drugs (assumed to include cannabis). Alcohol: Drink at least once monthly, with an Alcohol Use Disorders Identification Test (AUDIT) score of 12 or less. 	For all eligible participants: Cannabis: Not reported. Alcohol: For $n = 30$ high-frequency binge drinker group, M = 8.4 (4.2) drinks per week. For $n = 30$ low-frequency binge drinker group, M = 6.1 (5.0) drinks per week.	Comparison: 1. Placebo alcohol Alcohol: 1. 0.2 g/kg alcohol	Cannabis: N/A Alcohol: Alcohol dose administered as 95% alcohol in tonic water, served in an opaque foam cup with a lid to be consumed through a straw. Placebo administered as tonic water, served in an opaque foam cup with a lid covered with alcohol, to be consumed through a straw also covered with alcohol.
Bernosky- Smith et al., 2012	 For all eligible participants: Cannabis: No positive urine test for illicit drugs (assumed to include cannabis). Alcohol: No "hazardous drinkers" (i.e., no score >12 on AUDIT). 	For all eligible participants: Cannabis: Not reported. Alcohol: "Moderate drinkers." Also referred to as "binge drinkers."	 Comparison: 1. Baseline driving Alcohol: 1. 0.8 g/kg 95% alcohol for males, and 8% less for females (unclear Target BAC; <i>M</i> = 0.06% [0.02%] at start of drive) 	Cannabis: N/A Alcohol: Alcohol dose consisted of 95% alcohol in lemonade, divided into ten 50 mL drinks to be consumed over two hours.
Berthelon & Galy, 2018	<i>For all eligible participants:</i> Cannabis: Not reported.	For all eligible participants: Cannabis: Not reported.	Comparison: 1. Target BAC 0.00% Alcohol: 1. Target BAC 0.02%	Cannabis: N/A Alcohol: Not reported.
	Alcohol: Not reported.	Alcohol: Not reported.	2. Target BAC 0.05%	

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Berthelon & Gineyt, 2014	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
- , -	Cannabis: No previous drug abuse (assumed to include cannabis).	Cannabis: Not reported. Alcohol: Not reported.	Alcohol: 1. Target BAC 0.03% 2. Target BAC 0.05% 3. Target BAC 0.08%	Alcohol: Alcohol dose consisted of vodka and orang juice. Placebo consisted of pure orange juice.
	Alcohol: Previous alcohol consumption, but no "excessive drinkers" or previous alcohol abuse. Required to abstain the day before the study session.		-	
Bosker et al. 2012	Cannabis: For $n = 12$ "occasional" user group, 5 – 36 times using cannabis yearly, abstention from "any drugs" from one week prior to medical exam to end of study, and no positive test for THC at start of experiment. For $n = 12$ "heavy" user group, >160 times using cannabis yearly and positive test for THC at start of experiment. <i>For all eligible participants</i> (<i>i.e.</i> , <i>both</i> "occasional" and "heavy" user groups): Alcohol: No "excessive drinking;" no history of addiction to non- cannabinoids (assumed to include alcohol); no alcohol during 24 hours prior to testing.	Cannabis: "Occasional" users ($n = 12$) reported M = 274.1 (SE = 89.6) times using cannabis across lifetime. "Heavy" users ($n = 12$) reported M = 2444.2 (SE = 708.8) times using cannabis across lifetime, and a range of 4.7 – 23.1 joints per week. Alcohol: Not reported for either user group.	Comparison: 1. Placebo dronabinol Cannabis: 1. 10 mg dronabinol 2. 20 mg dronabinol	Cannabis: Dronabinol, including placebo, administered orally in capsule form. Alcohol: N/A

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Brands et al., 2019	 For all eligible participants: Cannabis: "Regular recreational," non-medical users with "recent cannabis use" (based on drug test), but who did not have a current or past cannabis dependency (based on DSM-IV). Required to abstain for 48 hours prior to practice session and throughout study (verified with drug test). Alcohol: No prior substance dependency (based on DSM- IV; assumed to include alcohol). Required to abstain for 48 hours prior to practice session and throughout study (verified with breathalyzer). 	For all eligible participants: Cannabis: "Regular" use of cannabis (i.e., 1 to 4 days per week). For $n = 30$ placebo participants, $M = 2.8$ (1.1) days using per week; for $n =$ 31 low THC participants, $M =$ 2.4 (0.9) days using per week; for $n = 30$ high THC participants, $M = 2.6$ (0.8) days using per week. Alcohol: Not reported.	 Comparison: 0.009% (~0.07 mg) THC, <0.5% CBD cannabis 12.5% (~93.75 mg) THC, <0.5% CBD cannabis Note that a median split was used to divide participants who received active cannabis into High THC and Low THC groups. 	Cannabis: Cannabis cigarettes (approximate weight 750 mg), including placebo, smoked ad libitum for ten minutes. Alcohol: N/A.
Burns et al., 2002	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.08%	Alcohol: Alcohol dose consisted of vodka in cream
	Alcohol: Not reported. Participants provided breath samples on arrival, likely to verify that they had not been drinking.	Alcohol: Not reported.		soda. Placebo consisted of pure cream soda.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Charlton & Starkey, 2015	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Not reported. Alcohol: "Occasional" but	Cannabis: Not reported. Alcohol: "Moderate but not	 Alcohol: 1. Target BAC 0.03% (ascending section of curve, i.e., Block 2) 	Alcohol: Alcohol dose administered as vodka in orange juice, divided into four
	not "excessive" alcohol use, with a score of <8 on AUDIT. Required to abstain for 24 hours prior to study sessions and have zero BAC at the start of study sessions.	excessive" alcohol consumers, $M = 5.0$ (1.74), range 2 – 8 on AUDIT.	 Target BAC 0.05% (ascending section of curve, i.e., Block 2) Target BAC 0.05% (peak, i.e., Blocks 3 and 4) Target BAC 0.08% (peak, i.e., Blocks 3 and 4) Target BAC 0.03% (descending section of curve, i.e., Block 5) Target BAC 0.05% (descending section of curve, i.e., Block 5) 	beverages. Placebo consisted of orange juice, divided into four beverages, topped with 5 mL of vodka each.
Chen et al., 2016	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose administered as absolute
	Alcohol: Not reported. Required to abstain the day before study sessions and have zero BAC at the start of study sessions.	Alcohol: Not reported.	2. Target BAC 0.08%	alcohol in orange juice. Placebo administered as pure orange juice topped with 3 mL of white wine.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Christoforou et al., 2012	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
	Cannabis: Unclear. Required to abstain from drugs (assumed to include cannabis) for 18 hours prior to study sessions.	Cannabis: Not reported. Alcohol: Of sample, 32.7% were "heavy drinkers" (i.e., >3 times weekly alcohol	Alcohol: 1. 40 mL of ethanol	Alcohol: Alcohol consisted or 100 mL of vodka, whisky or gin containing approximately 40 mL of ethanol, consumed either straight or in a mix such
	Alcohol: Unclear. Required to abstain for 18 hours prior to study sessions and test negative for alcohol at the start of study sessions.	consumption), 12.0% were "moderate drinkers" (i.e., 2 or 3 times weekly alcohol consumption), 47.0% "light drinkers" (i.e., <2 times weekly alcohol consumption) and 8.2% were "occasional- drinkers" (i.e., <2 times monthly alcohol consumption).		as fruit juice.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Downey et al. 2013	 For all eligible participants: Cannabis: No current or previous substance abuse (assumed to include cannabis). No positive blood test for cannabinoids. Alcohol: No current or previous substance abuse (assumed to include alcohol). 	Cannabis: 48 "regular" cannabis users, 32 "non- regular" cannabis users based on a "Frequency of Cannabis Use" questionnaire. Alcohol: Not reported for either user group.	 Comparison: 0% THC (placebo) cannabis + placebo alcohol Cannabis: 1. 1.78% THC cannabis + placebo alcohol 3.42% THC cannabis + placebo alcohol Alcohol: 0% THC cannabis + 0.03% Target BAC 0% THC cannabis + 0.05% Target BAC 1. 1.78% cannabis + 0.03% Target BAC 1. 1.78% cannabis + 0.05% Target BAC 3. 3.42% THC cannabis + 0.03% Target BAC 3. 3.42% THC cannabis + 0.03% Target BAC 	Cannabis: Cannabis cigarettes, including placebo, smoked in a structured smoking procedure with ten inhalations. Alcohol: Alcohol dose consisted of vodka in orange juice. Placebo alcohol consisted of pure orange juice

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Fillmore et al., 2008	 For all eligible participants: Cannabis: No substance abuse disorder (i.e., did not meet DSM-IV criteria for dependence or withdrawal; assumed to include cannabis); no positive urine test for THC. Alcohol: No substance abuse disorder (i.e., did not meet DSM-IV criteria for dependence or withdrawal; assumed to include alcohol); accred of an Short Michigan 	Frequency For all eligible participants: Cannabis: Not reported. Alcohol: $M = 1.7 (0.7)$ drinking occasions per week, with "typical dose" of $M = 1.3 (0.5)$ mL/kg (approx. 5 bottles of 5% alcohol beer for a 75 kg person per week).	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose administered as 94.6% alcohol in carbonated mix, divided into two beverages. Placebo administered as carbonated mix, divided into two beverages each topped with 3 mL of alcohol, served in glasses sprayed with alcohol mist.
	scored <5 on Short-Michigan Alcoholism Screening Test [S-MAST]). Required to abstain for 24 hours prior to study sessions. For all eligible participants:	For all eligible participants:	Comparison:	Cannabis: N/A
2014	Por un engible participants.	Tor an engible participants.	1. Placebo alcohol	
2011	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.02%	Alcohol: Alcohol dose administered as vodka in
	Alcohol: "Social drinkers" (i.e., approx. 2 servings of alcohol (denominator unclear), "not every day" and "chiefly in a social context" [p. 14]).	Alcohol: Not reported.	2. Target BAC 0.05%	orange juice. Placebo administration not described.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Harrison & Fillmore, 2005	For all eligible participants: Alcohol: No abstinence from alcohol, no substance use disorder (assumed to include alcohol), and no treatment for issues associated with alcohol use. Required to abstain for 24 hours prior to study sessions	For all eligible participants: Cannabis: Not reported. Alcohol: Average weekly alcohol dose of 3.2 (2.7) mL/kg.	Comparison: 1. Baseline driving Alcohol: 1. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose administered as absolute alcohol in lemon-lime soda, divided into two beverages.
	Cannabis: No substance use disorder (assumed to include cannabis), and no treatment for issues associated with drug use (assumed to include cannabis).			
Harrison & Fillmore, 2011	 For all eligible participants: Cannabis: No substance abuse disorder (assumed to include cannabis); no positive urine test for THC. Alcohol: No substance abuse disorder (assumed to include alcohol); score <5 on Short- Michigan Alcoholism Screening Test (S-MAST). 	For all eligible participants: Cannabis: Not reported. Alcohol: $M = 1.88$ (1.29) drinking occasions per week, with "typical dose" of $M =$ 0.99 (0.43) mL/kg.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose administered as absolute alcohol in lemon-lime soda, divided into two beverages. Placebo administered as lemon-lime soda divided into two beverages, each topped with 5 mL of alcohol and served glasses sprayed with alcohol mist.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Harrison et al., 2007	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline (control group) ²	Cannabis: N/A
	Cannabis: No substance use disorder (assumed to include cannabis); no positive urine test for marijuana. Required to abstain for 24 hours prior to study sessions and have zero BAC at start of study sessions.	Cannabis: Not reported. Alcohol: Unclear. Average weekly alcohol dose of 1.2 (0.7) mL/kg (approx. 5 bottles of 5% beer per week for a 75 kg person), for whole N = 30 sample.	Alcohol: 1. Target BAC 0.08% (control group) ²	Alcohol: Alcohol dose administered as absolute alcohol in lemon-lime soda.
	Alcohol: No substance use disorder (assumed to include alcohol), score <5 on Short Michigan Alcoholism Screening Test (SMAST).			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Hartman et al. 2015	For all eligible participants: Cannabis: At least one or more times using cannabis per month, but no more than three days per week using over previous three months. No previous "clinically significant adverse event" with cannabis, and no "interest in drug abuse treatment" (p. 26) over past 60 days. Alcohol: "Light," "moderate" or "heavy" alcohol use (based on Quantity-Frequency- Variability [QFV] scale). In cases of "heavy" use, 3-4 alcohol servings maximum per "typical" occasion. No previous "clinically significant adverse event" with alcohol.	For all eligible participants: Cannabis: "Most" used cannabis two or more times per month, but three or fewer times per week, and had last used cannabis within the week prior to the study. Alcohol: Not reported.	 Comparison: 0.008% (placebo) THC cannabis + placebo alcohol Cannabis: 2.9% THC cannabis + placebo alcohol 6.7% THC cannabis + placebo alcohol Alcohol: 0.008% (placebo) THC cannabis + 0.065% Target BrAC 2.9% THC cannabis + 0.065% Target BrAC 6.7% THC cannabis + 0.065% Target BrAC 	Cannabis: Vapor from 500 mg cannabis, including placebo, inhaled ad libitum fo 10 minutes. Alcohol: Alcohol dose consisted of 90% grain alcohol in fruit juice. Placebo alcohol consisted of fruit juice topped with 1 mL alcohol, served in a glass with an alcohol-wiped rim.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Helland et al., 2016	 For all eligible participants: Cannabis: No current or past drug abuse (assumed to include cannabis); no daily use of any drug (assumed to include cannabis). Alcohol: "Recreational drinkers" with no current or past alcohol abuse; no history of "deviant," "violent" or "aggressive" reactions to alcohol; no history of driving under the influence of alcohol (DUIA). 	<i>For all eligible participants:</i> Cannabis: Not reported. Alcohol: Not reported.	 Comparison: 1. Target BAC 0% (placebo alcohol) Alcohol: 1. Target BAC 0.05% 2. Target BAC 0.09% In each of the three conditions, participants also received a placebo pill and "were told [it] may or may not contain a sedative drug" (p. 247). 	Cannabis: N/A Alcohol: Alcohol dose consisted of vodka in fruit juices. Placebo alcohol consisted of ethanol-free vodka extract in fruit juices.
Horne & Baumber, 1991	 For all eligible participants: Cannabis: Not reported. Alcohol: Unclear. Required to abstain from alcohol on 	For all eligible participants:Cannabis: Not reported.Alcohol: Drank an average of 0.5 to 2.0 units of alcohol per	 Comparison: 1. Placebo alcohol Alcohol: 1. 94.8 mL of 40% alcohol vodka (no specific target BAC) 	Cannabis: N/A Alcohol: Alcohol dose administered as vodka in ton water. Placebo consisted of tonic water served in a glass
	study session days.	day.		with a vodka-wiped rim.
Howard et al., 2007	 For all eligible participants: Cannabis: Could not be users of "illicit drugs that might affect performance" (p. 1335) (assumed to include cannabis). Alcohol: Not reported. Required to have zero BAC at 	For all eligible participants: Cannabis: Not reported. Alcohol: Not reported.	 Comparison: 1. Baseline driving Alcohol: 1. Target BAC "approximately" 0.03% 2. Target BAC "over" 0.05% 	Cannabis: N/A Alcohol: Alcohol dose administered as vodka in orange juice or soft drink.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Howland et al., 2011	<i>For all eligible participants:</i> Cannabis: Not reported. Required to abstain from recreational drugs (assumed to include cannabis) for 24 hours prior to study sessions. Alcohol: No "drinking problems" (i.e., score <5 on SMAST); no history of treatment/counseling for "chronic alcohol problems;" consumed 5 or more drinks (or 4+ for females) on a single drinking occasion one or more times in 30 days prior to study screening. Required to abstain for 24 hours prior to study sessions and pass a breath alcohol test prior to start of testing.	For all eligible participants: Cannabis: Not reported. Alcohol: Average Daily Volume (ADV) score $M = 1.60$ (2.23), range $0.10 - 4.74$ alcoholic drinks (based on past 30 days).	 Comparison: 1. Target BrAC 0% (i.e., non-caffeinated non-alcoholic beer) Alcohol: 1. Target BrAC 0.12% (i.e., non-caffeinated beer) 	Cannabis: N/A Alcohol: Alcohol dose administered as 8.1% beer. Placebo administered as non- alcoholic beer (i.e., <0.01% alcohol).
Huemer & Vollrath, 2010	For all eligible participants: Cannabis: Not reported. Alcohol: No risk of alcoholism; consumption of alcohol at least weekly, but no more than 300 mL of pure alcohol on any one occasion, and no more than 150 mL of pure alcohol on multiple occasions per week. Required to be sober prior to testing.	For all eligible participants:Cannabis: Not reported.Alcohol: Not reported.	Comparison: 1. Baseline driving Alcohol: 1. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose consisted of vodka in fruit juice with ice, divided into three beverages.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Jelen et al., 2011	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.10%	Alcohol: Alcohol dose consisted of 40% liquor. No
	Alcohol: Not reported.	Alcohol: Not reported.	C	further details reported.
Kay et al., 2013	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.10%	Alcohol: Alcohol dose consisted of vodka in orange
	Alcohol: Not reported.	Alcohol: Not reported.		juice. Placebo consisted of water in orange juice, topped with a "small quantity" of alcohol, served in a glass with an alcohol-wiped rim.
Kenntner- Mabiala et al.,	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
2015	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose administered as vodka in
	Alcohol: At least one alcoholic drink consumed per month, but no more than 14 drinks per week; 6 or fewer points on the Short Questionnaire for Alcohol- Related Problems. Required to have zero BAC at start of study sessions.	Alcohol: Not reported.	2. Target BAC 0.08%	caffeine-free soft drinks (with flavor chosen by participant), divided into four beverages. Composition of placebo beverage not described, but it was consumed by participants in a room with diffused alcohol odor (created by placing hidden vodka-scented tissues near participants).

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Study Kuypers et al., 2006	<i>For all eligible participants:</i> Cannabis: Unclear. No history of drug abuse except for MDMA use or drug addiction (assumed to include cannabis). Required to abstain from drugs (assumed to include cannabis) for one week prior to screening until two weeks following last study session and to pass a drug screen prior to testing		Comparison: 1. Baseline driving Alcohol: 1. Target BAC 0.05% ³ In both the baseline driving and alcohol condition, participants also consumed placebo MDMA.	Cannabis: N/A Alcohol: Alcohol beverage composition and administration not described
	(assumed to include cannabis). Alcohol: No "excessive drinking" (i.e., no more than 20 alcoholic drinks per week). Required to abstain for the day prior to testing and to have a negative breath test for alcohol prior to testing.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Laude & Fillmore, 2015	<i>For all eligible participants:</i> Cannabis: No use of cannabis in the 24 hours prior to start of study sessions. Alcohol: Self-reported consumption of alcohol two or more times per month, with two or more drinks per occasion; no current dependence or withdrawal (based on DSM-IV criteria). Required to abstain for 24 hours prior to study sessions and have zero BAC prior to start of testing.	For all eligible participants: Cannabis: Eleven participants reported cannabis use, and seven tested positive for THC at the start of the study, but none reported not using within the past 24 hours. No participants reported daily use of any drug except caffeine (assumed to include cannabis). Alcohol: $M = 30.29$ (18.75) drinking days, and $M =$ 106.78 (85.31) total drinks consumed, in the previous	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol administered as 95% alcohol in carbonated mix. Placebo administered as carbonated mix topped with 3 mL of alcohol, served in a glass sprayed with alcohol mist.
Laude & Fillmore, 2016	<i>For all eligible participants:</i> Cannabis: No use of cannabis in the 24 hours prior to start of study sessions. Alcohol: Self-reported consumption of alcohol two or more times per month, with two or more drinks per occasion, in previous 90 days; no current alcohol dependence or withdrawal (based on DSM-IV criteria). Required to abstain for 24 hours prior to study sessions and pass a breath alcohol test prior to start of testing.	three months. For all eligible participants: Cannabis: Not reported. Ten participants tested positive for THC but reported not using within the past 24 hours. Alcohol: $M = 2.49$ (1.47) drinking occasions per week, with $M = 3.34$ (1.53) drinks per occasion.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BrAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose administered as 95% alcohol in carbonated mix. Placebo administered as carbonated mix topped with 3 mL of alcohol, served in a glass sprayed with alcohol mist.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Laude, 2016 (Study 3)	 For all eligible participants: Cannabis: No use of cannabis in the past 24 hours. Alcohol: Alcohol consumers with score <5 on Short Michigan Alcoholism Screening Test (S-MAST). Required to abstain for 24 hours prior to study sessions and have zero BAC prior to start of testing. 	For all eligible participants: Cannabis: Nine participants reported cannabis use, and six tested positive for THC at the start of the study. Alcohol: $M = 2.63 (1.07)$ drinking occasions per week, with $M = 4.50 (2.50)$ drinks per occasion.	 Comparison: 1. Target BrAC 0% (placebo alcohol, control group⁴) Alcohol: 1. Target BrAC 0.08% (control group⁴) 	Cannabis: N/A Alcohol: Alcohol administered as 95% alcohol in carbonated mix. Placebo administered as carbonated mix topped with 3 mL of alcohol, served in a glass sprayed with alcohol mist.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Lee et al., 2010	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A.
	Cannabis: No current illegal drug use including cannabis (verified with urine screen). Participants could not show evidence of substance abuse (assumed to include cannabis). Required to abstain from recreational drugs (assumed to include cannabis) for 30 days prior to sessions. Alcohol: Moderate to heavy alcohol use (based on QFV scale). No "chronic alcohol abusers" (based on AUDIT). Participants could not show evidence of substance abuse (assumed to include alcohol). Required to abstain from alcohol for 24 hours prior to testing. Participants completed breath test at start of study (presumably to verify zero BAC).	Cannabis: Not reported. Alcohol: For $n = 18$ males aged 21-34, $n = 2$ moderate drinkers and $n = 16$ heavy drinkers; for $n = 18$ females aged 21-34, $n = 7$ moderate drinkers and $n = 11$ heavy drinkers; for $n = 18$ males aged 38-51, $n = 4$ moderate drinkers and $n = 14$ heavy drinkers; for $n = 18$ females aged 38-51, $n = 9$ moderate drinkers and $n = 9$ heavy drinkers; for $n = 18$ males aged 55-68, $n = 6$ moderate drinkers; for $n = 18$ females aged 55-68, $n = 7$ moderate drinkers; and $n = 11$ heavy drinkers; and $n = 11$ heavy drinkers.	Alcohol: 1. Target BAC 0.05% 2. Target BAC 0.10%	Alcohol: Alcohol dose administered as vodka in orange juice, divided into three beverages to be consumed over three ten-minute periods. Placebo consisted of water in orange juice, topped with 10 mL of vodka and served in glasses with alcohol-wiped rims.
Lenne et al., 1999	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
1777	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of vodka in orange
_	Alcohol: "Inexperienced drinkers" (i.e., <6 drinks consumed, on average, per week). Required to abstain for 24 hours prior to study sessions.	Alcohol: Not reported.		juice. Placebo consisted of pure orange juice.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Lenne et al., 2003	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of vodka in orange
	Alcohol: Required to abstain from alcohol for 24 hours prior to testing.	Alcohol: Not reported.		juice.
Leung et al., 2012	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving ⁵	Cannabis: N/A
	Cannabis: If using illicit drugs (assumed to include cannabis), no more than five times per week.	Cannabis: Not reported.	 Alcohol: 1. Target BAC 0.04% / Range 0.03- 0.05% BAC 2. Target BAC 0.07% / Range 0.06- 0.08% BAC 	Alcohol: "Measured amounts of alcohol" administered based on total body water. No further details provided.
	Alcohol: No first-time users of alcohol; average four (men; two, women) or fewer standard drinks consumed per day; average six (men; four, women) or fewer drinks consumed per occasion. Required to abstain for 24 hours prior to study sessions.		 Target BAC 0.10% / Range 0.09- 0.11% BAC 	

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Liguori & Robinson,	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
Robinson, 2001	Alcohol: No self-reported history of substance dependence (assumed to include alcohol); 3-14 alcoholic drinks consumed per week. Required to abstain for 24 hours prior to study sessions (verified with breath alcohol measurement). Cannabis: No self-reported history of substance dependence (assumed to include cannabis); no illicit psychoactive drug use (assumed to include cannabis). Required to abstain from psychoactive	Cannabis: Not reported. Alcohol: "Most subjects drank two to three times per week (53% of subjects), had one or two drinks on a typical day when drinking (67%), and either never had six or more drinks on one occasion (40%) or did so less than monthly (40%)" (p. 124) (based on AUDIT scores; all scored 7 or less). Overall, average 5 standard drinks consumed per week.	 Placebo alcohol Alcohol: 0.6g/kg (unclear Target BAC) In both the placebo and alcohol condition, participants also consumed a methylcellulose (placebo caffeine) capsule. 	Alcohol: Alcohol dose administered as vodka in orange juice with 5 mL of vodka applied to the top and sides of the cup. Placebo administered as orange juiced with 5 mL of vodka applied to the top and sides of the cup.
	drugs (assumed to include cannabis) for duration of study (verified with negative drug screen).			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Liguori et al., 1998	 For all eligible participants: Cannabis: At least weekly use of marijuana, but not daily, with 4 to 28 uses in the past 30 days; no history of drug dependence except nicotine (assumed to include cannabis); no history of drug counseling (assumed to include cannabis). Required to abstain for 48 hours prior to each study session. Alcohol: No more than 14 standard alcoholic drinks per week. Required to abstain for 36 hours prior to each study 	For all eligible participants: Cannabis: Average 12 (7) uses of marijuana in previous 30 days; all reported at least 40 uses within their lifetime. Alcohol: Average 4 (2) alcoholic drinks per week.	 Comparison: 1. 0.00% (placebo) THC cannabis cigarette Cannabis: 1. 1.77% THC cannabis cigarette 2. 3.95% THC cannabis cigarette 	Cannabis: Cannabis cigarettes, including placebo smoked in a structured smoking paradigm with 10 inhalations. Alcohol: N/A

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Liguori et al., 1999	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: No self-reported substance use history (assumed to include cannabis). Required to abstain from psychoactive drugs (assumed to include cannabis) for duration of study (verified with negative drug screen). Alcohol: No self-reported substance use history (assumed to include alcohol); no "alcohol-related problems" (i.e., no TWEAK scores >2, no Short Alcohol Dependence Data [SADD] scores >8). Required to abstain for 36 hours prior to study sessions (verified with breath alcohol measurement).	Cannabis: Not reported. Alcohol: <i>M</i> = 7 (3) alcoholic drinks per week	 Alcohol: 1. 0.5 g/kg alcohol (unclear Target BAC) 2. 0.8 g/kg alcohol (unclear Target BAC) BAC) 	Alcohol: Alcohol dose administered as vodka in orange juice, divided into two beverages, with 5 mL of vodka applied to the top and sides of the cup. Placebo administered as orange juice, divided into two beverages, with 5 mL of vodka applied to the top and sides of the cup.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Liguori et al., 2002	 For all eligible participants: Cannabis: Used cannabis for 2 – 21 days of previous 30 days; no drug abuse or dependence in the past year (excluding nicotine; assumed to include cannabis). Required to abstain for 48 hours prior to study sessions. Urine tested for "illicit drug content," including cannabis. One participant tested positive on each visit but was not excluded. Alcohol: Not currently attempting to stop or reduce alcohol consumption; score of 10 or less on AUDIT; no alcohol abuse or dependence in the past year. Required to abstain for 12 hours prior to study sessions. 	 For all eligible participants: Cannabis: Participants reported cannabis use on average 10 (range 2 – 19) out of 30 days prior to study. Alcohol: Consumed on average 12 (range 4 – 24) standard alcoholic drinks per week. 	 Comparison: 0.003% THC (placebo) cannabis cigarette + placebo alcohol Cannabis: 1.75% THC cannabis cigarette + placebo alcohol 3.33% THC cannabis cigarette + placebo alcohol Alcohol: 0.003% THC (placebo) cannabis cigarette + 0.25 g/kg alcohol (unclear Target BAC) 0.003% THC (placebo) cigarette + 0.5 g/kg alcohol (unclear Target BAC) Combination: 1.75% THC cannabis cigarette + 0.25 g/kg alcohol (unclear Target BAC) 2.175% THC cannabis cigarette + 0.25 g/kg alcohol (unclear Target BAC) 3.33% THC cannabis cigarette + 0.5 g/kg alcohol (unclear Target BAC) 3.33% THC cannabis cigarette + 0.5 g/kg alcohol (unclear Target BAC) 3.33% THC cannabis cigarette + 0.25 g/kg alcohol (unclear Target BAC) 3.33% THC cannabis cigarette + 0.5 g/kg alcohol (unclear Target BAC) 	Cannabis: Cannabis cigarettes, including placebo smoked in a structured smoking paradigm with 10 inhalations. Alcohol: Alcohol dose consisted of 95% alcohol in diet tonic water with 4 mL o lime juice, divided into three beverages. Placebo alcohol consisted of diet tonic water with 4 mL of lime juice, divided into three beverages topped with 1 mL of alcohol each.
Louwerens et al., 1987	For all eligible participants: Cannabis: Not reported.	<i>For all eligible participants:</i> Cannabis: Not reported.	Comparison: 1. Baseline driving Alcohol:	Cannabis: N/A Alcohol: Alcohol dose
	Abstained from drugs (assumed to include cannabis) during study.	Alcohol: Not reported.	1. 0.5 g/kg alcohol 2. 1.0 g/kg alcohol 3. 1.5 g/kg alcohol 4. 2.0 g/kg alcohol	consisted of vodka in orange juice.
	Alcohol: At least four standard alcoholic drinks per week, but fewer than four per day. Required to be sober on arrival for testing.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Marczinski & Fillmore, 2009	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	 Cannabis: No substance abuse disorder (assumed to include cannabis). Participants' urine tested for THC on arrival, but unclear if positive test was an exclusion criterion. Alcohol: Two or more drinks per month; no substance abuse disorder (assumed to include alcohol); no risk of alcohol dependence (i.e., no score 5+ on SMAST). Required to abstain for 24 hours prior to study sessions and have zero BAC prior to testing. 	Cannabis: Not reported. Alcohol: For $n = 18$ "binge" group (i.e., 5+ drinks on a single occasion for males, 4+ for females), $M = 2.5$ (1.1) drinking occasions per week, with $M = 7.3$ (2.7) drinks per occasion. For $n = 10$ "nonbinge" group, $M = 2.1$ (2.1) drinking occasions per week, with $M = 2.9$ (0.5) drinks per occasion.	Alcohol: 1. Target BAC 0.08%	Alcohol: Alcohol dose consisted of alcohol in carbonated mix, divided into two beverages. Placebo consisted of carbonated mix, divided into two drinks, topped with 3 mL of alcohol each and served in glasses sprayed with alcohol mist.

	Frequency		
For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
Cannabis: No current substance abuse disorder (assumed to include cannabis; no positive urine test for THC.	Cannabis: Not reported. Alcohol: "Typical social drinking college students" (p. 1330). Participants divided into binge ($n = 24$; 5+ drinks	 Alcohol: 1. 0.65 g/kg alcohol (unclear Target BAC) 	Alcohol: Alcohol dose administered as 95% alcohol per volume in lemon lime soda, divided into two alcoholic beverages. Placebo consisted of lemon lime soda
Alcohol: No "extremely infrequent drinkers" (i.e., <2 standard alcoholic drinks per month); no "drinkers with a potential risk of alcohol dependence" (p. 1330) (i.e., score of 5+ on Short- Michigan Alcoholism Screen Test [S-MAST]); no current substance abuse disorder (assumed to include alcohol). Required to abstain for 24 hours prior to study sessions	for men, 4+ drinks for women, within a single drinking occasion) and nonbinge ($n = 16$) groups. For binge group, $M = 2.5$ (1.3) drinking occasions per week with $M = 5.9$ (1.6) drinks per occasion. For nonbinge group, $M = 1.3$ (0.8) drinking occasions per week with $M =$ 3.4 (1.1) drinks per occasion.	or c r g =	•
	Cannabis: No current substance abuse disorder (assumed to include cannabis; no positive urine test for THC. Alcohol: No "extremely nfrequent drinkers" (i.e., <2 standard alcoholic drinks per nonth); no "drinkers with a potential risk of alcohol dependence" (p. 1330) (i.e., score of 5+ on Short- Michigan Alcoholism Screen Test [S-MAST]); no current substance abuse disorder (assumed to include alcohol). Required to abstain for 24 nours prior to study sessions (verified with BrAC	Cannabis: No current substance abuse disorder (assumed to include cannabis; to positive urine test for THC. Cannabis: Not reported. Alcohol: "Typical social drinking college students" (p. 1330). Participants divided into binge $(n = 24; 5 + drinks$ for men, $4 + drinks$ for women, within a single drinking occasion) and nonbinge $(n = 16)$ groups. For binge group, $M = 2.5$ (1.3) drinking occasions per week with $M = 5.9$ (1.6) drinks per occasion. For nonbinge group, $M = 1.3$ (0.8) drinking occasion. Required to abstain for 24 nours prior to study sessions	Cannabis: No current substance abuse disorder (assumed to include cannabis; no positive urine test for THC.Cannabis: Not reported.1. Placebo alcoholAlcohol: "Typical social drinking college students" (p. 1330). Participants divided into binge $(n = 24; 5 + drinks$ for men, $4 + drinks forwomen, within a singledrinking occasion) andnonbinge (n = 16) groups. Forbinge group, M = 2.5 (1.3)dependence" (p. 1330) (i.e.,dependence" (p. 1330) (i.e.,score of 5 + on Short-Wichigan Alcoholism ScreenTest [S-MAST]); no currentsubstance abuse disorder(assumed to include alcohol).1. Placebo alcoholAlcohol:1. 0.65 g/kg alcohol (unclear TargetBAC)8. Alcohol: No "extremelynorthy: no "drinkers with apotential risk of alcoholdependence" (p. 1330) (i.e.,substance abuse disorder(assumed to include alcohol).1. Placebo alcoholAlcohol:1. 0.65 g/kg alcohol (unclear TargetBAC)9. Contractmonth); no "drinkers with apotential risk of alcoholdependence" (p. 1330) (i.e.,substance abuse disorder(assumed to include alcohol).1. D.65 g/kg alcohol (unclear TargetBAC)9. Contractmonthy: no "drinkers with apotential risk of alcoholbinge group, M = 2.5 (1.3)drinking occasions per weekwith M = 5.9 (1.6) drinks peroccasion. For nonbingegroup, M = 1.3 (0.8) drinkingoccasion.1. Decebo alcohol9. Contracttotal track of alcohol.3.4 (1.1) drinks per occasion.1. 0.65 g/kg alcohol (unclear TargetBAC)9. Contracttotal track of alcohol.3.4 (1.1) drinks per occasion.1. 0.65 g/kg alcohol (unclear TargetBAC)9. Contracttotal track of alcohol.3.4 (1.1) drinks per occasion.1. 0.65$

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
McCartney et al., 2017	 For all eligible participants: Cannabis: No current use of "recreational or psychoactive" drugs in the previous six months (assumed to include cannabis). Alcohol: Score of 5 or less on the Self-Administered Short Michigan Alcoholism Screening Test. Required to abstain for 24 hours prior to study sessions and have zero BrAC at the start of study sessions. 	For all eligible participants: Cannabis: Not reported. Alcohol: $M = 1.0 (0.80)$ drinking occasions per week, with $M = 5.4 (3.5)$ standard drinks per occasion.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BrAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose administered as vodka in diet ginger beer, ginger beer cordial and diet lime cordial. Placebo administered as water in diet ginger beer, ginger beer cordial and diet lime cordial, served in a glass sprayed with alcohol mist.
Mets et al., 2011	 For all eligible participants: Cannabis: No current or previous drug use (assumed to include cannabis); no positive urine test for cannabinoids prior to testing. Alcohol: Consumed 7 – 21 alcoholic beverages per week. Required to abstain for 24 hours and have a negative breath alcohol test prior to testing. 	 For all eligible participants: Cannabis: Not reported. Alcohol: M = 14.1 (3.9) standard alcoholic drinks per week. 	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.05% 2. Target BAC 0.08% 3. Target BAC 0.11%	Cannabis: N/A Alcohol: Alcohol dose consisted of 99.9% ethanol in orange juice, flavored with cognac aroma and consumed while wearing a nose clip. Placebo consisted of orange juice, flavored with cognac aroma and consumed while wearing a nose clip.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Price et al., 2018	 For all eligible participants: Cannabis: No current or past diagnosis of substance dependence (assumed to include cannabis). Urine tested for drugs, but unclear whether this included cannabis, and if so, whether a positive test was an exclusion criterion. Alcohol: "Social drinkers" (i.e., two or fewer drinks per day for males under 65; one or fewer for men over 65 and women); no current or past diagnosis of alcohol dependence. Required to abstain for 24 hours prior to testing (verified with breath alcohol test). 	For all eligible participants: Cannabis: Not reported. Alcohol: For n = 33 younger group, $M = 0.39 (0.27)$ QFI scores. For n = 33 older group, $M = 0.36 (0.33)$ QFI score. All reported drinking at least monthly, with an overall average of one or fewer drinks per day.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BrAC 0.04% 2. Target BrAC 0.065%	Cannabis: N/A Alcohol: Alcohol dose consisted of alcohol in sugar- free, caffeine-free lemon-lime soda, divided into two drinks, served in a glass sprayed with alcohol mist. Placebo consister of sugar-free, caffeine-free lemon-lime soda, divided into two drinks, served in a glass sprayed with alcohol mist.
Ramaekers et al., 1992	<i>For all eligible participants:</i> Cannabis: No history of drug	<i>For all eligible participants:</i> Cannabis: Not reported.	Comparison: 1. Placebo alcohol Alcohol:	Cannabis: N/A Alcohol: Alcohol dose
	abuse (assumed to include cannabis).	Alcohol: Not reported.	1. 0.72 g/kg lean body mass	consisted of 99.8% ethanol in orange juice. Placebo consisted
	Alcohol: No history of alcohol abuse.		In both the comparison and alcohol condition, participants also consumed placebo drug.	of pure orange juice.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Ramaekers et al., 2000a (see also Study 1, Ramaekers et al. [2000b], below)	 For all eligible participants: Cannabis: Cannabis use at least once per month but not daily. Required to abstain from smoking marijuana or hashish, or any other illicit drug, from seven days prior to the first day of testing to the end of the study (verified with urine test). Alcohol: Alcohol use at least once per week but not daily; no history of alcohol abuse or dependency. Required to abstain for 24 hours prior to testing (verified with breath test). 	For all eligible participants: Cannabis: Not reported. Alcohol: Not reported.	 Comparison: Placebo alcohol + placebo cannabis Cannabis: Placebo alcohol + 100 ug/kg THC (from 2.2% THC cannabis) Placebo alcohol + 200 ug/kg THC (from 3.95% THC cannabis) Alcohol: Target BAC 0.04-0.05% + placebo cannabis Combination: Target BAC 0.04-0.05% + 100 ug/kg THC (from 2.2% THC cannabis) Target BAC 0.04-0.05% + 200 ug/kg THC (from 3.95% THC cannabis) 	Cannabis: Cannabis cigarettes (approximately 0.8 g), including placebo, cut to lengths based on each participant's weight and smoked through a plastic holder in participants' "customary fashion." Alcohol: Alcohol dose administered as 99.8% ethanol in orange juice and flavoured with Grand Marnier essence. Placebo consisted of orange juice flavoured with Grand Marnier essence.
Ramaekers et al., 2000b (Study 1) (see also Ramaekers et al. [2000a] above)	 For all eligible participants: For all eligible participants: Cannabis: Unclear. Participants' urine tested for cannabinoids on arrival, but unclear if positive test was an inclusion or exclusion criterion. Alcohol: Unclear. Participants provided breath samples on arrival, likely to verify that they had not been drinking. No prior charges or convictions for DUIA. 	For all eligible participants: Cannabis: "Recreational" users who used more than once per month, but not daily. Alcohol: "Used to consum[ing] alcohol at least once a week" (<i>General</i> procedures, para. 1).	 Comparison: Placebo cannabis + placebo alcohol Cannabis: 100 ug/kg⁶ dose of THC (from 2.2% THC cannabis) + placebo alcohol 200 ug/kg⁶ dose of THC (from 3.95% THC cannabis) + placebo alcohol Alcohol: Placebo cannabis + 0.04 - 0.07% Target BAC⁷ Combination: 100 ug/kg⁶ dose of THC (from 2.2% THC cannabis) + 0.04 - 0.07% Target BAC⁷ 200 ug/kg⁶ dose of THC (from 3.95% THC cannabis) + 0.04 - 0.07% Target BAC⁷ 	Cannabis: Cannabis cigarettes, including placebo, cut according to participants' body weight and smoked "as completely as possible through a plastic holder in their customary fashion" (<i>General</i> <i>procedures</i> , para. 3). Alcohol: Administration not described.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Robbe, 1998 (Study 1)	 For all eligible participants: Cannabis: Unclear. Urine tested for cannabinoids, but unclear if positive test was an inclusion or exclusion criterion. Alcohol: Unclear. Participants provided breath samples on arrival, likely to verify that they had not been drinking. 	For all eligible participants:Cannabis: Used cannabis at least monthly, but no more than daily.Alcohol: Not reported.	 Comparison: 0 ug/kg dose of THC (placebo cannabis) Cannabis: 100 ug/kg dose of THC (from 1.75% THC cannabis) 200 ug/kg dose of THC (from 1.75% THC cannabis) 300 ug/kg dose of THC (from 2.57% THC) 	Cannabis: Cannabis cigarettes, including placebo, cut according to participants' body weight and smoked "as completely as possible through a plastic holder in their customary fashion" (p. S71). Alcohol: N/A
Robbe, 1998 (Study 2)	 For all eligible participants: Cannabis: Unclear. Urine tested for cannabinoids, but unclear if positive test was an inclusion or exclusion criterion. Alcohol: Unclear. Participants provided breath samples on arrival, likely to verify that they had not been drinking. 	For all eligible participants:Cannabis: Used cannabis at least monthly, but no more than daily.Alcohol: Not reported.	 Comparison: 0 ug/kg dose of THC (placebo cannabis) Cannabis: 100 ug/kg dose of THC (from 1.77% THC cannabis) 200 ug/kg dose of THC (from 2.64% THC cannabis) 300 ug/kg dose of THC (from 3.58% THC) 	Cannabis: Cannabis cigarettes, including placebo, cut according to participants' body weight and smoked "as completely as possible through a plastic holder in their customary fashion" (p. S71). Alcohol: N/A

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Roberts, 2016 (Study 2)	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
(Study 2)	Cannabis: Unclear. Urine tested for drugs, but unclear whether this included cannabis, and if so, whether a positive test was an exclusion criterion. Alcohol: Unclear. Required to abstain for 24 hours prior to study sessions. <i>For DUI offender group:</i> Alcohol: At least one DUI conviction in the past five years.	Cannabis: Not reported. Alcohol: For $n = 20$ controls, M = 29.4 (12.7) drinking occasions with $M = 111.7$ (92.6) total drinks in past 90 days; $M = 0.8$ (1.1) SCID score for alcohol abuse; $M =$ 1.1 (1.4) SCID score for alcohol dependence. For $n =$ 20 DUI group, $M = 34.2$ (14.5) drinking occasions with $M = 152.2$ (63.1) total drinks in past 90 days; $M =$ 3.5 (0.9) SCID score for alcohol abuse; $M = 2.8$ (1.3) SCID score for alcohol	Alcohol: 1. Target BAC 0.08% ⁸	Alcohol: Alcohol dose administered as alcohol in carbonated mix, divided into two glasses. Placebo consiste of carbonated mix, divided into two beverages, each topped with 5 mL of alcohol and served in glasses sprayed with alcohol mist.
	For the control group:	dependence.		
	Alcohol: No previous DUI convictions.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Study Ronen et al. 2008	Drug Use Inclusion Criteria* <i>For all eligible participants:</i> Cannabis: Unclear. Alcohol: Unclear.	1 0	 Drug Driving Conditions Comparison: Placebo cannabis + 0% placebo alcohol⁹ Cannabis: Active (13 mg) THC cannabis + placebo alcohol Active (17 mg) THC cannabis + placebo alcohol Alcohol: Placebo cannabis + 0.05% Target BAC 	Drug AdministrationCannabis: For active cannabis, THC in ethanol vehicle injected into 0.5 g tobacco cigarette. For placebo cannabis, ethanol vehicle (i.e., no THC) injected into 0.5 g tobacco cigarette. Cigarettes smoked in a structured smoking paradigm until totally consumed.Alcohol: Alcohol dose consisted of vodka in orange drink. Placebo alcohol consisted of pure orange drink.
		Alcohol: "Recreational" alcohol use. Required to restrict their consumption to no more than a serving of alcohol a day for at least a week prior to the start of the study.		

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Ronen et al. For all eligible participants 2010 Cannabis: Unclear. Alcohol: Unclear.		For all eligible participants: Cannabis: "Low" to "moderate" "recreational" cannabis use (i.e., $1 - 4$ uses per month). "Most" reported using cannabis primarily in social situations or on the weekend. Required to abstain from cannabis from a week prior to the study to the end of the study. However, all had a positive urine test for THC metabolites before study.	 Comparison: Placebo cannabis + placebo alcohol¹⁰ Cannabis: Active (13 mg) THC cannabis + placebo alcohol Alcohol: Placebo cannabis + 0.05% Target BAC Combination: Active (13 mg) THC cannabis + 0.05% Target BAC 	See Ronen et al. (2008), above
		Alcohol: "Recreational" alcohol use. "Most" reported using alcohol primarily in social situations or on the weekend. Required to restrict their consumption to no more than a serving of alcohol a day for at least a week prior to the start of the study.		
Rupp et al., 2007	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. 0.54 g/kg alcohol (males) or 0.49	Alcohol: Alcohol dose consisted of vodka in tonic.
	Alcohol: Not reported.	Alcohol: Not reported.	g/kg alcohol (females); no specific target BAC	Placebo beverage compositio not described.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Schumacher et al., 2017	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: No illicit drug use including cannabis (verified	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of alcohol in orange
	with urine screen).	Alcohol: Not reported.	1. Turget Drie 0.0570	juice. Placebo consisted of orange juice topped with 3 m
	Alcohol: No previous alcohol			of alcohol.
	abuse or addiction (i.e., no			
	more than 20 units of alcohol			
	weekly). Required to have			
	zero BAC prior to testing			
	(verified with a breath test).			
Sexton, 1997	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Unclear. No	Cannabis: Not reported.	Alcohol:	Alcohol: Alcohol dose
	"adverse drug reactions"		1. Target BAC 0.04% ¹¹	administered as vodka in
	(unclear if this includes cannabis).	Alcohol: Not reported.	2. Target BAC 0.08% ¹¹	American Cream Soda. Placebo consisted of cream soda served in a vodka-wipe
	Alcohol: Five to fifteen units of alcohol per week.			glass.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Sexton et al., 2000	 For all eligible participants: Cannabis: Cannabis use (at least once per week) for more than 12 months, with positive urine test for THC metabolites at start of study; no previous substance abuse except nicotine (assumed to include cannabis). Alcohol: No previous substance abuse except nicotine (assumed to include alcohol); no drinking prior to start of study sessions, verified with breath alcohol measurement. 	For all eligible participants: Cannabis: Not reported. Alcohol: All participants were alcohol consumers with an average 18.7 (7.89) units of alcohol consumed per week.	 Comparison: 1. 0.005% (placebo) THC cannabis cigarette Cannabis: 1. 1.70% THC cannabis cigarette 2. 2.67% THC cannabis cigarette 3. 1.7% THC resin 	Cannabis: Cannabis cigarettes, including placebo, smoked in a structured smoking paradigm until totally consumed. Cannabis resin prepared by the participant and smoked "in his customary fashion" (i.e., ad libitum). Alcohol: N/A
Sexton et al., 2002	 For all eligible participants: Cannabis: Cannabis use at least weekly for more than 12 months, with positive test for THC metabolites at start of study. No history of substance abuse except nicotine (assumed to include cannabis); had driven under the influence of cannabis in the past. Alcohol: No previous substance abuse except nicotine (assumed to include alcohol); alcohol use at least weekly for more than 12 months; 5 to 25 units of alcohol consumed per week. 	 For all eligible participants: Cannabis: No specific frequency of cannabis use reported. Alcohol: All participants were alcohol consumers with an average 24.5 (19.22) units of alcohol consumed per week. 	 Comparison: 0.005% (placebo) THC cannabis cigarette + placebo alcohol Cannabis: 1. 1.70% THC cannabis cigarette + placebo alcohol Alcohol: 0.005% (placebo) THC cannabis cigarette + 0.05% Target BAC Combination: 1. 1.70% THC cannabis cigarette + 0.05% Target BAC 	Cannabis: Cannabis cigarettes, including placebo, smoked in a structured smoking paradigm until totally consumed. Alcohol: Alcohol dose consisted of vodka in tonic water with Angostura bitters, served in a glass with a vodka- dipped rim. Placebo alcohol consisted of tonic water with Angostura bitters, served in an glass with a vodka-dipped rim.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Simons et al., 2012	 For all eligible participants: Cannabis: Not reported. Required to abstain from psychoactive drugs (assumed to include cannabis) for 24 hours prior to test days (verified with a urine screen). Alcohol: Unclear. Required to abstain for 24 hours prior to test days (verified with briest halcohol test). 	For all eligible participants: Cannabis: Not reported. Alcohol: All were "infrequent recreational" alcohol consumers.	 Comparison: 1. Non-alcohol Alcohol: 1. 0.8 g/kg alcohol In both the comparison and alcohol condition, participants also consumed placebo drug. 	Cannabis: N/A Alcohol: Alcohol dose administered in orange juice. In non-alcohol condition, placebo drug administered with orange juice as well.
Sklar et al., 2014	 For all eligible participants: Cannabis: No positive urine test for THC. Alcohol: "Moderate drinkers" (based on USDA dietary guidelines). 	For all eligible participants: Cannabis: Not reported. Alcohol: For n = 12 younger adults in placebo condition, M = 00.34 (0.2) QFI score; for n = 13 younger adults in 0.04% BAC condition, M = 0.44 (0.3) QFI score; for n = 11 younger adults in 0.065% BAC condition, M = 00.35 (0.2) QFI score; for n = 12 older adults in placebo condition, M = 00.44 (0.4) QFI score; for n = 13 older adults in 0.04% BAC condition, M = 00.26 (0.2) QFI score; for n = 11 older adults in 0.065% BAC condition, M = 00.21 (0.2) QFI score.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BrAC 0.04% 2. Target BrAC 0.065%	Cannabis: N/A Alcohol: Alcohol dose administered in sugar-free, noncaffeinated lemon-lime soda. Placebo consisted of sugar-free, noncaffeinated lemon-lime soda sprayed wit a "negligible amount" of alcohol.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Starkey & Charlton, 2014	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05% ¹²	Alcohol: Alcohol dose consisted of vodka in orange
	Alcohol: Drank alcohol "occasionally but not	Alcohol: Not reported.	2. Target BAC 0.08% ¹²	juice, divided into three beverages. Placebo consisted
	excessively" (i.e., score <8 on AUDIT). Required to abstain			of orange juice, divided into three beverages, topped with 5
	the evening prior to sessions and have zero BAC prior to testing.			mL of vodka per beverage.
Strayer et al., 2006	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
Ca Alo (i.e	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.08%	Alcohol: Alcohol dose consisted of vodka in orange
	Alcohol: "Social drinkers" (i.e., 3 – 5 alcoholic drinks per week)	Alcohol: Not reported.		juice.
Subramaniyam et al., 2018	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A.
	Cannabis: Unclear.	Cannabis: "Free from drug use" (assumed to include	Alcohol: 1. Target BAC 0.03%	Alcohol: Alcohol dose administered as 50 mL of soju
	Alcohol: Not reported.	cannabis).	 Target BAC 0.05% Target BAC 0.1% 	(unclear if consumed neat or in a mix).
		Alcohol: Not reported.		
Tremblay et al., 2015	For all eligible participants:	For all eligible participants:	Comparison: 1. Matched time-point baseline driving	Cannabis: N/A
	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05 – 0.07%	Alcohol: Alcohol dose administered as vodka (unclea
alc "is	Alcohol: At least weekly alcohol consumption, but no	For alcohol group:	2. Target BAC 0.01 – 0.04%	if served alone or in a mix).
	"issues" associated with consuming alcohol.	Alcohol: $M = 7 (4.6) drinks per week.$		
	For alcohol group:	For control group:		
	Alcohol: Required to abstain for 24 hours prior to testing.	Alcohol: Not reported.		

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
van der Sluiszen et al.,	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
2016	Cannabis: No history of drug abuse (assumed to include cannabis); no use of "drugs of	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.045%	Alcohol: Alcohol dose consisted of ethyl alcohol ir orange juice.
	abuse" (assumed to include cannabis) from two weeks prior to study treatments, to end of study treatments.	Aconor. Not reported.	In both the placebo and alcohol condition, participants also consumed a placebo capsule.	orange juice.
	Alcohol: No history of alcoholism; up to 21 standard units of alcohol per week; no alcohol abstainers. Required to abstain for 24 hours prior to study sessions and consume no alcohol from time of arrival to end of study sessions.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Van Dyke & Fillmore, 2014	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Alcohol: At least two standard alcoholic drinks consumed monthly, but no alcohol dependence or	Cannabis: Four participants in the DUI group and five participants in the control group reported using cannabis	Alcohol: 1. Target BAC 0.08%	Alcohol: Alcohol dose consisted of absolute alcohol in carbonated soda. Placebo consisted of carbonated soda
	withdrawal (based on DSM- IV criteria). Required to abstain for 24 hours prior to	on average two days in the previous month.		topped with 3 mL of alcohol served in a glass sprayed wit alcohol mist.
	test sessions.	Alcohol: For $n = 25$ DUI offenders, M = 29.76 (19.82)		
	Cannabis: No substance use	drinking occasions in		
	disorder except alcohol	previous three months, with		
	(assumed to include	M = 142.86 (109.68) drinks		
	cannabis); no positive urine test for THC.	consumed. M = 11.40 (6.34) AUDIT score. For <i>n</i> = 25 controls, M = 29.96 (14.53)		
	For DUI offender group:	drinking occasions in previous three months, with		
	Alcohol: One or more	M = 129.96 (100.55) drinks		
	alcohol-related convictions in	consumed. $M = 7.80 (5.07)$		
	the previous five years.	AUDIT score.		
	For the control group:			
	Alcohol: No previous DUI convictions or license			
	revocations.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Van Dyke & Fillmore, 2015	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
	Cannabis: No substance abuse disorder (assumed to include cannabis); no positive urine test for THC. Alcohol: No substance abuse disorder (assumed to include alcohol); alcohol use one or more times per week, but no dependence or withdrawal (based on DSM-IV criteria).	Cannabis: Nine participants reported marijuana use in the past month, with an average of two times using in the past month. Alcohol: $M = 29.9$ (17.2) drinking occasions, and $M =$ 136.4 (104.3) drinks, in the previous 3 months.	Alcohol: 1. Target BrAC 0.07-0.08%	Alcohol: Alcohol dose consisted of absolute alcohol in carbonated soda. Placebo consisted of carbonated mix, topped with 3 mL of alcohol, served in a glass sprayed with an alcohol mist.
Van Dyke &	Required to abstain for 24 hours prior to study sessions. For all eligible participants:	For all eligible participants:	Comparison:	Cannabis: N/A
Fillmore, 2017	Cannabis: No substance abuse disorder (assumed to include cannabis). Required to abstain for 24 hours prior to study sessions.	Cannabis: Five participants reported marijuana use in the past month; two tested positive but reported no use in over a week.	 Placebo alcohol Alcohol: 1. Target BAC 0.05% 2. Target BAC 0.08% 	Alcohol: Alcohol dose consisted of absolute alcohol in carbonated lemon-lime soda. Placebo consisted of carbonated mix, topped with mL of alcohol, served in a
	Alcohol: No substance abuse disorder (assumed to include alcohol); alcohol use one or more times per week, but no dependence or withdrawal (based on DSM-IV criteria). Required to abstain for 24 hours prior to study sessions and have zero BAC prior to study sessions.	Alcohol: $M = 8.80 (4.35)$ AUDIT score; $M = 27.26$ (17.92) drinking occasions in past three months, with $M =$ 126.32 (86.68) drinks consumed in past three months.		glass sprayed with an alcohol mist.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Veldstra et al., 2012 (Study 1)	For all eligible participants:Cannabis: Unclear.Alcohol: Unclear. Required to abstain for 24 hours prior to study sessions.	<i>For all eligible participants:</i> Cannabis: Self-reported no prior problems with drug abuse (assumed to include cannabis). Alcohol: Self-reported no prior problems with alcohol abuse.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.03% 2. Target BAC 0.05% 3. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose consisted of vodka in orange juice. Placebo consisted of orange juice sprayed with alcohol.
Veldstra et al., 2012 (Study 2)	 For all eligible participants: Cannabis: No previous drug abuse or addiction (assumed to include cannabis). Required to abstain from "any drugs" from one week prior to study screening to end of study. Alcohol: Consumed 2 – 20 drinks per week. Required to abstain on the day prior to study sessions. 	<i>For all eligible participants:</i> Cannabis: Not reported. Alcohol: <i>M</i> = 7.8 (5.8) drinks per week.	 Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.05% In both the placebo and alcohol condition, participants also consumed a placebo capsule. 	Cannabis: N/A Alcohol: Alcohol dose consisted of vodka in orange juice. Placebo consisted of orange juice sprayed with alcohol.
Veldstra et al., 2015	See Bosker et al., 2012, this table.	See Bosker et al., 2012, this table.	 Comparison: 1. Placebo dronabinol Cannabis: 1. 10 mg dronabinol 2. 20 mg dronabinol 	Cannabis: Dronabinol, including placebo, administered orally in capsule form. Alcohol: N/A

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Vermeeren & O'Hanlon,	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
1998	Cannabis: No current or previous drug abuse (assumed to include cannabis). Required to abstain from "drugs of abuse" (assumed to include cannabis) for one week prior to and during study sessions.	Cannabis: Not reported. Alcohol: For $n = 12$ men, M = 9.5 (5.8) drinks weekly; for n = 12 women, M = 6.0 (6.0) drinks weekly.	Alcohol:1. Target BAC 0.05%In both the comparison and alcohol condition, participants also consumed placebo drug.	Alcohol: Alcohol dose consisted of 99.8% alcohol in orange juice.
	Alcohol: No current or previous alcohol abuse; consumption of no more than 28 alcoholic beverages weekly. Required to limit alcohol consumption to "two glasses of wine or beer with a meal" (p. 307) for duration of study.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Vermeeren et al., 2002a	For all eligible participants:	For all eligible participants:	Comparison: 1. Baseline driving	Cannabis: N/A
	Cannabis: No history of drug abuse (assumed to include	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of 99.8% alcohol in
	cannabis). Required to abstain from "drugs of abuse"	Alcohol: Not reported.	1. Turget Dire 0.0570	orange juice.
	(assumed to include cannabis) for two weeks prior to and during study sessions. Urine tested for drugs, but unclear whether this included cannabis, and if so, whether a positive test was an exclusion criterion.		In both the comparison and alcohol condition, participants also consumed placebo drug.	
	Alcohol: Consumption of alcohol that does not exceed 40 g per day; no history of alcoholism. Required to abstain for 24 hours prior to and during study sessions.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Vermeeren et al., 2002b	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
(Part 1)	Cannabis: No current or past drug abuse (assumed to include cannabis). Urine tested for cannabis, but unclear if positive test for cannabinoids was an exclusion criterion. Required to abstain from drugs (assumed to include cannabis) for two weeks prior to study sessions until end of study. Alcohol: No current or past alcoholism. Required to abstain from 24 hours prior to study sessions to end of study sessions.	Cannabis: Not reported. Alcohol: <i>M</i> = 5.9 (5.6) units of alcohol consumed per week.	Alcohol: 1. Target BAC "just under" 0.05%	Alcohol: Alcohol dose consisted of pure ethanol in orange juice and Grand Marnier essence, consumed while wearing a nose clip. Placebo consisted of orange juice and Grand Marnier essence, consumed while wearing a nose clip.
Verster et al., 2002 (Part 1)	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
. ,	Cannabis: Unclear.	Cannabis: No prior drug dependence (assumed to	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of pure ethanol in
	Alcohol: Unclear.	 include cannabis). All had negative drug test for cannabinoids at start of testing. Alcohol: No prior alcohol dependence. All had negative breath alcohol test at start of testing. 		orange juice and Grand Marnier essence, consumed while wearing a nose clip. Composition and administration of placebo alcohol not described.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Vollrath & Fischer, 2017	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
(Study 1)	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of vodka in passion
	Alcohol: No "alcohol problems" as indicated in the LAST; at least weekly alcohol consumption.	Alcohol: Not reported.		fruit juice, orange juice and grenadine, divided into two beverages. Placebo consisted of passion fruit juice, orange juice and grenadine, divided into two beverages, each topped with drops of vodka.
Vollrath & Fischer, 2017	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
(Study 2)	Cannabis: Not reported.	Cannabis: Not reported.	Alcohol: 1. Target BAC 0.05%	Alcohol: Alcohol dose consisted of vodka in passion
	Alcohol: No "alcohol problems" as indicated in the LAST; at least weekly alcohol consumption.	Alcohol: Not reported.	-	fruit juice, orange juice and grenadine, divided into two beverages. Placebo consisted of passion fruit juice, orange juice and grenadine, divided into two beverages, each topped with drops of vodka.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Wan et al., 2017	For all eligible participants:	For all eligible participants:	Comparison: 1. Placebo alcohol	Cannabis: N/A
2017	Cannabis: No current or previous drug use (including cannabis), no current or previous-year involvement in substance abuse treatment (assumed to include cannabis). Urine tested for marijuana, but unclear if positive test was an inclusion or exclusion criterion. Required to abstain from drugs except tobacco (assumed to include cannabis) for 72 hours prior to study sessions. Alcohol: No current or previous-year involvement in substance abuse treatment (assumed to include alcohol).	Cannabis: Not reported. Alcohol: For $n = 14$ "binge" drinkers, $M = 1.5$ (1.0) drinking occasions per week in past 3 months, with $M =$ 4.6 (1.6) drinks per occasion; for $n = 14$ "non-binge" drinkers, $M = 0.8$ (0.5) drinking occasions per week in past 3 months, with $M =$ 2.0 (0.5) drinks per occasion.	 Placebo alconol Alcohol: 1. Target BAC 0.08% 	Alcohol: Alcohol dose administered as 95% alcohol in tonic water, divided into three beverages. Placebo administered as tonic water, divided into three beverages, topped with 1 mL alcohol per beverage, served in glasses with alcohol-wiped rims.
	Required to abstain for 24 hours prior to study sessions and pass a breath alcohol test			
	prior to start of testing.			

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Weafer & Fillmore, 2012	 For all eligible participants: Cannabis: No substance abuse disorder (assumed to include cannabis); urine tested for THC, but unclear if positive test was an exclusion criterion. Required to abstain from psychoactive drugs (assumed to include cannabis) for 24 hours prior to study sessions. Alcohol: No substance abuse disorder (assumed to include alcohol), and no potential risk for alcohol dependence (i.e., no score of 5+ on Short- Michigan Alcoholism Screening Test [SMAST]). Required to abstain for 24 	For all eligible participants: Cannabis: Not reported. Alcohol: $M = 1.7 (0.9)$ drinking occasions per week, with $M = 4.6 (2.3)$ drinks per occasion.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.09%	Cannabis: N/A Alcohol: Alcohol dose consisted of absolute alcohol in carbonated soda. Placebo consisted of carbonated soda, topped with 3 mL of alcohol, served in a glass sprayed with alcohol mist.
Weafer et al., 2008 (Study 1)	 hours prior to study sessions. For all eligible participants: Cannabis: No history of substance abuse (assumed to include cannabis). Alcohol: No history of substance abuse (assumed to include alcohol). 	For all eligible participants: Cannabis: Not reported. Alcohol: $M = 5.0$ (1.8) drinks per occasion (but number of occasions per unit of time not reported).	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose consisted of absolute alcohol in lemon soda. Placebo consisted of pure lemon soda.

Study	Drug Use Inclusion Criteria*	Reported Drug Use Frequency	Drug Driving Conditions	Drug Administration
Weafer et al., 2008 (Study 2)	 For all eligible participants: Cannabis: Unclear; assumed to be similar to or the same as Study 1, above. Alcohol: Unclear; assumed to be similar to or the same as Study 1 = 1. 	For all eligible participants: Cannabis: Not reported. Alcohol: $M = 3.4$ (1.9) drinks per occasion (but number of occasions per unit of time not reported).	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.05% 2. Target BAC 0.08%	Cannabis: N/A Alcohol: Alcohol dose consisted of absolute alcohol in lemon soda. Placebo consisted of pure lemon soda.
Weiler et al., 2000	Study 1, above.For all eligible participants:Cannabis: Unclear. No positive result on a drug screen, but unclear if this includes cannabinoids.Alcohol: Experience with alcohol, but not "excessive" alcohol use.	For all eligible participants: Cannabis: Not reported. Alcohol: Not reported.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BAC 0.1% In both the placebo and alcohol condition, participants also consumed a placebo capsule.	Cannabis: N/A Alcohol: Alcohol administered as absolute alcohol in noncaffeinated carbonated soda, served in a glass with an alcohol-wiped rim. Placebo administered as "placebo alcohol" in noncaffeinated carbonated soda, served in a glass with an alcohol-wiped rim.
Zhang et al., 2014	<i>For all eligible participants:</i> Cannabis: No drug use (assumed to include cannabis). Alcohol: Experience with drinking a sufficient quantity of alcohol to reach BrAC 0.1%.	For all eligible participants: Cannabis: Not reported. Alcohol: Not reported.	Comparison: 1. Placebo alcohol Alcohol: 1. Target BrAC 0.03% 2. Target BrAC 0.06% 3. Target BrAC 0.09%	Cannabis: N/A Alcohol: Alcohol dose administered as "Chinese liquor" in water. Placebo administered as pure water.

*Note that "drug" specifically refers to cannabis and alcohol. Inclusion and exclusion criteria, drug use frequency and drug driving conditions specifically related to or specifically involving other drugs are not included in this table.

1. Subjects received an alcohol-free version of the alcoholic drink, but they were aware that it did not contain alcohol.

2. Participants in "challenge" and "repeated exposure" groups excluded. Only control group deemed eligible for inclusion.

3. The dose was reported as a target blood alcohol level of 0.05 mg/ml of alcohol during the driving tests. This is assumed to be reported in error because it would correspond to a BAC of 0.005%.

4. Participants in "training" group excluded. Only control group deemed eligible for inclusion.

5. This study had both a "BAC = 0.00" condition for the "alcohol session" and a "no phone usage" condition for the "mobile phone session." Both are theoretically equivalent in that no alcohol was administered and therefore eligible for inclusion. For the sake of simplicity, only the former "BAC = 0.00" condition was used as a comparison for the purposes of this meta-analysis.

6. Doses reported as ".g/kg" in report, assumed to refer to micrograms per kilogram.

7. From the paper: "The initial alcohol dose was sufficient for achieving a peak BAC of about 0.07 g/dl. Booster doses were later given to sustain BAC around 0.04 g/dl during testing" (*Methods*, para. 1).

8. This study included two 0.64 g/kg alcohol conditions, but the condition involving sham feedback was excluded to avoid confounding experimental driving measures.

9. Three comparison conditions were reported in this paper: "Control" (i.e., alcohol placebo, no smoking), "Con +" (i.e., alcohol placebo, cannabis placebo) and "After" (i.e., "a session 24h after smoking the high dose THC cigarette, and drinking orange juice without smoking" [p. 928]). "Con +" was selected for inclusion, and both "Control" and "After"

10. Two comparison conditions were reported in the paper: placebo, and "24." According to the paper, "24" is "identical to the placebo but was always used twenty-four hours after the combination of THC and alcohol" (p. 1858). For the purposes of the meta-analysis, the placebo condition was deemed eligible for inclusion, and "24" was excluded.

were excluded.

11. From the paper: "The treatments were either a placebo or a low (40 mg/l) or high (80 mg/l) dose of alcohol" (p. 4). These are assumed to be reported in error because these would correspond to 0.004% and 0.008% BAC, respectively. It is assumed that the intended doses are actually 40 mg/dL and 80 mg/dL which correspond to BAC 0.04% and 0.08%, respectively.

12. The medium alcohol dose was reported as "a goal of 0.05 mg/ml BAC" (p. 374) and the high alcohol dose was reported as "a goal of 0.08 mg/ml BAC" (p. 374). This is assumed to be reported in error because these would correspond to 0.005% BAC and 0.008% BAC, respectively.

Finally, recall that study conditions that involved driving while engaged in secondary tasks, other than embedded target detection and response tasks, were not eligible for inclusion in the meta-analysis. For example, data collected during a drive wherein participants used a cell phone while under the influence of alcohol would not be eligible for inclusion, but data for eligible measures collected during a drive wherein participants responded to a peripheral target, such as a light or other non-hazard (i.e., for the purposes of measuring detection rates and/or response times to those targets) would be eligible. Nonetheless, during data extraction, attempts were made to extract driving performance and behaviour data that was not contaminated by embedded target detection and response tasks. However, this was not possible in all cases. Specifically, effect sizes from Burns et al. (2002), Kay et al. (2013), Lenne et al. (1999), Lenne et al. (2003), Ronen et al. (2008) and Starkey and Charlton (2014) are contaminated by embedded target detection and response tasks.

Primary Meta-Analysis

Each meta-analysis was conducted in CMA. Although most studies contributed a single effect size, studies that included multiple independent subgroups (e.g., men and women, occasional users and heavy users, etc.) contributed more than one effect size. In a few cases, however, multiple independent groups needed to be aggregated into a single composite due to the constraints of the meta-analytic software (i.e., to avoid counting the control group twice, as discussed in *Chapter 2: Method*). However, when studies utilized multiple relevant comparisons (e.g., different levels of alcohol) or different comparisons (e.g., multiple measures relevant to a category in the meta-analysis), data were aggregated such that each study included in the meta-analysis contributed a single effect size per unique group of participants. Summary statistics were computed using random-effects meta-analysis.

Insufficient reporting of statistical data necessary for effect size computation was encountered frequently, particularly within older studies. Additionally, correlations between pairs of scores in studies were rarely reported in original studies that utilized repeated measures designs. Unless otherwise specified, the meta-analysis was conducted three times: once with prepost correlations of zero, once with pre-post correlations of 0.5, and once with pre-post correlations of 0.9 substituted in cases where no pre-post correlation could be recovered.

In all of the following descriptions of study findings, asterisks indicate the number of statistically significant effects observed among the three meta-analyses.

Cannabis v. Baseline. Meta-analyses were conducted for crashes, hazard RT, headway, headway variability, lateral position variability, lane excursions, time out of lane, speed, speed variability and speed exceedances. Due to lack of data, time speeding was not meta-analyzed. Many of the analyses have a small number of included effect sizes, which limits precision and interpretation.

**Crashes.* This meta-analysis included one effect size representing 80 participants. Although several other studies measured collisions and were therefore eligible for inclusion, collisions often occurred so infrequently that statistical analyses could not be conducted. Consequently, means and standard deviations for crashes were often unreported.

With a pre-post correlation of zero, cannabis was not associated with a reliable change in crashes relative to baseline (Hedge's g = 0.158; 95% CI = -0.152, 0.467; Figure C1). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.155; 95% CI = -0.063, 0.374; Figure C2). However, a statistically significant effect was observed with a pre-post correlation of 0.9 (Hedge's g = 0.140; 95% CI = 0.043, 0.238; Figure C3). Results, including a conversion to r effect size and prediction intervals, appear in Table 3, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.079	0.158	-0.152	0.467	N/A	N/A
0.5	0.078	0.155	-0.063	0.374	N/A	N/A
0.9*	0.071	0.140	0.043	0.238	N/A	N/A

Table 3. Effect of cannabis on crashes (compared to baseline).

The pattern of results indicates a lack of compelling evidence that cannabis increases rates of simulated crashes relative to baseline. The statistically significant effect observed with a pre-post correlation of 0.9 is trivial in magnitude, and the pre-post correlation itself may or may not be as high as 0.9. Additionally, the 95% confidence intervals indicate a lack of precision; consequently, the average effects reported here may or may not be reliable. Finally, there is not enough data to compute prediction intervals or for the meaningful exploration of small study effects and potential moderating factors that might influence the magnitude of the summary statistic.

**Hazard RT*. This meta-analysis includes nine effect sizes representing approximately 242 participants. These effects represent the time taken to respond to obstacles on the shoulder of the road (Anderson et al., 2010), obstacles within the roadway (Liguori et al., 1998; Liguori et al., 2002), slowing forward vehicles (Ramaekers et al., 2000b [Study 1]; Robbe, 1998 [Study 2]; Sexton et al., 2000; Sexton et al., 2002), vehicles pulling out in front of the participant's vehicle (Sexton et al., 2000; Sexton et al., 2002) and general "emergencies"⁶ (Downey et al., 2013). Although measures relevant to hazard RT were conceptualized as relating to circumstances

⁶ The nature of the events to which participants responded is not entirely clear. However, based on their conceptualization as "emergencies," and based on the description of the simulator and the other experimental driving measures included in the study, they do not appear to be secondary peripheral targets (i.e., Target RT).

wherein participants' failure to respond would lead to a collision, it should be noted that the data included from Robbe (1998; Study 2) may have included responses not only to decelerations of the forward vehicle, but also to accelerations of the forward vehicle.

In addition, it should be noted that Sexton et al. (2000) did not appear to state the number of participants represented in the means and standard deviations reported for hazard RT measures; instead, it appears that the number of individual data points for all participants are reported. Sample sizes for the four conditions were assumed to be the same as those reported for other measures – specifically, n = 14 for the low THC dose, n = 15 for the high THC dose, n =13 for resin, and n = 14 for the placebo dose.

With a pre-post correlation of zero, cannabis was not associated with a reliable change in hazard RT relative to baseline (Hedge's g = 0.115; 95% CI = -0.077, 0.307; Figure C4). A pre-post correlation of 0.5 yielded similar results (Hedge's g = 0.148, 95% CI = -0.013, 0.309; Figure C5). However, results became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.164; 95% CI = 0.037, 0.290; Figure C6). Results, including a conversion to r effect size and prediction intervals, appear in Table 4, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.057	0.115	-0.077	0.307	-0.117	0.347
0.5	0.080	0.148	-0.013	0.309	-0.138	0.434
0.9*	0.086	0.164	0.037	0.290	-0.206	0.534

Table 4. Effect of cannabis on hazard RT (compared to baseline).

As with crashes, the pattern of findings indicate that there is little evidence that cannabis changes hazard RT relative to baseline. Again, this is due to a lack of evidence, and lack of evidence is not evidence of a null effect. The statistically-significant increase observed with a pre-post correlation of 0.9 is small in magnitude, and it is unknown if the actual pre-post correlation is high as 0.9. The 95% confidence intervals indicate a lack of precision. Partly due to imprecision, the 95% prediction intervals are also wide and indicate that the true effect probably ranges from a small to trivial decrease in hazard RT, to a small to moderate increase in hazard RT (depending on the pre-post correlation used). There are not enough studies included in the meta-analysis to meaningfully explore small study effects or the influence of potential moderating factors.

Headway. This meta-analysis includes one effect size representing 14 participants. Prepost correlations were recovered from raw data provided by the study author of Arkell et al. (2019) (Thomas Arkell, personal communication dated September 13, 2019). Thus, the meta-analysis only needed to be conducted once.

Cannabis was not associated with a reliable change in headway relative to baseline (Hedge's g = 0.304; 95% CI = -0.171, 0.780; Figure C7). Results, including a conversion to r effect size and prediction intervals, appear in Table 5, below.

r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.160	0.304	-0.171	0.780	N/A	N/A

Table 5. Effect of cannabis on headway (compared to baseline).

Once again, the 95% confidence intervals indicate a lack of measurement precision, and there is not enough data to compute prediction intervals or for the meaningful exploration of small study effects or potential moderating factors.

Headway Variability. This meta-analysis includes one effect size representing 14 participants. As with headway, pre-post correlations were recovered from raw data for one study

(Thomas Arkell, personal communication dated September 13, 2019), so the meta-analysis only needed to be conducted once.

As with headway, cannabis was not associated with a change in headway variability
compared to baseline (Hedge's $g = 0.319$; 95% CI = -0.313, 0.951; Figure C8). Results,
including a conversion to r effect size and prediction intervals, appear in Table 6, below.
Table 6. Effect of cannabis on headway variability (compared to baseline).

r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL	
0.166	0.319	-0.313	0.951	N/A	N/A	-

The 95% confidence intervals indicate a lack of precision. Due to the inclusion of only a single effect size in the meta-analysis, prediction intervals cannot be computed, and small study effects and potential moderators cannot be explored meaningfully.

****Lateral Position Variability.* This meta-analysis included 14 effect sizes representing approximately 257 participants. Pre-post correlations were only recovered for one of the included studies; specifically, raw data was provided by the author of Arkell et al. (2019) (Thomas Arkell, personal communication dated September 13, 2019).

With pre-post correlations of zero, cannabis was associated, on average, with a small increase in lateral position variability (Hedge's g = 0.366; 95% CI = 0.205, 0.528; Figure C9). Pre-post correlations of 0.5 yielded similar results (Hedge's g = 0.331; 95% CI = 0.212, 0.451; Figure C10), as did pre-post correlations of 0.9 (Hedge's g = 0.270; 95% CI = 0.175, 0.365; Figure C11). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 7, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.191	0.366	0.205	0.528	0.186	0.546
0.5*	0.173	0.331	0.212	0.451	0.199	0.464
0.9*	0.141	0.270	0.175	0.365	-0.061	0.602

Table 7. Effect of cannabis on lateral position variability (compared to baseline).

The results indicate that cannabis increases lateral position variability relative to baseline. The effect is quite consistent; the 95% prediction intervals are not much wider than the 95% confidence intervals, which indicates that the influence of unknown moderating factors is minimal (except in the case where the pre-post correlation is set to 0.9). According to the 95% prediction intervals, the true effect lies somewhere between a small and moderate increase in lateral position variability for pre-post correlations of zero and 0.5. For a pre-post correlation of 0.9, the effect may range from a trivial decrease in lateral position variability to a moderate increase in lateral position variability. Nonetheless, it appears that cannabis will, more often than not, lead to an increase in lateral position variability within experimental studies.

Next, small study effects were explored. There was no compelling evidence for publication bias with this particular measure and comparison: funnel plots (i.e., Hedge's *g* by standard error) appeared somewhat ambiguous in all three meta-analyses (see Figures E1 to E3), but Egger's test did not indicate the presence of small study effects for analyses with a pre-post correlation of zero [t(12) = 1.382, p = 0.192, two-tailed test], with a pre-post correlation of 0.5 [t(12) = 2.077, p = 0.060, two-tailed test] or with a pre-post correlation of 0.9 [t(12) = 1.922, p = 0.079, two-tailed test].

***Lane Excursions.* This meta-analysis included two effect sizes representing 98 participants. With a pre-post correlation of zero, cannabis was not associated with a reliable

change in lane excursions (Hedge's g = 0.201; 95% CI = -0.078, 0.480; Figure C12). However, results became statistically significant with a pre-post correlation of 0.5 (Hedge's g = 0.198; 95% CI = 0.001, 0.395; Figure C13) and a pre-post correlation of 0.9 (Hedge's g = 0.180; 95% CI = 0.092, 0.268; Figure C14). Results, including a conversion to r effect size and prediction intervals, appear in Table 8, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.102	0.201	-0.078	0.480	N/A	N/A
0.5*	0.100	0.198	0.001	0.395	N/A	N/A
0.9*	0.091	0.180	0.092	0.268	N/A	N/A

Table 8. Effect of cannabis on lane excursions (compared to baseline).

Although the 95% confidence intervals indicate a lack of precision, the pattern of results suggests that cannabis may, on average, increase lane excursions relative to baseline. However, this rests on the assumption that there is at least a small correlation between pairs of measures in the included studies utilizing repeated-measures designs. Due to the small number of studies included in the meta-analysis, prediction intervals cannot be generated, and small study effects and potential moderating factors cannot be explored meaningfully.

Time Out of Lane. This meta-analysis included one effect size representing 18 participants. With a pre-post correlation of zero, cannabis was not associated with a reliable change in time out of lane compared to baseline (Hedge's g = 0.219; 95% CI = -0.417, 0.856; Figure C15). Similar results were obtained with a pre-post correlation of 0.5 (Hedge's g = 0.212; 95% CI = -0.237, 0.661; Figure C16) and a pre-post correlation of 0.9. (Hedge's g = 0.180; 95% CI = -0.020, 0.380; Figure C17). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 9, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.114	0.219	-0.417	0.856	N/A	N/A
0.5	0.110	0.212	-0.237	0.661	N/A	N/A
0.9	0.093	0.180	-0.020	0.380	N/A	N/A

Table 9. Effect of cannabis on time out of lane (compared to baseline).

Overall, cannabis is not associated with a reliable change in time out of lane relative to baseline. The 95% confidence intervals indicate an appreciable lack of precision, and the results are limited by the inclusion of only one study in the meta-analysis which precludes the generation of prediction intervals and the meaningful exploration of small study effects and potential moderators.

***Speed. This meta-analysis included 12 effect sizes representing 312 participants. Prepost correlations could not be recovered for any studies utilizing repeated measures designs except for the one associated with Arkell et al. (2019; Thomas Arkell, personal communication dated September 13, 2019).

With a pre-post correlation of zero, cannabis was associated a decrease in speed compared to baseline (Hedge's g = -0.182; 95% CI = -0.348, -0.017; Figure C18). Results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.176; 95% CI = -0.298, -0.053; Figure C19) and a pre-post correlation of 0.9 (Hedge's g = -0.205; 95% CI = -0.336, -0.074; Figure C20). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 10, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	-0.095	-0.182	-0.348	-0.017	-0.371	0.006
0.5*	-0.092	-0.176	-0.298	-0.053	-0.315	-0.036
0.9*	-0.107	-0.205	-0.336	-0.074	-0.639	0.230

Table 10. Effect of cannabis on speed (compared to baseline).

Overall, cannabis is associated with, on average, a small decrease in speed. However, the 95% confidence intervals indicate a lack of precision. Owing in part to this, as well as the influence of unknown moderating factors, the 95% prediction intervals indicate that the true effect lies somewhere between a trivial to moderate decrease in speed, to a trivial to small increase in speed (depending on the pre-post correlation used)...

Small study effects. There was no compelling evidence for publication bias with this particular measure and comparison: funnel plots (i.e., Hedge's *g* by standard error) were somewhat ambiguous in all three meta-analyses (see Figures E4 to E6), likely due in part to the small number of included datapoints, but Egger's test did not indicate the presence of small study effects for analyses with a pre-post correlation of zero [t(10) = 1.066, p = 0.312, two-tailed test], with a pre-post correlation of 0.5 [t(10) = 1.075, p = 0.308, two-tailed test] or with a pre-post correlation of 0.9 [t(10) = 0.953, p = 0.363, two-tailed test].

**Speed Variability.* This meta-analysis included seven effect sizes representing 137 participants. Pre-post correlations for one of the included studies were recovered from raw data provided by the study author (Thomas Arkell, personal communication dated September 13, 2019).

With a pre-post correlation of zero, cannabis was not associated with a change in speed variability compared to baseline (Hedge's g = 0.047; 95% CI = -0.220, 0.314; Figure C21).

Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.104; 95% CI = -0.113, 0.321; Figure C22) but became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.166; 95% CI = 0.048, 0.284; Figure C23). Results, including a conversion to r effect size and prediction intervals, appear in Table 11, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.023	0.047	-0.220	0.314	-0.303	0.397
0.5	0.054	0.104	-0.113	0.321	-0.180	0.388
0.9*	0.088	0.166	0.048	0.284	-0.020	0.352

Table 11. Effect of cannabis on speed variability (compared to baseline).

As with crashes and hazard RT, the pattern of results suggest that cannabis is not associated with a reliable change in speed variability relative to baseline. The 95% confidence intervals indicate a lack of precision. Even in the case of the statistically-significant increase with a pre-post correlation of 0.9, the increase is small in magnitude, and the 95% prediction intervals indicate that the true effect lies somewhere between a trivial to small decrease in speed variability to a small increase in speed variability.

*Speed Exceedances. This meta-analysis included one effect size representing 80 participants. With a pre-post correlation of zero, cannabis was not associated with a change in speed exceedances compared to baseline (Hedge's g = -0.206; 95% CI = -0.516, 0.104; Figure C24). Results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.205; 95% CI = -0.425, 0.014; Figure C25), but statistical significance was achieved with a pre-post correlation of 0.9 (Hedge's g = -0.202; 95% CI = -0.300, -0.104; Figure C26). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 12, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.103	-0.206	-0.516	0.104	N/A	N/A
0.5	-0.103	-0.205	-0.425	0.014	N/A	N/A
0.9*	-0.101	-0.202	-0.300	-0.104	N/A	N/A

Table 12. Effect of cannabis on speed exceedances (compared to baseline).

As with crashes, hazard RT and speed exceedances, there is little evidence to suggest that cannabis reliably changes rates of speed exceedances relative to baseline. A statistically significant decrease in speed exceedances is only observed with a pre-post correlation of 0.9, which may be optimistically high, and the 95% confidence intervals indicate a lack of measurement precision. The results are limited by the inclusion of only one effect size in the meta-analysis, which precludes the generation of prediction intervals and meaningful exploration of small study effects and potential moderators.

Summary of the effects of cannabis. Little data is available to quantify the effect of cannabis on measures of driving performance and behaviour. Most of the effects considered here suffer from measurement imprecision due to a small number of studies reporting the statistical data needed to calculate effect size. However, cannabis had a consistent effect on lateral control and speed. Lateral position variability and rates of lane excursions were generally increased by cannabis, and speed was generally decreased by cannabis. More research is needed to reliably quantify effect size magnitude and identify circumstances in which they may vary.

Alcohol v. Baseline. Meta-analyses were conducted for crashes, hazard RT, headway, headway variability, lateral position variability, lane excursions, time out of lane, speed, speed variability, speed exceedances and time speeding. In contrast to *Cannabis v. Baseline* comparisons (above), there was much more data available for analyses.

****Crashes.* This meta-analysis included 14 effect sizes representing 441 participants. It should be noted that for Bernosky-Smith et al. (2011), a dropout was reported, yielding an overall sample size of 59; however, it could not be ascertained which group the dropout occurred in. Thus, all sample sizes were set to 15, yielding an overall sample size of 60 in the meta-analysis, which conflicts with the number of eligible participants stated in Table 1. Additionally, both Marczinski et al. (2008) and Study 2 from Roberts et al. (2016) contained data that posed technical issues to the meta-analytic software. Specifically, these data reported standard deviations of zero (likely as a result of rounding) for baseline means which precluded the computation of Hedge's *g* effect sizes. Thus, Marczinski et al. (2008) only contributed data from 24 participants (out of 40 total), and Roberts et al. (2016) contributed data from only one of the two eligible drives in their study. Finally, pre-post correlations could only be recovered for one of the included studies (Bernosky-Smith et al., 2012).

With a pre-post correlation of zero, alcohol increased crashes relative to baseline (Hedge's g = 0.374; 95% CI = 0.106, 0.643; Figure C27). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.376; 95% CI = 0.150, 0.603; Figure C28) and a pre-post correlation of 0.9 (Hedge's g = 0.352; 95% CI = 0.187, 0.517; Figure C29). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 13, below.

Table 13. Effect of alcohol on crashes (compared to baseline).
--

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.204	0.374	0.106	0.643	-0.541	1.289
0.5*	0.203	0.376	0.150	0.603	-0.424	1.177
0.9*	0.181	0.352	0.187	0.517	-0.269	0.973

Overall, alcohol increases crashes to a small extent relative to baseline. However, the 95% confidence intervals indicate a lack of measurement precision. Additionally, in part due to a lack of precision (but also due to the influence of unknown moderating factors), the prediction intervals are wide. The true effect of alcohol lies somewhere between a small to moderate decrease in crashes, to a large increase in crashes, depending on the pre-post correlation used. Thus, although the average effect is a small increase in crashes, the effect of alcohol does not appear consistent.

Small study effects. Small study effects were explored with funnel plots and Egger's test across all three meta-analyses (i.e., pre-post correlations of zero, 0.5 and 0.9). With a pre-post correlation of zero, funnel plots (Hedge's *g* by standard error) appeared asymmetrical (Figure E7), but Egger's test was not statistically significant, t(12) = 1.759, p = 0.104 (two-tailed test). A similar funnel plot asymmetry was observed with pre-post correlations of 0.5 (Figure E8), as well as a lack of statistical significance in Egger's test, t(12) = 1.319, p = 0.212. Funnel plots became more ambiguous with a pre-post correlation of 0.9 (Figure E9), but Egger's test remained non-statistically significant, t(12) = 1.020, p = 0.328 (two-tailed test).

The negatively-skewed effect size from Bernosky-Smith et al. (2012) appeared to offset the positive bias in the funnel plot and render Egger's test statistically non-significant. Given that this was the only study associated with a negative effect size in the analysis, it was reviewed for accuracy in data extraction and effect size computation. In reviewing the data, the means and standard deviations reported in the original paper appeared to be rounded to the nearest whole number. If this is the case, then the effect size calculated based on these values may be imprecise due to rounding error. Thus, the study was removed from the analysis to test for its sensitivity to inclusion. *Re-analysis.* When removed, the effect size increased with a pre-post correlation of zero (Hedge's g = 0.419; 95% CI = 0.264, 0.574; Figure C30), with a pre-post correlation of 0.5 (Hedge's g = 0.431; 95% CI = 0.275, 0.587; Figure C31) and with a pre-post correlation of 0.9 (Hedge's g = 0.414; 95% CI = 0.263, 0.564; Figure C32). Results, including a conversion to r effect size and prediction intervals, appear in Table 14, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.227	0.419	0.264	0.574	0.245	0.593
0.5*	0.236	0.431	0.275	0.587	0.027	0.835
0.9*	0.217	0.414	0.263	0.564	-0.130	0.958

Table 14. Re-analysis of the effect of alcohol on crashes (compared to baseline).

In all three cases, funnel plot asymmetries became more apparent (Figures E10 to E12). Egger's regression test became statistically significant, [t(11) = 4.481, p < 0.001, pre-post correlation = zero; t(11) = 3.929, p = 0.002, pre-post correlation = 0.5; t(11) = 2.310, p = 0.041, pre-post correlation = 0.9; all two-tailed tests].

Given that tests for publication bias tend to be underpowered (Borenstein et al., 2009, p. 284), the observation of statistically significant Egger's regression tests with a small number of included effect sizes was surprising. Borenstein and colleagues (2009, p. 291) warn that positive results in tests for small study effects are not necessarily evidence of publication bias; it is possible that the relationship between study precision and effect size is genuine. Because effect sizes were theorized to moderate effect size magnitude (see *Subgroup Analyses*, below), a posthoc analysis was conducted wherein Egger's regression test was repeated with the addition of average BAC as a second predictor. Unfortunately, average BAC could not be verified to all

included studies, which led to some data loss. Specifically, eight of the original 13 effect sizes (following the removal of Bernosky-Smith et al., 2012) were retained.

The post-hoc analysis was conducted in IBM SPSS Statistics Version 24 rather than CMA in order to accommodate the inclusion of a second predictor. Specifically, standard error of the effect size was set as the predictor (first step), average BAC was set as a second predictor (second step), Hedge's *g* was set as criterion, and inverse variance of the effect size was set as the weight in a weighted least squares regression. When standard error is found to be a significant predictor of effect size, small study effects are indicated. The results of this post-hoc test are reported in Table 15, below.

Pre-Post r	k	Without BAC (Step 1)	With BAC (Step 2)	
0.0	8	t = 3.608, p = 0.011	t = 1.580, p = 0.175	
0.5	8	t = 3.299, p = 0.016	t = 1.813, p = 0.130	
0.9	8	t = 1.830, p = 0.117	t = 1.591, p = 0.172	

Table 15. The relationship between Hedge's g and SE, with and without BAC.

The post-hoc analyses indicate the despite the smaller sample of included effect sizes, Egger's regression test (i.e., Step 1) remained statistically significant with pre-post correlations of zero and 0.5. However, the statistically significant relationship between standard error and effect size disappeared with the addition of BAC to the regression model (i.e., Step 2). Thus, the relationship between effect size and its standard error may not be due to small study effects but possibly due to differences in BAC. In sum, there is no compelling evidence for publication bias in this set of analyses, and overall, alcohol is associated with a small increase in crashes.

****Hazard RT*. This meta-analysis included 18 effect sizes representing approximately 451 participants. Participants responded to hazards including forward vehicles (Howard et al.,

2007; Kuypers et al., 2006; Ramaekers et al., 2000b [Study 1]; Sexton et al., 2002; Leung et al., 2012; Schumacher et al., 2017; Strayer et al., 2006) yellow and red traffic lights (Jelen et al., 2011; Wan et al., 2017), on-road obstacles (Liguori et al., 1999; Liguori & Robinson, 2001; Liguori et al., 2002) approaching pedestrians and vehicles (Berthelon & Gineyt, 2014; Vollrath & Fischer, 2017 [Studies 1 and 2]; Sexton, 1997; Sexton et al., 2002; Beard, 2012) and general "emergencies" (Downey et al., 2013). Pre-post correlations were recovered for Jelen et al. (2011) and Liguori et al. (1999).

With a pre-post correlation of zero, alcohol was associated with an increase (i.e., slowing) in hazard RT (Hedge's g = 0.283; 95% CI = 0.100, 0.466; Figure C33). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.288; 95% CI = 0.115, 0.462; Figure C34) and pre-post correlations of 0.9 (Hedge's g = 0.280; 95% CI = 0.131, 0.429; Figure C35). Results, including a conversion to r effect size and prediction intervals, appear in Table 16, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.148	0.283	0.100	0.466	-0.278	0.844
0.5*	0.150	0.288	0.115	0.462	-0.342	0.918
0.9*	0.144	0.280	0.131	0.429	-0.343	0.903

Table 16. Effect of alcohol on hazard RT (compared to baseline).

On average, alcohol is associated with a small increase (i.e., slowing) in hazard RT. However, the 95% confidence intervals indicate some measurement imprecision. Due to this, and also due to the influence of unknown moderating factors, the prediction intervals indicate that the true effect of alcohol lies somewhere between a small decrease in hazard RT to a moderate increase in hazard RT. Thus, although the average effect of alcohol is a small increase in hazard RT, this average obfuscates substantial variability in effects.

Small study effects. Small study effects were explored with funnel plots and Egger's test across all three meta-analyses (i.e., pre-post correlations of zero, 0.5 and 0.9). With a pre-post correlation of zero, the funnel plot was somewhat ambiguous (Figure E13), but Egger's regression test was not statistically significant: t(16) = 0.696, p = 0.497 (two-tailed test). There was no obvious asymmetry with a pre-post correlation (Figure E14) and no statistically significant effect with Egger's regression test, t(16) = 0.034, p = 0.973 (two-tailed test). The funnel plot was again somewhat ambiguous with a pre-post correlation of 0.9 (Figure E15); however, Egger's regression test remained non-statistically significant, t(16) = 0.715, p = 0.485 (two-tailed test). Thus, there was no compelling evidence of small study effects in this meta-analysis.

Headway. This meta-analysis included six effect sizes representing approximately 120 participants. Pre-post correlations were recovered for only one of the included studies (McCartney et al., 2017; Danielle McCartney, personal communication dated October 10, 2019).

With a pre-post correlation of zero, alcohol did not reliably change headway relative to baseline (Hedge's g = 0.071; 95% CI = -0.319, 0.461; Figure C36). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.140; 95% CI = -0.247, 0.528; Figure C37) and a pre-post correlation of 0.9 (Hedge's g = 0.166; 95% CI = -0.192, 0.524; Figure C38). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 17, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.066	0.071	-0.319	0.461	-1.083	1.225
0.5	0.090	0.140	-0.247	0.528	-1.140	1.421
0.9	0.087	0.166	-0.192	0.524	-1.128	1.460

Table 17. Effect of alcohol on headway (compared to baseline).

The results indicate that alcohol and baseline may not differ in terms of headway.

However, the 95% confidence intervals indicate a lack of precision, and the prediction intervals indicate the influence of unknown moderating factors. According to the prediction intervals, the true effect lies somewhere between a very large decrease in headway and a very large increase in headway. There are not enough studies included in this meta-analysis for meaningful exploration of potential moderating factors or small study effects.

***Headway Variability.* This meta-analysis included four effect sizes representing 82 participants. With a pre-post correlation of zero, there was no reliable difference between alcohol and baseline for headway variability (Hedge's g = 0.561; 95% CI = -0.022, 1.143; Figure C39). However, results became statistically significant with a pre-post correlation of 0.5 (Hedge's g =0.634; 95% CI = 0.061, 1.207; Figure C40) and a pre-post correlation of 0.9 (Hedge's g = 0.674; 95% CI = 0.141, 1.207; Figure C41). Results, including a conversion to r effect size and prediction intervals, appear in Table 18, below.

Table 18. Effect of alcohol on headway variability (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.327	0.561	-0.022	1.143	-1.735	2.857
0.5*	0.340	0.634	0.061	1.207	-1.871	3.138
0.9*	0.326	0.674	0.141	1.207	-1.874	3.221

The results indicate that headway variability generally increases with alcohol. The average increase is moderate in magnitude; however, the 95% confidence intervals indicate a lack of precision, and the prediction intervals indicate the influence of unknown moderating factors. The true effect lies somewhere between a very large decrease in headway variability and a very large increase in headway variability. The small number of studies included in the meta-analysis precludes meaningful exploration of small study effects and potential moderators.

****Lateral Position Variability*. This meta-analysis included 63 effect sizes representing approximately 1,573 participants. Pre-post correlations were recovered from Harrison et al. (2005) and from raw data associated with McCartney et al. (2017) (Danielle McCartney, personal communication dated October 10, 2019) and Helland et al. (2016) (Arne Helland, personal communication dated March 9, 2020).

With a pre-post correlation of zero, alcohol was associated with an increase in lateral position variability (Hedge's g = 0.498, 95% CI = 0.411, 0.585; Figure C42). Results were similar with pre-post correlations of 0.5 (Hedge's g = 0.495, 95% CI = 0.413, 0.578; Figure C43) and pre-post correlations of 0.9 (Hedge's g = 0.428; 95% CI = 0.353, 0.502; Figure C44). Results, including a conversion to r effect size and prediction intervals, appear in Table 19, below.

		1		2 × 1	,	
Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.310	0.498	0.411	0.585	0.170	0.826
0.5*	0.307	0.495	0.413	0.578	0.027	0.964
0.9*	0.277	0.428	0.353	0.502	-0.114	0.969

Table 19. Effect of alcohol on lateral position variability (compared to baseline).

On average, alcohol is associated with a small to moderate increase in lateral position variability (depending on the pre-post correlation used). However, the 95% confidence intervals indicate a degree of imprecision, and the prediction intervals indicate the appreciable influence of unknown moderating factors. Again, although the average effect of alcohol is a small to moderate increase in lateral position variability, this average obfuscates inconsistency in the effect.

Small study effects. Interestingly, the funnel plots (Hedge's *g* by standard error) generated for inspection of small study effects were uninterpretable due to the presence of an extreme outlier (Veldstra et al., 2012, Study 1) which skewed the scale of the plot such that all other studies were tightly packed at the top of the funnel plot (see Figures E16 to E18). Egger's regression was statistically significant with a pre-post correlation of zero [t(61) = 4.391, p < .001, two-tailed test], with a pre-post correlation of 0.5 [t(61) = 3.993, p < .001, two-tailed test] and with a pre-post correlation of 0.9 [t(61) = 2.952, p = 0.004, two-tailed test]. Due to the massive difference in effect size magnitude between Study 1 from Veldstra et al. (2012) and rest of the included effect sizes, it was reviewed for accuracy in data extraction and effect size computation. Although no specific issues were identified, this study was omitted due to suspicion that the statistical data reported in the paper, from which the effect size was computed, were erroneous.

Re-analysis. With a pre-post correlation of zero, the resulting meta-analysis still indicated that alcohol was associated with an increase in lateral position variability (Hedge's g = 0.486; 95% CI = 0.409, 0.564; Figure C45). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.489, 95% CI = 0.417, 0.562; Figure C46) and 0.9 (Hedge's g = 0.422, 95% CI = 0.360, 0.485; Figure C47). Notably, the prediction intervals narrowed appreciably with the

omission of Study 1 from Veldstra et al. (2012). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 20, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.260	0.486	0.409	0.564	0.336	0.637
0.5*	0.254	0.489	0.417	0.562	0.136	0.842
0.9*	0.216	0.422	0.360	0.485	-0.016	0.861

Table 20. Re-analysis of the effect of alcohol on lateral position variability (compared to baseline).

On average, alcohol increased lateral position variability to a small to moderate degree. The prediction intervals still indicated the influence of unknown moderating factors in all three cases, but not to the same degree as the original meta-analyses that included Study 1 from Veldstra et al. (2012).

Finally, small study effects were investigated once again. With a pre-post correlation of zero, the funnel plot appeared asymmetrical due to the presence of a few right-skewed datapoints (Figure E19), and Egger's regression test was statistically significant, t(60) = 3.096, p = .003 (two-tailed test). Similarly, with a pre-post correlation of 0.5, the funnel plot was somewhat asymmetrical (Figure E20), and Egger's regression test was again statistically significant, t(60) = 2.573, p = 0.013. With a pre-post correlation of 0.9, the funnel plot was more ambiguous (Figure E21); however, Egger's regression was not statistically significant, t(60) = 1.671, p = 0.100 (two-tailed test). Again, statistically significant effects with Egger's regression tests were somewhat surprising, so a post-hoc test was conducted wherein average BAC level was added as a second predictor to Egger's regression test. However, as with crashes, average BAC could not be verified to all included effect sizes. Of the original 62 effect sizes (following the removal of

Study 1 from Veldstra et al. [2012]), 45 effect sizes were retained. The results of this post-hoc test are reported in Table 21, below.

Pre-Post r	k	Without BAC (Step 1)	With BAC (Step 2)
0.0	45	t = 3.292, p = .002	t = 3.242, p = .002
0.5	45	t = 2.831, p = .007	t = 2.755, p = .009
0.9	45	t = 2.119, p = .040	t = 2.252, p = .030

Table 21. The relationship between Hedge's g and SE, with and without BAC.

Interestingly, the relationship between Hedge's *g* and its standard error persisted even after the inclusion of average BAC as a second predictor in the weighted least squares regression. Consequently, small study effects are apparent. However, it remains unclear whether these effects are due to publication bias or some other legitimate relationship between effect size and its standard error. Thus, it is also unclear whether the effect sizes reported in the meta-analysis are spuriously high, and if so, the degree to which they need to be adjusted.

****Lane Excursions*. This meta-analysis included 25 effect sizes representing approximately 686 participants. As noted above, Bernosky-Smith et al. (2011) reported a dropout, yielding an overall sample size of 59; however, because it was not known which group the dropout occurred in, all sample sizes were set to 15, yielding an overall sample size of 60 in the meta-analysis. Pre-post correlations were recovered from raw data associated with McCartney et al. (2017) (Danielle McCartney, personal communication dated October 10, 2019). Additionally, Kenntner-Mabiala et al. (2015) contained data that posed technical issues to the meta-analytic software. These data reported standard deviations of zero for some comparisons which precluded the computation of Hedge's *g* effect sizes. However, all 24 participants are still represented in the analysis. With a pre-post correlation of zero, alcohol was associated with an increase in lane excursions (Hedge's g = 0.504; 95% CI = 0.334, 0.674; Figure C48). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.502; 95% CI = 0.337, 0.667; Figure C49) and a pre-post correlation of 0.9 (Hedge's g = 0.439; 95% CI = 0.297, 0.580; Figure C50). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 22, below. *Table 22.* Effect of alcohol on lane excursions (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.300	0.504	0.334	0.674	-0.120	1.128
0.5*	0.288	0.502	0.337	0.667	-0.210	1.213
0.9*	0.225	0.439	0.297	0.580	-0.248	1.125

On average, alcohol increased lane excursions to a small degree. However, the 95% confidence intervals indicate a lack of measurement precision. Partly due to this, and partly due to the influence of unknown moderating factors, the prediction intervals indicate the true effect of alcohol lies somewhere between a small decrease in lane excursions and a large increase in lane excursions. Thus, although the average effect was a small increase, the effect of alcohol is not consistent.

Small study effects. With a pre-post correlation of zero, the funnel plot (i.e., Hedge's *g* by standard error) appeared asymmetrical (Figure E22), and Egger's regression was statistically significant, t(23) = 4.616, p < 0.001 (two-tailed test). A similar asymmetry and statistically significant Egger's regression was observed with a pre-post correlation of 0.5 [t(23) = 4.073, p < 0.001, two-tailed test] and with a pre-post correlation of 0.9 [t(23) = 2.164, p = 0.041, two-tailed test; see Figures E23 and E24].

The funnel plot asymmetries and significant Egger's regression tests may have been driven in part by the large effect sizes associated with Berthelon and Gineyt's (2014) study and with the study by Weiler and colleagues (2000). Notably, Berthelon and Gineyt (2014) was flagged for subjecting lane excursion data to nonparametric tests, and Weiler et al. (2000) was flagged for transforming lane excursion data. It is possible that the standardized mean differences calculated with these data are not reliable. None of the other included studies were flagged for using non-parametric tests or transformed data. Thus, the analyses were re-run without these two studies to test sensitivity to their inclusion.

Re-analysis. When these studies were removed from the analysis, the effect sizes decreased with a pre-post correlation of zero (Hedge's g = 0.387; 95% CI = 0.269, 0.506; Figure C51), 0.5 (Hedge's g = 0.383; 95% CI = 0.278, 0.489; Figure C52) and 0.9 (Hedge's g = 0.278; 95% CI = 0.217, 0.339; Figure C53). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 23, below.

 Table 23. Re-analysis of the effect of alcohol on lane excursions (compared to baseline).

 Pra Past results of the effect of alcohol on lane excursions (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.209	0.387	0.269	0.506	0.233	0.542
0.5*	0.201	0.383	0.278	0.489	0.103	0.663
0.9*	0.144	0.278	0.217	0.339	0.073	0.482

However, a funnel plot asymmetry was still evident in all three cases (see Figures E25 to E27), and Egger's regression test remained statistically significant with a pre-post correlation of zero [t(21) = 3.932, p < .001, two-tailed test], 0.5 [t(21) = 3.921 p < .001, two-tailed test] and 0.9 [t(21) = 2.936, p = 0.008, two-tailed test]. As with crashes and lateral position variability, a posthoc test was conducted wherein average BAC level was added as a second predictor to Egger's

regression test. Of the original 23 effect sizes (following the removal of Berthelon et al. [2014] and Weiler et al. [2000]), 19 effect sizes were retained. The results of this post-hoc test are reported in Table 24, below.

Pre-Post r	k	Without BAC (Step 1)	With BAC (Step 2)	
0.0	19	t = 4.279, p = .001	t = 2.513, p = .023	
0.5	19	<i>t</i> = 4.387, <i>p</i> < .001	t = 2.878, p = .011	
0.9	19	t = 3.174, p = .006	t = 2.500, p = .024	

Table 24. The relationship between Hedge's g and SE, with and without BAC.

Again, the relationship between Hedge's g and its standard error persisted even after the inclusion of average BAC as a second predictor in the weighted least squares regression. Small study effects are apparent, but it is unclear whether this is due to publication bias.

****Time Out of Lane*. This meta-analysis included three effect sizes representing 111 participants. With a pre-post correlation of zero, alcohol was associated with an increase in time out of lane (Hedge's g = 0.694; 95% CI = 0.232, 1.155; Figure C54). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.648, 95% CI = 0.140, 1.156; Figure C55) and a prepost correlation of 0.9 (Hedge's g = 0.621; 95% CI = 0.048, 1.194; Figure C56). Results, including a conversion to r effect size and prediction intervals, appear in Table 25, below.

<i>Table 25.</i> Effect of alcoho	l on time out of lane ((compared to baseline)).
-----------------------------------	-------------------------	------------------------	----

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.333	0.694	0.232	1.155	-3.715	5.102
0.5*	0.307	0.648	0.140	1.156	-4.849	6.146
0.9*	0.291	0.621	0.048	1.194	-6.089	7.331

On average, alcohol is associated with a moderate increase in time out of lane. However, the 95% confidence intervals indicate imprecision. Due in part to imprecision, and due in part to the influence of unknown moderating factors, the prediction intervals are wide. The true effect of alcohol on time out of lane lies somewhere between a very large decrease in time out of lane to a very large increase in time out of lane. Thus, although the average effect of alcohol is moderate increase in time out of lane, the effect of alcohol is not always consistent. Due to the small number of studies included in the meta-analysis, there is not enough data for meaningful exploration of moderating factors, or additionally, for small study effects.

****Speed.* This meta-analysis included 43 effect sizes representing approximately 1,226 participants. Though most studies reported this measure in the form of a mean representing driving speed, two studies reported measures representing the mean difference between the participant's driving speed and the posted speed limit (Arnedt et al., 2001; Howland et al., 2011). Pre-post correlations were recovered for Bernosky-Smith et al. (2012) and from raw data associated with McCartney et al. (2017) (Danielle McCartney, personal communication dated October 10, 2019) and Helland et al. (2016) (Arne Helland, personal communication dated March 9, 2020).

With a pre-post correlation of zero, alcohol was associated with an increase in speed (Hedge's g = 0.164; 95% CI = 0.086, 0.241; Figure C57). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.143; 95% CI = 0.072, 0.214; Figure C58) and a pre-post correlation of 0.9 (Hedge's g = 0.126; 95% CI = 0.042, 0.188; Figure C59). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 26, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.085	0.164	0.086	0.241	0.084	0.244
0.5*	0.075	0.143	0.072	0.214	-0.081	0.367
0.9*	0.066	0.126	0.064	0.188	-0.207	0.458

Table 26. Effect of alcohol on speed (compared to baseline).

On average, alcohol is associated with only a trivial increase in speed relative to baseline. Although the 95% confidence intervals are generally narrow, the prediction intervals are wide. Thus, unknown moderating factors appear to influence the relationship between alcohol and speed. The potential influence of BAC on effect size magnitude is explored in *Subgroup Analysis*, below.

Small study effects. There was no obvious asymmetry in the funnel plot and no statistically significant Egger's regression with a pre-post correlation of zero [t(41) = 0.070, p = 0.944, two-tailed test; Figure E28], The funnel plot was asymmetrical with pre-post correlations of 0.5 and 0.9 (see Figures E29 and E30), but Egger's regression remained non-statistically significant in both cases [t(41) = 0.952, p = 0.347, two-tailed test, pre-post correlation = 0.5; t(41) = 1.467, p = 0.150, two-tailed test, pre-post correlation = 0.9]. Thus, there is no compelling evidence of small study effects in this meta-analysis.

***Speed Variability. This meta-analysis included 32 effect sizes representing approximately 806 participants. Pre-post correlations were recovered from raw data associated with McCartney et al. (2017) (Danielle McCartney, personal communication dated October 10, 2019) and Helland et al. (2016) (Arne Helland, personal communication dated March 9, 2020).

With a pre-post correlation of zero, alcohol was associated with an increase in speed variability (Hedge's g = 0.266; 95% CI = 0.170, 0.362; Figure C60). Results were similar with a

pre-post correlation of 0.5 (Hedge's g = 0.264; 95% CI = 0.184, 0.344; Figure C61) and a prepost correlation of 0.9 (Hedge's g = 0.233; 95% CI = 0.163, 0.302; Figure C62). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 27, below. *Table 27*. Effect of alcohol on speed variability (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.138	0.266	0.170	0.362	0.166	0.366
0.5*	0.138	0.264	0.184	0.344	0.074	0.454
0.9*	0.120	0.233	0.163	0.302	-0.108	0.573

On average, alcohol is associated with a small increase in speed variability. According to the prediction intervals, the effects are generally consistent; it is only in the case of a pre-post correlation of 0.9 that the 95% prediction interval includes a negative effect (albeit of trivial magnitude). The prediction intervals are not much wider than the confidence intervals, which indicates that the influence of moderating factors is minimal. Still, the potential influence of BAC on effect size magnitude is investigated in *Subgroup Analyses*, later. Next, small study effects were explored.

Small study effects. There did not appear to be any obvious asymmetry in the funnel plots with pre-post correlations of zero or 0.5; however, the plot was ambiguous with a pre-post correlation of 0.9 (see Figures E31 to E33). However, Egger's regression was not statistically significant with a pre-post correlation of zero [t(30) = 1.054, p = 0.300 (two-tailed test)], a pre-post correlation of 0.5 [t(30) = 1.634, p = 0.113 (two-tailed test)] or a pre-post correlation of 0.9 [t(30) = 1.613, p = 0.117 (two-tailed test)]. Thus, there is no compelling evidence of publication bias in this analysis.

**Speed Exceedances.* This meta-analysis included four effect sizes representing 128 participants. With a pre-post correlation of zero, alcohol was not associated with a reliable change in speed exceedances relative to baseline (Hedge's g = 0.194; 95% CI = -0.258, 0.645; Figure C63). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.271; 95% CI = -0.193, 0.735; Figure C64), but they became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.516; 95% CI = 0.093, 0.938; Figure C65). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 28, below.

Table 28. Effect	t of alco	bol on speed e	xceedances (co	mpared to base	eline).
Pre-Post r	r	Hedge's g	95% CLLL	95% CLUL	95% PLLL

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.282	0.194	-0.258	0.645	-1.473	1.860
0.5	0.309	0.271	-0.193	0.735	-3.555	4.097
0.9*	0.292	0.516	0.093	0.938	-1.432	2.464

The pattern of results indicates and absence of evidence that alcohol reliably changes rates of speed exceedances relative to baseline. An average increase, of moderate magnitude, is only achieved with a pre-post correlation of 0.9, which may be optimistically high. The 95% confidence intervals indicate major imprecision. Consequently, the prediction intervals are also wide and vary from a very large decrease in speed exceedances to a very large increase in speed exceedances with alcohol. There are not enough studies included in the meta-analysis for meaningful exploration of small study effects and potential moderators.

****Time Speeding*. This meta-analysis includes five effect sizes representing 161 participants. A pre-post correlation was retrieved from Bernosky-Smith et al. (2012). With a pre-post correlation of zero, alcohol was associated with an increase in time speeding (Hedge's g = 0.512; 95% CI = 0.042, 0.982; Figure C66). Results were similar with a pre-post correlation of

0.5 (Hedge's g = 0.496; 95% CI = 0.054, 0.938; Figure C67) and a pre-post correlation of 0.9 (Hedge's g = 0.388; 95% CI = 0.054, 0.721; Figure C68). Results, including a conversion to r effect size and prediction intervals, appear in Table 29, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.255	0.512	0.042	0.982	-1.023	2.047
0.5*	0.249	0.496	0.054	0.938	-0.965	1.958
0.9*	0.203	0.388	0.054	0.721	-0.669	1.445

Table 29. Effect of alcohol on time speeding (compared to baseline).

On average, alcohol is associated with a small to moderate increase in time speeding. However, the 95% confidence intervals indicate a lack of precision. Partly due to this, and partly due to the influence of unknown moderating factors, the prediction intervals are wide. Specifically, the true effect of alcohol lies somewhere between a large decrease in time speeding to a very large increase in speeding. Thus, although the prevailing effect is on average a small increase in speeding, the effect is inconsistent. Unfortunately, the small number of included studies precludes the exploration of potential moderating factors, as well as the exploration of small study effects.

Summary of the effects of alcohol. The meta-analyses reported here indicate a clearly detrimental effect of alcohol on driving performance and changes in driver behaviour. Alcohol was consistently associated with statistically significant average increases in crashes, hazard RT, lateral position variability, lane excursions, time out of lane, speed, speed variability and time speeding. Significant effects were small to moderate in magnitude.

Although alcohol tended to reliably influence the measures studied here, measurement imprecision was a common theme. Additionally, many of the measures were associated with wide prediction intervals, indicating that the influence of alcohol is not necessarily consistent from circumstance to circumstance. In part, this may be due to wide confidence intervals, as well as the influence of BAC level (which is investigated in the *Subgroup Analysis*, below). Finally, small study effects were evident in some measures, but it is unclear whether this is due to publication bias (in which case, effect sizes are overestimated) or a legitimate relationship between effect size and standard error.

Cannabis v. Alcohol. Meta-analyses were conducted for crashes, hazard RT, lateral position variability, lane excursions, time out of lane, speed, speed variability and speed exceedances. As with *Cannabis v. Baseline* comparisons (above), there is a limited amount of data available for analyses. There was not enough data available to meta-analyze headway, headway variability or time speeding.

Crashes. This meta-analysis includes one effect size representing 80 participants. With a pre-post correlation of zero, there was no reliable difference between cannabis and alcohol for crashes (Hedge's g = -0.020; 95% CI = -0.327, 0.287; Figure C69). Similar results were obtained with a pre-post correlation of 0.5 (Hedge's g = -0.020; 95% CI = -0.237, 0.197; Figure C70) and a pre-post correlation of 0.9 (Hedge's g = -0.021; 95% CI = -0.119, 0.076; Figure C71). Results, including a conversion to r effect size and prediction intervals, appear in Table 30, below. *Table 30*. Effect of cannabis on crashes (compared to alcohol).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.010	-0.020	-0.327	0.287	N/A	N/A
0.5	-0.010	-0.020	-0.237	0.197	N/A	N/A
0.9	-0.011	-0.021	-0.119	0.076	N/A	N/A

The results indicate that cannabis and alcohol may not differ in terms of simulated crash rates. However, this result is based on only a single effect size. The 95% confidence intervals indicate a lack of precision, and there is not enough data to generate prediction intervals. The inclusion of one effect further precludes the meaningful exploration of small study effects and the role of moderating factors.

Hazard RT. This meta-analysis included four effect sizes representing 128 participants. Hazards included on-road obstacles (Liguori et al., 2002), slowing forward vehicles (Ramaekers et al., 2000b [Study 1]; Sexton et al., 2002), other vehicles (Sexton et al., 2002) and general "emergencies" (Downey et al., 2013). With a pre-post correlation of zero, there was no reliable difference between cannabis and alcohol for hazard RT (Hedge's g = 0.131; 95% CI = -0.289, 0.550; Figure C72). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.148; 95% CI = -0.243, 0.540; Figure C73) and a pre-post correlation of 0.9. (Hedge's g = 0.117; 95% CI = -0.161, 0.395; Figure C74). Results, including a conversion to r effect size and prediction intervals, appear in Table 31, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.073	0.131	-0.289	0.550	-1.471	1.733
0.5	0.079	0.148	-0.243	0.540	-1.526	1.823
0.9	0.061	0.117	-0.161	0.395	-1.181	1.415

Table 31. Effect of cannabis on hazard RT (compared to alcohol).

Overall, cannabis and alcohol do not appear to differ in terms of hazard RT. However, the 95% confidence intervals indicate a lack of precision. Due in part to this, as well as the influence of unknown moderating factors, the 95% prediction intervals are wide. According to these intervals, the true effect lies somewhere between cannabis having a very large decrease in hazard

RT (i.e., faster reaction time) relative to alcohol, to cannabis having a very large increase in hazard RT (i.e., slower reaction time) relative to alcohol. However, there is not enough data for meaningful exploration of potential moderating factors, or additionally, of small study effects.

**Lateral Position Variability.* This meta-analysis included five effect sizes representing approximately 81 participants. With a pre-post correlation of zero, cannabis was not associated with a reliable change in lateral position variability compared to alcohol (Hedge's g = 0.170; 95% CI = -0.127, 0.467; Figure C75). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.166; 95% CI = -0.044, 0.376; Figure C76), but they became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.146; 95% CI = 0.041, 0.251; Figure C77). Results, including a conversion to r effect size and prediction intervals, appear in Table 32, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.089	0.170	-0.127	0.467	-0.312	0.653
0.5	0.087	0.166	-0.044	0.376	-0.175	0.507
0.9*	0.077	0.146	0.041	0.251	-0.093	0.385

Table 32. Effect of cannabis on lateral position variability (compared to alcohol).

Overall, the pattern of results suggests that cannabis and alcohol do not differ in terms of lateral position variability. Although a statistically significant effect was observed with a prepost correlation of 0.9, it is unknown whether the actual pre-post correlation had this magnitude in reality, and even if it did, the increase associated with cannabis is trivial in magnitude. Finally, the 95% prediction intervals, which reflect both sampling variability and the influence of unknown moderators, indicate that the true effect ranges from a trivial to small decrease in lateral position variability, with cannabis

(depending on the pre-post correlation). However, there are not enough studies included in the meta-analysis for meaningful exploration of potential moderators. Additionally, there are not enough studies included in the meta-analysis for meaningful exploration of small study effects.

Lane Excursions. This meta-analysis includes two effect sizes representing 98 participants. With a pre-post correlation of zero, there was no reliable difference between cannabis and alcohol for lane excursions (Hedge's g = 0.054; 95% CI = -0.224, 0.331; Figure C78). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.052; 95% CI = -0.145, 0.248; Figure C79) and a pre-post correlation of 0.9 (Hedge's g = 0.002; 95% CI = -0.184, 0.188; Figure C80). Results, including a conversion to r effect size and prediction intervals, appear in Table 33, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.028	0.054	-0.224	0.331	N/A	N/A
0.5	0.027	0.052	-0.145	0.248	N/A	N/A
0.9	0.001	0.002	-0.184	0.188	N/A	N/A

Table 33. Effect of cannabis on lane excursions (compared to alcohol).

Overall, the results suggest that cannabis and alcohol do not differ in terms of their influence on lane excursions. Once again, there are not enough studies included in the meta-analysis to generate prediction intervals or to meaningfully explore small study effects or potential moderating factors.

Time Out of Lane. This meta-analysis included one effect size representing 18 participants. With a pre-post correlation of zero, there was no reliable change between cannabis and alcohol for time out of lane (Hedge's g = 0.005; 95% CI = -0.627, 0.637; Figure C81). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.003; 95% CI = -0.444,

0.449; Figure C82) and a pre-post correlation of 0.9 (Hedge's g = -0.006; 95% CI = -0.204, 0.193; Figure C83). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 34, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.003	0.005	-0.627	0.637	N/A	N/A
0.5	0.001	0.003	-0.444	0.449	N/A	N/A
0.9	-0.003	-0.006	-0.204	0.193	N/A	N/A

Table 34. Effect of cannabis on time out of lane (compared to alcohol).

Overall, cannabis and alcohol do not appear to differ in terms of their effects on time out of lane. However, results are limited by the inclusion of only one effect size in the meta-analysis. The 95% confidence intervals indicate a lack of precision, and there is not enough data to generate prediction intervals, or to meaningfully explore small study effects and potential moderators.

***Speed. This meta-analysis included four effect sizes representing 125 participants. With a pre-post correlation of zero, cannabis was associated with a decrease in speed compared to alcohol (Hedge's g = -0.314; 95% CI = -0.613, -0.015; Figure C84). Results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.392; 95% CI = -0.710, -0.074; Figure C85) and 0.9. (Hedge's g = -0.371; -0.633, -0.108; Figure C86). Results, including a conversion to r effect size and prediction intervals, appear in Table 35, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	-0.172	-0.314	-0.613	-0.015	-1.167	0.539
0.5*	-0.205	-0.392	-0.710	-0.074	-1.627	0.842
0.9*	-0.192	-0.371	-0.633	-0.108	-1.581	0.839

Table 35. Effect of cannabis on speed (compared to alcohol).

On average, cannabis decreases driving speed to a small degree relative to alcohol. However, the 95% confidence intervals indicate a lack of precision, which is reflected – in addition to the influence of unknown moderating factors – in the 95% prediction intervals. According to these intervals, the true effect lies somewhere between cannabis being associated with a very large decrease in speed relative to alcohol, to cannabis being associated with a moderate to large *increase* in speed relative to alcohol. Thus, although driving is, on average, slower with cannabis, this is not always the case. Unfortunately, there are not enough studies included in the meta-analysis for a meaningful exploration of factors that contribute to the variability in effects observed in the prediction intervals. The small number of included studies also precludes the meaningful exploration of small study effects.

Speed Variability. This meta-analysis included two effect sizes representing 26 participants. Overall, there was no reliable change between cannabis and alcohol for speed variability (Hedge's g = 0.134; 95% CI = -0.383, 0.652; Figure C87). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.131; 95% CI = -0.239, 0.501; Figure C88). However, with a pre-post correlation of 0.9 (Hedge's g = 0.116; 95% CI = -0.188, 0.421; Figure C89), the results became statistically significant. Results, including a conversion to *r* effect size and prediction intervals, appear in Table 36, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.072	0.134	-0.383	0.652	N/A	N/A
0.5	0.070	0.131	-0.239	0.501	N/A	N/A
0.9	0.062	0.116	-0.188	0.421	N/A	N/A

Table 36. Effect of cannabis on speed variability (compared to alcohol).

The pattern of results suggest that cannabis and alcohol do not differ in terms of speed variability. A reliable difference of trivial magnitude is only observed with a pre-post correlation of 0.9, which may be optimistically high. The 95% confidence intervals indicate a lack of precision, and there is not enough data to compute prediction intervals. The small number of included studies also precludes meaningful exploration of small study effects and potential moderators.

***Speed Exceedances*. This meta-analysis included one effect size representing 80 participants. Overall, cannabis was not associated with a reliable change in speed exceedances compared to alcohol (Hedge's g = -0.235; 95% CI = -0.546, 0.077; Figure C90). However, results became statistically significant with a pre-post correlation of 0.5 (Hedge's g = -0.231; 95% CI = -0.451, -0.011; Figure C91) and a pre-post correlation of 0.9 (Hedge's g = -0.205, 95% CI = -0.303, -0.107; Figure C92). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 37, below.

Table 37. Effect of cannabis on speed exceedances (compared to alcohol).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.118	-0.235	-0.546	0.077	N/A	N/A
0.5*	-0.116	-0.231	-0.451	-0.011	N/A	N/A
0.9*	-0.103	-0.205	-0.303	-0.107	N/A	N/A

The pattern of results suggest that cannabis may be associated, on average, with fewer speed exceedances compared to alcohol. The average decrease is small in magnitude. However, this rests on the assumption that there is at least a small correlation between pairs of measurements in the included studies utilizing repeated-measures designs. However, the 95% confidence intervals indicate a lack of precision, and there is not enough data to generate prediction intervals. Furthermore, there are not enough included studies for a meaningful exploration of small study effects and potential moderators.

Summary of the effect of cannabis compared to alcohol. The number of studies that directly compare cannabis to alcohol on measures of driving performance and behaviour is small. As with studies focused on cannabis, many of the effects reported here are imprecise. More data is needed to improve precision and allow for the exploration of moderating factors.

For most measures, there were no statistically significant differences between cannabis and alcohol. However, cannabis was consistently associated with a statistically significant small average decrease in speed compared to alcohol. Cannabis was also generally associated with a statistically significant small average decrease in speed exceedances compared to alcohol.

Combination v. Baseline. Meta-analyses were conducted for crashes, hazard RT, lateral position variability, lane excursions, speed, speed variability, speed exceedances and time out of lane. There was not enough data to meta-analyze headway, headway variability or time speeding.

***Crashes*. This meta-analysis includes one effect size representing 80 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in crashes compared to baseline (Hedge's g = 0.226; 95% CI = -0.088, 0.540; Figure C93). Results became statistically significant and indicated a small increase in crashes with a pre-post correlation of 0.5 (Hedge's g = 0.223; 95% CI = 0.000, 0.445; Figure C94) and 0.9 (Hedge's g = 0.201; 95% CI = 0.102, 0.300; Figure C95). Results, including a conversion to r effect size and prediction intervals, appear in Table 38, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.113	0.226	-0.088	0.540	N/A	N/A
0.5*	0.111	0.223	0.000	0.445	N/A	N/A
0.9*	0.101	0.201	0.102	0.300	N/A	N/A

Table 38. Effect of cannabis combined with alcohol on crashes (compared to baseline).

Overall, the pattern of results suggest that the combination of cannabis and alcohol may be associated, on average, with a small increase crashes relative to baseline. However, this conclusion assumes that there is at least a small correlation between pairs of measurements in the included study. The results are limited by the inclusion of only one effect size in the metaanalysis, which precludes the generation of prediction intervals and the meaningful exploration of small study effects and potential moderators. The 95% confidence intervals indicate issues with measurement precision. More research should be conducted to verify that the combination of cannabis and alcohol increases crashes relative to baseline.

****Hazard RT*. This meta-analysis included four effect sizes representing 129 participants. Hazards included slowing forward vehicles (Ramaekers et al., 2000b [Study 1]; Sexton et al., 2002), on-road obstacles (Liguori et al., 2002), approaching vehicles (Sexton et al., 2002) and general "emergencies" (Downey et al., 2013). With a pre-post correlation of zero, the combination of cannabis and alcohol was associated, on average, with a small increase (i.e., slowing) in hazard RT relative to baseline (Hedge's g = 0.275; 95% CI = 0.028, 0.523; Figure C96). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.352; 95% CI = 0.074, 0.630; Figure C97) and a pre-post correlation of 0.9 (Hedge's g = 0.382; 95% CI = 0.131, 0.632; Figure C98). Results, including a conversion to r effect size and prediction intervals, appear in Table 39, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.147	0.275	0.028	0.523	-0.268	0.819
0.5*	0.186	0.352	0.074	0.630	-0.668	1.373
0.9*	0.196	0.382	0.131	0.632	-0.769	1.532

Table 39. Effect of cannabis combined with alcohol on Hazard RT (compared to baseline).

Overall, the pattern of results indicate that the combination of cannabis and alcohol increases hazard RT relative to baseline. On average, the effect is small in magnitude, and the 95% confidence intervals indicate limited precision. The prediction intervals, due in part to a lack of measurement prediction but also due to the influence of unknown moderating factors, indicate that the true effect lies somewhere between a small to large decrease in hazard RT, to a large increase in hazard RT (depending on the pre-post correlation used). Unfortunately, due to the low number of included studies, small study effects and potential moderating factors cannot be explored in a meaningful way. In sum, the prevailing effect of the combination of cannabis and alcohol is a minor slowing of hazard RT, but the effect is not consistent from circumstance to circumstance.

***Lateral Position Variability. This meta-analysis includes four effect sizes representing 68 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was associated, on average, with an increase in lateral position variability (Hedge's g =0.502; 95% CI = 0.080, 0.925; Figure C99). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.531; 95% CI = 0.107, 0.954; Figure C100) and a pre-post correlation of 0.9 (Hedge's g = 0.531; 95% CI = 0.116, 0.945; Figure C101). Results, including a conversion to r effect size and prediction intervals, appear in Table 40, below.

Table 40. Effect of cannabis combined with alcohol on lateral position variability (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.270	0.502	0.080	0.925	-0.839	1.843
0.5*	0.273	0.531	0.107	0.954	-1.213	2.274
0.9*	0.263	0.531	0.116	0.945	-1.441	2.502

As with lane excursions, the results are consistent across all three meta-analyses.

Regardless of the pre-post correlation used, the combination of cannabis and alcohol, on average, increases lateral position variability relative to baseline. On average, the increase is moderate in magnitude. However, the 95% confidence intervals indicate a lack of precision. As a result of this, and also due to unknown moderating factors, the prediction intervals are wide. According to the prediction intervals, the true effect appears to lie somewhere between a large decrease and a large increase in lateral position variability. Unfortunately, the small number of included studies precludes the meaningful exploration of small study effects and moderating factors that might explain the variance in effects represented in the prediction intervals.

***Lane Excursions. This meta-analysis includes two effect sizes representing 98 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was associated with a small increase in lane excursions relative to baseline (Hedge's g = 0.297; 95% CI = 0.014, 0.579; Figure C102). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.284; 95% CI = 0.084, 0.483; Figure C103) and a pre-post correlation of 0.9 (Hedge's g = 0.228; 95% CI = 0.139, 0.316; Figure C104). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 41, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.149	0.297	0.014	0.579	N/A	N/A
0.5*	0.143	0.284	0.084	0.483	N/A	N/A
0.9*	0.115	0.228	0.139	0.316	N/A	N/A

Table 41. Effect of cannabis combined with alcohol on lane excursions (compared to baseline).

Overall, the results indicate that the combination of cannabis and alcohol, on average, increases rates of lane excursions relative to baseline. However, due to the small number of included studies, prediction intervals cannot be computed, and meaningful exploration of small study effects and moderating factors is not feasible.

Speed. This meta-analysis includes three effect sizes representing 112 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed compared to baseline (Hedge's g = -0.279; 95% CI = -0.674, 0.117; Figure C105). The results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.315; 95% CI = -0.727, 0.098; Figure C106) and a pre-post correlation of 0.9 (Hedge's g = -0.311; 95% CI = -0.709, 0.087; Figure C107). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 42, below.

Table 42. Effect of cannabis combined with alcohol on speed (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.150	-0.279	-0.674	0.117	-4.068	3.511
0.5	-0.164	-0.315	-0.727	0.098	-4.959	4.330
0.9	-0.159	-0.311	-0.709	0.087	-5.323	4.701

Overall, the pattern of results suggest that the combination of cannabis and alcohol may not change speed relative to baseline. However, the 95% confidence intervals indicate a lack of measurement precision. The 95% prediction intervals are also wide and indicate that the true effect lies somewhere between a very large decrease in speed and a very large increase in speed. There are not enough studies included in the meta-analysis for meaningful exploration of small study effects and potential moderators.

**Speed Variability*. This meta-analysis included one effect size representing 12 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed variability relative to baseline (Hedge's g = 0.249; 95% CI = -0.508, 1.007; Figure C108). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.248; 95% CI = -0.287, 0.784; Figure C109). However, a small, statistically significant increase in speed variability was observed with a pre-post correlation of 0.9 (Hedge's g = 0.239; 95% CI = 0.000, 0.479; Figure C110). Results, including a conversion to r effect size and prediction intervals, appear in Table 43, below.

				-		
Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.133	0.249	-0.508	1.007	N/A	N/A
0.5	0.132	0.248	-0.287	0.784	N/A	N/A
0.9*	0.128	0.239	0.000	0.479	N/A	N/A

Table 43. Effect of cannabis combined with alcohol on speed variability (compared to baseline).

Overall, the evidence for a change in speed variability between the combination of drugs and baseline is lacking. The 95% confidence intervals indicate a lack of precision. The results are limited by the inclusion of only one study, which precludes the generation of prediction intervals and does not allow for a meaningful exploration of small study effects and potential moderators. *Speed Exceedances.* One study was eligible and included in the meta-analysis. The effect size represents 80 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed exceedances compared to baseline (Hedge's g = 0.010; 95% CI = -0.297, 0.317; Figure C111). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.010; 95% CI = -0.207, 0.227; Figure 112) and a pre-post correlation of 0.9 (Hedge's g = 0.009; 95% CI = -0.088, 0.107; Figure 113). Results, including a conversion to r effect size and prediction intervals, appear in Table 44, below.

Table 44. Effect of cannabis combined with alcohol on speed exceedances (compared to baseline).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.005	0.010	-0.297	0.317	N/A	N/A
0.5	0.005	0.010	-0.207	0.227	N/A	N/A
0.9	0.005	0.009	-0.088	0.107	N/A	N/A

As with speed, the pattern of results suggest that the combination of cannabis and alcohol does not change rates of speed exceedances relative to baseline. However, the 95% confidence intervals indicate a lack of precision. The results are limited by the inclusion of only a single study in the meta-analysis, which precludes the generation of prediction intervals as well as the meaningful exploration of small study effects and potential moderating factors.

****Time Out of Lane.* This meta-analysis included one effect size representing 18 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was associated with, on average, a small increase in time out of lane relative to alcohol (Hedge's g = 0.715; 95% CI = 0.005, 1.426; Figure C114). The results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.673; 95% CI = 0.178, 1.168; Figure C115) and a pre-post correlation of 0.9

(Hedge's g = 0.496; 95% CI = 0.285, 0.706; Figure C116). Results, including a conversion to r effect size and prediction intervals, appear in Table 45, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL	
0.0*	0.350	0.715	0.005	1.426	N/A	N/A	
0.5*	0.331	0.673	0.178	1.168	N/A	N/A	
0.9*	0.251	0.496	0.285	0.706	N/A	N/A	

Table 45. Effect of cannabis combined with alcohol on time out of lane (compared to baseline).

The results indicate that on average, the combination of cannabis and alcohol increases time out of lane relative to baseline. However, the 95% confidence intervals indicate a lack of precision, and there is not enough data to generate prediction intervals or to meaningfully explore small study effects and potential moderators.

Summary of the effects of the combination of drugs on driving. Only a small number of studies compare the combination of cannabis and alcohol to baseline. Based on a small sample of studies, the combination of cannabis and alcohol is associated with average increases in hazard RT, lateral position variability, lane excursions and time out of lane, relative to baseline. However, more data would be beneficial.

Combination v. Alcohol. Meta-analyses were conducted for crashes, hazard RT, lateral position variability, lane excursions, time out of lane, speed, speed variability, speed exceedances. There was not enough data to meta-analyze headway, headway variability or time speeding.

Crashes. Only one study reported the statistical data necessary for effect size computation. The resulting meta-analysis includes one effect size representing 80 participants. With a pre-post correlation of 0, the combination of cannabis and alcohol was not associated

with a reliable change in crash rates compared to alcohol alone (Hedge's g = 0.066; 95% CI = - 0.243, 0.376; Figure C117). A pre-post correlation of 0.5 yielded similar effects (Hedge's g = 0.067; 95% CI = -0.152, 0.286; Figure C118), as did a pre-post correlation of 0.09 (Hedge's g = 0.067; 95% CI = -0.031, 0.164; Figure C119). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 46, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.033	0.066	-0.243	0.376	N/A	N/A
0.5	0.034	0.067	-0.152	0.286	N/A	N/A
0.9	0.034	0.067	-0.031	0.164	N/A	N/A

Table 46. Effect of cannabis combined with alcohol on crashes (compared to alcohol).

Overall, the pattern of results suggest that the combination of cannabis and alcohol does not change rates of crashes reliably compared to alcohol alone. However, the confidence intervals, which include zero in all three analyses, indicate a lack of measurement precision, and the results are limited by the inclusion of only a single study in the meta-analysis. There is not enough data to compute prediction intervals to estimate the range of plausible effects, and tests for small study effects and potential moderating factors can not be conducted.

Hazard RT. This meta-analysis includes four effect sizes representing 128 participants. Hazards included slowing forward vehicles (Ramaekers et al., 2000b [Study 1]; Sexton et al., 2002), approaching vehicles (Sexton et al., 2002), on-road obstacles (Liguori et al., 2002) and general "emergencies" (Downey et al., 2013).

Using a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in hazard RT compared to alcohol alone (Hedge's g = 0.344; 95% CI = -0.127, 0.814; Figure C120). The results were similar with a pre-post correlation of 0.5

(Hedge's g = 0.360; 95% CI = -0.087, 0.808; Figure C121) and a pre-post correlation of 0.9 (Hedge's g = 0.287; 95% CI = -0.044, 0.619; Figure C122). Results, including a conversion to r effect size and prediction intervals, appear in Table 47, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.184	0.344	-0.127	0.814	-1.520	2.208
0.5	0.186	0.360	-0.087	0.808	-1.598	2.319
0.9	0.148	0.287	-0.044	0.619	-1.281	1.856

Table 47. Effect of cannabis combined with alcohol on hazard RT (compared to alcohol).

As with crashes, the results suggest that hazard RT associated the combination of cannabis and alcohol is not different than hazard RT associated with alcohol alone. On average, the effect is small, but the 95% confidence intervals, which include zero, indicate a lack of precision. Consequently, the prediction intervals are wide and indicate that the true effect of the combination of cannabis and alcohol lies somewhere between a large decrease and a large increase in hazard RT relative to alcohol alone. The small number of studies included in the meta-analysis precludes meaningful exploration of small study effects, as well as the influence of potential moderating factors such as alcohol dose or study setting that might influence the magnitude of the effect.

****Lateral Position Variability*. This meta-analysis includes four effect sizes representing 67 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was associated, on average, with a small increase in lateral position variability compared to alcohol alone (Hedge's g = 0.457; 95% CI = 0.068, 0.847; Figure C123). The results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.480; 95% CI = 0.096, 0.865; Figure C124) and a pre-post correlation of 0.9 (Hedge's g = 0.462; 95% CI = 0.124, 0.799; Figure C125). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 48, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0*	0.242	0.457	0.068	0.847	-0.656	1.571
0.5*	0.247	0.480	0.096	0.865	-1.045	2.006
0.9*	0.234	0.462	0.124	0.799	-1.119	2.043

Table 48. Effect of cannabis combined with alcohol on lateral position variability (compared to alcohol).

Overall, the results indicate that the combination of cannabis and alcohol increases lateral position variability relative to alcohol alone. On average, the increase is small; however, the 95% prediction intervals indicate that the true effect may range from a moderate to large decrease in lateral position variability (depending on the pre-post correlation used) to a large increase in lateral position variability. The wide prediction intervals represent both a lack of measurement precision (as indicated in the 95% confidence intervals) as well as the presence of moderating factors. However, with so few studies, small study effects and the potential influence of moderating factors cannot be explored. Thus, although the average effect of the combination of cannabis and alcohol is an increase in lateral position variability relative to alcohol alone, the effect is not consistent from circumstance to circumstance.

**Lane Excursions.* This meta-analysis includes two effect sizes representing 98 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in lane excursions compared to alcohol alone (Hedge's g = 0.147; 95% CI = -0.133, 0.427; Figure C126). Results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.138; 95% CI = -0.060, 0.335; Figure C127). However, the summary statistic

became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.099; 95% CI = 0.012, 0.187; Figure C128). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 49, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.075	0.147	-0.133	0.427	N/A	N/A
0.5	0.070	0.138	-0.060	0.335	N/A	N/A
0.9*	0.051	0.099	0.012	0.187	N/A	N/A

Table 49. Effect of cannabis combined with alcohol on lane excursions (compared to alcohol).

As with other measures discussed thus far, the confidence intervals indicate a lack of precision. In all cases except for where a correlation of 0.9 was used, the confidence intervals include zero. With a pre-post correlation of 0.9, the combination of cannabis and alcohol is associated with an increase in lane excursions relative to alcohol alone, but only to a very small degree. The small number of studies included in the meta-analysis precludes the generation of prediction intervals and the meaningful exploration of small study effects and potential moderating factors.

***Time Out of Lane*. This meta-analysis includes one effect size representing 18 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in time out of lane compared to alcohol alone (Hedge's g =0.577; 95% CI = -0.108, 1.261; Figure C129). The results became statistically significant with a pre-post correlation of 0.5 (Hedge's g = 0.525; 95% CI = 0.049, 1.002; Figure C130) and a prepost correlation of 0.9 (Hedge's g = 0.354; 95% CI = 0.150, 0.559; Figure C131). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 50, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.288	0.577	-0.108	1.261	N/A	N/A
0.5*	0.264	0.525	0.049	1.002	N/A	N/A
0.9*	0.182	0.354	0.150	0.559	N/A	N/A

Table 50. Effect of cannabis combined with alcohol on time out of lane (compared to alcohol).

Overall, the pattern of results suggest that the combination of cannabis and alcohol may be associated, on average, with a small to moderate increase in time out of lane. However, this conclusion rests on the assumption that there is at least a small correlation between pairs of measurements in the included study. However, the analysis is limited by the inclusion of only a single study and the inability to generate prediction intervals or meaningfully explore small study effects and potential moderators.

**Speed.* This meta-analysis includes three effect sizes representing 111 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed compared to alcohol alone (Hedge's g = -0.239; 95% CI = -0.513, 0.036; Figure C132). The results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.318; 95% CI = -0.641, 0.006; Figure C133). The results became statistically significant and indicated a small decrease in speed with a pre-post correlation of 0.9 (Hedge's g = -0.322; 95% CI = -0.613, -0.031; Figure C134). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 51, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.130	-0.239	-0.513	0.036	-2.137	1.659
0.5	-0.166	-0.318	-0.641	0.006	-3.655	3.020
0.9*	-0.166	-0.322	-0.613	-0.031	-3.887	3.242

Table 51. Effect of cannabis combined with alcohol on speed (compared to alcohol).

Overall, there is a lack of compelling evidence that the combination of cannabis and alcohol changes speed compared to alcohol alone. However, the 95% confidence intervals indicate a lack of precision. Even in the case where the combination of drugs is associated with a small decrease in speed relative to alcohol alone (i.e., when a pre-post correlation of 0.9 is used), the prediction intervals indicate that the true effect varies from an very large decrease in speed to a very large increase in speed. Given the small number of included studies, small study effects and the potential influence of moderating factors cannot be explored meaningfully.

**Speed Variability*. This meta-analysis includes one effect size representing 12 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a change in speed variability compared to alcohol alone (Hedge's g = 0.320; 95% CI = -0.446, 1.086; Figure C135). The results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.315; 95% CI = -0.226, 0.856; Figure C136). Results became statistically significant and indicated a small increase in speed variability with a pre-post correlation of 0.9 (Hedge's g = 0.282; 95% CI = 0.041, 0.523; Figure C137). Results, including a conversion to reffect size and prediction intervals, appear in Table 52, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.169	0.320	-0.446	1.086	N/A	N/A
0.5	0.167	0.315	-0.226	0.856	N/A	N/A
0.9*	0.150	0.282	0.041	0.523	N/A	N/A

Table 52. Effect of cannabis combined with alcohol on speed variability (compared to alcohol).

As with speed, there is a lack of compelling evidence that the combination of cannabis and alcohol changes speed variability reliably compared to alcohol alone. The 95% confidence intervals indicate a lack of measurement precision. In the case of the statistically significant increase in speed variability (i.e., when a pre-post correlation of 0.9 is used), the average effect is small. However, the true effect would be best reflected within the 95% prediction interval, but the inclusion of only a single study precludes the generation of prediction intervals (as well as the meaningful exploration of small study effects and potential moderators).

Speed Exceedances. Only one study was eligible and included in the meta-analysis. The single effect size represents 80 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a change in speed exceedances compared to alcohol alone (Hedge's g = -0.037; 95% CI = -0.345, 0.270; Figure C138). The results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.037; 95% CI = -0.254, 0.181; Figure C139) and 0.9 (Hedge's g = -0.033; 95% CI = -0.131, 0.064; Figure C140). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 53, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.019	-0.037	-0.345	0.270	N/A	N/A
0.5	-0.019	-0.037	-0.254	0.181	N/A	N/A
0.9	-0.017	-0.033	-0.131	0.064	N/A	N/A

Table 53. Effect of cannabis combined with alcohol on speed exceedances (compared to alcohol).

Overall, the pattern of results suggests that the combination of cannabis and alcohol does not reliably change speed exceedances relative to alcohol alone. The 95% confidence intervals indicate a lack of measurement precision. Again, prediction intervals cannot be generated, and small study effects and the potential influence of moderating factors cannot be explored meaningfully due to the inclusion of only a single study in the analysis.

Summary of the combination of drugs compared to alcohol. Lateral position variability appears to be the only measure reliably associated with a statistically significant average increased by the combination of cannabis and alcohol, relative to alcohol alone. For other measures, imprecision is a general issue, and statistical significance varies depending on the prepost correlation utilized in within-subjects studies.

Combination v. Cannabis. Meta-analyses were conducted for crashes, hazard RT, lateral position variability, lane excursions, time out of lane, speed, speed variability and speed exceedances. There was not enough data available to meta-analyze headway, headway variability or time speeding.

Crashes. Of the studies eligible for inclusion in the meta-analysis, only one reported the statistical data needed to compute effect sizes. The resulting meta-analysis included one effect size representing 80 participants. With a pre-post correlation of zero, the combination of

cannabis and crashes was not associated with a reliable change in crashes compared to cannabis alone (Hedge's g = 0.051; 95% CI = -0.259, 0.360; Figure C141). A pre-post correlation of 0.5 yielded similar effects (Hedge's g = 0.053; 95% CI = -0.166, 0.272; Figure C142), as did a pre-post correlation of 0.9 (Hedge's g = 0.061; 95% CI = -0.037; 0.159; Figure C143). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 54, below. *Table 54*. Effect of cannabis combined with alcohol on crashes (compared to cannabis).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.026	0.051	-0.259	0.360	N/A	N/A
0.5	0.026	0.053	-0.166	0.272	N/A	N/A
0.9	0.031	0.061	-0.037	0.159	N/A	N/A

Overall, the combination of cannabis and alcohol is not associated with a reliable change in crashes relative to cannabis alone. However, the 95% confidence intervals indicate a lack of measurement prediction. The results are also limited by the inclusion of only a single study in the analysis, which precludes both the generation of prediction intervals and the meaningful exploration of small study effects and the potential moderating factors.

**Hazard RT*. This meta-analysis includes four effect sizes representing 129 participants. Hazards included slowing forward vehicles (Ramaekers et al., 2000b [Study 1]; Sexton et al., 2002), approaching vehicles (Sexton et al., 2002), on-road obstacles (Liguori et al., 2002) and general "emergencies" (Downey et al., 2013).

With a pre-post correlation of zero, the combination of cannabis and alcohol is not associated with a change in hazard RT compared to cannabis alone (Hedge's g = 0.171; 95% CI = -0.070, 0.412; Figure C144). Similar results were obtained with a pre-post correlation of 0.5 (Hedge's g = 0.166; 95% CI = -0.004, 0.336; Figure C145). However, the summary statistic

became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.145; 95% CI = 0.069, 0.221; Figure C146). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 55, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.087	0.171	-0.070	0.412	-0.358	0.700
0.5	0.084	0.166	-0.004	0.336	-0.208	0.540
0.9*	0.074	0.145	0.069	0.221	-0.021	0.312

Table 55. Effect of cannabis combined with alcohol on hazard RT (compared to cannabis).

Overall, the pattern of results suggests that there is weak evidence for a difference in hazard RT between cannabis alone and the combination of drugs. The 95% confidence intervals indicate a lack of precision. Even in the case of the statistically significant increase in hazard RT, the effect is trivial in magnitude, and a pre-post correlation of 0.9 may be optimistically high. Furthermore, the 95% prediction intervals indicate that the true effect probably lies somewhere between a trivial to small decrease in hazard RT, to a small to moderate increases in hazard RT (depending on the pre-post correlation used). Due to the low number of included studies, small study effects and the potential influence of moderating factors cannot be explored meaningfully.

**Lateral Position Variability. This meta-analysis includes four effect sizes representing 68 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated, on average, with an increase in lateral position variability (Hedge's g = 0.332; 95% CI = -0.008, 0.672; Figure C147). The results were similar, but statistically significant, with a pre-post correlation of 0.5 (Hedge's g = 0.336; 95% CI = 0.036, 0.636; Figure C148) and a prepost correlation of 0.9 (Hedge's g = 0.286; 95% CI = 0.047, 0.525; Figure C149). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 56, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.178	0.332	-0.008	0.672	-0.414	1.078
0.5*	0.177	0.336	0.036	0.636	-0.687	1.359
0.9*	0.148	0.286	0.047	0.525	-0.789	1.362

Table 56. Effect of cannabis combined with alcohol on lateral position variability (compared to cannabis).

Overall, the combination of cannabis and alcohol generally increases lateral position variability relative to cannabis alone. On average, the increase is small in magnitude, but the 95% confidence intervals indicate a lack of precision. Due in part to this, as well as unknown moderating factors, the prediction intervals are wide: they range from small to large decreases in lateral position variability with the combination of drugs (depending on the pre-post correlation used) to a very large increase in lateral position variability, relative to cannabis alone. Unfortunately, the low number of included studies precludes exploration of potential moderating factors, as well as small study effects.

**Lane Excursions*. This meta-analysis included two effect sizes representing 98 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in lane excursions relative to cannabis alone (Hedge's g =0.108; 95% CI = -0.169, 0.385; Figure C150). The results were similar with a pre-post correlation of 0.5 (Hedge's g = 0.106; 95% CI = -0.090, 0.302; Figure C151). However, a statistically significant result was achieved with a pre-post correlation of 0.9 (Hedge's g = 0.095; 95% CI = 0.007, 0.182; Figure C152). Results, including a conversion to r effect size and prediction intervals, appear in Table 57, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.055	0.108	-0.169	0.385	N/A	N/A
0.5	0.054	0.106	-0.090	0.302	N/A	N/A
0.9*	0.048	0.095	0.007	0.182	N/A	N/A

Table 57. Effect of cannabis combined with alcohol on lane excursions (compared to cannabis).

As with hazard RT, the pattern of results suggests a lack of evidence for a difference in rates of lane excursions between the combination of drugs and cannabis alone. In the case of the statistically significant increase in lane excursions with the combination of drugs, the effect size is trivial in magnitude, and a pre-post correlation is probably optimistically high. Furthermore, due to the low number of included studies, prediction intervals cannot be generated, and small study effects and the potential influence of moderating factors cannot be explored meaningfully.

**Time Out of Lane. This meta-analysis included one effect size representing 18 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in time out of lane relative to cannabis alone (Hedge's g =0.531; 95% CI = -0.152, 1.213; Figure C153). Results became statistically significant with a prepost correlation of 0.5 (Hedge's g = 0.475; 95% CI = 0.002, 0.949; Figure C154) and 0.9 (Hedge's g = 0.328; 95% CI = 0.124, 0.532; Figure C155). Results, including a conversion to r effect size and prediction intervals, appear in Table 58, below.

Table 58. Effect of cannabis combined with alcohol on time out of lane (compared to cannabis).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.265	0.531	-0.152	1.213	N/A	N/A
0.5*	0.240	0.475	0.002	0.949	N/A	N/A
0.9*	0.169	0.328	0.124	0.532	N/A	N/A

Overall, the pattern of results suggest that the combination of cannabis and alcohol, relative to cannabis alone, increases time out of lane to a small to moderate degree. However, this rests on the assumption that there is at least a small correlation between pairs of measurements in the included study. However, the 95% confidence interval indicates a lack of measurement precision, and there is not enough data to compute prediction intervals. The inclusion of only a single effect size in the meta-analysis also precludes the meaningful exploration of small study effects and potential moderators.

Speed. This resulting meta-analysis includes three effect sizes representing 112 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed relative to cannabis alone (Hedge's g = -0.037; 95% CI = -0.294, 0.221; Figure C156). The results were similar with a pre-post correlation of 0.5 (Hedge's g = -0.036; 95% CI = -0.219, 0.146; Figure C157) and a pre-post correlation of 0.9 (Hedge's g = -0.038; 95% CI = -0.161, 0.085; Figure C158). Results, including a conversion to r effect size and prediction intervals, appear in Table 59, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.019	-0.037	-0.294	0.221	-1.707	1.633
0.5	-0.019	-0.036	-0.219	0.146	-1.217	1.144
0.9	-0.020	-0.038	-0.161	0.085	-1.240	1.163

Table 59. Effect of cannabis combined with alcohol on speed (compared to cannabis).

Overall, the results indicate that the combination of cannabis and alcohol may not differ from alcohol alone in terms of speed. However, the 95% confidence intervals indicate a lack of measurement precision. The 95% prediction intervals indicate that the true effect lies somewhere between a very large decrease in speed and a very large increase in speed with the combination of drugs relative to cannabis alone. However, the low number of included studies precludes the meaningful exploration of potential moderating factors, as well as small study effects.

Speed Variability. This meta-analysis included one effect size representing 12 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed variability relative to cannabis alone (Hedge's g = -0.049; 95% CI = -0.794, 0.696; Figure C159). Similar results were obtained with a pre-post correlation of 0.5 (Hedge's g = -0.049; 95% CI = -0.575, 0.478; Figure C160) and a pre-post correlation of 0.9 (Hedge's g = -0.047; 95% CI = -0.283, 0.188; Figure C161). Results, including a conversion to *r* effect size and prediction intervals, appear in Table 60, below.

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	-0.026	-0.049	-0.794	0.696	N/A	N/A
0.5	-0.026	-0.049	-0.575	0.478	N/A	N/A
0.9	-0.025	-0.047	-0.283	0.188	N/A	N/A

Table 60. Effect of cannabis combined with alcohol on speed variability (compared to cannabis).

The pattern of results suggest that the combination of drugs may not differ from cannabis alone in terms of speed variability. However, the 95% confidence intervals indicate a lack of precision. The meta-analysis is limited by the inclusion of only a single effect. For this reason, it is not possible to generate prediction intervals, nor is there sufficient data for the meaningful exploration of small study effects and potential moderators.

**Speed Exceedances*. This meta-analysis included one effect size representing 80 participants. With a pre-post correlation of zero, the combination of cannabis and alcohol was not associated with a reliable change in speed exceedances relative to alcohol alone (Hedge's g = 0.209; 95% CI = -0.101, 0.520; Figure C162). The results were similar with a pre-post

correlation of 0.5 (Hedge's g = 0.208; 95% CI = -0.011, 0.428; Figure C163). However, the results became statistically significant with a pre-post correlation of 0.9 (Hedge's g = 0.199; 95% CI = 0.100, 0.297; Figure C164). Results, including a conversion to r effect size and prediction intervals, appear in Table 61, below.

Table 61. Effect of cannabis combined with alcohol on speed exceedances (compared to cannabis).

Pre-Post r	r	Hedge's g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
0.0	0.105	0.209	-0.101	0.520	N/A	N/A
0.5	0.104	0.208	-0.011	0.428	N/A	N/A
0.9*	0.100	0.199	0.100	0.297	N/A	N/A

As with hazard RT and lane exceedances, the pattern of results suggests there is little evidence that the combination of drugs changes rates of speed exceedances compared to cannabis alone. A statistically significant increase in speed exceedances only occurs with a prepost correlation of 0.9. The results are limited by the inclusion of only a single effect size in the meta-analysis, and the 95% confidence intervals indicate a lack of measurement precision. Additionally, there are not enough studies included in this meta-analysis to compute prediction intervals and to meaningfully explore small study effects and potential moderators.

Summary of the combination of drugs compared to cannabis. Statistically significant changes between the combination of cannabis and alcohol, and cannabis alone, on experimental driving measures tended to depend on the pre-post correlation used in within-subjects studies. Again, measurement imprecision limits interpretation.

Subgroup Analyses

The effect of varying levels of alcohol on measures of driving performance and behaviour, relative to baseline, is presented here. Only driving performance and behaviour measures with ten or more effect sizes included in the primary analysis were parsed by BAC level and subjected to subgroup analysis. The BAC groups are as follows: Bin 1, any non-zero BAC up to 0.03%; Bin 2, BAC 0.04 - 0.06%; Bin 3, BAC 0.07 - 0.09%; Bin 4, BAC 0.10 - 0.12%. Note that the number of effect sizes in the tables (i.e., column *k*) and the number of omitted studies will not necessarily sum to the number of effect sizes in the primary meta-analyses. This is because some studies involve multiple BAC levels which were collapsed to generate a single effect size per study in the primary meta-analyses; in contrast, a single study may contribute multiple effect sizes (i.e., to multiple bins) in the subgroup analyses presented here. Additionally, the subgroup analysis only includes effect sizes that could be reliably associated with an average BAC level. This required the reporting of a pre-drive BAC, a post-drive BAC, and/or an average BAC specifically associated with the driving component of a test battery.

Crashes. In total, nine effect sizes that compared alcohol to baseline were included. No effect sizes were associated with Bin 1 or Bin 4. Additionally, results from the primary analyses comparing cannabis to baseline are re-reported here. Results are presented in Table 62, below, and in Appendix D (Figures D1 to D3).

		<i>Pre-Post Correlation</i> = zero (see also Fig. D1)								
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL				
Cannabis										
N/A	1	0.158	-0.152	0.467	N/A	N/A				
Alcohol										
1	0	N/A	N/A	N/A	N/A	N/A				
2	3	0.238	-0.015	0.490	-1.399	1.875				
3*	6	0.507	0.262	0.752	0.161	0.854				
4	0	N/A	N/A	N/A	N/A	N/A				
		Pre-P	ost Correlation =	0.5 (see also Fig	g. D2)					
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL				
Cannabis										
N/A	1	0.155	-0.063	0.374	N/A	N/A				
Alcohol										
1	0	N/A	N/A	N/A	N/A	N/A				
2*	3	0.228	0.050	0.406	-0.927	1.383				
3*	6	0.438	0.256	0.620	0.180	0.696				
4	0	N/A	N/A	N/A	N/A	N/A				
		Pre-P	ost Correlation =	0.9 (see also Fig	g. D3)					
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL				
Cannabis										
N/A*	1	0.140	0.043	0.238	N/A	N/A				
Alcohol										
1	0	N/A	N/A	N/A	N/A	N/A				
2*	3	0.190	0.110	0.269	-0.324	0.703				
3*	6	0.276	0.174	0.378	0.055	0.497				
4	0	N/A	N/A	N/A	N/A	N/A				

Table 62. The effects of varying levels of alcohol on crashes (relative to baseline).

As indicated in the primary analysis, there is insufficient evidence to conclude that

cannabis reliably increases crashes relative to baseline in experimental studies, except when a

pre-post correlation of 0.9 is used. However, in all cases, the meta-analysis includes only a single effect size of uncertain generalizability, and more data is needed to increase statistical precision. In contrast, BAC levels ranging from 0.04% to 0.06% (i.e., Bin 2) are generally associated, to a small degree, with an increase in crashes relative to baseline. BAC levels ranging from 0.07% to 0.09% (i.e., Bin 3) consistently increase crashes relative to baseline to a small to moderate degree. Still, despite the average increase in crashes, prediction intervals indicate a wide range of values, particularly in the case of Bin 2. The results suggest that at BAC levels ranging from 0.04% to 0.06% (i.e., Bin 2), rates of crashes may *decrease* in certain cases. It is unknown whether this is a statistical artifact stemming from imprecision, or whether this reflects some drivers' compensation attempts. More data is needed to clarify the issue.

Next, effect sizes are considered in relation to each other. The average effect of alcohol on crashes appears to increase from Bin 2 to Bin 3, which suggests a dose-response relationship. However, data for the lowest levels and highest levels of alcohol are missing. There is insufficient evidence to conclude that the dose-response relationship is linear. Additionally, cannabis appears to have a uniformly weaker effect on crashes than does either level of alcohol, but it is unclear how the influence of cannabis compares to the lowest and highest levels of alcohol (i.e., Bins 1 and 4).

Hazard RT. In total, 15 effect sizes that compare alcohol to baseline were included. No effect sizes were sorted into Bin 4. Additionally, results from the primary analyses comparing cannabis to baseline are re-reported here. Results are presented in Table 63, below, and in Appendix D (see Figures D4 to D6).

		<i>Pre-Post Correlation</i> = zero (see also Fig. D4)								
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL				
Cannabis										
N/A	9	0.115	-0.077	0.307	-0.117	0.347				
Alcohol										
1	3	0.115	-0.282	0.511	-2.456	2.686				
2*	7	0.404	0.217	0.592	0.068	0.741				
3*	5	0.543	0.077	1.009	-1.030	2.116				
4	N/A	N/A	N/A	N/A	N/A	N/A				
		Pre-P	Post Correlation =	0.5 (see also Fi	g. D5)					
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL				
Cannabis										
N/A	9	0.148	-0.013	0.309	-0.138	0.434				
Alcohol										
1	3	0.110	-0.170	0.390	-1.707	1.926				
2*	7	0.373	0.178	0.568	-0.133	0.878				
3*	5	0.523	0.081	0.966	-1.075	2.121				
4	N/A	N/A	N/A	N/A	N/A	N/A				
		Pre-P	Post Correlation =	0.9 (see also Fi	g. D6)					
	k	r	95% CI LL	95% CI UL	95% PI LL	95% PI UL				
Cannabis										
N/A*	9	0.164	0.037	0.290	-0.206	0.534				
Alcohol										
1	3	0.085	-0.067	0.238	-1.304	1.474				
2*	7	0.329	0.169	0.490	-0.201	0.860				
3*	5	0.455	0.076	0.834	-1.000	1.910				
4	N/A	N/A	N/A	N/A	N/A	N/A				

Table 63. The effects of varying levels of alcohol on hazard RT (relative to baseline).

As reported in the primary analyses, there is a lack of association between cannabis and increases in hazard RT relative to baseline. Significant increases are only observed with a pre-

post correlation of 0.9; in this case, prediction intervals indicate that the effect is inconsistent. Similarly, Bin 1 (i.e., BAC up to 0.03%) was not found to increase hazard RT in any case. Bins 2 and 3 (i.e., BAC levels ranging from 0.04% to 0.09%) were consistently associated with increases in hazard RT, to a small to moderate degree. However, prediction intervals generally indicated a wide degree of variability around these small increases.

When effect sizes from Bins 1 through 3 are compared to one another, a dose-response relationship between BAC level and hazard RT is apparent. However, data for BAC levels ranging from 0.10% to 0.12% (i.e., Bin 4) are missing. Interestingly, the influence of cannabis appears to fall somewhere between Bin 1 and Bin 2. That is, cannabis appears to slow hazard RT slightly more than BAC levels up to 0.03%, but it does not slow hazard RT to quite the same extent as BAC levels ranging from 0.04% to 0.06%.

Lateral Position Variability. In total, the subgroup analysis included 60 effect sizes that compared alcohol to baseline. Additionally, results from the primary analyses comparing cannabis to baseline are re-reported here. Results are presented in Table 64, below, and in Appendix D (see Figures D7 to D9).

		Pre-Po	ost Correlation =	zero (see also Fi	lg. D7)	
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
Cannabis						
N/A*	14	0.366	0.205	0.528	0.186	0.546
Alcohol						
1*	8	0.304	0.040	0.569	-0.239	0.847
2*	27	0.310	0.217	0.403	0.212	0.408
3*	24	0.621	0.489	0.753	0.377	0.865
4*	1	0.969	0.335	1.603	N/A	N/A
		Pre-P	Post Correlation =	0.5 (see also Fig	g. D8)	
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
Cannabis						
N/A*	14	0.331	0.212	0.451	0.199	0.464
Alcohol						
1*	8	0.336	0.090	0.582	-0.328	0.999
2*	27	0.377	0.283	0.471	0.100	0.654
3*	24	0.599	0.493	0.706	0.325	0.873
4*	1	0.933	0.490	1.376	N/A	N/A
		Pre-P	ost Correlation =	0.9 (see also Fig	g. D9)	
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
Cannabis						
N/A*	14	0.270	0.175	0.365	-0.061	0.602
Alcohol						
1*	8	0.353	0.132	0.574	-0.372	1.078
2*	27	0.354	0.278	0.429	0.011	0.696
3*	24	0.478	0.407	0.549	0.201	0.755
4*	1	0.741	0.555	0.927	N/A	N/A

Table 64. The effects of varying levels of alcohol on lateral position variability (relative to baseline).

As reported in the primary analyses, cannabis consistently increased lateral position variability to a small degree. All three BAC bins were also consistently associated with small to moderate increases in lateral position variability. In all cases, the prediction intervals associated with Bin 1 (i.e., BAC levels up to 0.03%) indicated a possible *decrease* in lateral position variability in some cases.

A visual inspection of average effect sizes suggests a possible dose-response relationship between BAC level and lateral position variability, such that higher BAC levels lead to more variability. Similarities between cannabis and specific levels appear to depend on the pre-post correlation utilized. With a pre-post correlation of zero, cannabis appears to fall somewhere between Bin 2 (i.e., BAC 0.04% to 0.06%) and Bin 3 (i.e., BAC 0.07% to 0.08%). With pre-post correlations of 0.5 and 0.9, it appears to exert a weaker effect on lateral position variability than BAC levels up to 0.03% (i.e., Bin 1). However, interpretation is complicated by the presence of small study effects. As discussed in the primary meta-analysis, it is unclear whether the relationship between Hedge's g and its standard error observed within this sample of studies is legitimate, or whether it is due to publication bias. If the relationship is due to publication bias, then some or all of the effect sizes associated with Bins 1 through 4 are spuriously high, which makes it difficult to compare them with the effect size associated with cannabis.

Lane Excursions. Ultimately, the subgroup analysis contains 22 effect sizes that compared alcohol to baseline. No effect sizes were associated with Bin 1 or Bin 4. Additionally, results from the primary analyses comparing cannabis to baseline are re-reported here. Results are presented in Table 65, below, and in Appendix D (Figures D10 to D12).

	<i>Pre-Post Correlation</i> = zero (see also Fig. D10)								
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL			
Cannabis									
N/A	2	0.201	-0.078	0.480	N/A	N/A			
Alcohol									
1	0	N/A	N/A	N/A	N/A	N/A			
2*	9	0.317	0.134	0.500	-0.029	0.663			
3*	13	0.626	0.445	0.808	0.422	0.830			
4	N/A	N/A	N/A	N/A	N/A	N/A			
		Pre-Po	ost Correlation =	0.5 (see also Fig	g. D11)				
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL			
Cannabis									
N/A*	2	0.198	0.001	0.395	N/A	N/A			
Alcohol									
1	0	N/A	N/A	N/A	N/A	N/A			
2*	9	0.326	0.154	0.498	-0.119	0.771			
3*	13	0.568	0.417	0.719	0.256	0.881			
4	N/A	N/A	N/A	N/A	N/A	N/A			
		Pre-Po	ost Correlation =	0.9 (see also Fig	g. D12)				
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL			
Cannabis									
N/A*	2	0.180	0.092	0.268	N/A	N/A			
Alcohol									
1	0	N/A	N/A	N/A	N/A	N/A			
2*	9	0.246	0.138	0.354	-0.079	0.572			
3*	13	0.367	0.291	0.442	0.183	0.550			
4	N/A	N/A	N/A	N/A	N/A	N/A			

Table 65. The effects of varying levels of alcohol on lane excursions (relative to baseline).

As previously reported in the primary analyses, cannabis is generally associated with a small increase in lane excursions relative to baseline, assuming a pre-post correlation of at least

0.5 in included studies utilizing repeated-measures designs. In contrast, BAC levels up to 0.03% were not associated with a reliable change in lane excursions. It should be noted that this observation is based on only a single study of unknown generalizability, which did not utilize a repeated measures design. Finally, Bins 2 and 3 (i.e., BAC levels ranging from 0.04% to 0.09%) were associated with small to moderate increases in lane excursions in all cases. As with crashes, prediction intervals consistently indicated that BAC levels ranging from 0.04% to 0.06% (i.e., Bin 2) may be associated in some cases with *decreases* in lane excursions. Again, it is unknown whether this is a statistical artifact or indicative of compensatory behaviours among drivers.

Next, effect sizes are considered in relation to each other. First, there appears to be a dose-response relationship between BAC level and lane excursions, such that higher BAC levels lead to more lane excursions. Second, the effect of cannabis appears to fall somewhere between Bin 1 (i.e., BAC up to 0.03%) and Bin 2 (i.e., BAC 0.04% to 0.06%) in terms of its effect on lane excursions. Cannabis appears to affect lane excursions to a weaker degree than higher doses of alcohol. However, as with lateral position variability, small study effects were observed among this sample of effect sizes within the primary meta-analysis. It is unclear whether the relationship between Hedge's *g* and its standard error observed within this sample of studies is due to publication bias. If it is, then some or all of the effect sizes associated with Bins 1 through 4 are spuriously high, which makes it difficult to compare them with the effect size associated with cannabis.

Speed. Overall, the subgroup analysis included 50 effect sizes that compared alcohol to baseline. Additionally, results from the primary analyses comparing cannabis to baseline are re-reported here. Results are presented in Table 66, below, and in Appendix D (Figures D13 to D15).

		<i>Pre-Post Correlation</i> = zero (see also Fig. D13)							
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL			
Cannabis									
N/A*	12	-0.182	-0.348	-0.017	-0.371	0.006			
Alcohol									
1	9	0.110	-0.116	0.336	-0.202	0.421			
2*	21	0.113	0.014	0.212	0.008	0.219			
3*	19	0.188	0.076	0.299	0.067	0.308			
4	1	0.144	-0.376	0.665	N/A	N/A			
		Pre-Po	ost Correlation =	0.5 (see also Fig	g. D14)				
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL			
Cannabis									
N/A*	12	-0.176	-0.298	-0.053	-0.315	0.036			
Alcohol									
1	9	0.086	-0.117	0.289	-0.347	0.519			
2*	21	0.102	0.025	0.180	0.019	0.186			
3*	19	0.171	0.058	0.285	-0.158	0.500			
4	1	0.132	-0.236	0.500	N/A	N/A			
		Pre-Po	ost Correlation =	0.9 (see also Fig	g. D15)				
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL			
Cannabis									
N/A*	12	-0.205	-0.336	-0.074	-0.639	0.230			
Alcohol									
1	9	0.047	-0.108	0.202	-0.379	0.474			
2*	21	0.102	0.029	0.175	-0.170	0.374			
3*	19	0.147	0.047	0.246	-0.276	0.569			
4	1	0.086	-0.078	0.250	N/A	N/A			

Table 66. The effects of varying levels of alcohol on speed (relative to baseline).

As reported in the primary analyses, cannabis was consistently associated with a small decrease in speed. In contrast, Bins 2 and 3 (i.e., BAC 0.04% to 0.09%) were consistently

associated with a small *increase* in speed. Interestingly, prediction intervals associated with these two significant effects sometimes spanned ranges in the opposite direction. Specifically, the prediction intervals indicated that cannabis may *increase* speed in some cases, and in most cases, Bin 3 (i.e., BAC 0.06% to 0.08%) may be associated with *decreases* in speed as well. Bins 1 (i.e., BAC up to 0.03%) and 4 (i.e., BAC 0.07% to 0.09%), in all cases, had confidence intervals that spanned zero, indicating imprecision.

Next, effect sizes were considered in relation to each other. Unlike the other measures, a linear dose-response relationship between alcohol and effect size magnitude is not apparent. However, the sudden decrease in effect size magnitude associated with Bin 4 is based on only a single effect size of uncertain generalizability. It is unknown whether the effect is spuriously low, or whether the decreased propensity to speed at Bin 4 compared to Bin 3 represents deliberate compensatory strategies among drivers. More data is needed to verify driver behaviour at BAC levels ranging from 0.10% to 0.12% and to increase precision to facilitate comparisons between varying levels of alcohol in terms of their effects on speed. However, cannabis clearly appeared to have the opposite effect on speed as alcohol.

Speed Variability. Ultimately, the subgroup analysis included 36 effect sizes that compared alcohol to baseline. Additionally, results from the primary analyses comparing cannabis to baseline are re-reported here. Results are presented in Table 67, below, and in Appendix D (Figures D16 to D18).

	7 0.047 -0.220 7 0.135 -0.109 16 0.187 0.065 12 0.289 0.145 1 0.640 0.069 Pre-Post Correlation = 0 k g 95% CI LL 8 7 0.158 -0.024 16 0.220 0.093 12 0.273 0.158 1 0.601 0.201 Pre-Post Correlation = 0 Pre-Post Correlation = 0 k g 95% CI LL			zero (see also Fig	g. D16)	
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
Cannabis						
N/A	7	0.047	-0.220	0.314	-0.303	0.397
Alcohol						
1	7	0.135	-0.109	0.379	-0.185	0.455
2*	16	0.187	0.065	0.309	0.054	0.321
3*	12	0.289	0.145	0.433	0.125	0.453
4*	1	0.640	0.069	1.212	N/A	N/A
		Pre-Po	ost Correlation =	0.5 (see also Fig	g. D17)	
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
Cannabis						
N/A	7	0.104	-0.113	0.321	-0.180	0.388
Alcohol						
1	7	0.158	-0.024	0.340	-0.081	0.397
2*	16	0.220	0.093	0.347	-0.123	0.564
3*	12	0.273	0.158	0.388	0.087	0.459
4*	1	0.601	0.201	1.001	N/A	N/A
		Pre-Po	ost Correlation =	0.9 (see also Fig	g. D18)	
	k	g	95% CI LL	95% CI UL	95% PI LL	95% PI UL
Cannabis						
N/A*	7	0.166	0.048	0.284	-0.020	0.352
Alcohol						
1*	7	0.166	0.054	0.278	-0.096	0.427
2*	16	0.212	0.095	0.329	-0.235	0.660
3*	12	0.229	0.142	0.317	-0.051	0.510
4*	1	0.431	0.259	0.603	N/A	N/A

Table 67. The effects of varying levels of alcohol on speed variability (relative to baseline).

As reported in the primary analyses, cannabis was not associated with a reliable increase

in speed variability except for the case where a pre-post correlation of 0.9 was used. In contrast,

Bins 2 through 4 (i.e., BAC ranging from 0.04% to 0.12%) were consistently associated with increases in speed variability. Bin 4 (i.e., BAC 0.10% to 0.12%), which included only a single effect size of unknown generalizability, had the least precise estimate. Bin 1 (i.e., BAC up to 0.03%) was associated with a reliable increase in speed variability with a pre-post correlation of 0.9.

Visual inspection of average effects suggests a possible dose-response relationship, such that speed variability increases with higher BAC levels. Additionally, the effect of cannabis appeared to be weaker than the effect of Bin 1 (i.e., BAC up to 0.03%).

Study Quality & Risk of Bias

The results of the study quality and risk of bias assessment are reported in Appendix F. Here, notable study quality issues and risk of bias issues related to selection bias, blinding, participant attrition, reporting bias and sample size are discussed.

Selection bias. Many, if not most, of the included studies are at risk of selection bias. Of the studies that described their recruitment method, most relied on self-referral (e.g., potential participants responded to posters or advertisements), and a small number involved recruiting individuals known to the research team. Although researchers are largely limited to these methods out of necessity, participants recruited via these methods do not necessarily represent the broader population of drivers who use cannabis and/or alcohol. Possibly, participants who are self-referred may be interested in demonstrating their perceived efficacy (or inefficacy) in driving under the influence of cannabis or alcohol. Participants may be motivated to prove that they can drive safely under the influence of cannabis (Hartman et al., 2015). Notably, Brands et al. (2019) indicated that a participant was removed from their analysis for attempting to "skew" the data. Participants' attempts to bias driving data, however, can only succeed to the extent that

participants are unblinded. Unfortunately, deblinding to experimental conditions appears to be a pervasive issue in this research domain (see *Deblinding and nonblinding*, below).

In addition to the possible risk of selection bias arising from recruitment methods, study inclusion and exclusion criteria also limit the generalizability of findings. Typically, studies exclude participants with substance dependency, including cannabis and alcohol (see Table 2). Although research ethics may preclude researchers from administering cannabis or alcohol to individuals with substance dependencies, the literature indicates that driving under the influence of cannabis and alcohol in real life is often associated with problematic use or dependency (Cook et al., 2017; Swift et al., 2010; Jones et al., 2007; Begg et al., 2003; Evans, 2004).

Deblinding and nonblinding. It was often difficult to assess whether research participants were aware of the researchers' hypotheses based on methodological descriptions, which led to more disagreements and discussions among coders. These disagreements are reflected in lower Kappa scores⁷ (see Table F2 in Appendix F). Also, it was not uncommon for studies to report that ratings of subjective drug high varied between active and placebo cannabis conditions (e.g., Anderson et al., 2010; Bosker et al., 2012; Liguori, 1998; Liguori et al. 2002) or that participants could tell the difference between active and placebo cannabis conditions (e.g., Arkell et al., 2019; Ronen et al., 2010; Sexton et al., 2000; Sexton et al., 2002; Stein, 1985). Concerns about the utility of placebo cannabis are not new (Sutton, 1983).

Although individuals who drive while under the influence of cannabis and/or alcohol in the real world are not typically blind to their state, limitations in recruitment methods could lead

⁷ As previously discussed, all disagreements were followed up with discussions between coders until a consensus was reached.

to the enrolment of participants who may not drive as they normally would in real life, but would instead exaggerate their driving behaviour in an attempt to "prove" that they can drive safely while under the influence. The extent of this issue in biasing research findings across the literature, however, is unknown. However, the lack of blinding among participants in experimental driving studies focused on cannabis and alcohol is not exceptional among the broader impaired driving literature. Notably, experimental driving studies that investigate the effects of cell phones or other technological distractions compared to baseline driving cannot blind participants to study conditions either. On the other hand, systematic changes in driver behaviour toward safety in experimental driving studies has interesting real-world implications. Findings from experimental driving studies can be thought of as demonstrative of participants' driving abilities while they are driving as well as they possibly can (Evans, 2004). Driving performance decrements observed in experimental driving studies (i.e., slowing of hazard RT, impaired lane keeping and longitudinal control) may theoretically be worse in real life.

In addition to participant deblinding, non-blinding of researchers to participant drug conditions was common. Although non-blinding of researchers is unlikely to influence the *measurement* of driving performance and behaviour data (i.e., detection bias), which is usually captured automatically (and objectively) in simulators or with instrumented vehicles, the non-blinding of researchers or study personnel to participant drug conditions could theoretically lead to changes in the way that researchers or study personnel interact with research participants and consequently lead to changes in the way that participants behave in study conditions.

Attrition reporting. In many cases, it was difficult to tell how many of the enrolled participants completed the entirety of the study. Even when no dropouts or withdrawals were reported, it was unclear whether all enrolled participants had actually completed the study or

whether non-completing participants went without mention. Notably, one study that reported one withdrawal did not report a substantial number of participant drop-outs that were identified only after reviewing the study's online registration (Hartman et al., 2015). Rates and reasons for withdrawals and dropouts help readers understand whether research findings reported in a study may be biased due to attrition. Reporting rates of study dropouts and withdrawals also helps future researchers anticipate and prepare for rates of attrition in their own future studies.

Reporting bias. Most of the included studies were deemed to be at low risk of reporting bias. Specifically, the measures reported in the method section matched the measures reported in the results section. When measures indicated in the method were not reported in the results, or the results section contained measures that were not pre-specified (including cases where no measures were pre-specified at all), the study was typically deemed to be at high risk of reporting bias. In cases where it was unclear whether all measures were reported upon, such as cases where categories of measures were pre-specified instead of specific measures, or cases where it was unclear whether measures they were actually variables of interest (e.g., crashes, or automatically-captured driving performance data), the study was typically deemed to be at an unclear risk of reporting bias. This item often had more disagreements and discussions among coders (see Table F2 in Appendix F).

However, in assessing risk of bias, it became clear that the criteria for judging risk of bias was fundamentally limited. Publishing multiple studies with different measures collected from the same participant dataset, known as "salami-slicing," is not an uncommon practice in this body of literature. Clearly, there is little utility in judging whether measures reported in the method and results match when additional undeclared measures may be reported in additional publications. Researchers are strongly encouraged to be transparent in reporting nonindependence between data appearing in multiple publications. Transparency is particularly important when measures collected from a common participant dataset that appear in multiple publications tap into a common construct (e.g., lane keeping ability). Without context, readers may believe that the literature of evidence for an effect is larger and more consistent than it really is. Similarly, when similar measures from multiple studies involving common participant datasets are inadvertently pooled in a meta-analysis, the precision of the effect is over-estimated, leading to bias in the summary statistic (Borenstein et al., 2009, pp. 225-238).

Sample size. Finally, very few of the included studies reported targeting a specific sample size based on hypothesized effect size and power. Sample sizes that are too small lead to not only decreased power, but also the increased probability that statistically-significant effects are spurious (Ioannidis, 2005). Researchers who conduct experimental driving studies focused on the effects of cannabis in the future should ensure that studies are adequately powered by enrolling an appropriate number of participants. The summary statistics reported in this meta-analysis may be consulted for this purpose.

Chapter 4: Discussion

The following section is composed of five key subsections. First, the results of the metaanalysis are summarized. Second, theoretical implications are discussed with reference to Fuller's (2005) Task-Capability Interface model. Third, practical implications for policy-makers and real world drivers are described. Fourth, limitations of the meta-analysis are listed. Finally, future research directions are outlined.

Results of the Meta-Analysis

The body of experimental literature focused on the effects of cannabis on driving performance and behaviour, for which effect sizes can be computed, is relatively small. Within this body of literature, there is clear evidence that cannabis impairs lateral control (i.e., increases in lateral position variability, possible increases in lane excursions) and causes reductions in speed relative to baseline driving. In contrast, there was no compelling evidence that cannabis reliably changes rates of crashes, hazard RT, headway, headway variability, time out of lane, speed variability, speed exceedances or time speeding. Results are summarized in Table 68, below.

Table 68. Summary of the effects of cannabis on driving performance and behaviour relative to baseline.

Measure	k	Ν	Results
Crashes	1	80	No compelling evidence that cannabis reliably changes crash rates relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Hazard RT	9	242	No compelling evidence that cannabis reliably changes hazard RT relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Headway	1	14	No compelling evidence that cannabis reliably changes headway relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Headway Variability	1	14	No compelling evidence that cannabis reliably changes headway variability relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Lateral Position Variability	14	257	On average, cannabis increases lateral position variability by approximately 0.3 to 0.4 standard deviations relative to baseline in experimental studies.
Lane Excursions	2	98	Based on limited evidence, cannabis generally increases lane excursions by approximately 0.2 standard deviations, on average, relative to baseline in experimental studies.
Time Out of Lane	1	18	No compelling evidence that cannabis reliably changes time out of lane relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed	12	312	On average, cannabis decreases speed by approximately 0.2 standard deviations relative to baseline in experimental studies.
Speed Variability	7	137	No compelling evidence that cannabis reliably changes speed variability relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Exceedances	1	80	No compelling evidence that cannabis reliably changes rates of speed exceedances relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Speeding	0	0	Insufficient data for meta-analysis.

It is critical to understand that for all the above variables where there is a lack of evidence

for an effect of cannabis on an experimental driving measure, it is not necessarily the case that the measure is wholly unaffected by cannabis. Likewise, it is incorrect to conclude that lateral control and speed are more strongly affected by cannabis than are crashes, hazard RT, headway, headway variability, time out of lane, speed variability and speed exceedances. Very few studies have studied the influence of cannabis on these measures and reported data necessary for effect size computation. Consequently, the meta-analyses conducted to assess the influence of cannabis on these measures lack precision. Additional data is sorely needed to understand how cannabis affects response time to hazards, following distance, longitudinal control and crash involvement in experimental studies.

Compared to the body of experimental literature focused on the effects of cannabis on driving performance and behaviour relative to sober driving, the literature focused on directly comparing the effects of cannabis and alcohol on driving performance and behaviour, for which effect sizes can be computed, is even smaller. However, this report also incorporates indirect evidence by way of comparing the effects of cannabis on driving performance and behaviour relative to baseline driving, to the effects of alcohol on driving performance and behaviour relative to baseline driving, via subgroup analyses. Direct comparisons are summarized in Table 69, below.

Table 69. Summary of the effects of cannabis on driving performance and behaviour relative to alcohol.

Measure	k	Ν	Results
Crashes	1	80	No compelling evidence that cannabis reliably changes crash rates relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Hazard RT	4	128	No compelling evidence that cannabis reliably changes hazard RT relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Headway	0	0	Not enough data for meta-analysis.
Headway Variability	0	0	Insufficient data for meta-analysis.
Lateral Position Variability	5	81	No compelling evidence that cannabis reliably changes lateral position variability relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Lane Excursions	2	98	No compelling evidence that cannabis reliably changes rates of lane excursions relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Out of Lane	1	18	No compelling evidence that cannabis reliably changes time out of lane relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed	4	125	Based on limited evidence, cannabis decreases speed by approximately 0.3 to 0.4 standard deviations, on average, relative to alcohol in experimental studies. However, both the strength and direction of the effect vary substantially based on unknown moderating factors. More research is needed to fully characterize how cannabis and alcohol differ in terms of their effects on speed.
Speed Variability	2	26	No compelling evidence that cannabis reliably changes speed variability relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Exceedances	1	80	Based on limited evidence, cannabis generally decreases rates of speed exceedances by approximately 0.2 standard deviations, on average, relative to alcohol in experimental studies.
Time Speeding	0	0	Insufficient data for meta-analysis.

Again, it is critical to understand that for all cases where there is a lack of evidence for a difference between cannabis and alcohol on an experimental driving measure, it is not necessarily the case that cannabis and alcohol have the same effect on that measure. Few effect

sizes were included in these analyses, leading to measurement imprecision.

There are limitations to interpreting the similarities and differences between cannabis and alcohol without accounting for differences in dose. Obviously, higher doses of alcohol are more intoxicating than lower doses of alcohol, so the natural question to ask is how cannabis differs from different levels of alcohol. For this reason, subgroup analyses based on BAC were

conducted. However, given the paucity of literature that directly compares the influence of cannabis to the influence of alcohol on driving performance and behaviour, only indirect comparisons were included in the subgroup analyses. Specifically, the effects of alcohol on driving performance and behaviour relative to baseline were stratified within subgroup analyses for measures that had ten or more included studies. The effects of each range of blood alcohol concentrations on driving performance and behaviour relative to baseline were then compared to the effect of cannabis on driving performance and behaviour relative to baseline. Indirect comparisons based on subgroup analyses are summarized in Table 70, below.

Table 70. Summary of the effects of cannabis on driving performance and behaviour relative to baseline, compared to the effects of alcohol on driving performance and behaviour relative to baseline.

Measure	Results
Crashes	Based on limited data, cannabis is not associated with an increase in crashes in experimental studies. However, crashes increase at BAC levels of to 0.03%, and to an even greater extent at BAC levels of 0.04% to 0.06%. Thus, cannabis affects crashes to a lesser extent than BAC levels ranging from 0.04% to 0.06%, and to an even lesser extent than BAC levels ranging from 0.07% to 0.09%. However, there is not enough data to compare cannabis to BAC levels up to 0.03%, or from 0.10% to 0.12%.
Hazard RT	Based on limited data, cannabis is not associated with an increase in hazard RT. However, hazard RT slows with increasing BAC levels starting at a BAC of 0.04%. Thus, cannabis affects hazard RT to a similar or greater extent than BAC levels up to 0.03%, but to a lesser extent than BAC levels of 0.04% and higher.
Lateral Position Variability	Based on limited data, lateral position variability increases with increasing BAC levels. Cannabis increases lateral position variability to a similar, greater or lesser extent than BAC levels up to 0.03% (depending on the pre-post correlation used), but it increases lateral position variability to a lesser extent than BAC levels of 0.07% and higher.
Lane Excursions	Based on limited data, cannabis increases lane excursions to a lesser extent than BAC levels ranging from 0.04% to 0.06%, and to an even lesser extent than BAC levels ranging from 0.07% to 0.09%. However, there is not enough data to compare cannabis to BAC levels up to 0.03%, or from 0.10% to 0.12%.
Speed	Based on limited data, speed increases with increasing BAC levels up to 0.09%. Only one effect size is included with a BAC level of 0.10% to 0.12%. Cannabis decreases speed relative to all BAC levels. Up to a BAC level of 0.09%, greater differences in speed between cannabis and alcohol are observed with increasing BAC levels.
Speed Variability	Based on limited data, cannabis is not associated with an increase in speed variability. However, speed variability increases with increasing BAC levels starting at a BAC of 0.04%. Thus, cannabis affects speed variability to a similar or lesser extent than BAC levels up to 0.03%.

To the extent that greater blood alcohol concentrations lead to greater driving

performance decrements, cannabis appears to affect driving performance to a similar extent as low levels of alcohol. Specifically, for the measures reported here, there are no instances where the average effect of cannabis is equal to or greater than the driving performance decrements associated with a BAC concentration ranging from 0.04% to 0.06%. With respect to speed, cannabis and alcohol had opposite effects. Cannabis led to decreases in speed, whereas alcohol led to increases in speed, with generally greater increases in speed at higher BAC levels. The body of literature that compares the effect of the combination of cannabis and alcohol to baseline or either in isolation is, like the body of literature focused on comparisons of cannabis to alcohol on driving performance and behaviour, small and in need of further study. Results of the effect of the combination of drugs on driving performance and behaviour, relative to baseline, are summarized in Table 71, below. Results of the effect of the combination of drugs on driving performance and behaviour, relative to either in isolation, are also summarized and appear in subsequent tables in this section, below.

Table 71. Summary of the effects of the combination of cannabis and alcohol on driving performance and behaviour, relative to baseline.

Measure	k	Ν	Results
Crashes	1	80	Based on limited evidence, the combination of drugs generally increases crash rates by approximately 0.2 standard deviations, on average, relative to baseline in experimental studies.
Hazard RT	4	129	Based on limited evidence, the combination of drugs slows hazard RT by approximately 0.3 to 0.4 standard deviations, on average, relative to baseline in experimental studies. However, both the strength and direction of the effect vary substantially based on unknown moderating factors. More research is needed to fully characterize the relationship between the combination of drugs and hazard RT.
Headway	0	0	Insufficient data for meta-analysis.
Headway Variability	0	0	Insufficient data for meta-analysis.
Lateral Position Variability	4	68	Based on limited evidence, the combination of drugs increases lateral position variability by approximately 0.5 standard deviations, on average, relative to baseline in experimental studies. However, both the strength and direction of the effect vary substantially based on unknown moderating factors. More research is needed to fully characterize the relationship between the combination of drugs and headway.
Lane Excursions	2	98	Based on limited evidence, the combination of drugs increases rates of lane excursions by approximately 0.2 to 0.3 standard deviations, on average, relative to baseline in experimental studies.
Time Out of Lane	1	18	Based on limited evidence, the combination of drugs increases time out of lane to approximately 0.5 to 0.7 standard deviations, on average, relative to baseline in experimental studies.
Speed	3	112	No compelling evidence that the combination of drugs reliably changes speed relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Variability	1	12	No compelling evidence that the combination of drugs reliably changes speed variability relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Exceedances	1	80	No compelling evidence that the combination of drugs reliably changes rates of speed exceedances relative to baseline in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Speeding	0	0	Insufficient data for meta-analysis.

Generally, the combination of cannabis and alcohol is detrimental to driving performance

relative to baseline. However, the literature is small, and the meta-analyses suffer from

imprecision.

Next, the effects of the combination of cannabis and alcohol on driving performance and

behaviour relative to alcohol are considered. Results are summarized in Table 72, below.

Table 72. Summary of the effects of the combination of cannabis and alcohol on driving performance and behaviour, relative to alcohol.

Measure	k	Ν	Results
Crashes	1	80	No compelling evidence that the combination of drugs reliably changes crash rates relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Hazard RT	4	128	No compelling evidence that the combination of drugs reliably changes hazard RT relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Headway	0	0	Insufficient data for meta-analysis.
Headway Variability	0	0	Insufficient data for meta-analysis.
Lateral Position Variability	4	67	Based on limited evidence, the combination of drugs increases lateral position variability by approximately 0.5 standard deviations, on average, relative to alcohol in experimental studies. However, both the strength and direction of the effect vary substantially based on unknown moderating factors. More research is needed to fully characterize how the combination of drugs, and alcohol alone, differ in terms of their effects on lateral position variability.
Lane Excursions	2	98	No compelling evidence that the combination of drugs reliably changes rates of lane excursions relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Out of Lane	1	18	Based on limited evidence, the combination of drugs generally increases time out of lane by approximately 0.4 to 0.6 standard deviations, on average, relative to alcohol in experimental studies.
Speed	3	111	No compelling evidence that the combination of drugs reliably changes speed relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Variability	1	12	No compelling evidence that the combination of drugs reliably changes speed variability relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Exceedances	1	80	No compelling evidence that the combination of drugs reliably changes rates of speed exceedances relative to alcohol in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Speeding	0	0	Insufficient data for meta-analysis.

This meta-analysis indicates that the combination of cannabis and alcohol is more

detrimental to driving performance relative to alcohol in isolation. Again, the literature is small, and the meta-analyses suffer from imprecision.

Finally, the effects of the combination of cannabis and alcohol on driving performance

and behaviour relative to cannabis are considered. Results are summarized in Table 73, below.

Table 73. Summary of the effects of the combination of cannabis and alcohol on driving performance and behaviour, relative to cannabis.

Measure	k	Ν	Results
Crashes	1	80	No compelling evidence that the combination of drugs reliably changes crash rates relative to cannabis in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Hazard RT	4	129	No compelling evidence that the combination of drugs reliably changes hazard RT relative to cannabis in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Headway	0	0	Insufficient data for meta-analysis.
Headway Variability	0	0	Insufficient data for meta-analysis.
Lateral Position Variability	4	68	Based on limited evidence, the combination of drugs generally increases lateral position variability by approximately 0.3 standard deviations, on average, relative to cannabis in experimental studies. However, both the strength and direction of the effect vary substantially based on unknown moderating factors. More research is needed to fully characterize how the combination of drugs, and cannabis alone, differ in terms of their effects on lateral position variability.
Lane Excursions	2	98	No compelling evidence that the combination of drugs reliably changes rates of lane excursions relative to cannabis in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Out of Lane	1	18	Based on limited evidence, the combination of drugs generally increases time out of lane by approximately 0.3 to 0.5 standard deviations, on average, relative to cannabis in experimental studies.
Speed	3	112	No compelling evidence that the combination of drugs reliably changes speed relative to cannabis in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Variability	1	12	No compelling evidence that the combination of drugs reliably changes speed variability relative to cannabis in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Speed Exceedances	1	80	No compelling evidence that the combination of drugs reliably changes rates of speed exceedances relative to cannabis in experimental studies. Lack of compelling evidence is primarily due to lack of data, which results in imprecision. More research is needed.
Time Speeding	0	0	Insufficient data for meta-analysis.

Consistent with comparisons of the combination of drugs on driving performance relative

to alcohol in isolation, the combination of drugs has a more detrimental effect on driving

performance than cannabis in isolation.

Theoretical Implications

The influence of cannabis on lateral control and speed have several theoretical implications. First, Fuller (2005) conceptualizes speed as the mechanism by which drivers regulate effort (and when required, risk) while driving. The observed reductions in speed associated with cannabis indicate that drivers experience increased difficulty and/or risk while completing the driving task while under the influence of cannabis, compared to while sober (i.e., baseline). Interestingly, cannabis was also found to increase lateral position variability and lane exceedances. This suggests that drivers' attempts to compensate for increased driving difficulty may not be entirely successful, and detriments in driving performance (i.e., increased lateral position variability) may still occur.

The consideration of drivers' compensatory attempts while driving under the influence of cannabis within the context of Fuller's (2005) theory generates important hypotheses related to real-world driver behaviour. Compensatory behaviours can occur not only at the tactical level (i.e., changes in driving speed), but also at the strategic level, which "defines the general planning stage of a trip, including the determination of trip goals, route, and modal choice, plus an evaluation of the costs and risks involved" (Michon, 1985, p. 481). Within an experimental driving study, participants are essentially limited to compensating at a tactical level, such as through adjustments to speed and following distance. However, in the real world, drivers may also compensate at a strategic level. The rationale for this hypothesis rests on an important assumption – namely, that drivers make a conscious choice to compensate for increased driving task difficulty (versus reducing their speed as a consequence of a more automatic, perceptually-driven process; Ward & Dye, 1999), and that their conscious choice is not simply a demand characteristic arising from observation by researchers. Indeed, studies have found that some

individuals who drive while under the influence of cannabis do report making conscious efforts to compensate for their intoxicated state by decreasing their driving speed, as well as by increasing their following distance and engaging in generally more "careful" or more "cautious" driving (Watson et al., 2019; Brooks-Russell et al., 2019; MacDonald et al., 2008). As predicted by Fuller's (2005) model, research has also found that some individuals have reported compensating at a strategic level while under the influence of cannabis, such as by delaying the start of the drive or limiting the amount of cannabis consumed prior driving (Watson et al., 2019; Swift et al., 2010). Strategic-level compensatory mechanisms have important implications for the crash risk associated with cannabis (Rogeberg & Elvik, 2016). However, self-reports of compensatory strategies are fundamentally limited, and more objective data from more representative samples would aid in more fully characterizing how and when different subpopulations of cannabis users (i.e., infrequent users, regular users, medical users, dependent users) compensate at both the tactical and strategic level.

Although it is not clear whether reductions in speed observed in experimental driving studies reflect a conscious decision on the part of the driver, or a more automatic, perceptuallydriven process, or some combination of both (Ward & Dye, 1999), both are consistent with Fuller's (2005) model. However, the former would be consistent with cases where drivers respond to increases in perceived risk (rather than general increases in task demands) while driving under the influence of cannabis. Differentiating the relative contributions of automatic and conscious processes to speed changes are an important avenue for future research (see *Future Research*, below).

Next, the differential effects of cannabis and alcohol can also be interpreted in terms of Fuller's (2005) theory. Fuller's (2005) theory posits that drivers use speed to regulate effort

while driving; when the driving task becomes difficult, drivers slow down, and when the driving task becomes easier, drivers speed up. In the case of cannabis, it is clear that the lateral position of the vehicle becomes more difficult to maintain, and drivers attempt to compensate for increased task difficulty by slowing down. However, drivers under the influence of alcohol also, on average, experience lateral control difficulties (i.e., more lateral position variability, increased lane excursions, more time out of lane), as well as more crashes, slowed hazard RT, and longitudinal control difficulties (i.e., increased headway variability, increased speed variability). Despite this, drivers under the influence of alcohol do not slow down - instead, the results indicate that on average, they *increase* their driving speed in the included studies. It is not entirely clear why this occurs, but consideration of Fuller's (2005) model allows for some hypotheses to be generated. Perhaps drivers temporarily adopt a higher threshold for effort. Alternatively, participants under the influence of alcohol may not have realized that the driving task had become more difficult due to some sort of perceptual failure. Again, the perceptual and/or cognitive mechanisms underlying changes in driving speed while under the influence of cannabis and/or alcohol should be investigated in the future.

Finally, based on limited evidence, the combination of cannabis and alcohol has negative effects on driving ability compared not only to sober (i.e., baseline) driving, but also to either drug in isolation. Based on Fuller's (2005) model, driving performance decrements observed with the combination of cannabis and alcohol, which are greater in magnitude than either in isolation, should be accompanied speed reductions that are also of a greater magnitude than either in either in isolation. However, the results of this meta-analysis also indicate that alcohol does not lead to decreases in speed despite clearly impaired lane keeping, which makes predictions about the influence of the combination of the two drugs on driving speed difficult.

Some researchers have suggested that when cannabis and alcohol are combined, they effectively cancel each other out: specifically, it has been hypothesized that the propensity toward slowing down while under the influence of alcohol and the propensity toward slowing down while under the influence of alcohol are additive, resulting in a null effect on speed (Ronen et al., 2010; Hartman et al., 2016). Although the combination of cannabis and alcohol was not associated with a change in speed relative to baseline, the results of this meta-analysis do not provide evidence that the two drugs counteract each other. A lack of evidence for an effect is not evidence for a null effect. The lack of an effect reported here is due to the small number of included studies, which lead to imprecision. In contrast, if a very small effect size and narrow confidence interval were observed, there may be reason to believe that the drugs counteract each other. Given that this was not one of the results of this meta-analysis, the hypothesis that cannabis and alcohol counteract each other on speed is not substantiated here. Future research is needed to verify how the combination of cannabis and alcohol affect driving speed relative to baseline and either drug in isolation.

Practical Implications

The results of this meta-analysis have important implications for real-world drivers. Does driving under the influence of cannabis constitute impaired driving? The results of the metaanalyses clearly indicate that driving under the influence of cannabis is impaired driving, and there is no evidence that cannabis improves driving ability, as some drivers would like to believe (Watson et al., 2019; Brooks-Russell et al., 2019; Swift et al., 2010; Terry & Wright, 2005). Although experimental driving studies indicate that cannabis is associated with slower driving speeds, impaired lane keeping persists. Additionally, based on limited evidence, the combination of cannabis and alcohol is more detrimental to lateral control than either alcohol or cannabis in isolation. However, the literature is quite limited. Few studies incorporating the experimental driving measures reviewed here assess the influence of the combination of cannabis and alcohol to either in drug isolation. Again, more research is sorely needed in this area.

Evidence for additive effects of cannabis and alcohol warrants careful consideration of the need for and selection of appropriate countermeasures. In Canada, it is a criminal offence to drive within two hours of having a prohibited level of either alcohol or THC in the blood (Government of Canada, 2018). The prohibited limit for alcohol is 80 mg per decilitre of blood, and the prohibited limit for THC is 2 ng per millilitre of blood for a summary offence and 5 ng per millilitre of blood for a hybrid offence (Government of Canada, 2018). However, the combination of drugs is subject to special provisions: it is also an offence to drive within two hours of having both 50 mg of alcohol per decilitre (i.e., 0.05% BAC) and 2.5 ng of THC per millilitre of blood concurrently (Government of Canada, 2018). The implicit assumption behind the adjustment to the blood alcohol limit during the simultaneous presence of THC is that the effects of cannabis and alcohol are additive. Indeed, the results of the present meta-analysis are not at odds with this assumption. Additionally, driving under the combined influence of both cannabis and alcohol is not an uncommon behaviour. Research conducted in Canada, Switzerland, New Zealand, France, Australia, Italy and the United States indicates that the concurrent presence of alcohol is common among suspected impaired drivers who test positive for cannabis (Senna et al., 2010; Couper et al., 2014; Wood & Salomonsen-Sautel, 2016), as well as among cannabis-positive drivers involved in injury crashes (Mura et al., 2003; Longo et al., 2000; Favretto et al., 2018) and in fatal crashes (Poulsen et al., 2012; Laumon et al., 2005; Romano et al., 2017; Davey et al., 2020; Drummer et al., 2003; Beasley et al., 2011). However,

the implementation of THC limits may not be the most appropriate approach to managing cannabis-impaired driving, with or without concurrent alcohol impairment, for several reasons.

First, THC limits do not appear to have a strong empirical foundation. One paper often cited as a source for THC limits is an influential analytic study conducted by Grotenhermen and colleagues (2005). According to Grotenhermen and colleagues (2005), per se limits from alcohol were primarily based on epidemiological studies focused on quantifying crash risk. However, in the absence of sufficient epidemiological data, Grotenhermen and colleagues (2005) also considered experimental data. In particular, the two meta-analyses by Berghaus and colleagues (1998a, 1998b), which are described in the Introduction of this dissertation, formed the basis of Grotenhermen and colleagues' (2005) analysis. As discussed, Berghaus and colleagues' (1998a, 1998b) research syntheses are limited in a number of ways: they included studies focused on driving-related skills, which have an ambiguous relationship with safety (Shinar, 2017, p. 659); THC concentrations associated with observed effects were often imputed rather than measured directly; and, the syntheses used a vote-counting method, which is not a valid approach to metaanalysis (Borenstein et al., 2009, pp. 251-255, 325). Additionally, the results of the current metaanalysis suggest that the assumptions underlying Berghaus and colleagues' (1998, 1998b) syntheses are invalid. To illustrate, Grotenhermen and colleagues' (2005) reiterate the following limitation identified by Berghaus and colleagues (1998a, 1998b) in relation to their own two syntheses:

The methodology of comparative meta-analyses assumes implicitly that if a set of THC and alcohol concentrations produces the same impairment ratio in experimental studies, it also produces the same actual accident risk under real traffic conditions. This assumption will not be valid if drivers under traffic conditions compensate differently for the

impairment caused by THC and alcohol. (Grotenhermen et al., 2005, p. 30) As indicated in the current meta-analysis, drivers under the influence of cannabis in experimental driving studies decrease their driving speed, whereas drivers under the influence of alcohol increase their driving speed. Thus, drivers under the influence of cannabis compensate for increased task demands or risk while driving, while drivers under the influence of alcohol do not. Consequently, the assumptions underlying Berghaus and colleagues' (1998a, 1998b) comparative meta-analyses do not hold, and suggestions for THC limits based on those metaanalyses, such as those offered by Grotenhermen and colleagues (2005, 2007), are not valid for this reason, among others discussed above.

Second, as discussed in the introduction, cannabis and alcohol differ in their respective pharmacokinetic and pharmacodynamic profiles. Because cannabis and alcohol are dissimilar substances, it is overly simplistic to attempt to approach the detection of and countermeasures to cannabis-impaired driving in the same manner as alcohol-impaired driving (e.g., by implementing legislated limits). Research indicates that blood THC concentration is not a good marker of whether someone is fit or unfit to drive which complicates attempts to select and justify any particular THC limit. For example, Logan and colleagues (2016) investigated whether THC concentrations could be used to predict "impairment" measured as Drug Recognition Expert (DRE) evaluation performance. Overall, Logan et al. (2016) reported that errors on most indicators did not differ between individuals with THC concentrations above and below 5 ng/mL of THC. Additionally, DRE indicators failed to discriminate between individuals with THC concentrations above and below 5 ng/mL.

simply: "the data do not support science-based per se limits for THC" (p. 28). Logan and colleagues' (2016) interpretation of their results was later criticized by Capler and colleagues (2017), who questioned the use of DRE evaluation performance as an indicator for impairment. However, similar null findings were observed in a recent Canadian study that sampled excess routine blood work collected by physicians from drivers injured in police-investigated collisions. This study found that there was no increase in crash responsibility at blood THC levels less than 2 ng/mL (the summary offence limit), between 2 ng/mL and 5 ng/mL, or over 5 ng/mL (the hybrid offence limit) of whole blood (Brubacher et al., 2019).

In its analysis of Bill C-46 in September 2017, the Canadian Bar Association (CBA) stated: "The CBA Section recommends that the federal government base any measurement of blood drug concentration on proven scientific evidence that links the concentration to impairment" (CBA, 2017, p. 5). Currently, the scientific evidence is weak. Researchers disagree on the extent to which THC concentrations are a valid indicator of driver impairment, in part due to disagreements about what exactly constitutes impairment. Indeed, constitutional challenges to Canada's impaired driving legislation targeting cannabis-positive drivers are anticipated (e.g., The Canadian Press, 2019a).

Finally, it is not known whether per se limits for THC reduce the prevalence of cannabisimpaired drivers or prevents injuries or fatalities (Anderson & Rees, 2015; Logan et al., 2016). However, it is generally accepted that alcohol per se limits were only partially responsible for the historical decrease in alcohol-involved fatal crashes since their implementation; increased visibility of enforcement, as well as revolutionary changes in societal norms and opinions about alcohol-impaired following the work of grassroots organizations such as MADD, also played an important role (Evans, 2004). The belief that cannabis impairs driving ability is associated with decreased intent to drive under its influence (Davis et al., 2016; Swift et al., 2010; Jones et al., 2007). To decrease rates of cannabis-impaired driving and cannabis-involved crashes, societal opinions about driving under the influence of cannabis – specifically, that it is safe, or potentially even makes one a better driver – need to change. This meta-analysis clearly indicates that cannabis impairs driving. Furthermore, engaging in compensatory strategies are likely insufficient to mitigate against cannabis impairment.

Given these issues, it is the opinion of this author that a more pragmatic approach than the implementation of THC limits may be a universal adjustment to existing BAC limits. Based on the subgroup analyses (i.e., of crashes, hazard RT, lateral position variability, lane excursions and speed variability), cannabis appears to affect driving performance to a similar level as low levels of alcohol. If the detrimental effects of cannabis on driving (i.e., a doubling in crash risk) are conceptualized as a benchmark against which to judge the necessity for legislative interventions in response to other forms of impaired driving, and the detrimental effects of cannabis on driving performance appear to be similar in magnitude to levels of alcohol below the current Canadian BAC limit of 80 mg of alcohol per decilitre of blood (i.e., 0.08% BAC), then it becomes apparent that the appropriateness of the current BAC limit needs to be revisited once more (for a previous argument to lower the Canadian BAC limit, see Chamberlain & Solomon, 2002). Specifically, it follows that there is a case for lowering the blood alcohol limit from 80 mg of alcohol per decilitre of blood, which is associated with a quadrupling of crash risk (Compton & Berning, 2015), to 50 mg of alcohol per decilitre of blood (i.e., 0.05% BAC), which is associated with an approximately doubled crash risk (Compton & Berning, 2015). Indeed, 50 mg of alcohol per decilitre of blood was the proposed limit previously suggested by Chamberlain and Solomon (2002) nearly two decades ago. There is evidence that lowering blood alcohol

limits from 0.08% BAC to 0.05% BAC decreases rates of injuries and fatalities not only among drivers with blood alcohol levels targeted by the reduced limit, but at all BAC levels (Fell & Scherer, 2017; Fell & Voas, 2014; Mann et al., 2001). Thus, a universal BAC limit of 0.05% could be used to not only to charge the same suspected cannabis-and-alcohol impaired drivers to whom the current regulations apply, but it could also potentially deter other cases of alcohol-impaired driving.

Limitations

This meta-analysis is not without limitations. Notably, the meta-analysis suffers from data loss, which is particularly problematic given that the extant literature is already small. As discussed, the meta-analysis suffers from imprecision. However, much of the eligible literature also fails to report the complete set of data needed to compute effect sizes. First, in order to compute standardized mean difference effect sizes for within-subjects studies, which comprise the majority of the literature, the correlation between pairs of scores is required. However, in most cases, these are not reported and are irretrievable. This issue is not unique to the experimental driving literature – it is a common issue for meta-analysis in general. Because most pre-post correlations were unknown, and recovered pre-post correlations were discordant from one another, sensitivity analyses were conducted using pre-post correlation values of zero, 0.5 and 0.9. This wide range of values is theorized to capture the range of actual plausible correlations, but it cannot be known for certain. Additionally, approximately one third of the studies eligible for inclusion were not included due to incomplete reporting of statistical data, including means and standard deviations. It is unknown whether the exclusion of those studies biases the results of the current meta-analysis in any particular direction.

Small study effects were observed for the effects of alcohol on lateral position variability and lane excursions relative to baseline. Both of these measures are related to the construct of lateral control. It is unknown whether the small study effects reflect publication bias or a legitimate relationship between the magnitude of an effect and its standard error. In the absence of a compelling case for either, the values reported here are unadjusted. However, they should be interpreted with this in mind.

Finally, there are limitations to the generalizability of the results reported in this metaanalysis due to the demographics of the included participants. As discussed previously, most of the included studies focused on the effects of cannabis on driving reflect young adults, and it is unclear whether the results are generalizable to older and younger drivers. Additionally, many of the included studies excluded heavier cannabis and/or alcohol users, who, as previously discussed, may be more likely to drive while intoxicated. Thus, the results of this meta-analysis may only be generalizable to a subset of drivers and/or substance users. Future studies investigating the effects of cannabis on driving performance and behaviour should focus on young and inexperienced drivers, older drivers, naïve cannabis users, heavy and chronic cannabis users, and medical cannabis-using drivers. This, and other future research directions, are discussed next.

Future Research

In completing this meta-analysis, several future research considerations were identified. First, a number of next steps are indicated based on meta-analytic findings. Additionally, there are some obvious gaps in the literature. Importantly, a number of study quality issues were identified that should be addressed in future work. In the following two sections, specific research directions, and quality considerations for future studies, are described. **Future research directions.** First, there is a clear paucity of research in the areas covered within the scope of the current analysis. More data is needed related to the effects of cannabis, alcohol and their combination on experimental driving measures other than those related to lane keeping.

Second, consideration of findings within the context of Fuller's (2005) Task-Capability Interface model lead to the generation of a number of hypotheses and avenues for future research. As previously discussed, drivers under the influence of cannabis slow their driving speed in experimental driving studies. It is unclear whether this reflects a conscious decision on the part of the driver, a more perceptually-driven process, or some combination of both. Research should be conducted to determine if drivers' perceptions of speed change while under the influence of cannabis, and whether such changes lead to the adoption of slower driving speeds. The potential role of the same mechanisms should also be investigated with respect to the increase in speed observed while driving under the influence of alcohol. More data is needed to verify whether the relationship between alcohol dose and speed increases is linear across BAC levels as low as 0.01% and as high as 0.12%. Additionally, the prediction intervals associated with Bin 3, which ranges from 0.07 to 0.09% BAC, indicate that in some cases, drivers may actually *decrease* their speed while under the influence of alcohol at a level of BAC. It is unclear whether the negative values within the prediction intervals are statistical artifacts, or whether it is probable that drivers reliably decrease their speed in certain circumstances (e.g., by compensating for increased driving task difficulty) while under the influence of alcohol. More research is needed to determine whether drivers who are under the influence of alcohol attempt to compensate for their impaired state, and if so, whether BAC level moderates the relationship.

Third, research should be conducted to better understand why alcohol slows response time to tangible, on-road hazards. Although slowed response time has an obvious relationship with crashing, researchers should also focus on how alcohol affects rates of hits, misses, false alarms and correct rejections with respect to those hazards. This would allow researchers more context to interpret slowing in on-road hazards. For example, if hazard response time slows while under the influence of alcohol, is this because drivers experience diminished sensitivity to on-road hazards, or is it because drivers adopt a higher threshold for what constitutes an on-road hazard? These questions also apply to cannabis-impaired driving. Relatedly, the literatures focused on visual scanning during states of acute cannabis intoxication, within the context of driving, appear small. If cannabis does lead to more cautious driving, then a possible research direction is to investigate whether visual scanning behaviours change such that a greater amount of time is spent deliberately searching for hazards.

Fourth, cannabis preparations with a greater variety of cannabinoid compositions should be studied within the context of driving. Cannabidiol (CBD), a cannabinoid that naturally occurs in varying concentrations in the cannabis plant (Russo & Guy, 2006; Huestis, 2007), has become a popular item on the market (e.g., The Canadian Press, 2019b). Both CBD-containing oils and dry cannabis flowers are available to purchase for recreational use in Canada. Although CBDcontaining cannabis is now readily available, most of the studies considered for inclusion reported the THC content, but not the CBD content, of the administered cannabis, and only one study in this meta-analysis investigated whether cannabis containing CBD affects driving performance and behaviour differently or similarly than cannabis containing negligible amounts of CBD (i.e., Arkell et al., 2019). Although several reviews suggest that CBD may have the benefit of lessening some of the more negative effects of THC (Russo & Guy, 2006; Fischer et al., 2017), Arkell and colleagues (2019) reported that cannabis containing balanced concentrations of THC and CBD was "no less impairing" than cannabis containing THC and only negligible concentrations of CBD. However, this conclusion appears to have been made based on an indirect comparison. Although there was a significant difference between high-THC, low-CBD cannabis and placebo, as well as no significant difference between high-THC, high-CBD cannabis and placebo, they did not appear to test whether the two drug-driving conditions differed from each other in terms of SDLP. However, they did directly compare high-THC, low-CBD cannabis and high-THC, high-CBD cannabis to each other with respect to subjective effects, and no differences were observed between the conditions.

Overall, more research is needed to understand if and how the interaction of CBD and THC affect driving performance and behaviour. For instance, if CBD attenuates the negative influence of THC on driving performance, then fewer driving performance decrements would be expected with cannabis containing both THC and CBD, compared to high-THC, low-CBD cannabis. In contrast, if the influence of CBD is limited to, or has a greater influence on, the subjective effects of THC (compared to the negative effects of THC on driving performance), then high-THC, high-CBD cannabis could also be theorized to affect driving more similarly to alcohol. That is, if high-THC, high-CBD cannabis, but drivers are less aware that they are impaired due to a less intense-feeling high, they may not compensate for their impaired state to the same extent as drivers under the influence of high-THC, low-CBD cannabis. For now, there is insufficient evidence to support the hypothesis that high-THC, high-CBD cannabis is a safer alternative to high-THC, low-CBD cannabis with respect to driving.

A fifth future research direction concerns the influence of cannabis on driving performance and behaviour for young and inexperienced drivers, as well as older drivers. As indicated in Table 1, most of the studies where cannabis was administered involved participants who were, on average, in their twenties. In Canada, the prevalence of past-year cannabis use in 2017 was highest among young adults aged 20 to 24 (33%), followed by youth and young adults aged 15 to 19 (19%) and adults over the age of 25 (13%) (Government of Canada, n.d.-c). Few participants in the cannabis studies appeared to be teenagers or young adults, or older adults (i.e., age 65 and over). Young, inexperienced drivers are known for having a higher risk of crashing than older, more experienced drivers, and observational studies indicate that they are also more susceptible to the detrimental effects of alcohol while driving (Peck et al., 2008; Voas et al., 2012). Although there appears to be less data focused on young novice drivers' crash risk in association with driving under the influence of cannabis, it seems reasonable to posit that acute cannabis intoxication could increase young novice drivers' vulnerability to crashing. Future experimental driving studies should be conducted to understand how young novice drivers' performance is affected by acute cannabis intoxication. Additionally, although the *prevalence* of cannabis use is lower among adults over the age of 25, most past-year cannabis users in Canada are over the age of 25 (Government of Canada, n.d.-c). Part of this group includes drivers over the age of 65, who are also at an elevated risk of crashing per vehicle mile travelled (Ryan et al., 1998; Evans, 2004). In Canada, individuals aged 65 and older also represent the fastest-growing group of cannabis consumers, and 27% of new cannabis users in the second and third quarters of 2019 belonged to this age group (Statistics Canada, 2019). Future research should also focus on understanding how older drivers' driving performance and behaviour is affected by acute cannabis intoxication.

A sixth research direction concerns medical cannabis users. Over a third of past-year cannabis users in Canada in 2017 reported use of cannabis for medical purposes (Government of Canada, n.d.-c). Although medical users represent an important part of the cannabis-using population in Canada, the current meta-analysis was focused exclusively on non-clinical participants, and the degree to which the results of the meta-analysis generalize to medical cannabis users is unclear. In reviewing studies for eligibility within the current meta-analysis, the literature focused on the effects of cannabis on medical cannabis users' driving performance and behaviour appears to be limited. An important question to ask is whether the costs of driving under the influence of a drug, such as medical cannabis, are greater than the costs of driving in an untreated state – that is, while experiencing the symptoms that the drug has been prescribed to treat, such as pain (Shinar, 2017, p. 657). Future experimental driving studies should be conducted with participants within the medical-cannabis using population.

Finally, future research should be conducted for the purposes of providing empirical support for recommendations to drivers about when it is safe to drive after a period of acute cannabis intoxication. Fischer and colleagues (2017), who authored the review upon which Canada's lower-risk cannabis use guidelines are based (see CAMH, 2019), suggest – based on a "substantial" level of evidence – that "users abstain from driving for at least the acute period of impairment identified by current scientific evidence" (p. e7), which they deem to be at least six hours after consuming cannabis but possibly longer. However, most the studies cited in support of their recommendation do not come from the driving performance and behaviour literature; most report on the effects of cannabis on physiological measures, subjective measures and driving-related skills. Again, different approaches to measuring driver impairment need to be reconciled before researchers can offer a clear answer to the question of how long impairment

lasts after consuming cannabis. Additionally, the time that drivers need to wait until preintoxication driving performance is restored, and the time that drivers need to wait until blood THC levels have dropped to a permissible level, are not necessarily the same. While an individual could reasonably estimate in advance how much they could drink in order to ensure that their blood alcohol concentration is not over the legal limit by the time they plan to drive (e.g., Watson et al., 1981), the same is not true of cannabis (e.g., Huestis et al., 1992). Drivers who do not wish to commit a criminal offence in Canada must ensure that their blood THC concentration does not exceed established limits within two hours of driving; however, this is not something that drivers can actually do (Fischer et al., 2017). Ultimately, the Government of Canada (n.d.-d) states on its website about drug-impaired driving that "there is no guidance to drivers about how much cannabis can be consumed before it is unsafe to drive or how long a driver should wait to drive after consuming cannabis" (How cannabis impairs drivers, line 5). One possible research question to address is whether drivers, after consuming cannabis, experiencing acute cannabis intoxication and waiting for the effects to dissipate, can reliably detect the point at which they have returned to their normal, pre-intoxicated state. In other words, are drivers' perceptions of their own post-cannabis sobriety accurate? Experimental driving studies should be conducted in the future to help provide recommendations to drivers about how long they should wait to drive after consuming cannabis, and/or whether subjective feelings of sobriety are reliable indicators of actual sobriety. Ideally, such research should incorporate infrequent users, regular users, medical users and dependent users. Medical users and dependent users, however, pose a unique challenge in that they may not have a clear normal, pre-intoxicated state to compare acute intoxication against, either due to heavy use or due to the presence of

symptoms during periods of sobriety. Additionally, cannabis oils and edibles, which may elicit stronger or longer-lasting effects (Huestis, 2007), should be incorporated within this work.

Quality considerations for future research. The current meta-analysis offers a snapshot of the extant experimental literature focused on the effects of cannabis on driving performance and behaviour. As discussed, there are many avenues and opportunities for future work. As studies are published in the future, the current meta-analysis will accordingly require updating. However, it is hoped that the study quality issues reported here, and the recommendations for addressing them, present an enduring contribution to the literature as it evolves. Overall, researchers are encouraged to focus on addressing quality issues related to participant recruitment, blinding, reporting and theory.

Recruitment. First, researchers interested in conducting studies focused on the effects of cannabis and/or alcohol on driving performance and behaviour in the future should consider novel approaches to recruitment that serve to avoid the potential for selection bias. As discussed in the results, most of the studies used recruitment methods that involved posters, advertisements and other self-selection methods. With the increasing prevalence of legalized medicinal and recreational cannabis, there are new opportunities to start addressing this issue by employing new methods to participant recruitment. A novel approach to participant recruitment could take the form of interviewing cannabis purchasers leaving dispensaries, with the goal of characterizing eligible individuals (i.e., active cannabis users who drive) who are and who are not interested in participating in experimental driving studies. This would allow researchers to gain more insight about whether their studies are likely to be at risk of selection bias or not.

Blinding. Second, researchers should be aware that de-blinding to drug conditions in experimental driving studies is a common problem that poses a threat to validity but is difficult

to avoid. Researchers should anticipate blinding issues with standard inactive cannabis controls. Casarett (2018) describes the issue in relation to medical cannabis research and suggests a number of approaches to preventing or controlling for deblinding, including the use of psychoactive controls rather than inactive placebo controls, the recruitment of non-users, manipulation checks and the use of high-CBD strains. Some of these suggestions are likely more feasible than others within the context of experimental driving studies. First, the selection of an appropriate psychoactive control is not easy (Casarett, 2018). It is unclear which psychoactive control would be best suited for experimental driving research. Second, the recruitment of nonusers for experimental driving studies is likely to present ethical issues, and the knowledge benefits that stand to be gained by administering cannabis to non-users, who do not belong to the population of interest (i.e., cannabis users who drive), is questionable. However, manipulation checks designed to assess whether there is any relationship between participants' belief of or actual knowledge of whether or not they have received active cannabis or a control should be standard in future experimental driving studies focused on assessing the influence of cannabis on driving. Finally, the use of high CBD cannabis, rather than low CBD cannabis, may be useful in assessing the degree to which THC affects driving performance and behaviour. However, as previously discussed, Arkell and colleagues (2019) found that the subjective effects experienced by participants did not differ between conditions involving THC-only cannabis and the balanced CBD-THC cannabis. Although more research is needed, it does not appear to be the case that cannabis containing CBD will necessarily diminish the subjective effects associated with THC to the point that it cannot be distinguished from placebo.

Reporting. Third, researchers who conduct studies focused on the effects of cannabis and/or alcohol in the future are encouraged to strive for high quality in reporting study methods

and results. During the study quality and risk of bias assessment, it was often difficult to assess how many participants were recruited, whether any dropouts or withdrawals occurred after recruitment, and whether the measures reported in a paper reflected the complete set of measures collected as part of a single project. For guidance on good quality reporting, researchers are encouraged to consult the CONSORT 2010 statement and flow diagram (Schulz et al., 2010) as Brands et al. (2019) have done. Although the statement is focused on randomized controlled trials, the elements included in the checklist and flow diagram are also applicable to both between-subjects and within-subjects experimental driving studies. Additionally, researchers are urged to be transparent about cases where data from a single set of participants is divided into multiple papers or re-reported upon following additional or revised analyses. In several instances, overlap was not identified until statistical data describing participant demographics or experimental driving measures were compared, or when effect sizes were visualized in funnel plots. Often, authors needed to be contacted directly to verify whether multiple papers were independent of one another. Finally, authors are encouraged to report tables of means and standard deviations. Lack of statistical reporting led to the exclusion of over 30 eligible studies in this meta-analysis. When space is limited, authors are encouraged to submit these tables as online supplementary materials.

Theory. Finally, researchers need to incorporate theory in future work. In reviewing the literature in preparation of this meta-analysis, as well as in reviewing full-texts to evaluate their eligibility for inclusion, it became apparent that experimental driving studies are largely atheoretical. Consequently, driver impairment is conceptualized by researchers in many different ways, with a variety of measures and a variety of interpretations for what those measures mean in relation to safety. These disagreements hamper the ability for researchers to clearly answer the

question, "is driving while under the influence of cannabis unsafe?" In this meta-analysis, the selection of measures, and their interpretation with respect to answering the question of whether cannabis impairs driving, was guided by Fuller's (2005) framework. Measures that do not have a clear relationship to safety, when considered within the context of that framework, were not included in this meta-analysis. For example, it has been suggested that automatic functions are affected by cannabis more than cognitive functions under the conscious control of the driver, such as passing other vehicles (Grotenhermen et al., 2005; Sewell et al., 2009). However, changes in automatic functions measured in a laboratory setting may not necessarily scale up to driving performance decrements when drivers have the ability to adjust their driving behaviour to compensate for those decrements, and impairment within the context of cognitive functions is ambiguous. What exactly does it mean, for example, for cannabis to have a negative effect on passing? Impairment is more than a statistically significant change in behaviour from sober driving to driving under the influence – changes must be considered within the context of realworld safety. If a driver elects to pass up more opportunities to overtake a vehicle while under the influence of cannabis, is it because the driver fails to see safe opportunities to pass due to cannabis-induced perceptual deficits, or is it because the driver has adjusted to a more cautious, conservative driving style to reduce task demands or risk? The two have opposite implications for safety. Experimental driving research needs to move toward the incorporation of theory to prevent this type of ambiguity from occurring. When a measure is chosen for inclusion in an experimental driving study, the selection of the measure should be theoretically defensible, and hypotheses generated about how experimental manipulations will affect the chosen measure should be falsifiable. Researchers should avoid making post-hoc interpretations of their results within the context of safety in the absence of formal, theoretically-driven hypotheses.

Conclusion

This meta-analysis focused on the effects of cannabis and alcohol on driving performance and behaviour, both alone and in combination with one another. To date, this is the first metaanalysis to focus on a comprehensive set of measures of driving performance and behaviour within the context of cannabis and alcohol. Studies focused on purely cognitive and drivingrelated skills, which do not have a clear relationship with safety, were excluded. The results indicate that cannabis impairs driving performance. Most notably, cannabis is detrimental to lateral control of the vehicle even though drivers under the influence of cannabis attempt to compensate for their impaired state by slowing their driving speed. In contrast, individuals under the influence of alcohol generally increase their driving speed, which indicates a lack of awareness for their impaired state. Finally, the combination of both drugs is generally more detrimental to driving performance than either in isolation. However, the literature reviewed is small and in need of more data, and important quality issues and future directions identified in the current meta-analysis can help guide further scientific inquiry.

References

- *Anderson, B. M., Rizzo, M., Block, R. I., Pearlson, G. D., & O'Leary, D. S. (2010). Sex differences in the effects of marijuana on simulated driving performance. *Journal of Psychoactive Drugs*, 42(1), 19–30. https://doi.org/10.1080/02791072.2010.10399782
- Anderson, D. M., & Rees, D. I. (2015). Per se drugged driving laws and traffic fatalities. *International Review of Law and Economics*, 42, 122–134. https://doi.org/10.1016/j.irle.2015.02.004
- *Arkell, T. R., Lintzeris, N., Kevin, R. C., Ramaekers, J. G., Vandrey, R., Irwin, C., Haber, P. S., & McGregor, I. S. (2019). Cannabidiol (CBD) content in vaporized cannabis does not prevent tetrahydrocannabinol (THC)-induced impairment of driving and cognition.
 Psychopharmacology, 236(9), 2713–2724. https://doi.org/10.1007/s00213-019-05246-8
- *Arnedt, J. T., Wilde, G. J. ., Munt, P. W., & MacLean, A. W. (2001). How do prolonged wakefulness and alcohol compare in the decrements they produce on a simulated driving task? Accident Analysis & Prevention, 33(3), 337–344. https://doi.org/10.1016/S0001-4575(00)00047-6
- Asbridge, M., Hayden, J. A., & Cartwright, J. L. (2012). Acute cannabis consumption and motor vehicle collision risk: Systematic review of observational studies and meta-analysis. *BMJ*, 344, e536–e536. https://doi.org/10.1136/bmj.e536
- Ashton, C. H. (2001). Pharmacology and effects of cannabis: A brief review. *British Journal of Psychiatry*, *178*(2), 101–106. https://doi.org/10.1192/bjp.178.2.101
- Attwood, D.A., Williams, R.D., McBurney, L.J., & Frecker, R.C. (1981). Cannabis, alcohol and driving: effects on selected closed-course tasks. *Proceedings International Council on Alcohol, Drugs and Traffic Safety Conference*, 1981, 938–953.

- Bartl, G., Brandstätter, C., Hosemann, A., & Reitter, C. (1998). Saccadic eye movements and reactions of drivers with low alcohol concentrations (blickbewegungen und reaktionen von fahrern bei sogenannter minderalkoholisierung). *Blutalkohol*, *35*(2), 124–138.
- *Beard, P. J. (2012). *The Effect of Low Dose Alcohol on Simulated Driving and Cognitive Performance* [Master's Thesis, University of Waikato]. Retrieved from https://hdl.handle.net/10289/7024
- Beasley, E. E., Beirness, D. J., & Porath-Waller, A. J. (2011). A Comparison of Drug- and Alcohol-involved Motor Vehicle Driver Fatalities. Ottawa, ON: Canadian Centre on Substance Abuse.
- Begg, D. J., Langley, J. D., & Stephenson, S. (2003). Identifying factors that predict persistent driving after drinking, unsafe driving after drinking, and driving after using cannabis among young adults. *Accident Analysis & Prevention*, 35(5), 669–675. https://doi.org/10.1016/S0001-4575(02)00045-3
- Berghaus, G., Krüger, H. P., & Vollrath, M. (1998b). Alcohol and cannabis induced impairment of driving related performance a metaanalytical comparison based on experimental studies (beeinträchtigung fahrrelevanter leistungen nach rauchen von cannabis und nach alkoholkonsum eine vergleichende metanalyse. In G. Berghaus & H. P. Krüger (Eds.), *Cannabis im Straßenverkehr* (pp. 99–112). Stuttgart: Gustav Fischer Verlag.
- Berghaus, G., Scheer, N., & Schmidt, P. (1995). Effects of cannabis on psychomotor skills and driving performance: A metaanalysis of experimental studies. In *Proceedings of the 13th International Conference on Alcohol, Drugs and Traffic Safety* (Vol. 1, pp. 403–9).
- Berghaus, G., Schulz, E., & Szegedi, A. (1998a). Cannabis and driver fitness findings from experimental research (cannabis und fahrtüchtigkeit ergebnisse der experimentellen

forschung). In G. Berghaus & H. P. Krüger (Eds.), *Cannabis im straβenverkehr* (pp. 73– 98). Stuttgart: Gustav Fischer Verlag.

- *Bernosky-Smith, K. A., Aston, E. R., & Liguori, A. (2012). Rapid drinking is associated with increases in driving-related risk-taking. *Human Psychopharmacology: Clinical and Experimental*, 27(6), 622–625. https://doi.org/10.1002/hup.2260
- *Bernosky-Smith, K. A., Shannon, E. E., Roth, A. J., & Liguori, A. (2011). Alcohol effects on simulated driving in frequent and infrequent binge drinkers. *Human Psychopharmacology: Clinical and Experimental*, 26(3). https://doi.org/10.1002/hup.1195
- *Berthelon, C., & Galy, E. (2018). Is the driving behaviour of young novices and young experienced drivers under alcohol linked to their perceived effort and alertness? In N. A. Stanton (Ed.), *Advances in Human Aspects of Transportation* (Vol. 597, pp. 878–883). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-60441-1_84
- *Berthelon, C., & Gineyt, G. (2014). Effects of alcohol on automated and controlled driving performances. *Psychopharmacology*, 231(10), 2087–2095. https://doi.org/10.1007/s00213-013-3352-x
- Biasotti, A. A., Boland, P., Mallory, C., Peck, R., & Reeve, V. C. (1986). Marijuana and alcohol: a driver performance study. Final report. Sacramento, CA: California Department of Justice.
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to Meta-Analysis. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470743386
- *Bosker, W. M., Kuypers, K. P. C., Theunissen, E. L., Surinx, A., Blankespoor, R. J., Skopp, G., Jeffery, W. K., Walls, H. C., van Leeuwen, C. J., & Ramaekers, J. G. (2012). Medicinal Δ9-

tetrahydrocannabinol (dronabinol) impairs on-the-road driving performance of occasional and heavy cannabis users but is not detected in Standard Field Sobriety Tests. *Addiction*, *107*(10), 1837–1844. https://doi.org/10.1111/j.1360-0443.2012.03928.x

- *Brands, B., Mann, R. E., Wickens, C. M., Sproule, B., Stoduto, G., Sayer, G. S., Burston, J., Pan, J. F., Matheson, J., Stefan, C., George, T. P., Huestis, M. A., Rehm, J., & Le Foll, B. (2019). Acute and residual effects of smoked cannabis: Impact on driving speed and lateral control, heart rate, and self-reported drug effects. *Drug and Alcohol Dependence*, 205(November 2018), 107641. https://doi.org/10.1016/j.drugalcdep.2019.107641
- Brooks-Russell, A., Brown, T., Rapp-Olsson, A. M., Friedman, K., & Kosnett, M. (2019).
 Driving after cannabis use and compensatory driving behaviors among current cannabis users in Colorado. *Traffic Injury Prevention*, 20(sup2), S199–S201.
 https://doi.org/10.1080/15389588.2019.1665424
- Broyd, S. J., van Hell, H. H., Beale, C., Yücel, M., & Solowij, N. (2016). Acute and chronic effects of cannabinoids on human cognition—A systematic review. *Biological Psychiatry*, 79(7), 557–567. https://doi.org/10.1016/j.biopsych.2015.12.002
- Brubacher, J. R., Chan, H., Erdelyi, S., Macdonald, S., Asbridge, M., Mann, R. E., Eppler, J.,
 Lund, A., MacPherson, A., Martz, W., Schreiber, W. E., Brant, R., & Purssell, R. A. (2019).
 Cannabis use as a risk factor for causing motor vehicle crashes: a prospective study. *Addiction*, *114*(9), 1616–1626. https://doi.org/10.1111/add.14663
- *Burns, P. C., Parkes, A., Burton, S., Smith, R. K., & Burch, D. (2002). *How dangerous is driving with a mobile phone? Benchmarking the impairment to alcohol (TRL Report TRL547)*. TRL.

- Caird, J. K., & Horrey, W. J. (2011). Twelve practical and useful questions about driving simulation. In D. L. Fisher, M. Rizzo, J. Caird, & J. D. Lee (Eds.), *Handbook of driving simulation for engineering, medicine and psychology*. Boca Raton, FL: CRC Press.
- Caird, J. K., Simmons, S. M., Wiley, K., Johnston, K. A., & Horrey, W. J. (2018). Does talking on a cell phone, with a passenger, or dialing affect driving performance? An updated systematic review and meta-analysis of experimental studies. *Human Factors: The Journal* of the Human Factors and Ergonomics Society, 60(1), 101–133. https://doi.org/10.1177/0018720817748145
- Canadian Bar Assocation. (2017). *Bill C-46-- Impaired Driving Act*. Retrieved from https://www.cba.org/CMSPages/GetFile.aspx?guid=8fbbc2ce-b166-4932-ac3d-c318302ee81e
- Capler, R., Bilsker, D., Van Pelt, K., & MacPherson, D. (2017). Cannabis Use and Driving: Evidence Review. Retrieved from http://drugpolicy.ca/wpcontent/uploads/2017/02/CDPC_Cannabis-and-Driving_Evidence-Review_FINALV2_March27-2017.pdf
- Casarett, D. (2018). The achilles heel of medical cannabis research—Inadequate blinding of placebo-controlled trials. *JAMA Internal Medicine*, 178(1), 9. https://doi.org/10.1001/jamainternmed.2017.5308
- Centre for Addiction and Mental Health (CAMH). (2019). *Canada's Lower-Risk Cannabis Use Guidelines (LRCUG)*. Retrieved from https://www.canada.ca/content/dam/themes/health/carousel/LRCUG Evidence Brief Final English v2.pdf

- Chamberlain, E., & Solomon, R. (2002). The case for a 0.05% criminal law blood alcohol concentration limit for driving. *Injury Prevention*, 8(Suppl III), 1iii–17. https://doi.org/10.1136/ip.8.suppl_3.iii1
- *Charlton, S. G., & Starkey, N. J. (2015). Driving while drinking: Performance impairments resulting from social drinking. *Accident Analysis & Prevention*, 74, 210–217. https://doi.org/10.1016/j.aap.2014.11.001
- *Chen, H., Zhang, G., Chen, R., Chen, L., & Feng, X. (2016). Comparison of driving performance during the blood alcohol concentration ascending period and descending period under alcohol influence in a driving simulator. *International Journal of Vehicle Safety*, 9(1), 72. https://doi.org/10.1504/IJVS.2016.077154
- *Christoforou, Z., Karlaftis, M. G., & Yannis, G. (2012). Effects of alcohol on speeding and road positioning of young drivers. *Transportation Research Record: Journal of the Transportation Research Board*, 2281(1), 32–42. https://doi.org/10.3141/2281-05
- Cochrane Collaboration. (2011a). 8.5 The Cochrane Collaboration's tool for assessing risk of bias. In J. P. T. Higgins & S. Green (Eds.), *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]*. Retrieved from https://handbook-5-1.cochrane.org/chapter_8/8_5_the_cochrane_collaborations_tool_for_assessing_risk_of_bia s.htm
- Cochrane Collaboration. (2011b). 21.4 Assessment of study quality and risk of bias. In J. P. T.
 Higgins & S. Green (Eds.), *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]*. Retrieved from https://handbook-51.cochrane.org/chapter_21/21_4_assessment_of_study_quality_and_risk_of_bias.htm

- Cochrane Collaboration. (2011c). 10.4.3.1 Recommendations on testing for funnel plot asymmetry. In J. P. T. Higgins & S. Green (Eds.), *Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]*. Retrieved from https://handbook-5-
 - 1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asym metry.htm
- Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.
- Compton, R. P., & Berning, A. (2015). Drug and alcohol crash risk (Traffic Safety Facts Research Note. DOT HS 812 117). Washington, D.C.: National Highway Traffic Safety Administration.
- Cook, S., Shank, D., Bruno, T., Turner, N. E., & Mann, R. E. (2017). Self-reported driving under the influence of alcohol and cannabis among Ontario students: Associations with graduated licensing, risk taking, and substance abuse. *Traffic Injury Prevention*, 18(5), 449–455. https://doi.org/10.1080/15389588.2016.1149169
- Couper, F. J., & Peterson, B. L. (2014). The prevalence of marijuana in suspected impaired driving cases in Washington State. *Journal of Analytical Toxicology*, *38*(8), 569–574. https://doi.org/10.1093/jat/bku090
- Crancer, A., Dille, J. M., Delay, J. C., Wallace, J. E., & Haykin, M. D. (1969). Comparison of the effects of marihuana and alcohol on simulated driving performance. *Science*, *164*(3881), 851–854. https://doi.org/10.1126/science.164.3881.851
- Davey, J. D., Armstrong, K. A., Freeman, J. E., & Parkes, A. (2020). Alcohol and illicit substances associated with fatal crashes in Queensland: An examination of the 2011 to 2015

coroner's findings. *Forensic Science International*, (December 2019), 110190. https://doi.org/10.1016/j.forsciint.2020.110190

- Davis, K. C., Allen, J., Duke, J., Nonnemaker, J., Bradfield, B., Farrelly, M. C., Schafer, P., & Novak, S. (2016). Correlates of marijuana drugged driving and openness to driving while high: Evidence from Colorado and Washington. *PLOS ONE*, *11*(1), e0146853. https://doi.org/10.1371/journal.pone.0146853
- Doenhoff, K. (1970). Driving under the influence of alcohol: an experimental study of the effects of average quantities of alcohol on driver behaviour (fahren unter alkoholeinfluss: eine experimentelle untersuchung der auswirkung mittlerer alkoholmengen auf das fahrverhalten). *Faktor Mensch Im Verkehr*, (3).
- *Downey, L. A., King, R., Papafotiou, K., Swann, P., Ogden, E., Boorman, M., & Stough, C. (2013). The effects of cannabis and alcohol on simulated driving: Influences of dose and experience. *Accident Analysis & Prevention*, 50, 879–886. https://doi.org/10.1016/j.aap.2012.07.016
- Drummer, O. H., Gerostamoulos, J., Batziris, H., Chu, M., Caplehorn, J. R. M., Robertson, M. D., & Swann, P. (2003). The incidence of drugs in drivers killed in Australian road traffic crashes. *Forensic Science International*, *134*(2–3), 154–162. https://doi.org/10.1016/S0379-0738(03)00134-8
- Effective Public Health Practice Project (EPHPP). (2007). Quality Assessment Tool for Quantitative Studies. *Effective Public Health Practice Project*.
- Elvik, R. (2013). Risk of road accident associated with the use of drugs: A systematic review and meta-analysis of evidence from epidemiological studies. *Accident Analysis & Prevention*, 60, 254–267. https://doi.org/10.1016/j.aap.2012.06.017

Evans, L. (2004). Traffic safety. Bloomfield, MI: Science Serving Society.

- Favretto, D., Visentin, S., Stocchero, G., Vogliardi, S., Snenghi, R., & Montisci, M. (2018).
 Driving under the influence of drugs: Prevalence in road traffic accidents in Italy and considerations on per se limits legislation. *Traffic Injury Prevention*, *19*(8), 786–793. https://doi.org/10.1080/15389588.2018.1500018
- Fell, J. C., & Scherer, M. (2017). Estimation of the potential effectiveness of lowering the blood alcohol concentration (BAC) limit for driving from 0.08 to 0.05 grams per deciliter in the United States. *Alcoholism: Clinical and Experimental Research*, 41(12), 2128–2139. https://doi.org/10.1111/acer.13501
- Fell, J. C., & Voas, R. B. (2014). The effectiveness of a 0.05 blood alcohol concentration (BAC) limit for driving in the United States. *Addiction*, 109(6), 869–874. https://doi.org/10.1111/add.12365
- *Fillmore, M. T., Blackburn, J. S., & Harrison, E. L. R. (2008). Acute disinhibiting effects of alcohol as a factor in risky driving behavior. *Drug and Alcohol Dependence*, 95(1–2), 97– 106. https://doi.org/10.1016/j.drugalcdep.2007.12.018
- Fitzharris, M., Fildes, B., Charlton, J., & Kossmann, T. (2007). General health status and functional disability following injury in traffic crashes. *Traffic Injury Prevention*, 8(3), 309– 320. https://doi.org/10.1080/15389580701216533
- Fischer, B., Russell, C., Sabioni, P., van den Brink, W., Le Foll, B., Hall, W., Rehm, J., & Room, R. (2017). Lower-risk cannabis use guidelines: A comprehensive update of evidence and recommendations. *American Journal of Public Health*, 107(8), e1–e12. https://doi.org/10.2105/AJPH.2017.303818

- *Freydier, C., Berthelon, C., Bastien-Toniazzo, M., & Gineyt, G. (2014). Divided attention in young drivers under the influence of alcohol. *Journal of Safety Research*, 49, 13-18. https://doi.org/10.1016/j.jsr.2014.02.003
- Fuller, R. (2005). Towards a general theory of driver behaviour. Accident Analysis & Prevention, 37(3), 461–472. https://doi.org/10.1016/j.aap.2004.11.003
- Gjerde, H., Ramaekers, J. G., & Mørland, J. G. (2019). Methodologies for establishing the relationship between alcohol/drug use and driving impairment - Differences between epidemiological, experimental, and real-case studies. *Forensic Science Review*, *31*(2), 141– 160.
- Government of Canada. (2018). Blood Drug Concentration Regulations: SOR/2018-148. *Canada Gazette*, *152*(14). Retrieved from http://www.gazette.gc.ca/rp-pr/p1/2017/2017-10-14/html/reg1-eng.html
- Government of Canada. (n.d.-a). Cannabis Legalization and Regulation. Retrieved April 6, 2020, from http://www.justice.gc.ca/eng/cj-jp/cannabis/
- Government of Canada. (n.d.-b). Canadian Cannabis Survey 2019 Summary. Retrieved April 18, 2020, from https://www.canada.ca/en/health-canada/services/publications/drugs-health-products/canadian-cannabis-survey-2019-summary.html
- Government of Canada. (n.d.-c). Canadian Tobacco, Alcohol and Drugs Survey (CTADS): summary of results for 2017. Retrieved March 18, 2020, from https://www.canada.ca/en/health-canada/services/canadian-tobacco-alcohol-drugssurvey/2017-summary.html

- Government of Canada. (n.d.-d.). Drug-impaired driving. Retrieved April 19, 2020 from https://www.canada.ca/en/services/policing/police/community-safety-policing/impaireddriving/drug-impaired-driving.html
- Grotenhermen, F. (2003). Pharmacokinetics and pharmacodynamics of cannabinoids. *Clinical Pharmacokinetics*, 42(4), 327–360. https://doi.org/10.2165/00003088-200342040-00003
- Grotenhermen, F., Leson, G., Berghaus, G., Drummer, O. H., Krüger, H.-P., Longo, M.,
 Moskowitz, H., Perrine, B., Ramaekers, J., Smiley, A., & Tunbridge, R. (2005). *Developing Science-Based Per Se Limits for Driving under the Influence of Cannabis (DUIC) Findings and Recommendations by an Expert Panel*. Retrieved from https://pdfs.semanticscholar.org/7856/22b64cd2d9b662596f5564ae70afac6bceee.pdf
- Grotenhermen, F., Leson, G., Berghaus, G., Drummer, O. H., Krüger, H.-P., Longo, M., Perrine, B., Ramaekers, J. G., Smiley, A., & Tunbridge, R. (2007). Developing limits for driving under cannabis. *Addiction*, *102*(12), 1910–1917. https://doi.org/10.1111/j.1360-0443.2007.02009.x
- Hall, W., & Solowij, N. (1998). Adverse effects of cannabis. *The Lancet*, 352(9140), 1611–1616. https://doi.org/10.1016/S0140-6736(98)05021-1
- *Harrison, E. L. R., & Fillmore, M. T. (2005). Are bad drivers more impaired by alcohol? Accident Analysis & Prevention, 37(5), 882–889. https://doi.org/10.1016/j.aap.2005.04.005
- *Harrison, E. L. R., & Fillmore, M. T. (2011). Alcohol and distraction interact to impair driving performance. *Drug and Alcohol Dependence*, *117*(1), 31–37. https://doi.org/10.1016/j.drugalcdep.2011.01.002
- *Harrison, E. L. R., Marczinski, C. A., & Fillmore, M. T. (2007). Driver training conditions affect sensitivity to the impairing effects of alcohol on a simulated driving test to the

impairing effects of alcohol on a simulated driving test. *Experimental and Clinical Psychopharmacology*, *15*(6), 588–598. https://doi.org/10.1037/1064-1297.15.6.588

- Hartley, S., Simon, N., Larabi, A., Vaugier, I., Barbot, F., Quera-Salva, M.-A., & Alvarez, J. C. (2019). Effect of smoked cannabis on vigilance and accident risk using simulated driving in occasional and chronic users and the pharmacokinetic–pharmacodynamic relationship. *Clinical Chemistry*, 65(5), 684–693. https://doi.org/10.1373/clinchem.2018.299727
- Hartman, R. L., & Huestis, M. A. (2013). Cannabis effects on driving skills. *Clinical Chemistry*, 59(3), 478–492. https://doi.org/10.1373/clinchem.2012.194381
- *Hartman, R. L., Brown, T. L., Milavetz, G., Spurgin, A., Pierce, R. S., Gorelick, D. A., Gaffney, G., & Huestis, M. A. (2015). Cannabis effects on driving lateral control with and without alcohol. *Drug & Alcohol Dependence*, *154*(11), 25–37. https://doi.org/10.1016/j.drugalcdep.2015.06.015
- Hartman, R. L., Brown, T. L., Milavetz, G., Spurgin, A., Pierce, R. S., Gorelick, D. A., Gaffney, G., & Huestis, M. A. (2016). Cannabis effects on driving longitudinal control with and without alcohol. *Journal of Applied Toxicology*, *36*(11), 1418–1429. https://doi.org/10.1002/jat.3295
- *Helland, A., Jenssen, G. D., Lervåg, L.-E., Moen, T., Engen, T., Lydersen, S., Mørland, J., & Slørdal, L. (2016). Evaluation of measures of impairment in real and simulated driving: Results from a randomized, placebo-controlled study. *Traffic Injury Prevention*, 17(3), 245–250. https://doi.org/10.1080/15389588.2015.1065975
- *Horne, J. A., & Baumber, C. J. (1991). Time-of-day effects of alcohol intake on simulated driving performance in women. *Ergonomics*, 34(11), 1377–1383. https://doi.org/10.1080/00140139108964878

- Hostiuc, S., Moldoveanu, A., Negoi, I., & Drima, E. (2018). The association of unfavorable traffic events and cannabis usage: A meta-analysis. *Frontiers in Pharmacology*, 9, 99. https://doi.org/10.3389/fphar.2018.00099
- *Howard, M. E., Jackson, M. L., Kennedy, G. A., Swann, P., Barnes, M., & Pierce, R. J. (2007). The interactive effects of extended wakefulness and low-dose alcohol on simulated driving and vigilance. *Sleep*, *30*(10), 1334–1340. https://doi.org/10.1093/sleep/30.10.1334
- *Howland, J., Rohsenow, D. J., Arnedt, J. T., Bliss, C. A., Hunt, S. K., Calise, T. V., Heeren, T., Winter, M., Littlefield, C., & Gottlieb, D. J. (2011). The acute effects of caffeinated versus non-caffeinated alcoholic beverage on driving performance and attention/reaction time. *Addiction*, 106(2), 335–341. https://doi.org/10.1111/j.1360-0443.2010.03219.x
- *Huemer, A. K., & Vollrath, M. (2010). Alcohol-related impairment in the Lane Change Task. Accident Analysis & Prevention, 42(6), 1983–1988. https://doi.org/10.1016/j.aap.2010.06.005
- Huestis, M. A. (2007). Human cannabinoid pharmacokinetics. *Chemistry & Biodiversity*, 4(8), 1770–1804. https://doi.org/10.1002/cbdv.200790152
- Huestis, M. A., Henningfield, J. E., & Cone, E. J. (1992). Blood cannabinoids. I. Absorption of THC and formation of 11-OH-THC and THCCOOH during and after smoking marijuana. *Journal of Analytical Toxicology*, 16(5), 276–282. https://doi.org/10.1093/jat/16.5.276
- Hullett, C. R., & Levine, T. R. (2003). The overestimation of effect sizes from F values in metaanalysis: The cause and a solution. *Communication Monographs*, 70(1), 1–1. https://doi.org/10.1080/0363775032000104586

- Imtiaz, S., Shield, K. D., Roerecke, M., Cheng, J., Popova, S., Kurdyak, P., Fischer, B., & Rehm, J. (2015). The burden of disease attributable to cannabis use in Canada in 2012. *Addiction*, *111*(4), 653–662. https://doi.org/10.1111/add.13237
- Ioannidis, J. P. A. (2005). Why most published research findings are false. *PLoS Medicine*, *2*(8), e124. https://doi.org/10.1371/journal.pmed.0020124
- Irwin, C., Iudakhina, E., Desbrow, B., & McCartney, D. (2017). Effects of acute alcohol consumption on measures of simulated driving: A systematic review and meta-analysis. *Accident Analysis & Prevention*, 102, 248–266. https://doi.org/10.1016/j.aap.2017.03.001
- Jackson, J. L., Kuriyama, A., Anton, A., Choi, A., Fournier, J.-P., Geier, A.-K., Jacquerioz, F., Kogan, D., & Sun, R. (2019). The accuracy of Google Translate for abstracting data From non–English-language trials for systematic reviews. *Annals of Internal Medicine*, 171(9), 677. https://doi.org/10.7326/M19-0891
- James, S. L., Lucchesi, L. R., Bisignano, C., Castle, C. D., Dingels, Z. V., Fox, J. T., Hamilton,
 E. B., Liu, Z., McCracken, D., Nixon, M. R., Sylte, D. O., Roberts, N. L. S., Adebayo, O.
 M., Aghamolaei, T., Alghnam, S. A., Aljunid, S. M., Almasi-Hashiani, A., Badawi, A.,
 Behzadifar, M... Mokdad, A. H. (2020). Morbidity and mortality from road injuries: results
 from the Global Burden of Disease Study 2017. *Injury Prevention*. Published Online First:
 08 January 2020. https://doi.org/10.1136/injuryprev-2019-043302
- *Jelen, K., Soumar, L., & Fanta, O. (2011). Occurrence of critical driver's behavior as a result of alcohol intoxication. *Activitas Nervosa Superior Rediviva*, *53*(4), 207–211.
- Jones, C. G. A., Swift, W., Donnelly, N. J., & Weatherburn, D. J. (2007). Correlates of driving under the influence of cannabis. *Drug and Alcohol Dependence*, 88(1), 83–86. https://doi.org/10.1016/j.drugalcdep.2006.09.005

- Jongen, S., Vermeeren, A., van der Sluiszen, N. N. J. J. M., Schumacher, M. B., Theunissen, E. L., Kuypers, K. P. C., Vuurman, E. F. P. M., & Ramaekers, J. G. (2017). A pooled analysis of on-the-road highway driving studies in actual traffic measuring standard deviation of lateral position (i.e., "weaving") while driving at a blood alcohol concentration of 0.5 g/L. *Psychopharmacology*, 234(5), 837–844. https://doi.org/10.1007/s00213-016-4519-z
- *Kay, G., Ahmad, O., Brown, T., & Veit, A. (2013). Comparison of the MiniSim and STISIM driving simulators for the detection of impairment: An alcohol Validation study. In *Proceedings of the Seventh International Driving Symposium on Human Factors in Driver Assessment, Training, and Vehicle Design* (pp. 191–197). Retrieved from http://drivingassessment.uiowa.edu/sites/default/files/DA2013/Papers/030_Kay_0.pdf
- *Kenntner-Mabiala, R., Kaussner, Y., Jagiellowicz-Kaufmann, M., Hoffmann, S., & Krüger, H.-P. (2015). Driving derformance under alcohol in simulated representative driving tasks. *Journal of Clinical Psychopharmacology*, *35*(2), 134–142. https://doi.org/10.1097/JCP.00000000000285
- Krueger, H. P., & Vollrath, M. (2000). Effects of cannabis and amphetamines on driving simulator performance of recreational drug users in the natural field. In *Proceedings of T2000 - 15th Conference on Alcohol, Drugs and Traffic Safety*. Stockholm, Sweden.
- Krug, E. G., Sharma, G. K., & Lozano, R. (2000). The global burden of injuries. American Journal of Public Health, 90(4), 523–526. https://doi.org/10.2105/AJPH.90.4.523
- Krüger, H.-P. (1990). Niedrige Alkoholkonzentrationen und Fahrverhalten (Berichte der Bundesanstalt für Straßenwesen: Unfall- und Sicherheitsforschung im Straßenverkehr, Heft 78). Bremerhaven: Wirtschaftsverlag.

- Krüger, H.-P. (1993). Effects of low alcohol dosages. A review of the literature. In H.-D.Utzelmann, G. Berghaus, & G. Kroj (Eds.), *Alcohol, drugs and traffic safety* (pp. 763-778).Köln: TÜV Rheinland.
- Krüger, H.-P., Kohnen, R., Diehl, M., Hüppe, A. (1990). Auswirkungen geringer Alkoholmengen auf Fahrverhalten und Verkehrssicherheit (Bundesanstalt für Straßenwesen, Forschungsbericht Nr. 213). Bremerhaven: Wirtschaftsverlag.
- *Kuypers, K. P. C., Samyn, N., & Ramaekers, J. G. (2006). MDMA and alcohol effects, combined and alone, on objective and subjective measures of actual driving performance and psychomotor function. *Psychopharmacology*, *187*(4), 467–475. https://doi.org/10.1007/s00213-006-0434-z
- *Laude, J. R. (2016). Cognitive and behavioral mechanisms underlying alcohol-induced risky driving. Theses and Dissertations--Psychology. https://doi.org/http://dx.doi.org/10.13023/ETD.2016.175
- *Laude, J. R., & Fillmore, M. T. (2015). Simulated driving performance under alcohol: Effects on driver-risk versus driver-skill. *Drug and Alcohol Dependence*, 154, 271–277. https://doi.org/10.1016/j.drugalcdep.2015.07.012
- *Laude, J. R., & Fillmore, M. T. (2016). Drivers who self-estimate lower blood alcohol concentrations are riskier drivers after drinking. *Psychopharmacology*, 233(8), 1387–1394. https://doi.org/10.1007/s00213-016-4233-x
- Laumon, B. (2005). Cannabis intoxication and fatal road crashes in France: Population based case-control study. *BMJ*, *331*(7529), 1371–0. https://doi.org/10.1136/bmj.38648.617986.1F
- *Lee, J. D., Fiorentino, D., Reyes, M. L., Brown, T. L., Ahmad, O., Fell, J., Ward, N., & Dufour, R. (2010). *Assessing the feasibility of vehicle-based sensors to detect alcohol impairment*

(*Report No. DOT HS 811 358*). Washington, D.C.: National Highway Traffic Safety Administration.

- Lenné, M. G., Dietze, P. M., Triggs, T. J., Walmsley, S., Murphy, B., & Redman, J. R. (2010). The effects of cannabis and alcohol on simulated arterial driving: Influences of driving experience and task demand. *Accident Analysis & Prevention*, 42(3), 859–866. https://doi.org/10.1016/j.aap.2009.04.021
- *Lenné, M. G., Dietze, P., Rumbold, G. R., Redman, J. R., & Triggs, T. J. (2003). The effects of the opioid pharmacotherapies methadone, LAAM and buprenorphine, alone and in combination with alcohol, on simulated driving. *Drug and Alcohol Dependence*, 72(3), 271–278. https://doi.org/10.1016/j.drugalcdep.2003.08.002
- *Lenne, M. G., Triggs, T. J., & Redman, J. R. (1999). Alcohol, time of day, and driving experience: Effects on simulated driving performance and subjective mood. *Transportation Human Factors*, 1(4), 331–346.
- *Leung, S., Croft, R. J., Jackson, M. L., Howard, M. E., & Mckenzie, R. J. (2012). A comparison of the effect of mobile phone use and alcohol consumption on driving simulation performance. *Traffic Injury Prevention*, *13*(6), 566–574. https://doi.org/10.1080/15389588.2012.683118
- Li, M.-C., Brady, J. E., DiMaggio, C. J., Lusardi, A. R., Tzong, K. Y., & Li, G. (2012).
 Marijuana use and motor vehicle crashes. *Epidemiologic Reviews*, 34(1), 65–72.
 https://doi.org/10.1093/epirev/mxr017
- *Liguori, A., & Robinson, J. H. (2001). Caffeine antagonism of alcohol-induced driving impairment. *Drug and Alcohol Dependence*, 63(2), 123–129. https://doi.org/10.1016/S0376-8716(00)00196-4

- *Liguori, A., D'Agostino, R. B., Dworkin, S. I., Edwards, D., & Robinson, J. H. (1999). Alcohol effects on mood, equilibrium, and simulated driving. *Alcoholism: Clinical & Experimental Research*, 23(5), 815. https://doi.org/10.1097/00000374-199905000-00008
- *Liguori, A., Gatto, C. P., & Jarrett, D. B. (2002). Separate and combined effects of marijuana and alcohol on mood, equilibrium and simulated driving. *Psychopharmacology*, 163(3–4), 399–405. https://doi.org/10.1007/s00213-002-1124-0
- *Liguori, A., Gatto, C. P., & Robinson, J. H. (1998). Effects of marijuana on equilibrium, psychomotor performance, and simulated driving. *Behavioural Pharmacology*, 9(7), 599– 609. https://doi.org/10.1097/00008877-199811000-00015
- Logan, B., Kacinko, S., & Beirness, D. J. (2016). An Evaluation of Data from Drivers Arrested for Driving Under the Influence in Relation to Per se Limits for Cannabis. Washington, D.C.: AAA Foundation for Traffic Safety.
- Longo, M. C., Hunter, C. E., Lokan, R. J., White, J. M., & White, M. A. (2000). The prevalence of alcohol, cannabinoids, benzodiazepines and stimulants amongst injured drivers and their role in driver culpability Part II: The relationship between drug prevalence and drug concentration, and driver culpability. *Accident Analysis and Prevention*, 32(5), 623–632. https://doi.org/10.1016/S0001-4575(99)00110-4
- *Louwerens, J. W., Gloerich, A. B. M., de Vries, G., Brookhuis, K. A., & O'Hanlon, J. F. (1987). The relationship between drivers' blood alcohol concentration (BAC) and actual driving performance during high speed travel. In P. C. Noordzij & R. Roszbach (Eds.), *Alcohol, Drugs and Traffic Safety - T86* (pp. 183–186).

- Macdonald, S., Mann, R., Chipman, M., Pakula, B., Erickson, P., Hathaway, A., & MacIntyre, P. (2008). Driving behavior under the influence of cannabis or cocaine. *Traffic Injury Prevention*, 9(3), 190–194. https://doi.org/10.1080/15389580802040295
- Mann, R. E., Macdonald, S., Stoduto, G., Bondy, S., Jonah, B., & Shaikh, A. (2001). The effects of introducing or lowering legal per se blood alcohol limits for driving: an international review. Accident Analysis & Prevention, 33(5), 569–583. https://doi.org/10.1016/S0001-4575(00)00077-4
- *Marczinski, C. A., & Fillmore, M. T. (2009). Acute alcohol tolerance on subjective intoxication and simulated driving performance in binge drinkers. *Psychology of Addictive Behaviors*, 23(2), 238–247. https://doi.org/10.1037/a0014633
- *Marczinski, C. A., Harrison, E. L. R., & Fillmore, M. T. (2008). Effects of alcohol on simulated driving and perceived driving impairment in binge drinkers. *Alcoholism: Clinical and Experimental Research*, *32*(7), 1329–1337. https://doi.org/10.1111/j.1530-0277.2008.00701.x
- *McCartney, D., Desbrow, B., & Irwin, C. (2017). Using alcohol intoxication goggles (Fatal Vision® goggles) to detect alcohol related impairment in simulated driving. *Traffic Injury Prevention*, 18(1), 19–27. https://doi.org/10.1080/15389588.2016.1190015
- Ménétrey, A., Augsburger, M., Favrat, B., Pin, M. A., Rothuizen, L. E., Appenzeller, M., Buclin, T., Mangin, P., & Giroud, C. (2005). Assessment of driving capability through the use of clinical and psychomotor tests in relation to blood cannabinoids levels following oral administration of 20 mg dronabinol or of a cannabis decoction made with 20 or 60 mg Δ9-THC. *Journal of Analytical Toxicology*, *29*(5), 327–338. https://doi.org/10.1093/jat/29.5.327

- *Mets, M. A. J., Kuipers, E., Senerpont Domis, L. M., Leenders, M., Olivier, B., & Verster, J. C. (2011). Effects of alcohol on highway driving in the STISIM driving simulator. *Human Psychopharmacology: Clinical and Experimental*, 26(6), 434–439. https://doi.org/10.1002/hup.1226
- Micallef, J., Dupouey, J., Jouve, E., Truillet, R., Lacarelle, B., Taillard, J., Daurat, A., Authié, C., Blin, O., Rascol, O., Philip, P., & Mestre, D. (2018). Cannabis smoking impairs driving performance on the simulator and real driving: a randomized, double-blind, placebo-controlled, crossover trial. *Fundamental & Clinical Pharmacology*, *32*(5), 558–570. https://doi.org/10.1111/fcp.12382
- Michon, J. A. (1985). A critical view of driver behavior models: What do we know, what should we do? In L. Evans & R. C. Schwing, (Eds.), *Human behavior and traffic safety*. Boston, MA: Springer US. https://doi.org/10.1007/978-1-4613-2173-6
- Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLoS Medicine*, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
- Moskowitz, H., & Fiorentino, D. (2000). A Review of the Literature on the Effects of Low Doses of Alcohol on Driving-Related Skills (Report No. DOT HS 809 028). Washington, D.C.
 Retrieved from https://one.nhtsa.gov/people/injury/research/pub/hs809028/title.htm
- Moskowitz, H., Hulbert, S., & McGlothlin, W. H. (1976a). Marihuana: Effects on simulated driving performance. Accident Analysis & Prevention, 8(1), 45–50. https://doi.org/10.1016/0001-4575(76)90033-6

- Moskowitz, H., Ziedman, K., & Sharma, S. (1976b). Visual search behavior while viewing driving scenes under the influence of alcohol and marihuana. *Human Factors*, *18*(5), 417–432.
- Mullen, N., Charlton, J., Devlin, A., & Bédard, M. (2011). Simulator validity: Behaviors observed on the simulator and on the road. In D. L. Fisher, M. Rizzo, J. Caird, & J. D. Lee (Eds.), *Handbook of driving simulation for engineering, medicine and psychology*. Boca Raton, FL: CRC Press.
- Mura, P., Kintz, P., Ludes, B., Gaulier, J. M., Marquet, P., Martin-Dupont, S., Vincent, F.,
 Kaddour, A., Gouillé, J. P., Nouveau, J., Moulsma, M., Tilhet-Coartet, S., & Pourrat, O.
 (2003). Comparison of the prevalence of alcohol, cannabis and other drugs between 900
 injured drivers and 900 control subjects: Results of a French collaborative study. *Forensic Science International*, *133*(1–2), 79–85. https://doi.org/10.1016/S0379-0738(03)00052-5
- Open Science Collaboration. (2015). Estimating the reproducibility of psychological science. *Science*, *349*(6251), aac4716-aac4716. https://doi.org/10.1126/science.aac4716
- Peck, R. C., Gebers, M. A., Voas, R. B., & Romano, E. (2008). The relationship between blood alcohol concentration (BAC), age, and crash risk. *Journal of Safety Research*, 39(3), 311–319. https://doi.org/10.1016/j.jsr.2008.02.030
- Poulsen, H., Moar, R., & Troncoso, C. (2012). The incidence of alcohol and other drugs in drivers killed in New Zealand road crashes 2004-2009. *Forensic Science International*, 223(1–3), 364–370. https://doi.org/10.1016/j.forsciint.2012.10.026
- *Price, J. L., Lewis, B., Boissoneault, J., Frazier, I. R., & Nixon, S. J. (2018). Effects of acute alcohol and driving complexity in older and younger adults. *Psychopharmacology*, 235(3), 887–896. https://doi.org/10.1007/s00213-017-4806-3

- Rafaelsen, O. J., Bech, P., & Rafaelsen, L. (1973b). Simulated car driving influenced by cannabis and alcohol. *Pharmacopsychiatry*, 6(01), 71–83. https://doi.org/10.1055/s-0028-1094370
- Rafaelsen, O. J., Bech, P., Christiansen, J., Christrup, H., Nyboe, J., & Rafaelsen, L. (1973a).Cannabis and alcohol: Effects on simulated car driving. *Science*, *179*(4076), 920–923.
- Ramaekers, J. G., Berghaus, G., van Laar, M., & Drummer, O. H. (2004). Dose related risk of motor vehicle crashes after cannabis use. *Drug and Alcohol Dependence*, 73(2), 109–119. https://doi.org/10.1016/j.drugalcdep.2003.10.008
- *Ramaekers, J. G., Lamers, C. T. J., Robbe, H. W. J., & O'Hanlon, J. F. (2000b). Low doses of marijuana and alcohol severely impair driving when taken together. In Alcohol, drugs and traffic safety. Proceedings of T2000 - 15th Conference on Alcohol, Drugs and Traffic Safety. Stockholm, Sweden. Retrieved from
 - http://www.icadtsinternational.com/documents/?category=15th_T2000_Stockholm
- *Ramaekers, J. G., Robbe, H. W. J., & O'Hanlon, J. F. (2000a). Marijuana, alcohol and actual driving performance. *Human Psychopharmacology: Clinical and Experimental*, 15(7), 551– 558. https://doi.org/10.1002/1099-1077(200010)15:7<551::AID-HUP236>3.0.CO;2-P
- *Ramaekers, J. G., Uiterwijk, M. M. C., & O'Hanlon, J. F. (1992). Effects of loratadine and cetirizine on actual driving and psychometric test performance, and EEG during driving. *European Journal of Clinical Pharmacology*, 42(4), 363–9.

https://doi.org/10.1007/bf00280119

Reimann, C., Schubert, W., Berg, M., & Meer, E. van der. (2014). Indication for the assessment of driver fitness after problematic alcohol consumption. *SUCHT*, *60*(3), 139–147. https://doi.org/10.1024/0939-5911.a000309

- Rezaee-Zavareh, M. S., Salamati, P., Ramezani-Binabaj, M., Saeidnejad, M., Rousta, M., Shokraneh, F., & Rahimi-Movaghar, V. (2017). Alcohol consumption for simulated driving performance: A systematic review. *Chinese Journal of Traumatology*, 20(3), 166–172. https://doi.org/10.1016/j.cjtee.2017.04.002
- *Robbe, H. (1998). Marijuana's impairing effects on driving are moderate when taken alone but severe when combined with alcohol. *Human Psychopharmacology: Clinical & Experimental*, 13, S70–S78.
- *Roberts, W. (2016). Decision-making processes, driving performance, and acute responses to alcohol in DUI offenders [Doctoral dissertation, University of Kentucky]. Theses and Dissertations--Psychology. https://doi.org/10.13023/ETD.2016.257
- Rogeberg, O., & Elvik, R. (2016). The effects of cannabis intoxication on motor vehicle collision revisited and revised. *Addiction*, *111*(8), 1348–1359. https://doi.org/10.1111/add.13347
- Rogeberg, O., Elvik, R., & White, M. (2018). Correction to: 'The effects of cannabis intoxication on motor vehicle collision revisited and revised' (2016). *Addiction*, 113(5), 967–969. https://doi.org/10.1111/add.14140
- Romano, E., Voas, R. B., & Camp, B. (2017). Cannabis and crash responsibility while driving below the alcohol per se legal limit. *Accident Analysis & Prevention*, 108, 37–43. https://doi.org/10.1016/j.aap.2017.08.003
- *Ronen, A., Chassidim, H. S., Gershon, P., Parmet, Y., Rabinovich, A., Bar-Hamburger, R., Cassuto, Y., & Shinar, D. (2010). The effect of alcohol, THC and their combination on perceived effects, willingness to drive and performance of driving and non-driving tasks. *Accident Analysis & Prevention*, 42(6), 1855–1865. https://doi.org/10.1016/j.aap.2010.05.006

- *Ronen, A., Gershon, P., Drobiner, H., Rabinovich, A., Bar-Hamburger, R., Mechoulam, R., Cassuto, Y., & Shinar, D. (2008). Effects of THC on driving performance, physiological state and subjective feelings relative to alcohol. *Accident Analysis & Prevention*, 40(3), 926–934. https://doi.org/10.1016/j.aap.2007.10.011
- Rotermann, M. (2020). What has changed since cannabis was legalized? *Health Reports*, *31*(2), 11–20. https://doi.org/10.25318/82-003-x20200020002-eng
- *Rupp, T. L., Acebo, C., Seifer, R., & Carskadon, M. A. (2007). Effects of a moderate evening alcohol dose. II: Performance. *Alcoholism: Clinical and Experimental Research*, *31*(8), 1365–1371. https://doi.org/10.1111/j.1530-0277.2007.00434.x
- Russo, E., & Guy, G. W. (2006). A tale of two cannabinoids: The therapeutic rationale for combining tetrahydrocannabinol and cannabidiol. *Medical Hypotheses*, 66(2), 234–246. https://doi.org/10.1016/j.mehy.2005.08.026
- Ryan, G. A., Legge, M., & Rosman, D. (1998). Age related changes in drivers' crash risk and crash type. *Accident Analysis and Prevention*, 30(3), 379–387. https://doi.org/10.1016/S0001-4575(97)00098-5
- Schulz, K. F., Altman, D. G., & Moher, D. (2010). CONSORT 2010 Statement: Updated guidelines for reporting parallel group randomised trials. *BMJ (Online)*, 340(7748), 698– 702. https://doi.org/10.1136/bmj.c332
- Schumacher, M. B. (2014). Erfassung der Fahrsicherheit unter psychoaktiver Medikation am Beispiel der Langzeitanwendung von Opioiden bei chronischem Schmerz [Doctoral dissertation, Technische Universität Braunschweig]. Retrieved from https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00056091

- *Schumacher, M. B., Jongen, S., Knoche, A., Petzke, F., Vuurman, E. F., Vollrath, M., & Ramaekers, J. G. (2017). Effect of chronic opioid therapy on actual driving performance in non-cancer pain patients. *Psychopharmacology*, 234(6), 989–999. https://doi.org/10.1007/s00213-017-4539-3
- Schumacher, M., Knoche, A., Vollrath, M., Petzke, F., Jantos, R., Vuurman, E., & Ramaekers, J. (2011). Effects of analgetic medication on actual driving (WP1) [Poster]. DRUID Final Conference, Cologne. Retrieved from https://www.bast.de/Druid/EN/Final Conference/Poster/Downloads/Poster_A_Schumacher1.html?nn=613802
- Senna, M. C., Augsburger, M., Aebi, B., Briellmann, T. A., Donzé, N., Dubugnon, J. L., Iten, P. X., Staub, C., Sturm, W., & Sutter, K. (2010). First nationwide study on driving under the influence of drugs in Switzerland. *Forensic Science International*, 198(1–3), 11–16. https://doi.org/10.1016/j.forsciint.2010.02.014
- Sewell, R. A., Poling, J., & Sofuoglu, M. (2009). The effect of cannabis compared with alcohol on driving. *American Journal on Addictions*, 18(3), 185–193. https://doi.org/10.1080/10550490902786934
- *Sexton, B. F. (1997). Validation trial for testing impairment of driving due to alcohol (TRL Report 226). Transport Research Laboratory.
- *Sexton, B. F., Tunbridge, R. J., Board, A., Jackson, P. G., Wright, K., Stark, M. M., & Englehart, K. (2002). *The influence of cannabis and alcohol on driving (TRL Report 543)*. TRL Limited.
- *Sexton, B. F., Tunbridge, R. J., Brook-Carter, N., Jackson, P. G., Wright, K., Stark, M. M., & Englehart, K. (2000). *The influence of cannabis on driving (TRL Report 477)*.

- Shinar, D. (2017). *Traffic safety and human behavior* (2nd ed.). Bingley, UK: Emerald Group Publishing.
- Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and metasyntheses. *Annual Review of Psychology*, 70(1), 747–770. https://doi.org/10.1146/annurevpsych-010418-102803
- Simmons, S. M., Caird, J. K., & Steel, P. (2017). A meta-analysis of in-vehicle and nomadic voice-recognition system interaction and driving performance. *Accident Analysis & Prevention*, 106, 31–43. https://doi.org/10.1016/j.aap.2017.05.013
- *Simons, R., Martens, M., Ramaekers, J., Krul, A., Klöpping-Ketelaars, I., & Skopp, G. (2012). Effects of dexamphetamine with and without alcohol on simulated driving. *Psychopharmacology*, 222(3), 391–399. https://doi.org/10.1007/s00213-011-2549-0
- *Sklar, A. L., Boissoneault, J., Fillmore, M. T., & Nixon, S. J. (2014). Interactions between age and moderate alcohol effects on simulated driving performance. *Psychopharmacology*, 231(3), 557–566. https://doi.org/10.1007/s00213-013-3269-4
- Smiley, A. (1986). Marijuana: On-road and driving simulator studies. *Alcohol, Drugs and Driving*, 2(3–4), 121–134.
- Smiley, A., Moskowitz, H. M., & Ziedman, K. (1985). Effects of drugs on driving: driving simulator tests of secobarbital, diazepam, marijuana, and alcohol. Clinical and Behavior Pharmacology Research Report. Rockville, MD: National Institute on Drug Abuse.
- Smiley, A., Noy, I., & Tostowaryk, W. (1987). The effects of marihuana alone and in combination with alcohol on driving performance. In P. C. Noordzij & R. Roszbach (Eds.), *Alcohol, drugs and traffic safety - T86.*

- *Starkey, N. J., & Charlton, S. G. (2014). The effects of moderate alcohol concentrations on driving and cognitive performance during ascending and descending blood alcohol concentrations. *Human Psychopharmacology: Clinical and Experimental*, 29(4), 370–383. https://doi.org/10.1002/hup.2415
- Statistics Canada. (2018). *Canadian Tobacco, Alcohol and Drugs Survey, 2017. The Daily*. Retrieved from https://www150.statcan.gc.ca/n1/daily-quotidien/181030/dq181030beng.pdf
- Statistics Canada. (2019). *National cannabis survey, third quarter 2019. The Daily*. Retrieved from https://www150.statcan.gc.ca/n1/daily-quotidien/191030/dq191030a-eng.htm
- Stein, A. C. (1985). A simulator study of the effects of alcohol and marihuana on driving behavior (Doctoral dissertation, Saybrook Institute). ProQuest Dissertations and Theses.
- Stephan, E., Mattern, R., Tschöp, T., & Skopp, G. (2004). The ability of coffee shop guests before and immediately after cannabis consumption and before possible driving (die leistungsfähigkeit von coffeeshopbesuchern vor und unmittelbar nach cannabiskonsum sowie vor möglichem fahrtantritt). *Blutalkohol*, 41(6), 25–37.
- Sterne, J. A., & Egger, M. (2005). Regression methods to detect publication and other bias in meta-analysis. In H. R. Rothstein, A. J. Sutton & M Borenstein (Eds.), *Publication bias in meta-analysis: Prevention, assessment and adjustments* (pp. 99-110). Chichester, UK: John Wiley & Sons, Ltd.
- Sticht, G., & Käferstein, H. (1998). Fundamentals, toxicokinetics and toxicodynamics (grundbegriffe, toxikokinetik und toxikodynamik). In G. Berghaus & H. P. Krüger (Eds.), *Cannabis im straßenverkehr* (pp. 1–11). Stuttgart: Gustav Fischer Verlag.

- *Strayer, D. L., Drews, F. A., & Crouch, D. J. (2006). A comparison of the cell phone driver and the drunk driver. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 48(2), 381–391. https://doi.org/10.1518/001872006777724471
- *Subramaniyam, M., Eun Kim, S., Nam Min, S., Lee, H., Hee Hong, S., & Jin Park, S. (2018). Study of effects of blood alcohol consumption (BAC) level on drivers physiological behavior and driving performance under simulated environment. *International Journal of Engineering & Technology*, 7(2.8), 86. https://doi.org/10.14419/ijet.v7i2.8.10336
- Sutton, L. R. (1983). The effects of alcohol, marihuana and their combination on driving ability. *Journal of Studies on Alcohol*, 44(3), 438–445. https://doi.org/10.15288/jsa.1983.44.438
- Swift, W., Jones, C., & Donnelly, N. (2010). Cannabis use while driving: A descriptive study of Australian cannabis users. *Drugs: Education, Prevention and Policy*, 17(5), 573–586. https://doi.org/10.3109/09687630903264286
- Terry, P., & Wright, K. A. (2005). Self-reported driving behaviour and attitudes towards driving under the influence of cannabis among three different user groups in England. *Addictive Behaviors*, 30(3), 619–626. https://doi.org/10.1016/j.addbeh.2004.08.007
- The Canadian Press. (2019a). Nova Scotia woman plans constitutional challenge of roadside cannabis test. *The Globe and Mail*. Retrieved from https://www.theglobeandmail.com/canada/article-nova-scotia-woman-plans-constitutional-challenge-of-roadside-cannabis/
- The Canadian Press. (2019b). Retailers struggle to keep CBD on shelves in Canada. *CBC British Columbia*. Retrieved from https://www.cbc.ca/news/canada/british-columbia/cbd-shortagecanada-retailers-struggle-1.5124222

- *Tremblay, M., Gallant, F., Lavallière, M., Chiasson, M., Silvey, D., Behm, D., Albert, W. J., & Johnson, M. J. (2015). Driving performance on the descending limb of blood alcohol concentration (BAC) in undergraduate students: A pilot study. *PLOS ONE*, *10*(2), e0118348. https://doi.org/10.1371/journal.pone.0118348
- United Nations Office on Drugs and Crime. (2019). World Drug Report 2019: 35 million people worldwide suffer from drug use disorders while only 1 in 7 people receive treatment. Retrieved April 7, 2020, from

https://wdr.unodc.org/wdr2019/press/WDR_2019_press_release.pdf

- *van der Sluiszen, N. N. J. J. M., Vermeeren, A., Jongen, S., Theunissen, E. L., van Oers, A. C. M., Van Leeuwen, C. J., Maret, A., Desforges, C., Delarue, A., & Ramaekers, J. G. (2016).
 On-the-road driving performance after use of the antihistamines mequitazine and l-mequitazine, alone and with alcohol. *Psychopharmacology*, 233(18), 3461–3469.
 https://doi.org/10.1007/s00213-016-4386-7
- *Van Dyke, N. A., & Fillmore, M. T. (2015). Distraction produces over-additive increases in the degree to which alcohol impairs driving performance. *Psychopharmacology*, 232(23), 4277–4284. https://doi.org/10.1007/s00213-015-4055-2
- *Van Dyke, N. A., & Fillmore, M. T. (2017). Laboratory analysis of risky driving at 0.05% and 0.08% blood alcohol concentration. *Drug and Alcohol Dependence*, 175, 127–132. https://doi.org/10.1016/j.drugalcdep.2017.02.005
- *Van Dyke, N., & Fillmore, M. T. (2014). Alcohol effects on simulated driving performance and self-perceptions of impairment in DUI offenders. *Experimental and Clinical Psychopharmacology*, 22(6), 484–493. https://doi.org/10.1037/a0038126

- *Veldstra, J. L., Bosker, W. M., de Waard, D., Ramaekers, J. G., & Brookhuis, K. A. (2015). Comparing treatment effects of oral THC on simulated and on-the-road driving performance: Testing the validity of driving simulator drug research. *Psychopharmacology*, 232(16), 2911–2919. https://doi.org/10.1007/s00213-015-3927-9
- *Veldstra, J. L., Brookhuis, K. A., de Waard, D., Molmans, B. H. W., Verstraete, A. G., Skopp, G., & Jantos, R. (2012). Effects of alcohol (BAC 0.5‰) and ecstasy (MDMA 100 mg) on simulated driving performance and traffic safety. *Psychopharmacology*, 222(3), 377–390. https://doi.org/10.1007/s00213-011-2537-4
- *Vermeeren, A., & O'Hanlon, J. F. (1998). Fexofenadine's effects, alone and with alcohol, on actual driving and psychomotor performance. *Journal of Allergy and Clinical Immunology*, *101*(3), 306–311. https://doi.org/10.1016/S0091-6749(98)70240-4
- *Vermeeren, A., Ramaekers, J. G., & O'Hanlon, J. F. (2002a). Effects of emedastine and cetirizine, alone and with alcohol, on actual driving of males and females. *Journal of Psychopharmacology*, *16*(1), 57–64. https://doi.org/10.1177/026988110201600104
- *Vermeeren, A., Riedel, W. J., van Boxtel, M. P. J., Darwish, M., Paty, I., & Patat, A. (2002b). Differential residual effects of zaleplon and zopiclone on actual driving: A comparison with a low dose of alcohol. *Sleep*, 25(2), 224–231. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0037086988&partnerID=40&md5=403a5ffdfffbf916a27a09bf68d26874
- *Verster, J. C., Volkerts, E. R., Schreuder, A. H. C. M. L., Eijken, E. J. E., van Heuckelum, J. H. G., Veldhuijzen, D. S., Verbaten, M. N., Paty, I., Darwish, M., Danjou, P., & Patat, A. (2002). Residual effects of middle-of-the-night administration of zaleplon and zolpidem on

driving ability, memory functions, and psychomotor performance. *Journal of Clinical Psychopharmacology*, 22(6), 576–583. https://doi.org/10.1097/00004714-200212000-00007

- Voas, R. B., Torres, P., Romano, E., & Lacey, J. H. (2012). Alcohol-related risk of driver fatalities: An update using 2007 data. *Journal of Studies on Alcohol and Drugs*, 73(3), 341– 350. https://doi.org/10.15288/jsad.2012.73.341
- *Vollrath, M., & Fischer, J. (2017). When does alcohol hurt? A driving simulator study. *Accident Analysis & Prevention*, *109*, 89–98. https://doi.org/10.1016/j.aap.2017.09.021
- Walsh, G. W., & Mann, R. E. (1999). On the high road: Driving under the influence of cannabis in Ontario. *Canadian Journal of Public Health*, 90(4), 260–263. https://doi.org/10.1007/BF03404128
- *Wan, J., Wu, C., Zhang, Y., Houston, R. J., Chen, C. W., & Chanawangsa, P. (2017). Drinking and driving behavior at stop signs and red lights. *Accident Analysis & Prevention*, 104, 10– 17. https://doi.org/10.1016/j.aap.2017.04.008
- Ward, N. J., & Dye, L. (1999). Cannabis and driving: A review of the literature and commentary. London, UK: Department of the Environment, Transport and the Regions.
- Watson, P. E., Watson, I. D., & Batt, R. D. (1981). Prediction of blood alcohol concentrations in human subjects. Updating the Widmark Equation. *Journal of Studies on Alcohol*, 42(7), 547–556. https://doi.org/10.15288/jsa.1981.42.547
- Watson, T. M., Mann, R. E., Wickens, C. M., & Brands, B. (2019). "Just a habit": Driving under the influence of cannabis as ordinary, convenient, and controllable experiences according to drivers in a remedial program. *Journal of Drug Issues*, 49(3), 531–544. https://doi.org/10.1177/0022042619842375

*Weafer, J., & Fillmore, M. T. (2012). Acute tolerance to alcohol impairment of behavioral and cognitive mechanisms related to driving: drinking and driving on the descending limb. *Psychopharmacology*, 220(4), 697–706. https://doi.org/10.1007/s00213-011-2519-6

*Weafer, J., Camarillo, D., Fillmore, M. T., Milich, R., & Marczinski, C. A. (2008). Simulated driving performance of adults with ADHD: Comparisons with alcohol intoxication. *Experimental and Clinical Psychopharmacology*, *16*(3), 251–263. https://doi.org/10.1037/1064-1297.16.3.251

- *Weiler, J. M., Bloomfield, J. R., Woodworth, G. G., Grant, A. R., Layton, T. A., Brown, T. L., McKenzie, D. R., Baker, T. W., & Watson, G. S. (2000). Effects of fexofenadine, diphenhydramine, and alcohol on driving performance. *Annals of Internal Medicine*, *132*(5), 354. https://doi.org/10.7326/0003-4819-132-5-200003070-00004
- Wettlaufer, A., Florica, R. O., Asbridge, M., Beirness, D., Brubacher, J., Callaghan, R., Fischer, B., Gmel, G., Imtiaz, S., Mann, R. E., McKiernan, A., Rehm, J. (2017). Estimating the harms and costs of cannabis-attributable collisions in the Canadian provinces. *Drug and Alcohol Dependence*, *173*, 185–190. https://doi.org/10.1016/j.drugalcdep.2016.12.024
- Wood, E., & Salomonsen-Sautel, S. (2016). DUID prevalence in Colorado's DUI citations. Journal of Safety Research, 57, 33–38. https://doi.org/10.1016/j.jsr.2016.03.005
- Woods-Fry, H., Vanlaar, W. G. M., Lyon, C., Brown, S., & Robertson, R. D. (2019). Road Safety Monitor 2019: Trends in Marijuana Use Among Canadian Drivers. Ottawa, ON.
- *Zhang, X., Zhao, X., Du, H., Ma, J., & Rong, J. (2014). Effect of different breath alcohol concentrations on driving performance in horizontal curves. *Accident Analysis & Prevention*, 72, 401–410. https://doi.org/10.1016/j.aap.2014.07.032

Appendix A: Search Strategy

1	driving under the influence/
2	drunken driving/
3	1 or 2
4	tetrahydrocannabinol/
5	cannabinoids/
6	cannabis/
7	hashish/
8	marijuana/
9	4 or 5 or 6 or 7 or 8
10	3 or 9
11	"driv*" .m_titl.
12	"simulat*" .m_titl.
13	11 or 12
14	10 and 13

Table A2. Search strategy for Academic Search Complete, CINAHL and SportDISCUS.

S 1	SU Cannabis OR Hashish OR SU Marijuana
S2	SU alcoholic beverages
S 3	TI driv* OR TI simulat*
S 4	S1 OR S2
S5	S3 AND S4

Note: All searches limited to Academic Journals.

The search strategy for Scopus was as follows:

TITLE (alcohol OR dronabinol OR nabilone OR tetrahydrocannabinol OR the OR cannabis OR hash* OR marijuana OR marihuana) AND TITLE (driv* OR simulat*) AND (LIMIT-TO (SUBJAREA, "MEDI") OR LIMIT-TO (SUBJAREA, "SOCI") OR LIMIT-TO (SUBJAREA, "PHAR") OR LIMIT-TO (SUBJAREA, "PSYC")) AND (LIMIT-TO (DOCTYPE, "ar") OR LIMIT-TO (DOCTYPE, "re") OR LIMIT-TO (DOCTYPE, "cp")) AND (LIMIT-TO (EXACTKEYWORD, "Automobile Driving") OR LIMIT-TO (EXACTKEYWORD, "Car Driving"))

The search strategy for TRID, which was limited to <u>only articles and papers</u>, was as follows:

(alcohol OR dronabinol OR nabilone OR tetrahydrocannabinol OR the OR cannabis OR hash* OR marijuana OR marihuana) AND (driv* OR simulat*)

Appendix B: Eligible Studies Excluded for Insufficient Data

Table B1. Studies that met inclusion criteria but did not report enough data for effect size computation.

Study	Setting	Included N	M Age (SD)	Relevant IV's	Relevant DV's
Allen & Stein, 1996	Simulator	33 (Unclear F)	Not reported.	Alcohol, Placebo	Lat. Control: SD of Lane Deviation
Attwood et al., 1980	Closed Course	6 (0 F)	Range 22 - 25	Alcohol, Placebo Control	Lat. Control: Lane Position Variance Speed: Mean Velocity Headway: Mean Headway Long. Control: Velocity Variance, Headway Variance
Attwood et al., 1981	Closed- Course	8 (0 F)	Range 20 - 28	Cannabis, Alcohol, Combination ² , Placebo Control	Lat. Control: SD Lane Position Speed: Mean Velocity Long. Control: SD Velocity, SD Headway Headway: Headway
Barkley et al., 2006	Simulator	39 (Unclear F) ¹	Unclear; M = 29.2 (8.2) for original 46 participants	Alcohol, Placebo Control	RT: Total Brake Reaction Time [Hazard] Speed: Average Speed Long. Control: Variability of Speed Crashes: Collisions
Burian et al., 2002	Simulator	13 (0 F)	M = 31, Range $23 - 43$	Alcohol, Placebo	Speed: Driving Speed
Chen & Chen, 2017	Simulator	16 (0 F)	Range 18 – 24	Alcohol, Placebo	Lat. Control: SDLP Speed: Mean Speed
de Waard & Brookhuis, 1991	On-Road	20 (0 F)	Range 25 – 40	Alcohol, Untreated Control	Lat. Control: SD of Lateral Position Headway: Time Headway

Study Fairclough & Graham, 1999	Setting Simulator	Included N 32 (0 F) ²	M Age (SD) M = 30.63, Range $20 - 46for n = 16 Control groupparticipants; M = 30.68,Range 20 - 50 for n = 16Alcohol group participants$	Relevant IV's Alcohol, Placebo Control	Relevant DV'sHeadway: Time HeadwayLat. Control: LaneCrossingsLong. Control: SpeedVariabilityCrashes: Accidents
Hartley et al., 2019	Simulator	30 (0 F)	M = 21.50 (3.26), Range 20 - 34.	Cannabis, Placebo	Lat. Control: SDLP
Hartman et al., 2016	Simulator	18 (5 F)	M = 26.3 (4.2), Range 21 - 37	Cannabis, Alcohol, Combination, Placebo Control	Speed: Mean Speed Relative to the Speed Limit, Percent Speed High Long. Control: SD Speed Headway: Mean Following Distance
Laurell & Tornros, 1991	Simulator	24 (Unclear F)	Range 20 – 32.	Alcohol, Untreated Control	Speed: Average Speed Crashes: Crashes
Lenne et al., 2010	Simulator	33 (Unclear F)	Unclear. Original 47 participants included n = 22, Range 18 – 21; and, n = 25 Range 25 – 40.	Cannabis, Alcohol, Combination, Placebo Control	Lat. Control: SD Lateral Position Speed: Mean Speed Long. Control: SD Speed, SD Headway Headway: Mean Headway
Leung & Starmer, 2005	Simulator	32 (14 F)	$M = 20 (0.9), Range 18 - 21 \text{ for } n = 16 \text{ younger} \\ drivers; M = 28 (2.7), \\ Range = 25 - 35 \text{ for } n = 16 \\ \text{``mature'' drivers}$	Alcohol, Placebo	Speed: Mean Speed

Study	Setting	Included N	M Age (SD)	Relevant IV's	Relevant DV's
Li et al., 2016	Simulator	52 (18 F)	M = 38.2, Range 21 – 61	Alcohol,	RT: FB Module Braking RT
				Untreated	[Hazard]
				Control	Lat. Control: SDLP
					Long. Control: SD of
	<u> </u>				Speed
Liu & Fu, 2007	Simulator	8 (2 F)	Range $20 - 24$ for $n = 4$,	Alcohol,	Lat. Control: Variance in
			Range $25 - 30$ for $n = 4$.	Untreated	Lateral Lane Position
				Control	Speed: Mean Speed
					Long. Control: Speed
					Variance
					Crashes: Number of
Lin & Ha 20104	Cimulator	9 () E)	M 24 125 (1.99) Dance	Alashal Dlassha	Accidents
Liu & Ho, 2010 ⁴	Simulator	8 (2 F)	M = 24.125 (1.88), Range 22 – 27	Alcohol, Placebo	Long. Control: Variance of Longitudinal Speed
Martin, 1971	Simulator	12 (0 F)	Median = 25, Range $22 -$	Alcohol, Placebo	Lat. Control: Time Off
			28.		Target
Micallef et al., 2018	Simulator,	15 (0 F),	Unclear. For original $N =$	Cannabis,	Lat. Control: SDLP,
	On-Road	Simulator;	20, Range 25 – 35.	Placebo	Inappropriate Line
		11 (0 F),			Crossings
		On-Road			
Mortimer & Sturgis,	On-Road	40 (17 F)	Median = 30, Range $19 -$	Alcohol, Placebo	Lat. Control: Lateral Path
1979			56		Error Variance
					Speed: Speed
					Long. Control: Headway
					Variance, Speed
					Maintenance
					Headway: Mean Headway
Mortimer & Howat,	Closed	14 (7 F)	Range 21 – 32	Alcohol, Placebo	Long. Control: Absolute
1986	Course				Mean Error In Speed, Speed
					Maintenance

Study	Setting	Included N	M Age (SD)	Relevant IV's	Relevant DV's
Moskowitz et al., 1976	Simulator	23 (0 F)	Unclear. For original <i>N</i> = 24, M = 24, Range 21 - 32	Cannabis, Placebo	Speed: Average Speed During the Event (MPH), Speed at the Beginning of the Event (MPH), Speed at the End of the Event (MPH) Speed Var: Within Subject SD of Average Speed During the Event (MPH), Within Subject SD of Speed at the Beginning of the Event (MPH), Within Subject SD of Speed at the End of the Event (MPH)
Moskowitz et al., 2000	Simulator	168 (84 F)	M = 34 years, 11 months for $n = 84$ males; M = 33 years, 2 months for $n = 84$ females; participants divided into "youthful drivers" (age 19-20; M = 19 years, 8 months), "young adult drivers" (age 21-24; M = 22 years, 5 months), "adult drivers" (age 25-50; M = 32 years, 8 months), "older drivers" (age 51-69; M = 61 years, 7 months), each with 21 males and 21 females per group	Alcohol, Placebo	Lat. Control: Lane Deviation Variability Speed: Times Over Speed Limit Long. Control: Speed Variability Crashes: Collisions

Study	Setting	Included N	M Age (SD)	Relevant IV's	Relevant DV's
Quillian et al., 1999	Simulator	28 (0 F)	For $n = 14$ middle-aged group, M = 36.2 (5.8), Range 30 – 50. For $n = 14$ older group, M = 69.4 (5.2), Range 60 – 77.	Alcohol, Non- Alcohol (unclear if placebo or untreated control)	Lat. Control: Off Road Speed: High Speed, SD Speed Crashes: Crashes, Bump Collisions
Rafaelsen et al., 1973a	Simulator	8 (0 F)	Range 21 - 29	Cannabis, Alcohol, Placebo	Speed: Mean Speed
Rafaelsen et al., 1973b ³	Simulator	8 (0 F)	Range 21 – 29	Cannabis, Alcohol, Placebo	Speed: <i>Mean Speed</i> Long. Control: <i>Variation of</i> <i>Speed</i>
Rakauskas et al., 2005	Simulator	48 (0 F)	M = 22.3, Range 21 – 29.	Alcohol, Placebo	RT: Response Time to Pullout Events [Hazard] Speed: Speed at Curve Apex Headway: Median Time Headway Lat. Control: Lane Position Variability Long. Control: Time Headway Variability Collisions: Number of Collisions
Ranney & Gawron, 1984 (Study 1)	On-Road	6 (0 F)	Range 21 – 55.	Alcohol, Placebo	Lat. Control: SD of Lateral Position, Lane Deviation Frequency, Time Off Road Speed: Mean Velocity Long. Control: SD of Velocity Collisions: Accidents
Ranney & Gawron, 1984 (Study 2)	Simulator	12 (0 F)	Range 21 – 55.	Alcohol, Placebo	Speed: Speed, Speed Exceedances Collisions: Obstacles Struck

Study	Setting	Included N	M Age (SD)	Relevant IV's	Relevant DV's
Roehrs et al., 1994	Simulator	12 (0 F)	Range 21 – 35	Alcohol, Placebo	Crashes: Crashes
Smiley et al., 1985	Simulator	35 (0 F)	Unclear. Inclusion criterion included age range 21 – 45.	Cannabis, Alcohol, Combination, Placebo Control	Lat. Control: Lane Position Variability Long. Control: Speed Variability, Headway Variability Crashes: Number of Crashes
Smiley et al., 1987	On-Road	52 (0 F)	Range 21 – 30.	Alcohol, Cannabis, Combination, Placebo	Speed: Speed Headway: Headway Long. Control: SD of Velocity, Headway Variability
Spaanjaars et al., 2011	Simulator	74 (74 F)	M = 21.85 (1.54), Range 19 - 25	Alcohol, Placebo	Lat. Control: SD of Lateral Position Speed: Average Speed
Stein, 1985	Simulator	12 (0 F)	For original $N = 13$, Range $21 - 65$.	Cannabis, Alcohol, Combination, Placebo	Speed: Mean Speed Lat. Control: Lane Position Variability Long. Control: Speed Variance Crashes: Crashes
Sutton, 1983	Closed Course	9 (0 F)	M = 25.1	Cannabis, Alcohol, Combination, Placebo	Lat. Control: Weaving Over Yellow Center Line, Leaving the Driving Course
Vakulin et al., 2009	Simulator	20 (5 F)	M = 50.6 (10.1)	Alcohol, Placebo	RT: <i>Braking RT</i> [Hazard] Crashes: <i>Crash Frequency</i>
Wu et al., 2011	Simulator	13 (9 F)	Unclear. For original $N = 15$ group, Range $20 - 25$.	Alcohol, Untreated Control	Speed: High Velocity Time

1. This study initially enrolled 56 (19 F) adults with ADHD and 46 (19 F) community controls. Only the final sample of 39 "community control" participants were eligible for inclusion in the meta-analysis.

2. Two sleep deprivation groups excluded. Only participants from non-sleep-deprived groups (i.e., *Control, Alcohol*) were eligible for inclusion in the metaanalysis.

3. Suspected duplicate of Rafaelsen et al., 1973a.

4. Suspected duplicate of Liu & Fu, 2007.

References for Appendix B

- Allen, R. W., Parseghian, Z., & Stein, A. C. (1996). A driving simulator study of the performance effects of low blood alcohol concentration. *Proceedings of the Human Factors* and Ergonomics Society Annual Meeting, 40(18), 943–946. https://doi.org/10.1177/154193129604001817
- Attwood, D. A., Williams, R. D., & Madill, H. D. (1980). Effects of moderate blood alcohol concentrations on closed-course driving performance. *Journal of Studies on Alcohol*, 41(7), 623–634. https://doi.org/10.15288/jsa.1980.41.623
- Attwood, D. A., Williams, R. D., McBurney, L. J., & Frecker, R. C. (1981). Cannabis, alcohol and driving: effects on selected close-course tasks. In *Proceedings International Council on Alcohol, Drugs and Traffic Safety Conference* (pp. 938–953).
- Barkley, R. A., Murphy, K. R., O'Connell, T., Anderson, D., & Connor, D. F. (2006). Effects of two doses of alcohol on simulator driving performance in adults with attentiondeficit/hyperactivity disorder. *Neuropsychology*, 20(1), 77–87. https://doi.org/10.1037/0894-4105.20.1.77
- Burian, S. E., Liguori, A., & Robinson, J. H. (2002). Effects of alcohol on risk-taking during simulated driving. *Human Psychopharmacology: Clinical & Experimental*, 17(3), 141–150. https://doi.org/10.0.3.234/hup.384
- Chen, H., & Chen, L. (2017). Support vector machine classification of drunk driving behaviour. International Journal of Environmental Research and Public Health, 14(1), 108. https://doi.org/10.3390/ijerph14010108

- de Waard, D., & Brookhuis, K. A. (1991). Assessing driver status: A demonstration experiment on the road. Accident Analysis & Prevention, 23(4), 297–307. https://doi.org/10.1016/0001-4575(91)90007-R
- Fairclough, S. H., & Graham, R. (1999). Impairment of driving performance caused by sleep deprivation or alcohol: A comparative study. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 41(1), 118–128. https://doi.org/10.1518/001872099779577336
- Hartley, S., Simon, N., Larabi, A., Vaugier, I., Barbot, F., Quera-Salva, M.-A., & Alvarez, J. C. (2019). Effect of smoked cannabis on vigilance and accident risk using simulated driving in occasional and chronic users and the pharmacokinetic–pharmacodynamic relationship. *Clinical Chemistry*, 65(5), 684–693. https://doi.org/10.1373/clinchem.2018.299727
- Hartman, R. L., Brown, T. L., Milavetz, G., Spurgin, A., Pierce, R. S., Gorelick, D. A., Gaffney, G., & Huestis, M. A. (2016). Cannabis effects on driving longitudinal control with and without alcohol. *Journal of Applied Toxicology*, *36*(11), 1418–1429. https://doi.org/10.1002/jat.3295
- Laurell, H., & Törnros, J. (1991). Interaction effects of hypnotics and alcohol on driving performance. *Journal of Traffic Medicine*, *19*(1), 9–13.
- Lenné, M. G., Dietze, P. M., Triggs, T. J., Walmsley, S., Murphy, B., & Redman, J. R. (2010). The effects of cannabis and alcohol on simulated arterial driving: Influences of driving experience and task demand. *Accident Analysis & Prevention*, 42(3), 859–866. https://doi.org/10.1016/j.aap.2009.04.021

- Leung, S., & Starmer, G. (2005). Gap acceptance and risk-taking by young and mature drivers, both sober and alcohol-intoxicated, in a simulated driving task. *Accident Analysis & Prevention*, 37(6), 1056–1065. https://doi.org/10.1016/j.aap.2005.06.004
- Li, Y. C., Sze, N. N., Wong, S. C., Yan, W., Tsui, K. L., & So, F. L. (2016). A simulation study of the effects of alcohol on driving performance in a Chinese population. *Accident Analysis* & *Prevention*, 95, 334–342. https://doi.org/10.1016/j.aap.2016.01.010
- Liu, Y.-C., & Fu, S.-M. (2007). Changes in driving behavior and cognitive performance with different breath alcohol concentration levels. *Traffic Injury Prevention*, 8(2), 153–161. https://doi.org/10.1080/15389580601161623
- Liu, Y.-C., & Ho, C. H. (2010). Effects of different blood alcohol concentrations and postalcohol impairment on driving behavior and task performance. *Traffic Injury Prevention*, *11*(4), 334–341. https://doi.org/10.1080/15389581003747522
- Martin, G. L. (1971). The effects of small doses of alcohol on a simulated driving task. *Journal of Safety Research*, *3*(1), 21–27.
- Micallef, J., Dupouey, J., Jouve, E., Truillet, R., Lacarelle, B., Taillard, J., Daurat, A., Authié, C., Blin, O., Rascol, O., Philip, P., & Mestre, D. (2018). Cannabis smoking impairs driving performance on the simulator and real driving: a randomized, double-blind, placebo-controlled, crossover trial. *Fundamental & Clinical Pharmacology*, *32*(5), 558–570. https://doi.org/10.1111/fcp.12382
- Mortimer, R. G., & Sturgis, S. P. (1979). Some effects of alcohol on car driving on two-lane and limited-access highways. In *Proceedings of the Human Factors Society 23rd Annual Meeting* (pp. 254–258).

- Mortimer, R. G., & Howat, P. A. (1986). Effects of alcohol and diazepam, singly and in combination, on some aspects of driving performance. *Drugs and Driving*. New York, NY: Taylor & Francis.
- Moskowitz, H., Burns, M., Fiorentino, D., Smiley, A., & Zador, P. (2000). *Driver characteristics and impairment at various BACs (Report No. DOT HS 809 075)*. Washington, D.C.:
 National Highway Traffic Safety Administration. Retrieved from https://one.nhtsa.gov/people/injury/research/pub/impaired_driving/BAC/index.html
- Moskowitz, H., Hulbert, S., & McGlothlin, W. H. (1976). Marihuana: Effects on simulated driving performance. Accident Analysis & Prevention, 8(1), 45–50. https://doi.org/10.1016/0001-4575(76)90033-6
- Quillian, W. C., Cox, D. J., Kovatchev, B. P., & Phillips, C. (1999). The effects of age and alcohol intoxication on simulated driving performance, awareness and self-restraint. *Age* and Ageing, 28(1), 59–66. https://doi.org/10.1093/ageing/28.1.59
- Rafaelsen, O. J., Bech, P., Christiansen, J., Christrup, H., Nyboe, J., & Rafaelsen, L. (1973a).
 Cannabis and alcohol: Effects on simulated car driving. *Science*, *179*(4076), 920–923.
 https://doi.org/10.1126/science.179.4076.920
- Rafaelsen, O. J., Been, P., & Rafaelsen, L. (1973b). Simulated car driving influenced by cannabis and alcohol. *Pharmacopsychiatry*, 6(01), 71–83. https://doi.org/10.1055/s-0028-1094370
- Rakauskas, M., Ward, N., Bernat, E., Cadwallader, M., & de Waard, D. (2005). Driving performance during cell phone conversations and common in-vehicle tasks while sober and drunk (Report No. MN/RC 2005-41). St. Paul, MN: Minnesota Department of Transportation. Retrieved from

https://conservancy.umn.edu/bitstream/handle/11299/1004/200541.pdf?sequence=1&isAllo wed=y

- Ranney, T. A., & Gawron, V. J. (1984). Identification and Testing of Countermeasures For Specific Alcohol Accident Types and Problems - Volume II: General Driver Alcohol Problem (Report No. DOT HS-806-650). Washington, D.C.: National Highway Traffic Safety Administration. Retrieved from https://rosap.ntl.bts.gov/view/dot/1395
- Roehrs, T., Beare, D., Zorick, F., & Roth, T. (1994). Sleepiness and ethanol effects on simulated driving. *Alcoholism: Clinical and Experimental Research*, *18*(1), 154–158.
- Smiley, A., Moskowitz, H. M., & Ziedman, K. (1985). Effects of drugs on driving: driving simulator tests of secobarbital, dizepam, marijuana, and alcohol. Clinical and Behavior Pharmacology Research Report. Rockville, MD: National Institute on Drug Abuse.
- Smiley, A., Noy, I., & Tostowaryk, W. (1987). The effects of marihuana alone and in combination with alcohol on driving performance. In P. C. Noordzij & R. Roszbach (Eds.), *Alcohol, drugs and traffic safety - T86.*
- Spaanjaars, N. L., Spijkerman, R., & Engels, R. C. M. E. (2011). Do smooth waters run deep? Alcohol intoxication and the effects of water consumption on driving-related cognitions and behavior. *European Addiction Research*, 17(1), 21–28. https://doi.org/10.1159/000321257
- Stein, A. C. (1985). A simulator study of the effects of alcohol and marihuana on driving behavior [Doctoral dissertation, Saybrook Institute]. ProQuest Dissertations and Theses.
- Sutton, L. R. (1983). The effects of alcohol, marihuana and their combination on driving ability. *Journal of Studies on Alcohol*, *44*(3), 438–445. https://doi.org/10.15288/jsa.1983.44.438
- Vakulin, A., Baulk, S. D., Catcheside, P. G., Antic, N. A., van den Heuvel, C. J., Dorrian, J., & McEvoy, R. D. (2009). Effects of alcohol and sleep restriction on simulated driving

performance in untreated patients with obstructive sleep apnea. *Annals of Internal Medicine*, *151*(7), 447. https://doi.org/10.7326/0003-4819-151-7-200910060-00005

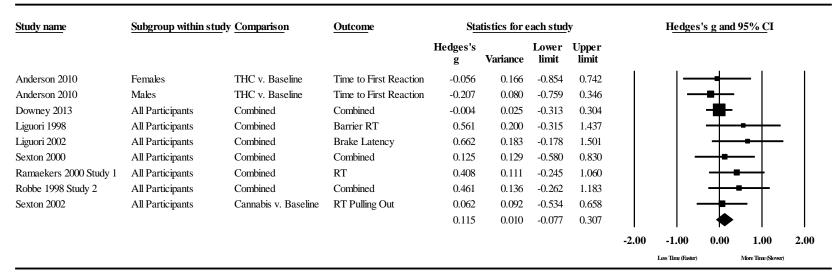
Wu, Z., Feng, C., Zhang, X., & Chen, G. (2011). Effects of alcohol intoxication on simulated driving performance. In 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 1852–1857). IEEE. https://doi.org/10.1109/ITSC.2011.6083124

Appendix C: Forest Plots (Primary Meta-Analyses)

Study name	Subgroup within study	Comparison		Stat	Hedges's g and 95% CI							
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All	All Participants	Combined	Combined	0.158	0.025	-0.152	0.467		-	-+-1		
				0.158	0.025	-0.152	0.467		-			
								-0.50	-0.25	0.00	0.25	0

Figure C1. Forest plot illustrating *Cannabis v. Baseline: Crashes* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Statistics for each study						ledges's	s g and	95% (CI												
				Hedges's g	Variance	Lower limit	Upper limit																	
Oowney 2013	All Participants	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	Combined	0.155	0.012	-0.063	0.374			++		-
				0.155	0.012	-0.063	0.374					-												
								-0.50	-0.25	0.00	0.25	(


Figure C2. Forest plot illustrating *Cannabis v. Baseline: Crashes* (missing pre-post correlations set to r = 0.5).

Cannabis v. Baseline: Crashes

Study name	Subgroup within study	Comparison	Outcome	Statistics for each study					Hedges's g and 95%			
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.140	0.002	0.043	0.238			-		
				0.140	0.002	0.043	0.238					
								-0.50	-0.25	0.00	0.25	0.50

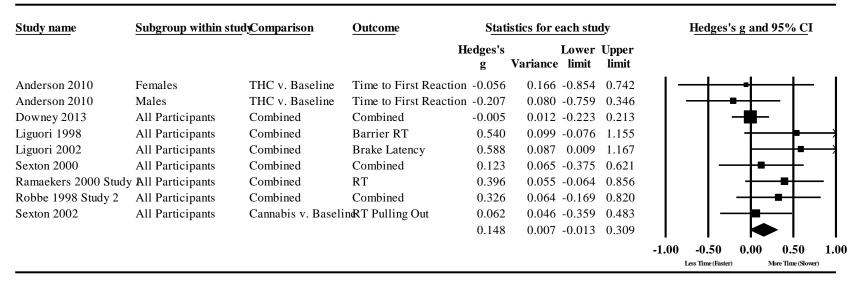

Cannabis v. Baseline: Crashes

Figure C3. Forest plot illustrating *Cannabis v. Baseline: Crashes* (missing pre-post correlations set to r = 0.9).


Cannabis v. Baseline: Hazard RT

Figure C4. Forest plot illustrating *Cannabis v. Baseline: Hazard RT* (missing pre-post correlations set to *r* = zero).

Cannabis v. Baseline: Hazard RT

Figure C5. Forest plot illustrating *Cannabis v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.5).

Cannabis v. Baseline: Hazard RT

Figure C6. Forest plot illustrating *Cannabis v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	Sta	tistics for e	ach study			Hedges	's g and	.95% CI	_
				Hedges's g	Variance	Lower limit	Upper limit					
Arkell 2019	All Participants	Combined	Headway (30 min) 0.304	0.059	-0.171	0.780					-
				0.304	0.059	-0.171	0.780					-
								-1.00	-0.50	0.00	0.50	1.00
								1	Decreased Headw	ay J	Increased Headwa	y

Cannabis v. Baseline: Headway

Figure C7. Forest plot illustrating Cannabis v. Baseline: Headway.

		Cannabis v. Baseline: H	eadway V	Variabili	ty						
Study name Subgroup within st	udy <u>Comparison</u>	Outcome	S <u>ta</u>	tistics for e	each stu	<u>d</u> y		Hedges	's g and	<u>95% C</u> I	
			Hedges's g	Variance	Lower limit	Upper limit					
Arkell 2019 All Participants	Combined	SD Headway (Car Following, 30 i	min) 0.319	0.104	-0.313	0.951		-	-		—
			0.319	0.104	-0.313	0.951		-			
							-1.00	-0.50	0.00	0.50	1.00
								Less Variability		More Variabilit	y

Figure C8. Forest plot illustrating Cannabis v. Baseline: Headway Variability.

Study name	Subgroup within study	Comparison	Outcome	Statisti	cs for each study	_	Hedges's	g and 9	5%CI	
				Hedges's g V	Lower Upper ariance limit limit					
Arkell 2019	All Participants	Combined	Combined	0.372	0.037 -0.003 0.747					
Bosker 2012	Heavy Users	Combined	SDLP	0.322	0.153 -0.445 1.089				•	\rightarrow
Bosker 2012	Occasional Users	Combined	SDLP	0.824	0.203 -0.059 1.707					➡
Brands 2019	High THC Group	High THC v. Baseline	Lateral Control	0.251	0.065 -0.250 0.752		_			
Brands 2019	Low THC Group	Low THC v. Baseline	Lateral Control	0.289	0.064 -0.207 0.785		-		┣┥──	
Hartman 2015	All Participants	Combined	SDLP	0.125	0.102 -0.502 0.751			╶┼═╸╴	_	
Ramaekers 2000	All Participants	Combined	Combined	0.655	0.125 -0.040 1.349					\rightarrow
Robbe 1998 Study 1	All Participants	Combined	Combined	0.468	0.092 -0.125 1.061			_	-	\rightarrow
Robbe 1998 Study 2	All Participants	Combined	SDLP	0.883	0.174 0.065 1.701					
Ronen 2008	All Participants	Combined	RMS Lane Position	0.492	0.144 -0.252 1.237		_		-	\rightarrow
Ronen 2010	All Participants	THC v. Placebo	RMS Lane Position	0.074	0.145 -0.672 0.819					-
exton 2000	All Participants	Combined	Combined	0.420	0.149 -0.336 1.175				-	\rightarrow
exton 2002	All Participants	Cannabis v. Baseline	Combined	0.164	0.100 -0.457 0.784					
Veldstra 2015	All Participants	Combined	SDLP	0.340	0.084 -0.228 0.907		-		■	-
	-			0.366	0.007 0.205 0.528					
						-1.00	-0.50	0.00	0.50	1.00
						L	ess Variability	Ma	ore Variability	,

Cannabis v. Baseline: Lateral Position Variability

Figure C9. Forest plot illustrating *Cannabis v. Baseline: Lateral Position Variability* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Outcome	Statisti	ics for each study	Hedg	es's g and	95%CI	
				Hedges's g V	Lower Upper ariance limit limit				
Arkell 2019	All Participants	Combined	Combined	0.372	0.037 -0.003 0.747				
Bosker 2012	Heavy Users	Combined	SDLP	0.321	0.076 -0.221 0.864				-
Bosker 2012	Occasional Users	Combined	SDLP	0.781	0.098 0.166 1.396		_		\mapsto
Brands 2019	High THC Group	High THC v. Baseline	Lateral Control	0.178	0.032 -0.174 0.529			┝─┤	
Brands 2019	Low THC Group	Low THC v. Baseline	Lateral Control	0.204	0.031 -0.143 0.551				
Hartman 2015	All Participants	Combined	SDLP	0.124	0.051 -0.319 0.567				
Ramaekers 2000	All Participants	Combined	Combined	0.642	0.062 0.153 1.131		-		\rightarrow
Robbe 1998 Study 1	All Participants	Combined	Combined	0.464	0.046 0.045 0.883				-
Robbe 1998 Study 2	All Participants	Combined	SDLP	0.624	0.073 0.093 1.155				\rightarrow
Ronen 2008	All Participants	Combined	RMS Lane Position	0.484	0.072 -0.042 1.009				\rightarrow
Ronen 2010	All Participants	THC v. Placebo	RMS Lane Position	0.062	0.072 -0.465 0.589	-			
Sexton 2000	All Participants	Combined	Combined	0.379	0.072 -0.148 0.907				_
Sexton 2002	All Participants	Cannabis v. Baseline	Combined	0.157	0.050 -0.281 0.595				
Veldstra 2015	All Participants	Combined	SDLP	0.326	0.042 -0.074 0.727				
				0.331	0.004 0.212 0.451			\blacklozenge	
						-1.00 -0.50	0.00	0.50	1.00
						Less Variab	lity N	More Variability	

Cannabis v. Baseline: Lateral Position Variability

Figure C10. Forest plot illustrating *Cannabis v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	Outcome	Statis	tics for e	ach stud	<u>y</u>		Hedges's	g and	95%CI	
				Hedges's	Variance	Lower U limit						
Arkell 2019	All Participants	Combined	Combined	0.372	0.037	-0.003	0.747		1			
Bosker 2012	Heavy Users	Combined	SDLP	0.317	0.015	0.075	0.560			-	∎┼	
Bosker 2012	Occasional Users	Combined	SDLP	0.583	0.017	0.325	0.841					-
Brands 2019	High THC Group	High THC v. Baseline	Lateral Control	0.080	0.006	-0.077	0.236					
Brands 2019	Low THC Group	Low THC v. Baseline	Lateral Control	0.091	0.006	-0.062	0.245					
Hartman 2015	All Participants	Combined	SDLP	0.122	0.010	-0.076	0.320			╶┼╋╴	-	
Ramaekers 2000	All Participants	Combined	Combined	0.573	0.012	0.358	0.788				──	
Robbe 1998 Study 1	All Participants	Combined	Combined	0.441	0.009	0.254	0.627				-8-	
Robbe 1998 Study 2	All Participants	Combined	SDLP	0.279	0.012	0.060	0.498					
Ronen 2008	All Participants	Combined	RMS Lane Position	0.433	0.014	0.200	0.665			-		
Ronen 2010	All Participants	THC v. Placebo	RMS Lane Position	0.035	0.014	-0.201	0.270		-		-	
Sexton 2000	All Participants	Combined	Combined	0.246	0.014	0.017	0.474				┣──│	
Sexton 2002	All Participants	Cannabis v. Baseline	Combined	0.119	0.010	-0.075	0.314			╶┼╋╋╌	-	
Veldstra 2015	All Participants	Combined	SDLP	0.261	0.008	0.084	0.437			-	▋──│	
	-			0.270	0.002	0.175	0.365					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability	N	/lore Variability	,

Cannabis v. Baseline: Lateral Position Variability

Figure C11. Forest plot illustrating *Cannabis v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	S <u>t</u>	atistics for e	each study			Hedges	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.219	0.025	-0.092	0.530				┠─┤	
Hartman 2015	All Participants	Combined	Lane Dep/Min	0.128	0.102	-0.498	0.755			─┼■		,
				0.201	0.020	-0.078	0.480					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	i

Cannabis v. Baseline: Lane Excursions

Figure C12. Forest plot illustrating *Cannabis v. Baseline: Lane Excursions* (missing pre-post correlations set to *r* = zero).

		C	annabis v. Ba	seline: La	ne Excurs	sions						
<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	Outcome	S	tatistics for o	each study			Hedges	's g and	<u>195% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.215	0.013	-0.005	0.435				∎	
Hartman 2015	All Participants	Combined	Lane Dep/Min	0.127	0.051	-0.316	0.571		-	─┼╸		
				0.198	0.010	0.001	0.395					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions	3	More Excursions	

Figure C13. Forest plot illustrating *Cannabis v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	<u>Outcom</u> e	St	tatistics for e	each study			Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.194	0.003	0.096	0.292					
Hartman 2015	All Participants	Combined	Lane Dep/Min	0.121	0.010	-0.078	0.319			_ ∔ ∎-	-	
				0.180	0.002	0.092	0.268					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	J

Figure C14. Forest plot illustrating *Cannabis v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.9).

Study name Subgroup within study	<u>Comparison</u>	Outcome	Sta	ntistics for ea	ach study	_	_	Hedges	s g and	95% CI	_
			Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 2000All Participants	Combined	Combined	0.219	0.105	-0.417	0.856				┠┼─	-
			0.219	0.105	-0.417	0.856					-
							-1.00	-0.50	0.00	0.50	1.0

Cannabis v. Baseline: Time Out of Lane

Figure C15. Forest plot illustrating *Cannabis v. Baseline: Time Out of Lane* (missing pre-post correlations set to *r* = zero).

Hedges's g and 95% CI		ch study	tistics for ea	Sta	Outcome	Comparison	Subgroup within study	Study name
	Upper limit	Lower limit	Variance	Hedges's g				
-+■+-	0.661	-0.237	0.053	0.212	Combined	Combined	00All Participants	Ramaekers 200
	0.661	-0.237	0.053	0.212				
1.00 -0.50 0.00 0.50 1.0	-1.00							

Cannabis v. Baseline: Time Out of Lane

Figure C16. Forest plot illustrating *Cannabis v. Baseline: Time Out of Lane* (missing pre-post correlations set to r = 0.5).

Cannabis	v. Base	line: Tim	e Out of	Lane

Study name	Subgroup within study	Comparison	Outcome	Sta	ntistics for e	ach study	_	_	Hedges	's g and	95% C	[
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 20	000All Participants	Combined	Combined	0.180	0.010	-0.020	0.380			₽	┣╴│	
				0.180	0.010	-0.020	0.380					
								-1.00	-0.50	0.00	0.50	1.00
								I	ess Tim	e N	lore Tii	ne

Figure C17. Forest plot illustrating *Cannabis v. Baseline: Time Out of Lane* (missing pre-post correlations set to r = 0.9).

tudy name	Subgroup within study	<u>Comparison</u>	Outcome	Stati	stics for ea	ich stud	<u>y</u>	Hedges's g and 95% CI
				Hedges's g	Variance	Lower limit	Upper limit	
anderson 2010	Females	THC v. Baseline	Combined	0.077	0.167	-0.724	0.878	-++
anderson 2010	Males	THC v. Baseline	Combined	-0.391	0.081	-0.947	0.166	
arkell 2019	All Participants	Combined	M Speed, 30 min	-0.019	0.135	-0.741	0.702	
Bosker 2012	Heavy Users	Combined	Mean Speed	-0.105	0.146	-0.854	0.644	
Bosker 2012	Occasional Users	Combined	Mean Speed	-0.076	0.145	-0.823	0.671	
Brands 2019	High THC Group	High THC v. Baseline	Mean Speed	-0.114	0.064	-0.608	0.381	┤╶┼──╋┼───││
Brands 2019	Low THC Group	Low THC v. Baseline	Mean Speed	-0.029	0.061	-0.514	0.457	│
Downey 2013	All Participants	Combined	Combined	-0.095	0.025	-0.408	0.218	
Ronen 2008	All Participants	Combined	Mean Speed	-0.433	0.142	-1.170	0.305	<
Ronen 2010	All Participants	THC v. Baseline	Mean Speed	-0.249	0.149	-1.007	0.508	
exton 2000	All Participants	Combined	Mean Speed	-0.474	0.148	-1.227	0.279	
exton 2002	All Participants	THC v. Baseline	Mean Speed	-0.667	0.114	-1.330	-0.004	
	•		-	-0.182	0.007	-0.348	-0.017	

Cannabis v. Baseline: Speed

Figure C18. Forest plot illustrating *Cannabis v. Baseline: Speed* (missing pre-post correlations set to r = zero).

Study name	Subgroup within study	Comparison	Outcome	Stati	istics for ea	ach stud	<u>y</u>	Hedges's g and 95% CI
				Hedges's g	Variance	Lower limit	Upper limit	
Anderson 2010	Females	THC v. Baseline	Combined	0.077	0.167	-0.724	0.878	-++
Anderson 2010	Males	THC v. Baseline	Combined	-0.391	0.081	-0.947	0.166	
Arkell 2019	All Participants	Combined	M Speed, 30 min	-0.019	0.135	-0.741	0.702	
Bosker 2012	Heavy Users	Combined	Mean Speed	-0.101	0.073	-0.631	0.428	
Bosker 2012	Occasional Users	Combined	Mean Speed	-0.074	0.073	-0.602	0.454	
Brands 2019	High THC Group	High THC v. Baseline	Mean Speed	-0.081	0.032	-0.430	0.269	
Brands 2019	Low THC Group	Low THC v. Baseline	Mean Speed	-0.020	0.031	-0.363	0.323	
Downey 2013	All Participants	Combined	Combined	-0.093	0.013	-0.314	0.128	
Ronen 2008	All Participants	Combined	Mean Speed	-0.426	0.071	-0.947	0.094	
onen 2010	All Participants	THC v. Baseline	Mean Speed	-0.235	0.074	-0.770	0.299	
exton 2000	All Participants	Combined	Mean Speed	-0.474	0.074	-1.006	0.059	← ●
exton 2002	All Participants	THC v. Baseline	Mean Speed	-0.667	0.057	-1.136	-0.198	
				-0.176	0.004	-0.298	-0.053	
				-0.176	0.004	-0.298	-0.035	-1.00 -0.50 0.00 0.50 1. Decreased Speed (Slower) Increased Speed (Faster)

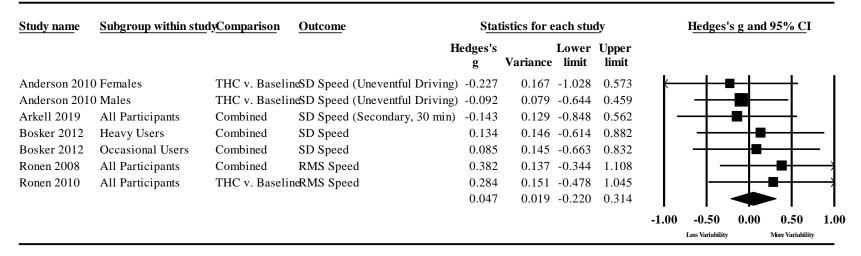
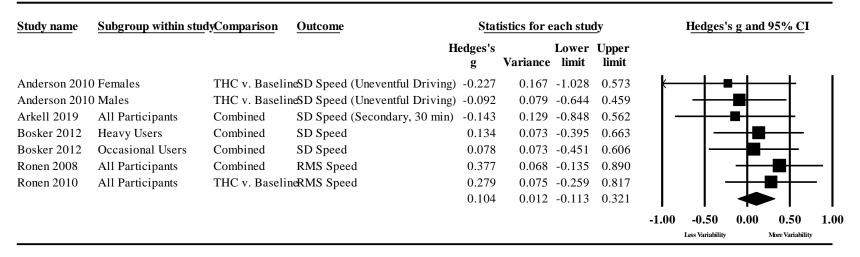
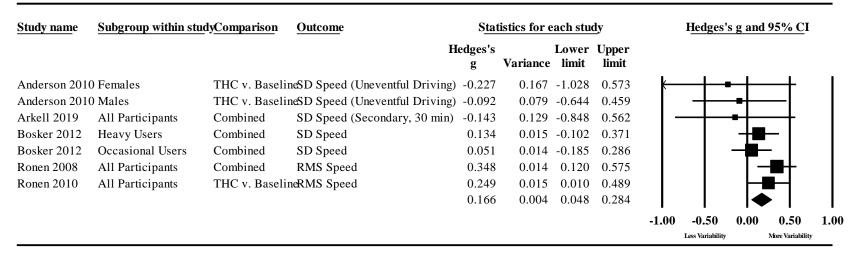

Cannabis v. Baseline: Speed

Figure C19. Forest plot illustrating *Cannabis v. Baseline: Speed* (missing pre-post correlations set to r = 0.5).


Study name	Subgroup within study	Comparison	Outcome	Stati	stics for ea	ach stud	<u>y</u>	Hedges's g and 95% CI
				Hedges's g	Variance	Lower limit	Upper limit	
Anderson 2010	Females	THC v. Baseline	Combined	0.077	0.167	-0.724	0.878	
Anderson 2010	Males	THC v. Baseline	Combined	-0.391	0.081	-0.947	0.166	
Arkell 2019	All Participants	Combined	M Speed, 30 min	-0.019	0.135	-0.741	0.702	
Bosker 2012	Heavy Users	Combined	Mean Speed	-0.081	0.015	-0.317	0.155	
Bosker 2012	Occasional Users	Combined	Mean Speed	-0.065	0.014	-0.301	0.171	
Brands 2019	High THC Group	High THC v. Baseline	Mean Speed	-0.036	0.006	-0.192	0.120	
Brands 2019	Low THC Group	Low THC v. Baseline	Mean Speed	-0.009	0.006	-0.162	0.144	
Downey 2013	All Participants	Combined	Combined	-0.079	0.003	-0.177	0.020	
Ronen 2008	All Participants	Combined	Mean Speed	-0.386	0.014	-0.616	-0.155	
Ronen 2010	All Participants	THC v. Baseline	Mean Speed	-0.173	0.015	-0.410	0.065	
exton 2000	All Participants	Combined	Mean Speed	-0.472	0.015	-0.710	-0.234	
exton 2002	All Participants	THC v. Baseline	Mean Speed	-0.667	0.011	-0.877	-0.457	│
	-		_	-0.205	0.004	-0.336	-0.074	
								-1.00 -0.50 0.00 0.50 1.00 Decreased Speed (Slower) Increased Speed (Faster)

Cannabis v. Baseline: Speed

Figure C20. Forest plot illustrating *Cannabis v. Baseline: Speed* (missing pre-post correlations set to r = 0.9).


Figure C21. Forest plot illustrating *Cannabis v. Baseline: Speed Variability* (missing pre-post correlations set to r = zero).

Cannabis v. Baseline: Speed Variability

Figure C22. Forest plot illustrating *Cannabis v. Baseline: Speed Variability* (missing pre-post correlations set to r = 0.5).

Cannabis v. Baseline: Speed Variability

Figure C23. Forest plot illustrating *Cannabis v. Baseline: Speed Variability* (missing pre-post correlations set to r = 0.9).

Cannabis v. Baseline: Speed Exceedances

Study name Subgroup within study	Comparison	<u>Outcome</u>	Stat	istics for e	ach stud	<u>y_</u>	Ē	ledges's	s g and	95% (<u>11</u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.206	0.025	-0.516	0.104	<u>(</u>				
			-0.206	0.025	-0.516	0.104	\leftarrow				
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedance	s]	More Exceedance	s

Figure C24. Forest plot illustrating *Cannabis v. Baseline: Speed Exceedances* (missing pre-post correlations set to *r* = zero).

	Canna	bis v. Base	line: Speed	l Exceeda	nces						
Study name Subgroup within study	Comparison	<u>Outcome</u>	Stat	tistics for e	ach stud	<u>y</u>	Ē	ledges's	s g and	l 95% (<u>I</u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.205	0.013	-0.425	0.014	-				
			-0.205	0.013	-0.425	0.014	-				
							-0.50	-0.25	0.00	0.25	0.50
							1	Fewer Exceedance	s	More Exceedance	s

Figure C25. Forest plot illustrating *Cannabis v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = 0.5).

		Canna	bis v. Base	line: Speed	1 Exceeda	nces						
Study name	Subgroup within study	Comparison	Outcome	Stat	tistics for e	ach stud	<u>y</u>	Ī	Iedges's	s g and	d 95% C	<u>I</u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.202	0.003	-0.300	-0.104		-)==-	-		
				-0.202	0.003	-0.300	-0.104			•		
								-0.50	-0.25	0.00	0.25	0.50
								:	Fewer Exceedanec	s	More Exceedance	\$

Cannahis v Basalina: Sneed Exceedances

Figure C26. Forest plot illustrating *Cannabis v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	each study	,		Hedge	s's g and 9	<u>05%CI</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
Bernosky-Smith 2011	High Freq Group	Alcohol v. Baseline	Collisions	0.743	0.135	0.022	1.464				-	
Bernosky-Smith 2011	Low Freq Group	Alcohol v. Baseline	Collisions	0.453	0.130	-0.253	1.159			_+∎-	-	
Bernosky-Smith 2012	All Participants	Alcohol v. Baseline	Collisions	-0.981	0.066	-1.483	-0.479		-	┣╸│		
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.166	0.025	-0.144	0.475			-		
Howland 2010	All Participants	Alcohol v. Baseline	Collisions	0.425	0.060	-0.055	0.904			⋳⋳		
Laude 2015	All Participants	Alcohol v. Baseline	Combined	0.560	0.065	0.058	1.061			-8-	-	
Laude 2016	All Participants	Alcohol v. Baseline	Combined	0.493	0.054	0.036	0.949			-8-		
Marczinski 2008	Binge Group	Alcohol v. Baseline	Accidents	0.418	0.085	-0.154	0.990					
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.362	0.099	-0.253	0.978			_+∎		
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.396	0.100	-0.224	1.015			_+∎-	•	
Subramaniyam 2018	All Participants	Combined	Accident Rate	1.990	0.794	0.243	3.737					<u> </u>
Van Dyke 2017	All Participants	Combined	Crashes	0.520	0.107	-0.120	1.161				-	
Wan 2017	Binge Group	Alcohol v. Baseline	Accidents	0.189	0.129	-0.516	0.893			──₩──		
Wan 2017	Nonbinge Group	Alcohol v. Baseline	Accidents	1.271	0.242	0.307	2.235			—	╼┽	
				0.374	0.019	0.106	0.643			•		
								-4.00	-2.00	0.00	2.00	4.00
								Fe	wer Crash	es N	lore Crash	es

Figure C27. Forest plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	ach study	,		Hedge	s's g and 9	95%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Bernosky-Smith 2011	High Freq Group	Alcohol v. Baseline	Collisions	0.743	0.135	0.022	1.464			⊢-■	⊢	
Bernosky-Smith 2011	Low Freq Group	Alcohol v. Baseline	Collisions	0.453	0.130	-0.253	1.159			_+∎-	-	
Bernosky-Smith 2012	All Participants	Alcohol v. Baseline	Collisions	-0.981	0.066	-1.483	-0.479		-			
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.166	0.012	-0.053	0.385					
Howland 2010	All Participants	Alcohol v. Baseline	Collisions	0.425	0.060	-0.055	0.904			┝╋╾		
Laude 2015	All Participants	Alcohol v. Baseline	Combined	0.507	0.032	0.157	0.858					
Laude 2016	All Participants	Alcohol v. Baseline	Combined	0.445	0.027	0.125	0.764			-		
Marczinski 2008	Binge Group	Alcohol v. Baseline	Accidents	0.314	0.041	-0.083	0.711			⋳		
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.314	0.049	-0.118	0.746			- ₩		
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.369	0.049	-0.067	0.805			⊢₩		
Subramaniyam 2018	All Participants	Combined	Accident Rate	1.848	0.352	0.685	3.010			-		•
Van Dyke 2017	All Participants	Combined	Crashes	0.468	0.052	0.021	0.914					
Wan 2017	Binge Group	Alcohol v. Baseline	Accidents	0.189	0.065	-0.309	0.687					
Wan 2017	Nonbinge Group	Alcohol v. Baseline	Accidents	1.266	0.121	0.586	1.946			-		
				0.376	0.013	0.150	0.603			•		
								-4.00	-2.00	0.00	2.00	4.0
								Fe	wer Crash	es N	fore Crash	es

Figure C28. Forest plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	each study	,		Hedge	s's g and s	95%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Bernosky-Smith 2011	High Freq Group	Alcohol v. Baseline	Collisions	0.743	0.135	0.022	1.464		1	⊢-■	⊢	
Bernosky-Smith 2011	Low Freq Group	Alcohol v. Baseline	Collisions	0.453	0.130	-0.253	1.159			_+=-	-	
Bernosky-Smith 2012	All Participants	Alcohol v. Baseline	Collisions	-0.981	0.066	-1.483	-0.479			-		
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.165	0.002	0.067	0.262					
Howland 2010	All Participants	Alcohol v. Baseline	Collisions	0.425	0.060	-0.055	0.904			┝╋╸	•	
Laude 2015	All Participants	Alcohol v. Baseline	Combined	0.382	0.006	0.229	0.536					
Laude 2016	All Participants	Alcohol v. Baseline	Combined	0.335	0.005	0.195	0.475					
Marczinski 2008	Binge Group	Alcohol v. Baseline	Accidents	0.148	0.008	-0.026	0.322					
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.181	0.009	-0.009	0.371					
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.258	0.010	0.066	0.449					
Subramaniyam 2018	All Participants	Combined	Accident Rate	1.313	0.044	0.904	1.722				-=-	
Van Dyke 2017	All Participants	Combined	Crashes	0.294	0.010	0.101	0.487					
Wan 2017	Binge Group	Alcohol v. Baseline	Accidents	0.189	0.013	-0.034	0.411					
Wan 2017	Nonbinge Group	Alcohol v. Baseline	Accidents	1.231	0.023	0.930	1.531					
				0.352	0.007	0.187	0.517			•		
								-4.00	-2.00	0.00	2.00	4.00
								Fe	wer Crash	es N	Aore Crash	es

Figure C29. Forest plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.9).

ernosky-Smith 2011 I	High Freq Group Low Freq Group	Alcohol v. Baseline		Hedges's		Lower	Upper					
ernosky-Smith 2011 I	0 1 1	Alcohol v Baseline		g	Variance	limit	limit					
•	Low Fred Group	r neonor v. Dusenne	Collisions	0.743	0.135	0.022	1.464				-	
Downey 2013	Low may aroup	Alcohol v. Baseline	Collisions	0.453	0.130	-0.253	1.159				-	
	All Participants	Alcohol v. Baseline	Combined	0.166	0.025	-0.144	0.475			-		
Iowland 2010 A	All Participants	Alcohol v. Baseline	Collisions	0.425	0.060	-0.055	0.904			⊢∎⊷		
aude 2015 A	All Participants	Alcohol v. Baseline	Combined	0.560	0.065	0.058	1.061				-	
aude 2016 A	All Participants	Alcohol v. Baseline	Combined	0.493	0.054	0.036	0.949			-8-	,	
Aarczinski 2008 H	Binge Group	Alcohol v. Baseline	Accidents	0.418	0.085	-0.154	0.990				•	
oberts 2017 Study 2 0	Control Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.362	0.099	-0.253	0.978			+∎		
oberts 2017 Study 2 I	DUI Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.396	0.100	-0.224	1.015					
ubramaniyam 2018 A	All Participants	Combined	Accident Rate	1.990	0.794	0.243	3.737					
an Dyke 2017 A	All Participants	Combined	Crashes	0.520	0.107	-0.120	1.161				-	
Van 2017 H	Binge Group	Alcohol v. Baseline	Accidents	0.189	0.129	-0.516	0.893			_ 		
Van 2017 N	Nonbinge Group	Alcohol v. Baseline	Accidents	1.271	0.242	0.307	2.235					
				0.419	0.006	0.264	0.574			•		
								-4.00	-2.00	0.00	2.00	4.0

Figure C30. Forest plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = zero). Excludes Bernosky-Smith et al. (2012).

rreq Group urticipants urticipants urticipants urticipants Group	Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline	Collisions Collisions Combined Collisions Combined Combined Accidents	Hedges's g 0.743 0.453 0.166 0.425 0.507 0.445 0.314	Variance 0.135 0.130 0.012 0.060 0.032 0.027 0.041	Lower limit 0.022 -0.253 -0.053 -0.055 0.157 0.125	Upper limit 1.464 1.159 0.385 0.904 0.858 0.764				-	
req Group urticipants urticipants urticipants urticipants Group	Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline	Collisions Combined Collisions Combined Combined	0.453 0.166 0.425 0.507 0.445	0.130 0.012 0.060 0.032 0.027	-0.253 -0.053 -0.055 0.157 0.125	1.159 0.385 0.904 0.858 0.764			-	-	
urticipants	Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline	Combined Collisions Combined Combined	0.166 0.425 0.507 0.445	0.012 0.060 0.032 0.027	-0.053 -0.055 0.157 0.125	0.385 0.904 0.858 0.764			-	-	
urticipants	Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline	Collisions Combined Combined	0.425 0.507 0.445	0.060 0.032 0.027	-0.055 0.157 0.125	0.904 0.858 0.764			-		
urticipants urticipants Group	Alcohol v. Baseline Alcohol v. Baseline Alcohol v. Baseline	Combined Combined	0.507 0.445	0.032 0.027	0.157 0.125	0.858 0.764			-		
articipants . Group .	Alcohol v. Baseline Alcohol v. Baseline	Combined	0.445	0.027	0.125	0.764			-		
Group .	Alcohol v. Baseline										
•		Accidents	0 314	0.041	0.000	0 = 1 4	1	1	1		
ol Group			0.514	0.041	-0.083	0.711			⋳⋳⋳		
	Alcohol v. Baseline	Collisions (Precision Drive)	0.314	0.049	-0.118	0.746			-∎-		
Group .	Alcohol v. Baseline	Collisions (Precision Drive)	0.369	0.049	-0.067	0.805					
articipants	Combined	Accident Rate	1.848	0.352	0.685	3.010			-		•
articipants	Combined	Crashes	0.468	0.052	0.021	0.914					
Group	Alcohol v. Baseline	Accidents	0.189	0.065	-0.309	0.687					
inge Group	Alcohol v. Baseline	Accidents	1.266	0.121	0.586	1.946			-		
			0.431	0.006	0.275	0.587			•		
							-4.00	-2.00	0.00	2.00	4.0
U	rticipants Group	rticipants Combined Group Alcohol v. Baseline	rticipants Combined Crashes Group Alcohol v. Baseline Accidents	rticipantsCombinedCrashes0.468GroupAlcohol v. BaselineAccidents0.189nge GroupAlcohol v. BaselineAccidents1.266	tricipantsCombinedCrashes0.4680.052GroupAlcohol v. BaselineAccidents0.1890.065nge GroupAlcohol v. BaselineAccidents1.2660.121	tricipantsCombinedCrashes0.4680.0520.021GroupAlcohol v. BaselineAccidents0.1890.065-0.309nge GroupAlcohol v. BaselineAccidents1.2660.1210.586	Tricipants Combined Crashes 0.468 0.052 0.021 0.914 Group Alcohol v. Baseline Accidents 0.189 0.065 -0.309 0.687 nge Group Alcohol v. Baseline Accidents 1.266 0.121 0.586 1.946	Tricipants Combined Crashes 0.468 0.052 0.021 0.914 Group Alcohol v. Baseline Accidents 0.189 0.065 -0.309 0.687 age Group Alcohol v. Baseline Accidents 1.266 0.121 0.586 1.946 0.431 0.006 0.275 0.587 -4.00	Tricinants Combined Crashes 0.468 0.052 0.021 0.914 Group Alcohol v. Baseline Accidents 0.189 0.065 -0.309 0.687 age Group Alcohol v. Baseline Accidents 1.266 0.121 0.586 1.946 output Alcohol v. Baseline Accidents 1.266 0.121 0.586 1.946 output Accidents 1.266 0.121 0.586 1.946 output Accidents 1.266 0.275 0.587 -4.00 -2.00	Tricipants Combined Crashes 0.468 0.052 0.021 0.914 Group Alcohol v. Baseline Accidents 0.189 0.065 -0.309 0.687 nge Group Alcohol v. Baseline Accidents 1.266 0.121 0.586 1.946 0.431 0.006 0.275 0.587	Tricinants Combined Crashes 0.468 0.052 0.021 0.914 Group Alcohol v. Baseline Accidents 0.189 0.065 -0.309 0.687 age Group Alcohol v. Baseline Accidents 1.266 0.121 0.586 1.946 0.431 0.006 0.275 0.587 -4.00 -2.00 0.00 2.00

Figure C31. Forest plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.5). Excludes Bernosky-Smith et al. (2012).

•				Hodgoo'a								
•				Hedges's g	Variance	Lower limit	Upper limit					
Bernosky-Smith 2011 I	High Freq Group	Alcohol v. Baseline	Collisions	0.743	0.135	0.022	1.464			⊢-=	-	
	Low Freq Group	Alcohol v. Baseline	Collisions	0.453	0.130	-0.253	1.159			-+-∎	-	
Downey 2013 A	All Participants	Alcohol v. Baseline	Combined	0.165	0.002	0.067	0.262					
Howland 2010 A	All Participants	Alcohol v. Baseline	Collisions	0.425	0.060	-0.055	0.904			⊢∎⊷		
Laude 2015 A	All Participants	Alcohol v. Baseline	Combined	0.382	0.006	0.229	0.536					
Laude 2016 A	All Participants	Alcohol v. Baseline	Combined	0.335	0.005	0.195	0.475					
Marczinski 2008 E	Binge Group	Alcohol v. Baseline	Accidents	0.148	0.008	-0.026	0.322					
Roberts 2017 Study 2 C	Control Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.181	0.009	-0.009	0.371					
Roberts 2017 Study 2 I	DUI Group	Alcohol v. Baseline	Collisions (Precision Drive)	0.258	0.010	0.066	0.449					
Subramaniyam 2018 A	All Participants	Combined	Accident Rate	1.313	0.044	0.904	1.722					
Van Dyke 2017 A	All Participants	Combined	Crashes	0.294	0.010	0.101	0.487					
Wan 2017 E	Binge Group	Alcohol v. Baseline	Accidents	0.189	0.013	-0.034	0.411					
Wan 2017 N	Nonbinge Group	Alcohol v. Baseline	Accidents	1.231	0.023	0.930	1.531				╉	
				0.414	0.006	0.263	0.564			•		
								-4.00	-2.00	0.00	2.00	4.0

Figure C32. Forest plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.9). Excludes Bernosky-Smith et al. (2012).

Alcohol v. Baseline: Crashes

Study_name	Subgroup within stud	y <u>Compariso</u> n	Outcome	<u>St</u>	atistics for e	each study			Hedge	s's g and s	95%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Beard 2012	All Participants	Low+High Alc v. Control	Combined	-0.222	0.144	-0.965	0.521			∎		
Berthelon 2014	All Participants	Combined	Combined	0.157	0.126	-0.539	0.852			₩		
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.194	0.025	-0.119	0.507					
Howard 2007	All Participants	Combined	RT	0.741	0.149	-0.016	1.498				-	
elen 2011	All Participants	Alcohol v. Baseline	RT	-0.026	0.110	-0.675	0.623					
Kuypers 2006	All Participants	Alcohol v. Baseline	BRT	0.150	0.103	-0.478	0.778			_ 		
eung 2012	All Participants	Combined	BRT	0.341	0.157	-0.435	1.118			_+=-	-	
iguori 1999	All Participants	Combined	Brake Latency	0.776	0.024	0.469	1.083				ŀ	
iguori 2001	All Participants	Alcohol v. Baseline	Brake Latency	1.143	0.206	0.253	2.033			—		
iguori 2002	All Participants	Combined	Brake Latency	0.628	0.188	-0.223	1.479				_	
amaekers 2000 Study 1	All Participants	Alcohol v. Baseline	RT	0.206	0.104	-0.425	0.838			_⊨∎		
chumacher 2011	All Participants	Alcohol v. Baseline	BRT	0.553	0.125	-0.139	1.245				-	
exton 1997	All Participants	Combined	Combined	0.299	0.116	-0.369	0.966			_+∎		
exton 2002	All Participants	Alcohol v. Baseline	RT Pulling Out	-0.661	0.126	-1.356	0.034		_	╼┥		
trayer 2006	All Participants	Alcohol v. Baseline	BRT	0.009	0.048	-0.420	0.439			-#-		
ollrath 2017 Study 1	All Participants	Alcohol v. Baseline	Combined	0.098	0.082	-0.462	0.659					
ollrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	0.211	0.093	-0.385	0.808					
Van 2017	All Participants	Alcohol v. Baseline	RT Yellow Lights	0.605	0.081	0.049	1.162			-₩	-	
	-		2	0.283	0.009	0.100	0.466			•		
								-4.00	-2.00	0.00	2.00	4.00
								L	ss Time (Fast	or) M	ore Time (Slov	er)

Alcohol v. Baseline: Hazard RT

Figure C33. Forest plot illustrating *Alcohol v. Baseline: Hazard RT* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within stud	y <u>Compariso</u> n	Outcome	<u>St</u>	atistics for e	each study			Hedge	s's g and 9	<u>5%CI</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
Beard 2012	All Participants	Low+High Alc v. Control	Combined	-0.222	0.144	-0.965	0.521				·	
Berthelon 2014	All Participants	Combined	Combined	0.137	0.062	-0.352	0.626				-	
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.192	0.013	-0.029	0.413					
Howard 2007	All Participants	Combined	RT	0.709	0.073	0.180	1.238			—	╼┼╴	
elen 2011	All Participants	Alcohol v. Baseline	RT	-0.026	0.110	-0.675	0.623		-		-	
Kuypers 2006	All Participants	Alcohol v. Baseline	BRT	0.150	0.051	-0.294	0.593			─┼▆──	-	
eung 2012	All Participants	Combined	BRT	0.325	0.078	-0.221	0.872					
.iguori 1999	All Participants	Combined	Brake Latency	0.776	0.024	0.469	1.083				-∎+	
.iguori 2001	All Participants	Alcohol v. Baseline	Brake Latency	1.129	0.102	0.503	1.756			- I -		-
.iguori 2002	All Participants	Combined	Brake Latency	0.590	0.092	-0.003	1.184					
Ramaekers 2000 Study 1	All Participants	Alcohol v. Baseline	RT	0.194	0.052	-0.252	0.640			+∎	-	
chumacher 2011	All Participants	Alcohol v. Baseline	BRT	0.552	0.062	0.063	1.041				∎→	
exton 1997	All Participants	Combined	Combined	0.268	0.057	-0.199	0.735				-	
exton 2002	All Participants	Alcohol v. Baseline	RT Pulling Out	-0.592	0.060	-1.074	-0.110			<u> </u>		
trayer 2006	All Participants	Alcohol v. Baseline	BRT	0.009	0.024	-0.295	0.313					
/ollrath 2017 Study 1	All Participants	Alcohol v. Baseline	Combined	0.098	0.082	-0.462	0.659				-	
/ollrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	0.211	0.093	-0.385	0.808				- 1	
Wan 2017	All Participants	Alcohol v. Baseline	RT Yellow Lights	0.604	0.040	0.211	0.997				∎	
	-		-	0.288	0.008	0.115	0.462					
								-2.00	-1.00	0.00	1.00	2.00
								L	ess Time (Fast	er) Mo	re Time (Slov	er)

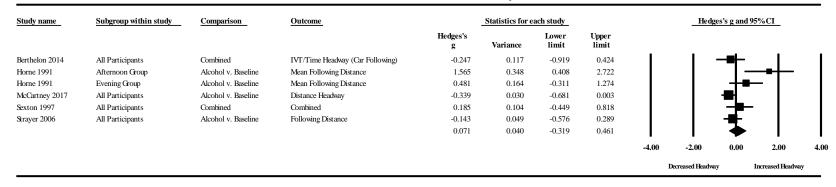

Alcohol v. Baseline: Hazard RT

Figure C34. Forest plot illustrating *Alcohol v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	ach study			Hedge	s's g and 9	95%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Beard 2012	All Participants	Low+High Alc v. Control	Combined	-0.222	0.144	-0.965	0.521				-	
Berthelon 2014	All Participants	Combined	Combined	0.064	0.012	-0.151	0.278					
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.181	0.003	0.082	0.280					
Ioward 2007	All Participants	Combined	RT	0.575	0.013	0.348	0.801				▇- │	
elen 2011	All Participants	Alcohol v. Baseline	RT	-0.026	0.110	-0.675	0.623		-		-	
Luypers 2006	All Participants	Alcohol v. Baseline	BRT	0.148	0.010	-0.051	0.346			┼╋╋╌		
eung 2012	All Participants	Combined	BRT	0.257	0.015	0.016	0.497				-	
iguori 1999	All Participants	Combined	Brake Latency	0.776	0.024	0.469	1.083				∎	
iguori 2001	All Participants	Alcohol v. Baseline	Brake Latency	1.035	0.019	0.764	1.306				-#	
iguori 2002	All Participants	Combined	Brake Latency	0.425	0.016	0.174	0.676			-		
amaekers 2000 Study 1	All Participants	Alcohol v. Baseline	RT	0.140	0.010	-0.058	0.339			-₩		
chumacher 2011	All Participants	Alcohol v. Baseline	BRT	0.548	0.012	0.329	0.766			- I - I	-	
exton 1997	All Participants	Combined	Combined	0.194	0.011	-0.011	0.399					
exton 2002	All Participants	Alcohol v. Baseline	RT Pulling Out	-0.369	0.011	-0.574	-0.165		- I - I	-		
trayer 2006	All Participants	Alcohol v. Baseline	BRT	0.009	0.005	-0.127	0.145					
ollrath 2017 Study 1	All Participants	Alcohol v. Baseline	Combined	0.098	0.082	-0.462	0.659				-	
ollrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	0.211	0.093	-0.385	0.808				<u> </u>	
Van 2017	All Participants	Alcohol v. Baseline	RT Yellow Lights	0.592	0.008	0.417	0.768			-	▰	
	*		5	0.280	0.006	0.131	0.429			•		
								-2.00	-1.00	0.00	1.00	2.00
								L	ess Time (Faste	er) Ma	ore Time (Slov	wer)

Alcohol v. Baseline: Hazard RT

Figure C35. Forest plot illustrating *Alcohol v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.9).

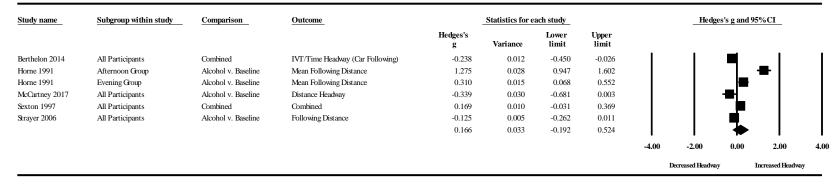

Alcohol v. Baseline: Headway

Figure C36. Forest plot illustrating *Alcohol v. Baseline: Headway* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Outcome		Statistics for e	ach study			Hedges	's g and s	95%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Berthelon 2014	All Participants	Combined	IVT/Time Headway (Car Following)	-0.246	0.059	-0.721	0.229		-			
Horne 1991	Afternoon Group	Alcohol v. Baseline	Mean Following Distance	1.523	0.169	0.718	2.328					
Horne 1991	Evening Group	Alcohol v. Baseline	Mean Following Distance	0.448	0.080	-0.108	1.003			∔∎	-	
McCartney 2017	All Participants	Alcohol v. Baseline	Distance Headway	-0.339	0.030	-0.681	0.003		- I -			
Sexton 1997	All Participants	Combined	Combined	0.182	0.052	-0.266	0.630					
Strayer 2006	All Participants	Alcohol v. Baseline	Following Distance	-0.141	0.024	-0.446	0.164			.		
				0.140	0.039	-0.247	0.528			-		
								-4.00	-2.00	0.00	2.00	4.00
									Decreased Headway		Increased Headwa	ay

Alcohol v. Baseline: Headway

Figure C37. Forest plot illustrating *Alcohol v. Baseline: Headway* (missing pre-post correlations set to r = 0.5).

Alcohol v. Baseline: Headway

Figure C38. Forest plot illustrating *Alcohol v. Baseline: Headway* (missing pre-post correlations set to r = 0.9).

<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	Outcome	S <u>ta</u>	atistics for e	each study	7		Hedges's	g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Horne 1991	Afternoon Group	Alcohol v. Baseline	Following Dist. Var.	2.110	0.515	0.703	3.516			-		-
Horne 1991	Evening Group	Alcohol v. Baseline	Following Dist. Var.	0.735	0.189	-0.117	1.588				⊢	
Sexton 1997	All Participants	Combined	Combined	0.173	0.111	-0.481	0.826					
Strayer 2006	All Participants	Alcohol v. Baseline	SD Following Distance	e 0.225	0.049	-0.211	0.660					
				0.561	0.088	-0.022	1.143				•	
								-4.00	-2.00	0.00	2.00	4.00
									Less Variability		More Variability	

Alcohol v. Baseline: Headway Variability

Figure C39. Forest plot illustrating *Alcohol v. Baseline: Headway Variability* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	each study	y		Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Horne 1991	Afternoon Group	Alcohol v. Baseline	Following Dist. Var.	2.107	0.257	1.113	3.101					
Horne 1991	Evening Group	Alcohol v. Baseline	Following Dist. Var.	0.671	0.091	0.080	1.262			-	⊢	
Sexton 1997	All Participants	Combined	Combined	0.165	0.055	-0.295	0.626			-		
Strayer 2006	All Participants	Alcohol v. Baseline	SD Following Distance	e 0.223	0.025	-0.085	0.531					
				0.634	0.085	0.061	1.207				▶	
								-4.00	-2.00	0.00	2.00	4.00
									Less Variability		More Variability	

Alcohol v. Baseline: Headway Variability

Figure C40. Forest plot illustrating *Alcohol v. Baseline: Headway Variability* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for o	each stud	y		Hedges's	s g and	<u>195% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Horne 1991	Afternoon Group	Alcohol v. Baseline	Following Dist. Var.	2.085	0.051	1.644	2.526				-	
Horne 1991	Evening Group	Alcohol v. Baseline	Following Dist. Var.	0.439	0.016	0.191	0.688					
Sexton 1997	All Participants	Combined	Combined	0.138	0.011	-0.065	0.342					
Strayer 2006	All Participants	Alcohol v. Baseline	SD Following Distance	e 0.210	0.005	0.072	0.347					
				0.674	0.074	0.141	1.207					
								-4.00	-2.00	0.00	2.00	4.00
									Less Variability		More Variability	

Alcohol v. Baseline: Headway Variability

Figure C41. Forest plot illustrating *Alcohol v. Baseline: Headway Variability* (missing pre-post correlations set to r = 0.9).

udy name	Subgroup within study	Comparison	Outcome		Statistics for	each study		Hedges's g and 95% CI		
	_		I	Iedges's g	Variance	Lower limit	Upper limit			
nedt 2001	All Participants	Combined	Tracking Variability	0.503	0.130	-0.202	1.209			
rthelon 2014	All Participants	Combined	Combined	0.317	0.124	-0.372	1.007			
rthelon 2018	All Participants	Combined	SDLP	0.607	0.076	0.066	1.148			
arlton 2015	All Participants	Low + High Alc v. Baseline		0.277	0.102	-0.350	0.904			
ristoforou 2012	All Participants	Alcohol v. Baseline	Variation in Within-Lane Pos.	0.563	0.046	0.142	0.983			
Instololog 2012							1.462			
	All Participants	Alcohol v. Baseline	Combined	0.667	0.164	-0.127				
ydier 2014	All Participants	Combined	SDLP (Single Task)	0.306	0.063	-0.186	0.798			
rrison 2005	Alcohol Group	Alcohol v. Baseline	Within-Lane Deviation	2.539	0.249	1.561	3.516			
rrison 2007	Control Group	Alcohol v. Baseline	Within Lane Deviation	0.778	0.228	-0.157	1.713			
rrison 2011	All Participants	Alcohol v. Baseline	SDLP	0.774	0.198	-0.099	1.647			
rtman 2015	All Participants	Alcohol v. Baseline	SDLP	0.180	0.103	-0.450	0.810			
lland 2016	All Participants	Combined	Combined	0.392	0.031	0.050	0.735			
rne 1991	Early Afternoon	Alcohol v. Baseline	Lat. Pos. Var.	0.166	0.147	-0.584	0.917			
rne 1991	Early Evening	Alcohol v. Baseline	Lat. Pos. Var.	0.715	0.187	-0.132	1.563			
ward 2007	All Participants	Combined	Lane Pos. Variation	0.444	0.132	-0.268	1.156			
wland 2010	All Participants	Alcohol v. Baseline	SD Lane Pos. Dev.	0.487	0.060	0.006	0.968			
mer 2010	All Participants	Alcohol v. Baseline	Combined	0.537	0.110	-0.112	1.186			
2013	All Participants	Alcohol v. Baseline	Combined	0.573	0.120	-0.106	1.252			
ntner-Mabiala 2015	All Participants	Combined	Combined	0.457	0.090	-0.130	1.044			
pers 2006	All Participants	Alcohol v. Baseline	SDLP	0.437	0.131	0.017	1.434			
de 2015		Alcohol v. Baseline	SDLP	0.725	0.131		1.454			
	All Participants					0.026				
de 2016	All Participants	Alcohol v. Baseline	SDLP	0.588	0.057	0.122	1.055			
de 2016 Study 3	Control Drivers	Alcohol v. Baseline	SDLP	0.679	0.183	-0.159	1.517			
2010	All Participants	Combined	Combined	0.298	0.020	0.024	0.572			
ine 1999	All Participants	Alcohol v. Baseline	Combined	0.207	0.069	-0.308	0.722	+=-		
ine 2003	All Participants	Alcohol v. Baseline	SDLP	0.807	0.119	0.131	1.484			
werens 1987	All Participants	Combined	SDLP	0.836	0.117	0.165	1.507			
rczinski 2008	Binge Group	Alcohol v. Baseline	Within Lane Dev.	0.640	0.095	0.036	1.244			
rczinski 2008	Nonbinge Group	Alcohol v. Baseline	Within Lane Dev.	0.954	0.169	0.147	1.761			
rczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.907	0.147	0.155	1.658			
rczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.314	0.187	-0.533	1.161			
Cartney 2017	All Participants	Alcohol v. Baseline	Combined	0.312	0.061	-0.171	0.794			
ts 2011	All Participants	Combined	SDLP	0.312	0.001	0.088	1.267			
naekers 1992			SDLP	0.553	0.090					
	All Participants	Alcohol v. Baseline				-0.158	1.264			
naekers 2000	All Participants	Alcohol v. Baseline	Combined	0.486	0.115	-0.179	1.152			
perts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.682	0.119	0.005	1.359			
berts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.494	0.105	-0.140	1.128			
nen 2008	All Participants	Alcohol v. Baseline	RMS Lane Position	0.280	0.132	-0.432	0.993	+		
nen 2010	All Participants	Alcohol v. Baseline	RMS Lane Position	-0.095	0.145	-0.841	0.651			
p 2007	All Participants	Alcohol v. Baseline	Lane Var. (15.5 hours)	0.295	0.076	-0.244	0.834			
umacher 2011 (2017)	All Participants	Alcohol v. Baseline	SDLP	0.716	0.137	-0.009	1.441			
ton 1997	All Participants	Combined	Combined	0.427	0.115	-0.238	1.091			
ton 2002	All Participants	Alcohol v. Baseline	Combined	-0.074	0.097	-0.685	0.537			
ons 2012	All Participants	Alcohol v. Baseline	Combined	0.788	0.183	-0.049	1.626			
ur 2014	Older	Low+High Alc v. Baseline		-0.333	0.135	-1.015	0.349			
r 2014	Younger	Low+High Alc v. Baseline		0.329	0.121	-0.353	1.010			
key 2014	All Participants	Mid+High Alc v. Baseline	Combined	0.329	0.121	-0.333	0.907			
der Sluiszen 2016	All Participants	Alcohol v. Baseline	SDLP	0.342	0.085	-0.222	1.377			
Dyke 2014	Control Group	Alcohol v. Baseline	LPSD	0.485	0.084	-0.085	1.054			
Dyke 2014	DUI Group	Alcohol v. Baseline	LPSD	0.199	0.077	-0.343	0.742			
Dyke 2015	All Participants	Alcohol v. Baseline	SDLP	0.393	0.042	-0.008	0.794			
dstra 2012 Study 1	All Participants	Combined	SDLP (Road Tracking)	62.828	262.777	31.056	94.600			
dstra 2012 Study 2	All Participants	Alcohol v. Baseline	SDLP (Road Tracking)	0.527	0.111	-0.127	1.180	+		
meeren 1998	All Participants	Alcohol v. Baseline	Combined	0.582	0.092	-0.013	1.177			
neeren 2002a	All Participants	Alcohol v. Baseline	SDLP	0.491	0.071	-0.032	1.014	=-		
neeren 2002b	All Participants	Alcohol v. Baseline	Combined	0.733	0.126	0.037	1.428			
ster 2002 (Part 1)	All Participants	Alcohol v. Baseline	SDLP	0.234	0.067	-0.274	0.742			
1 2017	All Participants	Alcohol v. Baseline	SDLP	0.649	0.083	0.086	1.212			
afer 2008 Study 1	All Participants	Alcohol v. Baseline	SDLP	0.649	0.083	-0.001	1.212			
afer 2008 Study 2	All Participants	Combined	SDLP	0.467	0.225	-0.463	1.397			
afer 2012	All Participants	Alcohol v. Baseline	Combined	0.779	0.124	0.087	1.470			
iler 2000	All Participants	Alcohol v. Baseline	Combined	1.851	0.134	1.133	2.568			
ing 2014	All Participants	Combined	SD Lane Position	0.351	0.092	-0.242	0.945			
				0.498	0.002	0.411	0.585	♦		
								-4.00 -2.00 0.00 2.00		

Figure C42. Forest plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = zero). Includes Study 1 from Veldstra et al. (2012).

Alcohol v. Baseline: Lateral Position Variability

brance between the second of the secon	udy name	Subgroup within study	Comparison	Outcome		Statistics for	each study		Hedges's g and 95% CI
che 2001All ParicipantsCombinedTacking Variability0.4550.0610.0570.091helma 3114All ParicipantsCombinedSSP0.3710.0330.2070.8740.874helma 3114All ParicipantsCombinedSSP0.2520.0330.2070.8740.974mere 2008All ParicipantsAlcoha V, BastineCombined0.2740.8160.0870.2740.846mere 2008All ParicipantsAlcoha V, BastineCombined0.2740.1810.0770.6480.9740.181inter 2017Alcoha V, BastineSSP, Congle Taki,0.3010.0110.0791.5470.6480.9750.975mere 2008All ParicipantsAlcoha V, BastineSSP, Congle Taki,0.1800.0791.5470.9750.9750.975mere 2017All ParicipantsAlcoha V, BastineSSP, Variabine0.1810.0760.0760.7530.9750.975mere 2017All ParicipantsAlcoha V, BastineSSP, Variabine0.4810.0800.0760.9750.9750.9750.975mere 2018All ParicipantsAlcoha V, BastineSSP, Congle Taki, Variabine0.6410.0800.0760.9750.9750.975mere 2014All ParicipantsAlcoha V, BastineSSP, Congle Taki, Variabine0.6470.0800.0840.9750.9750.975mere 2016All ParicipantsAlcoha V, BastineSSP, Congle Taki,				1		Variance			
hele 2014 All Participants Combined Sub Participants Combined Combined Sub Participants Combined Sub Participants Combined Sub Participants Combined Combined Combined Sub Participants Combined Sub Participants Combined Combined Combined Sub Participants Combined Combined Combined Combined Sub Participants Combined Com	edt 2001	All Participants	Combined	Tracking Variability	-				
htmlas All Participants Combined SDLP 0.57 0.168 0.07 0.087									
offen 2015 All Participants Low High Ac v. Baseline Variation Withs-Law D. 0227 0.012 0.237 0.014 sinder 2016 All Participants Actoda V. Baseline Variation Withs-Law D. 0232 0.021 0.031 0.077 sinze 2035 All Participants Actoda V. Baseline Within Law D. Variation 0.237 0.140 0.101 0.101 sinze 2037 Control Graep Actoda V. Baseline SLP 0.774 0.180 0.092 1.467 sinze 2031 All Participants Actoda V. Baseline SLP 0.774 0.180 0.052 0.052 sinze 2011 All Participants Actoda V. Baseline Lat. Pos. Var. 0.161 0.003 0.457 0.467 sinze 2017 All Participants Combined Lat. Pos. Var. 0.471 0.048 0.049 0.041 0.042									
iadomo 2012 Al Participants Alcolul y Bastine Variation in Within Later Po. 0.52 0.03 0.27 0.816 were 2018 All Participants Alcolul y Bastine SUP Gange Table 0.097 0.070 0.081 def 2014 All Participants Alcolul y Bastine Within Late Division 0.071 0.071 0.084 were 2017 All Participants Alcolul y Bastine SUP Gange Table 0.097 0.072 0.081 def 2016 All Participants Alcolul y Bastine SUP Gange Table 0.098 0.075 def 2017 All Participants Alcolul y Bastine SUP Gange Table 0.098 0.075 def 2017 All Participants Alcolul y Bastine SUP Gange Table 0.098 0.075 def 2017 All Participants Alcolul y Bastine SUP Gange Table 0.098 0.075 def 2017 All Participants Alcolul y Bastine SUP Gange Table 0.098 0.075 def 2018 0.07									
nme: 2005All Putricipuus de 2014Alcohd V. Bacine SUP Supple Tais Distance Data0.6170.6180.6180.6140.6140.6140.6140.6140.6140.6140.6140.6140.6140.6140.6140.6140.6140.6140.6150.6140.6150.6140.615 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
older 2014 All Patriagnes Combined SUP (Single Tack) 0.011 0.013 0.014 0.648 rise 2005 Actoda V. Baseline With Lane Division 0.239 0.101 0.017 1.309 rise 2005 All Patriagness Actoda V. Baseline SUP 0.110 0.022 0.255 0.255 rise 1001 All Patriagness Actoda V. Baseline SUP 0.180 0.080 0.755 0.755 rise 1001 Early Afternom Actoda V. Baseline Lin Ro. Var. 0.161 0.080 0.080 0.755 rise 1091 Early Afternom Actoda V. Baseline Lin Ro. Var. 0.161 0.080 0.088 1.230 rise 1091 Early Merony Actoda V. Baseline Combined 0.331 0.048 0.088 1.230 rise 2015 All Patricipants Actoda V. Baseline Combined 0.331 0.048 0.088 0.088 rise 2016 All Patricipants Actoda V. Baseline SUP. 0.331 0.022 0.380 0.481 0.481 rise 2015 All Patricipants Actoda V. Baseline SUP. 0.331 0.023 0.381 0.141 rise 2016 All Patricipants Actoda V. Baseline<									
Inter-Label Actool V, Bacilae Within Labe Evaluation 0.239 0.249 0.250 0.516 inse 2007 Alcodo V, Bacilae SDLP 0.72 0.109 0.072 1.399 inse 2011 All Pricipants Alcodo V, Bacilae SDLP 0.74 0.198 0.072 1.399 inse 2011 All Pricipants Alcodo V, Bacilae SDLP 0.191 0.021 0.139 0.021 0.139 0.021 0.139 0.021 0.139 0.021 0									
cinco 2007Courted Coope into 2011Alcohol V. Baseline SDLPO.1010O.107J.309J.409fina 2015All Participants alcohol V. Baseline into 2011SDLP0.7810.0250.6250.625fina 2015All Participants alcohol V. Baseline into 2011Combined into 20110.1020.0250.6250.625fina 2016All Participants alcohol V. Baseline into 2011Combined into 20110.1020.0250.0250.025and 2017All Participants alcohol V. Baseline into 2010All Participants alcohol V. Baseline alcohol V. Baseline per 20060.4270.0080.0080.9880.0082013All Participants alcohol V. Baseline alcohol V. Baseline a									
nina 2011 AI Participants Alcolo V Baeline SLP 0,774 0,198 0,4059 1,647 0,558 0,425									
Imm. 2015All ParticipantsActobal v. EaselineSLP0.1800.0230.0250.0250.025ine 1991Endy AfernionActobal v. BaselineLat. Pov. Var.0.6160.0730.0590.0920.092ine 1991Endy AfernionActobal v. BaselineLat. Pov. Var.0.6160.0730.0800.0920.092ine 1991Endy ExcingActobal v. BaselineLat. Pov. Var.0.6470.0680.0860.0960.096attal 2010All ParticipantsActobal v. BaselineCombined0.5360.0680.0960.0960.0962013All ParticipantsActobal v. BaselineCombined0.5360.0680.0960.0960.0962013All ParticipantsActobal v. BaselineCombined0.5350.0161.04250.0160.0260.0162010All ParticipantsActobal v. BaselineCombined0.2370.0230.1960.4360.0260.0									
Inde 2016AIP entripantsCombinedCombined0.7220.0310.0500.7550.755ne 1991Endy AleronizantAlechol V. BaelineLat. Pos. Var.0.0440.0890.0821.2011.201ne 1991Endy MericipantsCambinedLat. Pos. Var.0.0440.0890.0850.0750.0751.071mer 2010AI ParticipantsAlechol V. BaelineCombined0.0560.0750.0860.0840.0840.084mer 2010AI ParticipantsAlechol V. BaelineCombined0.5320.0560.0570.5661.022per 2006AI ParticipantsAlechol V. BaelineSILP0.7520.0560.2521.2261.011de 2015AI ParticipantsAlechol V. BaelineSILP0.2380.0320.0580.2351.2241.011ce 2006AI ParticipantsAlechol V. BaelineSILP0.7810.0580.1350.1711.011ce 2016AI ParticipantsAlechol V. BaelineSILP0.7710.0580.1350.1711.011ce 2016AI ParticipantsAlechol V. BaelineSILP0.7710.0580.1350.1711.0111.011ce 2016AI ParticipantsAlechol V. BaelineSILP0.7910.1350.1711.0121.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.0111.011<									
ne 1991 Early Event Early Event All Participants Alcohol v. Bascine Combined Co									
ne 1991Early EveningAlcohol V. BascineLat. Ps. Var.0.6440.0890.7831.202viand 2010All ParticipantsAlcohol V. BascineSD Lac Psv. Lyr.0.4870.0660.0660.9880.9990.9990.9980.9980.9990.9980.99									
vard 2007 All Participans Alcohol v. Bastine Combined Lane Pox. Variation 0.427 0.008 0.074 0.927 0.57 0.95 0.988									
shad 2010All ParticipantsAlcohol V. BastineSD Lar Pox Dev.0.4870.0000.0060.0080.0080.0082013All ParticipantsAlcohol V. BastineCombined0.5630.0040.0140.4212013All ParticipantsCombined0.5610.0150.01840.1210.861pera 2006All ParticipantsAlcohol V. BastineSDL P0.7230.0850.2231.2570.866pera 2006All ParticipantsAlcohol V. BastineSDL P0.5380.0230.2230.8500.858de 2016All ParticipantsCombined0.2070.0350.0230.2370.8560.858de 2016All ParticipantsCombined0.2070.0580.0530.2340.8580.858ne 2030All ParticipantsAlcohol V. BastineSDL P0.5780.0580.2911.2640.977crinik 2008Binge GroupAlcohol V. BastineSDL P0.3770.3510.3740.9740.9740.974crinik 2009Binge GroupAlcohol V. BastineCombined0.2370.0310.3740.974									
mer 2010 All Participants Alcohol v Baseline Combined 0.380 0.068 0.068 0.068 0.068 0.068 0.069 0.068 0.069 0.068 0.069 0.068 0.069 0.066									
2013All ParticipantsAlcohol v. BaselineCombined0.5310.0630.0641.042pere 2005All ParticipantsAlcohol v. BaselineSD.P0.730.6650.231.226de 2016All ParticipantsAlcohol v. BaselineSD.P0.530.0320.2151.226de 2016All ParticipantsAlcohol v. BaselineSD.P0.530.0320.2270.880de 2016All ParticipantsAlcohol v. BaselineSD.P0.530.0320.2280.8802010All ParticipantsCombined0.2370.0990.0950.2451.2462010All ParticipantsCombinedSD.P0.7470.0590.3061.2571.2462020All ParticipantsCombinedSD.P0.7470.0540.3530.0450.1402020Bing CoropAlcohol v. BaselineWithin Lane Dev.0.5310.0700.3051.4012021AAll ParticipantsCombined0.2320.0450.1350.7071.4012021AAll ParticipantsAlcohol v. BaselineCombined0.2320.0450.1350.7071.4012021AAll ParticipantsAlcohol v. BaselineCombined0.2320.0450.1710.7444.4012021AAll ParticipantsAlcohol v. BaselineCombined0.2320.0450.1710.7444.4012021AAll ParticipantsAlcohol v. BaselineCombined0.122<									
miner-Mubiliz 2015 All Participants Alcoho + Baeline SDLP 0.422 0.045 0.037 0.866 + 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4									
per 2066 AI Participants Alcoho V. Baseline SDLP 0.725 0.785 0.255 1.226 0.499 0.477 0.497									=-
pers 2006 All Participants Alcohol v. Baseline SDLP 0.725 0.065 0.25 1.256 de 2016 All Participants Alcohol v. Baseline SDLP 0.533 0.083 0.285 0.880 de 2016 All Participants Alcohol v. Baseline SDLP 0.533 0.083 0.485 0.880 2010 All Participants Combined 0.292 0.010 0.083 0.485 0.881 0.880 and Participants Alcohol v. Baseline SDLP 0.010 0.018 0.514 0.515 0.516 0.515									
de 2015 Al Participans Alcohd v. Baseline SDLP 0.498 0.492 0.492 0.497 0.497 0.497 0.497 0.497 0.498 0.497 0.497 0.498 0.497 0.497 0.498 0.497 0.498 0.497 0.498 0.497 0.498 0.497 0.498 0.497 0.498 0.493 0.497 0.498 0.495 0.498 0	pers 2006		Alcohol v. Baseline	SDLP	0.725		0.225	1.226	
de 2016 du 201		All Participants	Alcohol v. Baseline	SDLP	0.498	0.032	0.149	0.847	
de 2016 Study 3 2010 All Participants Combined Combined 0.292 0.008 0.033 1.223 ene 1999 All Participants Alcohol v. Baseline Combined 0.292 0.035 0.158 0.571 ene 2030 All Participants Alcohol v. Baseline SDLP 0.780 0.053 0.158 0.571 verens 1987 All Participants Alcohol v. Baseline Within Lane Dev. 0.780 0.053 0.136 0.135 Binge Group Alcohol v. Baseline Within Lane Dev. 0.553 0.045 0.135 0.700 Vithin Lane Dev. 0.553 0.045 0.135 0.079 0.300 1.401 Vithin Lane Dev. 0.811 0.079 0.300 1.401 Vithin Lane Dev. 0.811 0.079 0.313 1.349 Vithin Lane Dev. 0.812 0.066 0.049 1.401 Vithin Lane Dev. 0.812 0.066 0.049 1.405 Vithin Lane Dev. 0.812 0.066 0.049 1.405 Vithin Lane Dev. 0.552 0.066 0.049 1.055 Vithin Lane Devine 0.552 0.066 0.049 1.055 Vithin Lane Devine 0.552 0.066 0.049 1.055 Vithin Lane Devine 0.455 0.056 0.048 0.159 Vithin Lane Devine 0.455 0.056 0.048 0.159 Vithin Lane Devine 0.455 0.056 0.048 0.159 Vithin Lane Devine 0.455 0.056 0.048 0.157 Vithin Lane Devine 0.455 0.056 0.048 0.157 Vithin Lane Devine 0.455 0.056 0.048 0.158 Vithin Lane Devine 0.455 0.056 0.058 0.928 Vithin Lane Devine 0.428 0.057 0.010 0.949 Vithin Lane Devine 0.428 0.059 0.187 Vithin Lane Devine 0.428 0.059 0.188 Vithin Lane Devine 0.412 0.057 0.058 0.588 Vithin Lane Devine 0.412 0.059 0.588									
2010All ParticipantsCombinedCombined0.2070.0100.0980.485are 1999All ParticipantsAlcohol v. BasetineSDLP0.7870.0590.5180.571are 2003All ParticipantsAlcohol v. BasetineSDLP0.7470.0540.2911.204vertens 1987All ParticipantsAlcohol v. BasetineWithin Lane Dev.0.5310.0450.1330.970vertanis 12008Binge GroupAlcohol v. BasetineCombined0.8310.0700.3131.401vertanis 12009Nonbinge GroupAlcohol v. BasetineCombined0.2330.0660.1710.7942 vertanis 12009Nonbinge GroupAlcohol v. BasetineCombined0.3120.10790.3081.079a 2011All ParticipantsAlcohol v. BasetineCombined0.4820.0650.0491.055a reskor 2000All ParticipantsAlcohol v. BasetineCombined0.4820.0570.0100.949erts 2017 Study 2Cotrol GroupAlcohol v. BasetineCombined0.4820.0560.0491.042erts 2017 Study 2Cotrol Alcohol v. BasetineCombined0.4820.0570.0100.949erts 2017 Study 2Cotrol GroupAlcohol v. BasetineCombined0.4820.0560.04371.442p 2007All ParticipantsAlcohol v. BasetineCombined0.4820.0560.04371.442p 2007All ParticipantsAlcohol v									
ne 1999 All Participants Alcohol v. Baseline Combined 0.07 0.035 0.158 0.571 ene 2003 All Participants Alcohol v. Baseline SDLP 0.780 0.035 0.291 1.204 werens 1987 All Participants Alcohol v. Baseline Within Lane Dev. 0.533 0.079 0.300 1.401 ene 2012 Subject Comparent Alcohol v. Baseline Combined 0.831 0.079 0.300 1.401 ene 2012 Subject Comparent Alcohol v. Baseline Combined 0.831 0.079 0.300 1.401 energy Alcohol v. Baseline Combined 0.831 0.079 0.300 1.401 energy Alcohol v. Baseline Combined 0.312 0.061 0.171 0.794 energy Alcohol v. Baseline Combined 0.312 0.061 0.0171 0.794 energy Alcohol v. Baseline Combined 0.312 0.061 0.0170 0.799 energy Alcohol v. Baseline Combined 0.312 0.061 0.0171 0.794 energy Alcohol v. Baseline Combined 0.480 0.057 0.010 0.949 energy Alcohol v. Baseline Combined 0.482 0.052 0.179 energy 2017 All Participants Alcohol v. Baseline Combined 0.482 0.052 0.179 energy 2017 Subj 2 Control Group Alcohol v. Baseline Combined 0.482 0.052 0.179 energy 2017 Subj 2 Control Group Alcohol v. Baseline Combined 0.482 0.052 0.179 energy 2017 Subj 2 Control Group Alcohol v. Baseline RMS Lane Postion 0.280 0.052 0.179 energy 2017 All Participants Alcohol v. Baseline Baseline Postion 0.281 0.035 0.198 0.437 energy 2017 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.099 0.169 en 2010 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.099 0.169 en 2010 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.093 0.669 en 2010 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.093 0.669 en 2010 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.093 0.669 en 2012 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.093 0.669 en 2012 All Participants Alcohol v. Baseline SDLP 0.798 0.088 0.0198 0.128 energy 2007 All Participants Alcohol v. Baseline Combined 0.708 0.057 0.016 0.881 energy 2017 All Participants Alcohol v. Baseline Combined 0.708 0.058 0.198 0.238 energy 2014 DIT Group Lacohol v. Baseline SDLP (Mod Tracking) 0.258 0.0198 0.128 energy 2012 All Participants Alcohol v. Basel									
ne 2003 All Participants Alcohol v. Baseline SDLP 0,747 0,059 0,306 1,254 0,291 1,204 v.zinski 2008 Binge Group Alcohol v. Baseline Within Lane Dev. 0,531 0,079 0,300 1,401 v.zinski 2009 Binge Group Alcohol v. Baseline Within Lane Dev. 0,831 0,079 0,313 1,349 4 0,221 1,201 0,									
weres 1987All ParticipantsCombinedSDLP0.740.0540.2911.204verinski 2008Binge GroupAlcohol v. BaselineWithin Lane Dev.0.5330.04550.1570.400verinski 2009Binge GroupAlcohol v. BaselineCombined0.8810.0790.3001.401verinski 2009Binge GroupAlcohol v. BaselineCombined0.8310.0700.3120.0820.888verinski 2009All ParticipantsAlcohol v. BaselineCombined0.3120.0660.0450.1790.949varinski 2017All ParticipantsAlcohol v. BaselineCombined0.6550.0450.2501.0790.949varinski 2017Sulf GroupAlcohol v. BaselineCombined0.6650.0570.0100.9490.949ents 2017Sulf GroupAlcohol v. BaselineCombined0.6650.0570.0100.9490.921ents 2017Sulf GroupAlcohol v. BaselineRMS Lane Position0.2800.0570.9280.9250.928ents 2017Sulf GroupAlcohol v. BaselineRMS Lane Position0.0910.0720.6180.4370.441p 2007All ParticipantsAlcohol v. BaselineCombined0.0720.0580.6690.4320.7840.669on 2002All ParticipantsAlcohol v. BaselineCombined0.0720.0580.6930.4370.441p 2007All ParticipantsAlcohol v. Baseline <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
czinski 2008Binge Group Lochol V. BaselineWithin Lane Dev.0.530.0450.1350.970czinski 2009Binge Group Alcohol V. BaselineCombined0.8510.0790.3131.349czinski 2009Nominge Group Alcohol V. BaselineCombined0.2930.0820.3230.744s2011All Participants Alcohol V. BaselineCombined0.3120.061-0.1710.794s2011All ParticipantsAlcohol V. BaselineSDLP0.6650.0491.055sackers 1992All ParticipantsAlcohol V. BaselineCombined0.4800.0570.0100.949sackers 2000All ParticipantsAlcohol V. BaselineCombined0.4820.0520.0350.928erts 2017 Study 2Control GroupAlcohol V. BaselineCombined0.4820.0520.0350.928erts 2017 Study 2DUI GroupAlcohol V. BaselineCombined0.4820.0520.038-0.0830.669erts 2017 Study 2DUI GroupAlcohol V. BaselineCombined0.7080.0660.2300.784erts 2017 Study 2DUI GroupAlcohol V. BaselineCombined0.7080.0690.818erts 2017 Study 2DUI GroupAlcohol V. BaselineCombined0.7080.0550.818erts 2017 Study 2DUI GroupAlcohol V. BaselineCombined0.7080.0560.818erts 20									
vzinski 2008Nonhinge GroupAlcohol v. BaselineWithin Lane Dev.0.810.0700.3001.401vzinski 2009Binge GroupAlcohol v. BaselineCombined0.8310.0700.3131.149vzinski 2009Nonbinge GroupAlcohol v. BaselineCombined0.3120.061-0.1710.794s.2011All ParticipantsAlcohol v. BaselineSDLP0.6550.0491.055s.2012All ParticipantsAlcohol v. BaselineCombined0.6650.0590.01871.142nackers 1202Contol GroupAlcohol v. BaselineCombined0.4820.0520.0230.784erts 2017 Study 2Coltor GroupAlcohol v. BaselineRMS Lane Position0.2800.0350.473erts 2017 Study 2DUI GroupAlcohol v. BaselineRMS Lane Position0.0910.0720.6180.477p 2007All ParticipantsAlcohol v. BaselineRMS Lane Position0.0880.1891.221p 2007All ParticipantsAlcohol v. BaselineCombined0.0780.0660.581p 2007All ParticipantsAlcohol v. BaselineCombined0.0780.0880.1981.221on 2002All ParticipantsAlcohol v. BaselineCombined0.0780.0860.1841.221on 2002All ParticipantsAlcohol v. BaselineCombined0.0780.1011.285on 2002All ParticipantsAlcohol v. Base									
czinski 2009Binge Group CorpositionAlcohol v. BaselineCombined0.8310.0700.3131.349czinski 2009Nohinge Group All ParticipantsAlcohol v. BaselineCombined0.9310.0020.0200.988saturs 2017All ParticipantsAlcohol v. BaselineSDLP0.6550.0450.5201.079tackers 1992All ParticipantsAlcohol v. BaselineSDLP0.5520.0660.0491.055tackers 2000All ParticipantsAlcohol v. BaselineCombined0.6650.0570.1171.142erts 2017 Study 2Control Group Alcohol v. BaselineCombined0.4820.0520.0230.784erts 2017 Study 2DUI Group Alcohol v. BaselineRMS Lane Position0.2800.0660.9390.669p 2007All ParticipantsAlcohol v. BaselineRMS Lane Position0.2080.1731.142p 2007All ParticipantsAlcohol v. BaselineSDLP0.0730.0930.669on 1997All ParticipantsAlcohol v. BaselineCombined0.7130.0930.569on 2002All ParticipantsAlcohol v. BaselineCombined0.7030.0940.5050.538on 2002All ParticipantsAlcohol v. BaselineCombined0.7030.4920.5330.101r 2014OlderLow-High Alc v. BaselineCombined0.7030.4920.5820.578r 2014All ParticipantsAlcohol v. Baseli									
vzraski 2009Nominge Group Alcohol v. BaselineCombined0.2930.0920.3020.888zartney 2017All ParticipantsAlcohol v. BaselineCombined0.1710.0650.0450.2501.079a 2011All ParticipantsAlcohol v. BaselineSDL P0.6650.0450.2501.079ackers 1992All ParticipantsAlcohol v. BaselineCombined0.4880.0570.0100.949ackers 2000All ParticipantsAlcohol v. BaselineCombined0.4820.0520.0350.928erts 2017 Study 2DUI GroupAlcohol v. BaselineCombined0.4820.0570.0660.2230.784erts 2017 Study 2DUI GroupAlcohol v. BaselineRMS Lane Position-0.0180.0380.0660.2230.784en 2010All ParticipantsAlcohol v. BaselineRMS Lane Position-0.0180.0380.6690.437p 2007All ParticipantsAlcohol v. BaselineSDLP0.7090.0660.9230.669unacher 2011 (2017)All ParticipantsAlcohol v. BaselineCombined-0.0730.0490.6550.881un 2002All ParticipantsAlcohol v. BaselineCombined-0.0730.0470.3580.669ur 2014OlderLowHigh Alc v. BaselineCombined0.0730.0490.3880.682ur 2014Yal ParticipantsAlcohol v. BaselineSDLP0.3330.121-0.1351.010<									
Cartney 2017All ParticipantsAlcohol v. BaselineCombined0.3120.0610.1710.794soll 1All ParticipantsAlcohol v. BaselineSDLP0.650.4040.1057nackers 1992All ParticipantsAlcohol v. BaselineCombined0.4520.0660.0491.055nackers 2000All ParticipantsAlcohol v. BaselineCombined0.6650.0590.1871.142erts 2017 Study 2Control GroupAlcohol v. BaselineCombined0.4820.0520.0350.928erts 2017 Study 2DUl GroupAlcohol v. BaselineRMS Lane Position0.2800.066-0.2230.784ert 2010All ParticipantsAlcohol v. BaselineRMS Lane Position0.2800.0680.0930.669g 2007All ParticipantsAlcohol v. BaselineSDLP0.7990.0680.9811.221unacker 2011 (2017)All ParticipantsAlcohol v. BaselineCombined0.0190.0520.3580.38ton 1997All ParticipantsAlcohol v. BaselineCombined0.0190.0530.3280.4669ton 2002All ParticipantsAlcohol v. BaselineCombined0.0120.0560.3810.224ton 2012All ParticipantsAlcohol v. BaselineCombined0.3320.121-0.1350.104ton 1997All ParticipantsAlcohol v. BaselineCombined0.3420.0420.9970.884ton 2012All Particip									
s 2011All ParticipantsCombinedSDLP0.6650.0450.2501.079nackers 990All ParticipantsAlcohol v. BaselineCombined0.4800.0570.0100.949erts 2017 Study 2Dif GroupAlcohol v. BaselineCombined0.4620.0520.1871.142erts 2017 Study 2Dif GroupAlcohol v. BaselineCombined0.4820.0520.0350.928erts 2017 Study 2Dif GroupAlcohol v. BaselineRMS Lane Position-0.0190.0770.01680.437erts 2017 Number 20									
nackers 1992All ParticipantsAlcohol v. BaselineSDLP0.5520.0660.0491.055nackers 2000All ParticipantsAlcohol v. BaselineCombined0.6650.0570.0100.949erts 2017 Study 2Control GroupAlcohol v. BaselineCombined0.6650.0520.0250.928erts 2017 Study 2DUI GroupAlcohol v. BaselineRMS Lane Position0.2800.066-0.2230.784en 2008All ParticipantsAlcohol v. BaselineRMS Lane Position0.2800.066-0.0230.784p 2007All ParticipantsAlcohol v. BaselineRMS Lane Position0.2900.0660.0930.669on 1997All ParticipantsAlcohol v. BaselineSDLP0.7990.0680.1981.221on 2002All ParticipantsAlcohol v. BaselineCombined0.0120.0500.381on 2002All ParticipantsAlcohol v. BaselineCombined0.7330.049-0.0500.381on 2012All ParticipantsAlcohol v. BaselineCombined0.7330.121-1.0150.349r 2014YoderLow-High Alc v. BaselineLPSD0.3290.121-0.0560.582r 2014VangerLow-High Alc v. BaselineLPSD0.3290.121-0.0560.582r 2014VangerLow-High Alc v. BaselineSDLP0.7310.0490.388-0.9930.614p 2014All ParticipantsAlcohol v. Ba									│ │ ┼■─ │
nackers 2000 All Participants Alcohol v. Baseline Combined 0.480 0.057 0.010 0.949 erts 2017 Study 2 Control Group Alcohol v. Baseline Combined 0.680 0.059 0.187 1.142 erts 2017 Study 2 DUI Group Alcohol v. Baseline Combined 0.482 0.052 0.035 0.928 erts 2017 Study 2 DUI Group Alcohol v. Baseline Combined 0.280 0.066 -0.223 0.784 erts 2017 Study 2 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.288 0.038 0.066 -0.223 0.784 p 2007 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.618 0.437 p 2007 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.056 0.881 p 2007 All Participants Alcohol v. Baseline Combined 0.012 0.072 0.056 0.881 p 2007 All Participants Alcohol v. Baseline Combined 0.0708 0.087 0.130 1.285 p 2007 All Participants Alcohol v. Baseline Combined 0.0708 0.087 0.130 1.285 p 2007 All Participants Alcohol v. Baseline Combined 0.0708 0.087 0.130 1.285 p 2007 All Participants Alcohol v. Baseline Combined 0.0708 0.087 0.130 1.285 p 2007 All Participants Alcohol v. Baseline SDLP 0.751 0.049 0.318 1.184 p 2014 Outger Low-High Alc v. Baseline SDLP 0.751 0.049 0.318 1.184 p 2014 All Participants Alcohol v. Baseline SDLP 0.751 0.049 0.318 1.184 p 2014 DUI Group Alcohol v. Baseline SDLP 0.751 0.049 0.318 1.184 p 2014 DUI Group Alcohol v. Baseline SDLP 0.375 0.042 0.079 0.884 p 2014 DUI Group Alcohol v. Baseline SDLP 0.385 0.022 0.077 p 0.884 p 2014 All Participants Alcohol v. Baseline SDLP 0.385 0.128 p 2014 DII Group Alcohol v. Baseline SDLP 0.385 0.128 p 2014 All Participants Alcohol v. Baseline SDLP 0.385 0.198 p 2014 All Participants Alcohol v. Baseline SDLP 0.385 0.192 p 2015 All Participants Alcohol v. Baseline SDLP 0.385 0.128 p 2014 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.058 p 2014 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.058 p 2014 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.525 0.047 p 205 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.557 0.047 p 0.058 p 205 All Participants A		All Participants							-
errs 2017 Study 2 DLI Group Alcohol v. Baseline Combined 0.665 0.059 0.187 1.142 errs 2017 Study 2 DLI Group Alcohol v. Baseline Combined 0.428 0.052 0.035 0.928 en 2000 All Participants Alcohol v. Baseline RMS Lane Position 0.280 0.066 0.023 0.784 en 2010 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.288 0.038 0.066 0.023 0.669 p 2007 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.288 0.038 0.099 0.669 p 2007 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.056 0.388 on 1997 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.056 0.388 on 2012 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.056 0.388 on 2012 All Participants Alcohol v. Baseline Combined 0.703 0.049 0.059 0.388 on 2012 All Participants Alcohol v. Baseline LPSD 0.329 0.121 -1.015 0.349 r 2014 Older Low-High Alc v. Baseline LPSD 0.329 0.121 -0.533 1.010 der Sluiszen 2014 All Participants Mid-High Alc v. Baseline LPSD 0.329 0.121 -0.353 1.010 der Sluiszen 2014 All Participants Mid-High Alc v. Baseline LPSD 0.349 0.022 0.907 der Sluiszen 2014 All Participants Alcohol v. Baseline LPSD 0.349 0.022 0.907 der Sluiszen 2014 All Participants Alcohol v. Baseline SDLP 0.751 0.049 0.318 0.184 Dyke 2014 DII Group Alcohol v. Baseline SDLP 0.373 0.042 0.079 0.884 Dyke 2014 All Participants Alcohol v. Baseline SDLP 0.385 0.021 0.102 0.668 der Sluiszen 2012 Oxuly 1 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.26 0.056 0.064 0.988 meeren 1998 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.526 0.066 0.051 0.988 der 2002 (Purt 1) All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.526 0.056 0.056 0.054 der 2002 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.526 0.056 0.058 der 2002 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.526 0.056 0.056 0.054 der 2006 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.526 0.056 0.054 0.582 der 2002 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.526 0.056 0.05	1aekers 1992	All Participants	Alcohol v. Baseline	SDLP	0.552	0.066	0.049	1.055	
end 2017 Study 2DUI GroupAlcohol v. BaselineCombined0.4820.0520.0520.928end 2008All ParticipantsAlcohol v. BaselineRMS Lane Position0.2000.0660.2230.784end 2010All ParticipantsAlcohol v. BaselineRMS Lane Position0.0910.072-0.6180.437p 2007All ParticipantsAlcohol v. BaselineLane Var. (15.5 hours)0.2880.038-0.0930.669umacher 2011 (2017)All ParticipantsAlcohol v. BaselineCombined-0.017-0.0560.881ton 1997All ParticipantsAlcohol v. BaselineCombined-0.0730.4090.5050.358ton 2002All ParticipantsAlcohol v. BaselineCombined-0.0730.1090.5350.349ton 2002All ParticipantsAlcohol v. BaselineCombined0.3290.121-0.0351.010tors 2004All ParticipantsAlcohol v. BaselineLPSD-0.3330.121-0.3331.010tors 2014YoungerLow-High Alc v. BaselineLPSD0.3180.1881.184tors 2014Control GroupAlcohol v. BaselineDDP0.38-0.1850.582tors 2015All ParticipantsAlcohol v. BaselineLPSD0.1990.38-0.1850.582tors 2014DUI GroupAlcohol v. BaselineSDLP (Koud Tracking)6.28210.320.5250.564tors 2012All ParticipantsAlcohol v. Basel	naekers 2000	All Participants	Alcohol v. Baseline	Combined	0.480	0.057	0.010	0.949	
en 2006 All Participants Alcohol v. Baseline RMS Lane Position 0.280 0.066 0.223 0.784 Alcohol v. Baseline RMS Lane Position 0.280 0.066 0.223 0.784 Alcohol v. Baseline CMS Lane Position 0.280 0.066 0.223 0.784 Alcohol v. Baseline CMS Lane Var. (J.5. hours) 0.288 0.038 0.093 0.669 Ministry 2007 All Participants Alcohol v. Baseline SDLP 0.078 0.288 0.038 0.093 0.669 Ministry 2002 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.056 0.881 0.983 0.669 Ministry 2002 All Participants Alcohol v. Baseline Combined 0.412 0.057 0.056 0.881 0.981 0.221 0.002 0.021 All Participants Alcohol v. Baseline Combined 0.708 0.087 0.130 1.285 0.388 0.021 0.102 0.457 0.039 0.459 0.130 1.285 0.399 0.2012 0.102 0.457 0.039 0.450 0.399 0.221 0.101 0.285 0.459 0.130 0.128	erts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.665	0.059	0.187	1.142	
ene 2010All ParticipantsAlcohol v. BaselineRMS Lane Position-0.0910.072-0.0180.437pp 2007All ParticipantsAlcohol v. BaselineLane Var. (15.5 hours)0.2880.0330.6669numacher 2011 (2017)All ParticipantsAlcohol v. BaselineSDLP0.7090.0680.1981.221ton 1997All ParticipantsAlcohol v. BaselineCombined-0.0730.4040.5050.381ton 2002All ParticipantsAlcohol v. BaselineCombined-0.0730.1040.5050.381ton 2002All ParticipantsAlcohol v. BaselineCombined-0.0330.121-0.3331.010tors 2014YoungerLow-Hifgh Alc v. BaselineLRSD-0.3330.121-0.3331.010ter 2014All ParticipantsAlcohol v. BaselineLRSD0.3290.0121-0.0560.881tors 2015All ParticipantsAlcohol v. BaselineLRSD0.1990.38-0.1850.582to Dyke 2014DCI GroupAlcohol v. BaselineLPSD0.1990.038-0.1850.582to Dyke 2014DCI GroupAlcohol v. BaselineSDLP0.3820.0210.1020.6668to Dyke 2014DCI GroupAlcohol v. BaselineSDLP (Aod Tracking)0.28210.320.584to Dyke 2014All ParticipantsAlcohol v. BaselineSDLP (Aod Tracking)0.28210.320.584to Dyke 2014All ParticipantsAlcohol v.	erts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.482	0.052	0.035	0.928	
p2007 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.288 0.038 -0.038 0.669 unacher 2011 (2017) All Participants Combined 0.071 0.056 0.188 1.221 ton 1907 All Participants Combined 0.073 0.049 0.666 0.881 ton 2002 All Participants Alcohol v. Baseline Combined 0.073 0.049 0.505 0.358 on 2012 All Participants Alcohol v. Baseline Combined 0.708 0.087 0.130 1.285 ar 2014 Younger LowHigh Alc v. Baseline LPSD 0.329 0.121 -1.015 0.349 cfs Sluiszen 2016 All Participants Mid-High Alc v. Baseline LPSD 0.329 0.212 0.907 der Sluiszen 2016 All Participants Micheligh Alc v. Baseline LPSD 0.422 0.042 0.797 0.884 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.199 0.383 0.185 0.582 Dyke 2014 DUI foroup Alcohol v. Baseline SDLP (Roud Tracking) <t< td=""><td>en 2008</td><td>All Participants</td><td>Alcohol v. Baseline</td><td>RMS Lane Position</td><td>0.280</td><td>0.066</td><td>-0.223</td><td>0.784</td><td></td></t<>	en 2008	All Participants	Alcohol v. Baseline	RMS Lane Position	0.280	0.066	-0.223	0.784	
p2007 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.288 0.038 -0.038 0.669 unacher 2011 (2017) All Participants Combined 0.071 0.056 0.188 1.221 ton 1907 All Participants Combined 0.073 0.049 0.666 0.881 ton 2002 All Participants Alcohol v. Baseline Combined 0.073 0.049 0.505 0.358 on 2012 All Participants Alcohol v. Baseline Combined 0.708 0.087 0.130 1.285 ar 2014 Younger LowHigh Alc v. Baseline LPSD 0.329 0.121 -1.015 0.349 cfs Sluiszen 2016 All Participants Mid-High Alc v. Baseline LPSD 0.329 0.212 0.907 der Sluiszen 2016 All Participants Micheligh Alc v. Baseline LPSD 0.422 0.042 0.797 0.884 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.199 0.383 0.185 0.582 Dyke 2014 DUI foroup Alcohol v. Baseline SDLP (Roud Tracking) <t< td=""><td>en 2010</td><td>All Participants</td><td>Alcohol v. Baseline</td><td>RMS Lane Position</td><td>-0.091</td><td>0.072</td><td>-0.618</td><td>0.437</td><td></td></t<>	en 2010	All Participants	Alcohol v. Baseline	RMS Lane Position	-0.091	0.072	-0.618	0.437	
macher 2011 (2017)All ParticipantsAlcohol v. BaselineSDLP0.7090.0680.1981.221on 1997All ParticipantsAlcohol v. BaselineCombined0.0130.0490.0550.881on 2002All ParticipantsAlcohol v. BaselineCombined0.0730.0490.0550.388on 2012All ParticipantsAlcohol v. BaselineCombined0.0780.0870.1301.2857 2014OkderLowHigh Ale v. BaselineLFSD0.3330.121-1.0150.3494cr S2014All ParticipantsAlcohol v. BaselineLFSD0.3290.121-0.3531.0104cr S10iscen 2016All ParticipantsAlcohol v. BaselineLFSD0.4840.0490.3181.184Dyke 2014Control GroupAlcohol v. BaselineLFSD0.4820.0420.0790.884Dyke 2014DUI GroupAlcohol v. BaselineLFSD0.4820.0420.0850.582Dyke 2014All ParticipantsAlcohol v. BaselineSDLP0.3850.0210.1020.668Star 2012 Study 1All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)62.828131.38940.36285.294Star 2012 Study 1All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.2460.0560.6640.988encern 2002AAll ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.2460.0360.1160.855encern 2002A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
on 1997 All Participants Combined Combined 0.412 0.057 0.056 0.881 on 2002 All Participants Alcohol v. Baseline Combined 0.073 0.049 0.505 0.358 ona 2012 All Participants Alcohol v. Baseline Combined 0.708 0.087 0.130 1.285 r 2014 Older Low+High Ale v. Baseline LPSD 0.329 0.121 -0.515 0.349 key 2014 All Participants Mid+High Ale v. Baseline Combined 0.342 0.083 -0.222 0.907 der Sluiszen 2016 All Participants Mid-High Ale v. Baseline Combined 0.342 0.083 -0.222 0.907 der Sluiszen 2016 All Participants Mid-High Ale v. Baseline CDR 0.751 0.049 0.318 1.184 Dyke 2014 DUT Group Alcohol v. Baseline SDLP 0.012 0.668 S2.94 Dyke 2015 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.28 10.328 S2.94 Stra 2012 Study 2 All Participants A									
on 2002 All Participants Alcohol v. Baseline Combined -0.073 0.049 -0.505 0.388 oms 2012 All Participants Alcohol v. Baseline Combined -0.073 0.049 -0.505 0.388 72014 Older LowHigh Ale v. Baseline LPSD -0.333 0.121 -1.015 0.349 r 2014 Yonnger LowHigh Ale v. Baseline LPSD 0.329 0.121 -0.353 1.010 der Sluiszen 2016 All Participants Micheligh Ale v. Baseline Combined 0.342 0.088 0.222 0.907 Dyke 2014 Contor Group Alcohol v. Baseline LPSD 0.48 0.049 0.318 1.184 Dyke 2014 Contor Group Alcohol v. Baseline LPSD 0.48 0.042 0.076 0.884 Dyke 2014 All Participants Alcohol v. Baseline SDLP 0.38 0.012 0.668 Istra 2012 Study 1 All Participants Alcohol v. Baseline SDLP (Road Tracking) 6.282 131.389 40.362 85.294 Istra 2012 Study 2 All Participants Alcoho									
one 2012 All Participants Alcohol v. Baseline Combined 0.708 0.087 0.130 1.285 r 2014 Older Low-High Alc v. Baseline LFSD 0.339 0.121 -0.353 1.010 r 2014 Yonger Low-High Alc v. Baseline LFSD 0.329 0.121 -0.353 1.010 r 2014 All Participants Mid-High Alc v. Baseline Combined 0.342 0.003 -0.222 0.907 der Sluiszen 2016 All Participants Mid-High Alc v. Baseline Combined 0.342 0.003 -0.222 0.907 Dyke 2014 Control Group Alcohol v. Baseline DLP 0.751 0.049 0.318 1.184 Dyke 2014 DUT (Group Alcohol v. Baseline DLP 0.355 0.150 0.582 Dyke 2015 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.28 10.352 52.94 Stra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.28 0.036 0.164 0.988 encern 2002a All Participants A									
r 2014 Older Low-High Ale v. Baseline LPSD -0.333 0.121 -1.015 0.349 r 2014 Nunger Low-High Ale v. Baseline LPSD 0.329 0.121 -0.353 1.010 key 2014 All Participants Mid+High Ale v. Baseline Combined 0.342 0.083 -0.222 0.907 der Sluissen 2016 All Participants Alcohol v. Baseline SDLP 0.482 0.042 0.079 0.884 Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.429 0.042 0.079 0.884 Dyke 2014 DUT Group Alcohol v. Baseline LPSD 0.482 0.042 0.079 0.884 Dyke 2014 DUT Group Alcohol v. Baseline SDLP 0.385 0.021 0.020 0.668 USLP (Soud Tracking) 0.526 0.056 0.066 0.988 herern 2098 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.066 0.988 herern 2002 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.151 0.989 herern 2002 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.151 0.989 herern 2002 All Participants Alcohol v. Baseline SDLP (Boad Tracking) 0.527 0.046 0.151 0.989 herern 2002 All Participants Alcohol v. Baseline SDLP (Der 10, 234 0.034 0.125 0.594 ter 2002 (Part 1) All Participants Alcohol v. Baseline SDLP (Der 0, 537 0.047 0.131 0.984 ter 2002 (Part 1) All Participants Alcohol v. Baseline SDLP (Der 0, 537 0.047 0.131 0.984 ter 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 ter 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 ter 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 ter 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 ter 2008 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 ter 2008 Study 1 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 ter 2000 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 ter 2004 All Participants Alcohol v. Baseline Combined 0.751 0.067 0.743 ter 2005 All Participants Alcohol v. Baseline Combined 0.751 0.067 0.743 ter 2008 All Participants Alcohol v. Baseline Combined 0.751 0.067 0.743 ter 2008 All Participant									
r 2014 Younger Low-High Ale v. Baseline LPSD 0.329 0.121 0.333 1.010 ky 2014 All Participants Alcohol v. Baseline Combined 0.342 0.083 0.222 0.907 der Sluiszen 2016 All Participants Alcohol v. Baseline SDLP 0.151 0.049 0.318 1.184 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.199 0.088 0.185 0.582 Dyke 2015 All Participants Alcohol v. Baseline SDLP (And Tracking) 0.28 0.012 0.012 0.668 Birm 2012 Study 1 All Participants Alcohol v. Baseline SDLP (And Tracking) 0.526 0.056 0.064 0.988 neeren 1998 All Participants Alcohol v. Baseline SDLP (And Tracking) 0.526 0.056 0.064 0.988 neeren 2020 All Participants Alcohol v. Baseline SDLP (And Tracking) 0.526 0.056 0.064 0.988 neeren 2020 All Participants Alcohol v. Baseline SDLP (And Tracking) 0.526 0.036 0.116 0.855 neeren 2020 All Participants Alcohol v. Baseline SDLP (And Tracking) 0.284 0.036 0.116 0.855 neeren 2020 All Participants Alcohol v. Baseline SDLP (0.031 Tracking) 0.234 0.036 0.164 0.988 1000 All Participants Alcohol v. Baseline SDLP (0.031 Tracking) 0.234 0.036 0.164 0.557 1017 All Participants Alcohol v. Baseline SDLP (0.034 0.034 0.125 0.594 1017 All Participants Alcohol v. Baseline SDLP (0.057 0.047 0.131 0.984 1017 All Participants Alcohol v. Baseline SDLP (0.450 0.057 0.047 0.131 0.984 1017 All Participants Alcohol v. Baseline SDLP (0.450 0.057 0.047 0.131 0.984 1017 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 1017 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 1017 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 1017 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 1017 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 1017 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 1017 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 1018 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 10204 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 10204 All									
key 2014 All Participants Mid-High Alc v. Baseline Combined 0.342 0.083 -0.222 0.907 der Sluiszen 2016 All Participants Alcohol v. Baseline SDLP 0.751 0.049 0.318 1.184 Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.42 0.079 0.884 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.199 0.018 0.185 0.582 Dyke 2015 All Participants Alcohol v. Baseline SDLP 0.388 1.021 0.6668 Stara 2012 Study 1 All Participants Alcohol v. Baseline SDLP (Aod Tracking) 0.52 0.056 0.064 0.988 necren 1998 All Participants Alcohol v. Baseline SDLP (Aod Tracking) 0.570 0.046 0.151 0.988 necren 2002A All Participants Alcohol v. Baseline SDLP (Aod Tracking) 0.570 0.046 0.151 0.988 necren 1998 All Participants Alcohol v. Baseline SDLP 0.485 0.033 0.124 0.468 2017 All Participants Alc									
der Stürsten 2016 All Participants Alcohol v. Baseline SDLP 0.751 0.049 0.318 1.184 Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.482 0.042 0.075 0.075 0.078 0.584 Dyke 2014 DUG Group Alcohol v. Baseline LPSD 0.199 0.038 -0.185 0.582 Dyke 2014 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.282 10.102 0.668 stra 2012 Study 1 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.064 0.988 eeren 1998 All Participants Alcohol v. Baseline Combined 0.570 0.046 0.988 eeren 2002a All Participants Alcohol v. Baseline SDLP 0.035 0.036 0.116 0.855 eeren 2002a All Participants Alcohol v. Baseline SDLP 0.485 0.034 0.125 0.594 12017 All Participants Alcohol v. Baseline SDLP 0.450 0.034 0.125 0.594 fer 2008 Study 1 All Participants									
Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.482 0.042 0.079 0.884 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.19 0.013 0.105 0.582 Dyke 2015 All Participants Alcohol v. Baseline SDLP (Road Tracking) 62.82 13.138 0.365 2.046 0.988 stra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.064 0.988 eeren 1998 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.570 0.046 0.151 0.989 eeren 2002h All Participants Alcohol v. Baseline SDLP 0.037 0.063 0.341 1.214 eeren 2002h All Participants Alcohol v. Baseline SDLP 0.041 0.215 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.215 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.57 0.041 0.215 1.047 2017 A									
Dyke 2014 DUI Group Alcohol v. Baseline LRSD 0.199 0.038 -0.185 0.582 Dyke 2015 All participants Alcohol v. Baseline SDLP 0.38 0.0138 0.0162 0.668 Istra 2012 Study 1 All Participants Combined SDLP (Road Tracking) 62.828 131.389 40.362 85.294 Istra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.064 0.988 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.064 0.988 encern 1098 All Participants Alcohol v. Baseline Combined 0.570 0.044 0.151 0.989 encern 2002h All Participants Alcohol v. Baseline Combined 0.74 0.063 0.134 0.254 encern 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 0.944 12017 All Participants Alcohol v. Baseline SDLP 0.657 0.047 0.131 0.984 14r 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.450 0.047 0.131 0.984 16r 2008 Study 2									
Dyke 2015 All Participants Alcohol v. Baseline SDLP Out Processor Out Processor Out Processor Stra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 62.8 2 131.38 0 0.362 52.94 Stra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.064 0.988 eneren 1998 All Participants Alcohol v. Baseline Combined 0.570 0.046 0.151 0.989 eneren 2002A All Participants Alcohol v. Baseline SDLP 0.724 0.036 0.116 0.885 eneren 2002b All Participants Alcohol v. Baseline SDLP 0.234 0.034 0.214 1.214 ere 2002 (Purt 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.125 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.575 0.047 0.131 0.984 4re 2002 (Purt 1) All Participants Alcohol v. Baseline SDLP 0.575 0.047 0.131 0.984 4re 2005 (Study 1 All Participants Alcohol v. Baseline SDLP 0.455 0.047 0.131 0.984									
Isma 2012 Study 1 All Participants Combined SDLP (Road Tracking) 62.828 13.1389 40.362 85.294 Istra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.064 0.988 necren 1998 All Participants Alcohol v. Baseline Combined 0.570 0.046 0.151 0.989 necren 2002a All Participants Alcohol v. Baseline Combined 0.70 0.485 0.036 0.116 0.855 necren 2002h All Participants Alcohol v. Baseline SDLP 0.044 0.034 0.124 0.064 12017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 0.054 12017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 16r 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.450 0.112 0.024 1.105 16r 2008 Study 2 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235									
Stara 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.526 0.056 0.064 0.988 necren 1998 All Participants Alcohol v. Baseline Combined 0.70 0.046 0.151 0.988 necren 2002a All Participants Alcohol v. Baseline SDLP 0.485 0.036 0.116 0.855 necren 2002b All Participants Alcohol v. Baseline SDLP 0.234 0.034 0.215 0.544 101 All Participants Alcohol v. Baseline SDLP 0.649 0.034 -0.125 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.121 1.047 for 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.450 0.112 -0.94 1.047 for 2012 All Participants Combined SDLP 0.450 0.112 -0.94 1.065 for 2012 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.234 1.047 for 2008 All Participants									
necren 1998 All Participants Alcohol v. Baseline Combined 0.570 0.046 0.151 0.989 necren 2002a All Participants Alcohol v. Baseline Combined 0.724 0.063 0.234 1.214 recren 2002 (Part 1) All Participants Alcohol v. Baseline Combined 0.724 0.063 0.234 1.214 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.450 0.112 0.204 1.105 recren 2002 (Part 1) All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 recren 2004 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 recrent 2004 All Participants Alcohol v. Baseline Combined 0.751 0.077 1.341 2.354 recren 2014 All Participants Alcohol v. Baseline Combined 0.751 0.077 1.341 2.354				SDLP (Road Tracking)	62.828				
necren 1998 All Participants Alcohol v. Baseline Combined 0.570 0.046 0.151 0.989 necren 2002a All Participants Alcohol v. Baseline Combined 0.724 0.063 0.234 1.214 recren 2002 (Part 1) All Participants Alcohol v. Baseline Combined 0.724 0.063 0.234 1.214 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 recren 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.450 0.112 0.204 1.105 recren 2002 (Part 1) All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 recren 2004 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 recrent 2004 All Participants Alcohol v. Baseline Combined 0.751 0.077 1.341 2.354 recren 2014 All Participants Alcohol v. Baseline Combined 0.751 0.077 1.341 2.354	lstra 2012 Study 2		Alcohol v. Baseline	SDLP (Road Tracking)	0.526	0.056	0.064	0.988	
mecren 2002a All Participants Alcohol v. Baseline SDLP 0.485 0.036 0.116 0.855 mecren 2002h All Participants Alcohol v. Baseline Combined 0.724 0.063 0.234 1.214 ter 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.648 0.034 -0.125 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 fer 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.450 0.112 -0.204 1.105 fer 2008 Study 2 All Participants Alcohol v. Baseline SDLP 0.450 0.112 -0.204 1.105 fer 2012 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 fer 2012 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 go 2014 All Participants Alcohol v. Baseline Combined 0.347 0.067 1.341 2.354	neeren 1998		Alcohol v. Baseline	Combined	0.570	0.046	0.151		
necren 2002b All Participants Alcohol v. Baseline Combined 0.724 0.063 0.234 1.214 fer 2002 (Part I) All Participants Alcohol v. Baseline SDLP 0.234 0.034 -0.125 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 fer 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.459 0.041 0.984 fer 2008 Study 2 All Participants Alcohol v. Baseline SDLP 0.450 0.112 0.094 fer 2008 Study 2 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 fer 2000 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 fer 2000 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 go104 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.284 go104 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.287 1.235 go104 All Participants Combined 0.326	neeren 2002a			SDLP	0.485	0.036	0.116	0.855	
ter 2002 (Phrt I) All Participants Alcohol v. Baseline SDLP 0.234 0.034 -0.125 0.594 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 fer 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 fer 2008 Study 2 All Participants Combined SDLP 0.450 0.112 -0.204 1.105 fer 2012 All Participants Alcohol v. Baseline Combined 0.751 0.067 1.341 2.354 fer 2000 All Participants Alcohol v. Baseline Combined 0.326 0.067 1.341 2.354 g2014 All Participants Alcohol v. Baseline Combined 0.326 0.047 0.074 2.354				Combined					
12017 All Participants Alcohol v. Baseline SDLP 0.649 0.041 0.251 1.047 fer 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 fer 2008 Study 2 All Participants Combined SDLP 0.450 0.112 -0.204 1.105 fer 2008 Study 2 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 ler 2000 All Participants Alcohol v. Baseline Combined 1.847 0.067 1.341 2.354 go 2014 All Participants Combined SD Lane Position 0.326 0.045 -0.091 0.743									
fer 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.557 0.047 0.131 0.984 fer 2008 Study 2 All Participants Combined SDLP 0.450 0.112 -0.204 1.105 fer 2012 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 fer 2000 All Participants Alcohol v. Baseline Combined 1.847 0.067 1.341 2.354 g2014 All Participants Combined 0.326 0.0457 -0.074 - -									
Infer 2008 Study 2 All Participants Combined SDLP 0.450 0.112 -0.204 1.105 Ider 2012 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 ler 2000 All Participants Alcohol v. Baseline Combined 1.847 0.067 1.341 2.354 g 2014 All Participants Combined SD Lane Position 0.326 0.045 -0.091 0.743									
ufer 2012 All Participants Alcohol v. Baseline Combined 0.751 0.061 0.267 1.235 ler 2000 All Participants Alcohol v. Baseline Combined 1.847 0.067 1.341 2.354 ng 2014 All Participants Combined SD Lane Position 0.326 0.045 0.091 0.743									
ler 2000 All Participants Alcohol v. Baseline Combined 1.847 0.067 1.341 2.354 ng 2014 All Participants Combined SD Lane Position 0.326 0.045 -0.091 0.743									
ng 2014 All Participants Combined SD Lane Position 0.326 0.045 -0.091 0.743									
0.495 0.002 0.413 0.578	ng 2014	All Participants	Combined	SD Lane Position					
					0.495	0.002	0.413	0.578	1 1 1 🕴 1
-4.00 -2.00 0.00 2.00									-4.00 -2.00 0.00 2.00

Figure C43. Forest plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5). Includes Study 1 from Veldstra et al. (2012).

Alcohol v. Baseline: Lateral Position Variability

and 2007 All Participants Alcohol V. Bascine Lane Pox, Variation 0.342 0.124 0.124 0.599 mer 2010 All Participants Alcohol V. Bascine Combined 0.00 0.00 0.233 0.00 0.949 2013 All Participants Alcohol V. Bascine Combined 0.017 0.000 0.233 0.001 0.249 atter Mahdula 2015 All Participants Alcohol V. Bascine SDLP 0.031 0.030 0.233 0.040 de 2016 All Participants Alcohol V. Bascine SDLP 0.388 0.016 0.239 0.533 de 2016 All Participants Alcohol V. Bascine SDLP 0.388 0.016 0.239 0.77 2010 All Participants Alcohol V. Bascine SDLP 0.31 0.010 0.248 0.834 0.664 e 1999 All Participants Combined 0.271 0.070 0.044 0.371 0.775 0.664 e 1999 All Participants Alcohol V. Bascine Combined 0.234 0.031 0.304 0.771 0.775 0.6	idy name	Subgroup within study	Comparison	Outcome		Statistics for	each study		Hedges's g and 95% CI
ad 200 All Participants Combined Tacking Yunkhing 0.23 0.011 0.032 0.033 0.033 beles 2014 All Participants Combined SLP 0.48 0.007 0.323 0.633 beles 2014 All Participants Combined SLP 0.488 0.007 0.321 0.633 mus 2017 All Participants Combined SUP (Sigle Tai) 0.238 0.063 0.238 0.063 mus 2016 All Participants Combined SUP (Sigle Tai) 0.238 0.060 0.238 0.063 mus 2016 All Participants Acodol - Bacline SUP (Sigle Tai) 0.238 0.060 0.735 0.078 <th></th> <th></th> <th></th> <th>I</th> <th></th> <th>Variance</th> <th></th> <th></th> <th></th>				I		Variance			
Index All Participants Combined O.331 O.012 O.884 O.732 O.837 Markov State State Combined State O.232 0.537 O.537 Markov State All Participants Alcohol + Isochine Variantin Withle-Lace Pto. 0.384 0.001 0.231 0.545 Markov State Combined State 0.538 0.005 0.131 0.547 Markov State Combined State 0.538 0.005 0.131 0.537 Markov State Combined State 0.538 0.007 0.018 0.027 0.537 Markov State Markov State State 0.017 0.010	aedt 2001	All Participants	Combined	Tracking Variability	-				
helm 2015 All Participants Combined SR.P 0.48 0.07 0.23 0.043 outer 2014 All Participants Alcodal v, Bacline Vention in think hane Parto 0.23 0.04 0.350 0.047 outer 2014 All Participants Alcodal v, Bacline Within Lane Devision 2.58 0.00 0.213 0.314 0.475 outer 2014 All Participants Alcodal v, Bacline Within Lane Devision 2.58 0.020 0.214 0.351 outer 2014 All Participants Alcodal v, Bacline Within Lane Devision 0.592 0.214 0.351 outer 2014 All Participants Alcodal v, Bacline Combined 0.017 0.010 0.029 0.371 and 2016 All Participants Alcodal v, Bacline Cambined 0.130 0.041 0.059 0.371 and 2010 All Participants Alcodal v, Bacline Cambined 0.047 0.020 0.231 0.391 and 2010 All Participants Alcodal v, Bacline SR.P 0.725 0.021 0.531 0.049 0.431 2									
the 2015 All Parciepans Low High AV: Baseline Combined 0.277 0.102 -0.388 0.004 same 2003 All Parciepans Alcoda V: Baseline Cambined 0.388 0.001 0.211 0.245 same 2003 All Parciepans Alcoda V: Baseline Within Lase Evision 0.259 0.29 1.561 3.51 size 2005 Alcoda V: Baseline Within Lase Evision 0.429 0.19 0.21 0.767 size 2005 Alcoda V: Baseline Kilke Lase Evision 0.429 0.19 0.21 0.767 size 2005 Alcoda V: Baseline Like Na 0.772 0.101 0.000 0.237 size 2005 Alcoda V: Baseline Lat. Pox Var. 0.486 0.161 0.128 0.552 size 1991 Early Atersons Combined 0.170 0.008 0.010 0.399 size 1991 Early Atersons Alcoda V: Baseline Combined 0.170 0.018 0.032 size 1991 Early Atersons Alcoda V: Baseline Combined 0.170 0.028 0.010 0.399 size 1991 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
add participants Alcolad v, Baseline Variation in WitherLane Po. 0.58 0.016 0.218 0.455 bits 2005 All Participants Combined 0.588 0.050 0.118 0.235 bits 2017 All Participants Combined 0.581 0.052 0.070 0.211 0.751 bits 2017 All Participants Alcolad v, Baseline SRJP 0.777 0.198 0.090 0.212 0.777 bits 2017 All Participants Alcolad v, Baseline SRJP 0.777 0.198 0.090 0.221 0.777 bits 2017 All Participants Alcolad v, Baseline SRJP 0.747 0.108 0.090 0.622 0.777 bits 2017 All Participants Alcolad v, Baseline Combined 0.477 0.060 0.060 0.660 0.									
marce 2008 All Parcicipants Alcohal v, Baseline SDE / Solinge Tail 0.258 0.015 0.278 0.78 tere 2014 Alcohal V, Baseline Withis Lane Dvinition 2.59 0.249 1.518 0.247 tere 2015 All Parcicipants Alcohal v, Baseline SDE / Soline 0.774 0.100 0.029 0.517 mare 2015 All Parcicipants Alcohal v, Baseline SDE / Soline 0.113 0.029 0.577 mare 2015 All Parcicipants Alcohal v, Baseline Cambied 0.322 0.030 0.029 0.573 tal 2016 All Parcicipants Alcohal v, Baseline Cambied 0.170 0.000 0.050 0.583 tal 2016 All Parcicipants Alcohal v, Baseline Cambied 0.170 0.000 0.010 0.390 2013 All Parcicipants Alcohal v, Baseline CAmbied 0.583 0.010 0.239 0.011 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0									
did: All Participants Combined SDLP (Single Tak) 0.38 0.066 0.015 0.513 0.513 sina 2007 Control Corp Alcodol V. Baciline With Lane Deviation 0.427 0.019 0.213 0.767 sina 2017 Control Corp Alcodol V. Baciline U. Baciline 0.177 0.010 -0.022 0.777 sina 2015 All Participants Alcodol V. Baciline Lat. Pos. Var. 0.133 0.010 0.022 0.077 and 2016 All Participants Alcodol V. Baciline Lat. Pos. Var. 0.133 0.010 0.024 0.029 and 2016 All Participants Alcodol V. Baciline Combined 0.170 0.088 0.098 0.071 and 2010 All Participants Alcodol V. Baciline SDLP 0.373 0.031 0.399 and 2016 All Participants Alcodol V. Baciline SDLP 0.384 0.035 0.374 0.499 de 2016 All Participants Alcodol V. Baciline SDLP 0.384 0.035 0.599 0.499 de 2015 All Participants									
issa Actool Corport Actool V. Bacilae Within Law Deviation 0.239 0.249 0.241 0.753 issa Directorization All Participants Alcodol V. Bacilae SILP 0.747 0.18 0.090 0.241 0.753 issa Directorization Combined 0.092 0.011 0.050 0.073 ista Directorization Combined 0.022 0.016 0.160 0.562 0.016 0.160 0.562 ista Jarretingents Alcodol V. Bacilae Late Po. Variation 0.024 0.016 0.160 0.562 0.016 atd 30070 All Participants Alcodol V. Bacilae Combined 0.0170 0.018 0.008 0.010 0.399 0.39 0.31 2013 All Participants Alcodol V. Bacilae SULP 0.038 0.010 0.039 0.399 0.34 0.499 0.417 0.399 0.34 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.419									
isase 2017 Control Groups and 11 Participants Alcohol V. Backime With Lange Dynains 0.109 0.201 0.731 0.109 insase 2015 All Participants Alcohol V. Backime SLAP 0.177 0.00 0.097 1.61 insase 2015 All Participants Alcohol V. Backime Lat. Nat. 0.133 0.010 0.104 0.52 0.577 in P191 Early Afterningen Alcohol V. Backime Lat. Pov. Var. 0.46 0.016 0.124 0.52 0.57 in 2010 All Participants Alcohol V. Backime SDL and Pos. Dav. 0.47 0.006 0.68 0.66 in 2010 All Participants Alcohol V. Backime SDL and Pos. Dav. 0.47 0.006 0.68 0.61 0.66 0.68 0.61 0.66 0.68 0.61 0.61 0.61 0.60 0.68 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61<									
isan 2011 Al Participants Alcohol v. Baseline SLP 0.174 0.188 0.092 0.677 0.202 0.073 0.202 0.075 0.20									
main All Participants Alcohol v, Baeline SDLP 0.177 0.010 0.022 0.737 ale 2016 Early Mernion Alcohol v, Baeline Lat. No. Var. 0.133 0.015 0.016 0.02 le 1911 Early Mernion Alcohol V, Baeline Lat. No. Var. 0.031 0.016 0.106 0.02 main Dimension Alcohol V, Baeline Lat. No. Var. 0.047 0.060 0.058 0.054 main Dimension Alcohol V, Baeline Combined 0.016 0.005 0.023 0.016 0.049 2013 All Participants Alcohol V, Baeline SDLP 0.016 0.028 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.011 0.499 0.014 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.419 0.419 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
and 2016 All Participants Combined 0.52 0.031 0.050 0.735 le 1991 Early Mercing Alcobal v, Baerline Lat. No. Var. 0.040 0.016 0.040 0.059 le 1991 Early Mercing Alcobal v, Baerline Lat. No. Var. 0.040 0.016 0.026 0.058 mare 2001 All Participants Alcobal v, Baerline Combined 0.017 0.008 0.000 0.059 2013 All Participants Alcobal v, Baerline Combined 0.017 0.009 0.019									
ie 1991 Early Adrenson Alcobal v. Baseline Lat. Pox. Var. 0.133 0.015 0.104 0.389 and 2007 All Participaus Combined Late Pox. Variation 0.32 0.012 0.559 and 2007 All Participaus Combined Late Pox. Variation 0.32 0.010 0.058 0.058 and 2010 All Participaus Alcobal v. Baseline SD. Late Pox. Dev. 0.370 0.010 0.058 0.011 0.058 2013 All Participaus Alcobal v. Baseline SD. P 0.030 0.021 0.041 0.041 2014 All Participaus Alcobal v. Baseline SD. P 0.381 0.056 0.233 0.041 0.041 2016 All Participaus Alcobal v. Baseline SD. P 0.307 0.007 0.076 0.333 0.041 0.044 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
ie 1991 Endy Evening Alcohol v, Baeline Lat. Po. Var. 0.040 0.012 0.120 0.622 Inad 2010 All Participants Alcohol v, Baeline Combined 0.077 0.080 0.098 0.001 0.599 1010 All Participants Alcohol v, Baeline Combined 0.071 0.085 0.000 0.598 2013 All Participants Alcohol v, Baeline Combined 0.017 0.013 0.021 0.404 2014 All Participants Alcohol V, Baeline SDLP 0.318 0.005 0.258 0.339 2016 All Participants Alcohol V, Baeline SDLP 0.381 0.005 0.258 0.348 2010 All Participants Alcohol V, Baeline SDLP 0.371 0.012 0.148 0.348 2010 All Participants Alcohol V, Baeline SDLP 0.371 0.013 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0.348 0									
and 2007 All Participants Alcohol V. Bascine Lane Pox, Variation 0.342 0.124 0.124 0.599 mer 2010 All Participants Alcohol V. Bascine Combined 0.00 0.00 0.233 0.00 0.949 2013 All Participants Alcohol V. Bascine Combined 0.017 0.000 0.233 0.001 0.249 atter Mahdula 2015 All Participants Alcohol V. Bascine SDLP 0.031 0.030 0.233 0.040 de 2016 All Participants Alcohol V. Bascine SDLP 0.388 0.016 0.239 0.533 de 2016 All Participants Alcohol V. Bascine SDLP 0.388 0.016 0.239 0.77 2010 All Participants Alcohol V. Bascine SDLP 0.31 0.010 0.248 0.834 0.664 e 1999 All Participants Combined 0.271 0.070 0.044 0.371 0.775 0.664 e 1999 All Participants Alcohol V. Bascine Combined 0.234 0.031 0.304 0.771 0.775 0.6									
Ind 2010 AI Participants Alcohol V. Baeline SD Lar Pox Dev. 0.47 0.060 0.060 0.988 2013 AI Participants Alcohol V. Baeline Combined 0.050 0.001 0.238 0.711 2013 AI Participants Alcohol V. Baeline SDLP 0.501 0.921 0.531 0.601 per 2006 AI Participants Alcohol V. Baeline SDLP 0.351 0.051 0.949 0.551 de 2015 AI Participants Alcohol V. Baeline SDLP 0.351 0.050 0.038 0.051 0.353 0.452 0.052 0.052 0.052 0.058 0.051 0.056 0.358 0.011 0.428 0.030 0.014 0.030 0.014 0.030 0.014 0.030 0.014 0.030 0.014 0.030 0.014 0.030 0.014 0.029 0.661 0.012 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.0	ne 1991	Early Evening	Alcohol v. Baseline	Lat. Pos. Var.	0.406	0.016	0.160	0.652	
mer 2010 All Participants Alcohol V. Baseline Combined 0.170 0.00 0.121 0.239 0.711 2013 All Participants Combined Combined 0.417 0.00 0.233 0.601 411 Participants Alcohol V. Baseline SULP 0.131 0.501 0.533 0.601 42 All Participants Alcohol V. Baseline SULP 0.381 0.016 0.232 0.535 0.555 42 2016 SulV_3 Combined SULP 0.381 0.016 0.232 0.535 0.555 0.555 2010 All Participants Combined D.272 0.007 0.044 0.373 0.661 0.374 0.555 0.661 0.555 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 0.661 0.575 <td>vard 2007</td> <td>All Participants</td> <td>Combined</td> <td>Lane Pos. Variation</td> <td>0.342</td> <td>0.012</td> <td>0.124</td> <td>0.559</td> <td></td>	vard 2007	All Participants	Combined	Lane Pos. Variation	0.342	0.012	0.124	0.559	
2013 All Participants Alcohol v. Baseline Combined 0.500 0.02 0.289 0.711 micro-Mishia 2005 All Participants Alcohol v. Baseline SDLP 0.191 0.091 0.949 de 2016 All Participants Alcohol v. Baseline SDLP 0.381 0.006 0.252 0.533 de 2016 All Participants Alcohol v. Baseline SDLP 0.381 0.006 0.256 0.379 de 2016 All Participants Alcohol v. Baseline SDLP 0.381 0.016 0.376 0.378 action Surgo All Participants Alcohol v. Baseline Combined 0.277 0.044 0.370 0.644 crinki 2008 Bing: Gongo Alcohol v. Baseline Within Lane Dev. 0.51 0.016 0.477 0.007 crinki 2008 Noming: Gongo Alcohol v. Baseline Combined 0.31 0.010 0.425 0.454 0.475 0.464 crinki 2007 Noming: Gongo Alcohol v. Baseline Combined 0.31 0.010 0.237 0.475 0.464 crinki 2007	/land 2010	All Participants	Alcohol v. Baseline	SD Lane Pos. Dev.	0.487	0.060	0.006	0.968	
2013 All Participants Alcohol v. Baseline Combined 0.500 0.02 0.289 0.711 micro-Mishia 2005 All Participants Alcohol v. Baseline SDLP 0.191 0.091 0.949 de 2016 All Participants Alcohol v. Baseline SDLP 0.381 0.006 0.252 0.533 de 2016 All Participants Alcohol v. Baseline SDLP 0.381 0.006 0.256 0.379 de 2016 All Participants Alcohol v. Baseline SDLP 0.381 0.016 0.376 0.378 action Surgo All Participants Alcohol v. Baseline Combined 0.277 0.044 0.370 0.644 crinki 2008 Bing: Gongo Alcohol v. Baseline Within Lane Dev. 0.51 0.016 0.477 0.007 crinki 2008 Noming: Gongo Alcohol v. Baseline Combined 0.31 0.010 0.425 0.454 0.475 0.464 crinki 2007 Noming: Gongo Alcohol v. Baseline Combined 0.31 0.010 0.237 0.475 0.464 crinki 2007			Alcohol v. Baseline	Combined	0.170		-0.010	0.349	
miner-Makina 2015 All Participants Combined Out? 0.01 0.233 0.001 de 2015 All Participants Alcoho V. Baseline SDLP 0.381 0.005 0.235 0.533 de 2016 All Participants Alcoho V. Baseline SDLP 0.381 0.006 0.228 0.533 de 2016 All Participants Alcoho V. Baseline SDLP 0.458 0.001 0.029 0.708 de 2016 All Participants Combined 0.237 0.001 0.448 0.001 2010 All Participants Combined 0.377 0.448 0.001 crimks 2008 Binge Group Alcohol V. Baseline Within Lane Dev. 0.317 0.001 0.775 crinks 2008 Binge Group Alcohol V. Baseline Combined 0.541 0.018 0.017 0.775 crinks 2009 Binge Group Alcohol V. Baseline Combined 0.512 0.013 0.775 crinks 2007 All Participants Alcohol V. Baseline Combined <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
pere 2006 All Participants Alcohol v. Baseline SDLP 0.215 0.031 0.501 0.949 de 2015 All Participants Alcohol v. Baseline SDLP 0.381 0.060 0.255 0.539 de 2016 All Participants Alcohol v. Baseline SDLP 0.384 0.060 0.256 0.539 2010 All Participants Combined Combined 0.222 0.007 0.044 0.370 at Darticipants Alcohol v. Baseline SDLP 0.031 0.011 0.428 0.834 werens 1987 All Participants Alcohol v. Baseline Within Lane Dev. 0.311 0.012 0.041 0.944 crinkia 2008 Binge Comp Alcohol v. Baseline Combined 0.214 0.012 0.055 0.044 crinkia 2009 Masinge Group Alcohol v. Baseline Combined 0.214 0.013 0.057 0.044 s2011 All Participants Alcohol v. Baseline Combined 0.444 0.011 0.226 0.643 s2011 All Participants Alcohol v. Baseline Combined									
de 2015 All Participants Alcohol V. Baseline SDLP 0.381 0.065 0.226 0.533 de 2016 All Participants Alcohol V. Baseline SDLP 0.438 0.005 0.226 0.023 2010 All Participants Alcohol V. Baseline Combined 0.222 0.002 0.076 0.348 ne 1999 All Participants Alcohol V. Baseline SDLP 0.476 0.031 0.011 0.428 0.844 0.370 ne 2003 All Participants Combined SDLP 0.476 0.031 0.019 0.444 0.370 czinki 2008 Nombinge Group Alcohol V. Baseline Within Lane Dev. 0.317 0.013 0.030 0.474 czinki 2009 Nombinge Group Alcohol V. Baseline Combined 0.212 0.081 0.775 0.754 czinki 2009 Nombinge Group Alcohol V. Baseline Combined 0.214 0.011 0.776 0.754 0.775 czinki 2009 All Participants Alcohol V. Baseline Combined 0.214 0.013 0.057 0.764 0.775 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
de 2016 sul 3 AI Participants Alcohol V. Baseline SDLP 0.398 0.065 0.259 0.539 0.299 0.788 0.2016 0.2016 0.2017 0.007 0.									_
de 2016 Study 3 Control Drivers Alcohol + Baseline Combined 0.222 0.016 0.209 0.708 ne 1999 All Participants Alcohol + Baseline Combined 0.222 0.007 0.044 0.374 ne 1999 All Participants Alcohol + Baseline SDLP 0.631 0.011 0.428 0.834 werens 1987 All Participants Combined SDLP 0.737 0.008 0.99 0.494 czinski 2008 Binge Group Alcohol + Baseline Combined 0.511 0.013 0.300 0.747 czinski 2008 Nobringe Group Alcohol + Baseline Combined 0.312 0.016 0.171 0.794 s2011 All Participants Alcohol + Baseline Combined 0.312 0.016 0.774 s2011 All Participants Alcohol + Baseline Combined 0.444 0.013 0.320 0.766 s2017 All Participants Alcohol + Baseline SDLP 0.544 0.013 0.320 0.167									
2010 All Participants Combined 0.207 0.007 0.176 0.348 ne 1999 All Participants Alcohol v. Baseline SDLP 0.61 0.011 0.428 0.834 ne 2003 All Participants Alcohol v. Baseline SDLP 0.476 0.009 0.209 0.661 czinski 2008 Binge Group Alcohol v. Baseline Within Lane Dev. 0.317 0.747 0.755 czinski 2009 Nobringe Group Alcohol v. Baseline Combined 0.324 0.018 0.0747 0.747 czinski 2009 Nobringe Group Alcohol v. Baseline Combined 0.324 0.018 0.0747 0.775 s2011 All Participants Alcohol v. Baseline Combined 0.312 0.061 0.171 0.775 s2011 All Participants Alcohol v. Baseline Combined 0.434 0.013 0.226 0.643 cris 2017 Study 2 Control Group Alcohol v. Baseline Combined 0.401 0.226 0.643 cris 2017 Study 2 Dtl Group Alcohol v. Baseline Combined 0.409									
are 1999 AI Derticipants Alcohol v. Baseline Combined 0.207 0.004 0.570 ber 2035 AID Perticipants Alcohol v. Baseline SDLP 0.611 0.019 0.239 0.661 verent 1987 AID Perticipants Alcohol v. Baseline Within Lane Dev. 0.317 0.008 0.139 0.494 crimki 2008 Binge Group Alcohol v. Baseline Combined 0.561 0.012 0.347 0.775 crimki 2009 Nohinge Group Alcohol v. Baseline Combined 0.312 0.061 0.171 0.794 s2011 AID Perticipants Alcohol v. Baseline Combined 0.312 0.061 0.113 0.775 s2011 AID Perticipants Alcohol v. Baseline Combined 0.312 0.061 0.113 0.774 s2011 AID Perticipants Alcohol v. Baseline Combined 0.312 0.061 0.123 0.664 s2011 AID Perticipants Alcohol v. Baseline Combined 0.611 0.013 0.320 0.769 s2012 Contat Group Alcohol v. Baseline <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
ne 203 AI Participants Alcohol V. Baseline SDLP 0.476 0.011 0.428 0.834 0.429 0.661 0.221									
werens 1987 All Participants Combined SDLP 0.49 0.290 0.661 czinski 2008 Binge Group Alcohol V. Baseline Within Lane Dev. 0.317 0.008 0.139 0.494 czinski 2008 Binge Group Alcohol V. Baseline Combined 0.561 0.012 0.477 0.775 czinski 2009 Nonbinge Group Alcohol V. Baseline Combined 0.214 0.018 0.055 0.464 s 2011 All Participants Alcohol V. Baseline Combined 0.312 0.016 0.171 0.775 s 2011 All Participants Alcohol V. Baseline Combined 0.644 0.011 0.226 0.643 s 2017 Sudy 2 Control Group Alcohol V. Baseline Combined 0.601 0.012 0.328 0.666 er 2005 All Participants Alcohol V. Baseline Rabricine 0.641 0.016 0.117 0.167 p 2007 All Participants Alcohol V. Baseline Combined 0.033 0.161 <									
czinski 2008 Binge Group Alcohol V. Baseline Within Lane Dev. 0.37 0.008 0.139 0.494 Czinski 2009 Binge Group Alcohol V. Baseline Combined 0.524 0.013 0.303 0.775 Czinski 2009 Nombinge Group Alcohol V. Baseline Combined 0.204 0.018 -0.052 0.014 0.775 Crimbi 2001 All Participants Alcohol V. Baseline Combined 0.534 0.018 -0.057 0.775 Subit All Participants Alcohol V. Baseline Combined 0.534 0.011 0.226 0.643 Subit Alcohol V. Baseline Combined 0.441 0.010 0.218 0.666 0.666 Cantrol Group Alcohol V. Baseline Combined 0.409 0.010 0.021 0.666 0.667 Pictoripants Alcohol V. Baseline Combined 0.409 0.011 0.416 0.836 0.611 0.11 0.251 0.616 Pictoripants Alcohol V. Baseline Combined <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Czinski 2008 Nomèneg Group Alcohol V. Baseline Within Lane Dev. 0.541 0.012 0.374 0.777 czinski 2009 Binge Group Alcohol V. Baseline Combined 0.561 0.012 0.374 0.775 armery 2017 All Participants Alcohol V. Baseline Combined 0.312 0.061 0.113 0.775 s 2011 All Participants Alcohol V. Baseline Combined 0.544 0.013 0.320 0.767 s 2011 All Participants Alcohol V. Baseline Combined 0.454 0.011 0.226 0.643 s 2017 Study 2 DUT Group Alcohol V. Baseline Combined 0.409 0.010 0.212 0.406 s 2017 Study 2 DUT Group Alcohol V. Baseline RMS Lane Position 0.200 0.114 0.305 0.566 e 2007 All Participants Alcohol V. Baseline SDLP 0.662 0.013 0.436 0.837 g 2007 All Participants Alcohol V. Baseline Combined 0.011 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
czinski 2009 Ninge Group Alcohol v. Baseline Combined 0.561 0.012 0.347 0.775 czinski 2009 Nominge Group Alcohol v. Baseline Combined 0.204 0.018 -0.075 0.11 artney 2017 All Purticipants Alcohol v. Baseline SDLP 0.054 0.013 0.320 0.769 uackers 1992 All Purticipants Alcohol v. Baseline Combined 0.401 0.012 0.389 0.813 erts 2017 Sudy 2 Cottorol Group Alcohol v. Baseline Combined 0.401 0.013 0.055 0.506 erts 2017 Sudy 2 DUI Group Alcohol v. Baseline Combined 0.401 0.013 0.055 0.506 erts 2017 Sudy 2 DUI Group Alcohol v. Baseline RMS Lare Position -0.020 0.013 0.055 0.506 erts 2017 Sudy 2 All Purticipants Alcohol v. Baseline Combined 0.037 0.078 0.167 p 2007 All Purticipants Alcohol v. Baseline Combined 0.051 0.212 0.765 on 1997 All Purticipants Alcohol v. Ba	czinski 2008	Binge Group	Alcohol v. Baseline	Within Lane Dev.	0.317	0.008	0.139	0.494	
Vontinge Croup Alcohol v. Baseline Combined 0.204 0.018 -0.055 0.464 samey 2011 All Participants Combined SDLP 0.051 0.071 0.775 sauers 1902 All Participants Alcohol v. Baseline Combined 0.413 0.013 0.226 0.643 savers 2000 All Participants Alcohol v. Baseline Combined 0.494 0.013 0.225 0.643 savers 2017 Study 2 Control Group Alcohol v. Baseline Combined 0.490 0.013 0.055 0.506 en 2010 All Participants Alcohol v. Baseline Combined 0.490 0.013 0.055 0.506 en 2010 All Participants Alcohol v. Baseline DLP 0.662 0.013 0.055 0.167 p 2007 All Participants Alcohol v. Baseline Combined 0.071 0.018 0.016 0.131 0.543 on 1997 All Participants Alcohol v. Baseline Combined 0.071 0.010 0.022	czinski 2008	Nonbinge Group	Alcohol v. Baseline	Within Lane Dev.	0.524	0.013	0.300	0.747	
James 2017 All Participants Alcohol v. Baseline Combined 0.312 0.061 0.171 0.794 soll 1 All Participants Alcohol v. Baseline SDLP 0.544 0.013 0.320 0.765 sackers 2000 All Participants Alcohol v. Baseline Combined 0.611 0.226 0.643 sackers 2000 All Participants Alcohol v. Baseline Combined 0.610 0.012 0.289 0.813 serie 2017 Study 2 Contol Group Alcohol v. Baseline Combined 0.601 0.012 0.289 0.813 serie 2017 Study 2 DUI Group Alcohol v. Baseline RMS Lane Position 0.206 0.013 0.466 0.467 p 2007 All Participants Alcohol v. Baseline Combined 0.662 0.013 0.436 0.887 on 1997 All Participants Alcohol v. Baseline Combined 0.662 0.013 0.346 0.887 on 2002 All Participants Alcohol v. Baseline Combined 0.617 0.010	czinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.561	0.012	0.347	0.775	
James 2017 All Participants Alcohol v. Baseline Combined 0.312 0.061 0.171 0.794 soll 1 All Participants Alcohol v. Baseline SDLP 0.544 0.013 0.320 0.765 sackers 2000 All Participants Alcohol v. Baseline Combined 0.611 0.226 0.643 sackers 2000 All Participants Alcohol v. Baseline Combined 0.610 0.012 0.289 0.813 serie 2017 Study 2 Contol Group Alcohol v. Baseline Combined 0.601 0.012 0.289 0.813 serie 2017 Study 2 DUI Group Alcohol v. Baseline RMS Lane Position 0.206 0.013 0.466 0.467 p 2007 All Participants Alcohol v. Baseline Combined 0.662 0.013 0.436 0.887 on 1997 All Participants Alcohol v. Baseline Combined 0.662 0.013 0.346 0.887 on 2002 All Participants Alcohol v. Baseline Combined 0.617 0.010	czinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.204	0.018	-0.055	0.464	
s2011 All Participants Combined SDLP 0.594 0.009 0.413 0.775 uackers 2900 All Participants Alcohol v. Baseline Combined 0.434 0.011 0.226 0.643 tarts 2017 Study 2 Control Group Alcohol v. Baseline Combined 0.601 0.012 0.389 0.813 ers 2017 Study 2 DDI Group Alcohol v. Baseline Combined 0.409 0.010 0.013 0.666 en 2010 All Participants Alcohol v. Baseline RMS Lane Position 0.069 0.014 -0.305 0.506 p 2007 All Participants Alcohol v. Baseline Combined -0.010 0.013 0.436 0.887 on 1997 All Participants Alcohol v. Baseline Combined -0.033 0.112 -0.15 0.349 on 2002 All Participants Alcohol v. Baseline Combined -0.015 0.221 0.705 on 2012 All Participants Alcohol v. Baseline Combined -0.015 0.221 0.705 on 2012 All Participants Alcohol v. Baseline ENE									
nakes 1992All ParticipantsAlcohol v. BaselineSDLP0.5440.0130.2200.769naeksr 2000All ParticipantsAlcohol v. BaselineCombined0.610.0220.643ers 2017 Study 2Control GroupAlcohol v. BaselineCombined0.610.0120.23890.813ers 2017 Study 2DUI GroupAlcohol v. BaselineCombined0.4090.0100.110.666ers 2017 Study 2DUI GroupAlcohol v. BaselineRMS Lane Position0.2080.0130.6550.566en 2008All ParticipantsAlcohol v. BaselineRMS Lane Position0.2090.014-0.0550.167p 2007All ParticipantsAlcohol v. BaselineCombined0.6620.0130.4360.887on 1997All ParticipantsAlcohol v. BaselineCombined0.0360.0110.1310.541on 2002All ParticipantsAlcohol v. BaselineCombined0.0620.0130.2210.705r 2014OlderLow-High Alc v. BaselineCombined0.4630.0150.2210.705r 2014OlderLow-High Alc v. BaselineIPSD0.330.121-1.0150.349p 2017All ParticipantsMichligh Alc v. BaselineIPSD0.1930.0080.2110.344p 2014DUI GroupAlcohol v. BaselineCombined0.4570.0090.4560.459p 2012All ParticipantsAlcohol v. BaselineDLP (cod T									
nakers 2000 All Participants Alcohol v. Baseline Combined 0.434 0.011 0.226 0.643 ers 2017 Study 2 DCI Group Alcohol v. Baseline Combined 0.409 0.010 0.213 0.666 en 2008 All Participants Alcohol v. Baseline RMS Lane Position 0.280 0.013 0.055 0.506 en 2010 All Participants Alcohol v. Baseline Cambined 0.409 0.010 0.213 0.666 p 2007 All Participants Alcohol v. Baseline Cambined 0.409 0.010 0.013 0.555 0.506 en 2010 All Participants Alcohol v. Baseline Cambined 0.409 0.011 0.305 0.507 p 2007 All Participants Alcohol v. Baseline SDLP 0.662 0.013 0.436 0.887 on 1997 All Participants Alcohol v. Baseline Cambined 0.011 0.026 0.013 0.436 0.887 on 2002 All Participants Alcohol v. Baseline Cambined 0.010 0.011 0.131 0.541 on 2002 All Participants Alcohol v. Baseline Cambined 0.0463 0.015 0.221 0.705 er 2014 Older Low-High Alc v. Baseline END 0.329 0.121 - 0.015 0.349 r 2014 Older Low-High Alc v. Baseline LFSD 0.329 0.121 - 0.553 1.010 ef Sluiszen 2016 All Participants Mid-High Alc v. Baseline LFSD 0.329 0.121 - 0.553 1.010 ef Sluiszen 2016 All Participants Alcohol v. Baseline Cambined 0.458 0.008 0.729 0.637 p 2014 All Participants Mid-High Alc v. Baseline END 0.139 0.088 0.021 0.364 p 2014 DLI Group Alcohol v. Baseline SDLP 0.675 0.009 0.486 0.264 p 4 Sluiszen 2014 DLI Group Alcohol v. Baseline SDLP 0.6175 0.009 0.486 0.271 0.374 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.518 0.018 0.028 0.459 p 2014 DLI Group Alcohol v. Baseline SDLP 0.437 0.007 0.283 0.611 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.073 0.355 p 4 Sluiszen 2012 All Participants Alcohol v. Baseline SDLP 0.234 0.007 0.073 0.355 p 4 Sluiszen 2012 All Participants Alcohol v. Ba									
errs 2017 Study 2 Control Group Alcohol v. Baseline Combined 0.601 0.012 0.289 0.813 errs 2017 Study 2 DII Group Alcohol v. Baseline Combined 0.499 0.010 0.213 0.666 en 2010 All Participants Alcohol v. Baseline RMS Lane Position 0.280 0.014 0.305 0.566 en 2010 All Participants Alcohol v. Baseline Cane Var. (15.5 hours) 0.248 0.007 0.078 0.417 macher 2011 (2017) All Participants Alcohol v. Baseline SDLP Ombined 0.358 0.011 0.131 0.541 on 1997 All Participants Alcohol v. Baseline Combined 0.366 0.011 0.131 0.541 on 2002 All Participants Alcohol v. Baseline Combined 0.466 0.010 0.221 0.022 on 2012 All Participants Alcohol v. Baseline END Output Developed Develo									
erix 2017 Study 2 DUI Group Alcohol v. Baseline Combined 0.409 0.010 0.213 0.606 en 2008 All Participants Alcohol v. Baseline RMS Lane Position 0.280 0.013 0.055 0.506 en 2010 All Participants Alcohol v. Baseline SDLP 0.628 0.007 0.078 0.417 p 2007 All Participants Alcohol v. Baseline SDLP 0.662 0.013 0.456 0.887 on 1997 All Participants Alcohol v. Baseline Combined 0.001 0.011 0.131 0.541 on 2002 All Participants Alcohol v. Baseline Combined 0.001 0.015 0.212 0.705 on 2002 All Participants Alcohol v. Baseline Combined 0.015 0.212 0.705 on 2002 All Participants Alcohol v. Baseline Combined 0.015 0.212 0.705 on 2002 All Participants Alcohol v. Baseline Combined 0.028 0.015 0.212 0.705 on 2002 All Participants Alcohol v. Baseline Combined 0.029 0.121 0.705 on 2002 All Participants Alcohol v. Baseline Combined 0.329 0.121 0.705 on 2012 All Participants Alcohol v. Baseline Combined 0.329 0.121 0.705 of 2014 Vounger LowHigh Alc v. Baseline LFSD 0.339 0.122 0.735 1.010 der Sluisen 2016 All Participants Alcohol v. Baseline SDLP 0.313 0.068 0.279 0.637 Dyke 2014 DUI Group Alcohol v. Baseline SDLP 0.314 0.0468 0.084 Dyke 2014 All Participants Alcohol v. Baseline SDLP 0.314 0.018 0.218 0.364 Dyke 2014 DUI Group Alcohol v. Baseline SDLP 0.314 0.009 0.312 0.680 necren 1998 All Participants Alcohol v. Baseline SDLP 0.4147 0.007 0.33 0.512 Dif 2017 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.73 0.395 DLP (aod Tracking) 0.519 0.011 0.313 0.726 der 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.447 0.0070 0.233 0.611 Dif 2012 2.411 Participants Alcohol v. Baseline SDLP 0.458 0.008 0.417 0.357 Dif 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.0070 0.335 Dif 2017 All Participants Alcohol v. Baseline SDLP 0.447 0.0070 0.335 Dif 2017 All Participants Alcohol v. Baseline SDLP 0.454 0.007 0.458 Dif 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.454 0.007 0.355 Dif 2017 All Participants Alcohol v. Baseline SDLP 0.454 0.007 0.458 Dif 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.454									
en 2006 All Participants Alcohol v. Baseline RMS Lane Position 0.280 0.013 0.055 0.506 en 2010 All Participants Alcohol v. Baseline RMS Lane Position 0.069 0.014 0.305 0.167 and Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.248 0.007 0.078 0.417 macher 2011 (2017) All Participants Alcohol v. Baseline SDLP 0.662 0.013 0.436 0.887 and 1997 All Participants Alcohol v. Baseline Combined 0.336 0.011 0.131 0.541 0.541 0.221 0.0705 0.122 and 1997 All Participants Alcohol v. Baseline Combined 0.466 0.010 0.221 0.705 0.221 0.705 7.2014 Older Low-High Alc v. Baseline LFSD 0.329 0.121 -1.015 0.349 0.221 0.705 0.349 0.221 0.455 0.122 0.907 0.418 0.008 0.221 0.353 0.010 0.486 0.887 0.419 0.428 0.007 0.486 0.864 0.458 0.008 0.221 0.353 0.101 0.458 0.021 0.346 0.887 0.458 0.008 0.291 0.333 0.121 -1.015 0.349 0.458 0.008 0.291 0.353 0.010 0.458 0.008 0.291 0.354 0.459									
en 2010 All Participants Alcohol v. Baseline RMS Lane Position -0.669 0.014 -0.305 0.167 p2007 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.28 0.013 0.045 0.887 macher 2011 (2017) All Participants Alcohol v. Baseline Combined 0.0662 0.013 0.456 0.887 on 1997 All Participants Alcohol v. Baseline Combined 0.0071 0.010 -0.255 0.122 on 2002 All Participants Alcohol v. Baseline Combined 0.0463 0.015 0.211 0.705 r 2014 Ofder LowHigh Alc v. Baseline ENSD 0.329 0.121 0.705 r 2014 Ofder LowHigh Alc v. Baseline ENSD 0.329 0.121 0.705 r 2014 All Participants Alcohol v. Baseline Combined 0.329 0.121 0.705 r 2014 Older LowHigh Alc v. Baseline ENSD 0.339 0.121 0.705 r 2014 Older LowHigh Alc v. Baseline ENSD 0.329 0.121 0.755 r 2014 Older LowHigh Alc v. Baseline ENSD 0.475 r 2014 Older LowHigh Alc v. Baseline SDLP 0.475 r 2014 Older LowHigh Alc v. Baseline SDLP 0.475 r 2014 DII Group Alcohol v. Baseline SDLP 0.313 0.048 0.029 0.467 r 2014 DII Group Alcohol v. Baseline SDLP 0.313 0.048 0.021 0.349 r 2014 DII Group Alcohol v. Baseline SDLP 0.314 0.008 0.279 0.637 r 2014 DII Group Alcohol v. Baseline SDLP 0.313 0.048 0.028 0.459 r 2012 All Participants Alcohol v. Baseline SDLP 0.314 0.008 0.218 0.349 r 2014 DII Group Alcohol v. Baseline SDLP 0.314 0.007 0.328 0.611 r 2015 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.328 0.611 r 2012 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.033 0.395 r 2017 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.328 0.611 r 2002 All Participants Alcohol v. Baseline SDLP 0.468 0.008 0.412 0.459 r 2012 All Participants Alcohol v. Baseline SDLP 0.468 0.008 0.417 0.458 r 2012 All Participants Alcohol v. Baseline SDLP 0.468 0.009 0.412 0.458 r 2012 PAR 0.017 0.478 r 2014 0.007 0.335 r 2017 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.073 0.355 r 2007 (Part 1) All Participants Alcohol v. Baseline SDLP 0.458 0.008 0.411 0.458 r 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.458 0.009 0.412 0.458 r 2002 (Part 1) All Participants Alcohol v.									
p 2007 All Participants Alcohol v. Baseline Lane Var. (15.5 hours) 0.248 0.007 0.078 0.417 macher 2011 (2017) All Participants Alcohol v. Baseline Combined 0.336 0.011 0.131 0.541 on 1907 All Participants Alcohol v. Baseline Combined 0.466 0.015 0.221 0.705 r 2014 Older Low-High Alc v. Baseline LPSD 0.329 0.121 -1.015 0.349 r 2014 Yunger Low-High Alc v. Baseline LPSD 0.329 0.121 -0.533 1.010 der Sluisce 2012 All Participants Mid-High Alc v. Baseline LPSD 0.329 0.121 -0.533 r 2014 Older Low-High Alc v. Baseline Combined 0.466 0.0015 0.221 0.534 r 2014 Yunger Low-High Alc v. Baseline LPSD 0.329 0.121 -0.533 r 2014 Older Control Group Alcohol v. Baseline SDLP 0.675 0.009 0.486 0.864 Dyke 2014 DII Group Alcohol v. Baseline SDLP 0.519 0.018 0.028 0.459 Dyke 2014 DII Group Alcohol v. Baseline SDLP 0.519 0.019 0.088 0.459 bara 2012 Study 2 All Participants Alcohol v. Baseline SDLP 0.458 0.009 0.212 0.544 Harricipants Alcohol v. Baseline SDLP 0.458 0.009 0.121 0.364 Harricipants Alcohol v. Baseline SDLP 0.458 0.009 0.121 0.657 harr 2012 Study 2 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.459 bara 2012 Study 2 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 meeren 1998 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.733 0.395 ter 2002 (PAI 1) All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.738 0.459 ter 2002 (PAI 1) All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.733 0.395 ter 2002 (PAI 1) All Participants Alcohol v. Baseline SDLP 0.458 0.009 0.112 0.458 ter 2002 All Participants Alcohol v. Baseline SDLP 0.458 0.009 0.128 0.681 ter 2005 All Participants Alcohol v. Baseline SDLP 0.454 0.007 0.073 0.535 ter 2005 All Participants Alcohol v. Baseline SDLP 0.366 0.009 0.182 0.548 ter 2005 All Participants Alcohol v. Baseline SDLP 0.364 0.007 0.073 0.54 ter 2005 Study 2 All Participants Alcohol v. Baseline SDLP 0.364 0.007 0.073 0.54 ter 2005 Study 2 All Participants Alcohol v. Baseline SDLP 0.364 0.007 0.073 0.54 ter 2005 All Participants A									
imacher 2011 (2017)All ParticipantsAlcohol v. BaselineSDLP0.6620.0130.4360.887on 1997All ParticipantsAlcohol v. BaselineCombined0.3360.0110.1310.541on 2002All ParticipantsAlcohol v. BaselineCombined0.4630.0100.2650.122on 2012All ParticipantsAlcohol v. BaselineCombined0.4630.0110.2110.705r 2014OlderLow+High Ale v. BaselineLPSD0.3330.121-1.0150.349r 2014All ParticipantsMid+High Ale v. BaselineCBD0.3290.121-0.0531.010der Sluiscen 2016All ParticipantsAlcohol v. BaselineLPSD0.6750.0090.4860.844Dyke 2014Control GroupAlcohol v. BaselineLPSD0.4330.0040.2120.364Dyke 2014DUI GroupAlcohol v. BaselineLPSD0.1930.0080.2110.364Dyke 2015All ParticipantsAlcohol v. BaselineSDLP0.3130.0040.2880.459Jatra 2012 Study 1All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Jatra 2012 Study 2All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Jatra 2012 Study 1All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Jatra 2012									
on 1997 All Participants Combined Combined 0.336 0.011 0.131 0.541 on 2002 All Participants Alcohol v. Baseline Combined -0.01 0.010 -0.265 0.122 on 2012 All Participants Alcohol v. Baseline Combined 0.463 0.015 0.221 0.705 r 2014 Older Low+High Alc v. Baseline LFSD 0.333 0.121 -1.015 0.349 key 2014 All Participants Mid+High Alc v. Baseline Combined 0.342 0.083 -0.222 0.907 der Sluiszen 2016 All Participants Mid+High Alc v. Baseline Combined 0.458 0.008 0.799 0.637 Dyke 2014 DUT Group Alcohol v. Baseline LFSD 0.334 0.004 0.208 0.459 Dyke 2014 DUT Group Alcohol v. Baseline SDLP 0.637 0.031 0.726 0.344 Dyke 2014 DUT corop Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.313 0.726 Istra 2012 Study 2 All Participants Alcoh			Alcohol v. Baseline	Lane Var. (15.5 hours)	0.248			0.417	
on 1997All ParticipantsCombinedCombined0.3360.0110.1310.541on 2002All ParticipantsAlcohol v. BaselineCombined-0.070.0100.0250.122ons 2012All ParticipantsAlcohol v. BaselineCombined-0.3330.0150.2210.705r 2014OlderLow+High Ale v. BaselineLPSD0.3390.121-0.3531.010x 2014YongerLow+High Ale v. BaselineLPSD0.3290.121-0.3531.010key 2014All ParticipantsMid-High Ale v. BaselineCombined0.3420.083-0.2220.907byke 2014Control GroupAlcohol v. BaselineDLP0.6750.0090.4860.864Dyke 2014DIT GroupAlcohol v. BaselineLPSD0.1390.0080.0210.364Dyke 2014All ParticipantsAlcohol v. BaselineSDLP0.0310.0040.2860.459Dyke 2014All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5180.0110.3130.726Jara 2012 Sudy 2All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Jara 2012 Sudy 2All ParticipantsAlcohol v. BaselineSDLP0.3470.0070.2830.611necern 2002 All ParticipantsAlcohol v. BaselineSDLP0.3470.0070.2830.611necern 2002 All ParticipantsAlcohol v. BaselineSDLP <td>umacher 2011 (2017)</td> <td>All Participants</td> <td>Alcohol v. Baseline</td> <td>SDLP</td> <td>0.662</td> <td>0.013</td> <td>0.436</td> <td>0.887</td> <td></td>	umacher 2011 (2017)	All Participants	Alcohol v. Baseline	SDLP	0.662	0.013	0.436	0.887	
on 2002 All Participants Alcohol v. Baseline Combined -0.071 0.010 -0.265 0.122 on 2012 All Participants Alcohol v. Baseline Combined -0.63 0.010 -0.255 0.122 r 2014 Older Low-Higb Alc v. Baseline LPSD -3.33 0.121 -1.015 0.349 r 2014 Younger Low-Higb Alc v. Baseline LPSD 0.329 0.212 -0.353 1.010 key 2014 All Participants Michfigh Alc v. Baseline LPSD 0.342 0.083 -0.222 0.907 byke 2014 Contol Group Alcohol v. Baseline LPSD 0.458 0.008 0.219 0.637 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.458 0.008 0.219 0.459 Dyke 2014 DUI Group Alcohol v. Baseline SDLP Road Tracking 0.518 0.010 0.384 0.046 Stra 2012 Study 1 All Participants Alcohol v. Baseline SDLP Road Tracking 0.518 0.010 0.313 0.726 Stra 2012 Study 2 All Participants <td< td=""><td></td><td></td><td>Combined</td><td>Combined</td><td>0.336</td><td>0.011</td><td>0.131</td><td>0.541</td><td> 🖶 </td></td<>			Combined	Combined	0.336	0.011	0.131	0.541	🖶
one 2012All ParticipantsAlcohol v. BaselineCombined0.4630.0150.2110.705r 2014OlderLow+High Ale v. BaselineLPSD0.3320.121-1.0150.349r 2014YongerLow+High Ale v. BaselineLPSD0.3290.121-0.5331.010key 2014All ParticipantsMid+High Ale v. BaselineCombined0.3420.083-0.2220.907key 2014Control GroupAlcohol v. BaselineDLP0.6750.0090.4860.864Dyke 2014DUI GroupAlcohol v. BaselineLPSD0.1390.0080.2710.364Dyke 2014DUI GroupAlcohol v. BaselineSDLP0.0310.0040.0280.459Dyke 2014All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Bara 2012 Study 2All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Bara 2012 Study 2All ParticipantsAlcohol v. BaselineSDLP0.4470.0070.2830.611enceren 1998All ParticipantsAlcohol v. BaselineSDLP0.3460.0080.4710.384enceren 2002bAll ParticipantsAlcohol v. BaselineSDLP0.340.0070.2830.611enceren 2002hAll ParticipantsAlcohol v. BaselineSDLP0.3460.0070.3840.611ic 2002 (Part)All ParticipantsAlcohol v			Alcohol v. Baseline	Combined	-0.071	0.010	-0.265	0.122	
r 2014 Older Low-High Alc v. Baseline LRSD -0.333 0.121 -1.015 0.349 Variable Level Level High Alc v. Baseline LRSD 0.329 0.121 -0.533 1.010 -0.354 1.010 -0.353 1.010 -0.353 1.010 -0.354 1.010 -0.353 1.010 -0.353 1.010 -0.354									I I T a I
r 2014 Younger Low-High Alc v. Baseline LPSD 0.329 0.121 -0.333 1.010 key 2014 All Participants Mid-High Alc v. Baseline SDLP 0.675 0.009 0.486 0.864 Dyke 2014 Control Group Alcohol v. Baseline SDLP 0.675 0.009 0.486 0.864 Dyke 2014 DCutrol Group Alcohol v. Baseline LPSD 0.458 0.008 0.272 0.657 Dyke 2014 DUT (Group Alcohol v. Baseline LPSD 0.458 0.004 0.284 0.459 Dyke 2014 All Participants Alcohol v. Baseline SDLP (Aod Tracking) 0.282 0.272 0.364 Dyke 2014 All Participants Alcohol v. Baseline Combined 0.519 0.011 0.313 0.726 Istra 2012 Study 2 All Participants Alcohol v. Baseline Combined 0.496 0.009 0.322 0.680 necren 2002 All Participants Alcohol v. Baseline SDLP (Aod Tracking) 0.624 0.007 0.283 0.611 stra 2012 Study 2 All Participants									
key 2014 All Participants Mid-High Alc v. Baseline Combined 0.342 0.083 -0.222 0.907 der Sluiszen 2016 All Participants Alcohol v. Baseline SDLP 0.675 0.009 0.486 0.864 Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.485 0.008 0.021 0.364 Dyke 2014 DUl Group Alcohol v. Baseline SDLP 0.193 0.008 0.021 0.364 Dyke 2015 All Participants Combined SDLP (Road Tracking) 0.518 0.009 0.537 Star 2012 Study 1 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.010 0.313 0.726 meerer 10202 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.333 0.611 meerer 2002 All Participants Alcohol v. Baseline SDLP 0.477 0.007 0.355 0.611 ter 2002 (Part 1 All Participants Alcohol v. Baseline SDLP 0.366									
der Stüssen 2016 All Participants Alcohol v. Baseline SDLP 0.675 0.009 0.486 0.864 Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.458 0.009 0.486 0.864 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.458 0.008 0.279 0.637 Dyke 2014 DUI Group Alcohol v. Baseline LPSD 0.334 0.004 0.208 0.459 Dyke 2015 All Participants Alcohol v. Baseline SDLP (Road Tracking) 62.82 52.78 72.875 Stara 2012 Study 1 All Participants Alcohol v. Baseline Combined 0.519 0.011 0.313 0.726 neeren 1998 All Participants Alcohol v. Baseline Combined 0.496 0.000 0.322 0.680 neeren 2002h All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.233 0.611 neeren 2002h All Participants Alcohol v. Baseline SDLP 0.667 0.012 0.452 0.882 12 017 All Participants Alcohol v. Base									
Dyke 2014 Control Group Alcohol v. Baseline LPSD 0.458 0.008 0.279 0.637 Dyke 2014 DIG Group Alcohol v. Baseline LPSD 0.458 0.008 0.271 0.364 Dyke 2015 All Participants Alcohol v. Baseline SDLP 0.034 0.004 0.208 0.459 Bara 2012 Study 1 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.313 0.726 Bara 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.313 0.726 Bereern 2002 All Participants Alcohol v. Baseline SDLP 0.474 0.007 0.283 0.611 Bereern 2002 All Participants Alcohol v. Baseline SDLP 0.474 0.007 0.395 0.461 12 017 All Participants Alcohol v. Baseline SDLP 0.454 0.007 0.395 0.451 12 017 All Participants Alcohol v. Baseline SDLP 0.366 0.009 0.412 0.852 0.852 0.852									
Dyke 2014DIU GroupAlcohol v. BaselineLPSD0.1930.0080.0210.364Dyke 2015All ParticipantsAlcohol v. BaselineSDLP0.3340.0040.2080.459Bara 2012 Study 1All ParticipantsCombinedSDLP (Road Tracking)62.82826.27872.875Bara 2012 Study 2All ParticipantsAlcohol v. BaselineSDLP (Road Tracking)0.5190.0110.3130.726Bara 2012 Study 2All ParticipantsAlcohol v. BaselineCombined0.4960.0090.3120.680encern 1998All ParticipantsAlcohol v. BaselineSDLP0.4470.0070.2330.611encern 2002AAll ParticipantsAlcohol v. BaselineSDLP0.4470.0070.4320.614encern 2002AAll ParticipantsAlcohol v. BaselineSDLP0.2340.0070.0730.395ter 2002 (Part 1)All ParticipantsAlcohol v. BaselineSDLP0.6490.0080.4110.82712 017All ParticipantsAlcohol v. BaselineSDLP0.3660.0080.4110.82712 017All ParticipantsAlcohol v. BaselineSDLP0.3660.0010.7820.548fer 2008 Study 2All ParticipantsAlcohol v. BaselineSDLP0.3660.0010.7820.548fer 2012All ParticipantsAlcohol v. BaselineCombined0.6130.0110.4600.82012 007All ParticipantsAl									
Dyke 2015 All Participants Alcohol v. Baseline SDLP 0.334 0.004 0.208 0.459 bira 2012 Study 1 All Participants Combined SDLP (Road Tracking) 6.28 26.278 72.875 bira 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.313 0.726 bira 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.496 0.009 0.312 0.680 eceren 1998 All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 enceren 2002h All Participants Alcohol v. Baseline SDLP 0.437 0.037 0.395 z 2002 (Part) All Participants Alcohol v. Baseline SDLP 0.667 0.012 0.452 0.882 z 2002 (Part) All Participants Alcohol v. Baseline SDLP 0.366 0.009 0.112 0.852 z 2017 All Participants Alcohol v. Baseline SDLP 0.366 0.001									
stra 2012 Study 1 All Participants Combined SDLP (Road Tracking) 62.828 26.278 52.781 72.875 stra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.313 0.726 necren 1998 All Participants Alcohol v. Baseline Combined 0.496 0.007 0.282 0.680 necren 2002a All Participants Alcohol v. Baseline Combined 0.667 0.012 0.452 0.680 ereren 2002 All Participants Alcohol v. Baseline Combined 0.667 0.012 0.452 0.482 atr 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.649 0.007 0.073 0.395 12 017 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 fer 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.366 0.011 0.827 fer 2012 All Participants Alcohol v. Baseline SDLP 0.366 0.019 0.633 0.548 fer 2012 All Participants Alcohol v. Baseline									
stra 2012 Study 2 All Participants Alcohol v. Baseline SDLP (Road Tracking) 0.519 0.011 0.313 0.726 neeren 1998 All Participants Alcohol v. Baseline Combined 0.496 0.009 0.312 0.680 neeren 2002h All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 neeren 2002h All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 neeren 2002h All Participants Alcohol v. Baseline SDLP 0.247 0.073 0.395 12 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.008 0.471 0.827 12 2017 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 16r 2008 Study 2 All Participants Combined SDLP 0.366 0.021 0.797 0.653 16r 2012 All Participants Combined SDLP 0.366 0.021 0.797 0.653 16r 2012 All Participants Alcohol v. Baseline									■
mecren 1998 All Participants Alcohol v. Baseline Combined 0.496 0.009 0.12 0.680 mecren 2002 All Participants Alcohol v. Baseline SDLP 0.47 0.007 0.283 0.611 mecren 2002 All Participants Alcohol v. Baseline SDLP 0.47 0.007 0.283 0.611 ace 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.434 0.007 0.035 12017 All Participants Alcohol v. Baseline SDLP 0.649 0.008 0.471 0.827 12017 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 16r 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.366 0.0021 0.773 0.548 16r 2008 Study 2 All Participants Alcohol v. Baseline SDLP 0.366 0.021 0.790 0.653 16r 2012 All Participants Alcohol v. Baseline SDLP 0.366 0.021 0.790 0.653 16r 2008 Study 2 All Participants Alcohol v. Baseline SDLP 0.366 0.021 0.790 0.653 16r 2008 Study 2 All Participants Alcohol v.									
necero 2002a All Participants Alcohol v. Baseline SDLP 0.447 0.007 0.283 0.611 necero 2002b All Participants Alcohol v. Baseline Combined 0.667 0.012 0.452 0.882 re 2002 (Purt 1) All Participants Alcohol v. Baseline SDLP 0.234 0.007 0.733 0.395 2017 All Participants Alcohol v. Baseline SDLP 0.234 0.007 0.733 0.395 12 017 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.412 0.548 fer 2008 Study 2 All Participants Combined SDLP 0.366 0.021 0.797 0.633 fer 2005 Study 2 All Participants Combined 0.613 0.011 0.466 0.820 ler 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 g 2014 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.0									
necren 2002h All Participants Alcohol v. Baseline Combined 0.667 0.012 0.452 0.882 at 2002 (Participants Alcohol v. Baseline SDLP 0.24 0.007 0.395 12017 All Participants Alcohol v. Baseline SDLP 0.649 0.008 0.471 0.827 1cr 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 ifer 2008 Study 2 All Participants Combined SDLP 0.366 0.021 0.079 0.633 ifer 2003 Charles SDLP 0.366 0.021 0.079 0.653 0.011 0.406 0.820 ifer 2003 Charles Combined SDLP 0.366 0.021 0.079 0.653 0.011 0.406 0.820 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821 0.821	neeren 1998	All Participants	Alcohol v. Baseline		0.496	0.009	0.312	0.680	
mecren 2002h All Participants Alcohol v. Baseline Combined 0.667 0.012 0.452 0.882 are 2002 (Part) All Participants Alcohol v. Baseline SDLP 0.234 0.007 0.035 0.395 12017 All Participants Alcohol v. Baseline SDLP 0.364 0.007 0.035 0.892 ref 2008 (Part) All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.471 0.827 fref 2008 (Study 2) All Participants Alcohol v. Baseline SDLP 0.366 0.021 0.799 0.653 fref 2012 All Participants Alcohol v. Baseline Combined 0.613 0.011 0.406 0.820 fref 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 g 2014 All Participants Combined 0.229 0.009 0.464 0.412	neeren 2002a	All Participants	Alcohol v. Baseline	SDLP	0.447	0.007	0.283	0.611	
acr 2002 (Part 1) All Participants Alcohol v. Baseline SDLP 0.234 0.007 0.073 0.395 1 2017 All Participants Alcohol v. Baseline SDLP 0.649 0.008 0.471 0.827 1 2017 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 1 6r 2008 Study 1 All Participants Combined SDLP 0.366 0.021 0.079 0.653 1 6r 2008 Study 2 All Participants Combined 0.613 0.011 0.406 0.820 1 6r 2002 All Participants Alcohol v. Baseline Combined 0.613 0.011 0.406 0.820 1 6r 2012 All Participants Alcohol v. Baseline Combined 0.82 0.046 0.820 1 er 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 ng 2014 All Participants Combined SD Lane Position 0.229 0.009 0.046 0.412									-
12 017 All Participants Alcohol v. Baseline SDLP 0.649 0.008 0.471 0.827 167 2008 Study 2 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 16r 2008 Study 2 All Participants Combined SDLP 0.366 0.021 0.079 0.653 16r 2008 Study 2 All Participants Alcohol v. Baseline Combined 0.613 0.011 0.406 0.820 16r 2001 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 ng 2014 All Participants Combined 0.229 0.009 0.464 0.412 0.428 0.010 0.533 0.502 0.548 0.548 0.548									
Ider 2008 Study 1 All Participants Alcohol v. Baseline SDLP 0.365 0.009 0.182 0.548 Gre 2008 Study 2 All Participants Combined SDLP 0.366 0.021 0.079 0.653 Gre 2012 All Participants Combined 0.613 0.011 0.406 0.820 Ier 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 ag 2014 All Participants Combined SD Lane Position 0.229 0.009 0.046 0.412 - - - - - - - -									
der 2008 Study 2 All Participants Combined SDLP 0.366 0.021 0.079 0.653 her 2012 All Participants Alcohol v. Baseline Combined 0.613 0.011 0.406 0.820 ler 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 ng 2014 All Participants Combined SD Lane Position 0.229 0.009 0.046 0.412 0.428 0.001 0.533 0.502 0.542 0.542 0.552 0.542 0.552 0.542 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.542 0.552 0.552 0.552									
Ifer 2012 All Participants Alcohol v. Baseline Combined 0.613 0.011 0.406 0.820 ler 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 ng 2014 All Participants Combined 0.299 0.009 0.046 0.412 0.428 0.001 0.353 0.502 . .									
Ier 2000 All Participants Alcohol v. Baseline Combined 1.822 0.013 1.598 2.047 ng 2014 All Participants Combined SD Lane Position 0.229 0.009 0.046 0.412 0.428 0.001 0.553 0.502 0.502 0.001 0.553 0.502									
ng 2014 All Participants Combined SD Lane Position 0.229 0.009 0.046 0.412 0.428 0.001 0.353 0.502									
0.428 0.001 0.353 0.502									
	ng 2014	All Participants	Combined	SD Lane Position					
-4.00 -2.00 0.00 2.00 /					0.428	0.001	0.353	0.502	1 1 1 🕴 1
									-4.00 -2.00 0.00 2.00 4

Alcohol v. Baseline: Lateral Position Variability

Figure C44. Forest plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9). Includes Study 1 from Veldstra et al. (2012).

tudy name	Subgroup within study	Comparison	Outcome		Statistics for	each study		I	ledges's g and 95% (r
			1	Hedges's	Variance	Lower limit	Upper limit			
nedt 2001	All Participants	Combined	Tracking Variability	0.503	0.130	-0.202	1.209	1 1	+	I I
rthelon 2014	All Participants	Combined	Combined	0.317	0.124	-0.372	1.007		- -	
rthelon 2018	All Participants	Combined	SDLP	0.607	0.076	0.066	1.148			
arlton 2015	All Participants	Low + High Alc v. Baseline	Combined	0.277	0.102	-0.350	0.904		- + •	
ristoforou 2012	All Participants	Alcohol v. Baseline	Variation in Within-Lane Pos.	0.563	0.046	0.142	0.983			
lmore 2008	All Participants	Alcohol v. Baseline	Combined	0.667	0.164	-0.127	1.462			
ydier 2014	All Participants	Combined	SDLP (Single Task)	0.306	0.063	-0.186	0.798		+	
rrison 2005	Alcohol Group	Alcohol v. Baseline	Within-Lane Deviation	2.539	0.249	1.561	3.516			
rrison 2007	Control Group	Alcohol v. Baseline	Within Lane Deviation	0.778	0.228	-0.157	1.713			
rrison 2011	All Participants	Alcohol v. Baseline	SDLP	0.774	0.198	-0.099	1.647			
rtman 2015	All Participants	Alcohol v. Baseline	SDLP	0.180	0.103	-0.450	0.810			
lland 2016	All Participants	Combined	Combined	0.392	0.031	0.050	0.735		-	
rne 1991	Early Afternoon	Alcohol v. Baseline	Lat. Pos. Var.	0.166	0.147	-0.584	0.917		- -	
rne 1991	Early Evening	Alcohol v. Baseline	Lat. Pos. Var.	0.715	0.187	-0.132	1.563			
ward 2007 wland 2010	All Participants	Combined Alcohol v. Baseline	Lane Pos. Variation	0.444 0.487	0.132	-0.268 0.006	1.156			
	All Participants		SD Lane Pos. Dev.		0.060		0.968			
emer 2010 y 2013	All Participants All Participants	Alcohol v. Baseline Alcohol v. Baseline	Combined Combined	0.537 0.573	0.110 0.120	-0.112 -0.106	1.186 1.252			1
y 2013 nntner-Mabiala 2015	All Participants All Participants	Combined	Combined	0.573	0.120	-0.106	1.252			1
nntner-Mabiala 2015 ypers 2006	All Participants All Participants	Alcohol v. Baseline	SDLP	0.457	0.090	-0.130	1.044			1
ude 2015	All Participants	Alcohol v. Baseline	SDLP	0.725	0.131	0.017	1.434			1
ude 2015 ude 2016	All Participants	Alcohol v. Baseline	SDLP	0.522	0.004	0.020	1.019			1
ude 2016 ude 2016 Study 3	Control Drivers	Alcohol v. Baseline	SDLP	0.588	0.057	-0.122	1.517		↓	1
e 2010 Study 5	All Participants	Combined	Combined	0.879	0.185	0.024	0.572			1
nne 1999	All Participants	Alcohol v. Baseline	Combined	0.298	0.020	-0.308	0.372			
nne 2003	All Participants	Alcohol v. Baseline	SDLP	0.807	0.119	0.131	1.484			
uwerens 1987	All Participants	Combined	SDLP	0.836	0.117	0.165	1.507			
rczinski 2008	Binge Group	Alcohol v. Baseline	Within Lane Dev.	0.640	0.095	0.036	1.244			
rczinski 2008	Nonbinge Group	Alcohol v. Baseline	Within Lane Dev.	0.954	0.169	0.147	1.761		_ -	
rczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.907	0.147	0.155	1.658			
urczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.314	0.187	-0.533	1.161		_ _ +	
Cartney 2017	All Participants	Alcohol v. Baseline	Combined	0.312	0.061	-0.171	0.794		4	
ets 2011	All Participants	Combined	SDLP	0.678	0.090	0.088	1.267		_ -	
maekers 1992	All Participants	Alcohol v. Baseline	SDLP	0.553	0.132	-0.158	1.264		+	
maekers 2000	All Participants	Alcohol v. Baseline	Combined	0.486	0.115	-0.179	1.152		↓ ⊷	
berts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.682	0.119	0.005	1.359			
berts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.494	0.105	-0.140	1.128		+	1
nen 2008	All Participants	Alcohol v. Baseline	RMS Lane Position	0.280	0.132	-0.432	0.993		- + •	1
nen 2010	All Participants	Alcohol v. Baseline	RMS Lane Position	-0.095	0.145	-0.841	0.651			1
pp 2007	All Participants	Alcohol v. Baseline	Lane Var. (15.5 hours)	0.295	0.076	-0.244	0.834		+ - -	1
numacher 2011 (2017)	All Participants	Alcohol v. Baseline	SDLP	0.716	0.137	-0.009	1.441		⊢	1
ton 1997	All Participants	Combined	Combined	0.427	0.115	-0.238	1.091		+	1
ton 2002	All Participants	Alcohol v. Baseline	Combined	-0.074	0.097	-0.685	0.537		-	1
nons 2012	All Participants	Alcohol v. Baseline	Combined	0.788	0.183	-0.049	1.626			1
ar 2014	Older	Low+High Alc v. Baseline	LPSD	-0.333	0.121	-1.015	0.349		-++	1
ar 2014	Younger	Low+High Alc v. Baseline	LPSD	0.329	0.121	-0.353	1.010		+	1
rkey 2014	All Participants	Mid+High Alc v. Baseline	Combined	0.342	0.083	-0.222	0.907		+	1
der Sluiszen 2016	All Participants	Alcohol v. Baseline	SDLP	0.763	0.098	0.148	1.377			1
n Dyke 2014	Control Group	Alcohol v. Baseline	LPSD	0.485	0.084	-0.085	1.054		⊢ •−	1
n Dyke 2014	DUI Group	Alcohol v. Baseline	LPSD	0.199	0.077	-0.343	0.742		- t •	1
n Dyke 2015	All Participants	Alcohol v. Baseline	SDLP	0.393	0.042	-0.008	0.794		⊢ ∎-	1
ldstra 2012 Study 2	All Participants	Alcohol v. Baseline	SDLP (Road Tracking)	0.527	0.111	-0.127	1.180		⊢• −	1
rmeeren 1998	All Participants	Alcohol v. Baseline	Combined	0.582	0.092	-0.013	1.177			1
meeren 2002a	All Participants	Alcohol v. Baseline	SDLP	0.491	0.071	-0.032	1.014		⊢ •−	1
meeren 2002b	All Participants	Alcohol v. Baseline	Combined	0.733	0.126	0.037	1.428			1
rster 2002 (Part 1)	All Participants	Alcohol v. Baseline	SDLP	0.234	0.067	-0.274	0.742			1
in 2017	All Participants	Alcohol v. Baseline	SDLP	0.649	0.083	0.086	1.212			1
afer 2008 Study 1	All Participants	Alcohol v. Baseline	SDLP	0.611	0.097	-0.001	1.222		– •–	1
afer 2008 Study 2	All Participants	Combined	SDLP	0.467	0.225	-0.463	1.397		+	1
eafer 2012	All Participants	Alcohol v. Baseline	Combined	0.779	0.124	0.087	1.470			1
eiler 2000	All Participants	Alcohol v. Baseline	Combined	1.851	0.134	1.133	2.568			T
ang 2014	All Participants	Combined	SD Lane Position	0.351	0.092	-0.242	0.945		1 •-	1
				0.486	0.002	0.409	0.564	1 1	1.4	1
								-4.00 -2.0	0 0.00 2	.00 4

Figure C45. Forest plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = zero). Excludes Study 1 from Veldstra et al. (2012).

Alcohol v. Baseline: Lateral Position Variability

tudy name	Subgroup within study	Comparison	Outcome		Statistics for	each study		Hedges's g and 95% CI
			1	Iedges's g	Variance	Lower limit	Upper limit	
medt 2001	All Participants	Combined	Tracking Variability	0.425	0.061	-0.058	0.909	+=-
rthelon 2014	All Participants	Combined	Combined	0.316	0.062	-0.172	0.803	+=-
rthelon 2018	All Participants	Combined	SDLP	0.587	0.038	0.207	0.967	
narlton 2015	All Participants	Low + High Alc v. Baseline	Combined	0.277	0.102	-0.350	0.904	+
ristoforou 2012	All Participants	Alcohol v. Baseline	Variation in Within-Lane Pos.	0.522	0.023	0.227	0.816	=
Imore 2008	All Participants	Alcohol v. Baseline	Combined	0.647	0.081	0.089	1.204	
eydier 2014	All Participants	Combined	SDLP (Single Task)	0.301	0.031	-0.047	0.648	
rrison 2005	Alcohol Group	Alcohol v. Baseline	Within-Lane Deviation	2.539	0.249	1.561	3.516	
rrison 2007	Control Group	Alcohol v. Baseline	Within Lane Deviation	0.720	0.110	0.072	1.369	
rrison 2011	All Participants	Alcohol v. Baseline	SDLP	0.774	0.198	-0.099	1.647	+
rtman 2015	All Participants	Alcohol v. Baseline	SDLP	0.180	0.052	-0.265	0.625	+=-
lland 2016	All Participants	Combined	Combined	0.392	0.031	0.050	0.735	=-
rne 1991	Early Afternoon	Alcohol v. Baseline	Lat. Pos. Var.	0.161	0.073	-0.369	0.692	+-
rne 1991	Early Evening	Alcohol v. Baseline	Lat. Pos. Var.	0.644	0.089	0.058	1.230	
ward 2007	All Participants	Combined	Lane Pos. Variation	0.427	0.065	-0.074	0.927	=-
wland 2010	All Participants	Alcohol v. Baseline	SD Lane Pos. Dev.	0.487	0.060	0.006	0.968	
emer 2010	All Participants	Alcohol v. Baseline	Combined	0.380	0.048	-0.048	0.808	
y 2013	All Participants	Alcohol v. Baseline	Combined	0.563	0.060	0.084	1.042	
nntner-Mabiala 2015	All Participants	Combined	Combined	0.452	0.045	0.037	0.866	
ypers 2006	All Participants	Alcohol v. Baseline	SDLP	0.725	0.065	0.225	1.226	
ude 2015	All Participants	Alcohol v. Baseline	SDLP	0.498	0.032	0.149	0.847	
ude 2016	All Participants	Alcohol v. Baseline	SDLP	0.553	0.028	0.226	0.880	
ude 2016 Study 3	Control Drivers	Alcohol v. Baseline	SDLP	0.638	0.089	0.053	1.223	
e 2010	All Participants	Combined	Combined	0.292	0.010	0.098	0.485	
nne 1999	All Participants	Alcohol v. Baseline	Combined	0.207	0.035	-0.158	0.571	
nne 2003	All Participants	Alcohol v. Baseline	SDLP	0.780	0.059	0.306	1.254	
uwerens 1987	All Participants	Combined	SDLP	0.747	0.054	0.291	1.204	
rczinski 2008	Binge Group	Alcohol v. Baseline	Within Lane Dev.	0.553	0.045	0.135	0.970	
trczinski 2008	Nonbinge Group	Alcohol v. Baseline	Within Lane Dev.	0.851	0.079	0.300	1.401	
rczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.831	0.070	0.313	1.349	
rczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.293	0.092	-0.302	0.888	
Cartney 2017	All Participants	Alcohol v. Baseline	Combined	0.312	0.061	-0.171	0.794	
ts 2011	All Participants	Combined	SDLP	0.665	0.045	0.250	1.079	
maekers 1992	All Participants	Alcohol v. Baseline	SDLP	0.552	0.066	0.049	1.055	
maekers 2000	All Participants	Alcohol v. Baseline	Combined	0.480	0.057	0.010	0.949	
berts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.665	0.059	0.187	1.142	
berts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.482	0.052	0.035	0.928	
nen 2008	All Participants	Alcohol v. Baseline	RMS Lane Position	0.280	0.066	-0.223	0.784]■-
nen 2010	All Participants	Alcohol v. Baseline	RMS Lane Position	-0.091	0.072	-0.618	0.437	
pp 2007	All Participants	Alcohol v. Baseline	Lane Var. (15.5 hours)	0.288	0.038	-0.093	0.669	
numacher 2011 (2017)	All Participants	Alcohol v. Baseline	SDLP	0.709	0.068	0.198	1.221	
ton 1997	All Participants	Combined	Combined	0.412	0.057	-0.056	0.881	
tton 2002	All Participants	Alcohol v. Baseline	Combined	-0.073	0.049	-0.505	0.358	
nons 2012	All Participants	Alcohol v. Baseline	Combined	0.708	0.087	0.130	1.285	
ar 2014	Older	Low+High Alc v. Baseline	LPSD	-0.333	0.121	-1.015	0.349	
ar 2014	Younger	Low+High Alc v. Baseline	LPSD	0.329	0.121	-0.353	1.010	
rkey 2014	All Participants	Mid+High Alc v. Baseline	Combined	0.342	0.083	-0.222	0.907	
der Sluiszen 2016	All Participants	Alcohol v. Baseline	SDLP	0.751	0.049	0.318	1.184	
Dyke 2014	Control Group	Alcohol v. Baseline	LPSD	0.482	0.042	0.079	0.884	
n Dyke 2014	DUI Group	Alcohol v. Baseline	LPSD	0.199	0.038	-0.185	0.582	
n Dyke 2015	All Participants	Alcohol v. Baseline	SDLP	0.385	0.021	0.102	0.668	
dstra 2012 Study 2	All Participants	Alcohol v. Baseline	SDLP (Road Tracking)	0.526	0.056	0.064	0.988	
meeren 1998	All Participants	Alcohol v. Baseline	Combined	0.570	0.046	0.151	0.989	
meeren 2002a	All Participants	Alcohol v. Baseline	SDLP	0.485	0.036	0.116	0.855	
meeren 2002b	All Participants	Alcohol v. Baseline	Combined	0.724	0.063	0.234	1.214	
ster 2002 (Part 1)	All Participants	Alcohol v. Baseline	SDLP	0.234	0.034	-0.125	0.594	
n 2017	All Participants	Alcohol v. Baseline	SDLP	0.649	0.041	0.251	1.047	
afer 2008 Study 1	All Participants	Alcohol v. Baseline	SDLP	0.557	0.047	0.131	0.984	
afer 2008 Study 2	All Participants	Combined	SDLP	0.450	0.112	-0.204	1.105	
eafer 2012	All Participants	Alcohol v. Baseline	Combined	0.751	0.061	0.267	1.235	
eiler 2000	All Participants	Alcohol v. Baseline	Combined	1.847	0.067	1.341	2.354	
ang 2014	All Participants	Combined	SD Lane Position	0.326	0.045	-0.091	0.743	
				0.489	0.001	0.417	0.562	
								-4.00 -2.00 0.00 2.00

Figure C46. Forest plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5). Excludes Study 1 from Veldstra et al. (2012).

Alcohol v. Baseline: Lateral Position Variability

tudy name	Subgroup within study	Comparison	Outcome		Statistics for	each study		Hedges's g and 95% CI	
				Hedges's g	Variance	Lower limit	Upper limit		
rnedt 2001	All Participants	Combined	Tracking Variability	0.2347	0.0108	0.0315	0.4380	1 1 📾 1	1
erthelon 2014	All Participants	Combined	Combined	0.3027	0.0108	0.0315	0.4380		
rthelon 2018	All Participants	Combined	SDLP	0.4877	0.0071	0.3223	0.6531		
arlton 2015	All Participants	Low + High Alc v. Baseline		0.2770	0.1024	-0.3503	0.9042		I
ristoforou 2012	All Participants	Alcohol v. Baseline	Variation in Within-Lane Pos		0.0042	0.2307	0.4852		I
Imore 2008	All Participants	Alcohol v. Baseline	Combined	0.5380	0.0150	0.2982	0.7777		I
eydier 2014	All Participants	Combined	SDLP (Single Task)	0.2682	0.0062	0.1135	0.4229		I
urrison 2005	Alcohol Group	Alcohol v. Baseline	Within-Lane Deviation	2.5387	0.2489	1.5610	3.5164		_
rrison 2007	Control Group	Alcohol v. Baseline	Within Lane Deviation	0.4920	0.0191	0.2209	0.7632		
rrison 2011	All Participants	Alcohol v. Baseline	SDLP	0.7737	0.1984	-0.0994	1.6467		
rtman 2015	All Participants	Alcohol v. Baseline	SDLP	0.1775	0.0103	-0.0215	0.3765		
lland 2016	All Participants	Combined	Combined	0.3923	0.0306	0.0495	0.7351		_
rne 1991	Early Afternoon	Alcohol v. Baseline	Lat. Pos. Var.	0.1326	0.0146	-0.1040	0.3691		
rne 1991	Early Evening	Alcohol v. Baseline	Lat. Pos. Var.	0.4061	0.0158	0.1598	0.6524		
ward 2007	All Participants	Combined	Lane Pos. Variation	0.3416	0.0123	0.1239	0.5593		
wland 2010	All Participants	Alcohol v. Baseline	SD Lane Pos. Dev.	0.4873	0.0602	0.0064	0.9683		
emer 2010	All Participants	Alcohol v. Baseline	Combined	0.4873	0.0002	-0.0096	0.3494		_ I
y 2013	All Participants	Alcohol v. Baseline	Combined	0.4998	0.0084	0.2889	0.3494		_ I
nntner-Mabiala 2015	All Participants	Combined	Combined	0.4998	0.0116	0.2889	0.6007		_ I
ypers 2006	All Participants	Alcohol v. Baseline	SDLP	0.4170	0.0088	0.2332	0.9495		_ I
ude 2015		Alcohol v. Baseline	SDLP		0.0151	0.3015			
	All Participants			0.3805			0.5329		
ude 2016	All Participants	Alcohol v. Baseline	SDLP	0.3976	0.0052	0.2562	0.5390		_ I
ude 2016 Study 3 e 2010	Control Drivers	Alcohol v. Baseline Combined	SDLP Combined	0.4583	0.0162 0.0019	0.2090	0.7075		
e 2010 nne 1999	All Participants		Combined	0.2620		0.1760	0.3480		
	All Participants	Alcohol v. Baseline		0.2066	0.0069	0.0437	0.3696		
nne 2003	All Participants	Alcohol v. Baseline	SDLP	0.6309	0.0107	0.4281	0.8338		
uwerens 1987	All Participants	Combined	SDLP	0.4759	0.0090	0.2904	0.6614		_
rczinski 2008	Binge Group	Alcohol v. Baseline	Within Lane Dev.	0.3169	0.0082	0.1393	0.4945		
rczinski 2008	Nonbinge Group	Alcohol v. Baseline	Within Lane Dev.	0.5236	0.0130	0.3004	0.7469		_
rczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.5605	0.0119	0.3465	0.7746		
rczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.2044	0.0176	-0.0552	0.4641		_
Cartney 2017	All Participants	Alcohol v. Baseline	Combined	0.3118	0.0605	-0.1705	0.7940		_
ts 2011	All Participants	Combined	SDLP	0.5940	0.0085	0.4131	0.7750		_
maekers 1992	All Participants	Alcohol v. Baseline	SDLP	0.5445	0.0131	0.3200	0.7689		_
maekers 2000	All Participants	Alcohol v. Baseline	Combined	0.4345	0.0113	0.2265	0.6425		
berts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.6009	0.0117	0.3893	0.8126		
berts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.4091	0.0101	0.2125	0.6056		
nen 2008	All Participants	Alcohol v. Baseline	RMS Lane Position	0.2804	0.0132	0.0551	0.5057		
nen 2010	All Participants	Alcohol v. Baseline	RMS Lane Position	-0.0688	0.0145	-0.3045	0.1669		
pp 2007	All Participants	Alcohol v. Baseline	Lane Var. (15.5 hours)	0.2478	0.0075	0.0784	0.4172		
umacher 2011 (2017)	All Participants	Alcohol v. Baseline	SDLP	0.6618	0.0132	0.4362	0.8874		
aton 1997	All Participants	Combined	Combined	0.3360	0.0110	0.1306	0.5415		_ I
aton 2002	All Participants	Alcohol v. Baseline	Combined	-0.0714	0.0097	-0.2646	0.1217		_ I
10ns 2012	All Participants	Alcohol v. Baseline	Combined	0.4631	0.0152	0.2213	0.7049		_ I
ar 2014	Older	Low+High Alc v. Baseline	LPSD	-0.3331	0.1210	-1.0150	0.3488		_ I
ar 2014	Younger	Low+High Alc v. Baseline	LPSD	0.3286	0.1210	-0.3532	1.0104	│ │ ┼■─ │	_ I
rkey 2014	All Participants		Combined	0.3423	0.0830	-0.2223	0.9069	+=-	
der Sluiszen 2016	All Participants	Alcohol v. Baseline	SDLP	0.6750	0.0093	0.4857	0.8643		_ I
n Dyke 2014	Control Group	Alcohol v. Baseline	LPSD	0.4585	0.0083	0.2794	0.6375		
1 Dyke 2014	DUI Group	Alcohol v. Baseline	LPSD	0.1925	0.0077	0.0211	0.3640		
n Dyke 2015	All Participants	Alcohol v. Baseline	SDLP	0.3336	0.0041	0.2081	0.4591		
dstra 2012 Study 2	All Participants	Alcohol v. Baseline	SDLP (Road Tracking)	0.5195	0.0111	0.3132	0.7258		
meeren 1998	All Participants	Alcohol v. Baseline	Combined	0.4963	0.0088	0.3122	0.6804		
meeren 2002a	All Participants	Alcohol v. Baseline	SDLP	0.4472	0.0070	0.2833	0.6110		
meeren 2002b	All Participants	Alcohol v. Baseline	Combined	0.6674	0.0120	0.4523	0.8824		
rster 2002 (Part 1)	All Participants	Alcohol v. Baseline	SDLP	0.2341	0.0067	0.0735	0.3948		
n 2017	All Participants	Alcohol v. Baseline	SDLP	0.6490	0.0083	0.4710	0.8271		
afer 2008 Study 1	All Participants	Alcohol v. Baseline	SDLP	0.3649	0.0087	0.1823	0.5476		
afer 2008 Study 2	All Participants	Combined	SDLP	0.3658	0.0215	0.0786	0.6531		
afer 2012	All Participants	Alcohol v. Baseline	Combined	0.6130	0.0213	0.4062	0.8197		
eiler 2000	All Participants	Alcohol v. Baseline	Combined	1.8223	0.0111	1.5976	2.0470		
		Combined	SD Lane Position	0.2293	0.0131	0.0462	0.4124		
ang 2014	All Participants	Combined	SD Lane Position	0.2293	0.0087	0.0462	0.4124 0.4846		
				0.4223	0.0010	0.3000	0.4640	1 1 17 1	4.0
								-4.00 -2.00 0.00 2.00	

Figure C47. Forest plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9). Excludes Study 1 from Veldstra et al. (2012).

Alcohol v. Baseline: Lateral Position Variability

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	ach study	-		Hedge	s's g and 95	%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Off-Road Events / 5 Minutes	1.380	0.207	0.488	2.272			·		
Beard 2012	All Participants	Low+High Alc v. Baseline	Combined	0.213	0.154	-0.557	0.983		-			
Bernosky-Smith 2011	High Freq. Group	Alcohol v. Baseline	Crossings	0.772	0.136	0.049	1.495				-	
Bernosky-Smith 2011	Low Freq. Group	Alcohol v. Baseline	Crossings	0.840	0.138	0.112	1.568					-
Berthelon 2014	All Participants	Combined	Offlane Incidents	6.919	3.669	3.164	10.673					2
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.243	0.102	-0.383	0.868					
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.129	0.025	-0.182	0.440					
Fillmore 2008	All Participants	Alcohol v. Baseline	Combined	0.417	0.140	-0.316	1.149				+	
Hartman 2015	All Participants	Alcohol v. Baseline	Lane Departures / Minute	0.246	0.105	-0.389	0.880				-1	
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.487	0.116	-0.181	1.156			∎		
Kenntner-Mabiala 2015	All Participants	Combined	Combined	0.613	0.096	0.005	1.220				◼┿	
Marczinski 2008	Binge Group	Alcohol v. Baseline	Combined	0.572	0.092	-0.021	1.165				∎→	
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Combined	1.059	0.190	0.206	1.912					
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.781	0.136	0.057	1.504					
Marczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.250	0.187	-0.597	1.098		-			
AcCartney 2017	All Participants	Alcohol v. Baseline	Combined	0.220	0.025	-0.089	0.530			┼╋┷		
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.594	0.110	-0.055	1.244					
oberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.314	0.097	-0.296	0.925			-+-∎-		
Rupp 2007	All Participants	Alcohol v. Baseline	Off-Road Events	0.229	0.074	-0.306	0.763			-+	-	
tarkey 2014	All Participants	Medium+High Alc v. Baseline	Combined	0.974	0.092	0.381	1.567			-		-
/an Dyke 2014	Control Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.302	0.079	-0.247	0.852			╶┼┲		
/an Dyke 2014	DUI Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.074	0.075	-0.464	0.611		- I ·		-	
/an Dyke 2015	All Participants	Alcohol v. Baseline	Lane Exceedances	0.285	0.040	-0.109	0.679				- 1	
Weafer 2012	All Participants	Alcohol v. Baseline	Combined	0.404	0.100	-0.217	1.025					
Veiler 2000	All Participants	Alcohol v. Baseline	Left-Lane Excursions	1.612	0.113	0.953	2.271					
				0.504	0.008	0.334	0.674					
								-2.00	-1.00	0.00	1.00	2.
								E	wer Excursio	ne Me	ore Excursio	ne

Alcohol v. Baseline: Lane Excursions

Figure C48. Forest plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r =zero). Includes Berthelon & Gineyt (2014) and Weiler et al. (2000).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	-		Hedge	s's g and 95%	%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Off-Road Events / 5 Minutes	1.110	0.085	0.539	1.681			-		- 1
Beard 2012	All Participants	Low+High Alc v. Baseline	Combined	0.213	0.154	-0.557	0.983		-		_	
Bernosky-Smith 2011	High Freq. Group	Alcohol v. Baseline	Crossings	0.772	0.136	0.049	1.495					
Bernosky-Smith 2011	Low Freq. Group	Alcohol v. Baseline	Crossings	0.840	0.138	0.112	1.568				-	-
Berthelon 2014	All Participants	Combined	Offlane Incidents	5.642	1.215	3.482	7.802					*
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.243	0.102	-0.383	0.868				_	
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.128	0.013	-0.091	0.348					
Fillmore 2008	All Participants	Alcohol v. Baseline	Combined	0.364	0.068	-0.147	0.876				_	
Hartman 2015	All Participants	Alcohol v. Baseline	Lane Departures / Minute	0.240	0.052	-0.208	0.688				-	
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.441	0.057	-0.026	0.907			┝──╋	_	
Kenntner-Mabiala 2015	All Participants	Combined	Combined	0.531	0.046	0.112	0.950				—	
Aarczinski 2008	Binge Group	Alcohol v. Baseline	Combined	0.488	0.044	0.077	0.899				_	
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Combined	0.845	0.080	0.291	1.399					
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.683	0.064	0.187	1.178				■	
Aarczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.243	0.092	-0.352	0.838				-	
AcCartney 2017	All Participants	Alcohol v. Baseline	Combined	0.220	0.025	-0.089	0.530					
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.545	0.054	0.092	0.999					
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.308	0.048	-0.123	0.740				-	
Rupp 2007	All Participants	Alcohol v. Baseline	Off-Road Events	0.201	0.037	-0.176	0.578			_+∎		
tarkey 2014	All Participants	Medium+High Alc v. Baseline	Combined	0.974	0.092	0.381	1.567			- I -		-
/an Dyke 2014	Control Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.288	0.039	-0.100	0.676				-	
Van Dyke 2014	DUI Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.074	0.038	-0.307	0.454					
Van Dyke 2015	All Participants	Alcohol v. Baseline	Lane Exceedances	0.285	0.020	0.006	0.563					
Weafer 2012	All Participants	Alcohol v. Baseline	Combined	0.371	0.050	-0.065	0.808				-	
Veiler 2000	All Participants	Alcohol v. Baseline	Left-Lane Excursions	1.570	0.055	1.111	2.029					
	-			0.502	0.007	0.337	0.667				▶	
								-2.00	-1.00	0.00	1.00	2.0
								F	ewer Excursio	ns Mor	re Excursio	ns

Alcohol v. Baseline: Lane Excursions

Figure C49. Forest plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.5). Includes Berthelon & Gineyt (2014) and Weiler et al. (2000).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	-		Hedge	s's g and 95	%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Off-Road Events / 5 Minutes	0.574	0.012	0.360	0.789			-	┣-	1
Beard 2012	All Participants	Low+High Alc v. Baseline	Combined	0.213	0.154	-0.557	0.983		-			
Bernosky-Smith 2011	High Freq. Group	Alcohol v. Baseline	Crossings	0.772	0.136	0.049	1.495				╼═┽───	
Bernosky-Smith 2011	Low Freq. Group	Alcohol v. Baseline	Crossings	0.840	0.138	0.112	1.568				╼╪┼───	•
Berthelon 2014	All Participants	Combined	Offlane Incidents	3.072	0.078	2.524	3.620					>
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.243	0.102	-0.383	0.868					
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.124	0.003	0.026	0.223					
Fillmore 2008	All Participants	Alcohol v. Baseline	Combined	0.231	0.013	0.008	0.455					
Hartman 2015	All Participants	Alcohol v. Baseline	Lane Departures / Minute	0.204	0.010	0.004	0.404					
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.293	0.011	0.091	0.495					
Kenntner-Mabiala 2015	All Participants	Combined	Combined	0.308	0.008	0.130	0.485					
Aarczinski 2008	Binge Group	Alcohol v. Baseline	Combined	0.278	0.008	0.101	0.454					
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Combined	0.438	0.012	0.219	0.657				-	
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.418	0.011	0.211	0.625				•	
Marczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.201	0.018	-0.060	0.461			∎-		
AcCartney 2017	All Participants	Alcohol v. Baseline	Combined	0.220	0.025	-0.089	0.530					
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.365	0.010	0.170	0.559					
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.276	0.010	0.084	0.468					
Rupp 2007	All Participants	Alcohol v. Baseline	Off-Road Events	0.120	0.007	-0.048	0.287					
arkey 2014	All Participants	Medium+High Alc v. Baseline	Combined	0.974	0.092	0.381	1.567					-
/an Dyke 2014	Control Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.216	0.008	0.045	0.388					
/an Dyke 2014	DUI Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.073	0.008	-0.097	0.243			-		
/an Dyke 2015	All Participants	Alcohol v. Baseline	Lane Exceedances	0.278	0.004	0.153	0.402					
Veafer 2012	All Participants	Alcohol v. Baseline	Combined	0.295	0.010	0.102	0.488					
Veiler 2000	All Participants	Alcohol v. Baseline	Left-Lane Excursions	1.322	0.009	1.135	1.510				- -	
				0.439	0.005	0.297	0.580			- ◆	· -	
								-2.00	-1.00	0.00	1.00	2.0
								Б	ewer Excursio	na Ma	re Excursion	nc

Alcohol v. Baseline: Lane Excursions

Figure C50. Forest plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.9). Includes Berthelon & Gineyt (2014) and Weiler et al. (2000).

Study name	Subgroup within study	Comparison	Outcome	Sta	tistics for e	ach study	-		Hedg	es's g and 95	5%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Off-Road Events / 5 Minutes	1.380	0.207	0.488	2.272			- I ·		
Beard 2012	All Participants	Low+High Alc v. Baseline	Combined	0.213	0.154	-0.557	0.983		-			
Bernosky-Smith 2011	High Freq. Group	Alcohol v. Baseline	Crossings	0.772	0.136	0.049	1.495					
Bernosky-Smith 2011	Low Freq. Group	Alcohol v. Baseline	Crossings	0.840	0.138	0.112	1.568					-
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.243	0.102	-0.383	0.868					
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.129	0.025	-0.182	0.440					
Fillmore 2008	All Participants	Alcohol v. Baseline	Combined	0.417	0.140	-0.316	1.149					
Hartman 2015	All Participants	Alcohol v. Baseline	Lane Departures / Minute	0.246	0.105	-0.389	0.880					
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.487	0.116	-0.181	1.156				⊢	
Kenntner-Mabiala 2015	All Participants	Combined	Combined	0.613	0.096	0.005	1.220				•	
Marczinski 2008	Binge Group	Alcohol v. Baseline	Combined	0.572	0.092	-0.021	1.165				╺╾┿╴	
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Combined	1.059	0.190	0.206	1.912					
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.781	0.136	0.057	1.504					
Marczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.250	0.187	-0.597	1.098		- 1			
McCartney 2017	All Participants	Alcohol v. Baseline	Combined	0.220	0.025	-0.089	0.530				•	
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.594	0.110	-0.055	1.244					
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.314	0.097	-0.296	0.925					
Rupp 2007	All Participants	Alcohol v. Baseline	Off-Road Events	0.229	0.074	-0.306	0.763			-+	-	
starkey 2014	All Participants	Medium+High Alc v. Baseline	Combined	0.974	0.092	0.381	1.567			-		-
Van Dyke 2014	Control Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.302	0.079	-0.247	0.852					
Van Dyke 2014	DUI Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.074	0.075	-0.464	0.611				-	
Van Dyke 2015	All Participants	Alcohol v. Baseline	Lane Exceedances	0.285	0.040	-0.109	0.679				-	
Weafer 2012	All Participants	Alcohol v. Baseline	Combined	0.404	0.100	-0.217	1.025					
	-			0.387	0.004	0.269	0.506			● ◆	·	
								-2.00	-1.00	0.00	1.00	2.0
								E	ewer Excursio		ore Excursio	

Alcohol v. Baseline: Lane Excursions

Figure C51. Forest plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = zero). Excludes Berthelon & Gineyt (2014) and Weiler et al. (2000).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	-		Hedges	's g and 95	%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Off-Road Events / 5 Minutes	1.110	0.085	0.539	1.681	1		- I -	 =	- 1
Beard 2012	All Participants	Low+High Alc v. Baseline	Combined	0.213	0.154	-0.557	0.983					
Bernosky-Smith 2011	High Freq. Group	Alcohol v. Baseline	Crossings	0.772	0.136	0.049	1.495					
Bernosky-Smith 2011	Low Freq. Group	Alcohol v. Baseline	Crossings	0.840	0.138	0.112	1.568				-	-
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.243	0.102	-0.383	0.868				_	
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.128	0.013	-0.091	0.348			-₩8		
Fillmore 2008	All Participants	Alcohol v. Baseline	Combined	0.364	0.068	-0.147	0.876				_	
Hartman 2015	All Participants	Alcohol v. Baseline	Lane Departures / Minute	0.240	0.052	-0.208	0.688				-	
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.441	0.057	-0.026	0.907				_	
Kenntner-Mabiala 2015	All Participants	Combined	Combined	0.531	0.046	0.112	0.950					
Aarczinski 2008	Binge Group	Alcohol v. Baseline	Combined	0.488	0.044	0.077	0.899				—	
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Combined	0.845	0.080	0.291	1.399					
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.683	0.064	0.187	1.178					
Marczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.243	0.092	-0.352	0.838				_	
McCartney 2017	All Participants	Alcohol v. Baseline	Combined	0.220	0.025	-0.089	0.530			_ ∔∎		
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.545	0.054	0.092	0.999				-	
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.308	0.048	-0.123	0.740				_	
Rupp 2007	All Participants	Alcohol v. Baseline	Off-Road Events	0.201	0.037	-0.176	0.578					
arkey 2014	All Participants	Medium+High Alc v. Baseline	Combined	0.974	0.092	0.381	1.567			- 1	-	-
Van Dyke 2014	Control Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.288	0.039	-0.100	0.676				-	
Van Dyke 2014	DUI Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.074	0.038	-0.307	0.454					
Van Dyke 2015	All Participants	Alcohol v. Baseline	Lane Exceedances	0.285	0.020	0.006	0.563					
Weafer 2012	All Participants	Alcohol v. Baseline	Combined	0.371	0.050	-0.065	0.808				-	
	-			0.383	0.003	0.278	0.489			•		
								-2.00	-1.00	0.00	1.00	2.0
								Б	ewer Excursion	e Mo	re Excursio	ne

Alcohol v. Baseline: Lane Excursions

Figure C52. Forest plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.5). Excludes Berthelon & Gineyt (2014) and Weiler et al. (2000).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	-		Hedg	es's g and 95	%CI	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Off-Road Events / 5 Minutes	0.574	0.012	0.360	0.789			_ -	-	1
Beard 2012	All Participants	Low+High Alc v. Baseline	Combined	0.213	0.154	-0.557	0.983					
Bernosky-Smith 2011	High Freq. Group	Alcohol v. Baseline	Crossings	0.772	0.136	0.049	1.495					
Bernosky-Smith 2011	Low Freq. Group	Alcohol v. Baseline	Crossings	0.840	0.138	0.112	1.568					-
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.243	0.102	-0.383	0.868					
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.124	0.003	0.026	0.223					
Fillmore 2008	All Participants	Alcohol v. Baseline	Combined	0.231	0.013	0.008	0.455					
Hartman 2015	All Participants	Alcohol v. Baseline	Lane Departures / Minute	0.204	0.010	0.004	0.404					
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.293	0.011	0.091	0.495					
Kenntner-Mabiala 2015	All Participants	Combined	Combined	0.308	0.008	0.130	0.485					
Marczinski 2008	Binge Group	Alcohol v. Baseline	Combined	0.278	0.008	0.101	0.454					
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Combined	0.438	0.012	0.219	0.657				-	
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.418	0.011	0.211	0.625				-	
Marczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.201	0.018	-0.060	0.461			_ _ ∎		
McCartney 2017	All Participants	Alcohol v. Baseline	Combined	0.220	0.025	-0.089	0.530					
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.365	0.010	0.170	0.559				•	
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.276	0.010	0.084	0.468					
Rupp 2007	All Participants	Alcohol v. Baseline	Off-Road Events	0.120	0.007	-0.048	0.287					
Starkey 2014	All Participants	Medium+High Alc v. Baseline	Combined	0.974	0.092	0.381	1.567			<u> </u>	-	-
Van Dyke 2014	Control Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.216	0.008	0.045	0.388					
Van Dyke 2014	DUI Group	Alcohol v. Baseline	Centerline and Road Edge Crossings	0.073	0.008	-0.097	0.243					
Van Dyke 2015	All Participants	Alcohol v. Baseline	Lane Exceedances	0.278	0.004	0.153	0.402					
Weafer 2012	All Participants	Alcohol v. Baseline	Combined	0.295	0.010	0.102	0.488					
	-			0.278	0.001	0.217	0.339			•		
								-2.00	-1.00	0.00	1.00	2.0
								Б	ewer Excursi		ore Excursio	

Alcohol v. Baseline: Lane Excursions

Figure C53. Forest plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.9). Excludes Berthelon & Gineyt (2014) and Weiler et al. (2000).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	each study	7		Hedges	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 2000	All Participants	Alcohol v. Baseline	Combined	0.222	0.104	-0.411	0.854			-		
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.869	0.110	0.219	1.520				┢╴│	
Starkey 2014	All Participants	Med+High Alc v. Baseline	Combined	0.974	0.092	0.380	1.567			-	▋──│	
				0.694	0.055	0.232	1.155				▶	
								-4.00	-2.00	0.00	2.00	4.00
								Ι	æss Tim	e N	Iore Tin	ne

Alcohol v. Baseline: Time Out of Lane

Figure C54. Forest plot illustrating *Alcohol v. Baseline: Time Out of Lane* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	<u>Outcom</u> e	Sta	atistics for a	each study	7		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 2000	All Participants	Alcohol v. Baseline	Combined	0.219	0.052	-0.228	0.666					
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.869	0.110	0.219	1.520			-	┢╴│	
Starkey 2014	All Participants	Med+High Alc v. Baseline	Combined	0.974	0.092	0.380	1.567			-	┣╴│	
				0.648	0.067	0.140	1.156				>	
								-4.00	-2.00	0.00	2.00	4.00
								Ι	æss Tin	e M	lore Tin	ne

Alcohol v. Baseline: Time Out of Lane

Figure C55. Forest plot illustrating *Alcohol v. Baseline: Time Out of Lane* (missing pre-post correlations set to r = 0.5).

<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	<u>Outcome</u>	S <u>t</u>	atistics for e	each study	7		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 2000	All Participants	Alcohol v. Baseline	Combined	0.202	0.010	0.003	0.402					
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.869	0.110	0.219	1.520			E	⊢∣	
Starkey 2014	All Participants	Med+High Alc v. Baseline	Combined	0.974	0.092	0.380	1.567			-	┣╴│	
				0.621	0.085	0.048	1.194				▶	
								-4.00	-2.00	0.00	2.00	4.00
								I	ess Tim	e N	lore Tin	ne

Alcohol v. Baseline: Time Out of Lane

Figure C56. Forest plot illustrating *Alcohol v. Baseline: Time Out of Lane* (missing pre-post correlations set to r = 0.9.

udy name	Subgroup within study	<u>Comparison</u>	Outcome	St	atistics for e	ach study			He	dges's g and 9	5%C
				Hedges's g	Variance	Lower limit	Upper limit				
rnedt 2001	All Participants	Combined	Speed Deviation	0.626	0.124	-0.066	1.317	1	1	+	
ernosky-Smith 2012	All Participants	Alcohol v. Baseline	Mean Driving Speed	0.490	0.030	0.152	0.828			- I -	
erthelon 2014	All Participants	Combined	Speed (Highway)	0.187	0.119	-0.488	0.862				
erthelon 2018	All Participants	Combined	Speed	0.125	0.064	-0.372	0.622			-	_
ırns 2002	All Participants	Alcohol v. Baseline	M Speed	0.526	0.106	-0.112	1.164				•
nen 2016	All Participants	Low+High Alc v Baseline	Combined	-0.457	0.238	-1.413	0.500		+	· -	-
owney 2013	All Participants	Alcohol v. Baseline	Combined	0.009	0.025	-0.299	0.316			-+-	
lmore 2008	All Participants	Alcohol v. Baseline	Combined	0.717	0.164	-0.077	1.510				
arrison 2007	Control Group	Alcohol v. Baseline	Speed	0.409	0.184	-0.431	1.250				
arrison 2011	All Participants	Alcohol v. Placebo	Drive Speed	0.144	0.184	-0.696	0.985				
elland 2016	All Participants	Combined	Combined	0.206	0.011	-0.003	0.415			⊢∎⊦	
owland 2010	All Participants	Alcohol v. Baseline	Speed Deviation	0.484	0.060	0.003	0.965			F	
enntner-Mabiala 2015	All Participants	Combined	Combined	0.239	0.081	-0.319	0.798			-++	
ypers 2006	All Participants	Alcohol v. Baseline	Speed	-0.177	0.103	-0.806	0.453		-		
ide 2015	All Participants	Alcohol v. Baseline	Combined	0.098	0.057	-0.369	0.564				_
ide 2016	All Participants	Alcohol v. Baseline	Speed (Risk Taking)	0.087	0.048	-0.343	0.518				-
de 2016 Study 3	Control Drivers	Alcohol v. Baseline	Speed (Tusic Funding)	-0.402	0.158	-1.180	0.376				
2010	All Participants	Combined	Combined	0.124	0.019	-0.144	0.393				
ne 1999	All Participants	Alcohol v. Baseline	Combined	0.124	0.069	-0.414	0.615				_
czinski 2008	Binge Group	Alcohol v. Baseline	Speed	0.311	0.082	-0.250	0.872				
czinski 2008	Nonbinge Group	Alcohol v. Baseline	Speed	0.257	0.032	-0.412	0.927				
Cartney 2017	All Participants	Alcohol v. Baseline	Speed (Simple)	0.207	0.045	-0.209	0.623				_
s 2011	All Participants	Combined	Mean Speed	0.207	0.043	-0.209	0.533				_
s 2011 ce 2018	Older		Combined	-0.422	0.139	-1.154	0.309				
e 2018 e 2018		Low+High Alc v Baseline Low+High Alc v Baseline	Combined	-0.422	0.139	-0.539	0.309		Т		
	Younger	Alcohol v. Baseline	Combined	-0.251	0.137	-0.339	0.356				
erts 2017 Study 2	Control Group								1		
erts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.174	0.094	-0.426	0.774				_
ien 2008	All Participants	Alcohol v. Baseline	Average Speed	0.374	0.137	-0.350	1.099				
en 2010	All Participants	Alcohol v. Baseline	Average Speed	0.335	0.154	-0.433	1.103				
umacher 2011 (2017)	All Participants	Alcohol v. Baseline	Speed	-0.157	0.108	-0.801	0.488		· ·	-1-	•
ion 2002	All Participants	Alcohol v. Baseline	Average Speed	-0.004	0.097	-0.613	0.605				-
r 2014	Older	Low+High Alc v. Baseline	Average Speed	0.867	0.130	0.161	1.574			1-	
2014	Younger	Low+High Alc v. Baseline	Average Speed	0.435	0.122	-0.250	1.120				
yer 2006	All Participants	Alcohol v. Baseline	Speed	-0.279	0.050	-0.718	0.159			+	
Dyke 2014	Control Group	Alcohol v. Baseline	Drive Speed	0.193	0.077	-0.349	0.736			-+-	_
n Dyke 2014	DUI Group	Alcohol v. Baseline	Drive Speed	-0.165	0.076	-0.706	0.376			-+-	
n Dyke 2017	All Participants	Combined	Drive Speed	0.021	0.092	-0.574	0.616			-+-	_
dstra 2012 Study 1	All Participants	Combined	Combined	0.119	0.113	-0.540	0.778				_
dstra 2012 Study 2	All Participants	Alcohol v. Baseline	Combined	-0.015	0.097	-0.625	0.595				-
Irath 2017 Study 1	All Participants	Alcohol v. Baseline	Combined	0.532	0.084	-0.035	1.099				•
lrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	0.079	0.093	-0.519	0.677				_
afer 2008 Study 1	All Participants	Alcohol v. Baseline	Average Speed	0.273	0.084	-0.296	0.843			-+-	
ang 2014	All Participants	Combined	Mean Speed	0.373	0.091	-0.218	0.964			-+-•	
				0.164	0.002	0.086	0.241			•	
								-2.00	-1.00	0.00	1

Figure C57. Forest plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to *r* = zero).

tudy name	Subgroup within study	Comparison	Outcome	S	atistics for e	ach study			He	lges's g and	95%CI
				Hedges's g	Variance	Lower limit	Upper limit				
rnedt 2001	All Participants	Combined	Speed Deviation	0.624	0.062	0.136	1.113		1	1-	+
ernosky-Smith 2012	All Participants	Alcohol v. Baseline	Mean Driving Speed	0.490	0.030	0.152	0.828				
erthelon 2014	All Participants	Combined	Speed (Highway)	0.166	0.059	-0.309	0.641				- 1
erthelon 2018	All Participants	Combined	Speed	0.123	0.032	-0.228	0.474				-
urns 2002	All Participants	Alcohol v. Baseline	M Speed	0.520	0.053	0.069	0.970				
hen 2016	All Participants	Low+High Alc v Baseline	Combined	-0.457	0.238	-1.413	0.500		-	-	-
owney 2013	All Participants	Alcohol v. Baseline	Combined	0.009	0.012	-0.209	0.226				
llmore 2008	All Participants	Alcohol v. Baseline	Combined	0.692	0.081	0.136	1.249			-	
arrison 2007	Control Group	Alcohol v. Baseline	Speed	0.313	0.088	-0.270	0.896			-+-	
arrison 2011	All Participants	Alcohol v. Placebo	Drive Speed	0.144	0.184	-0.696	0.985				
elland 2016	All Participants	Combined	Combined	0.206	0.011	-0.003	0.415			H	⊦ I
iowland 2010	All Participants	Alcohol v. Baseline	Speed Deviation	0.484	0.060	0.003	0.965			H	-
enntner-Mabiala 2015	All Participants	Combined	Combined	0.236	0.041	-0.159	0.631				_
uypers 2006	All Participants	Alcohol v. Baseline	Speed	-0.170	0.051	-0.615	0.275				
ude 2015	All Participants	Alcohol v. Baseline	Combined	0.097	0.028	-0.233	0.426				-
aude 2016	All Participants	Alcohol v. Baseline	Speed (Risk Taking)	0.087	0.024	-0.217	0.392				-
ude 2016 Study 3	Control Drivers	Alcohol v. Baseline	Speed	-0.402	0.079	-0.952	0.148				
e 2010	All Participants	Combined	Combined	0.124	0.009	-0.066	0.313			_ b	.
enne 1999	All Participants	Alcohol v. Baseline	Combined	0.100	0.034	-0.264	0.463				-
larczinski 2008	Binge Group	Alcohol v. Baseline	Speed	0.279	0.041	-0.116	0.674				⊢
arczinski 2008	Nonbinge Group	Alcohol v. Baseline	Speed	0.246	0.058	-0.227	0.719			-+-	<u> </u>
cCartney 2017	All Participants	Alcohol v. Baseline	Speed (Simple)	0.207	0.045	-0.209	0.623				_
lets 2011	All Participants	Combined	Mean Speed	0.007	0.035	-0.361	0.376			_	-
rice 2018	Older	Low+High Alc v Baseline	Combined	-0.422	0.139	-1.154	0.309		_		
rice 2018	Younger	Low+High Alc v Baseline	Combined	0.188	0.137	-0.539	0.914				
oberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	-0.249	0.048	-0.678	0.180				
oberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.169	0.047	-0.255	0.593				_
onen 2008	All Participants	Alcohol v. Baseline	Average Speed	0.374	0.068	-0.138	0.886			_	
onen 2010	All Participants	Alcohol v. Baseline	Average Speed	0.335	0.077	-0.208	0.878				
chumacher 2011 (2017)	All Participants	Alcohol v. Baseline	Speed	-0.155	0.054	-0.611	0.301				
xton 2002	All Participants	Alcohol v. Baseline	Average Speed	-0.004	0.048	-0.435	0.427			_	-
lar 2014	Older	Low+High Alc v. Baseline	Average Speed	0.867	0.130	0.161	1.574			I-	
dar 2014	Younger	Low+High Alc v. Baseline	Average Speed	0.435	0.122	-0.250	1.120				•
rayer 2006	All Participants	Alcohol v. Baseline	Speed	-0.238	0.025	-0.547	0.070				
an Dyke 2014	Control Group	Alcohol v. Baseline	Drive Speed	0.193	0.025	-0.190	0.577				_
an Dyke 2014 an Dyke 2014	DUI Group	Alcohol v. Baseline	Drive Speed	-0.162	0.038	-0.545	0.220				
an Dyke 2014 an Dyke 2017	All Participants	Combined	Drive Speed	0.021	0.038	-0.345	0.441				-
eldstra 2012 Study 1	All Participants	Combined	Combined	0.021	0.040	-0.400	0.584			_ _	_
eldstra 2012 Study 1 eldstra 2012 Study 2	All Participants	Alcohol v. Baseline	Combined	-0.015	0.038	-0.347	0.384				_
ollrath 2017 Study 1	All Participants	Alcohol v. Baseline	Combined	0.532	0.048	-0.440	1.099			L	
ollrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	0.332	0.084	-0.035	0.677				<u> </u>
/eafer 2008 Study 1	All Participants	Alcohol v. Baseline	Average Speed	0.079	0.093	-0.153	0.649				
hang 2014		Combined	Average Speed Mean Speed	0.248	0.042	-0.153	0.649			T	
iang 2014	All Participants	Combilled	wicall speed	0.331	0.045	-0.065	0.768				
				0.143	0.001	0.072	0.214	I	1		
								-2.00	-1.00 ecreased (S	0.00	1. Increase

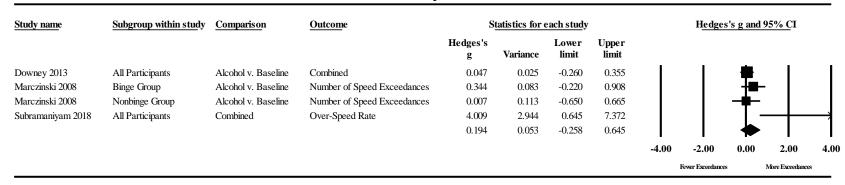
Figure C58. Forest plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to r = 0.5).

tudy name	Subgroup within study	Comparison	Outcome	St	atistics for e	ach study			Hedg	es's g and 95	5% <u>A</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
rnedt 2001	All Participants	Combined	Speed Deviation	0.614	0.012	0.396	0.832	1	1	I -		
ernosky-Smith 2012	All Participants	Alcohol v. Baseline	Mean Driving Speed	0.490	0.030	0.152	0.828					
erthelon 2014	All Participants	Combined	Speed (Highway)	0.099	0.011	-0.111	0.309					
erthelon 2018	All Participants	Combined	Speed	0.110	0.006	-0.047	0.266			- F		
urns 2002	All Participants	Alcohol v. Baseline	M Speed	0.477	0.010	0.277	0.676			-	-	
hen 2016	All Participants	Low+High Alc v Baseline	Combined	-0.457	0.238	-1.413	0.500			• -	·	
owney 2013	All Participants	Alcohol v. Baseline	Combined	0.008	0.002	-0.089	0.105					
llmore 2008	All Participants	Alcohol v. Baseline	Combined	0.580	0.015	0.339	0.821			-		
arrison 2007	Control Group	Alcohol v. Baseline	Speed	0.150	0.017	-0.105	0.405					
arrison 2011	All Participants	Alcohol v. Placebo	Drive Speed	0.144	0.184	-0.696	0.985		<u> </u>			
elland 2016	All Participants	Combined	Combined	0.206	0.011	-0.003	0.415			- ∎-		
owland 2010	All Participants	Alcohol v. Baseline	Speed Deviation	0.484	0.060	0.003	0.965			- H-		
enntner-Mabiala 2015	All Participants	Combined	Combined	0.218	0.008	0.042	0.395			-		
iv pers 2006	All Participants	Alcohol v. Baseline	Speed	-0.136	0.010	-0.334	0.063			-		
ude 2015	All Participants	Alcohol v. Baseline	Combined	0.090	0.006	-0.058	0.237			-		
ude 2016	All Participants	Alcohol v. Baseline	Speed (Risk Taking)	0.087	0.005	-0.049	0.224			-		
ude 2016 Study 3	Control Drivers	Alcohol v. Baseline	Speed	-0.400	0.016	-0.646	-0.154		<u> </u>	- Г		
e 2010	All Participants	Combined	Combined	0.118	0.002	0.034	0.203					
nne 1999	All Participants	Alcohol v. Baseline	Combined	0.092	0.007	-0.070	0.255			- F		
arczinski 2008	Binge Group	Alcohol v. Baseline	Speed	0.174	0.008	-0.000	0.349			- F		
arczinski 2008	Nonbinge Group	Alcohol v. Baseline	Speed	0.189	0.011	-0.021	0.399					
Cartney 2017	All Participants	Alcohol v. Baseline	Speed (Simple)	0.207	0.045	-0.209	0.623				-	
ts 2011	All Participants	Combined	Mean Speed	-0.007	0.007	-0.172	0.157			- * -		
ice 2018	Older	Low+High Alc v Baseline	Combined	-0.422	0.139	-1.154	0.309			• T-		
ice 2018	Younger	Low+High Alc v Baseline	Combined	0.188	0.137	-0.539	0.914					
berts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	-0.234	0.010	-0.425	-0.042			-		
berts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.144	0.009	-0.045	0.334					
nen 2008	All Participants	Alcohol v. Baseline	Average Speed	0.370	0.014	0.141	0.599			- F	_	
nen 2010	All Participants	Alcohol v. Baseline	Average Speed	0.333	0.015	0.090	0.575				-	
humacher 2011 (2017)	All Participants	Alcohol v. Baseline	Speed	-0.142	0.011	-0.345	0.062					
ston 2002	All Participants	Alcohol v. Baseline	Average Speed	-0.003	0.010	-0.196	0.189			- 1		
ar 2014	Older	Low+High Alc v. Baseline	Average Speed	0.867	0.130	0.161	1.574			- T_		-
ar 2014	Younger	Low+High Alc v. Baseline	Average Speed	0.435	0.130	-0.250	1.120					
ayer 2006	All Participants	Alcohol v. Baseline	Speed	-0.133	0.005	-0.230	0.003					
n Dyke 2014	Control Group	Alcohol v. Baseline	Drive Speed	0.193	0.005	0.022	0.365					
n Dyke 2014	DUI Group	Alcohol v. Baseline	Drive Speed	-0.145	0.008	-0.315	0.305					
in Dyke 2014	All Participants	Combined	Drive Speed	-0.143	0.008	-0.315	0.028					
ldstra 2012 Study 1	All Participants	Combined	Combined	0.019	0.009	-0.109	0.208			- I		
ldstra 2012 Study 1 ldstra 2012 Study 2	All Participants	Alcohol v. Baseline	Combined	-0.012	0.011	-0.091	0.325					
llrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	-0.012	0.010	-0.205	1.099				-	
llrath 2017 Study 1 llrath 2017 Study 2	All Participants	Alcohol v. Baseline	Combined	0.552	0.084	-0.035	0.677					
eafer 2008 Study 1	All Participants	Alcohol v. Baseline	Average Speed	0.079	0.095	-0.019	0.877					
		Combined	Average Speed Mean Speed	0.159		-0.019	0.336					
ang 2014	All Participants	Comoined	mean speed		0.009							
				0.126	0.001	0.064	0.188		1	17	1	
								-2.00	-1.00	0.00	1.00	2.0

Figure C59. Forest plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to r = 0.9).

<u>Study na</u> me	Subgroup within	stu <mark>dymparis</mark> on	Outcome	St <u>ati</u>	stics for o	each stu	dy		Hedges	's g and s	9 <u>5% C</u> I	
			I	Hedges's S								
				g	error	limit	limit					
	All Participants	Combined	Speed Variability	0.443		-0.219	1.104				-	
	All Participants	Combined	SD Speed (Highway)	0.307		-0.370						
	All Participants	Combined	SD Speed	0.406		-0.109	0.921				-	
	All Participants	Combined	Combined	0.307	0.148	0.017				⊢∎	-	
	All Participants	Alcohol v. Baseline	SD Speed Dev.	0.694	0.249		1.182				╺╴┼╴	
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.370		-0.291	1.030					
• •	All Participants	Alcohol v. Baseline	SD Speed	0.225		-0.408	0.858				-1	
	All Participants	Combined	Combined	0.028		-0.239	0.295					
Lenne 1999	All Participants	Alcohol v. Baseline	Combined	0.131	0.261	-0.380	0.643				-	
Lenne 2003	All Participants	Alcohol v. Baseline	SD Speed	0.363	0.307	-0.240	0.965					
Marczinski 2008	Binge Group	Alcohol v. Baseline	Speed Deviation	0.239	0.283	-0.317	0.794			-+	- 1	
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Speed Deviation	0.668	0.375	-0.067	1.402			- H	•+-	
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.189	0.334	-0.465	0.843			_ += _	-1	
Marczinski 2009	Nonbinge Group	Alcohol v. Baseline	Combined	0.361	0.437	-0.496	1.218				-	
McCartney 2017	All Participants	Alcohol v. Baseline	SD Speed (Simple)	0.265	0.203	-0.133	0.663			+	-	
Mets 2011	All Participants	Combined	SD Speed	0.373	0.279	-0.173	0.919				-1	
Ramaekers 1992	All Participants	Alcohol v. Baseline	SD of Speed	0.043	0.336	-0.615	0.701		-	_	-	
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.023	0.306	-0.578	0.623		- -		-	
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.263	0.309	-0.343	0.869			-+	-1	
Ronen 2008	All Participants	Alcohol v. Baseline	RMS Speed	0.404	0.372	-0.324	1.133				_	
Ronen 2010	All Participants	Alcohol v. Baseline	RMS Speed	-0.063	0.380	-0.808	0.682		I —	-	-	
	All Participants	Alcohol v. Baseline	Speed Var. (15.5 hour	s) 0.274	0.274	-0.263	0.812				-1	
Schumacher 2011 (201	•	Alcohol v. Baseline	SD Speed	0.367	0.339	-0.297	1.031					
	Older	Low+High Alc v. Bas	•	0.567		-0.123	1.257			- 	•	
	Younger	Low+High Alc v. Bas	•	-0.570		-1.260				_		
	All Participants	Alcohol v. Baseline	SD Speed	0.763	0.314		1.377					
Veldstra 2012 Study 1	•	Combined	Combined	0.059		-0.587	0.704		- I -		- 1	
Veldstra 2012 Study 2		Alcohol v. Baseline	Combined	0.227		-0.394	0.848				_1	
•	All Participants	Alcohol v. Baseline	SD Speed	0.014		-0.487	0.515					
	All Participants	Alcohol v. Baseline	SD Speed	0.712	0.293		1.286			Τ_	╼╄╴	
	All Participants	Alcohol v. Baseline	Driving Speed Variatio			-0.138						
Weafer 2008 Study 2	•	Combined	Driving Speed Variatio			-0.647	1.130					
realer 2000 Study 2	in rancipants	Combined	Driving Speed Variatio	0.241	0.433		0.362			•		
								-2.00	-1.00	0.00	1.00	2.
										lity Mor		

Alcohol v. Baseline: Speed Variability


Figure C60. Forest plot illustrating *Alcohol v. Baseline: Speed Variability* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within s	stu dy mparison	<u>Outcom</u> e	St <u>at</u>	istics for e	each stu	dy		Hedge	s's g and s	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Arnedt 2001	All Participants	Combined	Speed Variability	0.428	0.056	-0.038	0.894			∎	<u> </u>	
Berthelon 2014	All Participants	Combined	SD Speed (Highway)	0.294	0.059	-0.183	0.770			+	-	
Berthelon 2018	All Participants	Combined	SD Speed	0.402	0.034	0.038	0.766			=	-	
Helland 2016	All Participants	Combined	Combined	0.307	0.022	0.017	0.597			⊢∎	-	
Howland 2010	All Participants	Alcohol v. Baseline	SD Speed Dev.	0.694	0.062	0.206	1.182			I –	╼┼╴	
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.359	0.056	-0.107	0.825				_	
Kuypers 2006	All Participants	Alcohol v. Baseline	SD Speed	0.225	0.052	-0.222	0.673			+	-	
Lee 2010	All Participants	Combined	Combined	0.027	0.009	-0.161	0.216			- 		
Lenne 1999	All Participants	Alcohol v. Baseline	Combined	0.130	0.034	-0.232	0.491			_ _ _		
Lenne 2003	All Participants	Alcohol v. Baseline	SD Speed	0.346	0.047	-0.078	0.771				-	
	Binge Group	Alcohol v. Baseline	Speed Deviation	0.228	0.040	-0.164	0.620			+∎	-	
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Speed Deviation	0.582	0.067	0.075	1.089				╺─┤	
Marczinski 2009	Binge Group	Alcohol v. Baseline	Combined	0.197	0.055	-0.264	0.657				-	
	Nonbinge Group	Alcohol v. Baseline	Combined	0.308	0.092	-0.287	0.902			_ +•	_	
McCartney 2017	All Participants	Alcohol v. Baseline	SD Speed (Simple)	0.265	0.041	-0.133	0.663				-	
•	All Participants	Combined	SD Speed	0.356	0.038	-0.029	0.740			⊢∎	_	
Ramaekers 1992	All Participants	Alcohol v. Baseline	SD of Speed	0.043	0.056	-0.422	0.508			-		
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.023	0.047	-0.401	0.448			-		
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.239	0.048	-0.188	0.666			+	-	
•	All Participants	Alcohol v. Baseline	RMS Speed	0.397	0.069	-0.117	0.912					
Ronen 2010	All Participants	Alcohol v. Baseline	RMS Speed	-0.063	0.072	-0.590	0.464					
	All Participants	Alcohol v. Baseline	Speed Var. (15.5 hour	rs) 0.257	0.037	-0.122	0.637				-	
Schumacher 2011 (201	All Participants	Alcohol v. Baseline	SD Speed	0.358	0.057	-0.110	0.827				_	
Sklar 2014	Older	Low+High Alc v. Base	lineD Speed	0.567	0.124	-0.123	1.257			- 		
Sklar 2014	Younger	Low+High Alc v. Base	lineD Speed	-0.570	0.124	-1.260	0.120					
	All Participants	Alcohol v. Baseline	SD Speed	0.751	0.049	0.318	1.184			I –		
Veldstra 2012 Study 1	1	Combined	Combined	0.055	0.054	-0.401	0.512			 	.	
Veldstra 2012 Study 2	•	Alcohol v. Baseline	Combined	0.219	0.050	-0.219	0.658			+∎	-	
•	All Participants	Alcohol v. Baseline	SD Speed	0.014	0.033	-0.340	0.368			-		
	All Participants	Alcohol v. Baseline	SD Speed	0.711	0.043	0.306	1.117			-	╼┼	
	All Participants	Alcohol v. Baseline	Driving Speed Variation	on 0.408	0.044	-0.004	0.820			_ _ _	<u> </u>	
Weafer 2008 Study 2	1	Combined	Driving Speed Variation		0.103	-0.389	0.868			_ + •-	_	
	*			0.264	0.002	0.184	0.344			•		
								-2.00	-1.00	0.00	1.00	2.0
								Loc		oility Mor		sility

Figure C61. Forest plot illustrating *Alcohol v. Baseline: Speed Variability* (missing pre-post correlations set to r = 0.5). Note that Schumacher et al. (2017) was eligible for inclusion in this meta-analysis but data was extracted and included from the 2011 paper.

<u>Study name</u>	Subgroup within s	stu dy mparison	<u>Outcom</u> e	St <u>at</u>	istics for e	each stu	dy		Hedges	's g and s	9 <u>5% C</u> I	
			1	Hedges's g	Variance	Lower limit						
Arnedt 2001	All Participants	Combined	Speed Variability	0.353	0.011	0.148	0.557			-₩	- 1	1
Berthelon 2014	All Participants	Combined	SD Speed (Highway)	0.236	0.012	0.025	0.448					
Berthelon 2018	All Participants	Combined	SD Speed	0.376	0.007	0.214	0.538			-	-	
Helland 2016	All Participants	Combined	Combined	0.307	0.022	0.017	0.597				-	
Howland 2010	All Participants	Alcohol v. Baseline	SD Speed Dev.	0.694	0.062	0.206	1.182			- I	╼┼╴	
Kay 2013	All Participants	Alcohol v. Baseline	Combined	0.301	0.011	0.096	0.506			-		
Kuypers 2006	All Participants	Alcohol v. Baseline	SD Speed	0.225	0.010	0.025	0.425			⊢∎⊢		
Lee 2010	All Participants	Combined	Combined	0.025	0.002	-0.059	0.109					
	All Participants	Alcohol v. Baseline	Combined	0.120	0.007	-0.041	0.282			T.		
	All Participants	Alcohol v. Baseline	SD Speed	0.266	0.009	0.079	0.454			-		
Marczinski 2008	Binge Group	Alcohol v. Baseline	Speed Deviation	0.176	0.008	0.001	0.350					
	Nonbinge Group	Alcohol v. Baseline	Speed Deviation	0.340	0.012	0.126	0.555			-	-	
	Binge Group	Alcohol v. Baseline	Combined	0.173	0.011	-0.029	0.375					
	Nonbinge Group	Alcohol v. Baseline	Combined	0.177		-0.081	0.434					
	All Participants	Alcohol v. Baseline	SD Speed (Simple)	0.265	0.041	-0.133	0.663			-	-	
•	All Participants	Combined	SD Speed	0.275		0.106				- I 		
	All Participants	Alcohol v. Baseline	SD of Speed	0.043	0.011	-0.165	0.251			- H		
Roberts 2017 Study 2	Control Group	Alcohol v. Baseline	Combined	0.026	0.009	-0.164	0.216			- F		
Roberts 2017 Study 2	DUI Group	Alcohol v. Baseline	Combined	0.160	0.009	-0.030	0.349					
Ronen 2008	All Participants	Alcohol v. Baseline	RMS Speed	0.352	0.014	0.124	0.580				-	
	All Participants	Alcohol v. Baseline	RMS Speed	-0.061	0.014	-0.297	0.174			-		
	All Participants	Alcohol v. Baseline	Speed Var. (15.5 hour	s) 0.184	0.007		0.353					
Schumacher 2011 (201	*	Alcohol v. Baseline	SD Speed	0.306	0.011		0.513					
	Older	Low+High Alc v. Base	•	0.567	0.124	-0.123	1.257					
Sklar 2014	Younger	Low+High Alc v. Base	*	-0.570		-1.260	0.120			_		
	All Participants	Alcohol v. Baseline	SD Speed	0.675	0.009	0.486					.	
Veldstra 2012 Study 1	•	Combined	Combined	0.040		-0.163				-	<u> </u>	
Veldstra 2012 Study 2	•	Alcohol v. Baseline	Combined	0.180		-0.015				Ţ∎		
	All Participants	Alcohol v. Baseline	SD Speed	0.014		-0.144				.		
	All Participants	Alcohol v. Baseline	SD Speed	0.706	0.009	0.525				Т	∎	
	All Participants	Alcohol v. Baseline	Driving Speed Variation		0.008	0.084	0.443			-	-1	
Weafer 2008 Study 2	•	Combined	Driving Speed Variatio			-0.055	0.506					
				0.233	0.001	0.163				•		
								-2.00	-1.00	0.00	1.00	2.0
										ility Mor		

Figure C62. Forest plot illustrating *Alcohol v. Baseline: Speed Variability* (missing pre-post correlations set to r = 0.9). Note that Schumacher et al. (2017) was eligible for inclusion in this meta-analysis but data was extracted and included from the 2011 paper.

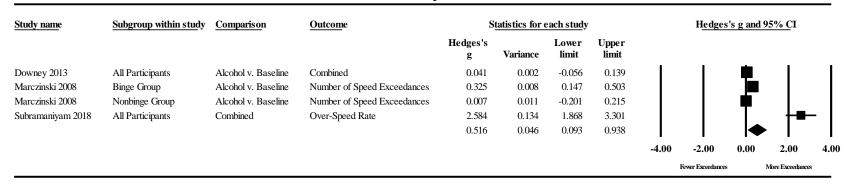

Alcohol v. Baseline: Speed Exceedances

Figure C63. Forest plot illustrating *Alcohol v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = zero).

Study name	Subgroup within study	Comparison	Outcome	S	tatistics for	each study			Hedges	's g and	<u>95% CI</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Alcohol v. Baseline	Combined	0.046	0.012	-0.171	0.264					1
Marczinski 2008	Binge Group	Alcohol v. Baseline	Number of Speed Exceedances	0.342	0.041	-0.057	0.741			∦∎		
Marczinski 2008	Nonbinge Group	Alcohol v. Baseline	Number of Speed Exceedances	0.007	0.056	-0.458	0.472			-#-		
Subramaniyam 2018	All Participants	Combined	Over-Speed Rate	3.696	1.273	1.484	5.907					
				0.271	0.056	-0.193	0.735					
								-4.00	-2.00	0.00	2.00	4.00
									Fewer Exceedances		More Exceedances	š

Alcohol v. Baseline: Speed Exceedances

Figure C64. Forest plot illustrating *Alcohol v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = 0.5).

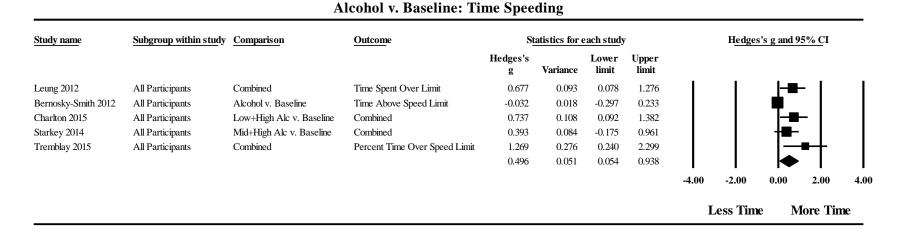

Alcohol v. Baseline: Speed Exceedances

Figure C65. Forest plot illustrating *Alcohol v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for (each study	V		Hedge	s's g and 9	<u>5% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Leung 2012	All Participants	Combined	Time Spent Over Limit	0.816	0.208	-0.079	1.710	1			⊢ 1	
Bernosky-Smith 2012	All Participants	Alcohol v. Baseline	Time Above Speed Limit	-0.032	0.018	-0.297	0.233					
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.737	0.108	0.092	1.382				-	
Starkey 2014	All Participants	Mid+High Alc v. Baseline	Combined	0.393	0.084	-0.175	0.961					
Tremblay 2015	All Participants	Combined	Percent Time Over Speed Limit	1.269	0.276	0.240	2.299				∎∔	
				0.512	0.058	0.042	0.982					
								-4.00	-2.00	0.00	2.00	4.00
								Ι	ess Tim	e N	lore Tin	ne

Alcohol v. Baseline: Time Speeding

Figure C66. Forest plot illustrating *Alcohol v. Baseline: Time Speeding* (missing pre-post correlations set to *r* = zero).

Figure C67. Forest plot illustrating *Alcohol v. Baseline: Time Speeding* (missing pre-post correlations set to r = 0.5).

Alcohol v. Baseline: Time Speeding

Study name	Subgroup within study	<u>Comparison</u>	Outcome	St	atistics for	each study	7		Hedge	s's g and 9	<u>5% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Leung 2012	All Participants	Combined	Time Spent Over Limit	0.375	0.016	0.130	0.620					
Bernosky-Smith 2012	All Participants	Alcohol v. Baseline	Time Above Speed Limit	-0.032	0.018	-0.297	0.233					
Charlton 2015	All Participants	Low+High Alc v. Baseline	Combined	0.737	0.108	0.092	1.382				-	
Starkey 2014	All Participants	Mid+High Alc v. Baseline	Combined	0.393	0.084	-0.175	0.961					
Tremblay 2015	All Participants	Combined	Percent Time Over Speed Limit	1.269	0.276	0.240	2.299			I—	╺╴┼╴	
				0.388	0.029	0.054	0.721					
								-4.00	-2.00	0.00	2.00	4.00
								Ι	æss Tin	e N	lore Tir	ne

Figure C68. Forest plot illustrating *Alcohol v. Baseline: Time Speeding* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	Stat	istics for e	ach stud	<u>y</u>	Ē	ledges's	s g and	95% (<u>I</u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.020	0.025	-0.327	0.287		+	-	-+	
				-0.020	0.025	-0.327	0.287					
								-0.50	-0.25	0.00	0.25	0.50
								Fe	wer Cras	hes M	ore Cras	hes

Cannabis v. Alcohol: Crashes

Figure C69. Forest plot illustrating *Cannabis v. Alcohol: Crashes* (missing pre-post correlations set to *r* = zero).

		(Cannabis v	. Alcohol:	Crashes							
Study name	Subgroup within study	Comparison	Outcome	Stat	istics for e	ach stud	<u>y_</u>	Ī	Hedges's	s g and	95% C	<u>I</u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.020 -0.020	0.012 0.012	-0.237 -0.237	0.197 0.197					
								-0.50	-0.25	0.00	0.25	0.50
								Fe	wer Crasl	hes M	ore crasł	ies

Figure C70. Forest plot illustrating *Cannabis v. Alcohol: Crashes* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	Outcome	Stat	tistics for e	ach stud	<u>y_</u>	Ē	ledges's	s g and	95% (<u>II</u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.021	0.002	-0.119	0.076 0.076			-		
				-0.021	0.002	-0.119	0.076					
								-0.50	-0.25	0.00	0.25	0.50
								Fe	wer Cras	hes M	ore crasl	ies

Cannabis v. Alcohol: Crashes

Figure C71. Forest plot illustrating *Cannabis v. Alcohol: Crashes* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within stu	udy <u>Comparison</u>	Outcome	S <u>ta</u>	tistics for e	each stu	<u>ly</u>		Hedges	s g and	<u>95% C</u> I	
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.158	0.025	-0.468	0.151			-		
Liguori 2002	All Participants	Combined	Brake Latency	-0.154	0.158	-0.933	0.625			╼┥─	-	
Ramaekers 2000 Study	/ IAll Participants	Combined	RT	0.289	0.106	-0.350	0.928			-+-	⊢ _	
Sexton 2002	All Participants	Cannabis v. Alc	ohol RT Pulling Out	0.763	0.134	0.046	1.479					•
				0.131	0.046	-0.289	0.550				▶	
								-2.00	-1.00	0.00	1.00	2.0
								:	Less Time (Faster)	More Time (Slow	er)

лрт \sim . .

Figure C72. Forest plot illustrating *Cannabis v. Alcohol: Hazard RT* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within st	udy <u>Comparison</u>	<u>parison</u> <u>Outcom</u> e	Statistics for each study					Hedges's	s g and	<u>1 95% C</u> I	
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.151	0.012	-0.369	0.068					
Liguori 2002	All Participants	Combined	Brake Latency	-0.134	0.077	-0.678	0.411		— —		-	
Ramaekers 2000 Study	1All Participants	Combined	RT	0.284	0.053	-0.167	0.736			╶┼┲	⊢∣	
Sexton 2002	All Participants	Cannabis v. Al	cohol RT Pulling Out	0.689	0.064	0.193	1.184			-	-∎∔-	
				0.148	0.040	-0.243	0.540				▶	
								-2.00	-1.00	0.00	1.00	2.00
									Less Time (Faster)		More Time (Slower	r)

Cannabis v. Alcohol: Hazard RT

Figure C73. Forest plot illustrating *Cannabis v. Alcohol: Hazard RT* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within st	udy <u>Comparison</u>	on <u>Outcome</u>	S <u>ta</u>	tistics for e	each stu	<u>l</u> y		Hedges's	<u>95% C</u> I		
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.117	0.002	-0.214	-0.019					
Liguori 2002	All Participants	Combined	Brake Latency	-0.096	0.015	-0.336	0.144			-		
Ramaekers 2000 Stu	udy 1All Participants	Combined	RT	0.259	0.011	0.058	0.460			-	F	
Sexton 2002	All Participants	Cannabis v. Alc	cohol RT Pulling Out	0.438	0.011	0.231	0.646					
				0.117	0.020	-0.161	0.395			•		
								-2.00	-1.00	0.00	1.00	2.00
									Less Time (Faster)		More Time (Slow	er)

Cannabis v. Alcohol: Hazard RT

Figure C74. Forest plot illustrating *Cannabis v. Alcohol: Hazard RT* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	7 Comparison	Outcome	S <u>ta</u>	atistics for e	each stud	y		Hedges's g and 95% CI				
				Hedges's g	Variance	Lower limit	Upper limit						
Hartman 2015	All Participants	Combined	SDLP	-0.051	0.102	-0.676	0.573				+		
Ramaekers 2000) All Participants	Combined	Combined	0.220	0.105	-0.414	0.854		—		∎┼─	-	
Ronen 2008	All Participants	Combined	RMS Lane Position	0.252	0.131	-0.458	0.962			+	∎┼─	—	
Ronen 2010	All Participants	THC v. Alcohol	RMS Lane Position	0.267	0.150	-0.493	1.026					\rightarrow	
Sexton 2002	All Participants	Cannabis v. Alcohol	Combined	0.216	0.101	-0.408	0.840		— —			-	
				0.170	0.023	-0.127	0.467						
								-1.00	-0.50 Less Variability	0.00	0.50 More Variability	1.00	

Cannabis v. Alcohol: Lateral Position Variability

Figure C75. Forest plot illustrating *Cannabis v. Alcohol: Lateral Position Variability* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	<u>Comparison</u>	Outcome	Sta	atistics for e	each stud	y		Hedges's	s g and	<u>195% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015	All Participants	Combined	SDLP	-0.051	0.051	-0.493	0.390		- H-		— I	
Ramaekers 2000	All Participants	Combined	Combined	0.218	0.052	-0.231	0.666					
Ronen 2008	All Participants	Combined	RMS Lane Position	0.248	0.066	-0.254	0.749		-			
Ronen 2010	All Participants	THC v. Alcohol	RMS Lane Position	0.248	0.075	-0.288	0.783		-			
Sexton 2002	All Participants	Cannabis v. Alcohol	Combined	0.215	0.051	-0.227	0.656		· ·			
				0.166	0.011	-0.044	0.376					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	

Figure C76. Forest plot illustrating *Cannabis v. Alcohol: Lateral Position Variability* (missing pre-post correlations set to *r* = 0.5).

Study name	Subgroup within study	⁷ Comparison	<u>ison Outcom</u> e	S <u>ta</u>	atistics for e	each study	y		Hedges's g and 95% CI				
				Hedges's g	Variance	Lower limit	Upper limit						
Hartman 2015	All Participants	Combined	SDLP	-0.051	0.010	-0.249	0.146		-				
Ramaekers 2000	All Participants	Combined	Combined	0.204	0.010	0.004	0.404						
Ronen 2008	All Participants	Combined	RMS Lane Position	0.223	0.013	-0.001	0.446						
Ronen 2010	All Participants	THC v. Alcohol	RMS Lane Position	0.171	0.015	-0.066	0.408			-+-∎	⊢		
Sexton 2002	All Participants	Cannabis v. Alcohol	Combined	0.205	0.010	0.008	0.402						
				0.146	0.003	0.041	0.251						
								-1.00	-0.50	0.00	0.50	1.00	
									Less Variability		More Variability	,	

Cannabis v. Alcohol: Lateral Position Variability

Figure C77. Forest plot illustrating *Cannabis v. Alcohol: Lateral Position Variability* (missing pre-post correlations set to *r* = 0.9).

Cannabis v. Alcohol: Lane Excursions

Study name	Subgroup within study	<u>Comparison</u>	Outcome	Statistics for each study						s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.096	0.025	-0.214	0.406		—		┡┼─	-
Hartman 2015	All Participants	Combined	Lane Departures / Minute	-0.120	0.102	-0.747	0.506	(╸┼╴		\rightarrow
				0.054	0.020	-0.224	0.331					
								-0.50	-0.25	0.00	0.25	0.50
									Fewer Excursions		More Excursions	3

Figure C78. Forest plot illustrating *Cannabis v. Alcohol: Lane Excursions* (missing pre-post correlations set to *r* = zero).

<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	Outcome	Sta	atistics for e	each study	7		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.094	0.012	-0.126	0.313				∎─┼─	
Hartman 2015	All Participants	Combined	Lane Departures / Minute	-0.119	0.051	-0.562	0.324	(╸┼╴		
				0.052	0.010	-0.145	0.248		-			
								-0.50	-0.25	0.00	0.25	0.50
									Fewer Excursions	3	More Excursions	

Cannabis v. Alcohol: Lane Excursions

Figure C79. Forest plot illustrating *Cannabis v. Alcohol: Lane Excursions* (missing pre-post correlations set to r = 0.5).

<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	<u>Outcome</u>	<u>St</u>	atistics for e	each study	7		Hedges's g and 95% CI			
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.079	0.002	-0.019	0.177			╂∎	┣-	
Hartman 2015	All Participants	Combined	Lane Departures / Minute	-0.115	0.010	-0.313	0.084			∎┼╴		
				0.002	0.009	-0.184	0.188			\blacklozenge		
								-0.50	-0.25	0.00	0.25	0.50
									Fewer Excursions		More Excursions	

~ T. •

Figure C80. Forest plot illustrating *Cannabis v. Alcohol: Lane Excursions* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	Sta	_	Hedges's g and 95% C						
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 2000	All Participants	Combined	Combined	0.005	0.104	-0.627	0.637		+	-		
				0.005	0.104	-0.627	0.637					
								-1.00	-0.50	0.00	0.50	1.00

Cannabis v. Alcohol: Time Out of Lane

Figure C81. Forest plot illustrating *Cannabis v. Alcohol: Time Out of Lane* (missing pre-post correlations set to *r* = zero).

Cannabis	v. Alcohol:	Time	Out of Lane	

Study name	Subgroup within study	Comparison	parison Outcome Statistics for each study						Hedges	s g and	95% CI	L
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 20	00All Participants	Combined	Combined	0.003	0.052	-0.444	0.449		—		-1	
				0.003	0.052	-0.444	0.449			\blacklozenge		
								-1.00	-0.50	0.00	0.50	1.00
								I	ess Tim	e M	lore Tin	ne

Figure C82. Forest plot illustrating *Cannabis v. Alcohol: Time Out of Lane* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	_	95% Cl	[
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 200	0All Participants	Combined	Combined	-0.006	0.010	-0.204	0.193					
				-0.006	0.010	-0.204	0.193			\blacklozenge		
								-1.00	-0.50	0.00	0.50	1.00

Cannabis v. Alcohol: Time Out of Lane

Figure C83. Forest plot illustrating *Cannabis v. Alcohol: Time Out of Lane* (missing pre-post correlations set to r = 0.9).

			Cannabis v.	Alcohol:	Speed							
Study name	Subgroup within study	<u>Comparison</u>	Outcome	S <u>ta</u>	atistics for e		Hedges's g and 95% C					
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.104	0.025	-0.414	0.207					
Ronen 2008	All Participants	Combined	Average Speed	-0.787	0.172	-1.599	0.026	-		_		
Ronen 2010	All Participants	THC v. Alcohol	Average Speed	-0.491	0.164	-1.286	0.303		-	╾┼╴		
Sexton 2002	All Participants	Cannabis v. Alcohol	Average Speed	-0.519	0.111	-1.171	0.133		∎	•		
				-0.314	0.023	-0.613	-0.015		•			
								-2.00	-1.00	0.00	1.00	2.00
								D	ecreased Spe	ed	Increased Spe	ed

Figure C84. Forest plot illustrating *Cannabis v. Alcohol: Speed* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Outcome	S <u>ta</u>	Hedges's g and 95% CI							
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.103	0.013	-0.322	0.116					
Ronen 2008	All Participants	Combined	Average Speed	-0.771	0.085	-1.343	-0.200			- 1		
Ronen 2010	All Participants	THC v. Alcohol	Average Speed	-0.469	0.081	-1.027	0.090		⊢	∎∔		
Sexton 2002	All Participants	Cannabis v. Alcohol	Average Speed	-0.500	0.055	-0.959	-0.041					
				-0.392	0.026	-0.710	-0.074					
								-2.00	-1.00	0.00	1.00	2.00
								D	ecreased Spe	ed I	ncreased Spe	ed

Cannabis v. Alcohol: Speed

Figure C85. Forest plot illustrating *Cannabis v. Alcohol: Speed* (missing pre-post correlations set to r = 0.5).

<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	Outcome	S <u>ta</u>	atistics for e	each stud	y	Hedges's g and 95% CI				
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.098	0.003	-0.196	-0.000					
Ronen 2008	All Participants	Combined	Average Speed	-0.685	0.016	-0.933	-0.437			-		
Ronen 2010	All Participants	THC v. Alcohol	Average Speed	-0.358	0.015	-0.602	-0.114		-	▇-│		
Sexton 2002	All Participants	Cannabis v. Alcohol	Average Speed	-0.399	0.010	-0.600	-0.198			₽		
				-0.371	0.018	-0.633	-0.108					
								-2.00	-1.00	0.00	1.00	2.00
									ecreased Spe		ncreased Spe	

Figure C86. Forest plot illustrating *Cannabis v. Alcohol: Speed* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	_	Hedges	's g and	d 95% CI	<u></u>		
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2008	All Participants	Combined	RMS Speed	-0.042	0.127	-0.741	0.656				-+-	
Ronen 2010	All Participants	THC v. Alcohol	RMS Speed	0.349	0.154	-0.421	1.119		—			\rightarrow
				0.134	0.070	-0.383	0.652					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	y

Cannabis v. Alcohol: Speed Variability

*Figure C*87. Forest plot illustrating *Cannabis v. Alcohol: Speed Variability* (missing pre-post correlations set to *r* = zero).

Cannabis v. Alcohol: Speed Variability	
--	--

Subgroup within study	Comparison	Outcome Statistics for each study			-	_Hedges's g and 95% (
			Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2008 All Participants	Combined	RMS Speed	-0.041	0.063	-0.535	0.452			-	—1	
Ronen 2010 All Participants	THC v. Alcohol	RMS Speed	0.338	0.077	-0.206	0.881			+		-
			0.131	0.036	-0.239	0.501					
							-1.00	-0.50	0.00	0.50	1.00
								Less Variability		More Variability	

*Figure C*88. Forest plot illustrating *Cannabis v. Alcohol: Speed Variability* (missing pre-post correlations set to r = 0.5).

<u>Study name</u>	Subgroup within study	y <u>Comparison</u>	Outcome	Sta	_	Hedges	's g and	195% CI	_			
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2008	All Participants	Combined	RMS Speed	-0.035	0.013	-0.256	0.185		·			
Ronen 2010	All Participants	THC v. Alcohol	RMS Speed	0.276	0.015	0.035	0.516				∎⊣	
				0.116	0.024	-0.188	0.421					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	7

Cannabis v. Alcohol: Speed Variability

Figure C89. Forest plot illustrating *Cannabis v. Alcohol: Speed Variability* (missing pre-post correlations set to r = 0.9).

Cannais v. Alcohol: Speed Exceedances

Subgroup within study	<u>Comparison</u>	Outcome	Sta	atistics for e	ach study	_	H	edges'	s g and	95% C	<u>I</u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.235	0.025	-0.546	0.077	(-	+		
			-0.235	0.025	-0.546	0.077	K				
							-0.50	-0.25	0.00	0.25	0.50
							Few	ver Exceedances	5	More Exceedance	s

Figure C90. Forest plot illustrating *Cannabis v. Alcohol: Speed Exceedances* (missing pre-post correlations set to *r* = zero).

Subgroup within study	Comparison	<u>Outcome</u>	_Sta	atistics for e	ach study	_		Hedges'	s g and	195% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.231	0.013	-0.451	-0.011		-	—	1	
			-0.231	0.013	-0.451	-0.011					
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedance	s	More Exceedance	s

Figure C91. Forest plot illustrating *Cannabis v. Alcohol: Speed Exceedances* (missing pre-post correlations set to r = 0.5).

	Can	nais v. Alco	ohol: Speed	Exceedan	ces						
Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	_		Hedges'	s g and	l 95% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.205	0.003	-0.303	-0.107		-	-		
			-0.205	0.003	-0.303	-0.107			•		
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedance	s	More Exceedance	s

. . .

Figure C92. Forest plot illustrating *Cannabis v. Alcohol: Speed Exceedances* (missing pre-post correlations set to r = 0.9).

	(n v. Basenn	e: Crasnes	5						
Subgroup within study	Comparison	<u>Outcome</u>	_Sta	atistics for e	ach study	_		Hedges	s g and	95% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.226	0.026	-0.088	0.540			╉	₽-+	
			0.226	0.026	-0.088	0.540					
							-1.00	-0.50	0.00	0.50	1.00
							Fe	wer Cras	hes M	ore Cras	hes

Figure C93. Forest plot illustrating *Combination v. Baseline: Crashes* (missing pre-post correlations set to *r* = zero).

Subgroup within study	<u>Comparison</u>	Outcome	Sta	atistics for e	ach study	_		Hedges'	s g and	95% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.223	0.013	0.000	0.445			⊢	┣-	
			0.223	0.013	0.000	0.445					
							-1.00	-0.50	0.00	0.50	1.00
							Fe	wer Cras	hes Mo	ore Cras	hes

Figure C94. Forest plot illustrating *Combination v. Baseline: Crashes* (missing pre-post correlations set to r = 0.5).

				c. crashes							
Subgroup within study	<u>Comparison</u>	Outcome	St	atistics for e	ach study	_		Hedges	's g and	95% C	<u>I</u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.201	0.003	0.102	0.300					
			0.201	0.003	0.102	0.300					
							-1.00	-0.50	0.00	0.50	1.00
							Fe	wer Cras	hes Mo	ore Cras	hes

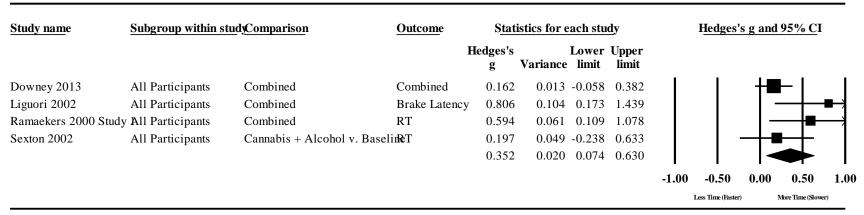

Combination v. Baseline: Crashes

Figure C95. Forest plot illustrating *Combination v. Baseline: Crashes* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within st	tudyComparison	Outcome	S <u>tat</u>	istics for e	each stu	<u>d</u> y		Hedges's	s g and	<u>95% C</u> I	
]	Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.162	0.025	-0.149	0.474			-+-		
Liguori 2002	All Participants	Combined	Brake Latency	0.824	0.211	-0.076	1.725			+		•
Ramaekers 2000 Stu	dy All Participants	Combined	RT	0.598	0.122	-0.088	1.284			-	─┤■	
Sexton 2002	All Participants	Cannabis + Alcohol v. Base	elinteT	0.199	0.099	-0.416	0.815				╸┼╴	-
				0.275	0.016	0.028	0.523					
								-1.00	-0.50	0.00	0.50	1.00
									Less Time (Faster)		More Time (Slow	r)

Combination v. Baseline: Hazard RT

Figure C96. Forest plot illustrating *Combination v. Baseline: Hazard RT* (missing pre-post correlations set to *r* = zero).

Combination v. Baseline: Hazard RT

Figure C97. Forest plot illustrating *Combination v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within st	tudy <u>Comparison</u>	Outcome	S <u>tat</u>	istics for e	each stu	<u>d</u> y		Hedges'	s g and	<u>95% C</u> I	
			I	Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.156	0.003	0.058	0.255					
Liguori 2002	All Participants	Combined	Brake Latency	0.700	0.019	0.426	0.973				∎	
Ramaekers 2000 Str	udy All Participants	Combined	RT	0.563	0.012	0.348	0.777					-
Sexton 2002	All Participants	Cannabis + Alcohol v. Ba	selinteT	0.183	0.010	-0.011	0.377				-	
				0.382	0.016	0.131	0.632			•		
								-1.00	-0.50	0.00	0.50	1.00
								1	Less Time (Faster)		More Time (Slow	er)

_ _ _

Figure C98. Forest plot illustrating *Combination v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.9).

<u>Study na</u> me	<u>Subgroup within s</u> tu	ud <u>©omparis</u> on	<u>Outcom</u> e	St	atistics for	each stud	y		Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015	All Participants	Combined	SDLP	0.223	0.104	-0.410	0.855				—1	
Ramaekers 2000	All Participants	Combined	Combined	1.296	0.201	0.417	2.174				 _	
Ronen 2010	All Participants	THC + Alcohol v. Baseline	RMS Lane Positio	on 0.419	0.159	-0.362	1.200					
Sexton 2002	All Participants	Cannabis + Alcohol v. Baseli	ncombined	0.353	0.107	-0.288	0.993			-+-		
				0.502	0.046	0.080	0.925					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Combination v. Baseline: Lateral Position Variability

Figure C99. Forest plot illustrating *Combination v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = zero).

<u>Study name</u>	Subgroup within s	tud <u>©omparis</u> on	<u>Outcom</u> e	St	atistics for	<u>each stud</u>	у		Hedges's	s g and	<u>95% CI</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015	All Participants	Combined	SDLP	0.221	0.052	-0.226	0.669					
Ramaekers 2000	All Participants	Combined	Combined	1.290	0.100	0.670	1.911				╶┼╋	
Ronen 2010	All Participants	THC + Alcohol v. Baseline	RMS Lane Positio	n 0.409	0.079	-0.142	0.960			+-		
Sexton 2002	All Participants	Cannabis + Alcohol v. Baseli	incombined	0.351	0.053	-0.102	0.804				┣━┤	
				0.531	0.047	0.107	0.954					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Figure C100. Forest plot illustrating *Combination v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5).

Combination v. Baseline: Lateral Position Variability

<u>Study na</u> me	Subgroup within s	tud <u>©omparis</u> on	<u>Outcom</u> e	St	atistics for	<u>each stud</u>	У		Hedges's	s g and	<u>95% CI</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015	All Participants	Combined	SDLP	0.213	0.010	0.013	0.413	1			·	
Ramaekers 2000	All Participants	Combined	Combined	1.253	0.020	0.979	1.528				⊢∎	
Ronen 2010	All Participants	THC + Alcohol v. Baseline	RMS Lane Position	n 0.349	0.015	0.106	0.593			-	┣╴┃	
Sexton 2002	All Participants	Cannabis + Alcohol v. Baseli	ncombined	0.338	0.011	0.136	0.539			-	┣┃	
				0.531	0.045	0.116	0.945					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	,

Combination v. Baseline: Lateral Position Variability

Figure C101. Forest plot illustrating *Combination v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9).

Combination v	. Baseline:	Lane	Excursions
----------------------	-------------	------	-------------------

Study name	Subgroup within study	<u>Comparison</u>	Outcome	S <u>t</u>	atistics for e	each study	7		Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.301	0.026	-0.014	0.616				▇┼╴	
Hartman 2015	All Participants	Combined	Lane Departures / Minute	0.279	0.106	-0.359	0.916		-		-	-
				0.297	0.021	0.014	0.579					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	

Figure C102. Forest plot illustrating *Combination v. Baseline: Lane Excursions* (missing pre-post correlations set to *r* = zero).

369

Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	each study	7		Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.286	0.013	0.064	0.508			-	∎⊣	
Hartman 2015	All Participants	Combined	Lane Departures / Minute	0.273	0.053	-0.177	0.724			-	∎┼─	
				0.284	0.010	0.084	0.483					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	

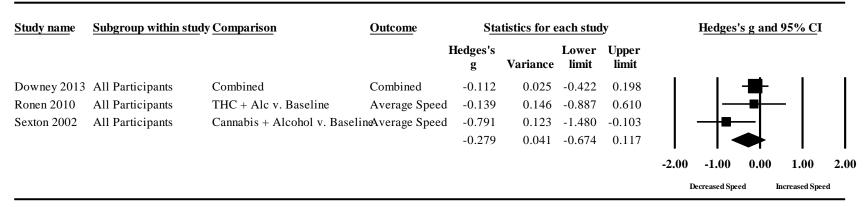

Combination v. Baseline: Lane Excursions

Figure C103. Forest plot illustrating *Combination v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.5).

<u>Study nam</u> e	Subgroup within study	<u>Comparison</u>	Outcome	S <u>t</u>	atistics for e	each study	7		Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.225	0.003	0.127	0.324					
Hartman 2015	All Participants	Combined	Lane Departures / Minute	0.238	0.010	0.038	0.438					
				0.228	0.002	0.139	0.316					
								-1.00	-0.50	0.00	0.50	1.00

.... \sim T.

Figure C104. Forest plot illustrating *Combination v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.9).

Combination v. Baseline: Speed

Figure C105. Forest plot illustrating *Combination v. Baseline: Speed* (missing pre-post correlations set to *r* = zero).

<u>Study nam</u> e	Subgroup within stu	udy <u>Comparison</u>	Outcome	S <u>ta</u>	tistics for e	each stud	ly		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.111	0.012	-0.330	0.109	1				
Ronen 2010	All Participants	THC + Alc v. Baseline	Average Speed	-0.133	0.073	-0.662	0.396					
Sexton 2002	All Participants	Cannabis + Alcohol v. Bas	elineAverage Speed	-0.786	0.062	-1.272	-0.300		∤∎	-		
				-0.315	0.044	-0.727	0.098					
								-2.00	-1.00	0.00	1.00	2.0

Combination v. Baseline: Speed

Figure C106. Forest plot illustrating *Combination v. Baseline: Speed* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within stud	ly <u>Comparison</u>	Outcome	Sta	tistics for e	each stud	ly		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.098	0.002	-0.196	-0.000	1				
Ronen 2010	All Participants	THC + Alc v. Baseline	Average Speed	-0.102	0.015	-0.339	0.134			-		
Sexton 2002	All Participants	Cannabis + Alcohol v. Basel	lineAverage Speed	-0.746	0.012	-0.960	-0.531		∣₽			
				-0.311	0.041	-0.709	0.087					
								-2.00	-1.00	0.00	1.00	2.00
								D	ecreased Spe	ed li	ncreased Spe	ed

Combination v. Baseline: Speed

Figure C107. Forest plot illustrating *Combination v. Baseline: Speed* (missing pre-post correlations set to r = 0.9)

Combination v. Baseline: Speed Variability

Study nar	ne <u>Subgroup within stu</u> dy	Comparison	Outcome	St	atistics for e	each study			Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 20	10 All Participants	THC + Alcohol v	. Baseline RMS Speed	0.249	0.149	-0.508	1.007				∎-∤	
				0.249	0.149	-0.508	1.007					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	y.

Figure C108. Forest plot illustrating *Combination v. Baseline: Speed Variability* (missing pre-post correlations set to *r* = zero).

	
Hedges's Lower Upper g Variance limit limit	
Ronen 2010All ParticipantsTHC + Alcohol v. Baseline RMS Speed0.2480.075-0.2870.784	
0.248 0.075 -0.287 0.784	
	-1.00 -0.50 0.00 0.50

Combination v. Baseline: Speed Variability

Figure C109. Forest plot illustrating *Combination v. Baseline: Speed Variability* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	<u>Comparison</u> <u>Outco</u>	ome	St	atistics for e	each study			Hedges'	s g and	95% <u>C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010	All Participants	THC + Alcohol v. Baseline RMS	Speed	0.239	0.015	0.000	0.479				₽	
				0.239	0.015	0.000	0.479					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	7

Combination v. Baseline: Speed Variability

Figure C110. Forest plot illustrating *Combination v. Baseline: Speed Variability* (missing pre-post correlations set to r = 0.9).

Subgroup within study	Comparison	Outcome		ntistics for e		_		Hedges	's g and	195% C	<u> </u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.010	0.025	-0.297	0.317		+	-	-	
			0.010	0.025	-0.297	0.317					
							-0.50	-0.25	0.00	0.25	0.5
								Fewer Exceedance	s	More Exceedance	s

Combination v. Baseline: Speed Exceedances

Figure C111. Forest plot illustrating *Combination v. Baseline: Speed Exceedances* (missing pre-post correlations set to *r* = zero).

	Combi	nation v. Ba	aseline: Spo	eed Exceed	dances						
Subgroup within study	Comparison	Outcome	Sta	tistics for e	ach study		-	Hedges	's g and	195% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.010	0.012	-0.207	0.227		-	-	—	
			0.010	0.012	-0.207	0.227			\blacklozenge		
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedance	s	More Exceedance	es

. . .

Figure C112. Forest plot illustrating *Combination v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = 0.5).

	Combi		asenne: Spo	ttu Excel	uances						
Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study		-	Hedges	's g and	195% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.009	0.002	-0.088	0.107			-	·	
			0.009	0.002	-0.088	0.107			•	•	
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedanc	es	More Exceedance	5

Combination v Baseline: Sneed Exceedances

Figure C113. Forest plot illustrating *Combination v. Baseline: Speed Exceedances* (missing pre-post correlations set to r = 0.9).

		Hedges's g	T 7 •	Lower	Upper					
		8	Variance	limit	limit					
Ramaekers 2000 All Participants Combined	d Combined	0.715	0.131	0.005	1.426					
		0.715	0.131	0.005	1.426					
						-2.00	-1.00	0.00	1.00	2.00

~ ... -0--4 e T

Figure C114. Forest plot illustrating *Combination v. Baseline: Time Out of Lane* (missing pre-post correlations set to *r* = zero).

I	<u>95% CI</u>	s g and	Hedges'	_	_	ach study	atistics for ea	Sta	Outcome	<u>Comparison</u>	Subgroup within study	Study name
					Upper limit	Lower limit	Variance	Hedges's g				
	∎┼	-			1.168	0.178	0.064	0.673	Combined	Combined	00All Participants	Ramaekers 200
					1.168	0.178	0.064	0.673				
2.00	1.00	0.00	-1.00	-2.00								
00	1.(0.00	 -1.00	-2.00	1.108	0.178	0.064	0.073				

Combination v. Baseline: Time Out of Lane

Figure C115. Forest plot illustrating *Combination v. Baseline: Time Out of Lane* (missing pre-post correlations set to r = 0.5).

		Combi	nation v. Ba	aseline: Tin	ne Out of I	Lane						
Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	_	_	Hedges	's g and	95% CI	[
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 200	00All Participants	Combined	Combined	0.496	0.012	0.285	0.706					
				0.496	0.012	0.285	0.706					
								-2.00	-1.00	0.00	1.00	2.00
								1	Less Tim	e M	lore Tin	ne

Figure C116. Forest plot illustrating *Combination v. Baseline: Time Out of Lane* (missing pre-post correlations set to r = 0.9).

					,						
Subgroup within study	Comparison	Outcome	Sta	ntistics for e	ach study		-	Hedges'	s g and	95% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.066	0.025	-0.243	0.376					·
			0.066	0.025	-0.243	0.376					-
							-0.50	-0.25	0.00	0.25	0.50
							Fe	wer Cras	hes Mo	ore Cras	hes

Figure C117. Forest plot illustrating *Combination v. Alcohol: Crashes* (missing pre-post correlations set to *r* = zero).

	Subgroup within study	<u>Comparison</u>	Outcome	Sta	tistics for ea	ach study			Hedges'	s g and	95% C	I
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 201	3 All Participants	Combined	Combined	0.067	0.012	-0.152	0.286		-		-+	
				0.067	0.012	-0.152	0.286		-			
								-0.50	-0.25	0.00	0.25	0.50
								Fe	wer Crasl	nes Mo	ore Cras	hes

Figure C118. Forest plot illustrating *Combination v. Alcohol: Crashes* (missing pre-post correlations set to r = 0.5).

Subgroup within study	Comparison	Outcome	Sta	tistics for ea	ach study]	Hedges'	s g and	95% C	<u> </u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.067	0.002	-0.031	0.164			┦╋╋	-	
			0.067	0.002	-0.031	0.164				•	
							-0.50	-0.25	0.00	0.25	0.5

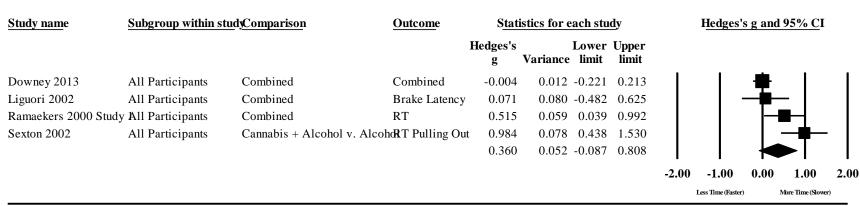

Combination v. Alcohol: Crashes

Figure C119. Forest plot illustrating *Combination v. Alcohol: Crashes* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within s	<u>tudyComparison</u>	Outcome	S <u>tat</u>	istics for e	ach stu	<u>d</u> y		Hedges	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.004	0.025	-0.311	0.303					
Liguori 2002	All Participants	Combined	Brake Latency	0.073	0.160	-0.710	0.856		-			
Ramaekers 2000 Study	All Participants	Combined	RT	0.534	0.119	-0.143	1.210			-		
Sexton 2002	All Participants	Cannabis + Alcohol v. A	lcohd T Pulling Out	1.054	0.163	0.262	1.845			-		_
				0.344	0.058	-0.127	0.814					
								-2.00	-1.00	0.00	1.00	2.00
								1	Less Time (Faster)	More Time (Slow	er)

Combination v. Alcohol: Hazard RT

Figure C120. Forest plot illustrating *Combination v. Alcohol: Hazard RT* (missing pre-post correlations set to *r* = zero).

Combination v. Alcohol: Hazard RT

Figure C121. Forest plot illustrating *Combination v. Alcohol: Hazard RT* (missing pre-post correlations set to r = 0.5).

		Combi	nation v. Alcohol:	Hazard	I RT							
Study name	Subgroup within s	<u>tudyComparison</u>	Outcome	S <u>tat</u>	istics for e	each stu	ıdy		Hedges	s g and	<u>95% C</u> I	
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.003	0.002	-0.100	0.094					
Liguori 2002	All Participants	Combined	Brake Latency	0.062	0.016	-0.183	0.308			-		
Ramaekers 2000 Stud	dy All Participants	Combined	RT	0.419	0.011	0.211	0.628			- 1-		
Sexton 2002	All Participants	Cannabis + Alcohol v	. Alcohd T Pulling Out	0.692	0.013	0.470	0.914				╼	
				0.287	0.029	-0.044	0.619					
								-2.00	-1.00	0.00	1.00	2.00
								1	Less Time (Faster)	More Time (Slow	ar)

Figure C122. Forest plot illustrating *Combination v. Alcohol: Hazard RT* (missing pre-post correlations set to r = 0.9).

<u>Study nam</u> e	Subgroup within stue	dy <u>Comparison</u>	<u>Outcom</u> e	S <u>tat</u>	istics for e	each stu	<u>d</u> y		Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance		Upper limit					
Hartman 2015	All Participants	Combined	SDLP	0.042	0.102	-0.583	0.666		-	-	- 1	
Ramaekers 200	0All Participants	Combined	Combined	0.975	0.161	0.188	1.762			-		-
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	RMS Lane Position	n 0.657	0.180	-0.175	1.489			+		
Sexton 2002	All Participants	Cannabis + Alcohol v. Alcoh	noCombined	0.392	0.108	-0.252	1.036					
				0.457	0.040	0.068	0.847					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Combination v. Alcohol: Lateral Position Variability

Figure C123. Forest plot illustrating *Combination v. Alcohol: Lateral Position Variability* (missing pre-post correlations set to *r* = zero).

<u>Study name</u>	<u>Subgroup within s</u> tu	ıd <u>Comparis</u> on	<u>Outcom</u> e	St	atistics for (each stud	y		Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015	All Participants	Combined	SDLP	0.042	0.051	-0.400	0.483			-#-	-	
Ramaekers 2000	All Participants	Combined	Combined	0.951	0.079	0.400	1.503					
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	RMS Lane Positio	n 0.653	0.090	0.066	1.241				╼┼╴	
Sexton 2002	All Participants	Cannabis + Alcohol v. Alcoh	oCombined	0.391	0.054	-0.064	0.846					
				0.480	0.038	0.096	0.865					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Combination v. Alcohol: Lateral Position Variability

Figure C124. Forest plot illustrating *Combination v. Alcohol: Lateral Position Variability* (missing pre-post correlations set to r = 0.5).

<u>Study name</u>	<u>Subgroup within s</u> tu	ud <u>©omparis</u> on	<u>Outcom</u> e	St	atistics for	<u>each stud</u>	y		Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015	All Participants	Combined	SDLP	0.041	0.010	-0.157	0.238					
Ramaekers 2000	All Participants	Combined	Combined	0.819	0.014	0.583	1.054				-	
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	RMS Lane Positio	on 0.626	0.018	0.365	0.886			·	▰╵	
Sexton 2002	All Participants	Cannabis + Alcohol v. Alcoh	oCombined	0.385	0.011	0.182	0.588					
				0.462	0.030	0.124	0.799					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Combination v. Alcohol: Lateral Position Variability

Figure C125. Forest plot illustrating *Combination v. Alcohol: Lateral Position Variability* (missing pre-post correlations set to r = 0.9).

		Combina	tion v. Alco	ohol: Lane	e Excursio	ons						
<u>Study nam</u> e	Subgroup within study	<u>Outcom</u> e	<u>Comparison</u>	S <u>t</u>	atistics for e	each study	7		Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.177	0.026	-0.136	0.490			-+-	┠─┤	
Hartman 2015	All Participants	Lane Departures / Minute	Combined	0.025	0.101	-0.600	0.649					
				0.147	0.020	-0.133	0.427					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	

Figure C126. Forest plot illustrating *Combination v. Alcohol: Lane Excursions* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Outcome	Comparison	Sta	atistics for e	each study	7		Hedges's	s g and	95% <u>C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.166	0.013	-0.055	0.387			╂┫	⊢∣	
Hartman 2015	All Participants	Lane Departures / Minute	Combined	0.025	0.051	-0.417	0.466					
				0.138	0.010	-0.060	0.335					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	

Combination v. Alcohol: Lane Excursions

Figure C127. Forest plot illustrating *Combination v. Alcohol: Lane Excursions* (missing pre-post correlations set to r = 0.5).

<u>Study nam</u> e	Subgroup within study	Outcome	<u>Comparison</u>	S <u>t</u>	atistics for e	each study	7		Hedges'	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.118	0.002	0.020	0.216					
Hartman 2015	All Participants	Lane Departures / Minute	Combined	0.025	0.010	-0.173	0.222					
				0.099	0.002	0.012	0.187					
								-1.00	-0.50	0.00	0.50	1.00
									Fewer Excursions		More Excursions	

Combination v. Alcohol: Lane Excursions

Figure C128. Forest plot illustrating *Combination v. Alcohol: Lane Excursions* (missing pre-post correlations set to r = 0.9).

	ination v. A	lcohol: Tim	e Out of L	ane								
Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	ach study	_	_	Hedges	's g and	95% Cl	[
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 200	00All Participants	Combined	Combined	0.577	0.122	-0.108	1.261			+-1	∎∔-	
				0.577	0.122	-0.108	1.261					
								-2.00	-1.00	0.00	1.00	2.00
								I	ess Tim	e N	lore Tir	ne

Figure C129. Forest plot illustrating *Combination v. Alcohol: Time Out of Lane* (missing pre-post correlations set to *r* = zero).

Combination v. A	lcohol: Time	Out of	Lane
------------------	--------------	--------	------

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	ach study	_	_	Hedges	's g and	95% CI	<u>[</u>
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 20	00All Participants	Combined	Combined	0.525	0.059	0.049	1.002				∎⊣	
				0.525	0.059	0.049	1.002					
								-2.00	-1.00	0.00	1.00	2.00
								I	æss Tim	e N	lore Tir	ne

Figure C130. Forest plot illustrating *Combination v. Alcohol: Time Out of Lane* (missing pre-post correlations set to r = 0.5).

Study name Subgroup within study	Subgroup within study	Comparison	Outcome	Stat	istics for e	ach stud	y	Ē	ledges's	s g and	95% (<u></u>
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 200	0 All Participants	Combined	Combined	0.354	0.011	0.150	0.559 0.559					
				0.354	0.011	0.150	0.559					
								-2.00	-1.00	0.00	1.00	2.00
								I	æss Tim	e M	lore Tir	ne

Combination v. Alcohol: Time Out of Lane

Figure C131. Forest plot illustrating *Combination v. Alcohol: Time Out of Lane* (missing pre-post correlations set to r = 0.9).

<u>Study nam</u> e	Subgroup within st	udy <u>Comparison</u>	Outcome	S <u>ta</u>	tistics for e	each stud	dy		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.121	0.025	-0.430	0.188			-		
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	Average Speed	-0.394	0.157	-1.172	0.383		+	•		
Sexton 2002	All Participants	Cannabis + Alcohol v. Alcol	hoAverage Speed	-0.638	0.118	-1.312	0.035		■			
				-0.239	0.020	-0.513	0.036					
								-2.00	-1.00	0.00	1.00	2.0

Figure C132. Forest plot illustrating *Combination v. Alcohol: Speed* (missing pre-post correlations set to *r* = zero).

<u>Study nam</u> e	tudy name <u>Subgroup within studyComparison</u>		Outcome	S <u>ta</u>	tistics for e	each stu	dy		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	8 All Participants	Combined	Combined	-0.121	0.012	-0.339	0.098				1	
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	Average Speed	-0.381	0.078	-0.929	0.167			∎∔		
Sexton 2002	All Participants	Cannabis + Alcohol v. Alcoh	noAverage Speed	-0.630	0.059	-1.105	-0.155		∎	⊢		
				-0.318	0.027	-0.641	0.006					
								-2.00	-1.00	0.00	1.00	2.00
								D	ecreased Spe	ed I	Increased Spe	ed

Combination v. Alcohol: Speed

Figure C133. Forest plot illustrating *Combination v. Alcohol: Speed* (missing pre-post correlations set to r = 0.5).

		Com	bination v. A	lcohol: S	speed							
Study name	Subgroup within stu	dy <u>Comparison</u>	Outcome	S <u>ta</u>	tistics for o	each stu	dy		Hedges	's g and	<u>95% C</u> I	
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	-0.116	0.002	-0.214	-0.019					
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	Average Speed	a -0.307	0.015	-0.548	-0.065		· ·	▰		
Sexton 2002	All Participants	Cannabis + Alcohol v. Alcoh	noAverage Speed	i -0.574	0.011	-0.783	-0.365		-	┠│		
				-0.322	0.022	-0.613	-0.031		•			
								-2.00	-1.00	0.00	1.00	2.00
								D	ecreased Spe	ed I	Increased Spe	ed

Figure C134. Forest plot illustrating *Combination v. Alcohol: Speed* (missing pre-post correlations set to r = 0.9).

	<u>Outcom</u> e						licages	s g anu	<u>95% C</u> I	
	H	Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010 All Participants THC + Alcohol	l v. Alcohol RMS Speed	0.320	0.153	-0.446	1.086			+=	\vdash	
		0.320	0.153	-0.446	1.086					
						-2.00	-1.00	0.00	1.00	2.00

Combination v. Alcohol: Speed Variability

Figure C135. Forest plot illustrating *Combination v. Alcohol: Speed Variability* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	Comparison	Outcome	St	atistics for e	each study			Hedges'	s g and	<u>95% CI</u>	
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	RMS Speed	0.315	0.076	-0.226	0.856			-+-	⊢	
				0.315	0.076	-0.226	0.856					
								-2.00	-1.00	0.00	1.00	2.0

Combination v. Alcohol: Speed Variability

Figure C136. Forest plot illustrating *Combination v. Alcohol: Speed Variability* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	<u>Comparison</u>	Outcome	S <u>t</u>	atistics for e	each study			Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010	All Participants	THC + Alcohol v. Alcohol	RMS Speed	0.282	0.015	0.041	0.523			∣₽		
				0.282	0.015	0.041	0.523					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Combination v. Alcohol: Speed Variability

Figure C137. Forest plot illustrating *Combination v. Alcohol: Speed Variability* (missing pre-post correlations set to r = 0.9).

	Combi	nation v. A	lcohol: Spe	ed Exceed	ances						
Subgroup within study	Comparison	Outcome	Sta	atistics for ea	ach study	_		Hedges	's g and	95% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.037	0.025	-0.345	0.270			-		
			-0.037	0.025	-0.345	0.270					
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedance	s	More Exceedance	æ

Figure C138. Forest plot illustrating *Combination v. Alcohol: Speed Exceedances* (missing pre-post correlations set to *r* = zero).

	Combi		iconoi, spe		ances						
Subgroup within study	<u>Comparison</u>	Outcome	Sta	atistics for e	ach study	_		Hedges	's g and	95% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.037	0.012	-0.254	0.181		⊢		-	
			-0.037	0.012	-0.254	0.181					
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedance	es	More Exceedance	æ

Combination v. Alcohol: Speed Exceedances

Figure C139. Forest plot illustrating *Combination v. Alcohol: Speed Exceedances* (missing pre-post correlations set to r = 0.5).

	Combi	ination v. A	lcohol: Spe	ed Exceed	ances						
Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	_		Hedges	's g and	195% C	I
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.033	0.002	-0.131	0.064					
			-0.033	0.002	-0.131	0.064					
							-0.50	-0.25	0.00	0.25	0.50
								Fewer Exceedanc	es	More Exceedance	es

C . . - 4 • J D .

Figure C140. Forest plot illustrating *Combination v. Alcohol: Speed Exceedances* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within study	Comparison		Sta	tistics for e	ach stud	<u>y</u>	ļ	Hedges'	s g and	95% (CI
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	0.051	0.025	-0.259	0.360				_	·
				0.051	0.025	-0.259	0.360					
								-0.50	-0.25	0.00	0.25	0.50
								Fe	wer Cras	hes M	ore Cras	hes

Figure C141. Forest plot illustrating *Combination v. Cannabis: Crashes* (missing pre-post correlations set to *r* = zero).

		Cor	nbination	v. Cannabi	is: Crashe	S						
Study name	Subgroup within study	<u>Comparison</u>	Outcome	Stat	tistics for e	ach stud	<u>y_</u>	Ī	ledges's	s g and	95% (<u></u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.053	0.012	-0.166	0.272		-	🍽		
				0.053	0.012	-0.166	0.272		-			
								-0.50	-0.25	0.00	0.25	0.50
								Fe	wer Crasl	nes Mo	ore Cras	hes

Figure C142. Forest plot illustrating *Combination v. Cannabis: Crashes* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	<u>Comparison</u>	Outcome	Stat	tistics for e	ach stud	<u>y</u>	Ē	ledges's	s g and	95% (<u></u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.061	0.002	-0.037	0.159			-	-	
				0.061	0.002	-0.037	0.159				▶	
								-0.50	-0.25	0.00	0.25	0.50

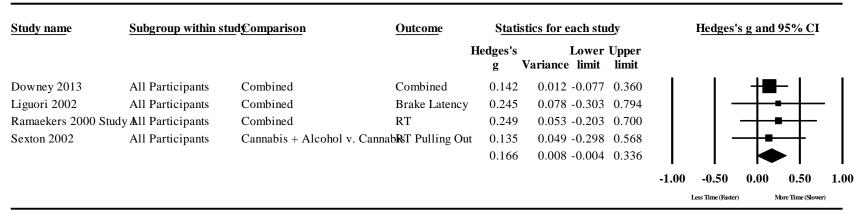

Combination v. Cannabis: Crashes

Figure C143. Forest plot illustrating *Combination v. Cannabis: Crashes* (missing pre-post correlations set to r = 0.9).

Study name	Subgroup within s		ation v. Cannabis:		stics for each stu	dv		Hedges'	s a and	95% CI	 r
<u>Study name</u>	<u>Subgroup wann s</u>			edges's	Lower Variance limit			Incuges	s g and	<u>19370 C</u> I	
Downey 2013	All Participants	Combined	Combined	0.144	0.025 -0.165	0.454			-+-	 	
Liguori 2002	All Participants	Combined	Brake Latency	0.279	0.161 -0.506	1.065					
Ramaekers 2000 S	tudy All Participants	Combined	RT	0.252	0.106 -0.387	0.891		-	_		— I
Sexton 2002	All Participants	Cannabis + Alcohol v.	Cannab R Pulling Out	0.136	0.098 -0.476	0.748			+∎		-
	-			0.171	0.015 -0.070	0.412					
							-1.00	-0.50	0.00	0.50	1.00
								Less Time (Faster	1	More Time (Slow	er)

1 D.T ~ ~

Figure C144. Forest plot illustrating *Combination v. Cannabis: Hazard RT* (missing pre-post correlations set to *r* = zero).

Combination v. Cannabis: Hazard RT

Figure C145. Forest plot illustrating *Combination v. Cannabis: Hazard RT* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within s	tud©omparison	Outcome	Statis	stics for each stu	dy		Hedges'	s g and	95% CI	
			н	ledges's g	Lower Variance limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.127	0.002 0.029	0.224					
Liguori 2002	All Participants	Combined	Brake Latency	0.163	0.015 -0.077	0.402				_	
Ramaekers 2000 S	Study All Participants	Combined	RT	0.230	0.011 0.028	0.431					
Sexton 2002	All Participants	Cannabis + Alcohol v	. Cannab RAT Pulling Out	0.128	0.010 -0.065	0.322			╶┼═╴	-	
	-			0.145	0.001 0.069	0.221					
							-1.00	-0.50	0.00	0.50	1.00
								Less Time (Faster) 1	More Time (Slow	er)

_ _ _

Figure C146. Forest plot illustrating *Combination v. Cannabis: Hazard RT* (missing pre-post correlations set to r = 0.9).

Study name Subgroup within s	tudyComparison	Outcome	S <u>tat</u>	istics for a	each stu	<u>d</u> y		Hedges's	s g and	<u>95% C</u> I	
]	Hedges's g	Variance		Upper limit					
Hartman 2015 All Participants	Combined	SDLP	0.093	0.102	-0.533	0.718		-	-	- 1	
Ramaekers 2000All Participants	Combined	Combined	0.766	0.141	0.030	1.502					
Ronen 2010 All Participants	THC + Alcohol v. THC	RMS Lane Position	0.548	0.169	-0.258	1.354			+		
Sexton 2002 All Participants	Cannabis + Alcohol v. Cann	nabiCombined	0.140	0.095	-0.465	0.745			_	-	
			0.332	0.030	-0.008	0.672					
							-2.00	-1.00	0.00	1.00	2.00
								Less Variability		More Variability	

Combination v. Cannabis: Lateral Position Variability

Figure C147. Forest plot illustrating *Combination v. Cannabis: Lateral Position Variability* (missing pre-post correlations set to r = zero).

Study name Subgroup within s	tudyComparison	Outcome	S <u>tat</u>	istics for (each stu	dy		Hedges's	s g and	95% CI	
		I	Hedges's g	Variance		Upper limit					
Hartman 2015 All Participants	Combined	SDLP	0.092	0.051	-0.350	0.535				-	
Ramaekers 2000All Participants	Combined	Combined	0.742	0.069	0.226	1.257			-	╶╋┼╴	
Ronen 2010 All Participants	THC + Alcohol v. THC	RMS Lane Position	0.494	0.082	-0.068	1.056			- - 	∎}	
Sexton 2002 All Participants	Cannabis + Alcohol v. Cann	nabiCombined	0.139	0.048	-0.289	0.567				-	
			0.336	0.023	0.036	0.636					
							-2.00	-1.00	0.00	1.00	2.00
								Less Variability		More Variability	

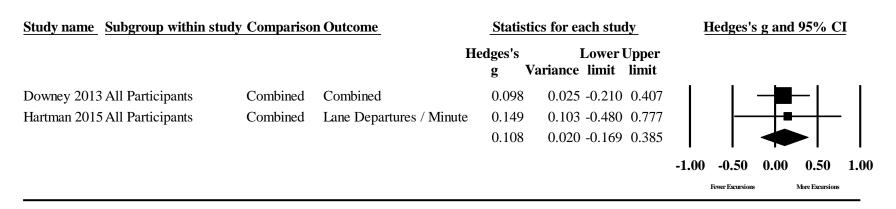

Combination v. Cannabis: Lateral Position Variability

Figure C148. Forest plot illustrating *Combination v. Cannabis: Lateral Position Variability* (missing pre-post correlations set to r = 0.5).

Study name Sub	ogroup within study	Comparison	Outcome	S <u>tat</u>	istics for e	each stu	dy		Hedges's	s g and	<u>95% C</u> I	
				Hedges's g	Variance	Lower limit	Upper limit					
Hartman 2015 All	Participants	Combined	SDLP	0.090	0.010	-0.107	0.288			#		
Ramaekers 2000All	Participants	Combined	Combined	0.628	0.013	0.406	0.850			·	▰│	
Ronen 2010 All	Participants	THC + Alcohol v. THC	RMS Lane Position	0.312	0.015	0.070	0.554			-	⊦∣	
Sexton 2002 All	Participants	Cannabis + Alcohol v. Cannab	i Combined	0.133	0.010	-0.058	0.325					
				0.286	0.015	0.047	0.525					
								-2.00	-1.00	0.00	1.00	2.00
									Less Variability		More Variability	

Combination v. Cannabis: Lateral Position Variability

Figure C149. Forest plot illustrating *Combination v. Cannabis: Lateral Position Variability* (missing pre-post correlations set to r = 0.9).

Figure C150. Forest plot illustrating *Combination v. Cannabis: Lane Excursions* (missing pre-post correlations set to *r* = zero).

Combination v. Cannabis: Lane Excursions	
---	--

Study name Subgroup within st	ady name Subgroup within study Comparison Outcome			Statistics for each study						95% C	I
		Н	ledges's g	I Variance	Lower	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.096	0.012	-0.122	0.314			-	-	
Hartman 2015 All Participants	Combined	Lane Departures / Minute	0.148	0.051	-0.296	0.592		-	─┼╼		
			0.106	0.010	-0.090	0.302				▶	
							-1.00	-0.50	0.00	0.50	1.00
								Fewer Excursions		More Excursions	

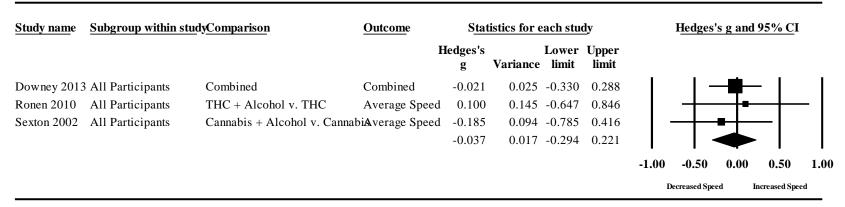
Figure C151. Forest plot illustrating *Combination v. Cannabis: Lane Excursions* (missing pre-post correlations set to r = 0.5).

Study name Subgroup within study Comparison Outcome			Statist	ics for each stud	Ē	ledges's	1 95% C	<u></u>		
	Н	ledges's g V	Lower U Variance limit							
Downey 2013 All Participants	Combined	Combined	0.083	0.002 -0.015	0.180					
Hartman 2015 All Participants	Combined	Lane Departures / Minute	0.144	0.010 -0.055	0.342			+∎	-	
			0.095	0.002 0.007	0.182					
						-1.00	-0.50	0.00	0.50	1.00
							Fewer Excursions	3	More Excursions	3

Figure C152. Forest plot illustrating *Combination v. Cannabis: Lane Excursions* (missing pre-post correlations set to r = 0.9).

		Combinat	ion v. Car	nabis: Tir	ne Out of	Lane						
Study name	Subgroup within study	Comparison	Outcome	Stat	istics for e	ach stud	l <u>y</u>	Ē	ledges's	s g and	95% (<u></u>
				Hedges's g	Variance		Upper limit					
Ramaekers 200	00 All Participants	Combined	Combined	0.531	0.121	-0.152	1.213			+	-	
				0.531	0.121	-0.152	1.213					
								-1.00	-0.50	0.00	0.50	1.00
								Ι	æss Tim	e N	Iore Tir	ne

Figure C153. Forest plot illustrating *Combination v. Cannabis: Time Out of Lane* (missing pre-post correlations set to *r* = zero).


Study name	Subgroup within study	Comparison	Outcome	Stat	istics for e	ach stud	<u>y</u>	Ē	ledges's	s g and	95% (CI
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 200	0 All Participants	Combined	Combined	0.475	0.058	0.002	0.949			⊢	-	—1
				0.475	0.058	0.002	0.949					
								-1.00	-0.50	0.00	0.50	1.00
								I	ess Tim	e N	lore Tir	ne

Combination v. Cannabis: Time Out of Lane

Figure C154. Forest plot illustrating *Combination v. Cannabis: Time Out of Lane* (missing pre-post correlations set to r = 0.5).

		Combinat	ion v. Can	nabis: Tin	ne Out of	Lane						
Study name	Subgroup within study	Comparison	Outcome	Stat	istics for e	ach stud	l <u>y</u>	Ī	Hedges's	s g and	95% (<u>11</u>
				Hedges's g	Variance	Lower limit	Upper limit					
Ramaekers 200	00 All Participants	Combined	Combined	0.328	0.011	0.124	0.532			-	∎∤	
				0.328	0.011	0.124	0.532					
								-1.00	-0.50	0.00	0.50	1.00
								I	Less Tim	e M	lore Tin	ne

Figure C155. Forest plot illustrating *Combination v. Cannabis: Time Out of Lane* (missing pre-post correlations set to r = 0.9).

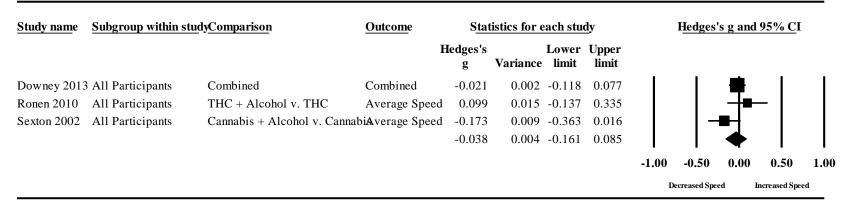

Combination v. Cannabis: Speed

Figure C156. Forest plot illustrating *Combination v. Cannabis: Speed* (missing pre-post correlations set to *r* = zero).

Combination v. Cannabis: Speed											
Study name Subgroup within st	<u>udyComparison</u>	Outcome	S <u>ta</u>	tistics for (each stu	<u>d</u> y		Hedges	's g and	<u>95% C</u> I	
			Hedges's g	Variance		Upper limit					
Downey 2013 All Participants	Combined	Combined	-0.021	0.012	-0.239	0.197					
Ronen 2010 All Participants	THC + Alcohol v. THC	Average Speed	d 0.100	0.073	-0.428	0.628		—		\rightarrow	
Sexton 2002 All Participants	Cannabis + Alcohol v. Cann	nabiAverage Speed	d -0.183	0.047	-0.608	0.241			-	-	
			-0.036	0.009	-0.219	0.146			\blacklozenge		
							-1.00	-0.50	0.00	0.50	1.00
							Γ	ecreased Spe	ed I	Increased Spe	ed

~ $\overline{}$ L ... C-.

Figure C157. Forest plot illustrating *Combination v. Cannabis: Speed* (missing pre-post correlations set to r = 0.5).

Combination v. Cannabis: Speed

Figure C158. Forest plot illustrating *Combination v. Cannabis: Speed* (missing pre-post correlations set to r = 0.9).

		Combina	ation v. Canna	ibis: Speed	d Variabi	lity						
Study name	Subgroup within study	Comparison	Outcome	Stat	tistics for ea	ach study	7	-	Hedges	's g and	195% CI	_
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010	All Participants	THC + Alcohol v.	THCRMS Speed	-0.049	0.144	-0.794	0.696			-		
				-0.049	0.144	-0.794	0.696					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	

~ ... ~ . . a

Figure C159. Forest plot illustrating *Combination v. Cannabis: Speed Variability* (missing pre-post correlations set to r = zero).

		Combina	ation v. Canna	bis: Speed	d Variabi	lity						
Study name	Subgroup within study	Comparison	Outcome	Stat	tistics for e	ach study	/	-	Hedges'	s g and	195% CI	_
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010	All Participants	THC + Alcohol v.	THCRMS Speed	-0.049	0.072	-0.575	0.478		+	-		
				-0.049	0.072	-0.575	0.478					
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability		More Variability	

Figure C160. Forest plot illustrating *Combination v. Cannabis: Speed Variability* (missing pre-post correlations set to r = 0.5).

		Combin	ation v. Canna	abis: Speed	d Variabi	lity						
Study name	Subgroup within study	Comparison	Outcome	Sta	tistics for ea	ach study	<u>y</u>	-	Hedges	's g and	195% CI	_
				Hedges's g	Variance	Lower limit	Upper limit					
Ronen 2010	All Participants	THC + Alcohol v.	THCRMS Speed	-0.047	0.014	-0.283	0.188		·	-	·	
				-0.047	0.014	-0.283	0.188		.	\blacklozenge		
								-1.00	-0.50	0.00	0.50	1.00
									Less Variability	,	More Variability	

- - J **X**7 - -- **!** - **L ! ! ! !** a 1. 0 a

Figure C161. Forest plot illustrating *Combination v. Cannabis: Speed Variability* (missing pre-post correlations set to r = 0.9).

	Combina	tion v. Car	nnabis: Spo	eed Excee	dances						
Study name Subgroup within study	Comparison	Outcome	Stat	tistics for e	ach stud	<u>y</u>	Ē	Iedges's	s g and	95% (<u>CI</u>
			Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013 All Participants	Combined	Combined	0.209	0.025	-0.101	0.520			-		;
			0.209	0.025	-0.101	0.520					
							-0.50	-0.25	0.00	0.25	0.50
							1	Fewer Exceedance	s	More Exceedance	es

Figure C162. Forest plot illustrating *Combination v. Cannabis: Speed Exceedances* (missing pre-post correlations set to *r* = zero).

Study name	Subgroup within study	<u>Comparison</u>	Outcome	Stat	istics for e	ach stud	<u>y</u>	Ē	Iedges's	s g and	1 95% (<u>CI</u>
				Hedges's g	Variance		Upper limit					
Downey 2013	All Participants	Combined	Combined	0.208	0.013	-0.011	0.428					-
				0.208	0.013	-0.011	0.428					
								-0.50	-0.25	0.00	0.25	0.50
									Fewer Exceedance	s	More Exceedance	s

Combination v. Cannabis: Speed Exceedances

Figure C163. Forest plot illustrating *Combination v. Cannabis: Speed Exceedances* (missing pre-post correlations set to r = 0.5).

Study name	Subgroup within study	<u>Comparison</u>	<u>Outcome</u>	Stat	tistics for e	ach stud	<u>y</u>	Ē	ledges'	s g and	1 95% (<u></u>
				Hedges's g	Variance	Lower limit	Upper limit					
Downey 2013	All Participants	Combined	Combined	0.199	0.003	0.100	0.297					
				0.199	0.003	0.100	0.297					
								-0.50	-0.25	0.00	0.25	0.50
								:	Fewer Exceedance	s	More Exceedanc	es

Combination v. Cannabis: Speed Exceedances

Figure C164. Forest plot illustrating *Combination v. Cannabis: Speed Exceedances* (missing pre-post correlations set to r = 0.9).

Appendix D: Forest Plots (Subgroup Analyses)

Group by	Study name	Subgroup within study	Comparison_	Outcome	Sta	atistics for e	ach study	-		Hedges	s's g and 95	5%CI	
Comparison					Hedges's g	Variance	Lower limit	Upper limit					
Bin2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.166	0.025	-0.144	0.475		1	-+∎		
Bin2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Collisions (Precision Drive)	0.396	0.100	-0.224	1.015					
Bin2 v. Baseline	Van Dyke 2017	All Participants	Bin2 v. Baseline	Crashes	0.367	0.099	-0.250	0.983					
Bin2 v. Baseline					0.238	0.017	-0.015	0.490					
Bin3 v. Baseline	Bernosky-Smith 2011	High Freq Group	Bin3 v. Baseline	Collisions	0.743	0.135	0.022	1.464					
in3 v. Baseline	Bernosky-Smith 2011	Low Freq Group	Bin3 v. Baseline	Collisions	0.453	0.130	-0.253	1.159					
in3 v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	Combined	0.493	0.054	0.036	0.949					
in3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Accidents	0.418	0.085	-0.154	0.990			-+		
in3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Collisions (Precision Drive)	0.362	0.099	-0.253	0.978					
in3 v. Baseline	Van Dyke 2017	All Participants	Bin3 v. Baseline	Crashes	0.674	0.115	0.010	1.338					
in3 v. Baseline	•	*			0.507	0.016	0.262	0.752					
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	0.158	0.025	-0.152	0.467			+∎`		
HC v. Baseline	·	*			0.158	0.025	-0.152	0.467			-		
									-2.00	-1.00	0.00	1.00	2.00
										Fewer Crashes		More Crashes	

Alcohol/Cannabis v. Baseline: Crashes (Subgroup Analysis)

Figure D1. Forest plot illustrating the effects of varying levels of alcohol, and THC, on crashes. Missing pre-post correlations set to r = zero.

Group by	Study name	Subgroup within study	Comparison	Outcome	Statis	stics for ea	ach study			Hedge	s's g and 9	5%CI	
Comparison					Hedges's g	ariance	Lower limit	Upper limit					
Bin2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.166	0.012	-0.053	0.385			∔∎⊷		
Bin2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Collisions (Precision Drive)	0.369	0.049	-0.067	0.805			-	_	
Bin2 v. Baseline	Van Dyke 2017	All Participants	Bin2 v. Baseline	Crashes	0.334	0.049	-0.099	0.767				_	
Bin2 v. Baseline					0.228	0.008	0.050	0.406					
Bin3 v. Baseline	Bernosky-Smith 2011	High Freq Group	Bin3 v. Baseline	Collisions	0.743	0.135	0.022	1.464					
Bin3 v. Baseline	Bernosky-Smith 2011	Low Freq Group	Bin3 v. Baseline	Collisions	0.453	0.130	-0.253	1.159					
Bin3 v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	Combined	0.445	0.027	0.125	0.764				-	
Bin3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Accidents	0.314	0.041	-0.083	0.711				-	
Bin3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Collisions (Precision Drive)	0.314	0.049	-0.118	0.746				_	
in3 v. Baseline	Van Dyke 2017	All Participants	Bin3 v. Baseline	Crashes	0.601	0.055	0.141	1.061					
Bin3 v. Baseline					0.438	0.009	0.256	0.620					
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	0.155	0.012	-0.063	0.374			- H∎- Ì		
HC v. Baseline					0.155	0.012	-0.063	0.374			-		
									-2.00	-1.00	0.00	1.00	2.00
										Fewer Crashes		More Crashes	

Figure D2. Forest plot illustrating the effects of varying levels of alcohol, and THC, on crashes. Missing pre-post correlations set to r = 0.5.

Group by	Study name	Subgroup within study	Comparison	Outcome	Statis	tics for ea	ach study	r		Hedge	s's g and 9	5%CI	
Comparison					Hedges's g V	/ariance	Lower limit	Upper limit					
Bin2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.165	0.002	0.067	0.262				1	1
Bin2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Collisions (Precision Drive)	0.258	0.010	0.066	0.449					
Bin2 v. Baseline	Van Dyke 2017	All Participants	Bin2 v. Baseline	Crashes	0.217	0.009	0.027	0.408					
Bin2 v. Baseline					0.190	0.002	0.110	0.269					
Bin3 v. Baseline	Bernosky-Smith 2011	High Freq Group	Bin3 v. Baseline	Collisions	0.743	0.135	0.022	1.464					,
Bin3 v. Baseline	Bernosky-Smith 2011	Low Freq Group	Bin3 v. Baseline	Collisions	0.453	0.130	-0.253	1.159					
in3 v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	Combined	0.335	0.005	0.195	0.475			- I 		
in3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Accidents	0.148	0.008	-0.026	0.322					
Bin3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Collisions (Precision Drive)	0.181	0.009	-0.009	0.371					
Bin3 v. Baseline	Van Dyke 2017	All Participants	Bin3 v. Baseline	Crashes	0.371	0.010	0.176	0.566				-	
Bin3 v. Baseline	-	-			0.276	0.003	0.174	0.378					
THC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	0.140	0.002	0.043	0.238					
THC v. Baseline		-			0.140	0.002	0.043	0.238			\bullet		
									-2.00	-1.00	0.00	1.00	2.00
										Fewer Crashes		More Crashes	

Figure D3. Forest plot illustrating the effects of varying levels of alcohol, and THC, on crashes. Missing pre-post correlations set to r = 0.9.

Group by	Study name	Subgroup within study	Comparison	Outcome	Stat	istics for ea	ach study	<u>,</u>		Hedg	es's g and 9	05%CI	
Comparison					Hedges's g		Lower limit	Upper limit					
Bin1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	Combined	-0.047	0.125	-0.740	0.646	1	-		-	
Bin1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	BRT	0.150	0.103	-0.478	0.778				<u> </u>	
Bin1 v. Baseline	Liguori 2002	All Participants	Bin1 v. Baseline	Brake Latency	0.258	0.150	-0.500	1.017			∤-■-		
in1 v. Baseline					0.115	0.041	-0.282	0.511				-	
8in2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Combined	0.232	0.121	-0.451	0.914				<u> </u>	
in2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.194	0.025	-0.119	0.507				-	
in2 v. Baseline	Liguori 1999	All Participants	Bin2 v. Baseline	Brake Latency	0.590	0.016	0.345	0.834			-	╼╴╵	
in2 v. Baseline	Liguori 2002	All Participants	Bin2 v. Baseline	Brake Latency	0.997	0.227	0.063	1.931					
in2 v. Baseline	Ramaekers 2000 Study 1	All Participants	Bin2 v. Baseline	RT	0.206	0.104	-0.425	0.838				<u> </u>	
in2 v. Baseline	Schumacher 2011	All Participants	Bin2 v. Baseline	BRT	0.553	0.125	-0.139	1.245					
n2 v. Baseline	Sexton 1997	All Participants	Bin2 v. Baseline	Combined	0.162	0.108	-0.483	0.807				<u> </u>	
n2 v. Baseline		1			0.404	0.009	0.217	0.592					
n3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Combined	0.285	0.131	-0.425	0.995					
in3 v. Baseline	Liguori 1999	All Participants	Bin3 v. Baseline	Brake Latency	0.962	0.033	0.604	1.320					
n3 v. Baseline	Liguori 2001	All Participants	Bin3 v. Baseline	Brake Latency	1.143	0.206	0.253	2.033					
n3 v. Baseline	Sexton 1997	All Participants	Bin3 v. Baseline	Combined	0.435	0.123	-0.253	1.124				∎──┼	
n3 v. Baseline	Strayer 2006	All Participants	Bin3 v. Baseline	BRT	0.009	0.048	-0.420	0.439				.	
n3 v. Baseline	5	1			0.543	0.057	0.077	1.009					
HC v. Baseline	Anderson 2010	Females	THC v. Baseline	Time to First Reaction	-0.056	0.166	-0.854	0.742		I —		<u> </u>	
HC v. Baseline	Anderson 2010	Males	THC v. Baseline	Time to First Reaction	-0.207	0.080	-0.759	0.346		_			
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	-0.004	0.025	-0.313	0.304			-		
HC v. Baseline	Liguori 1998	All Participants	THC v. Baseline	Combined	0.561	0.200	-0.315	1.437					
HC v. Baseline	Liguori 2002	All Participants	THC v. Baseline	Combined	0.662	0.183	-0.178	1.501					
HC v. Baseline	Ramaekers 2000 Study 1	All Participants	THC v. Baseline	Combined	0.408	0.111	-0.245	1.060					
HC v. Baseline	Robbe 1998 Study 2	All Participants	THC v. Baseline	Combined	0.461	0.136	-0.262	1.183					
IC v. Baseline	Sexton 2000	All Participants	THC v. Baseline	Combined	0.125	0.129	-0.580	0.830		-		<u> </u>	
IC v. Baseline	Sexton 2002	All Participants	THC v. Baseline	RT Pulling Out (Cannabis)	0.062	0.092	-0.534	0.658				_	
HC v. Baseline		Fund			0.115	0.010	-0.077	0.307			•		
									-2.00	-1.00	0.00	1.00	2.00
										Less Time (Faster)		More Time (Slower)	

Alcohol/Cannabis v. Baseline: Hazard RT (Subgroup Analysis)

Figure D4. Forest plot illustrating the effects of varying levels of alcohol, and THC, on hazard RT. Missing pre-post correlations set to r = zero.

Group by	Study name	Subgroup within study	Comparison	Outcome	Stat	istics for ea	ich study	_		Hedg	es's g and 9	5%CI	
Comparison					Hedges's g	Variance	Lower limit	Upper limit					
Bin1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	Combined	-0.051	0.062	-0.540	0.439		·		·	1
Bin1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	BRT	0.150	0.051	-0.294	0.593			──┼╋──	-	
in1 v. Baseline	Liguori 2002	All Participants	Bin1 v. Baseline	Brake Latency	0.245	0.075	-0.291	0.780				<u> </u>	
in1 v. Baseline					0.110	0.020	-0.170	0.390			-		
in2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Combined	0.209	0.060	-0.271	0.689				-	
in2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.192	0.013	-0.029	0.413			⋳⋳⋳		
in2 v. Baseline	Liguori 1999	All Participants	Bin2 v. Baseline	Brake Latency	0.590	0.016	0.345	0.834					
in2 v. Baseline	Liguori 2002	All Participants	Bin2 v. Baseline	Brake Latency	0.936	0.109	0.290	1.582			-		-
in2 v. Baseline	Ramaekers 2000 Study 1	All Participants	Bin2 v. Baseline	RT	0.194	0.052	-0.252	0.640			-+	-	
in2 v. Baseline	Schumacher 2011	All Participants	Bin2 v. Baseline	BRT	0.552	0.062	0.063	1.041			_		
in2 v. Baseline	Sexton 1997	All Participants	Bin2 v. Baseline	Combined	0.162	0.054	-0.295	0.618				-	
n2 v. Baseline		•			0.373	0.010	0.178	0.568					
n3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Combined	0.252	0.064	-0.244	0.749				_	
in3 v. Baseline	Liguori 1999	All Participants	Bin3 v. Baseline	Brake Latency	0.962	0.033	0.604	1.320					
in3 v. Baseline	Liguori 2001	All Participants	Bin3 v. Baseline	Brake Latency	1.129	0.102	0.503	1.756					-
n3 v. Baseline	Sexton 1997	All Participants	Bin3 v. Baseline	Combined	0.375	0.059	-0.102	0.853				<u> </u>	
n3 v. Baseline	Strayer 2006	All Participants	Bin3 v. Baseline	BRT	0.009	0.024	-0.295	0.313					
n3 v. Baseline	5	1			0.523	0.051	0.081	0.966					
HC v. Baseline	Anderson 2010	Females	THC v. Baseline	Time to First Reaction	-0.056	0.166	-0.854	0.742		<u> </u>		<u> </u>	
HC v. Baseline	Anderson 2010	Males	THC v. Baseline	Time to First Reaction	-0.207	0.080	-0.759	0.346		<u> </u>			
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	-0.005	0.012	-0.223	0.213					
HC v. Baseline	Liguori 1998	All Participants	THC v. Baseline	Combined	0.540	0.099	-0.076	1.155			- T		
HC v. Baseline	Liguori 2002	All Participants	THC v. Baseline	Combined	0.588	0.087	0.009	1.167				╼─┼╴	
HC v. Baseline	Ramaekers 2000 Study 1	All Participants	THC v. Baseline	Combined	0.396	0.055	-0.064	0.856				<u> </u>	
HC v. Baseline	Robbe 1998 Study 2	All Participants	THC v. Baseline	Combined	0.326	0.064	-0.169	0.820					
HC v. Baseline	Sexton 2000	All Participants	THC v. Baseline	Combined	0.123	0.065	-0.375	0.621				-	
HC v. Baseline	Sexton 2002	All Participants	THC v. Baseline	RT Pulling Out (Cannabis)	0.062	0.046	-0.359	0.483			_	-	
HC v. Baseline		·			0.148	0.007	-0.013	0.309					
									-2.00	-1.00	0.00	1.00	2.00
										Less Time (Faster)		More Time (Slower	

Alcohol/Cannabis v. Baseline: Hazard RT (Subgroup Analysis)

Figure D5. Forest plot illustrating the effects of varying levels of alcohol, and THC, on hazard RT. Missing pre-post correlations set to r = 0.5.

Froup by	Study name	Subgroup within study	Comparison	Outcome	Stat	istics for ea	ach study			_Hedge:	s's g and 9	05%CI	
Comparison					Hedges's g	Variance	Lower limit	Upper limit					
in1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	Combined	-0.070	0.012	-0.287	0.147	1	1		1	
in1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	BRT	0.148	0.010	-0.051	0.346			⋳		
in1 v. Baseline	Liguori 2002	All Participants	Bin1 v. Baseline	Brake Latency	0.181	0.015	-0.057	0.418				.	
in1 v. Baseline					0.085	0.006	-0.067	0.238			•		
in2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Combined	0.127	0.012	-0.084	0.338					
in2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.181	0.003	0.082	0.280					
in2 v. Baseline	Liguori 1999	All Participants	Bin2 v. Baseline	Brake Latency	0.590	0.016	0.345	0.834					
in2 v. Baseline	Liguori 2002	All Participants	Bin2 v. Baseline	Brake Latency	0.670	0.018	0.406	0.934					
in2 v. Baseline	Ramaekers 2000 Study 1	All Participants	Bin2 v. Baseline	RT	0.140	0.010	-0.058	0.339			_ a -		
n2 v. Baseline	Schumacher 2011	All Participants	Bin2 v. Baseline	BRT	0.548	0.012	0.329	0.766			-		
n2 v. Baseline	Sexton 1997	All Participants	Bin2 v. Baseline	Combined	0.159	0.011	-0.045	0.363					
n2 v. Baseline		-			0.329	0.007	0.169	0.490			- 4	▶	
n3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Combined	0.134	0.012	-0.080	0.349			-∎-		
n3 v. Baseline	Liguori 1999	All Participants	Bin3 v. Baseline	Brake Latency	0.962	0.033	0.604	1.320					
n3 v. Baseline	Liguori 2001	All Participants	Bin3 v. Baseline	Brake Latency	1.035	0.019	0.764	1.306					
n3 v. Baseline	Sexton 1997	All Participants	Bin3 v. Baseline	Combined	0.228	0.011	0.022	0.434				.	
n3 v. Baseline	Strayer 2006	All Participants	Bin3 v. Baseline	BRT	0.009	0.005	-0.127	0.145			•		
n3 v. Baseline					0.455	0.037	0.076	0.834					
IC v. Baseline	Anderson 2010	Females	THC v. Baseline	Time to First Reaction	-0.056	0.166	-0.854	0.742					
IC v. Baseline	Anderson 2010	Males	THC v. Baseline	Time to First Reaction	-0.207	0.080	-0.759	0.346		— —			
IC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	-0.007	0.002	-0.104	0.091			•		
IC v. Baseline	Liguori 1998	All Participants	THC v. Baseline	Combined	0.426	0.019	0.159	0.693			_ _	-	
HC v. Baseline	Liguori 2002	All Participants	THC v. Baseline	Combined	0.368	0.016	0.123	0.612				⊢	
HC v. Baseline	Ramaekers 2000 Study 1	All Participants	THC v. Baseline	Combined	0.338	0.011	0.135	0.542			_	-	
HC v. Baseline	Robbe 1998 Study 2	All Participants	THC v. Baseline	Combined	0.146	0.012	-0.070	0.361					
IC v. Baseline	Sexton 2000	All Participants	THC v. Baseline	Combined	0.110	0.013	-0.112	0.333			_+=-		
HC v. Baseline	Sexton 2002	All Participants	THC v. Baseline	RT Pulling Out (Cannabis)	0.062	0.009	-0.127	0.250					
HC v. Baseline		-			0.164	0.004	0.037	0.290			•		
									-2.00	-1.00	0.00	1.00	2.00
										Less Time (Faster)		More Time (Slowe	•

Alcohol/Cannabis v. Baseline: Hazard RT (Subgroup Analysis)

Figure D6. Forest plot illustrating the effects of varying levels of alcohol, and THC, on hazard RT. Missing pre-post correlations set to r = 0.9.

Group by	Study name	Subgroup within stu	ly <u>Compariso</u> n	Outcome	Statis	stics for e	ach study	,	Hedges's g and 95% CI
Comparison					Hedges's		Lower		
						ariance	limit	limit	
Bin1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	Combined	0.026	0.113	-0.634	0.686	
Bin1 v. Baseline	Berthelon 2018	All Participants	Bin1 v. Baseline	SDLP	0.470	0.071	-0.051	0.991	
Bin1 v. Baseline Bin1 v. Baseline	Kuypers 2006 Ramaekers 1992	All Participants All Participants	Bin1 v. Baseline Bin1 v. Baseline	SDLP SDLP	0.725 0.553	0.131 0.132	0.017 -0.158	1.434 1.264	
Sin1 v. Baseline	Sklar 2014	Older (Low+Placebo)	Binl v. Baseline	LPSD	-0.481	0.152	-1.252	0.289	
in1 v. Baseline	Sklar 2014 Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	LPSD	0.198	0.154	-0.563	0.289	
in1 v. Baseline	Vermeeren 2002b	All Participants	Bin1 v. Baseline Bin1 v. Baseline	Combined	0.733	0.131	0.037	1.428	
in1 v. Baseline	Zhang 2014	All Participants	Bin1 v. Baseline	SD Lane Position	0.101	0.085	-0.471	0.672	
in1 v. Baseline					0.304	0.018	0.040	0.569	
in2 v. Baseline	Arredt 2001	All Participants	Bin2 v. Baseline	Tracking Variability	0.000	0.101	-0.624	0.624	
in2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Combined	0.242	0.116	-0.427	0.910	
in2 v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline	SDLP	0.744	0.082	0.184	1.304	
in2 v. Baseline	Christoforou 2012	All Participants	Bin2 v. Baseline	Variation in Within-Lane Pos.	0.563	0.046	0.142	0.983	
in2 v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline	Combined	0.153	0.007	-0.013	0.319	+-
n2 v. Baseline	Home 1991	Early Afternoon	Bin2 v. Baseline	Lat. Pos. Var.	0.166	0.147	-0.584	0.917	
in2 v. Baseline	Home 1991	Early Evening	Bin2 v. Baseline	Lat. Pos. Var.	0.715	0.187	-0.132	1.563	
in2 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline	Combined	0.302	0.084	-0.266	0.869	
in2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	0.180	0.019	-0.088	0.448	
in2 v. Baseline	Lenne 2003	All Participants	Bin2 v. Baseline	SDLP	0.807	0.119	0.131	1.484	
in2 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	Combined	0.312	0.061	-0.171	0.794	
in2 v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline	SDLP	0.242	0.072	-0.283	0.768	
in2 v. Baseline	Ramaekers 2000	All Participants	Bin2 v. Baseline	Combined	0.486	0.115	-0.179	1.152	
in2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.494	0.105	-0.140	1.128	
in2 v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	SDLP	0.716	0.137	-0.009	1.441	
in2 v. Baseline	Sexton 1997	All Participants	Bin2 v. Baseline	Combined LPSD	0.188	0.104	-0.444	0.820	
in2 v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline		-0.149	0.162	-0.939	0.641	
in2 v. Baseline	Sklar 2014 Studies 2014	Younger (High+Placebo)	Bin2 v. Baseline	LPSD	0.473	0.167	-0.327	1.274	
in2 v. Baseline in2 v. Baseline	Starkey 2014 van der Sluiszen 2016	Med+Placebo All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined SDLP	0.062 0.763	0.116 0.098	-0.605 0.148	0.729	
in2 v. Baseline in2 v. Baseline	Van der Stuiszen 2016 Van Dyke 2014	All Participants Control Group	Bin2 v. Baseline Bin2 v. Baseline	SDLP LPSD	0.763	0.098	-0.085	1.377	
in2 v. Baseline	Van Dyke 2014 Van Dyke 2014	DUI Group	Bin2 v. Baseline Bin2 v. Baseline	LPSD	0.485	0.084	-0.085	0.742	
in2 v. Baseline	Vali Dyke 2014 Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline Bin2 v. Baseline	SDLP (Road Tracking)	0.199	0.077	-0.343	1.180	
in2 v. Baseline	Vermeeren 2002a	All Participants	Bin2 v. Baseline Bin2 v. Baseline	SDLP (Road Tracking) SDLP	0.527	0.071	-0.127	1.180	
sin2 v. Baseline	Weafer 2008 Study 2	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined	0.491	0.071	-0.032	1.397	
in2 v. Baseline	Wealer 2008 Study 2 Wealer 2012	All Participants	Bin2 v. Baseline Bin2 v. Baseline	SDLP (Test 1)	0.407	0.223	-0.405	1.712	
in2 v. Baseline	Zhang 2014	All Participants	Bin2 v. Baseline	SDLate Position	0.406	0.092	-0.188	1.001	
lin2 v. Baseline	1100 2011	. ur i uncipanto	Dill2 1. Datchite	SD Life I Galdar	0.310	0.002	0.217	0.403	
kin3 v. Baseline	Arredt 2001	All Participants	Bin3 v. Baseline	Tracking Variability	1.007	0.158	0.229	1.785	
in3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Combined	0.684	0.142	-0.054	1.423	
kin3 v. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.667	0.164	-0.127	1.462	
kin3 v. Baseline	Harrison 2005	Alcohol Group	Bin3 v. Baseline	Within-Lane Deviation	2.539	0.249	1.561	3.516	
in3 v. Baseline	Harrison 2007	Control Group	Bin3 v Baseline	Within Lane Deviation	0.778	0.228	-0.157	1.713	
kin3 v. Baseline	Harrison 2011	All Participants	Bin3 v. Baseline	SDLP	0.774	0.198	-0.099	1.647	
Bin3 v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.631	0.054	0.176	1.087	
Bin3 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.613	0.096	0.006	1.219	
in3 v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	SDLP	0.588	0.057	0.122	1.055	
kin3 v. Baseline	Laude 2016 Study 3	Control Drivers	Bin3 v. Baseline	SDLP	0.679	0.183	-0.159	1.517	
in3 v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.415	0.020	0.135	0.695	
in3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Within Lane Dev.	0.640	0.095	0.036	1.244	
in3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Within Lane Dev.	0.954	0.169	0.147	1.761	
in3 v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.907	0.147	0.155	1.658	
in3 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.314	0.187	-0.533	1.161	
in3 v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	SDLP	0.821	0.095	0.218	1.424	
in3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.682	0.119	0.005	1.359	
kin3 v. Baseline	Sexton 1997	All Participants	Bin3 v. Baseline	Combined	0.666	0.126	-0.030	1.361	
in3 v. Baseline	Simons 2012	All Participants	Bin3 v. Baseline	Combined	0.788	0.183	-0.049	1.626	
in3 v. Baseline	Starkey 2014	High+Placebo	Bin3 v. Baseline	Combined CDUP	-0.019	0.117	-0.688	0.650	
in3 v. Baseline	Van Dyke 2015	All Participants	Bin3 v. Baseline	SDLP	0.393	0.042	-0.008	0.794	
in3 v. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	SDLP	0.611	0.097	-0.001	1.222	
in3 v. Baseline	Weater 2012	All Participants	Bin3 v. Baseline	SDLP (Test 2)	0.580	0.109	-0.067	1.226	
in3 v. Baseline	Zhang 2014	All Participants	Bin3 v. Baseline	SD Lane Position	0.547	0.098	-0.067	1.161	
lin3 v. Baseline lin4 v. Baseline	Mets 2011	All Participants	Bin4 v. Baseline	SDLP	0.621	0.005	0.489	0.753 1.603	
	MEIS 2011	All Participants	DIN4 V. Baseline	3LALP					
in4 v. Baseline HC v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	0.969	0.105 0.037	0.335	1.603 0.747	
HC v. Baseline HC v. Baseline	Arkell 2019 Bosker 2012	All Participants Heavy Users	THC v. Baseline THC v. Baseline	Combined Combined	0.372 0.322	0.037	-0.003 -0.445	0.747	
HC v. Baseline	Bosker 2012 Bosker 2012	Occasional Users	THC v. Baseline	Combined	0.322	0.155	-0.445	1.089	
HC v. Baseline	Brands 2019	High THC Group	THC v. Baseline THC v. Baseline	Lateral Control	0.824 0.251	0.205	-0.059	0.752	
HC v. Baseline HC v. Baseline	Brands 2019 Brands 2019	Low THC Group	THC v. Baseline THC v. Baseline	Lateral Control Lateral Control	0.251	0.065	-0.250	0.752	
HC v. Baseline	Hartman 2015	All Participants	THC v. Baseline	Combined	0.289	0.064	-0.207	0.785	
HC v. Baseline	Ramaekers 2000	All Participants	THC v. Baseline THC v. Baseline	Combined	0.125	0.102	-0.502	1.349	
HC v. Baseline	Robbe 1998 Study 1	All Participants	THC v. Baseline	Combined	0.655	0.125	-0.040	1.349	
HC v. Baseline	Robbe 1998 Study 1 Robbe 1998 Study 2	All Participants	THC v. Baseline	Combined	0.468	0.092	-0.125	1.001	
HC v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	0.883	0.174	-0.252	1.237	
HC v. Baseline	Ronen 2008	All Participants	THC v. Baseline THC v. Baseline	RMS Lane Position (THC)	0.492	0.144	-0.252	0.819	
HC v. Baseline	Sexton 2000	All Participants	THC v. Baseline	Combined	0.074	0.145	-0.672	1.175	
HC v. Baseline	Sexton 2000 Sexton 2002	All Participants	THC v. Baseline	Combined	0.420	0.149	-0.336	0.784	
HC v. Baseline	Veldstra 2015	All Participants	THC v. Baseline	Combined	0.340	0.100	-0.437	0.907	
HC v. Baseline	- ausua 2015	aucipano	The v. Dasalle	condita	0.366	0.007	-0.228	0.907	
					0.500	0.007	0.200	0.020	

Alcohol/Cannabis vs. Baseline: Lateral Position Variability (Subgroup Analysis)

Figure D7. Forest plot illustrating the effects of varying levels of alcohol, and THC, on lateral position variability. Missing pre-post correlations set to r = zero.

oup by	Study name	Subgroup within stu	ly <u>Compariso</u> n	Outcome	Statis	tics for e	ach study		Hedge	s's g and 95%CI
mparison					Hedges's g V		Lower limit	Upper limit		
1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	Combined	0.026	0.057	-0.441	0.493	<u>і</u>	→ — I
1 v. Baseline	Berthelon 2018	All Participants	Bin1 v. Baseline	SDLP	0.467	0.035	0.099	0.835		
l v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	SDLP	0.725	0.065	0.225	1.226		
l v. Baseline	Ramaekers 1992	All Participants	Bin1 v. Baseline	SDLP	0.552	0.066	0.049	1.055		
v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	LPSD	-0.481	0.154	-1.252	0.289		
v. Baseline	Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	LPSD	0.198	0.151	-0.563	0.959		
v. Baseline	Vermeeren 2002b	All Participants	Bin1 v. Baseline	Combined	0.724	0.063	0.234	1.214		
v. Baseline	Zhang 2014	All Participants	Bin1 v. Baseline	SD Lane Position	0.101	0.042	-0.303	0.504		I
v. Baseline	Ū.				0.336	0.016	0.090	0.582		
v. Baseline	Arredt 2001	All Participants	Bin2 v. Baseline	Tracking Variability	0.000	0.051	-0.441	0.441		<u> </u>
v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Combined	0.241	0.058	-0.231	0.714		
v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline	SDLP	0.706	0.040	0.314	1.097		
v. Baseline	Christoforou 2012	All Participants	Bin2 v. Baseline	Variation in Within-Lane Pos.	0.522	0.023	0.227	0.816		
v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline	Combined	0.153	0.007	-0.013	0.319		
v. Baseline	Home 1991	Early Afternoon	Bin2 v. Baseline	Lat. Pos. Var.	0.161	0.073	-0.369	0.692		 I
v. Baseline	Home 1991	Early Evening	Bin2 v. Baseline	Lat. Pos. Var.	0.644	0.089	0.058	1.230		
v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline	Combined	0.296	0.042	-0.105	0.696		+
v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	0.179	0.009	-0.011	0.368		H−−
v. Baseline	Lenne 2003	All Participants	Bin2 v. Baseline	SDLP	0.780	0.059	0.306	1.254		
v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	Combined	0.312	0.061	-0.171	0.794		+ I
v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline	SDLP	0.242	0.036	-0.130	0.614		+
v. Baseline	Ramaekers 2000	All Participants	Bin2 v. Baseline	Combined	0.480	0.057	0.010	0.949		
v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.482	0.052	0.035	0.928		I
v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	SDLP	0.709	0.068	0.198	1.221		
v. Baseline	Sexton 1997	All Participants	Bin2 v. Baseline	Combined	0.182	0.052	-0.265	0.628		+ 1
v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	LPSD	-0.149	0.162	-0.939	0.641	I——	<u> </u>
v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	LPSD	0.473	0.167	-0.327	1.274		++
. Baseline	Starkey 2014	Med+Placebo	Bin2 v. Baseline	Combined	0.062	0.116	-0.605	0.729	I –	_ _ I
v. Baseline	van der Sluiszen 2016	All Participants	Bin2 v. Baseline	SDLP	0.751	0.049	0.318	1.184		
v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline	LPSD	0.482	0.042	0.079	0.884		
v. Baseline	Van Dyke 2014	DUI Group	Bin2 v. Baseline	LPSD	0.199	0.038	-0.185	0.582		
v. Baseline	Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline	SDLP (Road Tracking)	0.526	0.056	0.064	0.988		
v. Baseline	Vermeeren 2002a	All Participants	Bin2 v. Baseline	SDLP (rotal rinking)	0.485	0.036	0.116	0.855		
. Baseline	Wealer 2008 Study 2	All Participants	Bin2 v. Baseline	Combined	0.450	0.112	-0.204	1.105		
v. Baseline	Weafer 2012	All Participants	Bin2 v. Baseline	SDLP (Test 1)	0.930	0.068	0.420	1.440		
v. Baseline	Zhang 2014	All Participants	Bin2 v. Baseline	SD Lane Position	0.379	0.045	-0.039	0.797		
v. Baseline	1100 2014	. In Function	Dill2 1. Datellite	55 Hill I called	0.377	0.002	0.283	0.471		
v. Baseline	Amedt 2001	All Participants	Bin3 v. Baseline	Tracking Variability	0.851	0.002	0.329	1.373		
. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Combined	0.679	0.071	0.158	1.201		
. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.647	0.081	0.138	1.201		
. Baseline	Harrison 2005	Alcohol Group	Bin3 v. Baseline	Within-Lane Deviation	2.539	0.081	1.561	3.516		
Baseline	Harrison 2007		Bin3 v. Baseline	Within Lane Deviation	0.720	0.110	0.072	1.369		
7. Baseline 7. Baseline		Control Group		SDLP						
v. Baseline v. Baseline	Harrison 2011 Helland 2016	All Participants All Participants	Bin3 v. Baseline Bin3 v. Baseline	Combined	0.774 0.631	0.198 0.054	-0.099 0.176	1.647 1.087		
. Baseline	Kenntner-Mabiala 2015		Bin3 v. Baseline	Combined	0.608	0.054		1.087		
		All Participants					0.180			
Baseline	Laude 2016	All Participants	Bin3 v. Baseline Bin3 v. Baseline	SDLP SDLP	0.553	0.028	0.226	0.880 1.223		
. Baseline	Laude 2016 Study 3	Control Drivers			0.638					
. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.404	0.010	0.207	0.602		
7. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Within Lane Dev.	0.553	0.045	0.135	0.970		
. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Within Lane Dev.	0.851	0.079	0.300	1.401		
Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.831	0.070	0.313	1.349		
. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.293	0.092	-0.302	0.888		
Baseline	Mets 2011	All Participants	Bin3 v. Baseline	SDLP	0.819	0.047	0.392	1.245		
. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.665	0.059	0.187	1.142		
. Baseline	Sexton 1997	All Participants	Bin3 v. Baseline	Combined	0.643	0.062	0.154	1.132		
v. Baseline	Simons 2012	All Participants	Bin3 v. Baseline	Combined	0.708	0.087	0.130	1.285		
Baseline	Starkey 2014	High+Placebo	Bin3 v. Baseline	Combined	-0.019	0.117	-0.688	0.650	I —	
Baseline	Van Dyke 2015	All Participants	Bin3 v. Baseline	SDLP	0.385	0.021	0.102	0.668		
. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	SDLP	0.557	0.047	0.131	0.984		
. Baseline	Weafer 2012	All Participants	Bin3 v. Baseline	SDLP (Test 2)	0.573	0.054	0.116	1.030		
v. Baseline	Zhang 2014	All Participants	Bin3 v. Baseline	SD Lane Position	0.498	0.048	0.069	0.926		
v. Baseline					0.599	0.003	0.493	0.706		
 Baseline 	Mets 2011	All Participants	Bin4 v. Baseline	SDLP	0.933	0.051	0.490	1.376		
v. Baseline					0.933	0.051	0.490	1.376		
v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	0.372	0.037	-0.003	0.747		
. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	0.321	0.076	-0.221	0.864		→ →→
. Baseline	Bosker 2012	Occasional Users	THC v. Baseline	Combined	0.781	0.098	0.166	1.396		
Baseline	Brands 2019	High THC Group	THC v. Baseline	Lateral Control	0.178	0.032	-0.174	0.529		+
Baseline	Brands 2019	Low THC Group	THC v. Baseline	Lateral Control	0.204	0.031	-0.143	0.551		+
Baseline	Hartman 2015	All Participants	THC v. Baseline	Combined	0.124	0.051	-0.319	0.567		I
. Baseline	Ramaekers 2000	All Participants	THC v. Baseline	Combined	0.642	0.062	0.153	1.131		
v. Baseline	Robbe 1998 Study 1	All Participants	THC v. Baseline	Combined	0.464	0.046	0.045	0.883		
v. Baseline	Robbe 1998 Study 2	All Participants	THC v. Baseline	Combined	0.624	0.073	0.093	1.155		
v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	0.484	0.073	-0.042	1.009		
v. Baseline	Ronen 2008	All Participants	THC v. Baseline THC v. Baseline	RMS Lane Position (THC)	0.484	0.072	-0.042	0.589	Ι.	
v. Baseline v. Baseline				Combined		0.072		0.589	I	
	Sexton 2000 Sexton 2002	All Participants	THC v. Baseline		0.379		-0.148			
v. Baseline	Sexton 2002	All Participants	THC v. Baseline	Combined	0.157	0.050	-0.281	0.595		
Baseline Baseline	Veldstra 2015	All Participants	THC v. Baseline	Combined	0.326	0.042	-0.074 0.212	0.727 0.451		

Figure D8. Forest plot illustrating the effects of varying levels of alcohol, and THC, on lateral position variability. Missing pre-post correlations set to r = 0.5.

Comparison	Study name	Subgroup within stue	ly <u>Comparison</u>	Outcome	Stat	tistics for e	ach stud	y .	Hedges's g and 95% CI
Comparison					Hedges's	Variance	Lower limit	Upper limit	
	D 1 1 2014	10 D		a	g	variance 0.011		0.231	
in1 v. Baseline in1 v. Baseline	Berthelon 2014 Berthelon 2018	All Participants All Participants	Bin1 v. Baseline Bin1 v. Baseline	Combined SDLP	0.023	0.011	-0.186 0.285	0.231 0.613	
int v. Baseline	Kuypers 2006	All Participants	Binl v. Baseline	SDLP	0.725	0.007	0.283	0.949	
in1 v. Baseline	Ramaekers 1992	All Participants	Binl v. Baseline	SDLP	0.544	0.013	0.301	0.769	
n1 v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	LPSD	-0.481	0.013	-1.252	0.289	
11 v. Baseline	Sklar 2014 Sklar 2014	Younger (Low+Placebo)	Binl v. Baseline	LPSD	-0.481	0.154	-0.563	0.289	
1 v. Baseline 1 v. Baseline	Vermeeren 2002b	All Participants	Bin1 v. Baseline	Combined	0.198	0.151	-0.565	0.959	
1 v. Baseline 1 v. Baseline	Zhang 2014	All Participants	Bin1 v. Baseline	SD Lane Position	0.007	0.012	-0.081	0.382	
1 v. Baseline	Zhang 2014	All Participants	Bini V. Baseline	SD Lane Position	0.100		0.132	0.280	
	1 1 2001	111 D	D' 0 D 1			0.013			
2 v. Baseline	Amedt 2001	All Participants	Bin2 v. Baseline	Tracking Variability	0.000	0.010	-0.197	0.197	I I T I
2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Combined	0.240	0.012	0.029	0.451	
12 v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline	SDLP	0.526	0.007	0.359	0.693	-
12 v. Baseline	Christoforou 2012	All Participants	Bin2 v. Baseline	Variation in Within-Lane Pos.	0.358	0.004	0.231	0.485	1 1 1-1
2 v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline	Combined	0.153	0.007	-0.013	0.319	
2 v. Baseline	Home 1991	Early Afternoon	Bin2 v. Baseline	Lat. Pos. Var.	0.133	0.015	-0.104	0.369	
v. Baseline	Home 1991	Early Evening	Bin2 v. Baseline	Lat. Pos. Var.	0.406	0.016	0.160	0.652	
2 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline	Combined	0.261	0.008	0.083	0.439	
i2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	0.170	0.002	0.085	0.255	1 1 1- 1
2 v. Baseline	Lenne 2003	All Participants	Bin2 v. Baseline	SDLP	0.631	0.011	0.428	0.834	1 1
12 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	Combined	0.312	0.061	-0.171	0.794	1 1 +1
2 v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline	SDLP	0.238	0.007	0.072	0.405	1 1 1 1
v. Baseline	Ramaekers 2000	All Participants	Bin2 v. Baseline	Combined	0.434	0.011	0.226	0.643	
v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.409	0.010	0.213	0.606	
v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	SDLP	0.662	0.013	0.436	0.887	
v. Baseline	Sexton 1997	All Participants	Bin2 v. Baseline	Combined	0.149	0.010	-0.050	0.348	
v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	LPSD	-0.149	0.162	-0.939	0.641	
v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	LPSD	0.473	0.162	-0.327	1.274	
v. Baseline	Starkey 2014	Med+Placebo	Bin2 v. Baseline Bin2 v. Baseline	Combined	0.473	0.107	-0.327	0.729	
v. Baseline	van der Sluiszen 2016	All Participants	Bin2 v. Baseline Bin2 v. Baseline	SDLP	0.062	0.009	-0.005	0.729	
v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline Bin2 v. Baseline	LPSD	0.075	0.009	0.480	0.637	
v. Baseline v. Baseline	Van Dyke 2014 Van Dyke 2014	DUI Group	Bin2 v. Baseline Bin2 v. Baseline	LPSD	0.458	0.008	0.279	0.364	
v. Baseline v. Baseline			Bin2 v. Baseline Bin2 v. Baseline		0.193	0.008	0.021	0.364 0.726	
v. Baseline v. Baseline	Veldstra 2012 Study 2 Vermeeren 2002a	All Participants	Bin2 v. Baseline Bin2 v. Baseline	SDLP (Road Tracking) SDLP	0.519	0.011	0.313	0.726 0.611	
v. Baseline v. Baseline	Vermeeren 2002a Weafer 2008 Study 2	All Participants			0.447				
		All Participants	Bin2 v. Baseline	Combined SDLD (Text 1)		0.021	0.079	0.653	
2 v. Baseline	Weafer 2012	All Participants	Bin2 v. Baseline	SDLP (Test 1)	0.698	0.012	0.486	0.909	
v. Baseline	Zhang 2014	All Participants	Bin2 v. Baseline	SD Lane Position	0.265	0.009	0.082	0.449	
v. Baseline					0.354	0.001	0.278	0.429	1 1 1 • 1
v. Baseline	Amedit 2001	All Participants	Bin3 v. Baseline	Tracking Variability	0.469	0.011	0.261	0.678	1 1 1-1
v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Combined	0.645	0.014	0.414	0.876	
. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.538	0.015	0.298	0.778	
v. Baseline	Harrison 2005	Alcohol Group	Bin3 v. Baseline	Within-Lane Deviation	2.539	0.249	1.561	3.516	
v. Baseline	Harrison 2007	Control Group	Bin3 v. Baseline	Within Lane Deviation	0.492	0.019	0.221	0.763	1 1 1
v. Baseline	Harrison 2011	All Participants	Bin3 v. Baseline	SDLP	0.774	0.198	-0.099	1.647	
v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.631	0.054	0.176	1.087	1 1 1
v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.573	0.009	0.384	0.763	
v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	SDLP	0.398	0.005	0.256	0.539	-
v. Baseline	Laude 2016 Study 3	Control Drivers	Bin3 v. Baseline	SDLP	0.458	0.016	0.209	0.708	1 1 1
v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.354	0.002	0.266	0.441	1 1 1-1
v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Within Lane Dev.	0.317	0.008	0.139	0.494	
v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Within Lane Dev.	0.524	0.013	0.300	0.747	
v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.561	0.012	0.347	0.775	
v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.204	0.012	-0.055	0.464	
v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	SDLP	0.802	0.009	0.613	0.992	1 1 1
v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.601	0.012	0.389	0.813	
v. Baseline	Sexton 1997	All Participants	Bin3 v. Baseline	Combined	0.523	0.012	0.389	0.735	
v. Baseline	Simons 2012	All Participants	Bin3 v. Baseline	Combined	0.323	0.012	0.311	0.705	
3 v. Baseline 3 v. Baseline	Simons 2012 Starkey 2014	All Participants High+Placebo	Bin3 v. Baseline Bin3 v. Baseline	Combined	-0.019	0.015	-0.688	0.705	
	Van Dyke 2015	All Participants	Bin3 v. Baseline Bin3 v. Baseline	SDLP	-0.019 0.334	0.117	-0.688 0.208	0.650	
v. Baseline v. Baseline	Van Dyke 2015 Weafer 2008 Study 1		Bin3 v. Baseline Bin3 v. Baseline	SDLP	0.334	0.004	0.208	0.459	
		All Participants							
v. Baseline	Weafer 2012	All Participants	Bin3 v. Baseline	SDLP (Test 2)	0.528	0.011	0.326	0.730	
v. Baseline	Zhang 2014	All Participants	Bin3 v. Baseline	SD Lane Position	0.323	0.009	0.138	0.508	
v. Baseline					0.478	0.001	0.407	0.549	♦_
v. Baseline	Mets 2011	All Participants	Bin4 v. Baseline	SDLP	0.741	0.009	0.555	0.927	
v. Baseline					0.741	0.009	0.555	0.927	◆
v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	0.372	0.037	-0.003	0.747	
v. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	0.317	0.015	0.075	0.560	
v. Baseline	Bosker 2012	Occasional Users	THC v. Baseline	Combined	0.583	0.017	0.325	0.841	
v. Baseline	Brands 2019	High THC Group	THC v. Baseline	Lateral Control	0.080	0.006	-0.077	0.236	1 1 1- 1
v. Baseline	Brands 2019	Low THC Group	THC v. Baseline	Lateral Control	0.091	0.006	-0.062	0.245	
v. Baseline	Hartman 2015	All Participants	THC v. Baseline	Combined	0.122	0.010	-0.076	0.320	
v. Baseline	Ramaekers 2000	All Participants	THC v. Baseline	Combined	0.573	0.012	0.358	0.788	
v. Baseline	Robbe 1998 Study 1	All Participants	THC v. Baseline	Combined	0.441	0.009	0.254	0.627	
C v. Baseline	Robbe 1998 Study 1 Robbe 1998 Study 2	All Participants	THC v. Baseline	Combined	0.279	0.009	0.2.54	0.498	
C v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	0.433	0.012	0.000	0.498	
C v. Baseline C v. Baseline	Ronen 2008	All Participants	THC v. Baseline	RMS Lane Position (THC)	0.433	0.014	-0.200	0.005	
C v. Baseline C v. Baseline	Sexton 2010		THC v. Baseline THC v. Baseline	Combined	0.035	0.014	-0.201	0.270	
	Sexton 2000 Sexton 2002	All Participants							
		All Participants	THC v. Baseline	Combined	0.119	0.010	-0.075	0.314	1 1 1- 1
C v. Baseline		10 D							
	Veldstra 2015	All Participants	THC v. Baseline	Combined	0.261 0.270	0.008	0.084	0.437 0.365	

Alcohol/Cannabis vs. Baseline: Lateral Position Variability (Subgroup Analysis)

Figure D9. Forest plot illustrating the effects of varying levels of alcohol, and THC, on lateral position variability. Missing pre-post correlations set to r = 0.9.

Froup by	Study name	Subgroup within study	Comparison	Outcome	Stati	stics for ea	ich stud	<u>y</u>		Hedge	s's g and 95	%CI	
Comparison					Hedges's g	Variance	Lower limit	Upper limit					
in2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Off-Road Events / 5 Minutes	1.343	0.202	0.463	2.222		1	-		
in2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.129	0.025	-0.182	0.440			_ +=		
in2 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline	Combined	0.548	0.093	-0.049	1.145					
in2 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	Combined	0.220	0.025	-0.089	0.530				.	
n2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.314	0.097	-0.296	0.925					
n2 v. Baseline	Starkey 2014	Med+Placebo	Bin2 v. Baseline	Combined	0.706	0.123	0.018	1.393					
n2 v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline	Centerline and Road Edge Crossings	0.302	0.079	-0.247	0.852				_	
n2 v. Baseline	Van Dyke 2014	DUI Group	Bin2 v. Baseline	Centerline and Road Edge Crossings	0.074	0.075	-0.464	0.611		.		-	
n2 v. Baseline	Weafer 2012	All Participants	Bin2 v. Baseline	Line Crossings (Test 1)	0.387	0.100	-0.232	1.005					
n2 v. Baseline					0.317	0.009	0.134	0.500					
13 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Off-Road Events / 5 Minutes	1.417	0.213	0.513	2.321					
13 v. Baseline	Bernosky-Smith 2011	High Freq. Group	Bin3 v. Baseline	Crossings	0.772	0.136	0.049	1.495					
13 v. Baseline	Bernosky-Smith 2011	Low Freq. Group	Bin3 v. Baseline	Crossings	0.840	0.138	0.112	1.568					-
13 v. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.417	0.140	-0.316	1.149				<u> </u>	
n3 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.677	0.099	0.059	1.295					
n3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Combined	0.572	0.092	-0.021	1.165					
n3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Combined	1.059	0.190	0.206	1.912					<u> </u>
n3 v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.781	0.136	0.057	1.504					
13 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.250	0.187	-0.597	1.098		-			
n3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.594	0.110	-0.055	1.244					
13 v. Baseline	Starkey 2014	High+Placebo	Bin3 v. Baseline	Combined	1.241	0.134	0.524	1.958				_ 	
n3 v. Baseline	Van Dyke 2015	All Participants	Bin3 v. Baseline	Lane Exceedances	0.285	0.040	-0.109	0.679				-	
n3 v. Baseline	Weafer 2012	All Participants	Bin3 v. Baseline	Line Crossings (Test 2)	0.422	0.101	-0.201	1.045					
n3 v. Baseline		1			0.626	0.009	0.445	0.808				•	
IC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	0.219	0.025	-0.092	0.530				·	
IC v. Baseline	Hartman 2015	All Participants	THC v. Baseline	Combined	0.128	0.102	-0.498	0.755		-		_	
IC v. Baseline		r			0.201	0.020	-0.078						
									-2.00	-1.00	0.00	1.00	2.00
									Б	ewer Excursio	ne M	ore Excursio	ne

Alcohol/Cannabis v. Baseline: Lane Excursions (Subgroup Analysis)

Figure D10. Forest plot illustrating the effects of varying levels of alcohol, and THC, on lane excursions. Missing pre-post correlations set to r = zero.

Froup by	Study name	Subgroup within study	Comparison	Outcome	Stati	stics for ea	ich stud	<u>y</u>		Hedge	s's g and 95	<u>5%CI</u>	
Comparison					Hedges's g	Variance	Lower limit	Upper limit					
n2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Off-Road Events / 5 Minutes	1.135	0.086	0.558	1.711				-+	- 1
in2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.128	0.013	-0.091	0.348			+		
in2 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline	Combined	0.470	0.044	0.058	0.883					
in2 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	Combined	0.220	0.025	-0.089	0.530				-	
in2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.308	0.048	-0.123	0.740				-	
in2 v. Baseline	Starkey 2014	Med+Placebo	Bin2 v. Baseline	Combined	0.706	0.123	0.018	1.393					
n2 v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline	Centerline and Road Edge Crossings	0.288	0.039	-0.100	0.676				-	
in2 v. Baseline	Van Dyke 2014	DUI Group	Bin2 v. Baseline	Centerline and Road Edge Crossings	0.074	0.038	-0.307	0.454					
n2 v. Baseline	Weafer 2012	All Participants	Bin2 v. Baseline	Line Crossings (Test 1)	0.321	0.049	-0.111	0.754				-	
n2 v. Baseline					0.326	0.008	0.154	0.498			•	•	
in3 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Off-Road Events / 5 Minutes	1.085	0.083	0.519	1.651				<u> </u>	-
n3 v. Baseline	Bernosky-Smith 2011	High Freq. Group	Bin3 v. Baseline	Crossings	0.772	0.136	0.049	1.495					
n3 v. Baseline	Bernosky-Smith 2011	LowFreq. Group	Bin3 v. Baseline	Crossings	0.840	0.138	0.112	1.568					-
n3 v. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.364	0.068	-0.147	0.876				<u> </u>	
in3 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.591	0.047	0.166	1.016				-	
n3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Combined	0.488	0.044	0.077	0.899					
n3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Combined	0.845	0.080	0.291	1.399					
n3 v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.683	0.064	0.187	1.178					
n3 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.243	0.092	-0.352	0.838				<u> </u>	
n3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.545	0.054	0.092	0.999					
n3 v. Baseline	Starkey 2014	High+Placebo	Bin3 v. Baseline	Combined	1.241	0.134	0.524	1.958					
n3 v. Baseline	Van Dyke 2015	All Participants	Bin3 v. Baseline	Lane Exceedances	0.285	0.020	0.006	0.563				-	
n3 v. Baseline	Weafer 2012	All Participants	Bin3 v. Baseline	Line Crossings (Test 2)	0.421	0.051	-0.019	0.862		1		-1	
n3 v. Baseline		-			0.568	0.006	0.417	0.719		1	_ ∢		
IC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	0.215	0.013	-0.005	0.435			⊢∎−		
IC v. Baseline	Hartman 2015	All Participants	THC v. Baseline	Combined	0.127	0.051	-0.316	0.571		1		-	
HC v. Baseline		•			0.198	0.010	0.001	0.395					l
									-2.00	-1.00	0.00	1.00	2.0
									Б	ewer Excursion	ns Ma	ore Excursio	ns

Alcohol/Cannabis v. Baseline: Lane Excursions (Subgroup Analysis)

Figure D11. Forest plot illustrating the effects of varying levels of alcohol, and THC, on lane excursions. Missing pre-post correlations set to r = 0.5.

Froup by	Study name	Subgroup within study	Comparison	Outcome	Stati	stics for e	ach stud	<u>y</u>		Hed	ges's g and 9	5%CI	
Comparison					Hedges's g	Variance	Lower limit	Upper limit					
n2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Off-Road Events / 5 Minutes	0.626	0.012	0.408	0.843	1		•		
n2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline	Combined	0.124	0.003	0.026	0.223					
in2 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline	Combined	0.267	0.008	0.091	0.444			- - -		
in2 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	Combined	0.220	0.025	-0.089	0.530				-	
in2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.276	0.010	0.084	0.468				•	
in2 v. Baseline	Starkey 2014	Med+Placebo	Bin2 v. Baseline	Combined	0.706	0.123	0.018	1.393					
in2 v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline	Centerline and Road Edge Crossings	0.216	0.008	0.045	0.388			 -		
in2 v. Baseline	Van Dyke 2014	DUI Group	Bin2 v. Baseline	Centerline and Road Edge Crossings	0.073	0.008	-0.097	0.243			_+=		
in2 v. Baseline	Weafer 2012	All Participants	Bin2 v. Baseline	Line Crossings (Test 1)	0.173	0.009	-0.017	0.362			_ -		
in2 v. Baseline					0.246	0.003	0.138	0.354					
in3 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Off-Road Events / 5 Minutes	0.522	0.012	0.311	0.734			' -		
in3 v. Baseline	Bernosky-Smith 2011	High Freq. Group	Bin3 v. Baseline	Crossings	0.772	0.136	0.049	1.495			I—		.
in3 v. Baseline	Bernosky-Smith 2011	Low Freq. Group	Bin3 v. Baseline	Crossings	0.840	0.138	0.112	1.568					-
in3 v. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.231	0.013	0.008	0.455			_ -	.	
in3 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.348	0.008	0.169	0.527				-	
in3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Combined	0.278	0.008	0.101	0.454			 -	.	
in3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Combined	0.438	0.012	0.219	0.657				-	
in3 v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.418	0.011	0.211	0.625				-	
n3 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.201	0.018	-0.060	0.461			+	•	
in3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.365	0.010	0.170	0.559				-	
in3 v. Baseline	Starkey 2014	High+Placebo	Bin3 v. Baseline	Combined	1.241	0.134	0.524	1.958					
in3 v. Baseline	Van Dyke 2015	All Participants	Bin3 v. Baseline	Lane Exceedances	0.278	0.004	0.153	0.402					
in3 v. Baseline	Weafer 2012	All Participants	Bin3 v. Baseline	Line Crossings (Test 2)	0.417	0.010	0.220	0.614				-	
in3 v. Baseline		-			0.367	0.001	0.291	0.442			♦	,	
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	0.194	0.003	0.096	0.292					
HC v. Baseline	Hartman 2015	All Participants	THC v. Baseline	Combined	0.121	0.010	-0.078	0.319			+		
HC v. Baseline		•			0.180	0.002	0.092	0.268			•		
									-2.00	-1.00	0.00	1.00	2.0
									T	ewer Excurs	ions M	fore Excursio	ons

Alcohol/Cannabis v. Baseline: Lane Excursions (Subgroup Analysis)

Figure D12. Forest plot illustrating the effects of varying levels of alcohol, and THC, on lane excursions. Missing pre-post correlations set to r = 0.9.

Group by	Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study	_	Hedges's g and 95% CI
omparison					Hedges's	Variance	Lower limit	Upper limit	
in1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	Speed (Highway)	g -0.043	0.113	-0.701	0.615	1 1
Bin1 v. Baseline Bin1 v. Baseline	Berthelon 2018	All Participants	Bin1 v. Baseline Bin1 v. Baseline	Speed (Highway)	0.043	0.063	-0.480	0.505	
Bin1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	Speed	-0.177	0.103	-0.806	0.453	
Bin1 v. Baseline	Price 2018	Older (Low+Placebo)	Bin1 v. Baseline	Combined	-0.295	0.105	-1.108	0.519	
Sin1 v. Baseline	Price 2018	Younger (Low+Placebo)	Bin1 v. Baseline	Combined	0.073	0.172	-0.736	0.882	
Bin1 v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	Average Speed	0.955	0.168	0.151	1.758	
Sin1 v. Baseline	Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	Average Speed	0.307	0.108	-0.456	1.071	
Sin1 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin1 v. Baseline	Combined	-0.098	0.132	-0.450	0.556	
Sin1 v. Baseline	Zhang 2014	All Participants	Bin1 v. Baseline	Mean Speed	-0.098	0.094	-0.144	1.057	
Sin1 v. Baseline	Zilalig 2014	An Farticipants	Diffi V. Dascille	ivican speed	0.4.57	0.094	-0.144	0.336	
3in2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Speed Deviation	0.110	0.013	-0.110	1.134	
sin2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Speed (Highway)	0.473	0.114	-0.188	0.729	
in2 v. Baseline	Berthelon 2014 Berthelon 2018		Bin2 v. Baseline Bin2 v. Baseline	Speed (Highway)	0.071	0.115	-0.263	0.729	
		All Participants				0.065	-0.265		
3in2 v. Baseline 3in2 v. Baseline	Downey 2013 Helland 2016	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined Combined	0.009 0.114	0.025	-0.299	0.316 0.303	
an2 v. Baseline		All Participants		Combined	0.114	0.009		0.303	
	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline				-0.331		
Sin2 v. Baseline Sin2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	0.086	0.018	-0.180	0.353	
	McCartney 2017	All Participants	Bin2 v. Baseline	Speed (Simple)	0.207		-0.209		
8in2 v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline	Mean Speed	-0.192	0.071	-0.715	0.330	
lin2 v. Baseline	Price 2018	Older (High+Placebo)	Bin2 v. Baseline	Combined	-0.520	0.182	-1.357	0.317	
Bin2 v. Baseline	Price 2018	Younger (High+Placebo)	Bin2 v. Baseline	Combined	0.333	0.179	-0.496	1.163	
lin2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.174	0.094	-0.426	0.774	
in2 v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	Speed	-0.157	0.108	-0.801	0.488	
in2 v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	Average Speed	0.729	0.173	-0.087	1.545	
in2 v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	Average Speed	0.573	0.169	-0.233	1.379	
lin2 v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline	Drive Speed	0.193	0.077	-0.349	0.736	
lin2 v. Baseline	Van Dyke 2014	DUI Group	Bin2 v. Baseline	Drive Speed	-0.165	0.076	-0.706	0.376	
lin2 v. Baseline	Van Dyke 2017	All Participants	Bin2 v. Baseline	Drive Speed	0.032	0.092	-0.564	0.627	
in2 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin2 v. Baseline	Combined	0.276	0.114	-0.386	0.937	
in2 v. Baseline	Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline	Combined	-0.015	0.097	-0.625	0.595	
lin2 v. Baseline	Zhang 2014	All Participants	Bin2 v. Baseline	Mean Speed	0.377	0.091	-0.214	0.968	
lin2 v. Baseline					0.113	0.003	0.014	0.212	
in3 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Speed Deviation	0.778	0.135	0.058	1.499	
in3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Speed (Highway)	0.534	0.130	-0.174	1.241	
in3 v. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.717	0.164	-0.077	1.510	
in3 v. Baseline	Harrison 2007	Control Group	Bin3 v. Baseline	Speed	0.409	0.184	-0.431	1.250	
lin3 v. Baseline	Harrison 2011	All Participants	Bin3 v. Baseline	Drive Speed	0.144	0.184	-0.696	0.985	
in3 v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.298	0.013	0.072	0.524	
in3 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.249	0.081	-0.308	0.806	
in3 v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	Speed (Risk Taking)	0.087	0.048	-0.343	0.518	
in3 v. Baseline	Laude 2016 Study 3	Control Drivers	Bin3 v. Baseline	Speed	-0.402	0.158	-1.180	0.376	
in3 v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.163	0.019	-0.107	0.432	
in3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Speed	0.311	0.082	-0.250	0.872	
in3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Speed	0.257	0.117	-0.412	0.927	
in3 v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	Mean Speed	0.084	0.070	-0.435	0.603	
in3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	-0.251	0.096	-0.858	0.356	
in3 v. Baseline	Strayer 2006	All Participants	Bin3 v. Baseline	Speed	-0.279	0.050	-0.718	0.159	
in3 v. Baseline	Van Dyke 2017	All Participants	Bin3 v. Baseline	Drive Speed	0.010	0.092	-0.585	0.605	
in3 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin3 v. Baseline	Combined	0.179	0.114	-0.481	0.840	
in3 v. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	Average Speed	0.273	0.084	-0.296	0.843	
in3 v. Baseline	Zhang 2014	All Participants	Bin3 v. Baseline	Mean Speed	0.286	0.088	-0.296	0.868	
in3 v. Baseline					0.188	0.003	0.076	0.299	
lin4 v. Baseline	Mets 2011	All Participants	Bin4 v. Baseline	Mean Speed	0.144	0.071	-0.376	0.665	
in4 v. Baseline					0.144	0.071	-0.376	0.665	
HC v. Baseline	Anderson 2010	Females	THC v. Baseline	Combined	0.077	0.167	-0.724	0.878	
HC v. Baseline	Anderson 2010	Males	THC v. Baseline	Combined	-0.391	0.081	-0.947	0.166	
HC v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	-0.019	0.031	-0.741	0.702	
HC v. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	-0.105	0.135	-0.741	0.702	
HC v. Baseline	Bosker 2012 Bosker 2012	Occasional Users	THC v. Baseline	Combined	-0.105	0.146	-0.834	0.644	
HC v. Baseline	Brands 2019 Drug de 2010	High THC Group	THC v. Baseline	Mean Speed	-0.114	0.064	-0.608	0.381	
HC v. Baseline	Brands 2019	Low THC Group	THC v. Baseline	Mean Speed	-0.029	0.061	-0.514	0.457	
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	-0.095	0.025	-0.408	0.218	
HC v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	-0.433	0.142	-1.170	0.305	
HC v. Baseline	Ronen 2010	All Participants	THC v. Baseline	Mean Speed (THC)	-0.249	0.149	-1.007	0.508	
HC v. Baseline	Sexton 2000	All Participants	THC v. Baseline	Combined	-0.474	0.148	-1.227	0.279	
THC v. Baseline	Sexton 2002	All Participants	THC v. Baseline	Mean Speed (THC)	-0.667	0.114	-1.330	-0.004	
THC v. Baseline					-0.182	0.007	-0.348	-0.017	♠
									-2.00 -1.00 0.00 1.00

Figure D13. Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed. Missing pre-post correlations set to r = zero.

Chapman Number Participants Bit IV Ruder See 10 gene Participants Bit IV Ruder	Froup by	Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study		Hedges's g and 95% CI
Bits N. Sucher Berlinks 2014 All Parcipues Bit N. Sucher Quarts Qu	Comparison						¥		Upper	
Bin V. Boelen Benden 2018 All Paricipants Bin V. Boelen Out 1 0.013 0.021 0.051 0.051 Bin V. Boelen Proc 2018 Old R. (Lou-Flockho) Bin V. Boelen Out 1 0.015 0.051 0.016 0.051 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.011 <		D 11 1 2014	48 D	N 1 N 1	6 1/17 1 X	-				
Hin Y. Machine Kaper 2006 All Participant Hin Y. Machine 0.720 0.051 0.172 0.101 0.171 0.101 0.051 0.727 0.102 0.125 0.052 Hin Y. Machine Price 2018 Yonger (Low Plackov) Hin Y. Machine 0.071 0.171 0.101 0.121 0.124 0.052 0.071 0.171 0.101 0.051 0.071 0.171 0.101 0.051										
Bin Y. Bachele Phic2 2018 Oldr (Low-Placeb) Bin Y. Bachele Output 0.170 0.170 0.170 0.170 Bin Y. Bachele Skie 2014 Oldr (Low-Placeb) Bin Y. Bachele 0.081 0.181 1.181 Bin Y. Bachele Skie 2014 All Participants Bin Y. Bachele 0.081 0.016 0.016 0.017 Bin Y. Bachele Zamage 2014 All Participants Bin Y. Bachele 0.011 0.017 0.027 0.026 0.014 0.017 0.027 0.027 0.027 0.027 0.028 0.014 0.017 0.028 0.014 0.017 0.028 0.028 0.014 0.017 0.027 0.027 0.027 0.027 0.027 0.027 0.028										
Bin V. Boeler Price 2018 Yonger (Low-Piceho) Bin V. Boeler Outer, Source Version Outer, Sourc										
Bin V. Bachen Shar 2014 Outer (Low-Placeb) Bin V. Bachen Verange Speed 0.375 0.168 0.158 0.108 0.133 0.178 0.133 0.178 0.133 0.178 0.133 0.178 0.133 0.178 0.135 0.158 0.108 0.135 0.158 0.108 0.135 0.158 0.168 0.10										
Bin I. Sacheire Skar 2014 Wonger (Low-Placebox) Bin J. Sacheire 0.370 0.157 0.045 0.041 Bin V. Sacheire Zang 2014 All Participants Bin J. Sacheire 0.037 0.037 0.037 0.039 0.544 Bin V. Sacheire Bentheo 2014 All Participants Bin J. Sacheire 0.037 0.037 0.039 0.039 0.045 Bin V. Sacheire Bentheo 2014 All Participants Bin J. Sacheire 0.037 0.030 0.039 0.039 0.039 0.039 0.039 0.039 0.039 0.031 0.030 0.031 0										
Tative Statemer Markar 2012 study 1 All Participants Bailt N. Baching Orange 2014 All Participants Bailt N. Baching Orange 2014 Orange 2014 Orange 2014 Bin N. Baching Acad. 2011 All Participants Bin N. Baching Boold N. 2017 0.284 0.084 0.017 0.287 Bin N. Baching Boold N. 2013 All Participants Bin N. Baching Social Control Notes 0.021 0.037										
Bin V. Bacher Zung 2014 All Participants Bin V. Bacher Mean Speed 0.42 0.009 0.84 Bin V. Bacher Aread 2001 All Participants Bin V. Bacher Speed Decision 0.017 0.023 0.933 0.934 Bin V. Bacher Bend V. Bacher Speed Decision 0.017 0.023 0.933 0.934 Bin V. Bacher Deorsy 2013 All Participants Bin V. Bacher Constraind 0.007 0.023 0.237 Bin V. Bacher Reserver Media 2015 All Participants Bin V. Bacher Constraind 0.029 0.027 0.233 Bin V. Bacher Reserver Media 2015 All Participants Bin V. Bacher Constraind 0.109 0.017 0.025 0.137 Bin V. Bacher Parci 2018 Our (High Placebo) Bin V. Bacher Constraind 0.33 0.177 0.026 0.177 0.026 0.137 0.17 0.177 0.026 0.137 0.177 0.177 0.177 0.177 0.177 0.177 0.177 0.177 <td></td>										
Min Y, Bacher 0.686 0.017 0.177 0.298 Min Y, Bacher Berthen 3014 All Participants Bin 2-b. Bacher Specif Highway) 0.057 0.057 0.058 0.038 Min Y, Bacher Berthen 3014 All Participants Bin 2-b. Bacher Specif Highway) 0.057 0.057 0.058 0.038 0.038 Min Y, Bacher Berthen 3014 All Participants Bin 2-b. Bacher Control of 0.014 0.070 0.038 0.037 Min Y, Bacher Helmine Control of 0.014 0.017 0.018 0.027 0.010 0.025 Min Y, Bacher Le 2010 All Participants Bin 2-b. Bacher Control of 0.018 0.020 0.010 0.027 Min Y, Bacher Macher Din 2-b. Bacher Control of 0.018 0.020 0.010 0.027 0.010 0.027 0.010 0.023 0.010 0.023 0.010 0.023 0.010 0.023 0.010 0.023 0.010 0.010 0.011 0.010 0.011 0.010 0.010 </td <td></td>										
Barbier Aund 2001 All Participants Bio 2: Bachier Quarticipants		Zitaiig 2014	An Farticipants	Bill v. Baseline	wear speed					
Bachen Berthekn 2014 All Participants Bud 2: Bachen Speed(Hglawy) 0.027 0.028 0.038 0.038 Buck 7: Bachen Dowey 2011 All Participants Bud 2: Bachen Constand 0.007 0.013 0.033 0.033 Buck 7: Bachen Dowey 2011 All Participants Bud 2: Bachen Constand 0.007 0.007 0.033		Arnect 2001	All Participants	Bin2 v Basalina	Sneed Deviation					
min Burthen Burthen Burthen Special Outsoff Outsoff Outsoff Outsoff min Number Hill All Participants Biol Number Outsoff Outsoff <td></td>										
Barbin Downy 2013 All Partiques Barl 2, Nachin Output 0.009 0.007 0.030 Barbin Machine Kenther <										
Biole, Neudrine Helm 2016 All Participants Biole, Neudrine Combined 0.107 0.007 0.033 Biole, Neudrine Les 2010 All Participants Biole, Neudrine Combined 0.229 0.017 0.035 0.037 Biole, Neudrine McCatruey 2017 All Participants Biole, Neudrine Output 0.015 0.597 0.015 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.017 0.028 0.027 0.016 0.027 0.016 0.027 0.016 0.027 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.017 0.016 0.018 0.017 0.016 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.017 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.012 0.018 0.017										
Bin V. Bodine Karnier-Mekka 2015 All Participants Bin V. Bodine Combined 0.261 0.041 0.167 0.055 Bin V. Bodine McCattrey 2017 All Participants Bin V. Bodine 0.038 0.039 0.033 Bin V. Bodine McA. 2017 All Participants Bin V. Bodine 0.038 0.039 0.031 Bin V. Bodine Price 2018 Oker (Bigle/Facch) Bin V. Bodine 0.031 0.132 1.570 0.131 Bin V. Bodine Share 2014 Oker (Bigle/Facch) Bin V. Bodine 0.051 0.051 0.051 0.051 Bin V. Bodine Share 2014 Corene to Bin Bin V. Bodine 0.052 0.053 0.051 0.551 Bin V. Bodine Share 2014 Corene to Bin Bin V. Bodine Verage Speed 0.751 0.057 <td></td>										
Bar. Number Les 2010 All Participants Biol Y. Baeline Outhead 0.061 0.027										
bits: McCurroy 2017 All Partiquants Bita'. Reading Speed (Smpke) 0.018 0.028 0.023 init v. Raching Price 2018 Yoang (High-Placebox) Bita'. Naching Combined 0.333 0.137 0.337 0.317 init v. Naching Price 2018 Yoang (High-Placebox) Bita'. Naching 0.408 1.635 0.590 0.59										
bits Mess 2011 All Participants Bita's Reading All Participants Bita's Reading Outstand 0.032 0.180 niz V. Backing Price 2018 Yoanger (High-Placebo) Bita's Reading Combined 0.33 0.17 0.480 1.163 Back V. Backing Sharancher 2011 (2017) All Participants Bita's V. Backing Seading 0.155 0.051 0.082 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081 0.081<										
bits: Naching Price 2018 Oddr (High-Placebox) Bitz', Naseline Combined 0.333 0.17 dia: Nassine Phrice 2017 DII (Coxp Bitz', Naseline Combined 0.133 0.17 0.495 1.014 dia: Nassine Sharanker 2017 (207) DII (Coxp Bitz', Naseline Combined 0.159 0.047 0.255 0.593 dia: Nassine Sharanker 2017 (207) DII (Coxp Bitz', Nassine Combined 0.159 0.161 0.051 0.461 0.301 dia: Nassine Sharanker 2012 (201) DII (Coxp Bitz', Nassine Naverage Speed 0.131 0.048 0.425 0.270 dia: Nassine Man Dyke 2014 DII (Coxp Bitz', Nassine Naverage Speed 0.011 0.018 0.435 0.270 dia: Nassine All Paricipants Bitz', Nassine Nassine Onthind 0.015 0.048 0.446 0.416 0.416 dia:> Nassine All Paricipants										
bit 2. Bachine Proce 2018 Yonger (High-Placcho) Bui 2. Bachine Comband 0.33 0.179 0.4096 1.63 bit 2. Bachine Shar 2014 Olfer (High-Placcho) Bui 2. Nachine System 0.155 0.054 0.041 0.301 bit 2. Nachine Shar 2014 Over (High-Placcho) Bui 2. Nachine Average Speed 0.73 0.067 1.545 bit 2. Nachine Nun Dyle 2014 Over (High-Placcho) Bui 2. Nachine Dive Speed 0.181 0.038 4.055 0.233 1.379 bit 2. Nachine Van Dyle 2014 DII (Grop Bui 2. Nachine Dive Speed 0.181 0.038 4.055 0.237 0.178 0.046 0.164 0.057 0.057 0.078 0.038 0.250 0.046 0.161 0.037 0.037 0.037 0.037 0.037 0.046 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.416 0.										
Bin 2, Bachine Roter: 2017 Subj 2 DI Grop Bin 2, Bachine Quarticipants Special Quarticipants <										
Biard, N. Baseline Skur 2011 (2017) All Participants Biar, Y. Baseline Sverag, Speed 0.73 0.061 0.211 Biar, Y. Baseline Skur 2014 Yonger (BigH-Placcho) Biar, Y. Baseline Averag, Speed 0.73 0.068 0.545 Biar, Y. Baseline Yun Dyle, 2014 DTT (Corp Biar, Y. Baseline Drive, Speed 0.161 0.038 0.590 Biar, Y. Baseline Yun Dyle, 2014 DTT (corp Biar, Y. Baseline Drive, Speed 0.161 0.015 0.064 0.390 0.452 Biar, Y. Baseline Wan Dyle, 2014 All Participants Biar, Y. Baseline Drive, Speed 0.161 0.015 0.064 0.390 0.452 Biar, Y. Baseline Zhang 2014 All Participants Biar, Y. Baseline Cornheal 0.015 0.020 0.025 0.180 Biar, Y. Baseline Zhang 2014 All Participants Biar, Y. Baseline Cornheal 0.313 0.036 0.120 0.026 0.180 Biar, Y. Baseline All Participants Biar, Y. Baseline Cornheal 0.314 0.016 0.126 0.027 0.028 0.										
Backleine Skur 2014 Okar (High-Placcho) Bal 2: Nacdine Averga Speed 0.73 0.017 1.545 Back 2: Nacdine Skur 2014 Control Coop Bal 2: Nacdine Averga Speed 0.73 0.067 1.545 Bac 2: Nacdine Van Dyke 2014 Ddl Coop Bal 2: Nacdine Drive Speed 0.16 0.038 0.545 0.230 0.452 Bac 2: Nacdine Van Dyke 2017 All Participants Bal 2: Nacdine Orive Speed 0.015 0.048 0.454 0.164 0.038 0.454 0.164 Bai 2: Nacdine Zawag 2014 All Participants Bal 2: Nacdine Orive Speed 0.057 0.045 0.060 0.737 Bai 2: Nacdine Zawag 2014 All Participants Bai 3: Nacdine Speed 0.373 0.066 0.202 0.180 0.164 0.025 0.180 0.164 0.025 0.180 0.164 0.025 0.180 0.124 0.066 0.262 0.181 0.164 0.025 0.182 0.164 0.164 0.025 0.184 0.066 0.262 0.181 0.026 0.262										
nà v. Baseline Sulz 2014 Orange (1figh-Placebo) Bia 2: Naseline Averge Speed 0.573 0.169 0.233 1.379 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
bia V. Baseline Vin Dyke 2014 Control Group Bia 2V. Baseline Drive Speed 0.193 0.088 0.190 0.577 Bia V. Baseline Vin Dyke 2017 All Participants Bia 2V. Baseline Drive Speed 0.031 0.046 0.339 0.452 Bia V. Baseline Vin Dyke 2017 All Participants Bia 2V. Baseline Contrinical 0.027 0.046 0.339 0.452 Bia V. Baseline Zamg 2014 All Participants Bia 2V. Baseline Contrinical 0.017 0.008 0.462 0.081 0.460 0.773 Bia V. Baseline Cambrid Bia 2V. Baseline Speed Deviation 0.773 0.008 0.029 0.181 0.000 0.026 0.180 0.026 0.028 0.180 0.026 0.028 0.026 0.031 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 0.028 0.026 </td <td></td>										
nin 2, Maseline Van Dyke 2014 DUI Coop Bia 2, Maseline 0-162 0.028 0.545 0.220 nin 2, Maseline Van Dyke 2017 All Participants Bia 2, Maseline 0-162 0.036 0.545 0.220 nin 2, Maseline Veldkra 2012 Suby 2 All Participants Bia 2, Maseline 0-005 0.046 0.446 0.446 nin 2, Maseline Makerine 0.037 0.005 0.068 0.733 0.005 0.068 0.276 0.020 0.066 nin 2, Maseline Barticipants Bia 2, Maseline Steacline Steacline 0.078 0.003 0.020 0.066 nin 3, Maseline Barticipants Bia 3, Maseline Steacline 0.078 0.003 0.020 0.056 nin 3, Maseline Bartison 2007 Control Group Bia 3, Maseline Control Group Bia 3, Maseline Orthincel 0.023 0.003 0.032 0.244 nin 3, Maseline Law 2016 All Participants Bia 3, Maseline Cornhined 0.042 0.003 0.032 0.324 nin 3, Maseline Law 2016 All Pa										
bin 2, Baseline Via Dyke 2017 All Participants Bin 2, Visseline Ontioned 0.301 0.046 0.390 0.452 sin 2, Baseline Visker 2012 Suby 1 All Participants Bin 2, Visseline 0.015 0.007 0.048 0.446 0.416 sin 2, Baseline Zang 2014 All Participants Bin 2, Visseline 0.017 0.008 0.426 0.018 0.006 0.773 sin 2, Baseline Arned 2001 All Participants Bin 3, Visseline Speed (fighway) 0.473 0.008 0.029 0.188 sin 3, Baseline Fernice 2008 All Participants Bin 3, Visseline Speed (fighway) 0.473 0.088 0.029 0.986 sin 3, Baseline Harrison 2007 Control Group Bin 3, Visseline Speed 0.131 0.018 0.029 0.986 sin 3, Baseline Land 2016 All Participants Bin 3, Visseline Speed 0.131 0.012 0.224 0.030 0.072 0.524 sin 3, Baseline Land 2016 All Participants Bin 3, Visseline Somithed 0.026 0.031 0.072										
nia V. Baseline Veldaria 2012 Subj 1 AIP Parcicipants Bin 2, Baseline Contrained 0.275 0.057 -0.193 0.743 nia V. Baseline Zhang 2014 AIP Parcicipants Bin 2, Baseline Mean Speed 0.357 0.045 -0.046 0.164 nia V. Baseline Annel 2001 AIP Parcicipants Bin 3, Baseline Speed (Highway) 0.778 0.068 0.020 0.986 nia V. Baseline Bertheo 2014 AIP Parcicipants Bin 3, Baseline Speed (Highway) 0.781 0.068 0.020 0.986 nia V. Baseline Herrison 2017 Control Corop Bin 3, Baseline Speed (199) 0.071 0.072 0.524 nia V. Baseline Herrison 2015 AIP Parcicipants Bin 3, Baseline Speed (198) 0.016 0.072 0.524 nia V. Baseline Lank 2016 AIP Parcicipants Bin 3, Baseline Speed (198) 0.011 0.016 0.072 0.524 nia V. Baseline Lank 2016 Sup Speed (198) 0.418 0.402 0.015 0.438 0.418 0.402 0.217 0.322 0.448 0.402 <td></td>										
wikksrn 2012 Subj 2 AIP Participants Bin2 v. Baseline -0.015 0.048 -0.046 0.416 air V. Baseline Zang 2014 AIP Participants Bin2 v. Baseline 0.02 0.002 0.025 0.108 air V. Baseline Anchex 2001 AIP Participants Bin3 v. Baseline Speed Deviation 0.012 0.002 0.026 0.128 air V. Baseline Bentheon 2014 AIP Participants Bin3 v. Baseline Speed Deviation 0.063 0.020 0.966 air V. Baseline Herrison 2007 Control Ocop Bin3 v. Baseline Speed Deviation 0.031 0.072 0.534 air V. Baseline Herrison 2007 Control Ocop Bin3 v. Baseline Combined 0.232 0.044 0.151 0.635 air V. Baseline Lande 2016 AIP Participants Bin3 v. Baseline Combined 0.229 0.031 0.072 0.524 air V. Baseline Lande 2016 AIP Participants Bin3 v. Baseline Speed (Pikk Taking) 0.067 0.052 0.151 0.636 air V. Baseline Lande 2016 AIP Participants Bin3 v. Baseline <td></td>										
niz V. Baseline Zung 2014 All Participants Bin 2 v. Baseline 0.837 0.045 0.060 0.773 niz V. Baseline Annel 2001 All Participants Bin 3 v. Baseline Speecl (Highway) 0.473 0.068 0.229 1.288 niz V. Baseline Bercheo 2014 All Participants Bin 3 v. Baseline Combined 0.673 0.068 0.220 0.081 0.126 0.096 niz V. Baseline Flintore 2008 All Participants Bin 3 v. Baseline Combined 0.631 0.088 0.270 0.996 niz V. Baseline Harrison 2017 All Participants Bin 3 v. Baseline Combined 0.232 0.018 0.027 0.924 niz V. Baseline Combined 0.242 0.048 0.015 0.032 0.217 0.922 niz V. Baseline Lanke 2016 All Participants Bin 3 v. Baseline Speecl (Bin Xing) 0.087 0.022 0.237 0.148 niz V. Baseline Lanke 2016 All Participants Bin 3 v. Baseline Speecl 0.046 0.010 0.046 0.674 niz V. Baseline M										
in2 v. Baseline V. Baseline S. Paed Daviation 0.102 0.002 0.025 0.180 in3 v. Baseline Berthelen 2014 All Paricipants Bin3 v. Baseline Speed Daviation 0.778 0.008 0.209 0.966 in3 v. Baseline Berthelen 2014 All Paricipants Bin3 v. Baseline Speed Daviation 0.672 0.088 0.210 0.966 in3 v. Baseline Harrison 2007 Control Group Bin3 v. Baseline Speed 0.144 0.184 0.88 0.227 0.986 in3 v. Baseline Halland 2016 All Paricipants Bin3 v. Baseline Speed 0.144 0.184 0.88 0.227 0.244 in3 v. Baseline Lack 2016 All Paricipants Bin3 v. Baseline Speed 0.047 0.027 0.952 0.148 in3 v. Baseline Lack 2016 All Paricipants Bin3 v. Baseline Speed 0.047 0.047 0.952 0.148 in3 v. Baseline Marcinski 2008 Bing v. Baseline Speed 0.246 0.058 0.227 0.148 in3 v. Baseline Marcinski 2008 Bing v. Baseline Speed 0.249 0.041 0.715 0.728 in3 v. Baseline Marcinski 2008 Bing v. Baseline Speed 0.278 0.446 0.777										
in v. Baseline Arneck 2001 All Participants Bin v. Baseline Speed (Highway) 0.473 0.063 0.029 1.288 in v. Baseline Billnoro: 2008 All Participants Bin v. Baseline Combined 0.063 0.028 0.136 1.249 in v. Baseline Harrison 2007 Control Group Bin v. Baseline Speed (Highway) 0.043 0.088 0.270 0.896 in v. Baseline Harrison 2011 All Participants Bin v. Baseline Ornhined 0.242 0.083 0.072 0.524 in v. Baseline Kemture-Mukhial 2015 All Participants Bin v. Baseline Combined 0.242 0.013 0.072 0.524 in v. Baseline Laake 2016 All Participants Bin v. Baseline Speed (Highway) 0.087 0.028 0.013 0.072 0.524 in v. Baseline Laake 2016 All Participants Bin v. Baseline Speed (Highway) 0.037 0.028 0.416 0.016 0.079 0.525 0.148 in v. Baseline Marcinski 2008 Bing Croap Bin v. Baseline Speed (Highway) 0.037		Zhang 2014	All Participants	Bin2 v. Baseline	Mean Speed					
inix V. Baseline Berthelon 2014 All Participants Bin V. Baseline Combined 0.673 0.008 0.102 0.966 inix V. Baseline Harrison 2007 Control Coop Bin V. Baseline Speed (Highlywor) 0.473 0.008 0.103 0.896 1.249 inix V. Baseline Harrison 2001 All Participants Bin3 V. Baseline Drive Speed 0.144 0.184 0.069 0.896 inix V. Baseline Heating 2015 All Participants Bin3 V. Baseline Combined 0.242 0.040 0.151 0.636 inix V. Baseline Landz 2016 All Participants Bin3 V. Baseline Speed (High Takle) 0.009 -0.030 0.352 0.148 inix V. Baseline Landz 2016 All Participants Bin3 V. Baseline Speed (High Takle) 0.014 <										
inà v. Baseline Filimore 2008 All Participants Binà v. Baseline Combined 0.692 0.081 0.136 1.249 inà v. Baseline Harrison 2007 Control Group Binà v. Baseline Speed 0.144 0.184 0.666 0.985 inà v. Baseline Haliand 2016 All Participants Binà v. Baseline Ornbined 0.248 0.013 0.072 0.254 inà v. Baseline Kenturer-Mahila 2016 All Participants Binà v. Baseline Combined 0.248 0.041 0.075 0.524 inà v. Baseline Lauke 2016 All Participants Binà v. Baseline Speed 0.144 0.184 0.666 0.985 inà v. Baseline Lauke 2016 Multi All Participants Binà v. Baseline Speed 0.040 0.077 0.052 0.148 inà v. Baseline Lauke 2016 Multi All Participants Binà v. Baseline Speed 0.040 0.077 0.052 0.148 inà v. Baseline Marczinski 2008 Binge Group Binà v. Baseline Speed 0.246 0.079 0.035 0.352 inà v. Baseline Marczinski 2008 Nonbing Group Binà v. Baseline Speed 0.246 0.078 0.128 0.446 inà v. Baseline Marczinski 2008 Nonbing Group Binà v. Baseline Combined 0.248 0.078 0.028 0.427 0.148 inà v. Baseline Marczinski 2008 Nonbing Group Binà v. Baseline Combined 0.249 0.048 0.078 0.180 inà v. Baseline Roberts 2017 Subj 2 Control Group Binà v. Baseline Combined 0.249 0.048 0.078 0.180 inà v. Baseline Marczinski 2008 All Participants Binà v. Baseline Combined 0.249 0.048 0.078 0.180 inà v. Baseline Varby 62 017 All Participants Binà v. Baseline Prive Speed 0.010 0.046 0.0411 0.431 inà v. Baseline Varby 62 017 All Participants Binà v. Baseline Mana Speed 0.179 0.057 0.288 0.046 inà v. Baseline Varby 62 017 All Participants Binà v. Baseline Mana Speed 0.132 0.035 0.236 0.300 inà v. Baseline Marcinski 2008 All Participants Binà v. Baseline Mana Speed 0.132 0.035 0.236 0.300 inà v. Baseline Marcinski 2010 Males THC v. Baseline Combined 0.017 0.0163 0.649 inà v. Baseline Anderson 2010 Males THC v. Baseline Combined 0.017 0.017 0.028 0.236 inà v. Baseline Anderson 2010 Males THC v. Baseline Combined 0.019 0.013 0.0374 0.702 Herv, Baseline Basker 2012 Heavy Users THC v. Baseline Combined 0.017 0.017 0.036 0.305 Herv, Baseline Basker 2012 Heavy Us										
in3 v. Baseline Harrison 2007 Control Copp Bin3 v. Baseline Speed 0.13 0.088 0.270 0.896 in3 v. Baseline Harrison 2011 All Participants Bin3 v. Baseline Drive Speed 0.144 0.184 0.666 0.985 in3 v. Baseline Kenntner-Methala 2015 All Participants Bin3 v. Baseline Contined 0.232 0.040 0.151 0.636 0.985 in3 v. Baseline Laude 2016 All Participants Bin3 v. Baseline Speed 0.047 0.027 0.524 in3 v. Baseline Laude 2016 Study 3 Control Drivers Bin3 v. Baseline Speed 0.040 0.016 0.009 0.030 0.322 in3 v. Baseline Marczinski 2008 Bing Coop Bin3 v. Baseline Speed 0.246 0.246 0.287 0.416 in3 v. Baseline Marczinski 2008 Nontringe Coop Bin3 v. Baseline Speed 0.246 0.246 0.247 0.719 0.046 0.411 0.411 0.411 0.411 0.411 0.411 0.411 0.411 0.411 0.411 0.411 0.411									012.00	
in v. Baseline Harrison 2011 All Participants Bin3 v. Baseline Ornhined 0.144 0.184 0.696 0.985 in3 v. Baseline Helland 2016 All Participants Bin3 v. Baseline Combined 0.242 0.040 0.151 0.636 in3 v. Baseline Laude 2016 All Participants Bin3 v. Baseline Combined 0.024 0.013 0.022 0.524 in3 v. Baseline Laude 2016 Mall Participants Bin3 v. Baseline Combined 0.016 0.009 -0.030 0.352 in3 v. Baseline Laude 2016 Mall Participants Bin3 v. Baseline Speed 0.024 0.024 0.014 0.0148 in3 v. Baseline Marczinski 2008 Nonhing Coop Bin3 v. Baseline Speed 0.026 0.028 0.027 0.014 in3 v. Baseline Marczinski 2008 Nonhing Coop Bin3 v. Baseline Combined 0.024 0.024 0.048 0.674 in3 v. Baseline Marczinski 2008 All Participants Bin3 v. Baseline Combined 0.024 0.048 0.647 0.017 0.046 0.4111 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
in3 y. Baseline Helland 2016 All Participants Bin3 y. Baseline Combined 0.298 0.013 0.072 0.524 in3 y. Baseline Lauke 2016 All Participants Bin3 y. Baseline Combined 0.242 0.040 -0.151 0.636 in3 y. Baseline Lauke 2016 All Participants Bin3 y. Baseline Speed (Bisk Taking) 0.087 0.042 -0.217 0.392 in3 y. Baseline Lauke 2016 Nutly 3 Control Drivers Bin3 y. Baseline Speed (Bisk Taking) 0.067 0.042 -0.217 0.392 in3 y. Baseline Marczinski 2008 Bing-Group Bin3 y. Baseline Speed 0.246 0.068 -0.227 0.444 in3 y. Baseline Marczinski 2008 Noming Croup Bin3 y. Baseline Mean Speed 0.238 0.023 0.247 0.79 in3 y. Baseline Speed (Biss Baseline Speed 0.238 0.046 0.11 0.411 0.431 in3 y. Baseline Waltz 2012 All Participants Bin3 y. Baseline Average Speed 0.248 0.042 0.133 0.646 in3 y. Baseline <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
in 3 v. BaselineKenntner-Makiala 2015All ParticipantsBin3 v. BaselineOrabined0.2420.040-0.1510.636in 3 v. BaselineLaude 2016 Study 3Control DriversBin3 v. BaselineSpeed (Risk Taking)0.0870.024-0.2170.392in 3 v. BaselineLaude 2016 Study 3Control DriversBin3 v. BaselineSpeed-0.0120.079-0.9520.148in 3 v. BaselineMarczinski 2008Bing CoupBin3 v. BaselineSpeed0.2460.038-0.2270.719in 3 v. BaselineMarczinski 2008Nonbing CoupBin3 v. BaselineSpeed0.2460.088-0.2270.719in 3 v. BaselineMarczinski 2008Nonbing CoupBin3 v. BaselineMaen Speed0.0790.035-0.2270.146in 3 v. BaselineStoper 2006All ParticipantsBin3 v. BaselineMean Speed0.2480.048-0.6780.180in 3 v. BaselineYan Dyke 2017All ParticipantsBin3 v. BaselineDrive Speed0.2180.0100.046-0.4110.431in 3 v. BaselineWald Ta 2012 Study 1All ParticipantsBin3 v. BaselineAvernag Speed0.2480.0460.0410.431in 3 v. BaselineWald Ta 2012 Study 1All ParticipantsBin3 v. BaselineAvernag Speed0.1610.0770.6670.500in 3 v. BaselineZhang 2014All ParticipantsBin3 v. BaselineCombined0.0170.1670.7240.578in										
in v. Baseline Landz 2016 All Participants Bin3 v. Baseline Speed (Bisk Taking) 0.087 0.024 -0.217 0.392 in 3 v. Baseline Laudz 2016 Study 3 Control Drivers Bin3 v. Baseline Speed -0.402 0.079 -0.952 0.148 in 3 v. Baseline Laudz 2016 All Participants Bin3 v. Baseline Speed 0.279 0.041 0.116 0.079 0.952 0.148 in 3 v. Baseline Marczinski 2008 Bing Group Bin3 v. Baseline Speed 0.279 0.041 0.116 0.077 in 3 v. Baseline Marczinski 2008 Nonthing Group Bin3 v. Baseline Speed 0.025 0.257 0.446 in 3 v. Baseline Strayer 2006 All Participants Bin3 v. Baseline Speed 0.025 0.157 0.070 0.079 0.035 0.257 0.476 in 3 v. Baseline Van Dyke 2017 All Participants Bin3 v. Baseline Speed 0.010 0.044 0.111 0.35 0.256 0.044 0.478 0.676 0.576 0.576 <										
inà v. Baseline Lauk 2016 Study 3 Control Drivers Bin3 v. Baseline Speed 0.402 0.079 -0.952 0.148 inà v. Baseline Lac 2010 All Participants Bin3 v. Baseline Speed 0.161 0.009 -0.030 0.352 inà v. Baseline Marczinski 2008 Bing Coup Bin3 v. Baseline Speed 0.246 0.088 -0.227 0.719 inà v. Baseline Marczinski 2008 Nonhing Croup Bin3 v. Baseline Speed 0.246 0.088 -0.227 0.719 inà v. Baseline Marczinski 2008 Control Group Bin3 v. Baseline Speed 0.246 0.088 -0.227 0.719 inà v. Baseline Roberts 2017 Study 2 Control Group Bin3 v. Baseline Speed 0.246 0.088 -0.227 0.719 inà v. Baseline Roberts 2017 Study 2 Control Group Bin3 v. Baseline Speed 0.246 0.088 -0.287 0.700 inà v. Baseline Strayer 2006 All Participants Bin3 v. Baseline Speed 0.028 0.028 0.048 -0.678 0.180 inà v. Baseline Van Dyke 2017 All Participants Bin3 v. Baseline Speed 0.010 0.046 -0.411 0.431 inà v. Baseline Wedkra 2012 Study 1 All Participants Bin3 v. Baseline Average Speed 0.266 0.044 -0.115 0.676 inà v. Baseline Wedkra 2012 Study 1 All Participants Bin3 v. Baseline Combined 0.179 0.057 -0.288 0.646 inà v. Baseline Wedkra 2012 Study 1 All Participants Bin3 v. Baseline Combined 0.179 0.057 -0.288 0.646 inà v. Baseline Mets 2011 All Participants Bin3 v. Baseline Combined 0.179 0.057 -0.288 0.646 inà v. Baseline Mets 2011 All Participants Bin3 v. Baseline Combined 0.017 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.017 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Females THC v. Baseline Combined -0.019 0.135 -0.734 0.702 HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.019 0.013 -0.361 0.428 HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.019 0.013 -0.361 0.428 HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.019 0.013 -0.361 0.428 HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.019 0.013 -0.361 0.428 HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.019 0.013 -0.361 0.428 HC v. Baseline Brank 2019 High THC C										
m3 v. Baseline Lee 2010 All Participants Bin3 v. Baseline Combined 0.161 0.009 -0.030 0.352 m3 v. Baseline Marczinski 2008 Bing Group Bin3 v. Baseline Speed 0.279 0.041 -0.116 0.674 m3 v. Baseline Marczinski 2008 Nothing Group Bin3 v. Baseline Speed 0.279 0.041 -0.116 0.674 m3 v. Baseline Mets 2011 All Participants Bin3 v. Baseline Speed 0.246 0.038 0.227 0.446 mi v. Baseline Robert 2017 Group Bin3 v. Baseline Speed -0.249 0.048 -0.678 0.079 mi v. Baseline Van Dyke 2017 All Participants Bin3 v. Baseline Speed 0.228 -0.547 0.070 mi v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Average Speed 0.248 0.042 -0.153 0.646 mi v. Baseline Zhang 2014 All Participants Bin3 v. Baseline Mean Speed 0.122 0.025 -0.256 0.500 mi v. Baseline Anderson 2010 Females										
nà v. Baseline Marczinski 2008 Binge Gorp Binà v. Baseline Speed 0.279 0.041 0.116 0.674 nà v. Baseline Marczinski 2008 Nohinge Group Binà v. Baseline Speed 0.246 0.058 0.227 0.719 nà v. Baseline Meta S2011 All Participants Binà v. Baseline Mana Speed 0.079 0.035 0.287 0.446 nà v. Baseline Roberts 2017 Budy 2 Control Group Binà v. Baseline Speed 0.024 0.048 0.678 0.180 nà v. Baseline Strayer 2006 All Participants Binà v. Baseline Speed 0.010 0.046 0.411 0.431 nà v. Baseline Veldera 2012 All Participants Binà v. Baseline Combined 0.079 0.055 0.547 0.070 nà v. Baseline Veldera 2012 Sudy 1 All Participants Binà v. Baseline Combined 0.079 0.055 0.547 0.070 nà v. Baseline Veldera 2012 Sudy 1 All Participants Binà v. Baseline Combined 0.179 0.057 0.288 0.646 nà v. Baseline Veldera 2012 Sudy 1 All Participants Binà v. Baseline Mana Speed 0.266 0.044 0.145 0.676 nà v. Baseline Veldera 2018 Sudy 1 All Participants Binà v. Baseline Mana Speed 0.266 0.044 0.145 0.676 nà v. Baseline Mets 2011 All Participants Binà v. Baseline Combined 0.077 0.167 0.278 0.646 HC v. Baseline Anderson 2010 Fernales THC v. Baseline Combined 0.077 0.167 0.724 0.878 HC v. Baseline Anderson 2010 Fernales THC v. Baseline Combined 0.017 0.167 0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined 0.019 0.135 0.741 0.702 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Combined 0.017 0.051 0.428 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Combined 0.011 0.073 0.631 0.428 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Combined 0.011 0.073 0.631 0.428 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Combined 0.013 0.013 0.314 0.128 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Combined 0.017 0.074 0.073 0.602 0.454 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Kana Speed 0.013 0.314 0.128 HC v. Baseline Booker 2012 Heavy Users THC v. Baseline Combined 0.017 0.053 0.033 0.249 HC v. Baseline Booker 2013 All Participants THC v. Baseline Combined 0.0171 0.074 0.073 0.06										
inš v. Baseline Marczinski 2008 Nonhinge Group Binš v. Baseline Špeed 0.246 0.058 -0.227 0.719 niš v. Baseline Robertis 2017 Subject Control Group Binš v. Baseline Konspeed 0.079 0.035 -0.287 0.446 niš v. Baseline Robertis 2017 Subject Control Group Binš v. Baseline Control Group Binš v. Baseline -0.238 0.045 -0.678 0.180 niš v. Baseline Varye 2006 All Participants Binš v. Baseline Drive Speed -0.010 0.046 -0.411 0.431 niš v. Baseline Varge 2008 All Participants Binš v. Baseline Combined 0.179 0.057 -0.288 0.646 niš v. Baseline Weafer 2008 Subj 1 All Participants Binš v. Baseline Combined 0.132 0.035 0.236 0.500 niš v. Baseline Mets 2011 All Participants Binš v. Baseline Combined 0.017 0.167 0.728 0.500 niš v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.019 0.013 0.041 0.478 <td></td> <td></td> <td>All Participants</td> <td></td> <td>Combined</td> <td></td> <td></td> <td></td> <td></td> <td> ⊷ </td>			All Participants		Combined					⊷
in v. Baseline Mets 2011 All Participants Bin3 v. Baseline Mems Speed 0.079 0.035 0.287 0.446 in v. Baseline Roberts 2017 Study 2 Control Coup Bin3 v. Baseline Combined -0.249 0.048 -0.678 0.180 in v. Baseline Strage 2006 All Participants Bin3 v. Baseline Speed -0.249 0.048 -0.678 0.180 in v. Baseline Wan Dyke 2017 All Participants Bin3 v. Baseline Combined -0.249 0.048 -0.678 0.180 in v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Combined 0.170 0.057 -0.288 0.646 in v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Mem Speed 0.266 0.044 -0.155 0.676 in v. Baseline Mens Speed 0.122 0.035 -0.236 0.500 -0.171 0.003 0.58 0.285 in v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.017 0.017 0.026 0.047 0.166										
in v. Baseline Roberts 2017 Study 2 Control Group Bin 3 v. Baseline Oxfinel -0.249 0.048 -0.678 0.180 in v. Baseline Snyer 2006 All Participants Bin 3 v. Baseline Speed -0.238 0.025 0.547 0.070 in 3 v. Baseline Van Dyke 2017 All Participants Bin 3 v. Baseline Drive Speed 0.010 0.046 -0.411 0.431 in 3 v. Baseline Weidsra 2012 Study 1 All Participants Bin 3 v. Baseline Drive Speed 0.248 0.042 0.153 0.649 in 3 v. Baseline Weidsra 2012 Multi All Participants Bin 3 v. Baseline Average Speed 0.236 0.026 0.044 0.145 0.676 in 3 v. Baseline Weidsra 2011 All Participants Bin 4 v. Baseline Mean Speed 0.132 0.035 0.236 0.500 in v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.077 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.019 0.135 -0.454 -0.724 0.878 <td></td>										
in v. Baseline Strayer 2006 All Participants Bin3 v. Baseline Speed 0.238 0.025 0.0547 0.070 mia v. Baseline Van Dyke 2017 All Participants Bin3 v. Baseline Drive Speed 0.010 0.046 0.411 0.431 0.44										
in v. Baseline Van Dyke 2017 All Participants Bin3 v. Baseline Onto 0.016 0.044 -0.411 0.431 in v. Baseline Weder 2008 Study 1 All Participants Bin3 v. Baseline Combined 0.179 0.028 0.646 in v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Average Speed 0.248 0.012 0.115 0.649 in v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Average Speed 0.266 0.044 -0.145 0.676 in v. Baseline Mets 2011 All Participants Bin4 v. Baseline Mena Speed 0.132 0.035 -0.236 0.500 in v. Baseline Anderson 2010 Females THC v. Raseline Combined -0.077 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Raseline Combined -0.019 0.013 -0.341 0.702 HC v. Baseline Bosker 2012 Heavy Users THC v. Raseline Combined -0.011 0.073 -0.661 -0.454 HC v. Baseline Brank										
in3 v. Baseline Veldsra 2012 Study 1 All Participants Bin3 v. Baseline Combined 0.179 0.057 -0.288 0.646 in3 v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Nerrage Speed 0.248 0.042 -0.133 0.649 in3 v. Baseline Zhang 2014 All Participants Bin3 v. Baseline Mean Speed 0.266 0.044 -0.145 0.676 in3 v. Baseline Mets 2011 All Participants Bin4 v. Baseline Mean Speed 0.132 0.035 -0.236 0.500 in4 v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.077 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.019 0.013 -0.340 0.428 HC v. Baseline Boker 2012 Cocasional Users THC v. Baseline Combined -0.019 0.013 -0.430 0.428 HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline Combined -0.014 0.073 -0.612 0.454 HC v. Baselin	in3 v. Baseline	Strayer 2006	All Participants	Bin3 v. Baseline	Speed	-0.238	0.025	-0.547	0.070	
ini v. Baseline Wearfer 2008 Sudy 1 All Participants Bin3 v. Baseline Average Speed 0.248 0.042 0.153 0.649 ini v. Baseline Jhang 2014 All Participants Bin3 v. Baseline Mean Speed 0.266 0.044 0.145 0.676 ini v. Baseline Mean Speed 0.171 0.003 0.058 0.285 ini v. Baseline Mean Speed 0.132 0.035 0.236 0.500 ini v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.017 0.077 0.074 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined 0.019 0.155 0.741 0.702 HC v. Baseline Bosker 2012 Heary Users THC v. Baseline Combined -0.010 0.023 0.664 0.424 HC v. Baseline Bosker 2012 Caccional Users THC v. Baseline Combined -0.017 0.073 0.631 0.428 HC v. Baseline Bosker 2012 Caccional Users THC v. Baseline Combined -0.010 0.033 0.324 -0.434<	in3 v. Baseline	Van Dyke 2017	All Participants	Bin3 v. Baseline	Drive Speed	0.010	0.046	-0.411	0.431	
in v. Baseline Weafer 2008 Study 1 All Participants Bin3 v. Baseline Average Speed 0.248 0.042 -0.153 0.649 in v. Baseline All Participants Bin3 v. Baseline Mean Speed 0.266 0.044 -0.153 0.649 ind v. Baseline Mean Speed 0.132 0.003 0.058 0.258 ind v. Baseline Mets 2011 All Participants Birl4 v. Baseline Mean Speed 0.132 0.003 0.028 0.256 ind v. Baseline Anderson 2010 Females THC v. Reseline Combined 0.077 0.167 0.724 0.878 HC v. Baseline Arkell 2019 All Participants THC v. Reseline Combined -0.019 0.135 -0.741 0.702 HC v. Baseline Bosker 2012 Decasional Users THC v. Reseline Combined -0.019 0.135 -0.741 0.702 HC v. Baseline Bosker 2012 Decasional Users THC v. Reseline Combined -0.019 0.135 -0.430 0.428 HC	in3 v. Baseline						0.057			
inix v. Baseline Zhang 2014 All Participants Bin3 v. Baseline Mean Speed 0.266 0.044 0.145 0.676 in3 v. Baseline 0.171 0.003 0.058 0.236 0.500 in4 v. Baseline Mets 2011 All Participants Bin4 v. Baseline Mean Speed 0.122 0.035 0.236 0.500 in4 v. Baseline Ontrop 2010 Fernales THC v. Baseline Combined 0.077 0.167 0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.019 0.135 -0.741 0.702 HC v. Baseline Bosker 2012 Ceasional Users THC v. Baseline Combined -0.019 0.035 -0.236 0.200 HC v. Baseline Bosker 2012 Ceasional Users THC v. Baseline Combined -0.011 0.073 -0.631 0.289 HC v. Baseline Brands 2019 Ligh THC Goup THC v. Baseline Mean Speed -0.020 0.031 -0.361 0.232 HC v.	in3 v. Baseline	Weafer 2008 Study 1			Average Speed					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				Bin3 v. Baseline						
ind v. Baseline Mets 2011 All Participants Bind v. Baseline Mean Speed 0.132 0.035 0.236 0.500 HC v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.037 0.167 -0.274 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.031 0.081 -0.974 0.167 HC v. Baseline Anderson 2010 Alle THC v. Baseline Combined -0.091 0.135 0.428 0.702 HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.011 0.073 0.631 0.428 HC v. Baseline Bosker 2012 Cocasional Users THC v. Baseline Combined -0.011 0.032 0.434 0.162 HC v. Baseline Bosker 2012 Cocasional Users THC v. Baseline Combined -0.014 0.032 0.434 0.128 HC v. Baseline Bosker 2012 Low THC Group THC v. Baseline Mean Speed -0.081 0.032	in3 v. Baseline	-	-		-	0.171	0.003	0.058	0.285	♠
ind v. Baseline 0.132 0.035 -0.236 0.500 HC v. Baseline Anderson 2010 Females THC v. Baseline Combined 0.077 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined 0.077 0.167 -0.724 0.878 HC v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.031 0.081 -0.947 0.166 HC v. Baseline Bosker 2012 Leavestone Combined -0.019 0.013 -0.610 0.073 -0.610 0.428 HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline Combined -0.014 0.073 -0.610 0.428 HC v. Baseline Brands 2019 High THC Group THC v. Baseline Mean Speed -0.020 0.031 -0.330 0.269 HC v. Baseline Rombined -0.074 0.073 -0.612 0.269 HC v. Baseline Rom Speed -0.020 0.031 -0.314 0.128 HC v. Baseline Rombined -0.045 0.071		Mets 2011	All Participants	Bin4 v. Baseline	Mean Speed					
HCv. Baseline Anderson 2010 Females THCv. Baseline Combined 0.077 0.167 -0.724 0.878 HCv. Baseline Anderson 2010 Males THCv. Baseline Combined -0.031 0.081 -0.947 0.166 HCv. Baseline Arkell 2019 All Participants THCv. Baseline Combined -0.019 0.135 -0.741 0.702 HCv. Baseline Bosker 2012 Heavy Users THCv. Baseline Combined -0.011 0.073 -0.661 0.428 HCv. Baseline Bosker 2012 Crcasional Users THCv. Baseline Combined -0.014 0.073 -0.661 0.428 HCv. Baseline Brank 2019 High THC Group THCv. Baseline Combined -0.020 0.031 -0.330 0.269 HCv. Baseline Brank 2019 Low THC Group THCv. Baseline Mean Speed -0.020 0.013 -0.331 0.228										
HC v. Baseline Anderson 2010 Males THC v. Baseline Combined -0.391 0.081 -0.947 0.166 HC v. Baseline Arkell 2019 All Participants THC v. Baseline Combined -0.019 0.135 -0.741 0.702 HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline Combined -0.011 0.073 -0.602 0.428 HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline Combined -0.074 0.073 -0.602 0.428 HC v. Baseline Brands 2019 High THC Group THC v. Baseline Man Speed -0.020 0.031 -0.330 0.229 HC v. Baseline Downey 2013 All Participants THC v. Baseline Man Speed -0.020 0.031 -0.314 0.128 HC v. Baseline Rone 2010 All Participants THC v. Baseline Combined -0.0426 0.074 -0.070 0.994 HC v. Baseline Rone 2010 All Participants THC v. Baseline Combined -0.0426 0.074 -0.070 0.299 HC v. Baseline Rone		Anderson 2010	Females	THC v. Baseline	Combined					
HCv. Baseline Arkell 2019 All Participants THCv. Baseline Ombined -0.019 0.135 -0.741 0.702 HCv. Baseline Bosker 2012 Heavy Users THCv. Baseline Combined -0.019 0.013 -0.631 0.428 HCv. Baseline Bosker 2012 Occasional Users THCv. Baseline Combined -0.014 0.073 -0.631 0.428 HCv. Baseline Brank 2019 High THC Group THCv. Baseline Mean Speed -0.020 0.031 -0.330 0.269 HCv. Baseline Brank 2019 Low THC Croup THCv. Baseline Mean Speed -0.020 0.031 -0.330 0.269 HCv. Baseline Bosker 2012 Low THC Group THCv. Baseline Mean Speed -0.020 0.031 -0.331 0.128 HCv. Baseline Ronen 2008 All Participants THCv. Baseline Combined -0.0426 0.071 -0.947 0.094 HCv. Baseline Ronen 2010 All Participants THCv. Baseline Mean Speed (THC) -0.0474										
HC v. Baseline Bosker 2012 Heavy Users THC v. Baseline Combined -0.101 0.073 -0.631 0.428 HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline -0.001kind -0.073 -0.631 0.428 HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline -0.001kind -0.073 -0.602 0.454 HC v. Baseline Branks 2019 High THC Group THC v. Baseline Mean Speed -0.003 0.031 -0.363 0.323 HC v. Baseline Ronen 2008 All Participants THC v. Baseline Mean Speed -0.003 0.013 -0.314 0.128 HC v. Baseline Ronen 2008 All Participants THC v. Baseline -0.020 0.013 -0.314 0.128 HC v. Baseline Ronen 2000 All Participants THC v. Baseline -0.025 0.074 -0.770 0.994 HC v. Baseline Sexton 2000 All Participants THC v. Baseline -0.067 0.057 -0.054 0.059 HC v. Baselin										
HC v. Baseline Bosker 2012 Occasional Users THC v. Baseline Combined -0.074 0.073 0.602 0.454 HC v. Baseline Brands 2019 High THC Group THC v. Baseline Mean Speed -0.081 0.032 0.430 0.269 HC v. Baseline Brands 2019 Low THC (Group THC v. Baseline Mean Speed -0.081 0.32 -0.430 0.269 HC v. Baseline Brands 2019 Low THC (Group THC v. Baseline Mean Speed -0.093 0.013 -0.363 0.323 HC v. Baseline Romen 2008 All Participants THC v. Baseline Combined -0.047 0.094										
HC v. Baseline Brands 2019 High THC Group THC v. Baseline Mean Speed -0.081 0.032 -0.430 0.269 HC v. Baseline Brands 2019 Low THC Group THC v. Baseline Mean Speed -0.021 -0.031 -0.363 0.323 HC v. Baseline Downey 2013 All Participants THC v. Baseline Combined -0.093 0.013 -0.314 0.128 HC v. Baseline Ronen 2008 All Participants THC v. Baseline Combined -0.426 0.071 -0.947 0.094 HC v. Baseline Ronen 2010 All Participants THC v. Baseline Combined -0.426 0.071 -0.947 0.094 HC v. Baseline Sexton 2000 All Participants THC v. Baseline Combined -0.474 0.074 -1.006 0.059 HC v. Baseline Sexton 2002 All Participants THC v. Baseline Mean Speed (THC) -0.667 0.057 -1.136 -0.198					Combined					
HC v. Baseline Brands 2019 Low THC Group THC v. Baseline Mean Speed -0.020 0.031 -0.363 0.323 HC v. Baseline Downey 2013 All Participants THC v. Baseline -0.0793 0.013 -0.314 0.128 HC v. Baseline Romen 2008 All Participants THC v. Baseline -0.0793 0.013 -0.314 0.128 HC v. Baseline Romen 2006 All Participants THC v. Baseline -0.0703 0.013 -0.314 0.128 HC v. Baseline Romen 2010 All Participants THC v. Baseline Mean Speed (THC) -0.235 0.074 -0.079 0.299 HC v. Baseline Sexton 2000 All Participants THC v. Baseline Mean Speed (THC) -0.267 0.077 -1.066 0.059 HC v. Baseline Sexton 2002 All Participants THC v. Baseline Mean Speed (THC) -0.667 0.057 -1.136 -0.198	HC v. Baseline						0.032			
HCv. Baseline Downey 2013 All Participants THCv. Baseline Combined -0.093 0.013 -0.314 0.128 HCv. Baseline Ronen 2008 All Participants THCv. Baseline Combined -0.047 -0.094 -0.047 0.094 HCv. Baseline Ronen 2010 All Participants THCv. Baseline Combined -0.426 0.071 -0.947 0.094 HCv. Baseline Ronen 2010 All Participants THCv. Baseline Mean Speed(THC) -0.255 0.074 -0.770 0.299 HCv. Baseline Sexton 2000 All Participants THCv. Baseline -0.667 0.057 -1.136 0.198										
HC v. Baseline Ronen 2008 All Participants THC v. Baseline Combined -0.426 0.071 -0.947 0.094 HC v. Baseline Ronen 2010 All Participants THC v. Baseline Mean Speed (THC) -0.235 0.074 -0.770 0.299 HC v. Baseline Sexton 2000 All Participants THC v. Baseline Combined -0.474 0.074 -1.006 0.059 HC v. Baseline Sexton 2002 All Participants THC v. Baseline Mean Speed (THC) -0.667 0.057 -1.136 -0.198										
HC v. Baseline Ronen 2010 All Participants THC v. Baseline Mean Speed (THC) -0.235 0.074 -0.700 0.299 HC v. Baseline Sexton 2000 All Participants THC v. Baseline -0.0710 0.074 -1.006 0.059 HC v. Baseline Sexton 2000 All Participants THC v. Baseline -0.067 0.075 -1.136 0.059										
'HC v. Baseline Sexton 2000 All Participants THC v. Baseline Combined -0.474 0.074 -1.006 0.059 'HC v. Baseline Sexton 2002 All Participants THC v. Baseline Mean Speed (THC) -0.667 0.057 -1.136 -0.198										
HC v. Baseline Sexton 2002 All Participants THC v. Baseline Mean Speed (THC) -0.667 0.057 -1.136 -0.198										
-0.170 0.004 -0.298 -0.053		GEATOII 2002	250 Fatterpants	TTAC V. Dasculle	mean speeu (1 mC)					
-2.00 -1.00 0.00 1.00	rtc v. Baseline					-0.176	0.004	-0.298		I I ♥ I I

Figure D14. Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed. Missing pre-post correlations set to r = 0.5.

Alcohol/Cannabis v.	Baseline:	Speed	(Subgroup	Analysis)

roup by	Study name	Subgroup within study	Comparison	Outcome	Sta	atistics for e	ach study		Hedges's g and 95% CI
omparison					Hedges's	Variance	Lower limit	Upper limit	
in1 v. Baseline	Berthelon 2014	All Destiniants	Bin1 v. Baseline	Coursed (TE-houses)	-0.040	0.011	-0.248	0.168	
in1 v. Baseline	Berthelon 2014	All Participants All Participants	Bin1 v. Baseline	Speed (Highway) Speed	-0.040	0.001	-0.248	0.168	- I I I
in1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline Bin1 v. Baseline	Speed	-0.136	0.000	-0.334	0.063	
in1 v. Baseline	Price 2018	Older (Low+Placebo)	Bin1 v. Baseline Bin1 v. Baseline	Combined	-0.130	0.010	-1.108	0.519	
n1 v. Baseline	Price 2018	Younger (Low+Placebo)	Bin1 v. Baseline	Combined	-0.293	0.172	-0.736	0.882	
n1 v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	Average Speed	0.955	0.170	0.151	1.758	
in1 v. Baseline	Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	Average Speed	0.307	0.108	-0.456	1.071	
in1 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin1 v. Baseline Bin1 v. Baseline	Combined	-0.097	0.011	-0.303	0.110	
in1 v. Baseline	Zhang 2014	All Participants	Bin1 v. Baseline	Mean Speed	0.318	0.009	0.133	0.503	
in1 v. Baseline	Zhang 2014	An Fattepants	Bill V. Baseline	wear speed	0.047	0.009	-0.108	0.202	
in2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Speed Deviation	0.047	0.000	0.242	0.658	
n2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	Speed (Highway)	0.050	0.011	-0.158	0.259	
n2 v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Speed (Highway)	0.000	0.006	0.049	0.365	
n2 v. Baseline	Downey 2013	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined	0.207	0.002	-0.089	0.105	
n2 v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined	0.008	0.002	-0.089	0.303	
in2 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined	0.223	0.009	0.045	0.400	
n2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Combined	0.225	0.008	0.045	0.400	
in2 v. Baseline in2 v. Baseline	McCartney 2017	All Participants All Participants	Bin2 v. Baseline Bin2 v. Baseline	Speed (Simple)	0.085	0.002	-0.209	0.170	
in2 v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline Bin2 v. Baseline	Mean Speed	-0.168	0.045	-0.209	-0.003	
in2 v. Baseline	Price 2018	Older (High+Placebo)	Bin2 v. Baseline Bin2 v. Baseline	Combined	-0.168	0.007	-0.355	0.317	
in2 v. Baseline in2 v. Baseline	Price 2018 Price 2018	Older (High+Placebo) Younger (High+Placebo)	Bin2 v. Baseline Bin2 v. Baseline	Combined	-0.520	0.182	-1.357	0.317 1.163	
in2 v. Baseline in2 v. Baseline	Price 2018 Roberts 2017 Study 2		Bin2 v. Baseline Bin2 v. Baseline	Combined	0.333	0.179	-0.496 -0.045	0.334	
		DUI Group All Porticipants							
n2 v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	Speed	-0.142	0.011	-0.345	0.062	
n2 v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	Average Speed	0.729	0.173	-0.087	1.545	
n2 v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	Average Speed	0.573	0.169	-0.233	1.379 0.365	
in2 v. Baseline in2 v. Baseline	Van Dyke 2014	Control Group	Bin2 v. Baseline	Drive Speed	0.193		0.022		
in2 v. Baseline	Van Dyke 2014	DUI Group	Bin2 v. Baseline	Drive Speed	-0.145	0.008	-0.315	0.026	
	Van Dyke 2017	All Participants	Bin2 v. Baseline	Drive Speed	0.029		-0.159	0.217	
n2 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin2 v. Baseline	Combined	0.269	0.011	0.060	0.478	
n2 v. Baseline	Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline	Combined	-0.012	0.010	-0.205 0.080	0.181 0.447	
	Zhang 2014	All Participants	Bin2 v. Baseline	Mean Speed	0.263				
n2 v. Baseline	h h 2001	A11 15	P : 2 P !	6 ID 1.2	0.102	0.001	0.029	0.175	
n3 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Speed Deviation	0.778	0.014	0.551	1.006	
n3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	Speed (Highway)	0.287	0.012	0.074	0.499	
n3 v. Baseline	Fillmore 2008	All Participants	Bin3 v. Baseline	Combined	0.580	0.015	0.339	0.821	
n3 v. Baseline	Harrison 2007	Control Group	Bin3 v. Baseline	Speed	0.150	0.017	-0.105	0.405	
n3 v. Baseline	Harrison 2011	All Participants	Bin3 v. Baseline	Drive Speed	0.144	0.184	-0.696	0.985	
n3 v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.298	0.013	0.072	0.524	
n3 v. Baseline	Kenntner-Mabiala 2015	All Participants	Bin3 v. Baseline	Combined	0.214	0.008	0.038	0.389	
n3 v. Baseline	Laude 2016	All Participants	Bin3 v. Baseline	Speed (Risk Taking)	0.087	0.005	-0.049	0.224	
n3 v. Baseline	Laude 2016 Study 3	Control Drivers	Bin3 v. Baseline	Speed	-0.400	0.016	-0.646	-0.154	
n3 v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.151	0.002	0.066	0.236	-
13 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Speed	0.174	0.008	-0.000	0.349	
3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Speed	0.189	0.011	-0.021	0.399	
3 v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	Mean Speed	0.059	0.007	-0.105	0.223	
13 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	-0.234	0.010	-0.425	-0.042	
13 v. Baseline	Strayer 2006	All Participants	Bin3 v. Baseline	Speed	-0.133	0.005	-0.270	0.003	
3 v. Baseline	Van Dyke 2017	All Participants	Bin3 v. Baseline	Drive Speed	0.010	0.009	-0.178	0.198	
13 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin3 v. Baseline	Combined	0.177	0.011	-0.031	0.386	
13 v. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	Average Speed	0.159	0.008	-0.019	0.336	
13 v. Baseline	Zhang 2014	All Participants	Bin3 v. Baseline	Mean Speed	0.184	0.009	0.002	0.365	
n3 v. Baseline					0.147	0.003	0.047	0.246	
n4 v. Baseline	Mets 2011	All Participants	Bin4 v. Baseline	Mean Speed	0.086	0.007	-0.078	0.250	
n4 v. Baseline					0.086	0.007	-0.078	0.250	
HC v. Baseline	Anderson 2010	Females	THC v. Baseline	Combined	0.077	0.167	-0.724	0.878	+
HC v. Baseline	Anderson 2010	Males	THC v. Baseline	Combined	-0.391	0.081	-0.947	0.166	
HC v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	-0.019	0.135	-0.741	0.702	
IC v. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	-0.081	0.015	-0.317	0.155	_+
IC v. Baseline	Bosker 2012	Occasional Users	THC v. Baseline	Combined	-0.065	0.014	-0.301	0.171	
IC v. Baseline	Brands 2019	High THC Group	THC v. Baseline	Mean Speed	-0.036	0.006	-0.192	0.120	
IC v. Baseline	Brands 2019	Low THC Group	THC v. Baseline	Mean Speed	-0.009	0.006	-0.162	0.144	
HC v. Baseline	Downey 2013	All Participants	THC v. Baseline	Combined	-0.079	0.003	-0.177	0.020	
HC v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	-0.386	0.014	-0.616	-0.155	
HC v. Baseline	Ronen 2010	All Participants	THC v. Baseline	Mean Speed (THC)	-0.173	0.014	-0.410	0.065	
HC v. Baseline	Sexton 2000	All Participants	THC v. Baseline	Combined	-0.472	0.015	-0.710	-0.234	
HC v. Baseline	Sexton 2002	All Participants	THC v. Baseline	Mean Speed (THC)	-0.667	0.015	-0.877	-0.457	
HC v. Baseline		urrequits			-0.205	0.004	-0.336	-0.074	
······					-0.205	0.004	0.000	-0.074 -2.0	00 -1.00 0.00 1.00

Figure D15. Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed. Missing pre-post correlations set to r = 0.9.

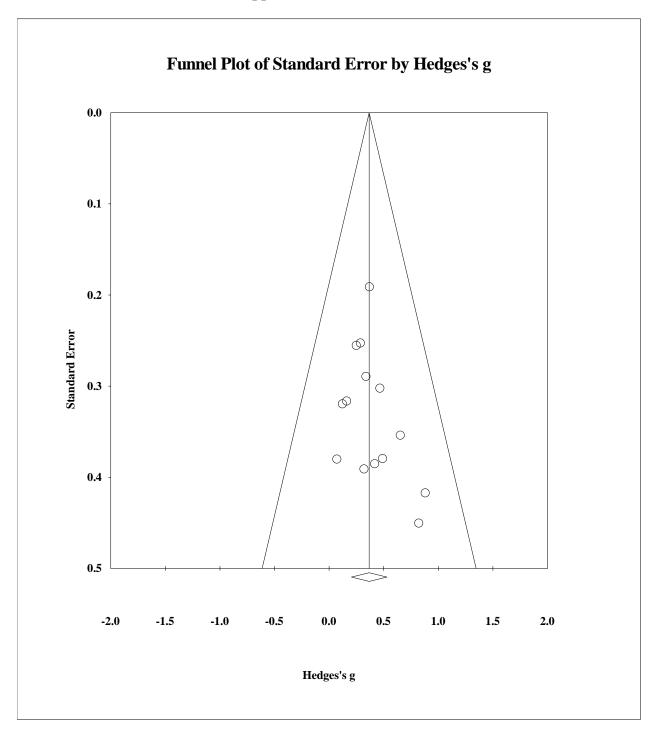
roup by	Study name	Subgroup within study	Comparison	Outcome	5	statistics for	each study		Hedges's g and 95% CI
omparison					Hedges's g	Variance	Lower limit	Upper limit	
in1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	SD Speed (Highway)	0.245	0.116	-0.423	0.914	
in1 v. Baseline	Berthelon 2018	All Participants	Bin1 v. Baseline	SD Speed	0.298	0.066	-0.206	0.803	
in1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	SD Speed	0.225	0.104	-0.408	0.858	
in1 v. Baseline	Ramaekers 1992	All Participants	Bin1 v. Baseline	SD of Speed	0.043	0.113	-0.615	0.701	
in1 v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	SD Speed	0.367	0.153	-0.398	1.133	
n1 v. Baseline	Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	SD Speed	-0.514	0.155	-1.286	0.258	
n1 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin1 v. Baseline	Combined	0.051	0.107	-0.590	0.693	
n1 v. Baseline	Vendard 2012 Brady 1	i in i u deipundo	Dair v. Dabeane	Combard	0.135	0.016	-0.109	0.379	
n2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Speed Variability	0.271	0.105	-0.365	0.908	
n2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	SD Speed (Highway)	0.234	0.116	-0.434	0.902	
n2 v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline	SD Speed	0.513	0.072	-0.013	1.039	
n2 v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline	Combined	0.165	0.012	-0.092	0.423	
n2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	-0.015	0.017	-0.092	0.423	
12 v. Baseline 12 v. Baseline	Lee 2010 Lenne 2003		Bin2 v. Baseline	SD Speed	-0.013	0.018	-0.281	0.232	
n2 v. Baseline n2 v. Baseline		All Participants			0.363	0.094	-0.240	0.965	
	McCartney 2017 Mets 2011	All Participants	Bin2 v. Baseline	SD Speed (Simple) SD Speed	0.265	0.041	-0.133	0.663	
12 v. Baseline		All Participants	Bin2 v. Baseline						
n2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.263	0.096	-0.343	0.869	
n2 v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	SD Speed	0.367	0.115	-0.297	1.031	
12 v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	SD Speed	0.790	0.175	-0.031	1.611	
2 v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	SD Speed	-0.595	0.170	-1.402	0.212	
n2 v. Baseline	van der Sluiszen 2016	All Participants	Bin2 v. Baseline	SD Speed	0.763	0.098	0.148	1.377	
12 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin2 v. Baseline	Combined	-0.055	0.108	-0.699	0.588	
2 v. Baseline	Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline	Combined	0.227	0.100	-0.394	0.848	
2 v. Baseline	Weafer 2008 Study 2	All Participants	Bin2 v. Baseline	Combined	0.241	0.206	-0.647	1.130	
2 v. Baseline					0.187	0.004	0.065	0.309	
13 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Speed Variability	0.614	0.122	-0.071	1.300	
3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	SD Speed (Highway)	0.440	0.125	-0.252	1.133	
13 v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.449	0.027	0.129	0.769	
13 v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.070	0.019	-0.198	0.337	_ →
3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Speed Deviation	0.239	0.080	-0.317	0.794	
13 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Speed Deviation	0.668	0.140	-0.067	1.402	
3 v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.189	0.111	-0.465	0.843	
n3 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.361	0.191	-0.496	1.218	
13 v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	SD Speed	0.479	0.078	-0.070	1.027	
13 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.023	0.094	-0.578	0.623	
13 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin3 v. Baseline	Combined	0.180	0.111	-0.473	0.832	
13 v. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	Driving Speed Variation	0.449	0.090	-0.138	1.036	
13 v. Baseline	curci 2000 budy I	u ucquino		opeca · anaton	0.289	0.005	0.130	0.433	
n4 v. Baseline	Mets 2011	All Participants	Bin4 v. Baseline	SD Speed	0.239	0.005	0.069	1.212	
n4 v. Baseline	11000 2011	. in i ai acquins	Dart v. Dasciałe	se opera	0.640	0.085	0.069	1.212	
IC v. Baseline	Anderson 2010	Females	THC v. Baseline	SD Speed (Uneventful Driving)	-0.227	0.083	-1.028	0.573	
IC v. Baseline	Anderson 2010	Males	THC v. Baseline	SD Speed (Uneventful Driving)	-0.227	0.187	-0.644	0.373	
C v. Baseline	Arkell 2019		THC v. Baseline	Combined	-0.092	0.079	-0.848	0.439	
		All Participants							
IC v. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	0.134	0.146	-0.614	0.882	
IC v. Baseline	Bosker 2012	Occasional Users	THC v. Baseline	Combined	0.085	0.145	-0.663	0.832	
HC v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	0.382	0.137	-0.344	1.108	
HC v. Baseline	Ronen 2010	All Participants	THC v. Baseline	RMS Speed (THC)	0.284	0.151	-0.478	1.045	
IC v. Baseline					0.047	0.019	-0.220	0.314	I I 🜩 I
									-2.00 -1.00 0.00 1.00

Alcohol/Cannabis v. Baseline: Speed Variability (Subgroup Analysis)

Figure D16. Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed variability. Missing pre-post correlations set to r = zero.

roup by	Study name	Subgroup within study	Comparison	Outcome	5	statistics for	each study		Hedges's g and 95% CI
omparison					Hedges's g	Variance	Lower limit	Upper limit	
n1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	SD Speed (Highway)	0.242	0.058	-0.230	0.715	++
n1 v. Baseline	Berthelon 2018	All Participants	Bin1 v. Baseline	SD Speed	0.298	0.033	-0.058	0.655	
n1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	SD Speed	0.225	0.052	-0.222	0.673	
n1 v. Baseline	Ramaekers 1992	All Participants	Bin1 v. Baseline	SD of Speed	0.043	0.056	-0.422	0.508	
11 v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	SD Speed	0.367	0.153	-0.398	1.133	
1 v. Baseline	Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	SD Speed	-0.514	0.155	-1.286	0.258	
1 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin1 v. Baseline	Combined	0.051	0.054	-0.402	0.505	
l v. Baseline					0.158	0.009	-0.024	0.340	
2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Speed Variability	0.268	0.053	-0.181	0.718	
2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	SD Speed (Highway)	0.231	0.058	-0.241	0.703	
2 v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline	SD Speed	0.506	0.036	0.134	0.877	
n2 v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline	Combined	0.165	0.017	-0.092	0.423	
2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	-0.015	0.009	-0.203	0.173	
2 v. Baseline	Lenne 2003	All Participants	Bin2 v. Baseline	SD Speed	0.346	0.047	-0.078	0.771	
2 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	SD Speed (Simple)	0.265	0.041	-0.133	0.663	
2 v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline	SD Speed	0.000	0.035	-0.366	0.366	
2 v. Baseline	Roberts 2017 Study 2	DUI Group	Bin2 v. Baseline	Combined	0.239	0.048	-0.188	0.666	
2 v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	SD Speed	0.358	0.057	-0.110	0.827	
2 v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	SD Speed	0.790	0.175	-0.031	1.611	
2 v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	SD Speed	-0.595	0.170	-1.402	0.212	
v. Baseline	van der Sluiszen 2016	All Participants	Bin2 v. Baseline	SD Speed	0.751	0.049	0.318	1.184	
2 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin2 v. Baseline	Combined	-0.056	0.054	-0.511	0.399	
2 v. Baseline	Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline	Combined	0.219	0.050	-0.219	0.658	
v. Baseline	Weafer 2008 Study 2	All Participants	Bin2 v. Baseline	Combined	0.239	0.103	-0.389	0.868	
2 v. Baseline	ficturer 2000 Buildy 2	. In Furtherpulks	Dill2 1. Duschild	Combalda	0.220	0.004	0.093	0.347	
3 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Speed Variability	0.588	0.060	0.107	1.069	
3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	SD Speed (Highway)	0.408	0.061	-0.078	0.894	
3 v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.449	0.027	0.129	0.769	
3 v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.069	0.009	-0.120	0.259	
3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Speed Deviation	0.228	0.040	-0.164	0.620	
3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Speed Deviation	0.582	0.067	0.075	1.089	
v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.197	0.055	-0.264	0.657	
3 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.197	0.055	-0.204	0.037	
3 v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	SD Speed	0.308	0.092	-0.287	0.902	
3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.400	0.039	-0.401	0.448	
3 v. Baseline 3 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin3 v. Baseline	Combined	0.025	0.047	-0.401	0.448	
3 v. Baseline 3 v. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	Driving Speed Variation	0.170	0.033	-0.290	0.831	
3 v. Baseline 3 v. Baseline	meater 2006 Study I	An rancipants	Dillo v. Dasellile	Driving Speed variation	0.408	0.044	-0.004	0.820	
4 v. Baseline	Mets 2011	All Dortiginants	Bin4 v. Baseline	SD Speed	0.273	0.003	0.158	0.388	
4 v. Baseline 4 v. Baseline	wiets 2011	All Participants	Dill4 V. Daseline	su speed	0.601	0.042	0.201	1.001	
	Andorson 2010	Famalas	TUC DE-	SD Speed (Uncounted Date:	-0.227		-1.028	0.573	
C v. Baseline	Anderson 2010 Anderson 2010	Females	THC v. Baseline	SD Speed (Uneventful Driving)	-0.227 -0.092	0.167	-1.028 -0.644	0.573	
V. Baseline		Males	THC v. Baseline	SD Speed (Uneventful Driving)		0.079			
C v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	-0.143	0.129	-0.848	0.562	
C v. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	0.134	0.073	-0.395	0.663	
C v. Baseline	Bosker 2012	Occasional Users	THC v. Baseline	Combined	0.078	0.073	-0.451	0.606	
C v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	0.377	0.068	-0.135	0.890	
C v. Baseline	Ronen 2010	All Participants	THC v. Baseline	RMS Speed (THC)	0.279	0.075	-0.259	0.817	
C v. Baseline					0.104	0.012	-0.113	0.321	I I 🗭 I
									-2.00 -1.00 0.00 1.00

Alcohol/Cannabis v. Baseline: Speed Variability (Subgroup Analysis)


Figure D17. Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed variability. Missing pre-post correlations set to r = 0.5.

Group by	Study name	Subgroup within study	Comparison	Outcome	S	tatistics for	each study		Hedges's g and 95% CI
Comparison					Hedges's g	Variance	Lower limit	Upper limit	
Bin1 v. Baseline	Berthelon 2014	All Participants	Bin1 v. Baseline	SD Speed (Highway)	0.222	0.012	0.011	0.433	+
Bin1 v. Baseline	Berthelon 2018	All Participants	Bin1 v. Baseline	SD Speed	0.298	0.007	0.139	0.458	
Bin1 v. Baseline	Kuypers 2006	All Participants	Bin1 v. Baseline	SD Speed	0.225	0.010	0.025	0.425	
Bin1 v. Baseline	Ramaekers 1992	All Participants	Bin1 v. Baseline	SD of Speed	0.043	0.011	-0.165	0.251	
in1 v. Baseline	Sklar 2014	Older (Low+Placebo)	Bin1 v. Baseline	SD Speed	0.367	0.153	-0.398	1.133	
in1 v. Baseline	Sklar 2014	Younger (Low+Placebo)	Bin1 v. Baseline	SD Speed	-0.514	0.155	-1.286	0.258	
in1 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin1 v. Baseline	Combined	0.051	0.011	-0.152	0.254	
in1 v. Baseline	-	-			0.166	0.003	0.054	0.278	
in2 v. Baseline	Arnedt 2001	All Participants	Bin2 v. Baseline	Speed Variability	0.250	0.010	0.049	0.450	
in2 v. Baseline	Berthelon 2014	All Participants	Bin2 v. Baseline	SD Speed (Highway)	0.209	0.012	-0.002	0.419	
in2 v. Baseline	Berthelon 2018	All Participants	Bin2 v. Baseline	SD Speed	0.454	0.007	0.290	0.618	
in2 v. Baseline	Helland 2016	All Participants	Bin2 v. Baseline	Combined	0.165	0.017	-0.092	0.423	
in2 v. Baseline	Lee 2010	All Participants	Bin2 v. Baseline	Combined	-0.016	0.002	-0.100	0.068	
n2 v. Baseline	Lenne 2003	All Participants	Bin2 v. Baseline	SD Speed	0.266	0.002	0.079	0.454	
in2 v. Baseline	McCartney 2017	All Participants	Bin2 v. Baseline	SD Speed (Simple)	0.265	0.009	-0.133	0.454	
in2 v. Baseline	Mets 2011	All Participants	Bin2 v. Baseline	SD Speed	0.265	0.041	-0.155	0.065	
n2 v. Baseline	Roberts 2017 Study 2		Bin2 v. Baseline	Combined	0.000	0.007	-0.164	0.164	
	-	DUI Group							
in2 v. Baseline	Schumacher 2011 (2017)	All Participants	Bin2 v. Baseline	SD Speed	0.306	0.011	0.098	0.513	
in2 v. Baseline	Sklar 2014	Older (High+Placebo)	Bin2 v. Baseline	SD Speed	0.790	0.175	-0.031	1.611	
n2 v. Baseline	Sklar 2014	Younger (High+Placebo)	Bin2 v. Baseline	SD Speed	-0.595	0.170	-1.402	0.212	
n2 v. Baseline	van der Sluiszen 2016	All Participants	Bin2 v. Baseline	SD Speed	0.675	0.009	0.486	0.864	
n2 v. Baseline	Veldstra 2012 Study 1	All Participants	Bin2 v. Baseline	Combined	-0.058	0.011	-0.262	0.145	
n2 v. Baseline	Veldstra 2012 Study 2	All Participants	Bin2 v. Baseline	Combined	0.180	0.010	-0.015	0.375	
n2 v. Baseline	Weafer 2008 Study 2	All Participants	Bin2 v. Baseline	Combined	0.225	0.020	-0.055	0.506	
n2 v. Baseline					0.212	0.004	0.095	0.329	
in3 v. Baseline	Arnedt 2001	All Participants	Bin3 v. Baseline	Speed Variability	0.456	0.011	0.248	0.664	
in3 v. Baseline	Berthelon 2014	All Participants	Bin3 v. Baseline	SD Speed (Highway)	0.279	0.012	0.066	0.491	
in3 v. Baseline	Helland 2016	All Participants	Bin3 v. Baseline	Combined	0.449	0.027	0.129	0.769	
in3 v. Baseline	Lee 2010	All Participants	Bin3 v. Baseline	Combined	0.066	0.002	-0.019	0.150	
in3 v. Baseline	Marczinski 2008	Binge Group	Bin3 v. Baseline	Speed Deviation	0.176	0.008	0.001	0.350	
n3 v. Baseline	Marczinski 2008	Nonbinge Group	Bin3 v. Baseline	Speed Deviation	0.340	0.012	0.126	0.555	
n3 v. Baseline	Marczinski 2009	Binge Group	Bin3 v. Baseline	Combined	0.173	0.011	-0.029	0.375	
in3 v. Baseline	Marczinski 2009	Nonbinge Group	Bin3 v. Baseline	Combined	0.175	0.017	-0.081	0.434	
in3 v. Baseline	Mets 2011	All Participants	Bin3 v. Baseline	SD Speed	0.393	0.008	0.222	0.563	
n3 v. Baseline	Roberts 2017 Study 2	Control Group	Bin3 v. Baseline	Combined	0.026	0.009	-0.164	0.216	
in3 v. Baseline	Veldstra 2012 Study 2	All Participants	Bin3 v. Baseline	Combined	0.020	0.005	-0.077	0.332	
n3 v. Baseline	Weafer 2008 Study 1	All Participants	Bin3 v. Baseline	Driving Speed Variation	0.127	0.001	0.084	0.332	
	weater 2008 Study 1	All Farticipants	Billy v. Baselille	Driving Speed Variation	0.203				
in3 v. Baseline	14 . 2011		D ' (D r	6D 0 1		0.002	0.142	0.317	
in4 v. Baseline	Mets 2011	All Participants	Bin4 v. Baseline	SD Speed	0.431	0.008	0.259	0.603	
n4 v. Baseline					0.431	0.008	0.259	0.603	
HC v. Baseline	Anderson 2010	Females	THC v. Baseline	SD Speed (Uneventful Driving)	-0.227	0.167	-1.028	0.573	
IC v. Baseline	Anderson 2010	Males	THC v. Baseline	SD Speed (Uneventful Driving)	-0.092	0.079	-0.644	0.459	
IC v. Baseline	Arkell 2019	All Participants	THC v. Baseline	Combined	-0.143	0.129	-0.848	0.562	
HC v. Baseline	Bosker 2012	Heavy Users	THC v. Baseline	Combined	0.134	0.015	-0.102	0.371	
HC v. Baseline	Bosker 2012	Occasional Users	THC v. Baseline	Combined	0.051	0.014	-0.185	0.286	
HC v. Baseline	Ronen 2008	All Participants	THC v. Baseline	Combined	0.348	0.014	0.120	0.575	
HC v. Baseline	Ronen 2010	All Participants	THC v. Baseline	RMS Speed (THC)	0.249	0.015	0.010	0.489	
HC v. Baseline		•		* · ·	0.166	0.004	0.048	0.284	
									-2.00 -1.00 0.00 1.00

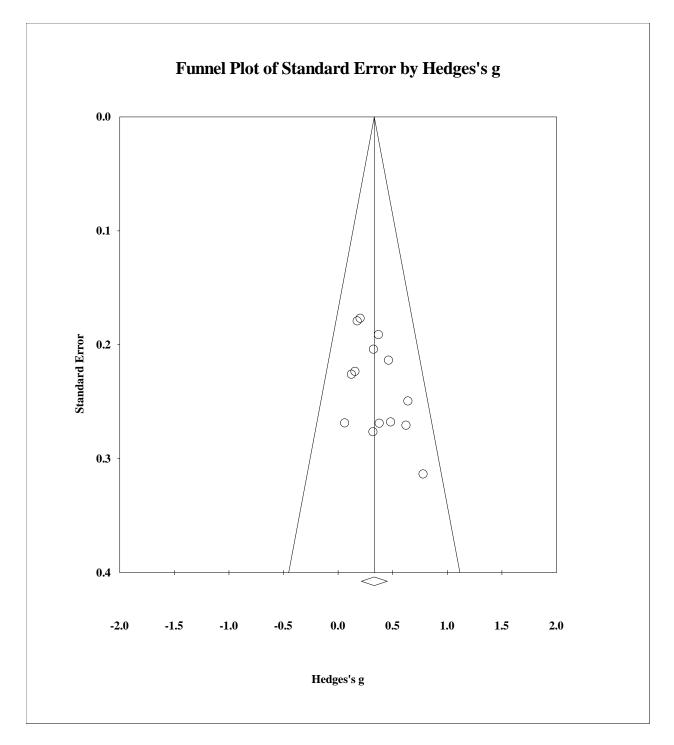
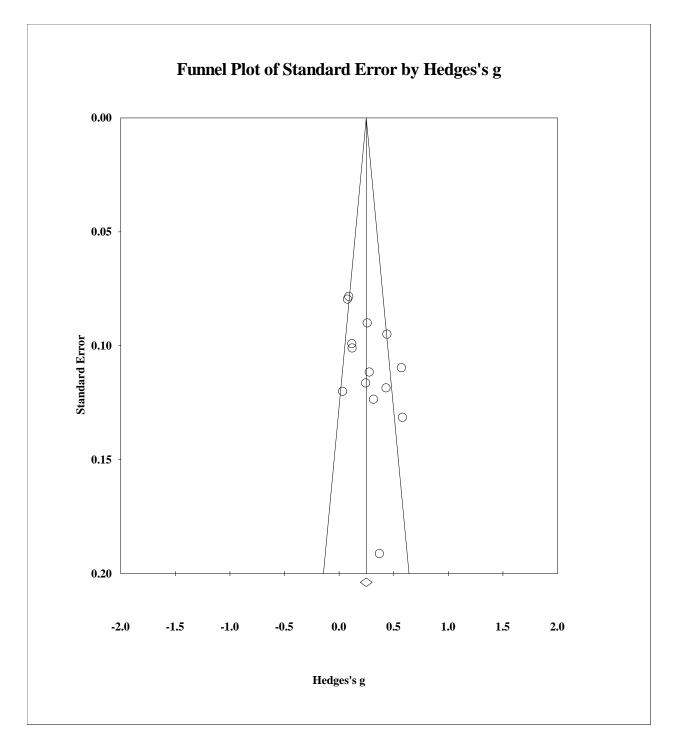
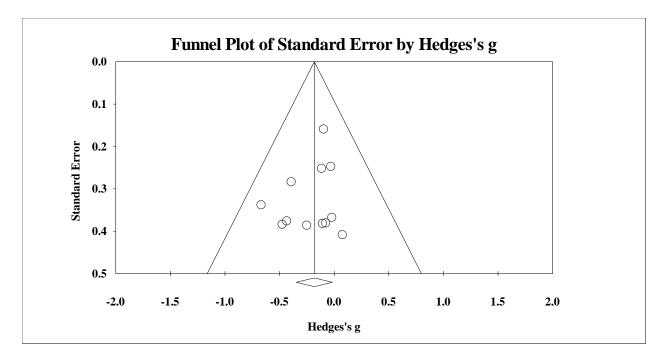
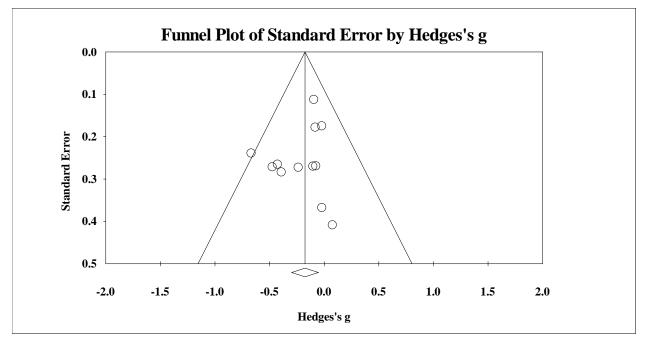
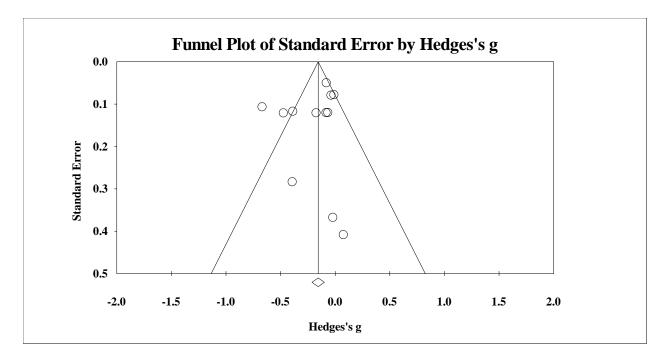

Alcohol/Cannabis v. Baseline: Speed Variability (Subgroup Analysis)

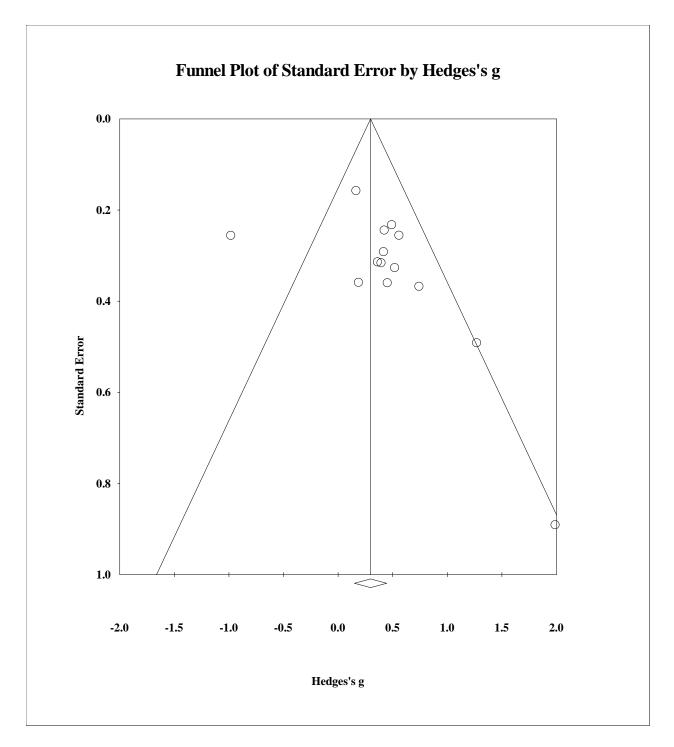
Figure D18. Forest plot illustrating the effects of varying levels of alcohol, and THC, on speed variability. Missing pre-post correlations set to r = 0.9.

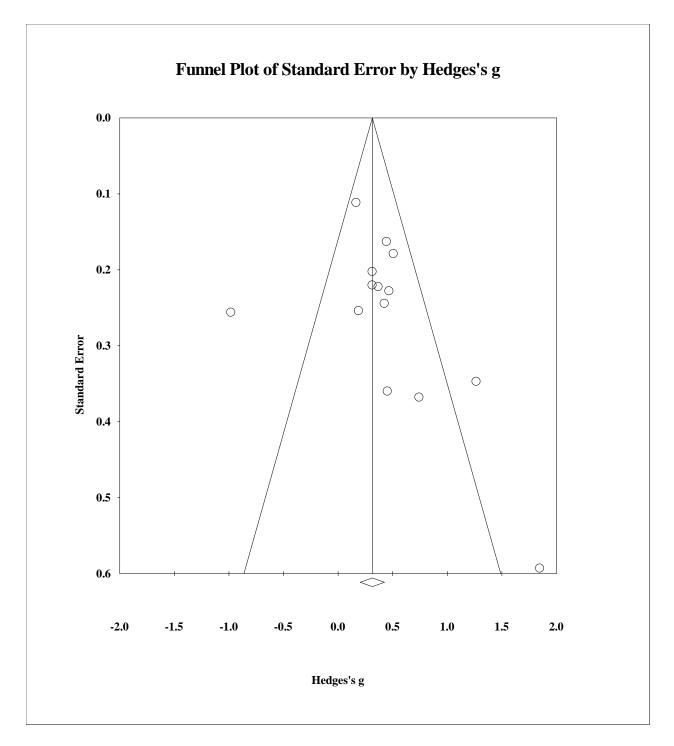

Appendix E: Funnel Plots

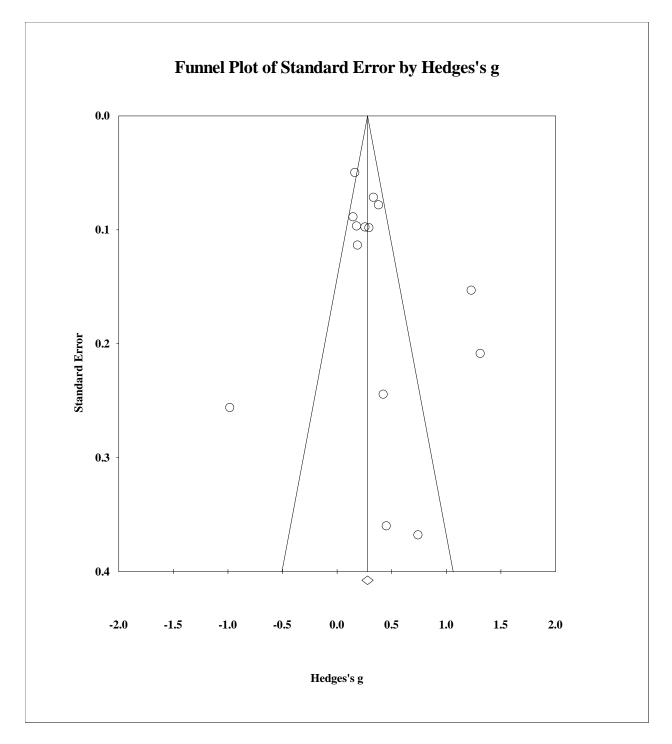

Figure E1. Funnel plot illustrating *Cannabis v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = zero).

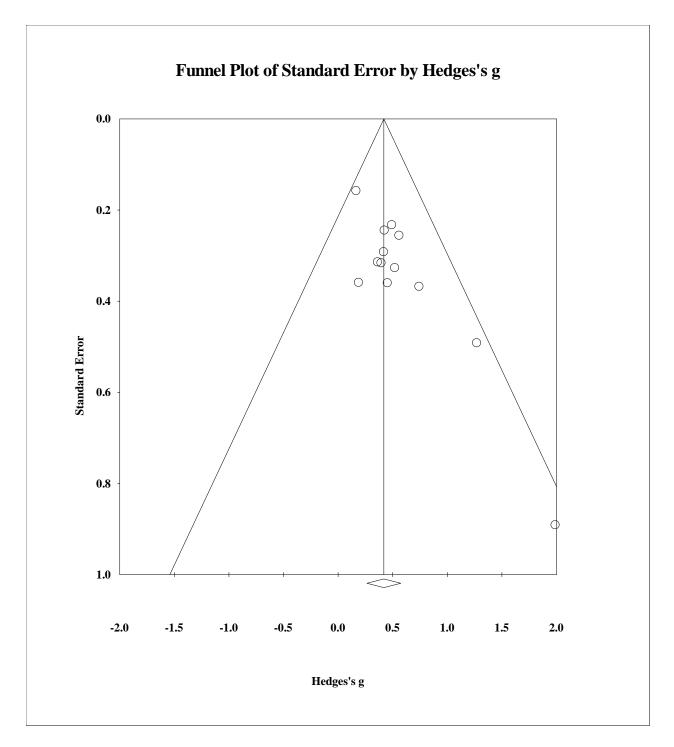

Figure E2. Funnel plot illustrating *Cannabis v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5).

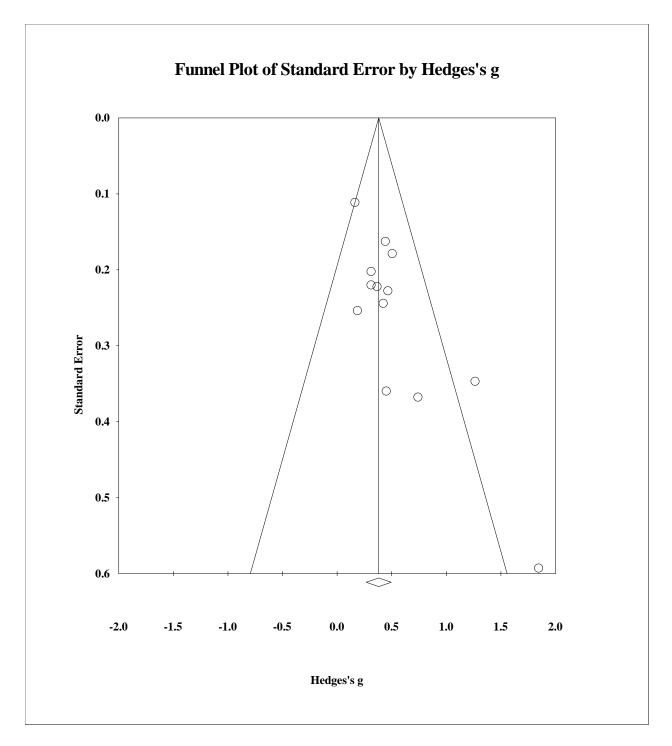

Figure E3. Funnel plot illustrating *Cannabis v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9).

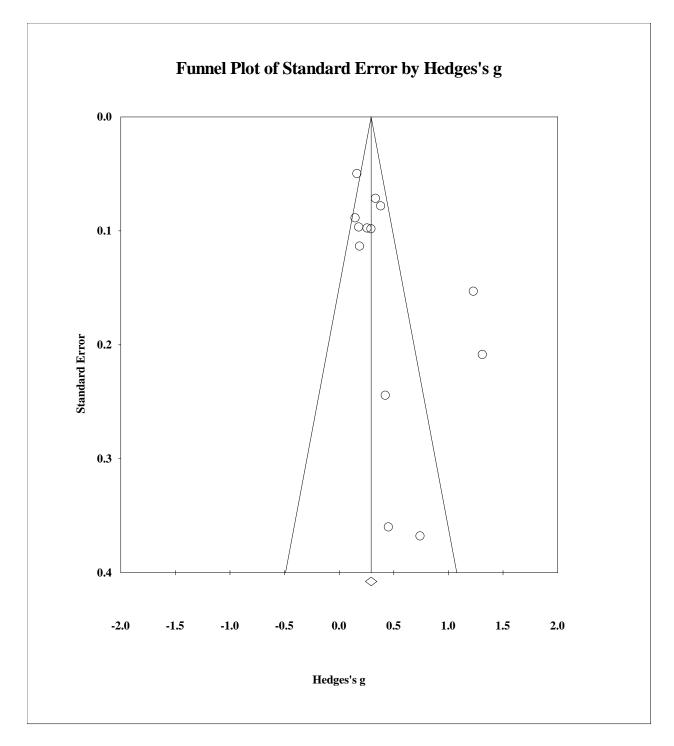

Figure E4. Funnel plot illustrating *Cannabis v. Baseline: Speed* (missing pre-post correlations set to *r* = zero).

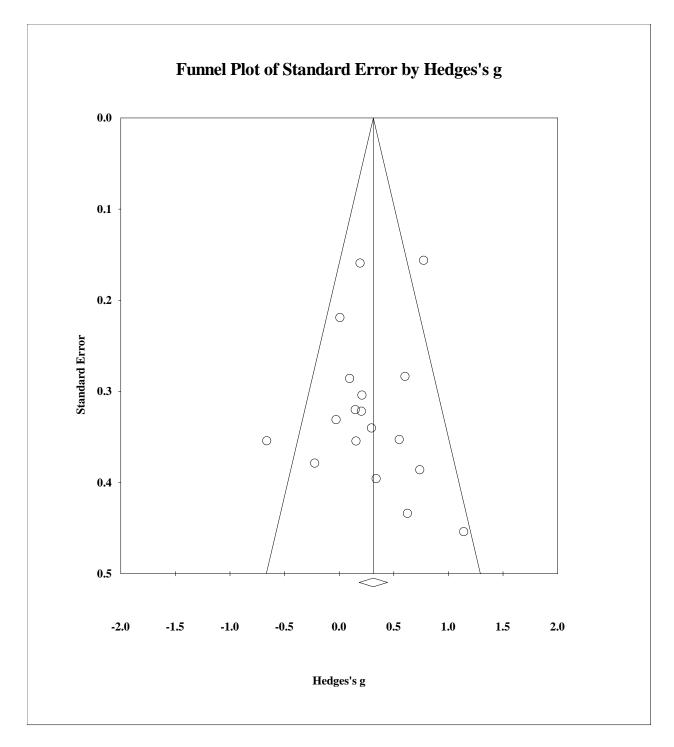

Figure E5. Funnel plot illustrating *Cannabis v. Baseline: Speed* (missing pre-post correlations set to r = 0.5).

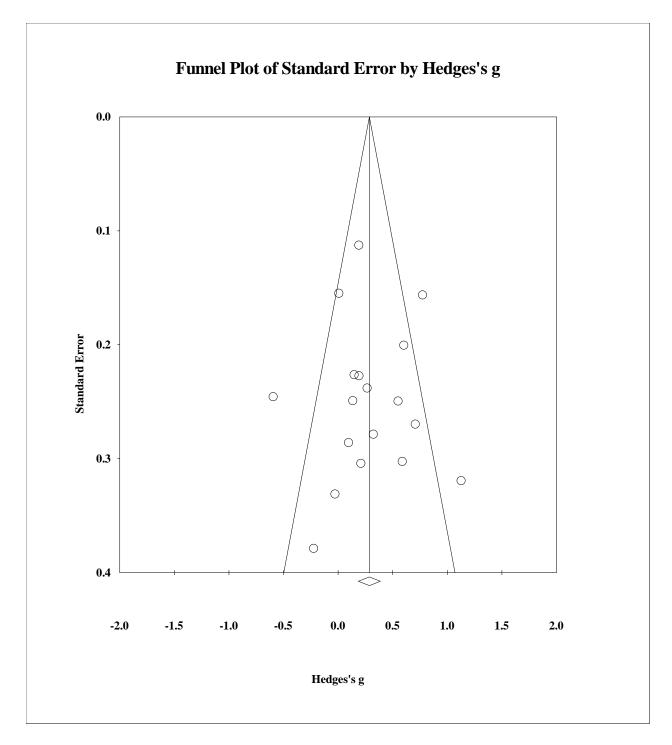

Figure E6. Funnel plot illustrating *Cannabis v. Baseline: Speed* (missing pre-post correlations set to r = 0.9).

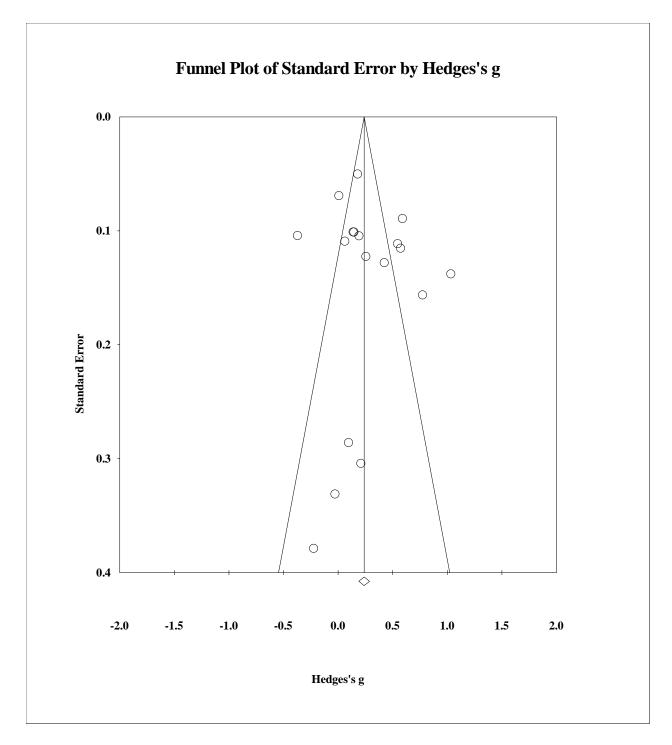

Figure E7. Funnel plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = zero). Includes Bernosky-Smith et al., 2012.

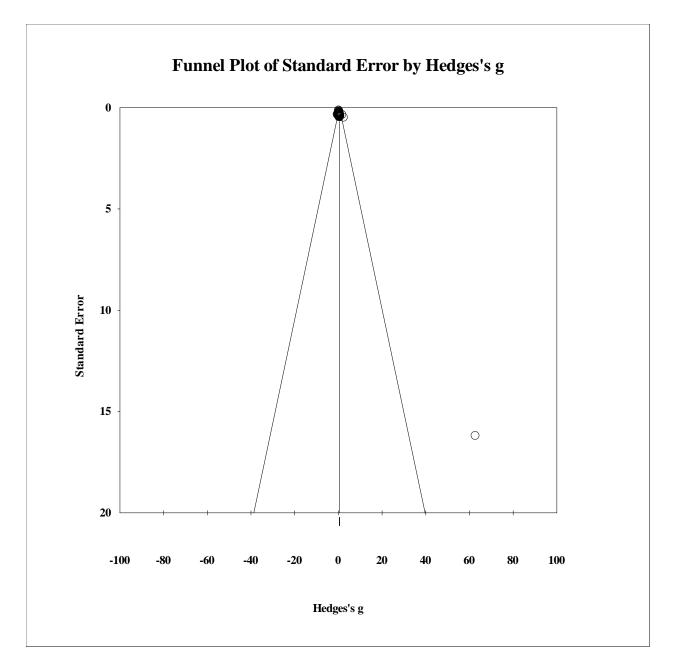

Figure E8. Funnel plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.5). Includes Bernosky-Smith et al., 2012.

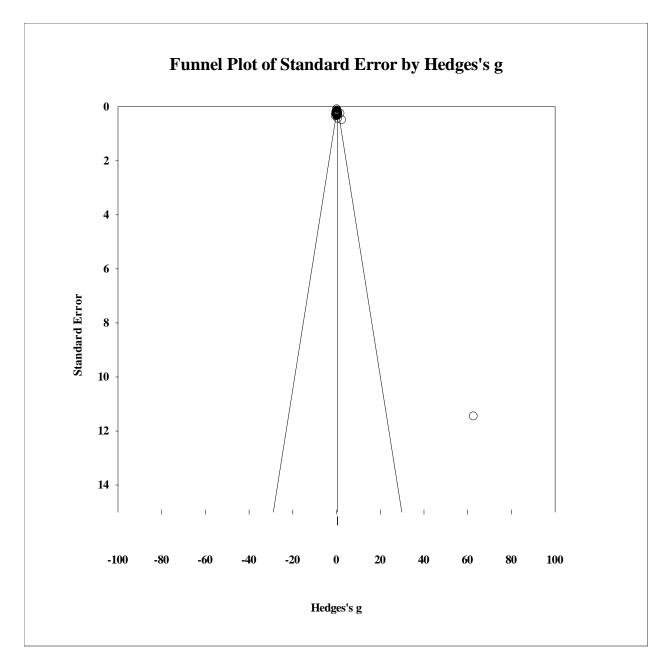

Figure E9. Funnel plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.9). Includes Bernosky-Smith et al., 2012.

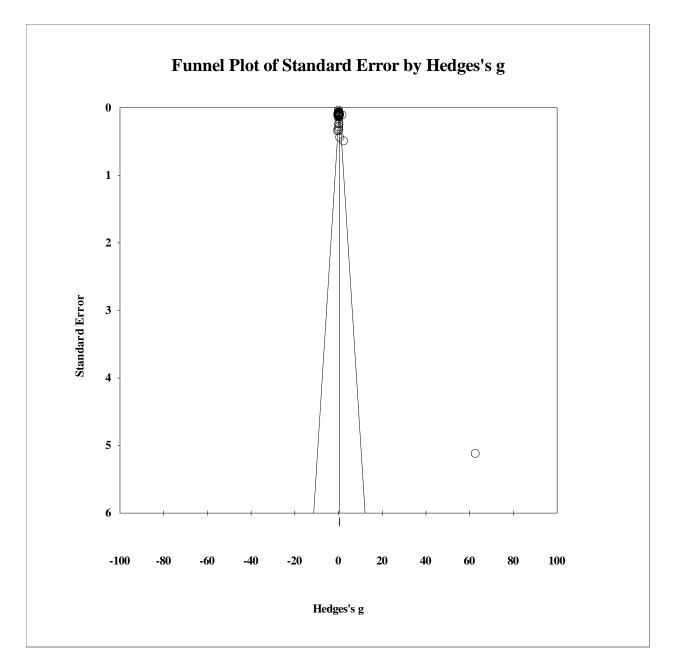

Figure E10. Funnel plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = zero). Excludes Bernosky-Smith et al., 2012.

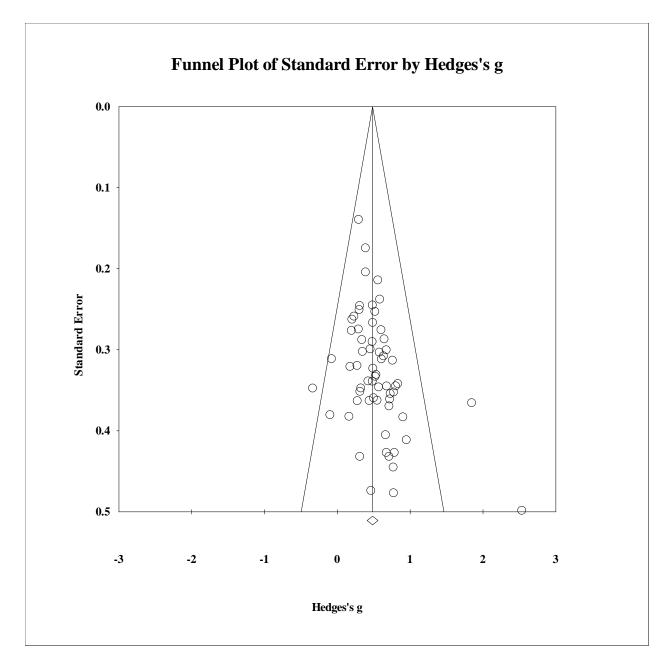

Figure E11. Funnel plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.5). Excludes Bernosky-Smith et al., 2012.

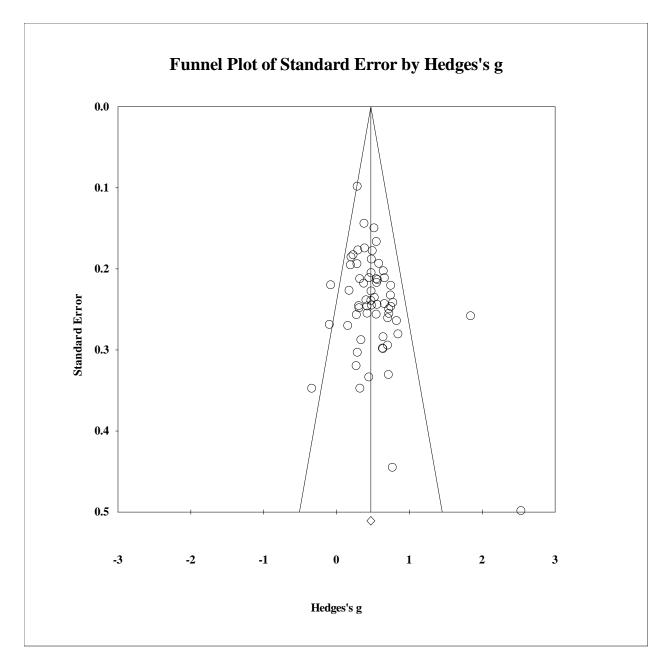

Figure E12. Funnel plot illustrating *Alcohol v. Baseline: Crashes* (missing pre-post correlations set to r = 0.9). Excludes Bernosky-Smith et al., 2012.

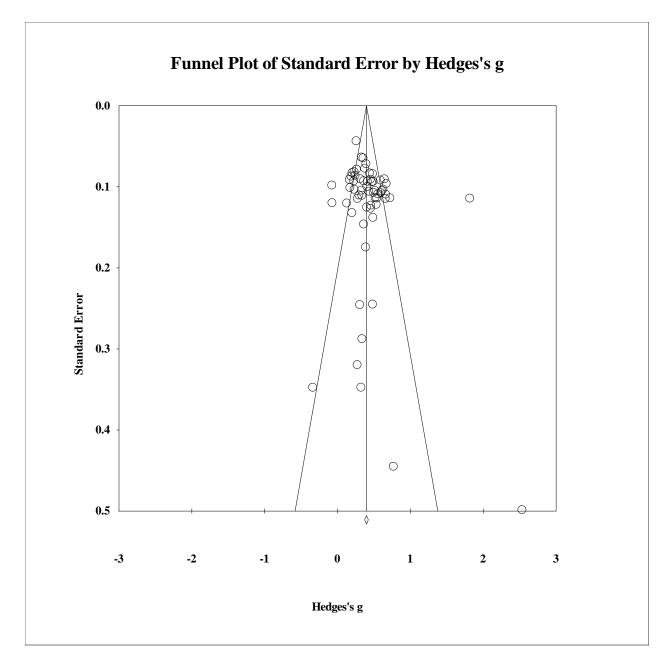

Figure E13. Funnel plot illustrating *Alcohol v. Baseline: Hazard RT* (missing pre-post correlations set to r = zero).

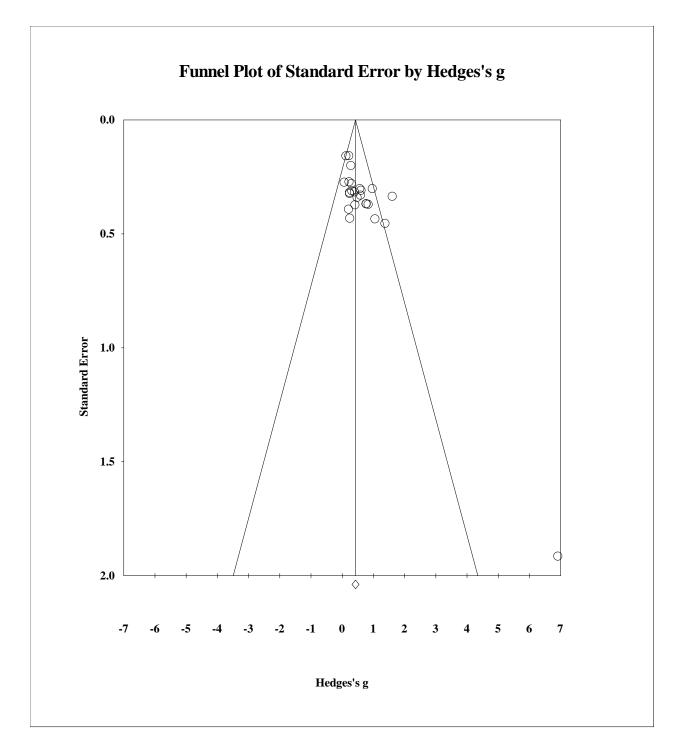

Figure E14. Funnel plot illustrating *Alcohol v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.5).

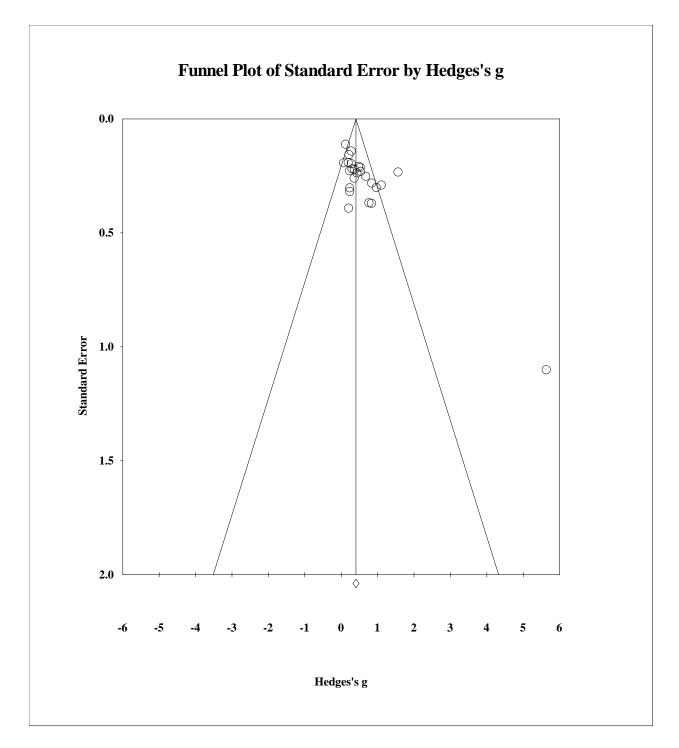

Figure E15. Funnel plot illustrating *Alcohol v. Baseline: Hazard RT* (missing pre-post correlations set to r = 0.9).

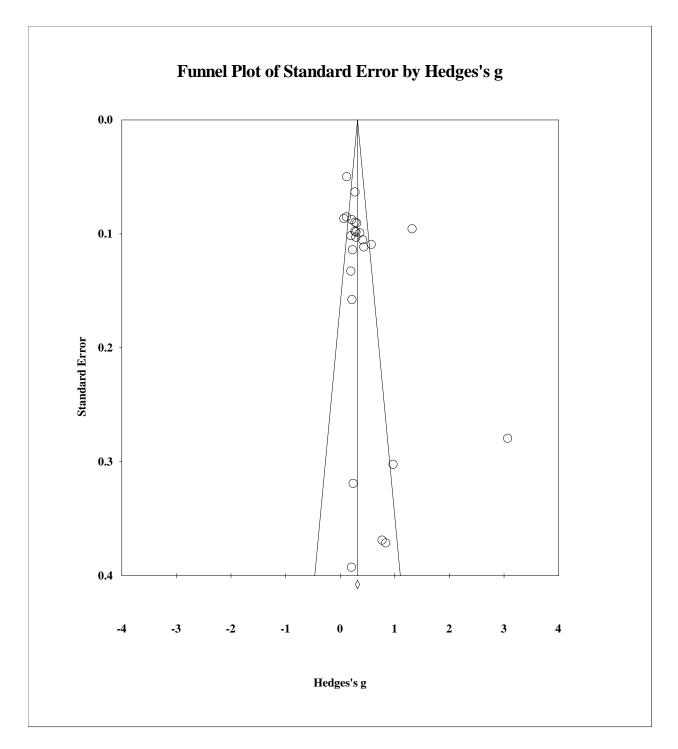

Figure E16. Funnel plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = zero). Includes Study 1 from Veldstra et al. (2012).

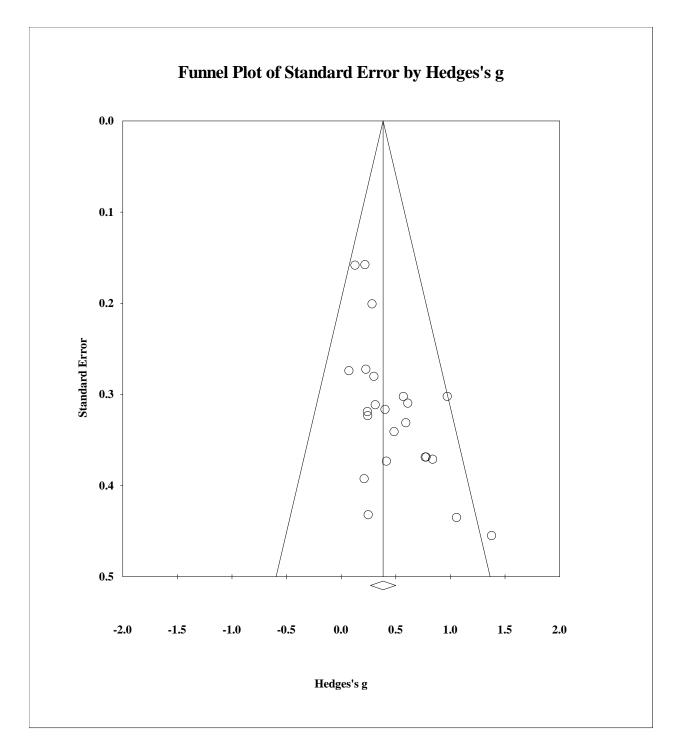

Figure E17. Funnel plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5). Includes Study 1 from Veldstra et al. (2012).

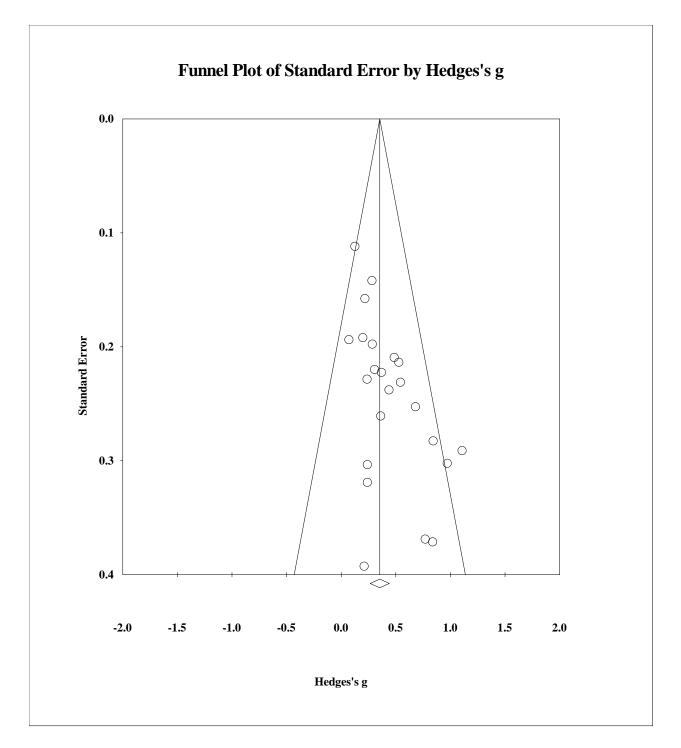

Figure E18. Funnel plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9). Includes Study 1 from Veldstra et al. (2012).

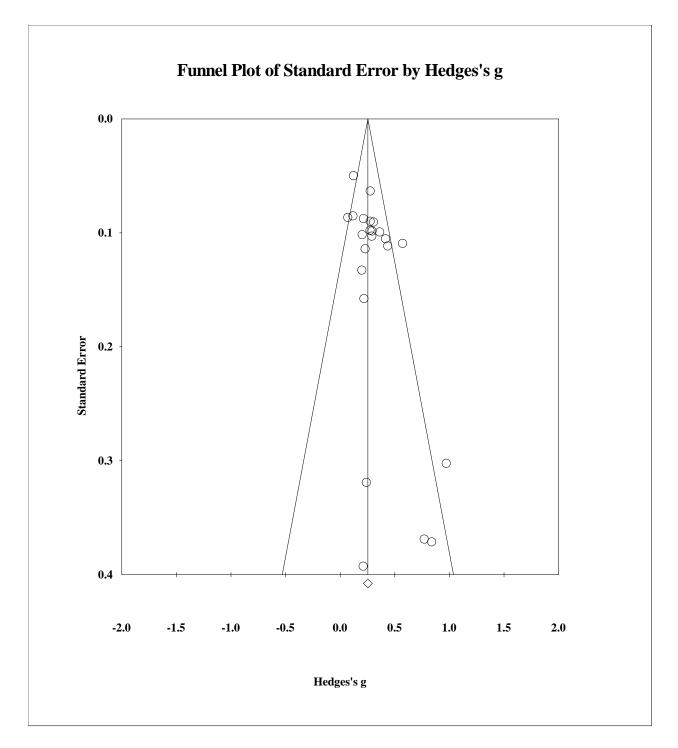

Figure E19. Funnel plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = zero). Excludes Study 1 from Veldstra et al. (2012).

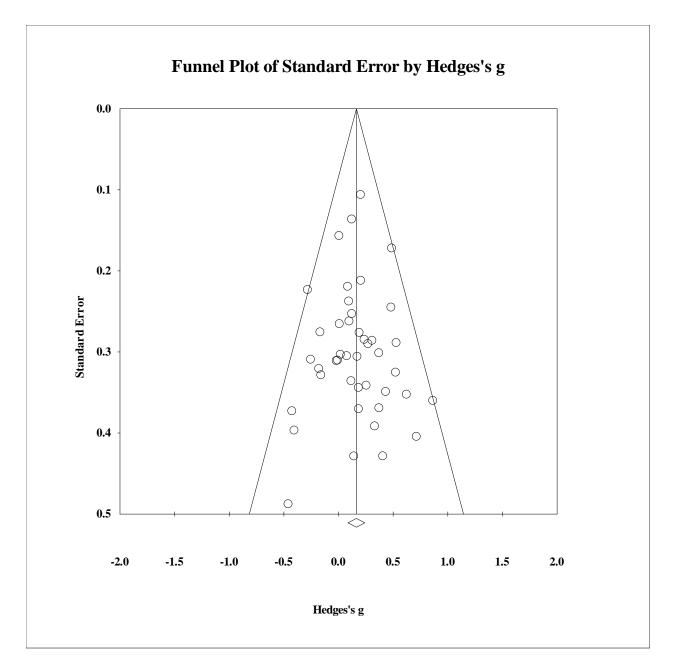

Figure E20. Funnel plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.5). Excludes Study 1 from Veldstra et al. (2012).

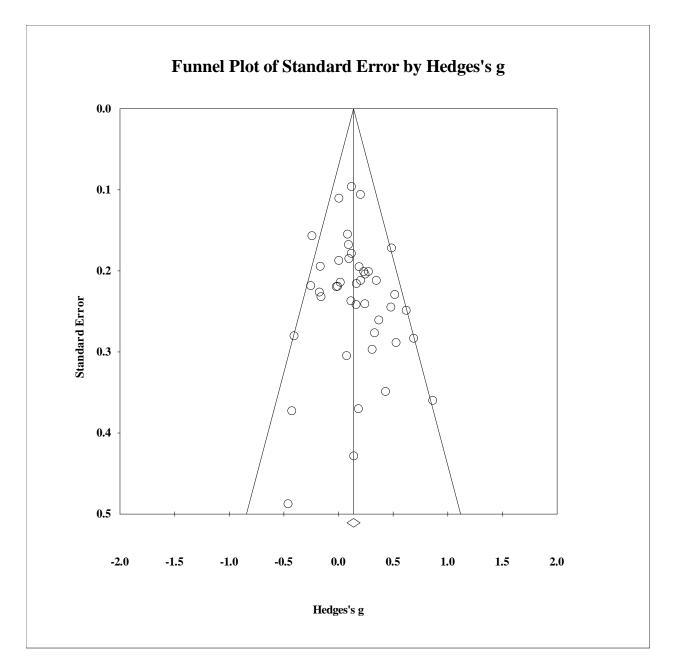

Figure E21. Funnel plot illustrating *Alcohol v. Baseline: Lateral Position Variability* (missing pre-post correlations set to r = 0.9). Excludes Study 1 from Veldstra et al. (2012).

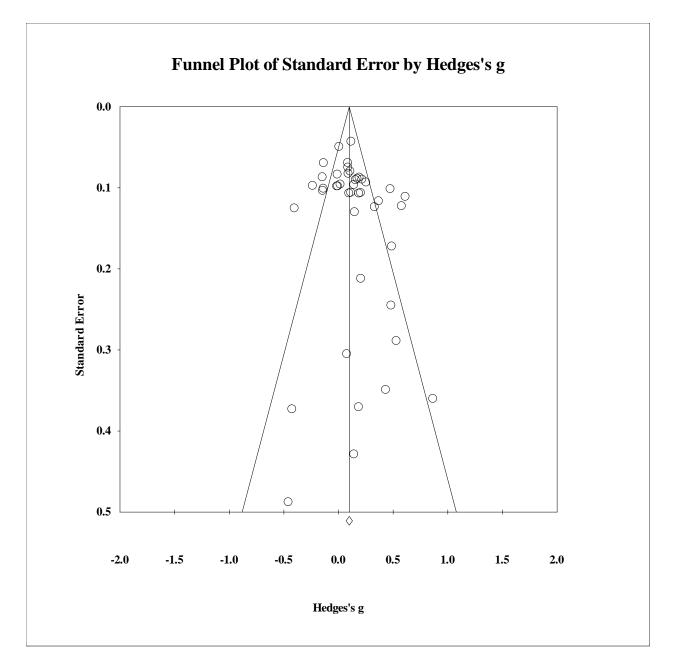

Figure E22. Funnel plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = zero). Includes Berthelon and Galy (2014) and Weiler et al. (2000).

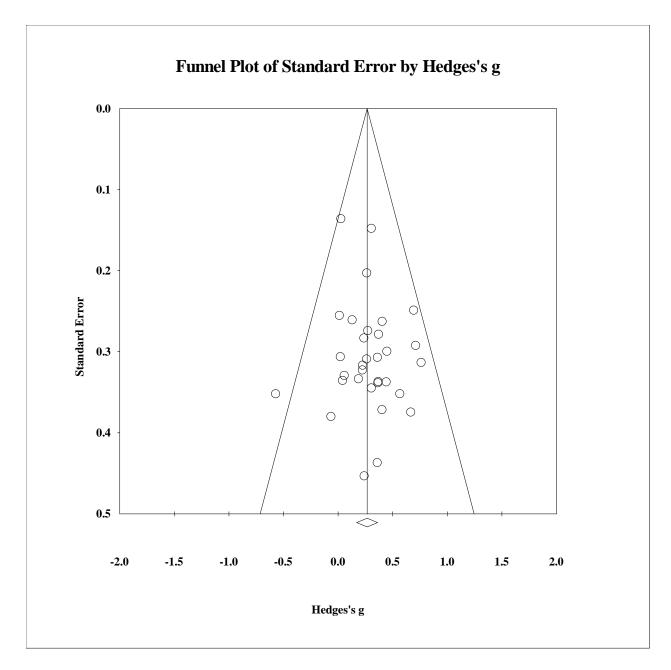

Figure E23. Funnel plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.5). Includes Berthelon and Galy (2014) and Weiler et al. (2000).

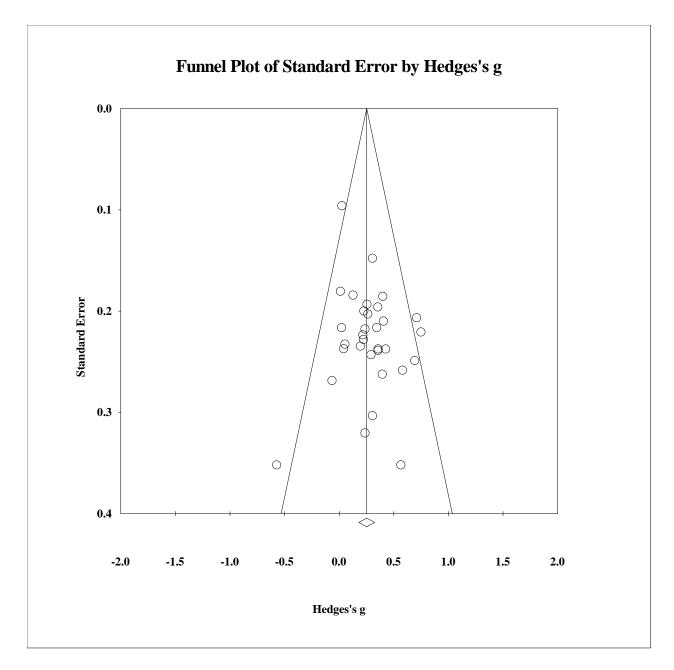

Figure E24. Funnel plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.9). Includes Berthelon and Galy (2014) and Weiler et al. (2000).


Figure E25. Funnel plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = zero). Excludes Berthelon and Galy (2014) and Weiler et al. (2000).


Figure E26. Funnel plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.5). Excludes Berthelon and Galy (2014) and Weiler et al. (2000).


Figure E27. Funnel plot illustrating *Alcohol v. Baseline: Lane Excursions* (missing pre-post correlations set to r = 0.9). Excludes Berthelon and Galy (2014) and Weiler et al. (2000).


Figure E28. Funnel plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to *r* = zero).


Figure E29. Funnel plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to r = 0.5).

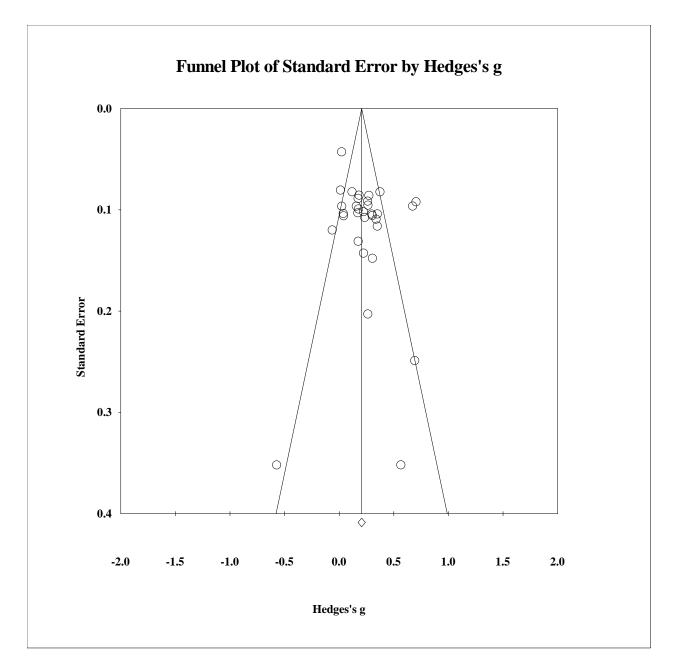

Figure E30. Funnel plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to r = 0.9).

Figure E31. Funnel plot illustrating *Alcohol v. Baseline: Speed Variability* (missing pre-post correlations set to *r* = zero).

Figure E32. Funnel plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to r = 0.5).

Figure E33. Funnel plot illustrating *Alcohol v. Baseline: Speed* (missing pre-post correlations set to r = 0.9).

Appendix F: Study Quality and Risk of Bias Assessment

Table F1. Study quality and risk of bias judgements.

_ Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Anderson et al., 2010	Not Likely	N/A	Yes	N/A	No	No	Can't Tell	Yes	Yes	73/85	Yes	No	Low	No
Arkell et al., 2019	Not Likely	N/A	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Yes	14/17	Yes	No	Low	Yes
Arnedt et al., 2001	Not Likely	N/A	Can't Tell	Yes	N/A	Yes	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Beard, 2012	Not Likely	N/A	Yes ¹	N/A	Can't Tell	Can't Tell	N/A (Expl.)	Yes	Can't Tell ²	Can't Tell ²	Yes	No	Low	No
Bernosky-Smith et al., 2011	Not Likely	N/A	Yes	N/A	Possibly	No	Can't Tell	Yes	No	59/60	Yes	No	Unclear	No
Bernosky-Smith et al., 2012	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	Can't Tell	Yes	N/A	100%	Yes	No	Low	No
Berthelon & Galy, 2018	Can't Tell	Can't Tell	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Can't Tell	No	High	No
Berthelon & Gineyt, 2014	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	Yes	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Bosker et al., 2012	Can't Tell	Can't Tell	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	Yes
Brands et al., 2019	Not Likely	N/A	Yes	N/A	Possibly	No	N/A (Expl.)	Yes	Yes	91/96	Yes	No	Low	Yes
Burns et al., 2002	Likely	Can't Tell	Can't Tell	Can't Tell	N/A	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No

Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Charlton & Starkey, 2015	Not Likely	N/A	Yes	N/A	Can't Tell	Can't Tell	N/A (Expl.)	Yes	Yes	44/71	Yes	No	Unclear	No
Chen et al., 2016	Not Likely	Can't Tell	Can't Tell	N/A	Can't Tell	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Christoforou et al., 2012	Can't Tell	Can't Tell	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Downey et al., 2013	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Fillmore et al., 2008	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Freydier et al., 2014	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	Yes	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Harrison & Fillmore, 2005	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Harrison & Fillmore, 2011	Not Likely	N/A	Yes	N/A	No	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Harrison et al., 2007	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Hartman et al., 2015	Can't Tell	Can't Tell	Yes	Yes	N/A	No	Can't Tell	Yes	Yes	18/19	Yes	No	Low	No
Helland et al., 2016	Can't Tell	Can't Tell	Yes	Yes	N/A	Yes	N/A (Expl.)	Yes	Yes	18/20	Yes	No	Low	Yes
Horne & Baumber, 1991	Not Likely	N/A	Can't Tell	Yes	N/A	No	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Howard et al., 2007	Can't Tell	Can't Tell	Yes	Yes ³	N/A	Can't Tell	Can't Tell	Yes	Yes	16/19	Yes	No	Unclear	No

Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Howland et al., 2010	Not Likely	N/A	Yes	N/A	No	No	N/A (Expl.)	Yes	Yes	121/154	Yes	No	Low	Yes
Huemer & Vollrath, 2010	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Jelen et al., 2011	Can't Tell	Can't Tell	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	High	No
Kay et al., 2013	Can't Tell	Can't Tell	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Kenntner-Mabiala et al., 2015	Can't Tell	Can't Tell	Yes	Yes	N/A	No	No	Yes	N/A	100%	Yes	No	Low	Yes
Kuypers et al., 2006	Not Likely	N/A	Yes	Yes	N/A	No	N/A (Expl.)	Yes	N/A ⁴	100%4	Yes	No	Low	No
Laude & Fillmore, 2015	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Laude & Fillmore, 2016	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Laude, 2016 (Study 3)	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Lee et al., 2010	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	N/A (Expl.)	Yes	No	108/130	Yes	No	Low	No
Lenne et al., 1999	Can't Tell	Can't Tell	Can't Tell	Yes ⁵	N/A	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	High	No
Lenne et al., 2003	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Leung et al., 2012	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	High	No

Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Liguori & Robinson, 2001	Not Likely	N/A	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Liguori et al., 1998	Not Likely	N/A	Can't Tell	Can't Tell	N/A	Can't Tell	N/A (Expl.)	Yes	Yes	10/24	Yes	No	Unclear	No
Liguori et al., 1999	Not Likely	N/A	Yes	Yes	N/A	No	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Liguori et al., 2002	Not Likely	N/A	Yes	Yes	N/A	No	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Louwerens et al., 1987	Can't Tell	Can't Tell	Can't Tell	Can't Tell	N/A	Yes	N/A (Expl.)	Yes	N/A	100%	Yes	No	Low	No
Marczinski & Fillmore, 2009	Not Likely	N/A	Yes	Yes	N/A	No	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Marczinski et al., 2008	Not Likely	N/A	Yes	Yes	N/A	No	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
McCartney et al., 2017	Can't Tell	Can't Tell	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Yes	22/25	Yes	No	Low	Yes
Mets et al., 2011	Not Likely	N/A	Yes	Yes	N/A	Yes	Can't Tell	Yes	Yes	27/36	Yes	No	Low	No
Price et al., 2018	Not Likely	N/A	Yes	N/A	No	No	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	High	No
Ramaekers et al., 1992	Can't Tell	Can't Tell	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Ramaekers et al., 2000	Not Likely	N/A	Can't Tell	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Ramaekers et al., 2000 (Study 1)	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No

Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Robbe, 1998 (Study 1)	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	No	N/A (Expl.)	Can't Tell	Yes	23/24	Yes	Yes	Low	No
Robbe, 1998 (Study 2)	Can't Tell	Can't Tell	No (Fixed)	N/A (Fixed)	N/A	No	N.A (Expl.)	Can't Tell	Yes	15/16	Yes	Yes	High	No
Roberts, 2016 (Study 2)	Not Likely	N/A	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell ⁶	Can't Tell ⁶	Yes	No	Unclear	No
Ronen et al., 2008	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Ronen et al., 2010	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Rupp et al., 2007	Can't Tell	Can't Tell	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Yes	26/29	Yes	No	Low	No
Schumacher et al., 2017	Can't Tell	Can't Tell	No (Fixed)	N/A (Fixed)	N/A	Can't Tell ⁷	Can't Tell	Yes	Yes	17/19	Yes	No	Low	Yes
Sexton, 1997	Can't Tell	Can't Tell	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Sexton et al., 2000	Not Likely	Can't Tell	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Yes	Can't Tell ⁸	Yes ⁸	No	Low	Yes
Sexton et al., 2002	Not Likely	Can't Tell	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Yes*	Can't Tell ⁸	Yes ⁸	No	Unclear	Yes
Simons et al., 2012	Can't Tell	Can't Tell	Yes	Yes	N/A	No	N/A (Expl.)	Yes	Yes	13/18 ⁹	Yes	No	High	No
Sklar et al., 2014	Can't Tell	Can't Tell	Yes	N/A	No	Can't Tell	Can't Tell	Yes	No ⁹	Can't Tell ⁹	Yes	No	Low	No
Starkey & Charlton, 2014	Not Likely	N/A	Yes	N/A	Can't Tell	Can't Tell	Can't Tell	Yes	Yes	11/12	Yes	No	High	No

Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Strayer et al., 2006	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Unclear	No
Subramaniyam et al., 2018	Can't Tell	Can't Tell	Can't Tell	Can't Tell	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Tremblay et al., 2015	Can't Tell	Can't Tell	Can't Tell	N/A	Can't Tell	Can't Tell	N/A (Expl.)	Yes	Yes	16/20	Yes	No	Low	No
van der Sluiszen et al., 2016	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Yes ¹⁰	N/A (Expl.)	Yes	Yes	25/3111	Yes	No	Low	Yes
Van Dyke & Fillmore, 2014	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Van Dyke & Fillmore, 2015	Not Likely	N//A	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Van Dyke & Fillmore, 2017	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Veldstra et al., 2012 (Study 1)	Can't Tell	Can't Tell	Can't Tell	Yes	N.A	No	N/A (Expl.)	Yes	Yes	17/19	Yes	No	Low	No
Veldstra et al., 2012 (Study 2)	Not Likely	N/A	Yes	Yes	N/A	Мр	N/A (Expl.)	Yes	Yes	19/20	Yes	No	Low	No
Veldstra et al., 2015	Can't Tell	Can't Tell	Can't Tell	Yes	N/A	No	N/A (Expl.)	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Vermeeren & O'Hanlon, 1998	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell ¹²	No (Expl.)	Yes	Yes	24/25	Yes	No	Low	No
Vermeeren et al., 2002a	Not Likely	N/A	No (Fixed)	N/A (Fixed)	N/A	Can't Tell ¹²	N/A (Expl.)	Yes	Yes	19/21	Yes	No	Low	No
Vermeeren et al., 2002b (Part 1)	Not Likely	N/A	Yes	Yes	N/A	Yes	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No

Study	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Verster et al., 2002 (Part 1)	Not Likely	N/A	Yes	Yes	N/A	Yes	Can't Tell	Yes	Yes	29/30	Yes	No	Low	No
Vollrath & Fischer, 2017 (Study 1)	Can't Tell	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	No	Yes	No ¹³	Can't Tell	Yes	No	Low	No
Vollrath & Fischer, 2017 (Study 2)	Can't Tell	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Wan et al., 2017	Not Likely	N/A	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	High	No
Weafer & Fillmore, 2012	Not Likely	N/A	Yes	Yes	N/A	Can't Tell	No	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Weafer et al., 2008 (Study 1)	Not Likely	N/A	Can't Tell	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Weafer et al., 2008 (Study 2)	Not Likely	N/A	Yes	Yes	N/A	Can't Tell	Can't Tell	Yes	Can't Tell	Can't Tell	Yes	No	Low	No
Weiler et al., 2000	Can't Tell	Can't Tell	Yes	Yes	N/A	No	N/A (Expl.)	Can't Tell	Yes	40/41	Yes	No	High	No
Zhang et al., 2014	Can't Tell	Can't Tell	Yes	Yes	N/A	Can't Tell	N/A (Expl.)	Yes	No	22/25	Yes	No	Low	No

1. Randomly allocated to doses, but then reallocated to bins based on BAC resulting from dose.

2. Numbers and reasons for exclusion of specific datapoints reported.

3. Different levels of alcohol within the alcohol condition (i.e., fixed order).

4. Some missing data.

5. Fluctuating BAC studied at multiple time points (i.e., fixed order).

6. Numbers and reasons for withdrawals of specific datapoints reported in irrelevant measure.

7. Blinding not described. However, it seems unlikely that driving assessors could be blinded to treatments because the order of treatments was fixed.

8. The number of participants represented throughout parts of the study is not entirely clear.

9. Reasons and numbers are provided, but they are not reported clearly. Consequently, it is difficult to track participants' trajectories throughout the study.

10. The study is described as double-blind, but it is unclear how researcher blinding to the alcohol condition could have been achieved.

Additional driving data loss from two participants occurred in conditions not relevant to the meta-analysis.
 The study is described as double-blind, but it is unclear how researcher blinding to the alcohol condition could have been achieved.
 Unclear which group the attrition occurred in.

			-			-								
	Representative Sample?	Participation Agreement Rate?	Drug Conditions Described as Randomized?	If Repeated Measures, Counterbalancing or Randomization?	Important Differences Between Groups Before Drive?	Driving Performance Assessors Aware of Drug Condition?	Participants Aware of Research Question?	Reliable Driving Data Collection?	Numbers and Reasons for Withdrawals and Drop-Outs Reported?	Percentage of Sample Completing Study?	Consistent Treatments?	Possible Treatment Contamination?	Risk of Reporting Bias?	Sample Size Based on Power Calculation?
Number of Items	77*	78	78	78	78	77*	78	78	78	N/A**	78	78	78	78
	0.07	0.02	0.01	0.02	0.02	0.05	0.50	0.00	0.70		0.66	0.00	0.42	0.64
Kappa Score	0.87	0.82	0.91	0.83	0.83	0.85	0.59	-0.02	0.78	N/A**	0.66	0.00	0.43	0.64
Percent Agreement	94%	91%	95%	91%	95%	91%	74%	94%	88%	N/A**	99%	96%	77%	95%

Table F2. Interrater agreement for study quality and risk of bias judgements.

Note that this analysis is based on judgements made between two coders: SS and DSL. It represents approximately 94% of the sample of judgements.

* Reflects erroneous omission of a judgement by one of two coders. When this occurred, the judgement was omitted from analysis.

** This item involved both categorical responses (e.g., *Can't Tell*), as well as continuous responses (e.g., *100%*), which precluded the calculation of inter-rater agreement.

Appendix G: Copyright Permissions

7/22/2020

RightsLink Printable License

ELSEVIER LICENSE TERMS AND CONDITIONS

Jul 22, 2020

This Agreement between Ms. Sarah Simmons ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number	4874421026358
License date	Jul 22, 2020
Licensed Content Publisher	Elsevier
Licensed Content Publication	Accident Analysis & Prevention
Licensed Content Title	Towards a general theory of driver behaviour
Licensed Content Author	Ray Fuller
Licensed Content Date	May 1, 2005
Licensed Content Volume	37
Licensed Content Issue	3
Licensed Content Pages	12
Start Page	461
End Page	472
Type of Use	reuse in a thesis/dissertation
Portion	figures/tables/illustrations
Number of figures/tables/illustrations	t.
Format	both print and electronic
Are you the author of this Elsevier article?	No

Will you be translating? No

7/22/2020	RightsLink Printable License
Title	The Effects of Cannabis and Alcohol on Driving Performance and Driver Behaviour: A Systematic Review and Meta-Analysis
Institution name	University of Calgary
Expected presentation date	Jul 2020
Portions	Figure 2 on p. 465
	Ms. Sarah Simmons
Requestor Location	Calgary, AB Canada Atta: Ms. Sarah Simmons
Publisher Tax ID	GB 494 6272 12
Total	0.00 CAD

Terms and Conditions

INTRODUCTION

I. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at <u>http://myaccount.copyright.com</u>).

GENERAL TERMS

Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.

3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:

"Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit - "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."

 Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.

5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.

6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.

7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this

7/22/2020

RightsLink Printable License

licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.

8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement and publisher reserves the right to take any and all action to protect its copyright in the materials.

9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.

10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.

11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.

12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).

13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.

14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refand payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

15. Translation: This permission is granted for non-exclusive world <u>English</u> rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.

16. Posting licensed content on any Website: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xxxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xxx or the Elsevier homepage for books at http://www.sciencedirect.com/science/journal/xx or science does not include permission for a science does not include permission for a science does not include science.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at <u>http://www.elsevier.com</u>. All content posted to the web site must maintain the copyright information line on the bottom of each image.

RightsLink Printable License

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for I year only. You may obtain a new license for future website posting.

17. For journal authors: the following clauses are applicable in addition to the above:

Preprints:

A preprint is an author's own write-up of research results and analysis, it has not been peerreviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes authorincorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

· immediately

- · via their non-commercial person homepage or blog
- · by updating a preprint in arXiv or RePEc with the accepted manuscript
- via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
- directly by providing copies to their students or to research collaborators for their personal use
- for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- After the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 via commercial sites with which Elsevier has an agreement

The Contract of the State Place Place

In all cases accepted manuscripts should:

- · link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

Subscription Articles: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version.

Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

https://s100.copyright.com/AppDispatchServiet

7/22/2020

7/22/2020

Gold Open Access Articles: May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. Posting to a repository: Authors are permitted to post a summary of their chapter only in their institution's repository.

19. Thesis/Dissertation: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our <u>open access license policy</u> for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier:

Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's bonour or reputation. If any changes have been made, such changes must be clearly indicated.

The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license:

CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at <u>http://creativecommons.org/licenses/by/4.0</u>.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the farmal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at <u>http://creativecommons.org/licenses/by-ne-sa/4.0</u>.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at <u>http://creativecommons.org/licenses/pvn-e-nd/4.0.</u> Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee.

Commercial reuse includes:

· Associating advertising with the full text of the Article

7/22/2020

RightsLink Printable License

- Charging fees for document delivery or access
 Article aggregation
 Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.9

Questions? <u>customercare@copyright.com</u> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.