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Abstract

Quantum channels can be regarded as the most fundamental objects in quantum mechanics. With the

help of quantum resource theories, it was recently recognized that dynamical quantum systems (described

by quantum channels) may exhibit phenomena such as entanglement and coherence, and can be utilized as

resources in various operational tasks. In this dissertation, I characterize and quantify the coherence and

magic of dynamical quantum systems, formulate interconversion conditions among pairs of channels, and

quantify the performance of fixed programmable processors.

Quantum resource theories are governed by constraints arising from physical or practical settings. Con-

sidering the absence of coherence and efficient classical simulability (two different notions of classicality) as

practical constraints towards achieving quantum advantage, I develop the resource theories of dynamical

coherence and dynamical magic, respectively. In developing the resource theory of coherence, the underlying

principle I follow is that the free dynamical objects are those that can neither store nor manipulate coherence.

This led me to identify classical channels as free elements in this theory. The development of the resource

theory of multi-qubit magic channels is motivated by the need to estimate the classical simulation cost of

multi-qubit quantum circuits. The set of completely stabilizer preserving operations is the largest known set

of operations in the multi-qubit scenario that can be efficiently simulated classically, and as such, they are the

perfect candidates for the free channels of this resource theory. In both these resource theories, I quantify the

resources using various resource measures, and solve several single-shot resource interconversion problems

including different types of resource cost and distillation. I also formulate a classical simulation algorithm

to estimate the expectation value of an observable and show that its runtime depends on a dynamical magic

monotone.

Besides developing the above resource theories, I generalize Lorenz majorization to the channel domain

and use it to find the necessary and sufficient conditions for interconversion among pairs of classical channels.

Furthermore, I quantify the performance of a fixed programmable quantum processor and find a trade-off

relation between the success probability and the average fidelity error in simulating a target unitary using

the processor.
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Preface

This thesis is an original work by the author. The results in chapters 3 and 4 are published in peer-reviewed

journals. Chapters 5 and 6 present new results that have not yet been published. The following is the list

of relevant publications:

1. Gaurav Saxena, Eric Chitambar, and Gilad Gour, 2020, Dynamical resource theory of quantum coher-

ence, Phys. Rev. Research 2, 023298

2. Gaurav Saxena and Gilad Gour, 2022, Quantifying multiqubit magic channels with completely stabilizer-

preserving operations, Phys. Rev. A 106, 042422

Chapters 1, 2, 5, 6, and 7 are original contributions.

Chapter 3 is taken verbatim from Ref.1 above, except sub-section 3.5.6. The result in sub-section 3.5.6

is new and is my contribution in a joint work done with Yunlong Xiao, Xiaoli Hu, Ximing Wang, and Mile

Gu, to be published soon.

Chapter 4 is taken verbatim from Ref. 2 above with the following modifications. Minor additions have

been made in Sec. 4.1.1 and Sec. 4.6. Sec. 4.1.2 and Sec. 4.2 have been added that provide an overview of

previous results.
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Notations

In this thesis, we will denote all dynamical systems and their corresponding Hilbert spaces by A,B,C, etc,

and all static systems and their corresponding Hilbert spaces by A1, B1, C1, etc. In this setting, the notation

for a dynamical system, say A, indicates a pair of systems such that A = (A0, A1) = (A0 → A1) where A0

and A1 represent the input and output systems, respectively. The choice of notation for the static systems

is because all the states can be viewed as channels with trivial input. For a composite system, the notation

like A1B1 will be used to mean A1 ⊗B1. To represent the dimension of a system, two vertical lines will be

used. For example, the dimension of system A1 is |A1|. A replica of the same system would be represented

by using a tilde symbol. For instance, system Ã1 is a replica of system A1, and system Ã1B̃1 is a replica of

system A1B1 i.e., |Ã1| = |A1| and |Ã1B̃1| = |A1B1|.

The set of bounded operators, Hermitian operators, positive operators and density matrices on system A1

would be denoted by B(A1), Herm(A1), Pos(A1), and D(A1), respectively. Note that D(A1) ⊂ Pos(A1) ⊂

Herm(A1) ⊂ B(A1). Density matrices would be represented by lowercase Greek letters ρ, σ, τ , etc. We will

denote the maximally coherent state (or the plus state) for a system B1 by ϕ+B1
, the normalized maximally

entangled states by ϕ+A1B1
(note the subscripts in both) and the unnormalized maximally entangled states

by Φ+
A1B1

for a bipartite system A1B1. The maximally mixed state for a system B1 will be denoted by uB1
.

The set of all stabilizer states in system A1 will be denoted by STAB(A1). For pure stabilizer states in

system A1 we will write ϕ ∈ STAB(A1), and notation like σ ∈ STAB(A1) will mean a density matrix of a

state taken from the stabilizer polytope which is a convex hull of pure stabilizer states.

The set of all linear maps from B(A0) to B(A1) would be denoted by L(A0 → A1), the set of all

completely positive maps from B(A0)→ B(A1) would be denoted by CP(A0 → A1) and the set of quantum

channels would be denoted by CPTP(A0 → A1) with CPTP(A0 → A1) ⊂ CP(A0 → A1) ⊂ L(A0 → A1).

Throughout this article, we would use calligraphic letters like E ,F ,M,N , etc, to represent quantum channels.

For simplicity, we will denote a quantum channel with a subscript A, like EA, to denote an element of

CPTP(A0 → A1). The identity channel in L(A0 → A0) will be denoted by idA0
.

The notation L(A → B) will be used to denote the set of all maps from L(A0 → A1) to L(B0 → B1).
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Similarly, the set of all maps from Herm(A0 → A1) to Herm(B0 → B1) would be denoted by Herm(A →

B) ⊂ L(A → B). All linear maps in L(A → B) and Herm(A → B) are known as supermaps. We will

use capital Greek letters like Θ,Σ,Ω, etc, to denote supermaps. Square brackets will be used to denote the

action of supermaps on linear maps. For instance, ΘA→B [EA] is a linear map in L(B0 → B1) obtained by

the action of a supermap Θ ∈ L(A → B) on a map E ∈ L(A0 → A1). The set of supermaps that map

quantum channels to quantum channels (even when tensored with the identity supermap, i.e., even when

acting on part of quantum channels) are called superchannels and would be represented by S(A → B).

Identity superchannel in S(A→ A) would be denoted by 1A. Lastly, we reserve the symbol ∆ to represent

a dephasing superchannel. Such a superchannel converts any channel to a classical channel.

The Choi matrix of a channel N ∈ CPTP(A0 → A1) is defined as JN
A := NA

(
Φ+

A0Ã0

)
, the Choi matrix

of a superchannel Θ ∈ S(A → B) will be denoted in bold as JΘ
AB . To denote normalized Choi matrix of a

channel NA, we will use tilde symbol over J as J̃N
A .
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Chapter 1

Introduction

Since the dawn of quantum information (that is, around the 1980s), quantum computers have been projected

as machines capable of outperforming their classical counterparts [1, 2, 3, 4, 5, 6]. Quantum computers are

not just next-gen computers with higher processing speeds and bigger memory, they are fundamentally

different types of machines that use quantum mechanical principles to operate. Such computers promise

to efficiently solve certain problems, such as quantum simulations and quantum random sampling, that are

considered hard for traditional computers [7, 8, 9, 10, 11, 12, 13, 14, 15].

On 23 November 2019, Google claimed that they had delivered on one such promise. A team of Google,

led by John Martinis, announced that they have demonstrated quantum supremacy, a milestone long awaited

in the quantum computing community [13, 16, 17]. They demonstrated quantum supremacy by “comparing

their quantum processor against state-of-the-art classical computers in the task of sampling the output of

a pseudorandom quantum circuit” [13]. This specific problem has limited practical applicability and the

experiment itself was performed on a noisy quantum computer [13]. Nonetheless, this achievement sparked

excitement in the community and pushed researchers toward the challenge of engineering a universal fault-

tolerant quantum computer (i.e., a perfect quantum computer) [18].

Achieving perfect quantum computation (and communication) is, however, a challenging task [19, 20,

21, 22, 23, 24]. The challenge stems from two main drawbacks. Firstly, quantum systems are ultra-fragile in

the sense that they decohere almost instantly when interacting with the environment, thus making it hard

to encode information. Secondly, the manipulation of these systems by applying quantum logic gates or

performing measurements is subject to random errors like bit-flip and phase-flip errors. It is predicted that

it might take a decade or more to overcome these challenges [18, 23, 25]. Given the error-prone nature of

quantum systems and quantum devices, the question arises as to whether the quantum mechanical properties
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of these current imperfect noisy devices can still be harnessed to our advantage, and what resources can help

us in achieving this advantage in a given setting.

To address the aforementioned question, several approaches have been taken in the literature [25, 26, 27,

28, 29, 30, 31, 32, 33, 34, 35, 36]. For example, one approach is to consider a noise model and determine how

a particular task can be accomplished under such a model. In some of these models, a quantum mechanical

phenomenon provides a clear advantage, while in others, some special quantum states might be used to

reduce the error. As an example, consider decoherence as a noise model [32, 37, 38, 39, 40, 41]. In this case,

the preservation of quantum coherence naturally emerges as a resource that can help us to accomplish tasks

that would otherwise be difficult due to decoherence. (In Chapter 3, we will see in detail how the ability

to preserve quantum coherence is used as a resource in various operational tasks.) Another approach to

gain an advantage using error-prone quantum devices is to focus on maximizing the accuracy to simulate a

desired operation, given arbitrary errors [42, 43, 44, 45, 46]. Consider the following example for illustration.

The quantum computer that Google used to demonstrate quantum supremacy is not a single-purpose, but a

programmable one [13]. Programmable quantum computers can execute a variety of computations by using

distinct specially designed states known as program states as one of their inputs [47]. Different operations

require different program states whose dimensions vary from one operation to another. As a result, to

perform an arbitrary computation, the computer is scaled as per the dimension of the optimal program

state [47]. Since in practical applications, scaling makes it hard to prevent noise in computation, fixing the

input and output dimensions is a physically motivated constraint. Under this constraint, to maximize the

accuracy in simulating the desired quantum operation, it is crucial to find the (sub-)optimal quantum state.

Furthermore, if there are two processors, it is important to determine which one can more closely approximate

our desired operation. In chapter 6, we will see how to measure the performance of such processors and

how to find the optimal resources to approximate a unitary channel. Such strategies (like the two presented

above) and others have proven useful for dealing with noise and determining optimal resources in various

computational and communication tasks [25, 32, 37, 48, 49, 50].

In this process of finding how to gain an advantage in a given setting, we need to understand what

resources are useful and how are they encoded in different quantum objects such as quantum states, unitary

operations, and quantum measurements. Interestingly, quantum states, unitary operations, measurements,

the process of discarding a system, or any kind of combination of these operations can be described with the

formalism of quantum channels. With this view, in which quantum channels describe all quantum objects,

I have addressed various resource interconversion problems, characterized resourceful quantum channels

in specific physical settings, and quantified the resourcefulness of quantum channels in those settings. A

more detailed discussion on the motivation for working with quantum channels as resources is provided in
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Section 1.2. Since it was with the emergence of quantum information that several quantum mechanical

phenomena were treated as resources, in the next section (Sec. 1.1), I have provided a brief account of the

development of quantum information.

1.1 The dawn of quantum information

The advent of quantum mechanics in the first quarter of the twentieth century has profoundly changed

our fundamental understanding of the world. Quantum mechanical phenomena such as entanglement and

nonlocality have been major subjects of debates on the nature of reality, and a great deal of research went

into understanding the fundamental properties of matter using quantum mechanics [51, 52, 53].

While debates on the nature of reality and interpretations of quantum mechanics were being put forth

in the 1930s and 40s, a beautiful and profound theory of classical information was developed by Claude

E. Shannon in 1948 [54]. Classical information theory involves the study of storage, manipulation, and

communication of information when the information is encoded using the laws of classical mechanics. In his

work, Shannon used probability theory and statistics to operationally quantify the information content in a

message. He called this measure ‘entropy’. Furthermore, he also mathematically characterized the capacity

of a noisy channel, which is the highest rate at which information can be reliably communicated over the

channel. This seminal work forms the basis of today’s modern technology. In his honor, the field of classical

information is also referred to as classical Shannon theory. With the invention and development of the theory

of classical information processing, the field of classical communication and computation progressed rapidly

in the second half of the twentieth century.

At around the same time, more quantum mechanical phenomena (such as quantum contextuality and

nonlocality) were being discovered [55, 56, 57, 58]. Over time, scientists began to explore the possibilities

of using these phenomena as physical resources rather than just as mere features of quantum mechanics to

model nature [59, 60, 61, 62, 63]. Around the 1970s and 80s, Alexander Holevo, Roman Stanis law Ingarden,

Paul Benioff, and Yuri Mannin, independently wrote papers that are considered the foundations of quantum

information science [59, 64, 65, 66]. More interest in this field grew after 1982, when Richard Feynman spoke

at a conference on the topic “Simulating physics with computers” [1]. In his talk, he proposed the idea of

using quantum-mechanical computers to simulate nature. Following this conference, extensive research was

undertaken over the next fifteen years, establishing the advantages of a quantum computer. David Deutsch,

in 1985, formulated a description of a quantum Turing machine [67]. In 1992, David Deutsch and Richard

Jozsa formulated the Deutsch-Jozsa algorithm and showed that it is exponentially faster than any possible

deterministic classical algorithm to find if a function (promised to be constant or balanced, with binary input
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of n bits and 0 and 1 as output) is constant or balanced [68]. In 1993, Charles Bennett and others came

up with the idea of quantum teleportation [69]. Then in 1995, with Peter Shor’s invention of a quantum

algorithm to factor numbers exponentially faster than any known classical algorithm, significant interest was

ignited in the field of quantum computation and information [70]. Presently, quantum information processing

is attracting a lot of interest for commercial applications [71]. Research at both industrial and academic levels

is being carried out extensively on the applications of quantum information processing, including quantum

algorithms, quantum biology, quantum cryptography, etc. Thus, it is of crucial interest to understand the

limitations and boundaries of what can be achieved by harnessing the power of quantum mechanical systems

as resources. In a quest to understand these limitations, in this dissertation, I explore the quantification,

manipulation, and control of dynamical quantum resources under various practical constraints in quantum

information processing.

1.2 What are dynamical quantum resources?

A common theme in physics is the unification of physical phenomena. An example of such a unification is the

unification of fundamental forces in which different forces correspond to different aspects of a single unifying

force. In a similar manner, quantum channels mathematically unify different quantum objects in quantum

mechanics [72]. For example, quantum measurements, quantum states, and quantum instruments, can be

viewed as special types of quantum channels, thus making it easier to investigate and analyze the resource

character of all quantum objects under a unified framework. However, the primary reason for defining such

a mathematical entity (quantum channels) was rather different.

In the early stages of the development of quantum information theory, ideas from classical information

theory were being generalized to the quantum case [73, 74]. The natural generalization of a classical com-

munication channel was a quantum communication channel, or a quantum channel in short [59]. In this

scenario, a quantum channel mathematically characterizes a physical medium used to transmit quantum

information, and as such, models the evolution of the state as a result of any noise applied to the system

during communication [48, 59, 75, 76]. Since information is encoded in quantum states, the transmission

of quantum information essentially means transmitting a quantum state from point A to point B via some

noisy channel. If a quantum channel can model a noisy transmission of a quantum system, it can certainly

model the evolution of the state of the system over the period of time when the system is not physically

transmitted somewhere. Whether a system is isolated (closed system), interacts with its surroundings (open

system), or undergoes a measurement, any kind of change in the state of the system (in space and/or time),

can be described by a quantum channel. To put it succinctly, quantum channels describe the most general
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evolution of a quantum system. Abstractly, we can think of it as a box with an input and an output system.

When viewed in this light, even a quantum state can be regarded as a quantum channel with trivial input

(i.e., no input) and the state itself as the output. The reverse of this process, i.e., a quantum input and

a trivial output, is a quantum channel that describes the discarding process. (See Fig. 1.1 for a schematic

diagram.)

Figure 1.1: Quantum states, unitary operations, measurements, and discarding quantum systems can all be
regarded as quantum channels

Studying quantum mechanical phenomena such as entanglement and superposition has helped us to gain

a fundamentally better understanding of nature [77, 78]. Besides their interest from a fundamental point of

view, these phenomena have also been recognized as resources. Quantum states possessing these phenomena

can be used to circumvent certain restrictions, enabling tasks like quantum teleportation and superdense

coding, which were otherwise impossible [32, 48, 69, 73, 79, 80, 81, 82]. With time, the broader scientific

community, including computer scientists and applied mathematicians became more interested in using these

phenomena as resources, resulting in the development of faster algorithms, better cryptography protocols,

etc. [3, 63, 70, 73, 83, 84, 85, 86, 87]. The success of this recognition of quantum mechanical properties

as resources at the state level brings forward the question of whether we can utilize similar properties of

other quantum objects as resources and transcend the practical limitations posed by static quantum systems.

These limitations arise from factors such as faulty preparations and difficulty in sustaining the coherence or

entanglement of several states together.

Quantum mechanical properties, such as entanglement and coherence, were believed to be contained only

in static systems described by quantum states. However, it was only in the last few years and with the

help of quantum resource theories that it was recognized that dynamical quantum systems described by

quantum channels may possess resources such as entanglement, nonlocality, coherence, athermality, and so

on [37, 88, 89, 90, 91, 92, 93, 94, 95, 96]. Studying these dynamical resources and exploring how we can use
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Figure 1.2: Quantum channels as resources

their properties to overcome the limitations of physical systems is largely unexplored, and research in this

direction might lead us to find efficient methods to distribute resources, devise new protocols, better control

quantum devices, and improved computation. In fact, it is one of the central aims of quantum information to

precisely understand the limitations posed by the laws of quantum mechanics and to find the most efficient

ways to take advantage of these laws. Therefore, it is important to go beyond static resources in all quantum

mechanical phenomena and to understand how to quantify and manipulate dynamical resources, and to find

protocols that consume and use such resources in the most efficient way. With this in mind, the primary

focus of this dissertation is to examine how quantum channels can be used as resources and to understand

when dynamical resources can provide an advantage over existing technologies (see Fig. 1.2).

To harness the resource characteristics of quantum systems, the resource-theoretic framework has proved

to be highly versatile and powerful [82]. In a quantum resource theory, quantum states and channels are

classified as free or resources based on a given setting. After this partition of states and channels as free and

resources, a resource theory then systematically studies what tasks become possible in that setting. Viewed

from this lens, the quantum information theory itself can be regarded as a theory of interconversion among

various quantum resources. (A detailed description of quantum resource theories is provided in Section 2.5.)

In this dissertation, I have used the resource theoretic formalism to study the resource characteristics of

quantum channels in various quantum communication and quantum computational settings. The following

section provides an overview of these research problems, and the details are discussed in chapters 3-6.
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1.3 Research objectives and organization of thesis

In this thesis, I have studied the resource character of quantum channels in various quantum computational

and communication scenarios. Chapter 2 provides the mathematical preliminaries that are used throughout

this thesis. It also includes a discussion of the mathematics of superchannels – the maps that describe the

evolution of quantum channels. Chapter 2 concludes with an overview of the resource theoretic framework

and the mathematical structure of quantum resource theory at the level of quantum states. Chapters 3, 4, 5,

and 6 cover different problems, and the necessary background for each chapter is provided at the beginning

of each chapter.

In chapter 3, I have considered the scenario where quantum computation is error-free but quantum

communication is noisy. Any information communicated from a sender to a receiver is completely decohered.

That means that if the quantum information encoded by the sender is transferred to the receiver via a

communication channel, then the information will be completely lost to the environment. In such a case,

the receiver only receives classical information. This error is known as decoherence. Such channels, which

completely kill the coherence of the transmitted quantum information and convert it to a classical state,

are the classical channels and have the ability to perfectly transmit classical information from a sender to a

receiver. These channels do not have the ability to store, create, detect, and transmit quantum information.

The resources then are all quantum channels which can generate, manipulate, store, transmit, or detect

coherence of an input quantum state. With this partition of channels with classical channels as free and

quantum channels as resources, I developed a resource theory of coherence present in quantum channels. I

quantified the coherence of quantum channels in terms of various resource measures and showed that some of

these measures have operational interpretation in terms of simulating an arbitrary quantum channel from a

given coherent resource using a free superchannel. I also show that it is computationally efficient to determine

whether a particular quantum channel conversion is possible under the free superchannels or not.

In chapter 4, I considered a scenario in quantum computation. In quantum computation, fault-tolerant

quantum computation can be achieved by using a very restricted subset of quantum states and operations

known as the stabilizer states and operations. Circuits made from stabilizer operations are called stabilizer

circuits. To promote fault-tolerant quantum computation to universal quantum computation, non-stabilizer

states or operations (also known as magic states and operations) are injected into stabilizer circuits. Fur-

thermore, the output of stabilizer circuits with stabilizer states as inputs can be efficiently simulated on

a classical computer. Thus, stabilizer states and operations can neither perform universal quantum com-

putation nor can they provide any computational advantage. To achieve universal quantum computation

using stabilizer circuits and to gain quantum computational advantage, magic states and operations are used
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as resources. With this identification of free and resource states and channels to achieve universality, it is

crucial to quantify magic resources and understand how a magic resource can be converted to another. To

solve these resource conversion problems among magic resources, two branches have emerged – one for the

odd-d dimensional case and the other for the multi-qubit case. For the odd d-dimensional case, the discrete

Wigner representation is used to classify the useless and the useful elements [90, 97]. For the multi-qubit case

however, the classification of useful and useless elements using the Wigner function is hard, and alternative

approaches need to be taken. In my work, I use the resource theoretic framework to quantify dynamical

magic resources. I solved interconversion problems among qubits and formulated bounds for converting

qubit states to channels and vice versa. Lastly, I formulated a classical simulation algorithm to estimate the

expectation value from any given circuit and connected it to a magic monotone.

In chapter 5, I considered interconversion among pairs of quantum channels. In 1953, it was shown

that a pair of probability distributions can be converted to another pair if and only if a convex region

(known as the testing region) defined for the pair of distributions always contains the testing region of

the other pair [98]. The definition of the testing region was generalized in 2017 for a pair of quantum

states, and interconversion conditions among pairs of quantum states were formulated for certain resource

theories. I generalized the definition of the testing region for a pair of quantum channels and mathematically

characterized it in terms of the diamond norm and Hilbert α-divergence. Using this characterization, I was

able to formulate interconversion conditions among pairs of classical channels.

In chapter 6, I considered the problem of simulating a unitary channel from a fixed quantum processor,

i.e., a processor with fixed input and output dimensions. Fixing the dimensions is a physically motivated

restriction because scaling makes it hard to prevent noise in computation. We consider the processor to

be a programmable bipartite quantum channel shared between Alice and Bob. Bob has limited quantum

computational ability and wants to apply some unitary channel on a quantum state using the processor, and

conveys this information to Alice. Since the dimensions are fixed, any arbitrary unitary channel cannot be

deterministically simulated. So, with the information of the target unitary, Alice prepares a special quantum

state, known as the program state, such that using this program state, the processor can approximately

simulate the unitary channel on Bob’s side. Alice can also perform some post-processing by performing

measurements or discarding her system to further improve the probability of approximating the unitary

channel. Given this setting, I formulated the trade-off between the maximum success probability of simulating

a unitary channel and the approximation error between the resultant channel and the target unitary.

Chapter 7 consists of a summary of the results of each project and lists some open problems related to

these projects.
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Chapter 2

Background and Preliminaries

In this chapter, I cover the preliminary mathematical tools that have been used throughout this thesis. I

start by providing a brief discussion on information and operational tasks in quantum information science in

Sec. 2.1. In Sec. 2.2, basic elements of quantum mechanics like quantum states, channels, measurements, etc.,

are discussed. Sec. 2.3 provides details about the distance measures, and Sec. 2.4 covers the convex analysis

tools used in this thesis. I conclude the chapter by giving a non-technical introduction to the resource-

theoretic approach followed by the mathematical structure of quantum resource theories for quantum states.

Resource theory is a remarkable tool for quantifying resources and solving resource manipulation problems.

I have used the resource-theoretic framework to quantify dynamical resources in some specific quantum

communication and computational scenarios.

2.1 Overview of classical and quantum information

2.1.1 What is information?

Information, simply put, refers to that which informs. Abstractly, information can be thought of as the

resolution of uncertainty [54]. In common usage, information is typically any meaningful message. To convey

information from one to another, humans have developed the concept of language. A language consists of

words used in a systematic, structured, and organized way dictated by the grammar of the language. Using

such a system of communication, two people can interact with each other and exchange information. In the

case of communication of information over a noisy channel, the abstract notion of information can be thought

of as a set of possible messages to be encoded and sent over the noisy channel by the sender. The receiver

has to decode the received information and reconstruct the message (thereby resolving the uncertainty of
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what message was sent) with a low probability of error despite the channel noise. Thus, the transmission of

information requires a sender, a receiver, a communication medium, and a storage medium.

The scientific study of the encoding, storing, and transmission of information from a sender to a receiver

via some communication medium is called information theory [54]. Such a study heavily relies on concepts and

ideas from probability theory, statistics, statistical mechanics, computer science, and electrical engineering.

With the advancements in science and technology, researchers have identified various ways to encode and

transmit information over communication channels. When the information is stored using the principles

of classical mechanics, it is known as classical information, and the science behind its communication is

the subject of classical information processing. Likewise, when the information is stored using quantum

mechanical principles, it is known as quantum information, and the science behind communicating quantum

information is the subject of quantum information processing.

2.1.2 Classical vs. quantum information

In classical information theory, information is encoded and measured using bits. A bit is represented as

a binary number “0” or “1”. Physically, a bit can be thought of as something which has two states or

possibilities with maximal information, like a coin’s heads and tails, high and low voltage, a magnet’s spin

up and down, etc. This idea of using a two-valued quantity to store information was also introduced by

Shannon. But Shannon’s notion of a bit was more abstract than just its physical interpretation [54]. To

understand Shannon’s notion of a bit, let us suppose that we toss a fair coin. Until we look at the coin, we

are uncertain of its state, and once we see the coin, we know its state with certainty. Shannon’s notion of bit

measures the amount of information we gained when some uncertainty is resolved. In Shannon’s terms, we

can say that we learnt one bit of information when we looked at the coin. However, if the coin was biased

and there was a higher chance of getting “heads” than “tails”, then there won’t be much surprise if we see

“heads” after tossing the coin. In this case, we will say we learnt less than one bit of information.

Shannon’s bit, as described above, as a way to quantify or measure the surprise upon learning an outcome

of any such binary experiment is also known as Shannon binary entropy. Mathematically, it is defined for a

given probability distribution (p, 1− p) as [54]

h2(p) ≡ −p log(p)− (1− p) log(1− p) (2.1)

where the logarithm is taken base two. It is this notion of bit - as a measure of information - which is crucial

in information theory.

With this formulation of classical bit and by considering information as a set of possible messages [54],
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Shannon then gave the two main theorems which formed the foundations of classical communication. The

first theorem, known as the noiseless coding theorem or Shannon’s source coding theorem concerns data

compression. This theorem established fundamental limits on how much we can compress our data before

we start losing information. The second theorem is known as the noisy channel coding theorem or Shannon’s

channel coding theorem. It is concerned with channel capacity or the transmission of information over noisy

classical communication channels. This theorem established that for any noisy (i.e., error-prone) communica-

tion channel, there exists an encoding and decoding using which the capacity of the channel can be achieved.

The capacity of a channel is defined as the highest rate at which information can be reliably communicated

through a channel. From this work, Shannon unified various (classical) communication mediums like radio,

telephone, television, etc. in one framework.

With Shannon’s notion of bit in place, we now discuss the quantum analogue of the classical bit, which is

used as a measure of quantum information. The quantum bit, or qubit, in short, is a physical system which

can exist in a superposition of two states of maximal information. (We have discussed quantum state in

detail in Sec. 2.2.) Some examples of physical realizations of a qubit include an atom with a ground and an

excited state, an electron’s spin states, a photon’s polarization, etc. This physical notion of a qubit is easy

to understand from the concepts of quantum mechanics. What is more pressing is the abstract information-

theoretic notion of a qubit as a measure of quantum information. Like classical information, we quantify

quantum information by the amount of knowledge we gain after learning the state of a qubit. Depending

on the initial information about preparation and the final result after measurement, we learn some “qubits”

of information. For example, suppose someone prepares a | ↑z⟩ state (spin-up state in the z-direction) and

performs a measurement in the z-direction. We know that the final state would be the same and we will

not gain any new information. Thus, we will say we learnt 0 qubits of information. Now, instead of the

z-direction, if the measurement is performed in the x-direction, the result would be | ↑x⟩ or | ↓x⟩ with equal

probability. In this case, we will say that we learned one “qubit” of quantum information. Therefore, how

much we learn about a quantum system after a particular measurement depends on a priori knowledge of

the quantum system. Putting it differently, we can say that we learn less about the system if the system is

not disturbed after measurement [74].

Now that we understand the physical and information-theoretic meaning of a qubit, let us discuss how

to store information in classical and quantum bits. In the classical case, one bit is used to store one bit

of information. The bit can either be in the state “0” or in the state “1” and to store any information,

strings of bits are required. In the quantum case, however, due to superposition, one might be tempted

to think that an exponential amount of information can, in principle, be stored in n qubits as compared

to n classical bits, and thus, we can have an exponential advantage over the classical method. Holevo, in
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1973, showed that despite storing more information using n quantum bits, we can only retrieve as much

information from qubits after measurement as we can get from n classical bits [59]. Despite the fact that

we can only retrieve the same amount of information from n qubits and n classical bits, we can still gain

an advantage over classical computation by using quantum computers. It is an active area of research in

quantum computing to find efficient solutions to problems that are considered difficult by classical computing

methods [99, 100, 101, 102, 103]. Similarly, research in quantum communication and information attempts

to find limitations of what can be achieved, given a particular quantum resource [32, 82, 104, 105, 106].

2.1.3 Operational tasks in quantum information

With the physical and abstract notions of a quantum bit in place, we now briefly discuss the operational

tasks in quantum information theory. Quantum information has several resources that can be exploited

by a sender and a receiver [73, 74, 82]. These resources can be categorized as noisy or noiseless, static or

dynamic, classical or quantum, etc. An example of a noisy resource is a quantum communication channel that

introduces some noise or error in the input quantum system while transferring or manipulating it. A noiseless

resource on the other hand is an ideal quantum channel or device. A static resource is a quantum system

that maintains the same state over time (i.e., ideally unaffected by the environment). A dynamic resource,

described by a quantum channel, is a resource that manipulates static quantum systems, for eg., a unitary

operation or a measurement. The classical resources include classical states and classical communication

channels, and quantum resources include quantum states and quantum channels. Now, let us look at some

operational tasks using these resources. Suppose we have access to a noiseless qubit channel. A key task in

quantum information is then to use as few of this resource as possible to communicate quantum information

generated from some source from a sender to a receiver [79]. Another resource is a shared entangled state

between two parties. With a shared entangled state and classical communication, one can perform quantum

teleportation [69]. That is, with the help of the shared entangled state, a sender can transmit quantum

information to a receiver without requiring a quantum communication channel (with the assumption that

both sender and receiver can perform any operation on their local systems). Similarly, if the two parties

have access to a noisy quantum channel, then it can be determined how much classical information can be

transmitted from a sender to a receiver by using the noisy quantum channel a large number of times [107, 108].

In this scenario, if the two parties also share an entangled state, then it has been shown that entanglement

gives a boost to the amount of noiseless classical communication one can generate using a noisy quantum

channel [109, 110, 111]. Using quantum entanglement as a resource, tasks such as superdense coding,

teleportation, and secure communication (i.e., quantum cryptography) can also be achieved [48]. Likewise,
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in quantum communication settings, where the environment acts on a system and decoheres any quantum

information encoded in the system, quantum channels that can preserve and transmit quantum coherence act

as resources [32]. In quantum computation, pure magic states are the resources that are useful to promote

fault-tolerant quantum computation to universal quantum computation [112]. However, it is experimentally

very hard to distill pure magic states from impure ones, and finding magic distillation rates and devising

protocols to achieve these rates are important tasks in quantum information. Thus, research on using

quantum phenomena as resources has established that quantum mechanics allows for tasks like improved

sensing, simulation of complex biomolecules, and speedup over many known classical algorithms [73]. So,

quantum phenomena such as entanglement, coherence, and magic, are being investigated in deeper detail

to find any technological advantage they may offer. These investigations require a proper classification and

quantification of resources in a given particular setting to asses which states and channels are valuable in that

setting. Quantification of resources helps in answering various resource interconversion problems which lie

at the core of all quantum information processing tasks. To this purpose, the resource-theoretic framework

is of great significance as it offers an organized and structured way to quantify resources [82].

2.2 Elements of Quantum Mechanics

Quantum mechanics was developed to understand how nature works fundamentally. To do that, the quantum

theory provides a way to describe the state of a physical quantum system like an electron or an atom, how they

evolve in closed and open environments, and what happens when a measurement is made on these systems.

With the emergence of quantum information, counterintuitive quantum mechanical phenomena like quantum

entanglement and coherence were used as resources. By encoding information in static quantum systems

and by cleverly manipulating the quantum mechanical properties of these systems, tasks like teleportation,

superdense coding, etc. were achieved, which were otherwise impossible. In order to understand how

quantum systems, both static and dynamic, can be used as resources, it is important to understand how we

can mathematically express the state of a system and its evolution. In this section, we cover the mathematical

aspects of the basic elements of quantum mechanics - quantum states, unitary operations, measurements,

quantum channels, and superchannels (describe the evolution of quantum channels) - which will be used

throughout this thesis. I will start by discussing the Hilbert space followed by a discussion on the operators

in this space, which will pave the way to the discussion of quantum states and other quantum objects. As

a last remark, throughout this thesis, I have used the Dirac notation to represent vectors, matrices, inner

products, etc.
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2.2.1 Inner product spaces and Hilbert spaces

An inner product space is a vector space A over the field1 F of real or complex numbers and equipped with

the following map [113, 114]:

⟨ | ⟩ : A×A→ F

that satisfies the following three axioms: for all vectors ψ, ϕ ∈ A and all scalars in F, we have

1. Conjugate symmetry: ⟨ψ|ϕ⟩ = ⟨ϕ|ψ⟩.

2. Linearity in the second argument:⟨ϕ|c1ψ1 + c2ψ2⟩ = c1⟨ϕ|ψ1⟩+ c2⟨ϕ|ψ2⟩.

3. Positive definiteness: ⟨ψ|ψ⟩ ⩾ 0 with equality if and only if |ψ⟩ = 0.

The inner product induces a norm:

∥ψ∥2 = ⟨ψ|ψ⟩1/2 , (2.2)

and a metric:

d(ψ, ϕ) = ∥ψ − ϕ∥2 . (2.3)

A norm (denoted ∥ · ∥) is a real-valued function defined on the vector space A with the following proper-

ties [113, 114]:

1. For all ψ ∈ A, ∥ψ∥ ⩾ 0 with equality iff |ψ⟩ = 0.

2. For all c ∈ F, it holds that ∥cψ∥ = |c|∥ψ∥.

3. Triangle inequality: ∥ψ + ϕ∥ ⩽ ∥ψ∥+ ∥ϕ∥.

A vector space equipped with a norm is called a normed space. An example of a norm is a p-norm, ∥ · ∥p,

defined on all ψ = (v1, v2, . . . , vn) ∈ A as

∥ψ∥p := (|v1|p + |v2|p + · · ·+ |vn|p)1/p . (2.4)

In this thesis, the following two extreme cases with p = 1 and p =∞ will be often used:

∥ψ∥1 := |v1|+ |v2|+ · · ·+ |vn| , and ∥ψ∥∞ := max
j∈[n]

|vj | .

1A field is a set together with two operations: addition and multiplication, defined on that set.
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where the notation [n] := {1, . . . , n} for an integer n ∈ N. It is straightforward to see that the 1-norm is the

absolute sum of all entries in the vector ψ. To get the expression for the ∞-norm, we can take the vector

element with the maximum absolute value as common in Eq. (2.4) and then take the limit p→∞.

Hilbert Spaces

A Cauchy sequence in an inner product space A is any sequence of vectors {ψx}x∈N such that for every

positive real number ϵ, there exists an N ∈ N such that for all m,n > N it holds that

∥ψm − ψn∥ ⩽ ϵ . (2.5)

An inner product space A is called complete when all the Cauchy sequences in A converge in A, with

respect to the metric induced by the inner product. Complete inner product spaces are called Hilbert

spaces [113, 114]. Common examples of Hilbert spaces are Rn and Cn (n-dimensional real and complex

vector spaces) equipped with the standard notion of the inner product. Another example of a Hilbert space

that is relevant in quantum information is the space of n × m complex matrices denoted Cm×n. In this

Hilbert space, the inner product between two elements M,N ∈ Cm×n is given by

⟨M |N⟩ = Tr[M∗N ] (2.6)

where M∗ is the adjoint (i.e., the conjugate transpose) matrix of M and Tr[·] represents the trace of the

matrix which is the sum of diagonal entries of the matrix. This inner product is known as the Hilbert-Schmidt

inner product and it is sometimes also expressed as ⟨· , ·⟩HS .

Hilbert spaces correspond to physical systems operated by parties that will be referred to as Alice, Bob,

Charlie, etc. Thus, to represent physical systems in this thesis, I will use letters of the English alphabet. Static

quantum systems and their corresponding Hilbert spaces will be denoted by notations like A0, A1, B0, R0,

etc. A vector in Hilbert space A0 represents the physical state of a system, for example, an electron with

a definite spin orientation. These vectors are called pure states, or state vectors, or ket vectors. A detailed

description of a general state of a static physical system is provided in Sec 2.2.3. Dynamical systems (i.e.,

systems that are responsible for the change in the state of a static physical system) and their corresponding

Hilbert spaces are denoted by A,B,C, etc. In this setting, the notation for a dynamical system, say A,

indicates a pair of systems such that A = (A0, A1) = (A0 → A1) where A0 and A1 represent the input and

output systems, respectively. Note that in this thesis, I have only considered finite-dimensional systems, so

we will only refer to finite-dimensional Hilbert spaces.
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Two Hilbert spaces can be composed by means of a tensor product. The physical interpretation of the

tensor product between two Hilbert spaces is that the subcomponents of the tensor product correspond to

individual systems or particles. For a composite system, notation like A1B1 will be used to mean A1 ⊗B1.

To represent the dimension of a system, two vertical lines will be used. For example, the dimension of the

system A1 is |A1|. A replica of the same system would be represented by using a tilde symbol. For example,

system Ã1 is a replica of system A1, and system Ã1B̃1 is a replica of system A1B1, ie, |Ã1| = |A1| and

|Ã1B̃1| = |A1B1|.

2.2.2 Linear Operators in Hilbert Spaces

An operator M : A0 → A1 is said to be linear if and only if for all |ψ⟩, |ϕ⟩ ∈ A0 and c, d ∈ F

M (c|ψ⟩+ d|ϕ⟩) = cM (|ψ⟩) + dM (|ϕ⟩) (2.7)

We will denote the set of all linear operators from system A0 to A1 by L(A0, A1). If the input and output

systems are the same, i.e., if A0 = A1, then we will use the notation L(A0), for brevity. For any operator

M ∈ L(A0, A1), its kernel, denoted Ker(M) is the subspace of A0 consisting of all vectors |ψ⟩ ∈ A0 such that

M |ψ⟩ = 0. The image of M, denoted by Im(M), is the set of vectors {M |ψ⟩} over all vectors |ψ⟩ ∈ A0. The

support of M , denoted supp(M), is also a subspace of A0 consisting of all the vectors that are orthogonal

to all the elements in Ker(M). In particular, for any non-zero vector |ψ⟩ ∈ supp(M) we have M |ψ⟩ ≠ 0.

A linear operator B ∈ L(A0) is called a bounded linear operator if there exists a real number c > 0 such

that ∥B(|ψ⟩)∥ ⩽ c∥|ψ⟩∥ for all |ψ⟩ ∈ A0. For finite dimensions, all linear operators are bounded. The set

of all bounded operators on a Hilbert space A0 will be denoted by B(A0). A linear operator H ∈ L(A0)

is called Hermitian if H = H∗. The set of all Hermitian operators on Hilbert space A0 will be denoted by

Herm(A0). A linear operator ρ ∈ L(A0) is positive semi-definite if and only if ⟨ψ|ρ|ψ⟩ ⩾ 0 for all |ψ⟩ ∈ A0.

This condition implies that ρ must be Hermitian and its eigenvalues must be non-negative. A positive

semidefinite operator ρ will be represented as ρ ⩾ 0 and the set of all positive semi-definite operators on

Hilbert space A0 will be denoted by Pos(A0). In the thesis, I will write ρ ⩾ σ to denote ρ − σ ⩾ 0. Note

that Pos(A0) ⊂ Herm(A0) ⊂ B(A0) ⊂ L(A0).

Before concluding this subsection on linear operators, let me briefly discuss the norms on linear operators

and the isometry between linear operators and bipartite vectors.

Like the inner product of operators in Eq. (2.6), norms, in particular p-norms (Eq. (2.4)), can also be

extended from vectors to linear operators. Let M ∈ L(A0, A1) for some Hilbert spaces A0 and A1. For
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p ∈ [1,∞], the Schatten p-norm of M is defined as

∥M∥p := (Tr [|M |p])1/p where |M | :=
√
M∗M. (2.8)

The case p = 1 is known as the trace norm which is discussed in Section 2.3.1 and the case p =∞ (understood

in terms of the limit p → ∞) is known as the operator norm and is given by the maximum eigenvalue of

|M |, i.e., ∥M∥∞ = λmax(|M |).

Another property of linear operators that will be used in multiple proofs in this thesis is the isometry

between linear operators and bipartite vectors. Let |ψ⟩A0A1
∈ A0A1 be a bipartite vector in the Hilbert

space A0 ⊗A1. It can be expressed in terms of the orthogonal basis {|i⟩A0 ⊗ |j⟩A1} as

|ψ⟩A0A1
=
∑
i,j

cij |i⟩ ⊗ |j⟩ . (2.9)

Let

|Φ+⟩Ã1A1
:=
∑
j

|j⟩ ⊗ |j⟩Ã1A1
(2.10)

be a vector in the Hilbert space Ã1 ⊗A1. Then, there exists a linear operator Mψ ∈ L(Ã1, A0) such that

|ψ⟩A0A1 = Mψ ⊗ IA1 |Φ+⟩Ã1A1
. (2.11)

This mapping |ψ⟩ 7→ Mψ establishes an isometrical isomorphism between the space A0A1 and the space

C|A0|×|A1|. Below I provide some important properties of this isomorphism which can also be easily proved.

Let |Φ+⟩Ã1A1
be defined as above, then:

1. For any linear operator M ∈ L(A1), it holds that

⟨Φ+|M ⊗ IA1
|Φ+⟩ = Tr[M ] . (2.12)

2. Let M ∈ L(Ã1, A0) and let its transpose map be denoted as MT ∈ L(Ã0, A1), then it holds that

M ⊗ I|Φ+⟩Ã1A1
= I ⊗MT|Φ+⟩A0Ã0

. (2.13)
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3. Let M,N ∈ L(A1, A1) be invertible matrices, then

M ⊗N |Φ+⟩A1Ã1
= |Φ+⟩A1Ã1

⇐⇒ M =
(
N−1

)T
(2.14)

2.2.3 Quantum States

A quantum state is a mathematical description of the physical state of a static quantum system. This

description contains complete information about the probability distribution for the outcomes of each possible

measurement made on the system [78, 115]. Thus, we can only deduce the probability of a certain outcome

when the system interacts with a measurement apparatus, as opposed to a classical system where we can

deterministically predict the outcome. This also implies that, if two quantum systems have the same quantum

state, we cannot infer that they will behave in the same way when interacting with a measuring apparatus.

We can merely state that both systems have the same probability of evolving to a certain state if both

systems are treated in the same way.

A quantum state is represented using a square matrix, known as the density matrix which is a unit trace,

positive semidefinite operator acting on a Hilbert space. That is, a linear operator ρ ∈ L(A0)is a quantum

state if

ρ ⩾ 0 and Tr[ρ] = 1 . (2.15)

Any pure, mixed, classical, separable, entangled, coherent, or any other kind of state, can be represented

using a density matrix. The set of all density matrices on Hilbert space A0 will be denoted by D(A0). We

will often write a quantum state ρ ∈ D(A0) as ρA0 where the subscript denotes the Hilbert space on which

it is acting. The density matrix of a pure state |ψ⟩ ∈ A0 will be denoted by ψ := |ψ⟩⟨ψ|A0
. Also, a given

density matrix ρ ∈ D(A0) is pure if and only if ρ = ρ2. For mixed states, the density matrices will be

denoted by Greek lowercase letters like ρ, σ, τ, etc. throughout this thesis.

For bipartite states, i.e., a quantum state of a composite system of two parties, when we discard one part

of the system we still have a quantum state. Mathematically, this process is known as a partial trace. When

we have a pure bipartite state |ψ⟩A0A1 , then using the linear map Mψ : A1 → A0 that is isomorphic to it,

we can determine the reduced density matrix. Suppose we trace out the system A1 and denote the reduced

18



density matrix of |ψ⟩⟨ψ|A0A1 as ρψA0
, then we get

ρψA0
= TrA1 [|ψ⟩⟨ψ|A0A1 ] = TrA1 [Mψ ⊗ IA1(|Φ+⟩⟨Φ+|Ã1A1

)M∗
ψ ⊗ IA1 ] (2.16)

= MψM
∗
ψ (2.17)

Similarly, we can find out the reduced density matrix ρψA1
that we get after tracing out system A0. Note

that both ρψA0
and ρψA1

have the same non-zero eigenvalues. Moreover, if ρ ∈ D(A0) is the reduced density

matrix of a pure bipartite state |ψ⟩A0A1 , then |ψ⟩A0A1 is called the purification of ρ.

2.2.4 Evolution of closed quantum systems

Quantum mechanics postulates that the evolution of a closed or isolated quantum system is described by

unitary evolution. Let |ψ(0)⟩ ∈ A0 be the state of a system at time t = 0. If the system is not interacting

with the environment, then the state at time t is given by

|ψ(t)⟩ = U(t)|ψ(0)⟩ (2.18)

where U(t) is the unitary matrix that depends on t. From the Schrödinger equation d
dt |ψ(t)⟩ = −iH|ψ(0)⟩,

we then get that

U(t) = e−iHt (2.19)

where H above is assumed to be a time-independent Hamiltonian which is a Hermitian operator correspond-

ing to the energy of the system. (For time-dependent Hamiltonians, a detailed discussion can be found in

standard quantum mechanics textbooks.)

For a general mixed state ρ ∈ D(A0), we can express its evolution under a unitary U as

σ = U(ρ) = UρU∗ (2.20)

where U denotes the unitary channel that acts on a quantum state by conjugation like U(·)U∗.

2.2.5 Measurements

Measurements are required to read the information stored in quantum states. A measurement disturbs the

state of the quantum system projecting it into one of the eigenstates of the observable being measured. In
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P. A. M. Dirac’s words [116]: “A measurement always causes the system to jump into an eigenstate of the

dynamical variable that is being measured. ” This can be interpreted as follows: before the measurement of

an observable M is made on the system, the state of the system (assumed pure) can be expressed as a linear

combination of the eigenkets of M . When the measurement is performed, the system is projected onto one

of the eigenstates of M . A simple example is that of the Stern-Gerlach experiment (with an inhomogeneous

magnetic field in the z-direction). In this experiment, the incoming electrons (in arbitrary quantum states)

hit the screen only at two spots after passing through the Stern-Gerlach apparatus, thus indicating that

each electron is in either of the two possible states of the z-component of the spin - the spin up and the

spin down states. Such measurements are known as basis measurements [73]. Basis measurements can be

extended to projective measurements, where instead of projecting onto a basis or eigenstate, the projection

is made to a subspace. However, projective measurement is not the most general measurement that can be

performed on a quantum system. To obtain the most general measurement of a quantum system, we need

to combine unitary evolution and projective measurement. Such measurements are known as generalized

measurements [47, 74]. Explicit mathematical details are provided later in this section.

Sometimes, we may not care about the post-measurement state of a quantum measurement but only care

about the probabilities of the outcomes. Measurement of this sort is specified by using a set of operators, and

this set of operators is known as a positive operator-valued measure or POVM [47]. Apart from measurements

on static systems, we can also perform generalized measurements on dynamical systems. This is done by

specifying an input state to the dynamical system and performing a measurement on the output system. The

input state and the measurement operators are written together as a tuple to specify a particular dynamical

generalized measurement. Similar to the static case, if we are only concerned with the outcome probabilities

in the generalized dynamical measurement, then the tuple of the input state and the set of the measurement

operators is known as a process-POVM [117]. With this brief introduction, let us now discuss the definition

and properties of these measurements in detail.

1. Projective measurements: These are the simplest types of measurements that appear in quantum

mechanics. The measurement operators are known as projectors, and they project onto a subspace of a

Hilbert space. Stern-Gerlach (SG) experiment is an example of projective measurement. Suppose the

SG experiment projects quantum states in spin up | ↑z⟩ and spin down | ↓z⟩ states, then the projectors

in this case are

M1 = | ↑z⟩⟨↑z |, M2 = | ↓z⟩⟨↓z | . (2.21)

Formally, projective measurements on a Hilbert space A0 consist of a collection of mutually orthogonal
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projections {Px}mx=1 satisfying
∑m
x=1 Px = IA0 such that for all x, y ∈ [m] it holds that

PxPy = δxyPx . (2.22)

When all the projection operators are basis states, then the projective measurement is also called basis

measurement. However, in general Px need not be a projection onto a state like |ψ⟩⟨ψ|, rather Px can

be a projector onto a subspace. For example, if we have three-level systems with basis states |0⟩, |1⟩,

and |2⟩, then the projectors might be

P1 = |0⟩⟨0|+ |1⟩⟨1| , P2 = |2⟩⟨2| . (2.23)

Such projectors are used, for instance, in physical systems with degenerate energy levels.

2. Generalized measurements, POVM and effects: Projective measurements project a quantum

state onto basis states or in some subspace. Since quantum states evolve unitarily (either as a closed

system, or together with the environment in open quantum systems - explained in the next section),

we can compose the unitary operators with projective measurements to get generalized measurements.

When we are only concerned with the probabilities of the outcomes of these generalized measurements,

it is called a positive operator-valued measure, or POVM. Thus, a POVM can be thought of as a

machine that takes in a quantum system and yields a classical output.

Figure 2.1: Generalized quantum measurement Figure 2.2: POVM

To find the properties of the operators of a generalized measurement, let |ψ⟩ be a quantum state in A0

that undergoes a unitary evolution by some unitary operator U followed by a projective measurement

{Px}mx=0. This process results in a state

|ψx⟩ :=
1

px
PxU |ψ⟩ (2.24)

with probability px = ⟨ψ|U†PxU |ψ⟩. Denoting PxU as Mx we get

|ψx⟩ =
1

px
Mx|ψ⟩ with probability px = ⟨ψ|M†

xMx|ψ⟩ (2.25)

21



If ancillary system is also available, then the unitary evolution of the state |ψ⟩ along with the ancilla

followed by a projective measurement yields the most general form of measurement known as general-

ized measurement. Thus, generalized measurements consist of the collection of these complex matrices

{Mx = PxU}. Formally, a generalized measurement is a collection of m complex matrices {Mx}mx=1

such that

m∑
x=1

M∗
xMx = I . (2.26)

To apply the generalized measurements to mixed quantum states, we define Ex := M∗
xMx. Notice that

Ex ⩾ 0 and

m∑
x

Ex = I . (2.27)

To describe a POVM, we only need to consider the operators {Ex}x. These POVM operators Ex,

are called effects. Upon applying the generalized measurement {Mx}mx=1 to a quantum state ρ, the

post-measurement state is

σx = MxρM
∗
x with probability px = Tr[M∗

xMxρ] = Tr[Exρ] . (2.28)

Thus, to every generalized measurement, there exists a unique POVM that corresponds to it via the

relation Ex = M∗
xMx. However, the converse is not true, that is, for every POVM, there are many

quantum measurements associated with it.

3. Process POVM: Above, we discussed measurements of quantum states to read quantum information.

Since quantum channels are the most general quantum objects, we want to understand and read

quantum information from quantum channels2. To do this, the idea of POVMs was generalized from

states to channels in [117]. Let NA ∈ CPTP(A0 → A1) be a quantum channel. To perform a process

POVM, a state ρ ∈ D(A0R0) is prepared, and the A0 part of the system is evolved by the action of

NA. Then, a POVM {Ex} is applied to the resultant state. Then the probability of some outcome is

2This discussion requires the understanding of quantum channels and its representations which is discussed in detail Sec.2.2.6.
So, it is suggested to revisit this discussion after going through Sec. 2.2.6.
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expressed as

p(N ) = Tr [(id⊗N )(ρ)Ex] (2.29)

= Tr
[
(Mρ ⊗NA)

(
Φ+
)

(Ex)
]

(2.30)

= Tr
[
JN
A

(
M∗

ρ ⊗ id(Ex)
)]

(2.31)

where the first equality follows by construction where the channel N acts on a part of the input state

followed by the action of a POVM {Ex}. The second equality follows from the fact that for any bipartite

vector, say |ψA0B0
⟩, there is a corresponding map Mψ : B̃0 → A0 such that |ψA0B0

⟩ = Mψ⊗IB0
|Φ+

B̃0B0
⟩.

Since we can express any density matrix, say σ, as σ =
∑
i pi|ϕi⟩⟨ϕi| using some pure states |ϕi⟩ and

where
∑
i pi = 1 and pi ⩾ 0, we can write σ = Mσ ⊗ id(|Φ+⟩⟨Φ+|) where Mσ(·) =

∑
i piMϕi(·)Mϕi .

The third equality follows from the definition of the Choi matrix of a channel. In the last equation,

we can define the effects Fx of process POVM as Fx := (Mρ ⊗ id(Ex)). These effects are positive

semidefinite, that is, Fx ⩾ 0, and sum to ρT ⊗ I, i.e.,
∑
x Fx =

∑
xM∗ ⊗ id(Ex) =M∗ ⊗ id(

∑
xEx) =

ρT ⊗ I.

2.2.6 Quantum channels

Quantum channels describe the most general evolution of a quantum state. Until now (i.e., in Sec. 2.2.4

and 2.2.5), we have seen two kinds of evolution of a static quantum system: the unitary evolution and

generalized measurements. Unitary evolution describes the evolution of an isolated quantum system, whereas

measurements map a quantum state to a classical state. However, a quantum system can evolve in various

other ways. For instance, while transferring quantum information (encoded in a quantum system) from

point A to point B, the environment can act on the system, thereby introducing noise and changing the

state of the system. This noise can be modeled as a quantum channel. Even noiseless transfer of quantum

information is a quantum channel which is the trivial identity channel. Moreover, even a quantum state can

be viewed as a quantum channel with a trivial input and a particular quantum state as an output. The

reverse of this process, i.e. mapping a quantum system to a trivial system, is also a quantum channel and

is known as tracing out a system. So, to account for any kind of change in the state of a quantum system,

we need a universal mathematical formulation of quantum channels. Mathematically, quantum channels are

linear maps that are completely positive and trace-preserving [47, 74]. Simply put, quantum channels are

maps that take density matrices in D(A0) to density matrices in D(A1) in a complete sense, that is, even

when acting on part of the input system.
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We will denote linear maps that take linear operators in L(A0) to linear operators in L(A1) as L(A0 →

A1). (Note the difference in the notation with L(A0, A1) that denotes linear operators taking vectors in A0

to vectors in A1). Since the set of density matrices consist of unit trace, positive semi-definite operators,

the set of quantum channels that transform density operators in D(A0) to those in D(A1) are a subset of

L(A0 → A1). In this thesis, I have used calligraphic letters like E ,F ,M, or N to denote quantum channels.

Below, I list the properties that are required for a map to be a quantum channel:

1. Linearity: Any quantum channel must be described by a linear map. This is an essential requirement,

as we want the action of the quantum channel to be convex3, and should always give the same result

for the evolution of a quantum state no matter what convex combination is used to express the original

state. Let N be a quantum channel and ρ, σ be two density matrices, then the following must hold

N (pρ+ (1− p)σ) = pN (ρ) + (1− p)N (σ) (2.32)

Note that the above holds not just for density operators but for all linear operators.

2. Complete positivity: Linear maps that describe a quantum channel must preserve the positivity

of any input positive operator even when they act on part of the operator. This property is known

as complete positivity. Since quantum states represented by density matrices are positive semidefinite

operators, quantum channels preserve positivity. Moreover, given a bipartite state, if a quantum

channel acts only on one part of the state, the output is still a quantum state, regardless of the

dimension of the other system on which the channel did not act. Let N ∈ L(A0 → A1) and let

ρ ∈ Pos(R0A0), then N is completely positive if

id⊗N (ρ) ∈ Pos(R0A1) (2.33)

for any dimension |R0|.

3. Trace preserving: Quantum channels map a density matrix to density matrix. Since any Hermitian

matrix can be expressed as a combination of density matrices, if we evolve this Hermitian matrix under

a quantum channel and take the trace, the trace of the output system is equal to the trace of the input

system. This can be extended further for linear operators. Such maps which preserve the trace are

3Action of a map being convex means it takes a convex set to a convex set. A convex set is a set where the convex combination
of any two points in the set also belongs to the set. A convex combination of elements is a linear combination of elements where
the coefficients are non-negative and sum to one. See Sec. 2.4 for details.
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called trace preserving. Let N ∈ L(A0 → A1) and let ρ ∈ L(A0), then N is trace preserving if

Tr[ρ] = Tr[N (ρ)] . (2.34)

The set of all such linear maps, which are completely positive (CP) and trace-preserving (TP), constitutes

the set of quantum channels. Quantum channels are thus also referred to as linear CPTP maps, or just

CPTP maps. In this thesis, I have denoted the set of all quantum channels or CPTP maps taking density

matrices in D(A0) to density matrices in D(A1) by CPTP(A0 → A1) or CPTP(A), where A denotes the

dynamical system mapping one static system to another. The identity channel (which is equivalent to not

doing anything) on a quantum state in D(A0) will be denoted by idA0 . Also, we will use subscripts to denote

the dynamical physical system of the quantum channel. For instance, EA represents a quantum channel

E ∈ CPTP(A0 → A1). Besides, the set of linear maps that are completely positive (and not trace preserving)

will be denoted by CP(A0 → A1) and it is clear that CPTP(A0 → A1) ⊂ CP(A0 → A1) ⊂ L(A0 → A1).

Some examples of quantum channels that are relevant to this thesis include the completely dephasing channel

which kills all the coherence of a quantum system with respect to some fixed basis, classical channels which

converts one probability distribution to another, completely stabilizer-preserving operations which completely

preserve the set of all stabilizer states, etc. All these channels will be discussed in detail in the upcoming

chapters. Now, let us briefly discuss the ways to mathematically represent a quantum channel.

Representations of quantum channels

There are three main ways to represent a quantum channel.

1. The Choi representation: Also known as the Choi matrix or Choi-Jamiolkowski isomorphism, this

representation expresses a quantum channel as a positive semidefinite matrix. The evolution of a

quantum state under a quantum channel is represented as a product of matrices followed by a partial

trace. For a quantum channel N ∈ CPTP(A0 → A1), its Choi matrix will be represented as JN
A where

the superscript denotes the channel and the subscript denotes the dynamical system. The Choi matrix

JN
A of a channel NA is defined as

JN
A := idA0 ⊗NA(Φ+

A0Ã0
) (2.35)

where idA0 is the identity channel and Φ+

A0Ã0
:= |Φ+⟩⟨Φ+|A0Ã0

=
∑|A0|
x,y |x⟩⟨y|A0 ⊗ |x⟩⟨y|Ã0

is the

unnormalized maximally entangled state [75, 118]. For a matrix JN
A to represent a quantum channel,

it must satisfy the following properties:
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(a) A linear map is completely positive if and only if its Choi matrix is positive semidefinite. Thus,

the Choi matrix representing a channel NA must obey

JN
A ⩾ 0 . (2.36)

(b) A linear map NA ∈ L(A0 → A1) is trace preserving if and only if the marginal of its Choi matrix

is

JN
A0

:= TrA1
[JN
A ] = IA0

. (2.37)

Due to the nature of the above conditions and the fact that the Choi matrix is a positive semidefinite

matrix, the Choi representation is very helpful in characterizing various resources and expressing

conditions for optimization problems as a semidefinite program, among other things.

Lastly, the evolution of a quantum state ρA0
7→ EA(ρ) under a quantum channel E ∈ CPTP(A0 → A1)

can be expressed as

EA(ρA0) = TrA0

[
JE
A (ρA0 ⊗ IA1)

]
. (2.38)

2. The Kraus decomposition: Also known as the operator-sum representation, it expresses a quantum

channel, say N ∈ CPTP(A0 → A1), using a set of Kraus operators {Mx}mx=1 with Mx : A0 → A1

which obey

∑
x

M∗
xMx = IA0 . (2.39)

The evolution of a quantum state ρA0
under a channel NA using the Kraus representation is given as

N (ρ) =
∑
x

MxρM
∗
x . (2.40)

Since the Choi matrix of a quantum channel can be written as

JN
A =

m∑
x=1

|ψx⟩⟨ψx| (2.41)

for some integer m and some (possibly unnormalized) states in A0 ⊗ A1, the Kraus operators can be
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found from the isomorphism between bipartite vectors and linear operators, i.e.,

|ψx⟩ = Mx ⊗ I|Φ+⟩ . (2.42)

3. The unitary representation: A system together with the environment can be viewed as a closed

system and the quantum state of system + environment can then be seen as a pure state [47]. The

dynamics of this whole system is now governed by unitary evolution. By choosing an appropriate

unitary and tracing out some systems, the action of any quantum channel on the initial system can

be simulated. This way of representing a quantum channel is known as the unitary representation.

Considering the environment as |0⟩⟨0|E0 , the action of a quantum channel NA on a quantum state ρA0

can be expressed in the unitary representation as follows

N (ρ) = TrE0
[U (ρA0

⊗ |0⟩⟨0|E0
)U∗] . (2.43)

This can be expressed more generally by the Stinespring Dilation theorem. For finite dimensions, this

theorem states that a linear map N ∈ CPTP(A) if and only if there exists an environment E0 with

dimension |E0| ⩽ |A0A1| and an isometry V : A0 → A1 ⊗ E0 with V ∗V = IA1
such that

N (ρA0
) := TrE0

[V ρV ∗] . (2.44)

To get the Kraus operators from the above equation, we express the above equation in terms of the

basis states of system E0 as

N (ρA0
) =

|E0|∑
x=1

⟨xE0
|V ρV ∗|xE0

⟩ (2.45)

Some examples of quantum channels

Let us now look at a few examples of quantum channels which are relevant for this thesis.

1. Unitary channels: The evolution of a mixed state ρ ∈ D(A0) under a unitary U can be expressed as

σ = U(ρ) = UρU∗ (2.46)

where U denotes the unitary channel that acts on a quantum state by conjugation like U(·)U∗. (Refer

to Sec. 2.2.4 for details of the evolution of a closed or isolated quantum system, and the previous
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subsection, Sect. 2.2.6, for the evolution of open quantum systems and how such an evolution can be

modeled using a unitary channel.)

2. Completely dephasing channels:

These channels completely remove the coherence of any quantum state with respect to some fixed

orthogonal basis. Mathematically, the action of these channels corresponds to the removal of the off-

diagonal elements of a density matrix ρ ∈ D(A0) when the matrix is expressed with respect to some

orthogonal basis {|x⟩}|A0|
x=1. Throughout this thesis, I will be using D to denote a completely dephasing

channel. Note that D ∈ CPTP(A0 → A0). The action of a completely dephasing channel D on a state

ρ ∈ D(A0) is given as

D(ρA0
) =

|A0|∑
x=1

|x⟩⟨x|ρ|x⟩⟨x| . (2.47)

The Choi matrix of a completely dephasing map can be easily found and which is given by

JD =
∑
x

|x⟩⟨x| ⊗ |x⟩⟨x| . (2.48)

For a more detailed discussion and physical meaning of this channel, refer to Chapter 3.

3. Classical channels: Classical channel or a classical communication channel describes a physical

transmission medium to convey information signal, for instance, a bit stream, from one or more senders

to one or more receivers [74]. (See Fig. 2.3 for a basic illustration portraying multiple senders, a

communication channel, and multiple receivers.) A communication channel is usually modeled as a

Figure 2.3: A general classical communication scenario

triple consisting of an input alphabet, an output alphabet, and a transition probability for each pair

(i, o) of input-output elements. Using this transition probability, a classical channel N is represented

as a conditional probability distribution involving an input random variable X and an output random
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variable Y :

N : pY |X(y|x) , (2.49)

which can be expressed as a column stochastic matrix, say N . The dimensions of N depend on the

size of the input and output alphabets.

Since quantum channels describe the most general evolution of a quantum system and classical systems

are a special type of quantum systems, we can express classical channels in terms of quantum channels.

To define classical channels as quantum channels, we need to understand how they act on classical

states, i.e., states diagonal in a chosen basis. Since classical channels do not make use of the coherence

of any input quantum state (and in fact kill the coherence of the input state) and cannot generate

coherence, classical channels remain invariant under conjugation by completely dephasing channels.

Thus, we define a classical channel as a quantum channel that remains invariant under conjugation by

completely dephasing channels (with appropriate dimensions). Therefore, a channel N ∈ CPTP(A0 →

A1) is a classical channel if and only if:

NA0→A1 = DA1 ◦ NA0→A1 ◦ DA0 , (2.50)

where the symbol ‘◦’ represents the composition of channels. With this definition, it is easy to see that

the Choi matrix JN of a classical channel N is diagonal. Furthermore, the correspondence between

the column stochastic matrix N of N and the Choi matrix JN is that the Choi matrix of N is just

the columns of N stacked one after the other as diagonals of JN .

4. POVM channels: A POVM channel or a quantum to classical channel N ∈ CPTP(A0 → A1) obeys

the following equation

N = D ◦ N (2.51)

Following some calculations using the above definition, we get the following form for a POVM channel

acting on a state ρ

N (ρ) =

|A1|∑
x=1

Tr[Exρ]|x⟩⟨x| (2.52)

where {Ex}x is a POVM and thus each Ex ∈ Pos(A0) and
∑|A1|
x=1Ex = IA1
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2.2.7 Supermaps and Superchannels

The main focus of this thesis is on the interconversion among dynamical resources or quantum channels.

This section establishes the mathematical framework of linear maps, called superchannels, that describe

the evolution of a quantum channel. As previously noted that quantum channels can be regarded as the

most fundamental objects in quantum mechanics, one can now remark that, since superchannels describe

the evolution of quantum channels, why not regard them as more fundamental objects with the same line of

reasoning that we adopted for quantum channels. The answer to this lies in the way we realize a superchannel

and that is through quantum channels (see Fig. 2.4). Hence, it is nice to have a mathematical model for

the most general way to evolve quantum channels, but they cannot be treated as more fundamental, and

quantum channels maintain their position of being the most fundamental object in quantum mechanics.

Before discussing superchannels, I first discuss the math behind a set of linear maps called supermaps, as

superchannels are special types of supermaps (see [119] and references within).

The space L(A0 → A1) is equipped with the following inner product

⟨NA,MA⟩ :=
∑
i,j

⟨NA (|i⟩⟨j|A0
) ,MA (|i⟩⟨j|A0

)⟩HS (2.53)

where ⟨X,Y ⟩HS := Tr[X∗Y ] is the Hilbert-Schmidt inner product between the matrices X,Y ∈ B(A1). The

above inner product is independent of the choice of the orthonormal basis {|i⟩⟨j|} ∈ B(A0), and can be

expressed in terms of Choi matrices. The Choi matrix of a channel NA is given by

JN
A0A1

= NÃ0→A1

(
Φ+

A0Ã0

)
(2.54)

where Φ+

A0Ã0
≡ |Φ+⟩⟨Φ+|A0Ã0

is an unnormalized maximally entangled state where |Φ+⟩A0Ã0
≡
∑|A0|
i |i⟩A0

|i⟩Ã0
.

With this notation, the inner product of two channels NA and MA can be expressed as the inner product

of their Choi matrices, i.e.,

⟨NA,MA⟩ =
〈
JN
A , J

M
A

〉
= Tr

[(
JN
A

)∗
JM
A

]
. (2.55)

The canonical orthonormal basis of L(A) (relative to the above inner product) is given by
{
E ijklA

}
where

E ijklA (ρA0
) = ⟨i|ρA0

|j⟩ |k⟩⟨l|A1
∀ ρA0

∈ B(A0). (2.56)

The space L(A → B) (where A = (A0, A1) and B = (B0, B1)) is equipped with the following inner
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product

⟨ΘA→B ,ΩA→B⟩ :=
∑
i,j,k,l

〈
ΘA→B

[
E ijklA

]
,ΩA→B

[
E ijklA

]〉
, (2.57)

where ΘA→B , ΩA→B ∈ L(A → B) are called supermaps, and the inner product on the right-hand side is

the inner product between maps as defined in (2.53). The dual of a supermap Θ ∈ L(A → B) is a linear

map Θ∗ ∈ L(B → A) with the property

⟨NB ,Θ [MA]⟩ = ⟨Θ∗ [NB ] ,MA⟩ , (2.58)

for all MA ∈ L(A) and for all NA ∈ L(B).

Similar to how we can express the inner product of two maps by the inner product of their Choi matrices,

we can define the inner product of two supermaps as the inner product of their Choi matrices as well. The

Choi matrix of a supermap ΘA→B is defined as [119]

JΘ
AB =

∑
i,j,k,l

JEijkl

A ⊗ JΘ[Eijkl]
B (2.59)

where JEijkl

A and J
Θ[Eijkl]
B are the Choi matrices of E ijklA and ΘA→B [E ijklA ], respectively. With this notation,

the inner product between two supermaps ΘA→B and ΩA→B can be expressed as

⟨ΘA→B ,ΩA→B⟩ =
〈
JΘ
AB ,J

Ω
AB

〉
HS

= Tr
[(
JΘ
AB

)∗
JΩ
AB

]
(2.60)

We now give three alternative expressions of the Choi matrix of the supermap Θ ∈ L(A → B) [119].

First, from its definition, the Choi matrix of a supermap uses the CP map analog of the entangled states

which we represent as P+

AÃ
and is given by

P+

AÃ
=
∑
i,j,k,l

E ijklA0→A1
⊗ E ijkl

Ã0→Ã1
. (2.61)

Similar to the properties of the maximally entangled state, the channel P+

AÃ
satisfies the following relation

for any Θ ∈ L(A→ B)

ΘÃ→B [P+

AÃ
] = ΘT

B̃→A
[P+

BB̃
] (2.62)

where ΘT ∈ L(B → A) is the transpose of the supermap Θ which is defined by its components

〈
E ijklA ,ΘT

[
E i

′j′k′l′

B

]〉
=
〈
E i

′j′k′l′

B ,Θ
[
E ijklA

]〉
∀ i, j, k, l, i′, j′, k′, l′ (2.63)
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where
{
E ijklA

}
and

{
E i

′j′k′l′

B

}
are the canonical orthonormal basis of L(A) and L(B), respectively. Then,

the Choi matrix of a supermap Θ ∈ L(A→ B) can be expressed as

JΘ
AB = Θ

[
P+

AÃ

] (
Φ+

A0Ã0
⊗ Φ+

B0B̃0

)
(2.64)

The second way of defining the Choi matrix of a supermap is by its action on the Choi matrices of

channels. Let’s consider a linear map Θ such that for MA ∈ L(A) and NB ∈ L(B), NB = ΘA→B [MA].

Then the Choi matrices of MA and NA are related via

JN
B = TrA

[
JΘ
AB

((
JM
A

)T ⊗ IB)] (2.65)

That is, JΘ
AB can be interpreted as the Choi matrix of a linear map (say RΘ

A→B) that converts JM
A to JN

B

and we can write

RΘ
A→B(JM

A ) = JN
B . (2.66)

For the last representation of the Choi matrix of a supermap, we can view it as a linear map QΘ :

B(A1B0)→ B(A0B1) which is defined by the map satisfying

JΘ
AB := QΘ

Ã1B̃0→A0B1
(Φ+

A1Ã1
⊗ Φ+

B0B̃0
). (2.67)

We will see that the three representations play a useful role in our study of dynamical resource theory of

coherence.

Now, let us define a superchannel. A superchannel is a supermap that takes quantum channels to quantum

channels even when tensored with an identity supermap [119, 120, 121, 122, 123, 124, 125, 126]. In other

words, a superchannel Θ describes the evolution of a quantum channel N ∈ CPTP(A0 → A1) to a target

channel M∈ CPTP(B0 → B1) as

ΘA→B [NA] =MB (2.68)

and even when acting on part of the channel as

1R ⊗ΘA→B [NAR] =MBR (2.69)

where NAR ∈ CPTP(A0R0 → A1R1), MBR ∈ CPTP(B0R0 → B1R1), and 1R denotes the identity super-

channel that takes the dynamical system R to R. For a linear map Θ ∈ L(A→ B) describing a superchannel,

the following are equivalent [119, 121]:
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Figure 2.4: Realization of a superchannel in terms of pre- and post-processing channels and its action on an input

channel N

1. Θ is a superchannel

2. The Choi matrix JΘ
AB ⩾ 0 with marginals

JΘ
A1B0

= IA1B0 ; JΘ
AB0

= JΘ
A0B0

⊗ uA1
(2.70)

where uA1
=

IA1

|A1| is the maximally mixed state for system A1.

3. The map RΘ
A→B in (2.66) is CP, and there exists a unital CP map RΘ

A0→B0
such that the map

RΘ
A→B0

≡ TrB1 ◦ RΘ
A→B satisfies

RΘ
A→B0

= RΘ
A0→B0

◦ TrA1
(2.71)

Note that a channel is unital iff both marginals of its Choi matrix are equal to the identity matrix.

4. There exists a Hilbert space E, with |E| ⩽ |A0B0|, and two CPTP maps F ∈ CPTP(B0 → A0E) and

E ∈ CPTP(A1E → B1) such that for all NA ∈ L(A0 → A1)

Θ[NA] = EA1E→B1
◦ NA0→A1

◦ FB0→A0E (2.72)

This means that a superchannel can be realized in terms of a pre- and a post-processing channel

(see Figure 2.4). Moreover, the transformation of Eq. (2.68) can be expressed using Choi matrices of

channels N , M, and the superchannel Θ as

JM
B = TrA

[
JΘ
AB

((
JN
A

)T ⊗ IB)] . (2.73)
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2.3 Distance measures in quantum information

Quantum systems suffer from noise in practice, and the outcome of a protocol might be different from what

is desired. Therefore, it is desirable to find out how well a protocol is performing. The easiest way to do

that is to compare the output of the ideal protocol with the actual output of the protocol using a distance

measure of the two states. In this section, I discuss distance measures between quantum states, specifically

trace distance, fidelity, and relative entropies. Their generalizations to quantum channels are also mentioned

and are discussed in detail in the chapters when I discuss specific resource theories.

2.3.1 Trace Norm, Trace Distance, and Diamond norm

The trace norm or ℓ1-norm of an element X in the Hilbert space Cm×n is defined as [47, 74, 127, 128]:

∥X∥1 := Tr[|X|] = Tr
[√

X∗X
]
. (2.74)

This implies that the trace norm of X is the sum of its singular values. Let U and V be isometries, then

from the above definition we get that

∥UXV ∗∥1 = ∥X∥1 . (2.75)

For any Hermitian matrix H ∈ Herm(A0), its trace norm is the absolute sum of its eigenvalues. Let

H =
∑
x

λx|vx⟩⟨vx| (2.76)

be the eigenvalue decomposition of H. Then the trace norm of H is

∥H∥1 =
∑
x

|λx| . (2.77)

The trace norm of a Hermitian matrix can also be expressed as an optimization problem. To see that, let

H+ :=
∑
x:λx⩾0 λx|vx⟩⟨vx| and H− :=

∑
x:λx<0 |λx||vx⟩⟨vx| and the projectors on the positive eigenspace

and negative eigenspace of H be defined as P+ :=
∑
x:λx⩾0 |vx⟩⟨vx| and P− :=

∑
x:λx<0 |vx⟩⟨vx|, respectively.

Since H = H+ −H−, the trace norm of H becomes

∥H∥1 = Tr[∥H∥] = Tr[H+] + Tr[H−] = Tr[HP+]− Tr[HP−] = max
−I⩽P⩽I

Tr[HP ] . (2.78)
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where the maximum is over Hermitian matrices whose eigenvalues are between −1 and 1. This optimization

problem belongs to the class of convex optimization problems known as semidefinite programs (discussed in

detail in 2.4.2) and can be computed efficiently.

The trace distance between two quantum states ρ ∈ D(A0) and σ ∈ D(A0) is defined as

D(ρ, σ) :=
1

2
∥ρ− σ∥1 (2.79)

where the factor 1/2 is there for normalization so that the trace distance between two quantum states

achieves its maximum value when the two states are orthogonal. The following bounds apply to the trace

distance between two quantum states, ρ and σ

0 ⩽ D(ρ, σ) ⩽ 1 . (2.80)

When the trace distance between two states is equal to zero, it implies that the two states are equal. When the

trace distance between two states is maximum, i.e., equal to one, it implies that there exists a measurement

that can perfectly distinguish ρ from σ. It can be easily shown that for pure states |ψ⟩⟨ψ| and |ϕ⟩⟨ϕ|, the

trace distance can be expressed as

1

2
∥ψ − ϕ∥1 =

√
1− |⟨ψ|ϕ⟩|2 . (2.81)

Like Hermitian matrices, the trace distance between two quantum states can also be expressed as an opti-

mization problem. Let (ρ − σ)+ be the projection on the positive eigenspace of ρ − σ and (ρ − σ)− be the

projection on the negative eigenspace, then

Tr[ρ− σ] = 0 = Tr[(ρ− σ)+]− Tr[(ρ− σ)−] . (2.82)

Therefore, the trace distance can be written as

1

2
∥ρ− σ∥1 =

1

2
(Tr[(ρ− σ)+] + Tr[(ρ− σ)−]) = Tr[(ρ− σ)+] = Tr[(ρ− σ)P+] . (2.83)

Thus, the trace distance between two quantum states can be written as

D(ρ, σ) =
1

2
∥ρ− σ∥1 = max

0⩽P⩽I
Tr[(ρ− σ)P ] . (2.84)

where the maximum is over all positive semidefinite matrices P whose eigenvalues are less than 1.
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The trace distance can be generalized to quantum channels and is known as the diamond norm [128, 129].

The diamond norm measures the distance between two quantum channels. For any two given channels

EA ∈ CPTP(A0 → A1) and FA ∈ CPTP(A0 → A1), the diamond norm between E and F is defined as

∥EA −FA∥⋄ = max
ρ

∥∥idA0
⊗ EÃ0→A1

(ρA0Ã0
)− idA0

⊗FÃ0→A1
(ρA0Ã0

)
∥∥
1

(2.85)

where idA0 is the identity channel on system A0, ∥ · ∥1 represents the trace norm, and the maximization is

over all density matrices ρ ∈ D(A0Ã0). The diamond distance is then defined as

D(E ,F) :=
1

2
∥E − F∥⋄ (2.86)

where the factor 1/2 is there for normalization.

Lastly, both the trace norm and the trace distance behave monotonically [74, 127, 128]. The trace norm

behaves monotonically under positive linear maps. Let E ∈ L(A0 → A1) be a positive trace non-increasing

map and X ∈ L(A0). Then

∥E(X)∥1 ⩽ ∥X∥1 , (2.87)

and the trace distance behaves monotonically under quantum channels. Let E ∈ CPTP(A0 → A1) and

ρ, σ ∈ D(A0), then

D(E(ρ), E(σ)) ⩽ D(ρ, σ) . (2.88)

2.3.2 Fidelity of quantum states and channels

Fidelity is another distance-like measure between quantum objects [74, 128]. Unlike trace distance, fidelity

achieves the maximum value of one when the two states are the same and zero when the states are orthogonal.

The fidelity between quantum states ρ, σ ∈ D(A0) is defined as

F (ρ, σ) := ∥√ρ
√
σ∥1 = Tr

[∣∣√ρ√σ∣∣] = Tr

[√√
σρ
√
σ

]
. (2.89)

It is easy to note that when ρ = σ, the fidelity F (ρ, ρ) = Tr[|ρ|] = 1. When one of the states is pure, say

σ = |ψ⟩⟨ψ|, then the fidelity expression can be simplified as

F (ρ, |ψ⟩⟨ψ|) = Tr
[√
|ψ⟩⟨ψ|ρ|ψ⟩⟨ψ|

]
=
√
⟨ψ|ρ|ψ⟩ . (2.90)
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From the above expression it is easy to see that when both states are pure, then the fidelity becomes

F (ψ, ϕ) = |⟨ψ|ϕ⟩| =
√

1−D(ψ, ϕ)2 . (2.91)

This definition of fidelity can be extended to quantum channels. To understand the fidelity between

quantum channels (i.e., to quantify the “closeness” between two quantum channels), we need to see how the

fidelity between the output states from the two channels vary when the same input is provided. To get a

reasonable measure of the fidelity between channels, we choose it to be the minimum fidelity between the

output states. That gives us the worst-case fidelity for any given input. Let N ,M∈ CPTP(A0 → A1), then

the fidelity between N and M is defined as

F (N ,M) = min
ρÃ0A0

F (idÃ0
⊗NA(ρ), idÃ0

⊗MA(ρ)) . (2.92)

By Uhlmann’s Theorem, fidelity between two states can be expressed in terms of their purifications. Let

ρ, σ ∈ D(A0) and let |ψA0B0
⟩ and |ϕA0C0

⟩ be two purifications of ρ and σ, respectively. Then

F (ρA0 , σA0) = max
V :B0→C0

|⟨ψA0B0 |V ∗|ϕA0C0⟩| (2.93)

where the maximum is over all partial isometries V : B0 → C0. We say that V is a partial isometry if V is

an isometry when restricted to its support.

Like the trace norm, fidelity of states also behaves monotonically under quantum channels. Let ρ, σ ∈

D(A0) and E ∈ CPTP(A0 → A1), then

F (ρ, σ) ⩽ F (E(ρ), E(σ)) . (2.94)

Lastly, fidelity and trace distance between two states ρ, σ satisfy the following inequalities:

√
1− F (ρ, σ)2 ⩾ D(ρ, σ) ⩾ 1− F (ρ, σ) . (2.95)

2.3.3 Quantum divergences and relative entropies

While distinguishing two quantum states, a key observation is that sending both the states through a

quantum channel does not increase the ability to distinguish the states. Let N ∈ CPTP(A0 → A1) be a

quantum channel, and we are trying to distinguish between two states ρA0
and σA0

. Then, the states N (ρ)

and N (σ) are never more distinguishable than ρ and σ. So, any measure that quantifies the distinguishability
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of quantum states must not increase under any quantum channel. This monotonicity property is known as

data processing inequality, and the functions that satisfy this property are called quantum divergences [74,

128, 130]. Formally, a function

D :
⋃
{D(A0)×D(A0)} → R ∪ {∞}

that acts on a pair of quantum states is called a quantum divergence if it satisfies the following two conditions:

1. Data Processing Inequality (DPI) [131]:

D(N (ρ)∥N (σ)) ⩽ D(ρ∥σ) .

2. Normalization:

D(1∥1) = 0 .

The normalization condition ensures that, for any state ρ, D(ρ∥ρ) = 0.

The above definition of quantum divergence defined for states can be easily generalized to quantum

channels if, instead of ρ and σ, we have channels E and F , and instead of N in the state case that evolve

states, we have a superchannel Θ that evolves channels [130]. The data processing inequality for quantum

channels then becomes D(Θ[E ]∥Θ[F ]) ⩽ D(E∥F).

Some examples of quantum divergence include trace distance and fidelity, which we discussed in the previ-

ous subsections. Other commonly used divergences are the family of functions called Rényi divergences [132].

Rényi divergences are defined for any parameter α ∈ [0,∞] and for any probability distributions p,q ∈ D(n)4

as

Dα(p∥q) :=


1

α− 1
log
∑m
x=1 p

α
xq

1−α
x if supp(p) ⊆ supp(q)

∞ otherwise

(2.96)

Quantum divergences that are additive are known as relative entropies. Formally, a function D :⋃
A0
{D(A0) ×D(A0)} → R ∪ {∞} acting on a pair of quantum states in D(A0) with |A0| < ∞ is called a

relative entropy if it satisfies the following three axioms:

1. Data Processing Inequality [131]:

D(N (ρ)∥N (ρ)) ⩽ D(ρ∥σ) ,

where ρ, σ ∈ D(A0) and N ∈ CPTP(A0 → A1).

4D(n) denotes the set of probability distributions with n components.
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2. Additivity: For quantum states ρ, σ ∈ D(A0) and ρ′, σ′ ∈ D(B0)

D(ρ⊗ ρ′∥σ ⊗ σ′) = D(ρ∥σ) + D(ρ′∥σ′)

3. Normalization: For the qubit state |0⟩⟨0| and the maximally mixed qubit state I2
2

D
(
|0⟩⟨0|

∥∥∥I
2

)
= 1

.

Since relative entropies are quantum divergences, it follows that D(ρ∥ρ) = 0, i.e., they quantify the distance

between quantum states and hence their value is zero if the input states are the same. Let me now discuss

below some examples which are relevant for this thesis.

Examples of relative entropies

1. Umegaki Relative Entropy [133]: Given two quantum states ρA0
and σA0

, the Umegaki relative entropy

is defined as

D(ρ∥σ) := Tr[ρ(log ρ− log σ)] (2.97)

where the logarithm is taken to base 2.

2. Petz-Rényi relative entropy or quantum Rényi relative entropy [134]: Given two quantum states ρA0

and σA0 , the family of quantum Rényi relative entropies is defined as

Dα(ρ∥σ) :=


1

α− 1
log Tr[ρασ1−α] if supp(ρ) ⊆ supp(σ), or α < 1 and ρ ̸⊥ σ

∞ otherwise

(2.98)

where the parameter α ∈ (0, 1) ∪ (1, 2). The above definition can be extended for α → ∞ but the

data-processing inequality only holds for α ∈ [0, 2] and therefore, the Petz-Rényi relative entropy does

not have an operational meaning beyond α = 2. The cases α = 0 and α = 1 are defined by taking

appropriate limits. For the limit α → 1, this relative entropy converges to Umegaki relative entropy.

The Petz-Rényi relative entropy when limit α→ 0 is called the min relative entropy and is given by

Dmin(ρ∥σ) := D0(ρ∥σ) = − log Tr[Πρσ] (2.99)
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where Πρ denotes the projection on the support of ρ. The above definition of min relative entropy

holds if ρσ ̸= 0, otherwise Dmin(ρ∥σ) = ∞. Another property of Petz-Rényi relative entropies is that

there’s an ordering associated with it, i.e., for α > β > 0, it follows that

Dα(ρ∥σ) ⩾ Dβ(ρ∥σ) .

Lastly, the Petz-Rényi relative entropy finds an operational meaning in the context of quantum hy-

pothesis testing.

3. Sandwiched Rényi relative entropy [135, 136]: Given two quantum states ρA0
and σA0

, the sandwiched

Rényi relative entropy is defined as

D̃α(ρ∥σ) :=
1

α− 1
log Tr

[(
σ(1−α)/2αρσ(1−α)/2α

)α]
(2.100)

where the parameter α ∈ (0, 1) ∪ (1,∞) and the cases α = 0, 1,∞ are understood in terms of limits.

Like the Petz-Rényi relative entropy, the sandwiched Rényi relative entropy also converges to Umegaki

relative entropy when α→ 1, and also follows the ordering D̃α(ρ∥σ) ⩾ D̃β(ρ∥σ) if α > β > 0.

4. Max quantum relative entropy: Given quantum states ρA0
and σA0

, the max quantum relative entropy

is defined as

Dmax(ρ∥σ) :=


log min{t ∈ R : σ ⩾ ρ} if supp(ρ) ⊆ supp(σ)

∞ otherwise

(2.101)

For any relative entropy D and quantum states ρA0 , σA0 , ωA0 , it holds that

(a) Dmin(ρ∥σ) ⩽ D(ρ∥σ) ⩽ Dmax(ρ∥σ).

(b) D(ρ∥σ) ⩽ D(ρ∥ω) +Dmax(ω∥σ).

More discussion about the two relative entropies (Petz and sandwiched Rényi relative entropies) can be

found in [132, 136, 137, 138, 139, 140, 141]. Other generalizations of the Rényi divergence and the quantum

Rényi relative entropies are discussed in [142], but their operational meaning is not clear.

For the channel case (i.e., dynamical resources), the relative entropies and divergence have been general-

ized from the state case (i.e., static resources) and were discussed in [119, 143, 144, 145, 146, 147, 148]. The
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channel divergence for two given channels NA,MA ∈ CPTP(A0 → A1) is defined as [119, 146, 147]

D(NA∥MA) = max
ϕ∈D(R0A0)

D
(
NA0→A1 (ϕR0A0)

∥∥MA0→A1 (ϕR0A0)
)

(2.102)

where D(ρ∥σ) = Tr[ρ log ρ− ρ log σ] is the relative entropy.

2.4 Convex analysis tools used in this thesis

Detailed discussions on topics of convex analysis can be found in standard textbooks and notes like [128,

149, 150, 151]. Below, we provide a brief discussion on the topics and terminology that have been used in

this thesis.

A set S ⊂ Rn is called a convex set if, for any two elements u,v ∈ S and any p ∈ [0, 1], the vector

pu + (1 − p)v ∈ S. As a consequence, if u1,u2, . . . ,un ∈ S and p1, p2, . . . , pn are non-negative numbers

summing to unity, then

∑
n

piui ∈ S . (2.103)

A function f : S → R is called a convex function if

f(pu + (1− p)v) ⩽ pf(u) + (1− p)f(v) (2.104)

for all u,v ∈ S and all real numbers p ∈ [0, 1]. A function g is concave if −g is convex.

A subset K of a Hilbert space A is called a cone if for any non-negative number c ∈ R and any element

v ∈ K, cv ∈ K. The dual of a cone K in A is the set K∗ := {w ∈ A : w · v ⩾ 0 ∀ v ∈ K}. A convex

conical hull of a subset X ∈ Rn is the set C(X ) := {
∑n
i=1 tiui : n ∈ N, u1, . . . ,un ∈ X , and t1, . . . , tn > 0}.

One of the most common examples of cones used in quantum information is the cone of positive semidefinite

operators on finite-dimensional Hilbert space.

2.4.1 Farkas Lemma and Hyperplane separation theorem

Consider the closed convex cone C(A) spanned by the columns of the matrix A. Then C(A) = {Ax : x ⩾ 0}.

So, if a vector b lies inside the cone C(A) then there exists an x ⩾ 0 such that Ax = b. On the other hand,

if b lies outside the cone, then there exists a vector y orthogonal to a hyperplane that separates the cone

C(A) and b, such that ATy ⩾ 0 and bTy < 0. This is known as the Farkas lemma.
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Lemma 2.1. (Farkas Lemma.) Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the following two assertions

is true:

1. There exists an x ∈ Rn such that Ax = b and x ⩾ 0.

2. There exists a y ∈ Rm such that ATy ⩾ 0 and bTy < 0.

The geometrical interpretation of the Farkas lemma is that if a point lies outside of a convex cone, then

there exists a hyperplane separating the point and the convex cone. This idea can be generalized to a pair of

convex sets and is known as the hyperplane separation theorem. The hyperplane separation theorem states

that two convex sets with empty intersection can always be separated by a hyperplane. The theorem is

stated below.

Theorem 2.2. (Hyperplane separation theorem) Let C1 and C2 be two disjoint convex subsets of Rn. Then

there exist a nonzero vector u ∈ Rn and a real number c ∈ R such that

u · r2 ⩽ c ⩽ u · r1 ∀r1 ∈ C1 and ∀r2 ∈ C2 . (2.105)

That is, u is the normal vector of the hyperplane {v ∈ Rn : u · v = c} that separates C1 and C2. Moreover,

if the sets C1 and C2 are also closed and at least one of them is compact, then one can replace the above

inequalities with strict inequalities.

Convex hulls and polytopes

Farkas lemma and hyperplane separation theorem are based on convex sets. When forming convex combina-

tions of a set C ∈ Rn, various types of convex structures can be formed. The smallest convex set in Rn that

contains C is known as the convex hull of the set C, and is denoted as Conv(C). If there are finite number

of vectors in C, then Conv(C) is called a convex polytope and contains all the convex combinations of the

vectors in C. If C = {v1, . . . ,vn}, then

Conv(C) :=

{
n∑
x=1

pxvx : 0 ⩽ px ∈ R ,
∑
x

px = 1

}
(2.106)

Every convex set has certain extreme points. The extreme points are those points that cannot be expressed

as pv + (1− p)w for some 0 < p < 1 and two distinct vectors v,w ∈ C.
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2.4.2 Conic linear programming and semidefinite programming

Conic linear programming is a convex optimization problem that can be expressed in terms of two cones.

A semidefinite program (SDP) is a type of conic linear programming in which the optimization variable η

is positive semidefinite, the objective function is linear in the variable η, and the constraint is an operator

inequality featuring a linear function of η [149, 150]. An SDP corresponds to two optimization problems;

one is known as the primal problem, and the other is known as the dual problem. Let A1 and A2 be two

Hilbert spaces, let C1 ⊆ V1 ⊆ Herm(A1) and C2 ⊆ V2 ⊆ Herm(A2) be two convex cones in two subspaces of

Hermitian matrices V1 and V2, and let N : V1 → V2 be a linear map between the two vector spaces. Let

H1 ∈ V1 and H2 ∈ V2 be two (fixed) Hermitian matrices. Then the primal problem is defined as

α := inf Tr[ηH1] (2.107)

subject to N (η)−H2 ∈ C2 , and (2.108)

η ∈ C1 . (2.109)

The dual of the above primal problem is defined as

β := sup Tr[ζH2] (2.110)

subject to H1 −N ∗(ζ) ∈ C∗1 , and (2.111)

ζ ∈ C∗2 . (2.112)

In the above optimization problems, if there is no optimal solution of the primal problem, then by convention

α = +∞ and if there is no optimal solution of the dual problem, then by convention β = −∞. Moreover,

by weak duality, it holds that α ⩾ β. When the equality holds, it is known as strong duality.

Many classes of convex optimization problems (including linear programming (LP), second-order cone

programming (SOCP), and semidefinite programming (SDP) problems) can be solved efficiently [152]. For

SDPs, there exist algorithms to solve them that have an efficient runtime and can efficiently store problem

data. By efficient, I mean that the runtime of the algorithm used to solve the SDP and storage required

is polynomial in the dimension n of the variable matrix and the number of constraints m [153, 154]. The

variable matrix is an n × n matrix and appears as the optimization variable in the primal or dual problem

of the optimization problem [128, 150, 153]. Some of these algorithms are the primal-dual interior point

methods, the alternating direction method of multipliers, the HKM method, the bundle method and the

augmented Lagrangian method [152, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168].
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The primal-dual interior point methods are implemented in most software packages used to numerically solve

SDPs. Some such software packages are CSDP, SeDuMi, SDPA, and SDPT3 [169, 170, 171, 172]. (For the

details of these algorithms and software packages, an interested reader can refer to the citations provided.

The details of these algorithms are out of the scope of this thesis.) In this thesis, I have used the software

package CVX to numerically compute the optimal value of an SDP which uses SeDuMi and SDPT3 packages

to approximately solve an SDP [173, 174].

The interior point method was first developed by Karmakar in 1984 [155]. Karmakar showed that the

interior point methods can solve linear programs in polynomial time. With time, further improvements in

the runtime have been made. The most recent results are by Jiang et al. who showed that the runtime of

a generic SDP with variable size n × n and with m constraints is O(
√
n(mn2 + mω + nω) log(1/ϵ)) where

ω is the exponent of matrix multiplication and ϵ is the relative accuracy [154]. They have also provided a

tabular summary that compares the runtimes of various key SDP solvers (see Table 1.1 and 1.2 in [154]).

Similar to time complexity, SDP solvers are efficient in space usage. In Ref. [163], a detailed analysis of

space complexity has been shown for a 64-bit parallel version of CSDP implemented on a shared memory

system. The results of this analysis on asymptotic storage requirements are also applicable to SeDuMi and

SDPT3 that are used in CVX. It has been shown that the storage required is O(m2 + n2) where m is the

total number of constraints and the optimization variable in the primal or dual problem shown above is an

n × n matrix. Using this, approximate storage requirements in bytes can also be found (see Eq.6 of [163]).

Recently, it was shown that when an SDP is weakly constrained, then the storage required can be further

reduced [175]. Thus, with efficient runtime and storage requirements, SDPs become a very useful tool for

solving several optimization problems in quantum information, and I have used them to numerically compute

the optimal values of several optimization problems in this thesis.

2.5 Resource theories: An Introduction

In any given setting, there are some tasks that can be easily performed. Everything else that cannot be easily

accessed is essentially a resource. From economics principles, we can say that something becomes valuable

when it cannot be easily obtained. Let us take the simplest example of money. Money is a resource that

cannot be freely obtained, and one has to work for it. But once you have money, you can exchange it for

any goods and services depending on the amount of money you spend. It is a resource with the maximum

value. No other resource is equivalent to it. For instance, for a rice farmer, rice is a free entity with zero

value but it is valuable to others. However, the farmer cannot simply exchange rice for any goods or services

he desires. In the conventional economic setting, the farmer has to first sell his rice in exchange for some
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money that he can then use to buy anything else. Similarly, in our day-to-day settings, we always have some

things available to us easily, and for some others, we need to make an effort.

Identifying what is free and what is prohibited in a given scenario is the essence of a resource-theoretic

framework. Once this identification of free and prohibited operations is done, it is important to understand

the value of the objects that are not free. There might be some resources which do not have any use in what

we wish to do, and some resources (like money) are always useful, and thus have the maximum value. After

establishing the value of the resources, it is analyzed how one resource can be converted to another desired

resource using the allowed operations. Take, for instance, the case of Shannon theory, where two parties

(say, Alice and Bob) need to communicate with each other. However, they have at their disposal a noisy

channel as a resource through which they communicate. What they want to do is develop a scheme such that

they can use as few copies of this resource (i.e., the noisy channel) in order to perfectly communicate with

each other. In other words, they want to convert one resource (the noisy channel) into another (a noiseless

channel or an identity channel) by using minimum number of copies of the given resource. To do that, Alice

and Bob can perform local encoding and decoding freely. Moreover, to quantify different schemes, they can

compare the rate at which information is being transmitted using each encoding-decoding scheme. Thus,

a resource-theoretic formulation offers a general and structured way to study the interconversion among

resources in any given setting. Due to this general approach, resource theories unify different phenomena

under the same umbrella [82].

Let us now see how the resource-theoretic framework can be applied to quantum information.

2.5.1 Resources in the quantum world and a sneak-peek on the resources stud-

ied in this thesis

The above general resource-theoretic formalism can be applied to various quantum computing and commu-

nication scenarios with different constraints. Quantum mechanics offers phenomena like quantum coherence,

entanglement, non-locality, magic, etc., which have been used as resources to gain advantage over classical

strategies for solving various kinds of problems. For instance, quantum coherence is a key resource for most

quantum algorithms, quantum entanglement plays an important role in quantum communication, magic

plays a crucial role in achieving universal quantum computation from fault-tolerant quantum computation,

etc. Since each of these phenomena have disparate characteristics which can bring advantages under diverse

circumstances, it is natural to study these phenomena using a resource theoretic approach. Thus, a quantum

resource theory is a framework for studying restricted quantum information processing [82].

Different experiments and operational tasks have different restrictions, and under these constraints, it is
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important to identify and analyze resourceful quantum states and channels. Let us understand this through

an example. Suppose that there are two spatially separate labs where each experimenter can perform any

quantum operation on quantum systems in their labs, and they can both classically communicate with

each other. Under such allowed dynamics (of local operations and classical communications or LOCC), the

natural resource is a shared entangled state, using which Such tasks can be performed that otherwise cannot

be performed using LOCC. For example, to perform quantum teleportation between the two labs, the labs

need to have access to a shared entangled state. Thus, in this scenario, the allowed operations are LOCC,

the free states are the states that can be generated from LOCC which are the set of separable states, and

the resource states are the entangled states. With this partition of states into free and resources, we have

the resource theory of entangled states. In the upcoming chapters, we will see other types of restricted

settings and the quantum phenomena that act as resources in those settings. For instance, in chapter 3, we

have considered decoherence as the noise model in quantum communication. Decoherence is a phenomenon

that kills the coherence of the quantum state, leaving behind a classical state. In such a scenario, the

preservation of quantum coherence is a resource. Thus, quantum channels that can preserve and transmit

coherence are natural resources in this setting. Similarly, in quantum computation, a very restricted set

of states and operations known as stabilizer states and operations can be used to perform fault-tolerant

quantum computation. Furthermore, any circuit formed from stabilizer operations with stabilizer states

as input can be efficiently simulated classically. Thus, to achieve universal quantum computation and to

gain quantum computational advantage, non-stabilizer states and operations are used as resources. The free

operations are then those operations that preserve the set of stabilizer states. With this bifurcation of states

and operations as free and resources, we can define a resource theory, which is the subject of Chapter 4.

With this overview of resource theories, let me now discuss the mathematical structure of quantum

resource theory of states.

2.5.2 Basic structure of static quantum resource theories

Given the restrictions in a particular setting, a quantum resource theory models what can be accomplished

using the allowed operations in that setting. Let F(A) ⊂ CPTP(A) where A denotes the dynamical system

(A0 → A1) be a mapping that takes any two physical systems A0 and A1 to a set of quantum channels. The

mapping F(A) is called a quantum resource theory if it satisfies the following conditions [82]:

1. Doing nothing is free. In general, doing nothing is represented by the identity channel idA0
∈ F(A0 →

A0) implying that the state of the system has not changed over time. However, when we consider

decoherence, the environment acts on the system and decoheres it. In that case, doing nothing will
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mean that no external operation is being acted upon the system, but since environment is decohering

the system, we will represent the system as being acted upon by the dephasing channel. This has been

made clear in Sec. 3.1.

2. The composition of free operations is free. Let N ∈ F(A0 → A1) and M ∈ F(A1 → B1), then

M◦N ∈ F(A0 → B1).

3. Discarding a system is free. That is, tracing out a system TrA0 ∈ F(A0 → 1).

The set of operations F(A0 → A1) is called the set of free operations, and the states that can be generated

from these free operations are called the free states.

The first condition above requires that not doing any operation on the quantum state to be free which is

equivalent to the identity operation, and is a very natural requirement for most settings. However, in certain

special cases, like the setting considered in Chapter 3, we will see that not doing anything is not the same as

the identity channel. Since in Chapter 3, we consider the fact that the environment decoheres a system, not

doing anything implies that the environment is acting on the system and decohering it. The identity channel

(whose output state is the same as the input state) then implies preserving the coherence of a system over

a period of time. Since in real-world scenarios it is extremely hard for an experimentalist to maintain the

coherence of a quantum system, preservation of coherence is treated as a resource, and thus, the identity

channel cannot be considered free in this case, whereas not doing anything (represented by the action of the

completely dephasing channel) is still free.

The second condition implies that free operations cannot generate a resource from free inputs. Any kind

of composition, serial or parallel, of free operations results in a free operation. Thus, when free states are

given as input to free operations, the output is also free. This is the golden rule of quantum resource theories.

The third condition implies that discarding a system must be free. This, like the first condition, is a very

natural requirement. A consequence of this is that converting any quantum state to a free state is also free.

Apart from the above three basic requirements, there are other conditions that most of the quantum

resource theories obey [82]:

4. It is natural to assume that free operations can act on part of composite systems. Since doing nothing

is free, we get that a free operation is also completely free, i.e., if EA ∈ F(A) then

idB0→B0
⊗ EA ∈ F(B0A) .

5. For any composite system, permuting the labels of the systems is free.
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6. For a physical system A0, the set of free states F(A0) is closed.

7. For a physical system A0, the set of free states F(A0) is convex.

As stated above, the free operations in a quantum resource theory are decided by the physical constraints,

and the set of states that can be generated from these operations are the free states. However, in some

resource theories, it is difficult to mathematically characterize the set of free operations, which in turn makes

it hard to quantify the resources. For example, one such set of free operations is the set of local operations

and classical communications in the resource theory of entanglement. To overcome this problem, the set of

free operations is enlarged and defined as a set of operations that preserve the set of free states. Since such

a set of operations is the largest set of operations that cannot generate a resource from the free states, it is

often referred to as the set of resource non-generating (RNG) operations. Besides, in some resource theories,

for example, in the resource theory of coherence, as we will see in Chapter 3, it is natural to define the set

of free states first. Then the resource non-generating operations are a natural choice of free operations.

Once the free operations and free states are defined, it is crucial to characterize these elements. Using this

characterization, it can be found out whether a given quantum state is free or not. When the characterization

of free states is hard and the set of free states is convex, then resource witnesses, a tool from convex analysis,

can be used to determine if a state is free or not. Let F be a quantum resource theory, and A0 be a physical

system. Then the set of operators W ∈ Herm(A0) are called resource witnesses if the following two conditions

hold:

1. For any quantum state τ ∈ F(A0)

Tr[Wτ ] ⩾ 0 .

2. There exists a ρ ∈ D(A0) such that

Tr[Wρ] < 0 .

We will see the use of witnesses in Chapter 4, as the free states in the resource theory of magic are very hard

to mathematically characterize. If the set of free states is closed and convex, then it holds that σ ∈ F(A0) if

and only if

Tr[Wσ] ⩾ 0 (2.113)

for all resource witnesses W ∈ Herm(A0).

Once we have defined and characterized the free operations, free states, and resources, the next task

is to quantify the resources. One way to quantify resources is by using distance measures (some of which

48



are discussed in the previous section, Sec. 2.3). To use distance measures as resource quantifiers, we find

the minimum distance of the given resource from the set of free states. Using this idea, in some cases, the

resource value of a state can be cast as an optimization problem where the minimization is over all free states.

In general, for any function to be a resource measure, it needs to have the following two properties. First, the

function should be a monotone under free operations, i.e., the value of a state cannot increase after it is acted

upon by a free operation because free operations cannot generate a resource. Second, it must be faithful, i.e.,

the resource value of a given state must be zero if and only if it is a free state. After the quantification, we

tackle various types of resource interconversion tasks. Different kinds of resource interconversion tasks such

as single-shot, probabilistic, asymptotic, or approximate interconversions, become important under various

settings.
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Chapter 3

Dynamical resource theory of

quantum coherence

3.1 Introduction and motivation

All physical systems undergo decoherence. It is an irreversible process, and it can be viewed as the reduction

of a general quantum state to an incoherent mixed state due to coupling with the environment [176, 177, 178].

Mathematically, decoherence is represented as the vanishing of the off-diagonal terms of a density matrix. It

is because of decoherence that we do not observe quantum mechanical behaviour in everyday macroscopic

objects, and in the context of quantum information, it can be viewed as the loss of information from a system

into the environment [179].

During the last two decades, interest in quantum information science has shifted towards using quantum

mechanical phenomena (like entanglement, nonlocality, coherence, etc.) as resources to achieve something

that is otherwise not possible through classical physics (eg., quantum teleportation) [105, 180, 181, 182,

183, 184, 185, 186, 187, 188]. Quantum resource theories (QRTs) use this resource-theoretic approach to

exploit the operational advantage of such phenomena and to assess their resource character systematically

[82]. The preservation of quantum coherence is crucial for building quantum information devices, since the

loss of quantum superposition due to decoherence negates any non-classical effect in a quantum system

[176, 189, 190]. Hence from a technological perspective, there is increasing interest in developing a resource

theory of coherence [82]. In addition, the resource-theoretic study of quantum coherence can provide new

operational and quantitative insights into the differences between classical and quantum physics. Some other

examples of quantum resource theories include the QRT of entanglement, thermodynamics, magic states,
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Bell non-locality, etc.

As discussed earlier, most quantum resource theories are governed by the constraints arising from physical

or practical settings. These constraints then lead to the operations that can be freely performed. For

instance, in the static resource theory of quantum entanglement, for any two spatially separated but possibly

entangled systems, the spatial separation puts the restriction that only local operations along with classical

communications (LOCC) can be performed [105, 180, 191, 192, 193]. Given this restriction, only separable

states can be generated using LOCC (when the parties don’t already share an entangled state), which makes

them the free states of the theory. But unlike entanglement, whose free states (i.e. separable states) are

determined from the a priori fixed set of operations (i.e. LOCC), coherence theory typically begins by fixing

a set of free states. In this case, the free states are the physically-motivated objects, and the free operations

are not unique, only being required to satisfy the basic golden rule of a QRT, that the free operations should

be completely resource non-generating (CRNG) [82].

In the static (or state-based) resource theory of quantum coherence there is a fixed basis, the so-called

classical or incoherent basis, and the set of density matrices that are diagonal in this basis form the free

states of the theory. Such states are called incoherent states. The choice of the fixed basis depends on

the physics of the system: the basis in which the environment decoheres a quantum system, and this basis

usually coincides with the computational basis. The free operations are then some set of quantum channels

that map the set of incoherent states to itself. The most well-studied classes of free operations are the

maximally incoherent operations (MIO), the incoherent operations (IO), the dephasing-covariant incoherent

operations (DIO), and the strictly incoherent operations (SIO) [38, 39, 40, 41, 194, 195]. However, all of

these operations cost coherence to be physically implemented in the sense that they do not always admit

a free dilation [40, 41, 194, 195]. Therefore, it can be questioned in what sense these operations are truly

“free” [40]. On the other hand, as argued in Ref. [196], detecting the presence of resource in a given state

should be possible using the free operations, and often this detection requires the consumption of resource.

If such a detection is not possible, then both resource and non-resource states are equally useful (or useless)

to the experimenter since the two cannot be distinguished, thus begging the question in what sense the

former is truly a resource. In general then, having free operations with a nonzero resource cost can still

lead to an insightful static resource theory. Indeed, even though MIO/DIO/IO/SIO consume coherence in

their implementation, they are still useful for comparing the coherence in two different states based on their

convertibility using the given operations. A large amount of fruitful work has been devoted to developing

the theory of static coherence under these operations [32].

A consequence of these observations is that the principles for assessing the resourcefulness of quantum

states should not necessarily be applied when assessing the resourcefulness of quantum operations. In
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particular, the well-known approaches to quantifying the resourcefulness of a quantum channel in terms of

its resource cost [197, 198] or its resource-generating power [143, 199, 200, 201, 202] can fall short of fully

characterizing its utility in a resource theory. The ability for a channel to generate “resource detectability” is

typically something not captured by its resource cost or resource-generation power [196]. Restricting to the

resource theory of coherence, a POVM {Pm}m can detect the coherence in a state ρ if Tr[Πmρ] ̸= Tr[ΠmD(ρ)]

for some outcome m, where D(ρ) =
∑d
i=1 |i⟩⟨i|ρ|i⟩⟨i| is the completely dephasing map in the incoherent basis

{|i⟩}di=1. Since a POVM {Pm}m is unable to detect coherence in some state if (and only if) it is incoherent,

i.e. D(Pm) = Pm for all m, a channel N fails to generate a detection of coherence if its dual maps any

incoherent POVM to an incoherent POVM:

N † ◦ D(Pm) = D ◦ N † ◦ D(Pm) ∀{Pm}m. (3.1)

Maps satisfying Eq. (3.1) have been called detection incoherent in Ref. [196] and nonactivating in Ref.

[203], and any map not of this form is a dynamical resource from the coherence-detection perspective. It

is not difficult to find channels that satisfy Eq. (3.1) while having a nonzero coherence cost and coherence-

generating power (for instance, consider any replacement channel that outputs a coherent state for any

input). A full resource theory can then be worked out on the level of channels in which maps having the

form of Eq. (3.1) are free and the allowed operations are certain superchannels that act invariantly on the

set of detection incoherent channels [196].

In this work, we identify another coherence property of quantum channels that is not captured by coher-

ence cost, coherence-generating power, or coherence detection. We are motivated by the interpretation of a

quantum channel as a quantum memory that transmits quantum information from one point in spacetime to

another [204, 205, 206]. As a concrete pragmatic scenario, we consider a cloud quantum computer in which

Figure 3.1: A cloud quantum computer offers no computational resource if the upload and download channels are

completely dephasing (D). Channels having the form D ◦ N ◦ D are thus identified as free dynamical objects in the

resource theory studied here.
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a client uploads and downloads quantum information to a quantum computing processor and memory (see

Fig. 3.1). Ideally both the upload and download links are noiseless, and if ρ is the quantum state sent to the

cloud computer to perform operation N , the state returned to the client will be N (ρ). However, in practice

the channels connecting client to cloud will be noisy. In the extreme cases, a completely dephasing upload

channel has the form N = N ◦ D and can be interpreted as a cloud process N in which the coherences of

the input state are not registered and stored, while a completely dephasing download channel has the form

N = D◦N and can be interpreted as a cloud process that fails to output any coherence. Here we consider the

worst-case scenario in which both channels are completely dephasing. More precisely, we identify a channel

NA with input/output space A0/A1 to be free if

NA = DA1 ◦ NA ◦ DA0 , (3.2)

where DA0 and DA1 are completely dephasing channels for systems A0 and A1 in their respective incoherent

bases. Note the similarity between the dynamical free objects defined in Eq. (3.2) and the static free objects

in coherence theory. On the level of states, a density operator ρ is incoherent with respect to the fixed basis

if

ρ = DA1
(ρ). (3.3)

In fact, this can be seen as a special case of Eq. (3.2) when system A0 is one-dimensional.

Channels satisfying Eq. (3.2) are referred to as classical channels since their action is described entirely

by transition probabilities p(i|j) from incoherent states |j⟩⟨j|A0
to incoherent states |i⟩⟨i|A1

. We will denote

the set of classical channels that take system A0 to A1 by C(A0 → A1),

NA ∈ C(A0 → A1) ⇐⇒ NA = DA1
◦ NA ◦ DA0

. (3.4)

In particular, the identity channel idA0→A1 is not classical as it does not satisfy the above condition (here,

A0 and A1 correspond to the same system in two different temporal or spatial locations and so, |A0| = |A1|).

Physically, the identity channel corresponds to the preservation of coherence for a certain given amount of

time. Even though we refer to the our free channels as being “classical,” they are still quantum objects. That

is, they represent physical processes acting on quantum systems. A summary of different types of channels

relevant to different dynamical QRTs of coherence are given in Table 3.1.

Why study a resource theory of classical channels? Here we describe three different motivations. First,

some of the most basic non-classical channels are true resources for quantum information processing. For

instance, diagonal unitaries such as the T -gate are essential for universal quantum computing. Even the
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Channel type Definition
Detection Incoherent [196, 203] D ◦ N = D ◦ N ◦ D
Creation Incoherent (MIO) [38] N ◦ D = D ◦ N ◦ D
Detection and Creation Incoherent (DIO) [40, 41] D ◦ N = N ◦ D
Incoherent Storage N = N ◦ D
Incoherent Output N = D ◦ N
Classical [studied here] N = D ◦ N ◦ D

Table 3.1: Different classes of free channels in dynamical resource theories of coherence

identity channel can be considered as a resource since all physical systems undergo decoherence, and the

preservation of coherence in a quantum memory (for some given time or some specified distance 1) should thus

be considered a resource. While both the T gate and the identity are detection incoherent, they are identified

as dynamical resources when limiting the free channels to be classical. In this regard, all the non-classical

channels form the dynamical resources of our theory. The quantum Fourier transform (QFT) channel that

can generate maximal coherence from free states (due to its unitarity) and preserve entanglement is the

maximally coherent channel. (We have shown this analytically in Appendix A.3 by proving that the QFT

channel attains the upper bound of log-robustness of coherence of channels which is a monotone in our

resource theory.)

Second, quantum cloud computing scenarios like that depicted in Fig. 3.1 are soon to be physically

realized [207]. Having large amounts of noise between the client and cloud computer is to be expected,

especially as the spatial separation increases. A highly practical question is then what advantages are

possible in the very noisy regime. From this perspective all but the completely dephasing upload/download

channels should be deemed as yielding a potential resource for quantum cloud computing. The dynamical

QRT we propose here embodies this perspective.

Third, a resource theory in which classical channels constitute the free objects is simple enough that

entropic resource-theoretic measures can be analytically derived. Compared to static resource theories, a

plethora of new resource measures arise in dynamical theories, and the abstract theory of these measures

has been recently developed [72, 89, 119, 143, 145, 148, 196, 197, 198, 204, 206, 208, 209, 210, 211, 212].

Unfortunately, the application of this abstract theory to concrete resource theories is usually quite chal-

lenging. Here we provide a rare example of a physically-motivated resource theory in which, for example,

channel-divergence resource measures can actually be computed.

It may be challenged that since the set of classical channels is so small, almost all quantum channels are

resources and thus the resource theory considered here offers little physical insight into coherence. However,

1Note that it is important to consider some specified amount of time or distance, or else one might argue that the preservation
of coherence for a longer duration of time (or for a longer distance) is more resourceful than for lesser amount of time (or shorter
distance). Since this is not the primary problem addressed in this work, we leave it as an open question to be explored further.
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almost all quantum states are not diagonal in the incoherent basis, and so the same argument could be alleged

toward the static resource theory of coherence. Arguably some insight into static quantum coherence has been

gained by its recent resource-theoretic development, and so we initiate an effort to attain a similar insight

into dynamical quantum coherence. With the free dynamical “states” identified in this resource theory, we

now turn to the free operations. This will be some collection of superchannels, which are linear maps that

map a quantum channel to another quantum channel even if acting on part of the channel. A superchannel

can be realized using a pre- and a post-processing channel. The details of supermaps and superchannels

have been presented in preliminary section 2.2.7. For the case of dynamical coherence considered here, the

set of free superchannels must map the set of classical channels to itself. Since there are many different

superchannels having this property, which ones should be identified as being free? In previous works on

dynamical coherence [143, 196], the free superchannels were constructed by concatenation of free channels

in series or in parallel. In general, this is the most common approach for constructing free superchannels

[143, 144, 196, 197, 198, 211, 213, 214]. However, as argued above in the case of static coherence, a free

implementation of the allowed operations should not necessarily be required in order to detect or learn about

the resource contained in a state. We now apply this principle on the level of superchannels.

For example, like MIO in the QRT of static coherence, we define as one class of free superchannels the

set of maximally incoherent superchannels (MISC), which is the entirety of all superchannnels that do not

generate non-classical channels from classical ones. Similar to MIO in the static case, MISC cannot be

implemented without coherence-generating channels. Indeed, if we take the pre-processing channel to be any

detection-incoherent channel (as defined in Eq. (3.1)) and the post-processing channel to be any maximally

incoherent channel, then we obtain a superchannel that belongs to MISC but its pre- and post-processing

channels are non-classical. Nonetheless, much like the argument in static coherence, since we are interested

in quantifying the coherence of a channel (as opposed to the coherence of a superchannel), we can use such

superchannels as they cannot generate coherence at the channel level, even if it is tensored with the identity

superchannel(i.e. it is CRNG).

The bulk of this chapter is devoted to developing a resource theory of dynamical coherence based on the

ideas just described. This requires borrowing a few mathematical tools like the concept of log-robustness,

the concept of channel divergence, liberal smoothing, etc. from references like [119, 145] that establish the

formal structure of dynamical QRTs. Since our work presented here is more mathematical in nature, we

would now like to briefly summarize the broad ideas and problems addressed in various sections of this

article. This will also serve to highlight the main results of our work.

In section 3.3, we define four different sets of free superchannels: maximally incoherent superchannels

(MISC), dephasing-covariant incoherent superchannels (DISC), incoherent superchannels (ISC), and strictly
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incoherent superchannel (SISC), which are the analog of MIO, DIO, IO and SIO, in the static case. We focus

specifically on the QRTs of MISC and DISC. Similar to how MIO is defined with respect to the dephasing

channel, we define MISC with respect to dephasing superchannel, ∆ (whose pre- and post-processing channels

are dephasing channels) in the following way

Θ ∈ MISC(A→ B) ⇐⇒ ∆B ◦ΘA→B ◦∆A = ΘA→B ◦∆A . (3.5)

where MISC(A→ B) means that the superchannel Θ converts a quantum channel that takes system A0 to

A1 to another quantum channel that takes system B0 to B1. Its illustration is given in figure 3.2.

Figure 3.2: MISC

DISC is defined analogously to how DIO is defined in static coherence, i.e.,

Θ ∈ DISC(A→ B) ⇐⇒ ∆B ◦ΘA→B = ΘA→B ◦∆A (3.6)

and its illustration is given in figure 3.3. In our work, we provide simple characterization of MISC and DISC

in terms of their Choi matrices in (3.57) and (3.65), respectively.

Figure 3.3: DISC

In section 3.4, we study the quantification of dynamical coherence using techniques from QRT of quantum

processes [143, 144, 145] and section 3.5 is dedicated to the study of the interconversion of channels (i.e.,

simulation of one channel with another) under MISC and DISC.

In section 3.4, we first discuss a complete family of monotones under MISC and DISC, and show that

these functions can be computed using a semi-definite program. A semi-definite program or an SDP is a

subfield of convex optimization. These optimization problems require the variable to be a symmetric matrix

which is positive-semidefinite. Section 3.4.2 discusses the relative entropies for the quantification of dynamical

coherence, which are relevant information quantities to consider for quantum information tasks. Section 3.4.3

talks about the montones that have an operational interpretation when we discuss the interconversion of
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quantum channels. We now list below a few key definitions used in the paper. First, we define the relative

entropy of dynamical coherence under MISC to be (for any quantum channel NA ∈ CPTP(A0 → A1))

C (NA) := min
M∈C(A0→A1)

D
(
NA
∥∥MA

)
:= min

M∈C(A0→A1)
max

ϕ∈D(R0A0)
D
(
NA0→A1

(ϕR0A0
)
∥∥MA0→A1

(ϕR0A0
)
) (3.7)

where C(A0 → A1) denotes the set of all classical channels, D(R0A0) denotes the set of density matrices on

system R0A0, and D(ρ∥σ) = Tr[ρ log ρ− ρ log σ] is the quantum relative entropy. This monotone is faithful,

i.e., zero iff NA ∈ C(A0 → A1), and does not increase under MISC. For DISC, we define the relative entropy

of dynamical coherence to be the function D∆, given by

D∆(NA) := D
(
NA
∥∥∆A [NA]

)
. (3.8)

We show that it is a faithful monotone under DISC.

Similarly, the log-robustness of dynamical coherence is defined as

LRC(NA) := min
E∈C(A0→A1)

Dmax

(
NA∥EA

)
(3.9)

and the dephasing log-robustness of dynamical coherence as

LR∆(NA) := Dmax

(
NA
∥∥∆A[NA]

)
∀ N ∈ CPTP(A0 → A1) . (3.10)

where Dmax(EA∥FA) is the max-relative entropy between two CP maps EA and FA and is discussed in detail

in the preliminary section 3.2.2. We prove that both these quantities are additive under tensor product

and have operational interpretations as the exact dynamical coherence costs in the MISC and DISC cases,

respectively. We also compute numerically the log-robustness of coherence for qubit channels and show that

in the qubit case, the Hadamard channel attains the maximum value.

In section 3.5, the first subsection, section 3.5.1 discusses the general conditions of conversion of one

channel using another. This is done by constructing functions called conversion distance such that if the

conversion distance from a channel, say NA to another channel, say MB , is zero, then one can perfectly

simulate MB , using NA and the free superchannels. Moreover, we use a diamond norm to define the

interconversion distance, dF(NA → MB) := minΘ∈F(A→B)
1
2 ∥ΘA→B [NA]−MB∥⋄ between two quantum

channels, NA ∈ CPTP(A0 → A1) and MB ∈ CPTP(B0 → B1) and show that if the set of free super-

channels F = MISC or DISC, then dF(NA →MB) can be computed using a semi-definite program (SDP).
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The diamond norm (see (2.85)) used in the equation of the interconversion distance is used to measure the

closeness or the distance between two quantum channels. We use this function to find the interconversion

distance in the qubit case, numerically. We find that a maximally coherent replacement channel (a chan-

nel that outputs the maximally coherent state ϕ+B1
) can be simulated by a Hadamard channel using the

maximally incoherent superchannels. This was expected because any coherent channel can be simulated

using the maximally coherent channel and the free superchannels. More interestingly, we also found that

we can simulate a Hadamard channel using two maximal replacement channels. Apart from these numerical

calculations, we show in Appendix A.3 that the ratio between the log-robstness of coherence of a maximally

coherent channel and the log-robustness of coherence of maximally coherent replacement channel for any

dimension is always 2, i.e., using two maximally replacement channels and the free superchannels, we can

simulate the maximally coherent channel which is the quantum Fourier transform channel. Using this fact

that we just need two copies of the maximal replacement channel (or two maximally coherent states) to

simulate the maximally coherent channel, we can find the coherence cost of a channel using the maximally

coherent state. Sections 3.5.2, 3.5.3, and 3.5.4, discuss various types of coherence costs of channels. We

define the coherence cost of a channel as the minimum amount of the maximally coherent state to be used to

simulate the given channel. In section 3.5.2, we calculate the exact coherence cost of a channel under MISC

and DISC, i.e., when the free superchannel acts on the maximally coherent state the output is the desired

channel. Similarly, in section 3.5.3, we consider the problem of finding the approximate coherence cost of

a channel (which we also refer to as the coherence cost of a channel), i.e., the amount of the maximally

coherent state used to convert it to a channel that is very close to the desired channel. This is interesting

because experimentally it is extremely difficult to convert one channel into another perfectly. We then, in

section 3.5.4, compute the liberal asymptotic cost of dynamical coherence (which is the dynamical coherence

cost of a channel when the smoothing is “liberal” [145]) under MISC, and show that it is equal to a variant

of the regularized relative entropy given by

D
(∞)
C (NA) := lim

n→∞

1

n
sup

φ∈D(RA0)

min
E∈C(An

0 →An
1 )
D
(
N⊗n
A0→A1

(
φ⊗n
RA0

) ∥∥EAn
0 →An

1

(
φ⊗n
RA0

))
(3.11)

Lastly, in section 3.5.5, we formulate the one-shot distillable dynamical coherence and compute its value

for a few specific channels.
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3.2 Preliminaries

3.2.1 Elements of quantum resource theory of static coherence

Coherence of a state is a basis-dependent concept. Hence, a basis is fixed first in the resource theory of static

coherence. The density matrices that are diagonal in this basis form the free states of the theory. These

states are also called incoherent states. Let us denote this set by IA1 ⊂ B(A1) for any system A1. Hence,

all the incoherent density operators ρA1
∈ IA1

have the following form

ρA1 =

|A1|−1∑
i=0

pi|i⟩⟨i|A1 (3.12)

with probabillities pi and obey

DA1
(ρA1

) = ρA1
(3.13)

where DA1
is the dephasing channel for the system A1 and is defined as

DA1(σA1) =

|A1|−1∑
i=0

|i⟩⟨i|σA1 |i⟩⟨i| (3.14)

for any σA1 ∈ D(A1). For multi-partite systems, the preferred basis is the tensor product of the preferred

basis of each subsystem[215, 216, 217]. Note that it is quite possible that the states are not diagonal in a

different basis, but it does not matter. That’s because, the dephasing operator is defined using the incoherent

basis states. So, incoherent states are just those states which are diagonal in the incoherent basis.

From the golden rule of QRT, the free operations are the set of channels that take the set of incoherent

states to itself in the complete sense, i.e., they are completey resource non-generating. Such operations are

called incoherent operations. In literature, several types of incoherent operations have been studied. The

largest set of incoherent operations is known as the maximally incoherent operations (MIO) [38]. Other

incoherent operations include incoherent operations (IO) [39], dephasing-covariant incoherent operations

(DIO) [40, 41, 194, 195], strictly incoherent operations (SIO) [217, 218], physically incoherent operations

(PIO) [40, 194, 195], translationally-invariant operations (TIO) [219], genuinely incoherent operations (GIO)

[220], fully incoherent operations (FIO) [220], etc. In this section, we will briefly discuss about MIO, DIO,

IO, and SIO, as we will be defining four sets of free superchannels in the next section taking their analogy.

The maximally incoherent operations (or MIO) [38] are defined as the set of CPTP and non-selective

maps E ∈ L(A0 → A1) such that

E(ρA0
) ∈ IA1

∀ ρA0
∈ IA0

. (3.15)
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Let us denote the set of all channels that follow the above property by MIO(A0 → A1). Any CPTP map

MA0→A1
∈ MIO(A0 → A1) can be characterized using the dephasing channels in the following way

MA0→A1
∈ MIO(A0 → A1) ⇐⇒ DA1

◦MA0→A1
◦ DA0

=MA0→A1
◦ DA0

. (3.16)

Despite the fact that MIO cannot create coherence, these operations do not have a free dilation, i.e., they

cost coherence to be implemented [40, 41, 194, 195].

A smaller class of free operations, the incoherent operations (or IO) [39] are defined as the set of CPTP

maps E ∈ CPTP(A0 → A1) having a Kraus operator representation {Kn} such that

KnρA0K
†
n

Tr[KnρA0
K†
n]
∈ IA1

∀n and ρA0
∈ IA0

. (3.17)

This class of operations also do not have a free dilation [40, 41, 194, 195].

The next class of free operations, the strictly incoherent operations (or SIO) [217, 218] are defined as the

set of CPTP maps E ∈ CPTP(A0 → A1) having a Kraus operator representation {Kn} such that

KnDA0
(ρA0

)K†
n = DA1

(
KnρA0K

†
n

)
∀ n . (3.18)

This class of operations also do not have a free dilation [40, 194, 195].

The last class of free operations that is useful to us is the dephasing-covariant incoherent operations (or

DIO) [40, 41, 194, 195]. A CPTP map EA is said to be DIO if

[D, EA] = 0 , (3.19)

which is equivalent to

DA1
(EA0→A1

(ρA0
)) = EA0→A1

(DA0
(ρA0

)) ∀ ρA0
∈ D(A0) . (3.20)

3.2.2 Max-relative entropy for channels

The max-relative entropy is defined on a pair (ρ, σ) with ρ ∈ D(A1) and σ ∈ Pos(A1) of a state ρ with

respect to a positive operator σ is given by

Dmax(ρ∥σ) := log min {t : tσ ⩾ ρ} (3.21)
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where the inequality sign means that the difference between l.h.s. and r.h.s. is a positive operator. Similarly

for channels, the maximum relative entropy between two CP maps N and E is given by

Dmax(NA∥EA) := log min {t : tEA ⩾ NA} (3.22)

where the inequality sign means that the difference between l.h.s. and r.h.s. is a CP map. Denoting the

Choi matrix of EA by JE
A and that of NA by JN

A , (3.22) can be rewritten as

Dmax(NA∥EA) = log min
{
t : tJE

A ⩾ JNA , t ⩾ 0
}

(3.23)

The channel max-relative entropy (Dmax(NA∥EA)) can be expressed in a simple closed form as a function

of the Choi matrices of the maps NA and EA [148, 221]. This implies that it is also additive under tensor

products. For completeness, we give the following proof.

Lemma 3.1. The max-relative entropy for channels is additive under tensor product, i.e.,

Dmax(NA ⊗MA′∥EA ⊗FA′) = Dmax(NA∥EA) +Dmax(MA′∥FA′) (3.24)

Proof. For the proof of the inequality Dmax(NA ⊗MA′∥EA ⊗FA′) ⩽ Dmax(NA∥EA) +Dmax(MA′∥FA′), let

Dmax(NA∥EA) = log{t1 : t1EA ⩾ NA} , (3.25)

Dmax(MA′∥FA′) = log{t2 : t2FA′ ⩾MA′} . (3.26)

We can rewrite Dmax(NA ⊗MA′∥EA ⊗FA′) as

Dmax(NA ⊗MA′∥EA ⊗FA′) = log min{t : t (EA ⊗FA′) ⩾ NA ⊗MA′}

= log min{t :
t

t1t2
(t1EA ⊗ t2FA′) ⩾ NA ⊗MA′}

(3.27)

From this, we can clearly see

log min {t : t (EA ⊗FA′) ⩾ NA ⊗MA′} ⩽ log(t1t2) (3.28)

Hence,

Dmax(NA ⊗MA′∥EA ⊗FA′) ⩽ Dmax(NA∥EA) +Dmax(MA′∥FA′) (3.29)

For the proof of Dmax(NA ⊗MA′∥EA ⊗ FA′) ⩾ Dmax(NA∥EA) + Dmax(MA′∥FA′), note that Dmax in
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(3.22) and (3.23) can be computed using an SDP and its dual is given by

Dmax(NA∥EA) = log max
{

Tr[βAJ
N
A ] : Tr

[
βAJ

E
A

]
⩽ 1 , βA ⩾ 0

}
. (3.30)

Now let β1
A and β2

A′ be optimal for Dmax(NA∥EA) and Dmax(MA′∥FA′), respectively. Therefore,

2Dmax(NA∥EA) = Tr[β1
AJ

N
A ] , (3.31)

2Dmax(MA′∥FA′ ) = Tr[β2
A′JM

A′ ] . (3.32)

Using (3.30), we can express 2Dmax(NA⊗MA′∥EA⊗FA′ ) as

2Dmax(NA⊗MA′∥EA⊗FA′ ) = max
{

Tr
[
βAA′

(
JN
A ⊗ JM

A′

)]
: Tr

[
βAA′

(
JE
A ⊗ JF

A′

)]
⩽ 1 , βAA′ ⩾ 1

}
(3.33)

Since the choice of βAA′ = β1
A ⊗ β2

A′ satisfies the above constraint, we can say

2Dmax(NA⊗MA′∥EA⊗FA′ ) ⩾ Tr
[
β1
AJ

N
A

]
Tr
[
β2
A′JM

A′

]
⩾ 2Dmax(NA∥EA)2Dmax(MA′∥FA′ )

(3.34)

which implies

Dmax(NA ⊗MA′∥EA ⊗FA′) ⩾ Dmax(NA∥EA) +Dmax(MA′∥FA′) (3.35)

From (3.29) and (3.35), we can conclude that the max rel-entropy for channels is additive under tensor

products, i.e., Dmax(NA ⊗MA′∥EA ⊗FA′) = Dmax(NA∥EA) +Dmax(MA′∥FA′).

Lastly, I have also used the ϵ-smooth max-relative entropy in this chapter (which is discussed in detail

in [144, 198, 222]) to find approximate coherence cost. It is defined in the following way

Dϵ
max(NA∥MA) := inf

N ′
A∈Bϵ(NA)

Dmax(N ′
A∥MA) (3.36)

where

Bϵ(NA) =

{
N ′
A ∈ CPTP(A0 → A1) :

1

2
∥N ′

A −NA∥⋄ ⩽ ϵ

}
. (3.37)

where ∥ · ∥⋄ is the diamond norm (as defined in Eq. (2.85)) that measures the distance between two quantum

channels.
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3.3 The set of free superchannels

As discussed in the introduction Sec. 3.1, the set of free channels in the theory of dynamical coherence are

classical channels. Therefore, a free superchannel consists of a pre-processing classical channel and a post-

processing classical channel (see Fig. 3.4). However, such a free superchannel always destroys completely

any resource; that is, it converts all channels (even coherent ones) into classical channels. This means that

the resource theory is in a sense “degenerate” and no interesting consequences can be concluded from such

a theory.

Figure 3.4: The action of a classical superchannel on a quantum channel.

This above type of degeneracy also occurs with the resource theory of coherence in the state domain.

There, the only free operations that are physically consistent are PIO [40], which are very restricted and

cannot provide much insight into the phenomenon of coherence in quantum systems. Therefore, almost all

the enormous amount of work in recent years on the QRT of coherence was devoted to the study of coherence

under much larger sets of operations, such as MIO, DIO, IO, and SIO. While these larger sets of operations

cannot be implemented without a coherence cost, they do not generate coherence, and as such they can be

used for the study of coherence of states. However, since MIO, DIO, IO, and SIO all have a coherence cost,

they cannot be used as the “free operations” in a resource theory that aims to quantify the coherence of

quantum channels.

Instead, for a dynamical QRT of coherence, one can define free superchannels that form a larger set than

classical superchannels. Similar to what happens in the state domain, there is a coherent cost to implement

such superchannels, however, they do not generate dynamical coherence, and therefore can be used in a

dynamical resource theory of coherence. As it happens in the state domain, there are several natural sets of

free superchannels that we can define.
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3.3.1 Maximally Incoherent Superchannels (MISC)

In any quantum resource theory, free operations cannot generate a resource. Taking this principle to the

level of superchannels, we define the maximal incoherent superchannels (MISC) as follows.

Definition 3.2. Given two dynamical systems A and B, a superchannel Θ ∈ S(A→ B) is said to be MISC

if

ΘA→B [NA] ∈ C(B0 → B1) ∀NA ∈ C(A0 → A1) . (3.38)

In words, a superchannel is said to be MISC if for every input classical channel, the output is also a classical

channel. We denote the set of all superchannels that have the above property by MISC(A→ B).

Remark 1. Similar to the characterization of MIO channels with the dephasing channel, the condition that

Θ is in MISC(A → B) can be characterized with the dephasing superchannels ∆A and ∆B . (A dephasing

superchannel can be realized using dephasing channels as pre- and post-processing channels.) Specifically,

we have that

Θ ∈ MISC(A→ B) ⇐⇒ ∆B ◦ΘA→B ◦∆A = ΘA→B ◦∆A . (3.39)

That is, for any input quantum channel EA ∈ CPTP(A0 → A1), if a superchannel ΘA→B obeys the equation

on rhs (∆B ◦ΘA→B ◦∆A [EA] = ΘA→B ◦∆A [EA]) then, that superchannel belongs to MISC and vice-versa.

Refer figure 3.2 for an illustrative diagram. To explain it further, notice that the dephasing superchannel

converts any input to a classical channel. So, for any input quantum channel, say EA, the dephasing

superchannel ∆A first converts it to a classical channel, ∆A [EA] = NA ∈ C(A0 → A1) which goes as input

to the superchannel Θ. So for a classical channel NA, the rhs of the above condition can be written as

∆B ◦ΘA→B [NA] = ΘA→B [NA]. The lhs of this equation again has a dephasing channel which implies that

whatever the output is after the action of the superchannel Θ on the classical channel N , the output would

still be classical.

As stated earlier, the maximally incoherent superchannel need not be realized using classical pre- and

post-processing channel. For instance, if we use the detection incoherent channels (as defined in [196]) and

maximally incoherent operations (MI0) as the pre- and post-processing channels, the resultant superchannel

is a maximally incoherent superchannel or MISC. Refer to figure 3.5 below as an illustration.

To show that the above realization is really a MISC, we use the fact that an operation EA ∈ CPTP(A0 →

A1) is called detection incoherent operation iff DA1
◦ EA = DA1

◦ EA ◦ DA0
[196] where D is the completely

dephasing channel for the given system. Recall that an operation FA ∈ CPTP(A0 → A1) is called maximally

incoherent operation if it follows (3.16). Using these definitions, we can see that the above realization
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Figure 3.5: An example of realization of maximally incoherent superchannel (MISC)

Figure 3.6: Illustration to show that this particular realization is a maximally incoherent superchannel (MISC)

follows (3.39) as illustrated in figure 3.6. One of the key properties of any resource theory is that the free

operations are “completely free”. This is a physical requirement that a free channel (or superchannel) can

act on a subsystem. In the following theorem we show that MISC(A → B) is completely free. That is, in

the QRT we consider here, there is no difference between RNG and completely RNG.

Theorem 3.3. Let A and B be two dynamical systems, and let Θ ∈ MISC(A→ B). Then, for any dynamical

system R, the superchannel 1R ⊗Θ is free; i.e. 1R ⊗Θ ∈ MISC(RA→ RB).

Proof. Let NRA ∈ C(R0A0 → R1A1) be a classical channel satisfying

∆RA [NRA] = ∆R ⊗∆A [NRA] = NRA . (3.40)

Then,

∆RB ◦ (1R ⊗ΘA→B) [NRA] = ∆R ⊗ (∆B ◦ΘA→B) [NRA] (3.41)

= 1R ⊗ (∆B ◦ΘA→B) [NRA] (3.42)

= 1R ⊗ (∆B ◦ΘA→B ◦∆A) [NRA] (3.43)

= 1R ⊗ (ΘA→B ◦∆A) [NRA] (3.44)

= 1R ⊗ΘA→B [NRA] (3.45)

where the first equality follows from the equality ∆RA = ∆R ⊗ ∆A, the second equality from the fact

that NRA is classical and in particular ∆R [NRA] = NRA, the third equality from the similar equality
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∆A [NRA] = NRA, the fourth equality from (3.39), and the last equality follows again from ∆A [NRA] = NRA.

Hence, 1R⊗ΘA→B [NRA] is classical so that 1R⊗Θ ∈ MISC(RA→ RB). This completes the proof.

The theorem above indicates that MISC can be viewed as the set of completely resource non-generating

superchannels in the theory of dynamical coherence. We next consider the characterization of the set MISC.

Recall that in the state domain, we can determine if a channel EA belongs to MIO(A0 → A1) simply by

checking if all the states EA(|x⟩⟨x|A0) are diagonal for all x = 1, ..., |A0|. This simplicity of MIO implies that

all state conversions in the single-shot regime can be determined with SDP. In the channel domain, however,

the characterization of MISC is slightly more complex.

The Choi matrix of any classical channel NA ∈ CPTP(A0 → A1) can be expressed as a column stochastic

matrix. Recall that the action of this classical channel NA on any input quantum state ρA0
can be viewed

as the action of this column stochastic matrix on a vector whose components are the diagonal entries of

the input quantum state ρA0 . The output vector’s components then form the diagonal entries of the output

state and the off-diagonal entries of this output state are zero. The set of all extreme points of the set of

|A0|× |A1| column stochastic matrices consists of matrices that in each column has |A0|− 1 zeros and 1 one.

Therefore the number of extreme points is given by |A0||A1|. This may give the impression that in order to

check if Θ ∈ MISC(A0 → A1) one has to check if the channel Θ[EA] is classical for all the |A0||A1| extreme

classical channels. Since the number of conditions is exponential in |A1| it may give the impression that the

problem of deciding if a superchannel belongs to MISC cannot be solved with SDP. However, we show now

that this problem can be solved with polynomial (in |A0A1|) number of constraints. It can be seen from the

relationship between the Choi matrix of ΘA→B and that of ΘA→B ◦∆A and ∆B ◦ΘA→B .

Lemma 3.4. Let A and B be two dynamical systems, Θ ∈ S(A→ B) be a superchannel, and ∆A ∈ S(A→

A) and ∆B ∈ S(B → B) be the completely dephasing superchannels. Then, the Choi matrices of ΘA→B,

ΘA→B ◦∆A, and ∆B ◦ΘA→B, satisfy the relations

JΘ◦∆A

AB = DA
(
JΘ
AB

)
and J∆B◦Θ

AB = DB
(
JΘ
AB

)
(3.46)

Proof. The Choi matrix of a superchannel Θ can be expressed as the Choi matrix of the bipartite channel

ΘÃ→B

[
P+

AÃ

]
[119]. Similarly, the Choi matrix of the superchannel Θ ◦ ∆A can be expressed as the Choi

matrix of the bipartite channel ΘÃ→B ◦∆Ã

[
P+

AÃ

]
and that of the superchannel ∆B ◦Θ as the Choi matrix

of ∆B ◦ΘÃ→B

[
P+

AÃ

]
.

66



Denoting ΘÃ→B

[
P+

AÃ

]
as NAB , the Choi matrix of the superchannel ∆B ◦ΘA→B can be written as

J∆B◦Θ
AB = J

∆B [NAB ]
AB (3.47)

= DB1
◦ NÃ0B̃0→A1B1

◦ DB̃0

(
ϕ+
A0Ã0

⊗ ϕ+
B0B̃0

)
(3.48)

where the second equality follows from the definition of the Choi matrix of a channel. Now using the fact

that for a given channel M ∈ CPTP(R0 → R1), we have MR̃0→R1
|ϕ+
R0R̃0

⟩ = MT
R̃1→R0

|ϕ+
R̃1R1

⟩, we can

rewrite (3.48) as

J∆B◦Θ
AB = (DB0

⊗DB1
) ◦ NÃ0B̃0→A1B1

(
ϕ+
A0Ã0

⊗ ϕ+
B0B̃0

)
(3.49)

= DB
(
JΘ
AB

)
. (3.50)

To find JΘ◦∆A , note that for any superchannel Ω ∈ S(A→ B) we have [119]

1A ⊗ ΩÃ→B [P+

AÃ
] = ΩT

B̃→A
⊗ 1B [P+

B̃B
] . (3.51)

From this, it can be calculated that for the dephasing superchannel, ∆T = ∆. Therefore, we have

ΘÃ→B ◦∆Ã

[
P+

AÃ

]
= ΘÃ→B ◦∆T

A

[
P+

AÃ

]
(3.52)

= ΘÃ→B ◦∆A

[
P+

AÃ

]
(3.53)

= ∆A ◦ΘÃ→B

[
P+

AÃ

]
(3.54)

= ∆A ◦ NAB (3.55)

where the third equality arises because the superchannels Θ and ∆ are acting on different subsystems (notice

the subscripts with and without tilde). So, the Choi matrix of ΘÃ→B ◦∆Ã

[
P+

AÃ

]
is equal to finding the Choi

matrix of ∆A ◦ NAB . From the calculation of the Choi matrix of ∆B ◦ NAB above, we can conclude that

JΘ◦∆A

AB = DA
(
JΘ
AB

)
(3.56)

With this lemma at hand we get the following characterization for the set MISC(A→ B).

Theorem 3.5. Let A and B be two dynamical systems, and Θ ∈ S(A → B) be a superchannel. Then,
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Θ ∈ MISC(A→ B) if and only if

DAB
(
JΘ
AB

)
= DA ⊗ idB

(
JΘ
AB

)
. (3.57)

Proof. The characterization of MISC in (3.39) can be equivalently written in terms of the Choi matrices of

the channels in lhs and rhs. Using this property and the lemma above we have that

J∆B◦Θ◦∆A

AB = JΘ◦∆A

AB = DA ⊗ idB
(
JΘ
AB

)
. (3.58)

Similarly, using both results from Lemma 3.4, we can write

J∆B◦Θ◦∆A

AB = idA ⊗DB
(
JΘ◦∆A

AB

)
= DAB

(
JΘ
AB

)
. (3.59)

Equating (3.58) and (3.59), we get

DAB
(
JΘ
AB

)
= DA ⊗ idB

(
JΘ
AB

)
. (3.60)

This completes the proof.

Note that for any Hermitian matrix ZAB ∈ Herm(AB) we have

Tr
[(
DAB

(
JΘ
AB

)
−DA ⊗ idB

(
JΘ
AB

) )
ZAB

]
= Tr

[
JΘ
AB

(
DAB (ZAB)−DA ⊗ idB (ZAB)

)]
(3.61)

Therefore, the theorem above implies that Θ ∈ MISC(A→ B) if and only if

Tr
[
JΘ
ABXAB

]
= 0 ∀XAB ∈ KMISC (3.62)

where KMISC is a subspace of Herm(AB) defined as

KMISC :=
{
DAB (ZAB)−DA ⊗ idB (ZAB) : ZAB ∈ Herm(AB)

}
. (3.63)

Since the dimension of the subspace KMISC is |AB|(|B| − 1), it is sufficient to restrict XAB in (3.62) to the

|AB|(|B| − 1) elements of some fixed basis of KMISC. Note also that the condition above is equivalent to the

inclusion JΘ
AB ∈ K⊥

MISC, where K⊥
MISC is the orthogonal complement of KMISC in Herm(AB).
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3.3.2 Dephasing Incoherent Superchannels (DISC)

In the QRT of static coherence, the dephasing channel plays a major role, and in particular, leading to the

definition of DIO. Here, the dephasing superchannel defined by ∆A[NA] = DA1 ◦ NA ◦ DA0 plays a similar

role, as we have already seen in the definition of MISC. We use here the dephasing superchannel to define

the set of dephasing incoherent superchannels.

Definition 3.6. Let A and B be two dynamical systems, and let Θ ∈ S(A→ B) be a superchannel. Then,

Θ is said to be a dephasing incoherent superchannel (DISC) if and only if

∆B ◦ΘA→B = ΘA→B ◦∆A . (3.64)

Moreover, the set of all such superchannels that satisfy the above relation is denoted by DISC(A→ B).

Clearly, from its definition DISC(A→ B) is a subset of MISC(A→ B), and in particular, it is completely

free. Now, from Lemma 3.4 it follows that a superchannel Θ ∈ DISC(A→ B) if and only if

DA ⊗ idB
(
JΘ
AB

)
= idA ⊗DB

(
JΘ
AB

)
. (3.65)

Moreover, similar to the considerations above, since the map DA ⊗ idB − idA ⊗DB is self adjoint, it follows

that Θ ∈ DISC(A→ B) if and only if

Tr
[
JΘ
ABYAB

]
= 0 ∀YAB ∈ KDISC (3.66)

where

KDISC :=
{
idA ⊗DB (ZAB)−DA ⊗ idB (ZAB) : ZAB ∈ Herm(AB)

}
. (3.67)

Since the dimension of the subspace KDISC is |AB|(|A|+ |B|−1) it is sufficient to restrict YAB in (3.66) to the

|AB|(|A|+ |B| − 1) elements of some fixed basis of KDISC. Note also that the condition above is equivalent

to the inclusion JΘ
AB ∈ K⊥

DISC, where K⊥
DISC is the orthogonal complement of KDISC in Herm(AB).

3.3.3 Incoherent superchannels (ISC) and strictly incoherent superchannels

(SISC)

Any superchannel Θ ∈ S(A→ B) has a Kraus decomposition i.e. an operator sum representation

ΘA→B =

n∑
x=1

Θx
A→B (3.68)
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where the Choi matrix of each Θx
A→B ∈ L(A→ B) has rank one. We use this property to define two other

sets of free operations that we call incoherent superchannels (ISC) and strictly incoherent superchannels

(SISC).

Definition 3.7. Let A and B be two dynamical systems, and let Θ ∈ S(A→ B) be a superchannel. Then,

Θ is said to be an incoherent superchannel (ISC) if and only if it has a Kraus decomposition {Θx
A→B}nx=1

as in (3.68) that satisfies

∆B ◦Θx
A→B ◦∆A = Θx

A→B ◦∆A ∀ x = 1, . . . , n. (3.69)

Moreover, the set of all such superchannels that satisfy the above relation is denoted by ISC(A→ B).

Definition 3.8. Let A and B be two dynamical systems, and let Θ ∈ S(A → B) be a superchannel.

Then, Θ is said to be a strictly incoherent superchannel (SISC) if and only if it has a Kraus decomposition

{Θx
A→B}nx=1 as in (3.68) that satisfies

∆B ◦Θx
A→B = Θx

A→B ◦∆A ∀ x = 1, . . . , n. (3.70)

Moreover, the set of all such superchannels that satisfy the above relation is denoted by SISC(A→ B).

3.4 Quantification of dynamical coherence

Before we discuss the conversion of one quantum channel into another using free superchannels, it is important

to talk quantitatively about the coherence present in quantum channels. This is done by defining functions

on quantum channels that map a channel to a real number. A function is called a monotone if it follows the

condition of monotonicity which means that the value of the channel should not increase after the channel

is acted upon by a free superchannel. To make this function meaningful one more condition is added such

that the free channels have the least value. This condition is faithfulness, i.e., the value of such a function

should be zero iff the input is a free channel (in our case, the value should be zero for all classical channels).

In the problem of interconversion of two resources (using the free superchannels), a resource monotone is

specifically useful to tell if one resource can or cannot be converted to another.

Many types of monotones have been defined in literature [82] including general distance-based monotones,

entropic monotones, etc. In this section we find the set of monotones to quantify the coherence present in

quantum channels. Our work is confined to the case of MISC and DISC. We have divided this section

into three sub-sections. The first sub-section gives a complete family of monotones, i.e., to check for the
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convertibility of one channel to another, it is sufficient to check if the value obtained from all the monotones

of this set is greater for one channel than other. The second sub-section is based on the relative entropies

for channels that form a monotone under the free superchannels of our theory. We show that, of the six

relative entropies for channels mentioned in [145], only three relative entropies form a monotone in the

case of dynamical coherence. The last subsection is dedicated to the monotones that have an operational

interpretation in the resource theory of dynamical coherence, i.e., these monotones become meaningful when

we find the coherence cost of a channel. One such monotone is known as the log-robustness of coherence of

quantum channels. We show that this function can be formulated as an SDP. Using this SDP formulation,

we find the upper bound of the log-robustness of coherence of channels in appendix A.3 and show that it is

achieved by the quantum Fourier transform channel.

3.4.1 A complete family of monotones

In recent works [89, 119, 143, 144, 208, 210, 211, 223], various resource measures have been formulated for

a general resource theory of channels and for the dynamical resource theory of entanglement. A complete

set of monotones for both the general resource theory of channels and the resource theory of entanglement

of channels was presented in [89]. For the conversion of one quantum channel to another using the free

superchannels of the theory, it is sufficient to check if all the monotones of this (complete) set acting on one

channel are greater than the other. It was shown that the complete family of monotones for the dynamical

resource theory of NPT entanglement can be computed using an SDP (which otherwise for LOCC-based

entanglement is known to be NP-hard [224]). In general, for a given quantum resource theory, it is not

obvious if these functions are computable. In our work, we find a complete set of monotones under the

free superchannels MISC and DISC, and show that for the dynamical resource theory of coherence, these

functions can be computed using an SDP.

For a general convex quantum resource theory, we can define the following complete set of non-negative

resource measures using any quantum channel PB ∈ CPTP(B0 → B1) such that these measures take the

value zero on free channels [89]

GP(NA) := max
Θ∈FREE(A→B)

⟨PB ,Θ [NA]⟩ − max
MB∈G(B0→B1)

⟨PB ,MB⟩ ∀ NA ∈ CPTP(A0 → A1) . (3.71)

where G(B0 → B1) denotes the set of free channels for the given resource theory. Recall that using the

free superchannels, one can transform a free channel to any other free channel. Therefore using some free

superchannel Θ ∈ FREE(A → B), a given free channel NA can be converted to the optimal free channel

M′
B that gives the maximum value for the inner product ⟨PB ,M′

B⟩ and hence, the value of GP(NA) is zero
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for all free channels.

To construct the complete set of resource monotones for the dynamical resource theory of coherence,

we first define a function fP(MA) using a quantum channel PB ∈ CPTP(B0 → B1) and superchannel

Θ ∈ F(A→ B) where F = MISC or DISC, as

fP(MA) = max
Θ∈F(A→B)

⟨PB ,Θ[MB ]⟩ ∀ MA ∈ CPTP(A0 → A1) . (3.72)

Note that (3.72) can be expressed as an SDP for a given channel MA ∈ CPTP(A0 → A1) in the following

manner

fP(MA) = max
{

Tr
[
JΘ
AB

(
(JM
A )T ⊗ JP

B

)]}
(3.73)

where the maximum is subject to

JΘ
AB ⩾ 0 , JΘ

AB0
= JΘ

A0B0
⊗ uA1

, JΘ
A1B0

= IA1B0
, (3.74)

Tr[JΘ
ABX

i
AB ] = 0 ∀ i = 1, . . . , n . (3.75)

The conditions in (3.74) are the conditions on the Choi matrix of the linear map Θ to be a superchannel.

The set of matrices {Xi
AB}ni=1 in (3.75) denote the basis of the subspace KF as defined in (3.63) and (3.67)

for F = MISC and DISC, respectively. Accordingly, for MISC, n ≡ |AB|(|B| − 1) and for DISC, n ≡

|AB|(|A|+ |B| − 1).

Similar to (3.71) and using any channel PB ∈ CPTP(B0 → B1), we can define the complete family of

monotones for dynamical coherence in the following way

GP(NA) := max Tr
[
JΘ
AB

((
JN
A

)T ⊗ JP
B

)]
−max Tr[JM

B JP
B ] , (3.76)

where we have expressed the inner product between channels as the inner product of the Choi matrices

of the respective channels. The first maximum in (3.76) is subject to the constraints given in (3.74) and

(3.75) and the second maximum is over all classical channels MB ∈ C(B0 → B1) . The family {GP}

over all P ∈ CPTP(B0 → B1) forms a complete set of monotones, that is, there exists a Θ ∈ F(A → B)

where F = MISC or DISC, that can convert a channel EA ∈ CPTP(A0 → A1) to another channel FB ∈

CPTP(B0 → B1) if and only if

GP(EA) ⩾ GP(FB) (3.77)

Remark 2. For the qubit case we calculated the values of the monotone GP(NA) under MISC for a few
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channels(or a class of channels) by plugging into CVX. This required construction of 48 basis elements (Eq.

(3.63)). The value of GP(NA) for all classical channels is 0 for all PB . We found that for a fixed PB , the

value of all unitary channels is the same and they attain the maximum value of 2 when PB is the identity

channel. If we fix PB to be the identity channel, we see that for a replacement channel that outputs a plus

state (|+⟩ = 1√
n

∑n−1
i=0 |i⟩), the value of Gid(NA) is equal to 2. For any other replacement channel and any

depolarizing channel, Gid(NA) is less than 2.

Remark 3. Since there are an infinite number of monotones in the above complete set GP , it might give an

impression that the conversion of a channel NA ∈ CPTP(A0 → A1) to another channelMB ∈ CPTP(B0 →

B1) using a superchannel Θ ∈ MISC or DISC, is very hard or impractical, but in section 3.5 we show that

the problem of interconversion of two quantum channels using a superchannel belonging to MISC or DISC

can be computed using an SDP.

3.4.2 Relative entropies of dynamical coherence

A measure of distinguishability or divergence D(·∥·) of two states is a function D : D(A1)×D(B1)→ R such

that it obeys data-processing inequality and is zero on the set of free states. The data-processing inequality

states that the distinguishability between two quantum states cannot be increased when both the states are

acted upon by a quantum operation. One example of such a function is Rényi divergence [132]. Its two

generalizations which have been given an operational interpretation are “Sandwiched” Rényi relative entropy

(also known as quantum Rényi divergence) and Petz-Rényi relative entropy. “Sandwiched” Rényi relative

entropy (or quantum Rényi divergence) was introduced and discussed in [135, 136, 137, 138]. It is based on

a parameter α ∈ [0,∞] and reduces to the relative von Neumann entropy for α = 1, to the relative max

entropy for α =∞, and closely related to the fidelity Tr
(
σ1/2ρσ1/2

)1/2
for α = 1/2, where ρ and σ are two

density matrices which are input to the entropy function. Also, the “Sandwiched” Rényi relative entropy is

a monotone under quantum operations, i.e., satisfies the data-processing inequality for α ∈ [1/2,∞] [138].

The Petz-Rényi relative entropy was introduced and studied in [139, 140, 141] and it finds an operational

interpretation in the context of quantum hypothesis testing. Therefore, these two are relevant information

quantities to consider for quantum information theory. Other generalizations of the Rényi divergence and

the quantum Rényi relative entropies are discussed in [142] but their operational meaning is not clear.

For the channel case (i.e., dynamical resources), the relative entropies and divergence have been general-

ized from the state case (i.e., static resources) and were discussed in [119, 143, 144, 145, 146, 147, 148]. The
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channel divergence for two given channels NA,MA ∈ CPTP(A0 → A1) is defined as [119, 146, 147]

D(NA∥MA) = max
ϕ∈D(R0A0)

D
(
NA0→A1 (ϕR0A0)

∥∥MA0→A1 (ϕR0A0)
)

(3.78)

where D(ρ∥σ) = Tr[ρ log ρ− ρ log σ] is the relative entropy. We take the relative entropies listed in [145] and

find the following three relative entropies to be clearly forming a monotone under MISC

C1 (NA) = min
M∈C(A0→A1)

max
ϕ∈D(R0A0)

D
(
NA0→A1

(ϕR0A0
)
∥∥MA0→A1

(ϕR0A0
)
)

(3.79)

C2 (NA) = min
M∈C(A0→A1)

sup
ρ,σ∈D(R0A0)

D
(
NA (ρR0A0

)
∥∥MA (σR0A0

)
)
−D

(
ρR0A0

∥∥σR0A0

)
(3.80)

C3 (NA) = max
ρ∈D(R0A0)

D (NA (ρR0A0))−D (ρR0A0) (3.81)

where D(ρ) = minD(σ)=σD (ρ∥σ). The proof that the above relative entropies form a monotone under

MISC is similar to the proof for relative entropies forming a monotone for a general resource theory of

quantum processes as given in [145] and are quite straightforward. For completeness, we give the proof

of monotonicity for one of the above monotones C1 and the proof for the other two follows likewise. Let

ΘA→B ∈ MISC(A → B). Then the relative entropy of the channel Θ[NA] ∈ CPTP(B0 → B1) for some

channel NA ∈ CPTP(A→ B) can be written as

C1 (Θ [NA]) = min
M′∈C(B0→B1)

max
ϕ∈D(R0B0)

D
(
ΘA→B [NA] (ϕR0B0

)
∥∥M′

B0→B1
(ϕR0B0

)
)

⩽ min
M∈C(A0→A1)

max
ϕ∈D(R0B0)

D
(
ΘA→B [NA] (ϕR0B0

)
∥∥ΘA→B [MA] (ϕR0B0

)
)

⩽ min
M∈C(A0→A1)

max
ρ∈D(R0A0)

D
(
NA (ρR0A0

)
∥∥MA (ρR0A0

)
)

= C1 (NA)

(3.82)

where the first inequality follows because the relative entropy of the channel Θ [NA] is the minimum taken

over all classical channels in system B and the second inequality follows because of the data-processing

inequality. Note that the relative entropies C1(NA) and C2(NA) are faithful, i.e., they take the value zero

iff NA ∈ C(A0 → A1). The relative entropy C3(NA) is a state-based relative entropy and involves no

optimization over the classical channels.

In [145], there are three other relative entropies that are defined similar to C1, C2, and C3 where the

optimization is taken over the set of free states instead of all density matrices. There, the proof relies on the

pre-processing channel to be completely resource non-generating. Since, we cannot make this assumption

(because in the dynamical resource theory of quantum coherence, such a channel would completely destroy
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any resource), hence, we cannot say anything about the monotonicity of the relative entropies where the

optimization is over the incoherent states.

To define the resource monotones for DISC, we first define the function D∆ : CPTP→ R+ as follows for

any channel divergence D

D∆(NA) := D
(
NA
∥∥∆A [NA]

)
, (3.83)

and for the choice D = Dmax we call it the dephasing log-robustness and denote it by D∆ ≡ LR∆.

Lemma 3.9. The function D∆ is a dynamical resource monotones under DISC.

Proof. Lets Θ ∈ DISC(A→ B) and N ∈ CPTP(A0 → A1). Then,

D∆(ΘA→B [NA]) = D
(
ΘA→B [NA]

∥∥∆B ◦ΘA→B [NA]
)

= D
(
ΘA→B [NA]

∥∥ΘA→B ◦∆A [NA]
)

⩽ D
(
NA
∥∥∆A [NA]

)
= D∆(NA) .

(3.84)

This completes the proof.

For the case that D(ρ∥σ) = Tr[ρ log ρ] − Tr[ρ log σ] is the relative entropy, we call D∆ the dephasing

relative entropy of coherence.

3.4.3 Operational Monotones

This subsection is dedicated to the discussion of the operationally relevant monotones for the resource theory

of dynamical coherence. The monotones discussed here are operationally meaningful in a sense that these

monotones are useful for calculating various costs of coherent channels. Hence, this subsection can be treated

as a preliminary to the next section where we talk about the interconversion of two coherent channels. We

will see that the monotones which are based on Dmax, like various types of log-robustness, play a major role

in the calculation of coherence cost of channels.

The log-robustness of entanglement for states was introduced and investigated in [225, 226, 227, 228].

It was shown that it is an entanglement monotone and its operational significance for the manipulation of

entanglement was also discussed. The log-robustness of coherence for states was similarly defined in [229]

and it was shown that it is a measure of coherence. For a state ρA1 ∈ D(A1), it is defined as follows

LRI(ρA1
) := min

σA1
∈IA1

Dmax (ρA1
∥σA1

) (3.85)
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where IA1 is the set of incoherent states for system A1. The log-robustness of channels for a general resource

theory was introduced and discussed in [143, 144, 145]. It was shown that the log-robustness of channels

satisfy necessary conditions for the resource measure of channels, i.e., it is both faithful (means, it gives the

value zero for free channels, and is greater than zero otherwise) and a monotone under tensoring, and left

and right compositions with free channels [144]. Likewise, we can define the log-robustness of coherence of

channels, which is a monotone under MISC, in the following way

LRC(NA) := min
E∈C(A0→A1)

Dmax

(
NA∥EA

)
, (3.86)

where the minimum is taken over all the classical channels. The proof that it is a monotone is very similar

to the proof presented for the relative entropy C1 (see (3.82)) and follows easily using the data-processing

inequality. Besides, it can be computed with an SDP. To see why, note that

LRC(NA) = log min
{
t ⩾ 0 : tEA ⩾ NA , ∆A[EA] = EA , E ∈ CPTP(A0 → A1)

}
(3.87)

where the first condition arises from the definition of Dmax for channels, the second and third from the

requirement of E to be a classical channel. Denoting by ωA the Choi matrix of tEA we get that (recall that

we are using u to denote the maximally mixed state)

LRC(NA) = log min
{ 1

|A0|
Tr[ωA] : ωA ⩾ JN

A , DA[ωA] = ωA , ωA0
= Tr[ωA]uA0

, ωA ⩾ 0
}

(3.88)

which is an SDP optimization problem. As such it has a dual given by (see appendix for details)

LRC(NA) = log max
{

Tr[ηAJ
N
A ] : DA(ηA) = DA0 (ηA0)⊗ uA1 , DA1 [ηA1 ] = IA1 , ηA ⩾ 0

}
(3.89)

Remark 4. For the qubit case, we calculated the log-robustness of coherence of few channels. For any

classical channel, the log-robustness of coherence is equal to 0. For the identity channel it is equal to 1. For

any replacement channel and depolarizing channel, its value is between 0 and 1. If the replacement channel

is the one that outputs the plus state (|+⟩ = 1√
n

∑n−1
i=0 |i⟩), the log-robustness is equal to 1. For any unitary

channel, we found that the value of log-robustness of coherence is between 1 and 2. We found that the value

obtained for the Hadamard gate is the maximum and is equal to 2. In these examples, we can see that

a quantum channel can have the ability to preserve and/or generate coherence. For instance, replacement

channels cannot preserve coherence but can only generate coherence whereas the identity channel can only

preserve coherence but not generate coherence. The unitary channels can do both, i.e., they can preserve
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coherence as well as they can generate coherence. This fact explains the higher value of the log-robustness of

coherence of the unitary channels as compared to the replacement channels. Also, as calculated in appendix

A.3, the quantum Fourier transform channel has the maximum value for this monotone. This can be

explained from the fact that a QFT channel can generate the maximally coherent state from a free state and

has the ability to preserve entanglement. (Note that the replacement channels are entanglement-breaking

channels.)

Next, we show the additivity of log-robustness of coherence of channels under tensor products. This

result is useful when we go to the asymptotic limit.

Lemma 3.10. The log-robustness of coherence of a channel is additive under tensor products, i.e.,

LRC(NA ⊗MA′) = LRC(NA) + LRC(MA′) (3.90)

Proof. For the proof of the inequality LRC(NA⊗MA′) ⩽ LRC(NA)+LRC(MA′), let LRC(NA) = Dmax(NA||EA)

and LRC(MA′) = Dmax(MA′ ||EA′) for some optimal EA and EA′ . Then, we have

LRC(NA ⊗MA′) ⩽ Dmax(NA ⊗MA′ ||EA ⊗ EA′) (3.91)

= Dmax(NA||EA) +Dmax(MA′ ||EA′) (3.92)

= LRC(NA) + LRC(MA′) . (3.93)

The first inequality follows trivially from the definition of log-robustness and the second equality follows

from the additivity of Dmax.

To prove the converse, i.e., LRC(NA ⊗MA′) ⩾ LRC(NA) + LRC(MA′), we will use the dual of the

log-robustness as given in Eq.(3.89). Let ηA and ηA′ be the optimal matrices for the dual of LRC(NA) and

LRC(MA′), respectively. Then we have

2LRC(NA) = Tr[ηAJ
NA

A ] ,

2LRC(MA′ ) = Tr[ηA′J
MA′
A′ ] .

(3.94)

Since, LRC(NA ⊗MA′) = log max Tr
[
η′AA′

(
J
NA⊗MA′
AA′

)]
where the maximum is over all η′AA′ ⩾ 0 satisfying

DAA′(η′AA′) = DA0A′
0

(
η′A0A′

0

)
⊗ uA1A′

1
, DA1A′

1
[η′A1A′

1
] = IA1A′

1
. (3.95)

For the particular choice of ηAA′ = ηA ⊗ ηA′ , it is easy to verify that it satisfies the above conditions and
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therefore for this choice of ηAA′ we have

2LRC(NA⊗MA′ ) ⩾ Tr
[
ηAA′

(
J
NA⊗MA′
AA′

)]
= 2LRC(NA)2LRC(MA′ ) .

(3.96)

In the above equation, the first inequality follows from the dual of the log-robustness of channels and the

second equality is because ηA and ηA′ are optimal for LRC(NA) and LRC(MA′). Hence, the above equation

implies

LRC(NA ⊗MA′) ⩾ LRC(NA) + LRC(MA′) (3.97)

This establishes the additivity of the log-robustness of coherence of a quantum channel, i.e., LRC(NA ⊗

MA′) = LRC(NA) + LRC(MA′)

Another type of log-robustness, the dephasing log-robustness, which will be used to find the exact cost

under DISC, is defined by

LR∆(NA) := Dmax

(
NA
∥∥∆A[NA]

)
∀ N ∈ CPTP(A0 → A1) . (3.98)

The dephasing log-robustness is a monotone under DISC which is easy to show using (3.64) and data-

processing inequality. While the log-robustness behaves monotonically under any superchannel in MISC, the

dephasing log-robustness is in general not monotonic under MISC. Instead, it is monotonic under DISC.

Lemma 3.11. For any N ∈ CPTP(A0 → A1) and Θ ∈ DISC(A→ B) we have

LR∆

(
ΘA→B [NA]

)
⩽ LR∆(NA) . (3.99)

Proof.

LR∆

(
ΘA→B [NA]

)
= Dmax

(
ΘA→B [NA]

∥∥∆A ◦ΘA→B [NA]
)

= Dmax

(
ΘA→B [NA]

∥∥ΘA→B ◦∆A[NA]
)

⩽ Dmax

(
NA
∥∥∆A[NA]

)
= LR∆(NA) ,

(3.100)

where the second equality follows from the commutativity of Θ and ∆, and the inequality follows from the

data processing inequality of the channel divergence Dmax [119].

We prove here that the dephasing log-robustness is also additive.
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Lemma 3.12. Let N ∈ CPTP(A0 → A1) andM∈ CPTP(B0 → B1) be two channels. Then,

LR∆

(
NA ⊗MB

)
= LR∆(NA) + LR∆(MB) . (3.101)

Proof.

LR∆

(
NA ⊗MB

)
= Dmax

(
NA ⊗MB

∥∥∆AB

[
NA ⊗MB

])
= Dmax

(
NA ⊗MB

∥∥∆A

[
NA
]
⊗∆B

[
MB

])
= Dmax

(
NA
∥∥∆A

[
NA
])

+Dmax

(
MB

∥∥∆B

[
MB

])
= LR∆(NA) + LR∆(MB) ,

(3.102)

where the third equality follows from the additivity of Dmax for channels.

We also define smoothed log-robustness and asymptotic log-robustness which would be useful in finding

the approximate and liberal coherence costs of a channel whose meanings are discussed in detail in the next

section. From [145], we know that smoothing maintains monotonicity. Thus, the smoothed log-robustness

which is defined below is also a monotone

LRϵC(NA) := min
N ′∈Bϵ(NA)

LRC(N ′
A) (3.103)

where the minima is taken over the log-robustness of all channels that lie within the ϵ-ball given by the

diamond norm. This ϵ-ball, Bϵ(NA), around the channel NA is defined as

Bϵ(NA) =
{
N ′ ∈ CPTP(A0 → A1) :

1

2
∥N ′

A −NA∥⋄ ⩽ ϵ
}
. (3.104)

To obtain the aysmptotic log-robustness, we first regularize the smoothed log-robustness and then take

the limit ϵ→ 0+. Thus, the asymptotic log-robustness is defined as

LR∞
C (NA) = lim

ϵ→0+
lim inf
n→∞

1

n
LRϵC(N⊗n

A ) (3.105)

Similarly we define the smoothed dephasing log-robustness and asymptotic dephasing log-robustness,

both of which are monotones under DISC. The smoothed dephasing log-robustness is defined by

LRϵ∆(NA) := min
N ′∈Bϵ(NA)

LR∆(N ′
A) (3.106)
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and the asymptotic dephasing log-robustness as

LR∞
∆ (NA) = lim

ϵ→0+
lim
n→∞

1

n
LRϵ∆(N⊗n

A ) (3.107)

Now we define the log-robustness with “liberal” smoothing [145] which we find to have an operational

meaning. Let

LRϵ,φC (NA) := min
N ′∈Bφ

ϵ (NA)
LRC

(
N ′
A

)
. (3.108)

where

Bφϵ (NA) :=
{
N ′ ∈ CP(A0 → A1) : ∥N ′

A(φRA0
)−NA(φRA0

)∥1 ⩽ ϵ
}
, (3.109)

and consider its “liberal” smoothing

LRϵC(NA) := max
φ∈D(RA0)

LRϵ,φC (NA). (3.110)

Define also

LRϵ,nC (NA) :=
1

n
max

φ∈D(RA0)
LRϵ,φ

⊗n

C (N⊗n
A ) , (3.111)

and

LR
(∞)
C (NA) := lim

ϵ→0+
lim inf
n→∞

LRϵ,nC (NA) . (3.112)

In [145], a new type of regularized relative entropy of a resource given by

D
(∞)
C (NA) := lim

n→∞

1

n
sup

φ∈D(RA0)

min
E∈C(An

0 →An
1 )
D
(
N⊗n
A0→A1

(
φ⊗n
RA0

) ∥∥EAn
0 →An

1

(
φ⊗n
RA0

))
(3.113)

The quantity D
(∞)
C (NA) behaves monotonically under completely RNG superchannels and satisfies the

following Asymptotic Equipartition Property (AEP)

LR
(∞)
C (NA) = D

(∞)
C (NA) . (3.114)

3.5 Interconversions

As the name suggests, in this section we discuss the conversion of one channel into another. Conversion of

one resource to another using the set of free operations is one of the major tasks of resource theory [82].

This conversion can be of various types like single shot (exact or approximate) interconversion, asymptotic

interconversion, catalytic interconversion, etc. Addressing this leads to two very interesting questions. The
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first is the problem of finding the cost, i.e., minimum amount of maximal resource necessary to output a

given resource using free operations, and the second is distillation which is the inverse problem of cost, i.e.,

asking how much maximal resource can be extracted from a given resource using the free operations. We

answer these questions in this section for the resource theory of dynamical coherence. Note that since we

just require two copies of the maximally coherent replacement channel to simulate the maximally coherent

channel (refer to appendix A.3), we use the maximally coherent replacement channel to compute the cost

and distillation.

This section is broadly divided into three parts namely, the conversion distance of coherence, cost of

a channel, and the problem of distilling an arbitrary channel into pure-state coherence. The first part is

discussed in subsection 3.5.1 where we take up the task of conversion of one channel into another using MISC

or DISC. For this task, we form a function called the conversion distance, and claim that if the conversion

distance is very small, then, we can simulate one channel using the other with the help of free superchannels.

We show that for the dynamical resource theory of coherence, the conversion distance dF(NA → MB) for

two given channels NA and MB can be computed with an SDP. We then take up the problem of finding

various costs of coherence which are discussed in subsection 3.5.2, 3.5.3, and 3.5.4. In these three subsections,

we calculate the exact, approximate and “liberal” coherence cost of a channel and show that the “liberal”

cost of coherence is equal to a variant of the regularized relative entropy. In the last subsection 3.5.5, we

calculate one-shot distillable rates and end the subsection by providing examples of the distillable rates for

partial depolarizing channel and partial dephasing channel.

3.5.1 The conversion distance of coherence

The conversion distance from a channel NA ∈ CPTP(A0 → A1) to a channel MB ∈ CPTP(B0 → B1) is

defined as (with F standing for either one of the four operations MISC, DISC, ISC, and SISC)

dF (NA →MB) := min
Θ∈F(A→B)

1

2
∥ΘA→B [NA]−MB∥⋄ . (3.115)

Recall that the diamond norm is used to measure the distance of two quantum channels and is defined in

(2.85). Therefore, if the conversion distance from a channel NA to another channel MB is very small, it

means that ΘA→B [NA] is very close toMB , which implies that NA can be used to simulateMB using free

superchannels. We now show that for F = MISC or F = DISC, this conversion distance can be computed

with a semi-definite program (SDP)2.

2The code to calculate the interconversion distance from one channel to another is given in https://github.com/

gaurav-iiser/Resource_Theory_of_Dynamical_Coherence.
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Theorem 3.13. Let {Xi
AB}ni=1 be the basis of the subspace KF as defined in (3.63) where n ≡ |AB|(|B|− 1)

for the case F = MISC and n ≡ |AB|(|A|+ |B| − 1) for the case F = DISC. Let αAB denote the Choi matrix

of the superchannel Θ. Then, dF (NA →MB), can be expressed as the following SDP

dF (NA →MB) = minλ (3.116)

where the minimum is subject to

λIB0
⩾ ωB0

, ωB ⩾ 0 , αAB ⩾ 0 , ωB ⩾ TrA

[
αAB

(
(JN
A )T ⊗ IB

) ]
− JM

B , (3.117)

αAB0
= αA0B0

⊗ uA1
, αA1B0

= IA1B0
, (3.118)

Tr[αABX
i
AB ] = 0 ∀ i = 1 , . . . , n (3.119)

Proof. The proof of the above theorem depends on the fact that the diamond norm can be expressed as an

SDP [129] and is presented in detail in appendix section A.2.

Remark 5. For MISC, the interconversion distance from the Hadamard channel to the maximal replacement

channel (i.e., the channel that outputs a maximally coherent state ϕ+B1
for any input) is 0, i.e., it is possible to

construct a protocol to convert the Hadamard channel to maximal replacement channel using the maximally

incoherent superchannel. We also found that the interconversion distance from two maximal replacement

channels to a Hadamard channel is also 0 which was expected from the results of appendix A.3.

3.5.2 Exact asymptotic coherence cost

The exact single-shot coherence cost of a channelNA ∈ CPTP(A0 → A1) is defined as the log of the minimum

dimension of the maximally coherent state which can be used to convert to the given channel using a free

superchannel and can be expressed as

C0
F(NA) := min

{
log |R1| : ∃Θ ∈ F(R1 → A) s.t. ΘR1→A[ϕ+R1

] = NA
}
, (3.120)

where the zero on the superscript of C on lhs means that the conversion is exact. In our work, we consider

the two cases of F = MISC and F = DISC. The exact asymptotic coherence cost is defined by regularizing

the exact single-shot cost which is given as

Cexact
F (NA) = lim

n→∞

1

n
C0

F

(
N⊗n
A

)
(3.121)
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We now compute this exact coherence cost for both MISC and DISC.

Exact cost under MISC

Theorem 3.14. The exact coherence cost of a channel NA ∈ CPTP(A0 → A1) under F = MISC is given

by

Cexact
F (NA) = LRC(NA) (3.122)

Proof. To prove the above theorem we first prove that

LRC(NA) ⩽ C0
F(NA) ⩽ LRC(NA) + 1 (3.123)

and then regularize the above condition and use the additivity of LRC(NA) to find the exact asymptotic

cost of a channel.

For the proof of LRC(N ) ⩽ C0
F(N ), let Θ ∈ MISC(R1 → A) be an optimal superchannel satisfying

ΘR1→A[ϕ+R1
] = NA such that C0

MISC(NA) = log2 |R1|. Therefore,

LRC(NA) = Dmax

(
NA
∥∥EA) (3.124)

= Dmax

(
ΘR1→A

[
ϕ+R1

] ∥∥EA) (3.125)

⩽ Dmax

(
ΘR1→A

[
ϕ+R1

] ∥∥ΘR1→A

[
D
(
ϕ+R1

)])
(3.126)

⩽ Dmax

(
ϕ+R1

∥∥D (ϕ+R1

))
(3.127)

= log2 |R1| (3.128)

= C0
F (NA) (3.129)

where the first equality follows from the definition of log-robustness of a channel (see (3.86)) for some

optimal classical channel EA. The first inequality above arises because we have chosen the optimal EA such

that Dmax

(
NA
∥∥EA) is minimum. The second inequality, i.e., Eq. (3.127) follows from the data-processing

inequality. The equality in Eq. (3.128) can be be easily computed following Eq. (3.21).

To prove C0
F(NA) ⩽ LRC(NA) + 1, first let

LRC(NA) = Dmax(NA ∥ EA) = log2 t (3.130)

for some optimal t satisfying tEA ⩾ NA. Also, let m = ⌈t⌉, so that mEA ⩾ NA still holds. Let R1 be a static
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system such that |R1| = m. We now define the following supermap. For any state ρR1 ∈ D(R1)

ΩR1→A [ρR1 ] :=
m

m− 1

(
Tr
[
ϕ+R1

ρR1

]
− 1

m

)
NA +

m

m− 1

(
1− Tr

[
ϕ+R1

ρR1

] )
EA (3.131)

Note that the supermap ΩR1→A ∈ F(R1 → A) as it can be expressed as

ΩR1→A [ρR1
] := Tr

[
ϕ+R1

ρR1

]
NA +

1

m− 1

(
1− Tr

[
ϕ+R1

ρR1

] )
(mEA −NA) (3.132)

where mEA −NA ⩾ 0. Also observe that ΩR1→A(ϕ+R1
) = NA. Hence, such a superchannel implies that

C0
F(NA) = log2m = log2⌈t⌉ ⩽ log2 t+ 1 = LRC(NA) + 1 (3.133)

This completes the proof of LRC(NA) ⩽ C0
F(NA) ⩽ LRC(NA) + 1.

Therefore, using regularization and the additivity of LRC(NA), we can conclude

Cexact
F (NA) = LRC(NA) (3.134)

Exact cost under DISC

The dephasing log-robustness is given by (3.98)

LR∆(NA) := Dmax

(
NA
∥∥∆A[NA]

)
∀ N ∈ CPTP(A0 → A1) . (3.135)

By definition we have LRC(NA) ⩽ LR∆(NA).

Theorem 3.15. The exact coherence cost of a channel NA ∈ CPTP(A0 → A1) under F = DISC is given by

Cexact
F (NA) = LR∆(NA) (3.136)

Proof. We first prove that

LR∆(NA) ⩽ C0
DISC(NA) ⩽ LR∆(NA) + 1 (3.137)

and then use the additivity of LR∆.

For the proof of LR∆(NA) ⩽ C0
DISC(NA), let Θ ∈ DISC(R1 → A) be an optimal superchannel satisfying

ΘR1→A[ϕ+R1
] = NA such that C0

DISC(NA) = log2 |R1|. Therefore,
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LR∆(NA) = Dmax

(
NA
∥∥∆A[NA]

)
(3.138)

= Dmax

(
ΘR1→A[ϕ+R1

]
∥∥∆A ◦ΘR1→A

[
ϕ+R1

])
(3.139)

= Dmax

(
ΘR1→A[ϕ+R1

]
∥∥ΘR1→A

[
DR1

(ϕ+R1
)
])

(3.140)

⩽ Dmax

(
ϕ+R1

∥∥DR1
(ϕ+R1

)
)

(3.141)

= log2 |R1| (3.142)

= C0
DISC(NA) . (3.143)

For the proof of C0
DISC(NA) ⩽ LR∆(NA) + 1, first let

LR∆(NA) = Dmax

(
NA
∥∥∆A[NA]

)
= log t (3.144)

for some optimal t that satisfies t∆[N ] ⩾ N . Also, let m = ⌈t⌉ so that m∆[N ] ⩾ N still holds, and let

R1 be a static system with dimension |R1| = m. We now construct the following supermap. For any state

ρ ∈ D(R1)

ΩR1→A[ρR1 ] :=
m

m− 1

(
Tr[ϕ+R1

ρR1
]− 1

m

)
NA +

m

m− 1

(
1− Tr[ϕ+R1

ρR1
]
)

∆A[NA] (3.145)

The supermap ΩR1→A has several properties. First, it satisfies ∆A ◦ΩR1→A = ΩR1→A ◦DR1
. Indeed, for

any density matrix ρ ∈ D(R1) we have

∆A ◦ ΩR1→A[ρR1 ] =
m

m− 1

(
Tr[ϕ+R1

ρR1 ]− 1

m

)
∆A[NA] +

m

m− 1

(
1− Tr[ϕ+R1

ρR1 ]
)

∆A[NA]

= ∆A[NA] ,

(3.146)

and

ΩR1→A

[
DR1

(ρR1
)
]

=
m

m− 1

(
Tr[ϕ+R1

DR1
(ρR1

)]− 1

m

)
NA +

m

m− 1

(
1− Tr[ϕ+R1

DR1
(ρR1

)]
)

∆A[NA]

=
m

m− 1

( 1

m
− 1

m

)
NA +

m

m− 1

(
1− 1

m

)
∆A[NA]

= ∆A[NA] ,

(3.147)

so that ∆A◦ΩR1→A = ΩR1→A◦DR1
. Second, ΩR1→A is a superchannel since the above map can be expressed
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as

ΩR1→A[ρR1
] := Tr[ϕ+R1

ρR1
]NA +

1

m− 1

(
1− Tr[ϕ+R1

ρR1
]
)

(m∆A[NA]−NA) (3.148)

and m∆A[NA]−NA ⩾ 0. Hence, Ω ∈ DISC(R1 → A). Finally, observe that ΩR1→A[ϕ+R1
] = NA. Hence, the

existence of such Ω implies that

C0
DISC(NA) ⩽ logm = log⌈t⌉ ⩽ log t+ 1 = LR∆(NA) + 1 . (3.149)

This completes the proof.

3.5.3 Coherence cost of a channel

To find the approximate coherence cost (we will call it coherence cost) of any N ∈ CPTP(A0 → A1), we

first define the smoothed coherence cost as

CϵF(NA) := min
N ′∈Bϵ(N )

C0
F (N ′

A) (3.150)

where

Bϵ(NA) =
{
N ′ ∈ CPTP(A0 → A1) :

1

2
∥N ′

A −NA∥⋄ ⩽ ϵ
}
. (3.151)

The coherence cost of the channel NA is then given by the regularization of the smoothed coherence cost

and taking the limit of ϵ→ 0+

CF(NA) = lim
ϵ→0+

lim
n→∞

1

n
CϵF(N⊗n

A ) (3.152)

Below we find the coherence cost under MISC and DISC.

The cost under MISC

Theorem 3.16. For F = MISC

CF(NA) = LR∞
C (NA) . (3.153)

Proof. First, note that from (3.123) it follows that

LRϵC(NA) ⩽ CϵF(NA) ⩽ LRϵC(NA) + 1 (3.154)

Hence,

1

n
LRϵC(N⊗n

A ) ⩽
1

n
CϵF(N⊗n

A ) ⩽
1

n
LRϵC(N⊗n

A ) +
1

n
(3.155)
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and the limit n→∞ concludes the proof.

The cost under DISC

Theorem 3.17. For F = DISC

CF(NA) = LR∞
∆ (NA) . (3.156)

Proof. First, note that from (3.137) it follows that

LRϵ∆(NA) ⩽ CϵF(NA) ⩽ LRϵ∆(NA) + 1 (3.157)

Hence,

1

n
LRϵ∆(N⊗n

A ) ⩽
1

n
CϵF(N⊗n

A ) ⩽
1

n
LRϵ∆(N⊗n

A ) +
1

n
(3.158)

and the limit n→∞ concludes the proof.

The lack of AEP for channels motivates us to consider a more liberal method for smoothing.

3.5.4 Liberal coherence cost of a channel

We define the liberal one-shot ϵ-approximate coherence-cost as

CϵF(NA) := max
φ∈D(RA0)

Cϵ,φF (NA) , (3.159)

where

Cϵ,φF (NA) := min
N ′

A∈Bφ
ϵ (NA)

C0
F(N ′

A) , (3.160)

and

Bφϵ (NA) :=
{
N ′ ∈ CP(A0 → A1) : ∥N ′

A(φRA0
)−NA(φRA0

)∥1 ⩽ ϵ
}
. (3.161)

The liberal coherence cost is defined by regularizing the liberal one-shot ϵ-approximate coherence cost

and then taking the limit of ϵ→ 0+ as follows

C
(∞)
F (NA) := lim

ϵ→0+
lim
n→∞

max
φ∈D(RA)

1

n
Cϵ,φ

⊗n

F

(
N⊗n)

= lim
ϵ→0+

lim
n→∞

max
φ∈D(RA)

min
N ′∈Bφ⊗n

ϵ (N⊗n)

1

n
C0

F(N ′
An→Bn)

(3.162)

One can interpret the above cost in the following way. For any pure state φ ∈ D(RA0) (with |R| = |A0| and
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φ is full Schmidt rank) we define a φ-norm

∥EA∥φ := ∥EA(φRA0)∥1 . (3.163)

Then the liberal cost can also be expressed as

C
(∞)
F (NA) = lim

ϵ→0+
lim
n→∞

max
φ∈D(RA0)

min
∥N ′−N⊗n∥φ⊗n⩽ϵ

1

n
C0

F(N ′
An→Bn) (3.164)

That is, we smooth with the φ⊗n
RA0

-norm and then maximizing over all such norms.

Theorem 3.18. For F = MISC

C
(∞)
F (NA) = D

(∞)
C (NA) (3.165)

Proof. From (3.123) it follows that that for any fixed φ ∈ D(RA0) we have

LRϵ,φC (NA) ⩽ Cϵ,φF (NA) ⩽ LRϵ,φC (NA) + 1 (3.166)

From (3.166) it follows that C
(∞)
F (NA) = LR

(∞)
C (NA) so that the theorem follows from the AEP rela-

tion (3.114).

3.5.5 One shot deterministic distillation of coherence

We now consider the problem of distilling an arbitrary channel into pure-state coherence using MISC and

DISC. Let Θ ∈ F(A → B1) where F = MISC or DISC, such that for any input channel EA, the output is

a state preparation channel FB ∈ CPTP(B0 → B1) where B0 is a trivial system. For ϵ > 0 and n = |B1|,

define

DISTILLϵF(NA) = log max{n : ⟨ϕ+B1
|Θ [NA] |ϕ+B1

⟩ > 1− ϵ, Θ ∈ F(A→ B1)}, (3.167)

which represents the largest coherence attainable by MISC or DISC within ϵ-error. For all N ∈ CPTP(A0 →

A1), we can write

〈
ϕ+B1
|Θ [N ]|ϕ+B1

〉
=
〈
ϕ+B1

∣∣∣(TrA

[
JΘ
AB1

((
JN
A

)T ⊗ IB1

)])∣∣∣ϕ+B1

〉
= Tr

[
JΘ
AB1

((
JN
A

)T ⊗ ϕ+B1

)]
.

(3.168)

Note that the space of all operators that are invariant under any permutation in the classical basis, is a linear

combination of maximally mixed state, uA1
and maximally coherent state, ϕ+A1

. Any operator is permutation
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invariant if

Πx σ Π†
x = σ ∀ permutation matrices Πx (3.169)

The permutation-twirling operation can be expressed in the following way (see for example [230])

T (·) =
1

m!

∑
x

Πx(·)Π†
x ∀ Πx (3.170)

where m is the dimension of the input system. Observe that the output of the above permutation-twirling

operation on any state is permutation invariant and so can always be represented as a linear combination of

ϕ+A1
and uA1

. Hence, we can express the second equality in (3.168) as

Tr
[
JΘ
AB1

((
JN
A

)T ⊗ ϕ+B1

)]
= Tr

[
JΘ
AB1

((
JN
A

)T ⊗ T (ϕ+B1

))]
= Tr

[(
idA ⊗ T

(
JΘ
AB1

)) ((
JN
A

)T ⊗ ϕ+B1

)] (3.171)

where the second equality follows from the fact that T is self-adjoint in the Hilbert-Schmidt inner product.

Hence, without loss of generality we can express the Choi matrix JΘ
AB1

in following way

JΘ
AB1

= αA ⊗ ϕ+B1
+

1

n− 1
βA ⊗ (IB1

− ϕ+B1
) (3.172)

where n = |B1| and αA, βA ∈ Herm(A) such that JΘ
AB1

⩾ 0, JΘ
A1

= IA1
, and JΘ

A = JΘ
A0
⊗ uA1

. In terms of

αA and βA, we can write these conditions as

αA, βa ⩾ 0, (3.173)

Tr(αA + βA) = |A1| (3.174)

αA + βA = TrA1(αA + βA)⊗ uA1 . (3.175)

From the MISC condition of DAB(JΘ
AB) = DA ⊗ idB(JΘ

AB), we get

D(αA)(n− 1) = D(βA). (3.176)
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Defining βA = ρA0 ⊗ IA1 − αA where ρA0 = 1
|A1|TrA1(αA + βA). Since Tr[ρA0 ] = 1, ρA0 is a density matrix.

So, we can rewrite these constraints as

αA ⩾ 0 (3.177)

ρA0
⊗ IA1

⩾ αA, (3.178)

1

n
D(ρA0

)⊗ IA1
= D(αA), (3.179)

ρA0 ∈ D(A0) (3.180)

We can also consider imposing the additional DISC constraint of idA ⊗ DB(JΘ
AB) = DA ⊗ idB(JΘ

AB) which

gives

αA + βA = D(αA + βA). (3.181)

This amounts to replacing Eq. (3.178) with the condition

nD(αA) ⩾ αA. (3.182)

Next notice that we can always write αA = DA(αA) + γA for some γA with zeroes on the diagonal. Then,

since TrA1

[(
JN
A

)T ]
= IA0

, we can write

Tr
[
αA
(
JN
A

)T ]
= Tr

[
(DA (αA) + γA)

(
JN
A

)T ]
= Tr

[
DA (αA)

(
JN
A

)T ]
+ Tr

[
γA
(
JN
A

)T ]
= Tr

[(
1

n
D(ρA0

)⊗ IA1

)(
JN
A

)T]
+ Tr

[
γA
(
JN
A

)T ]
=

1

n
+ Tr

[
γA
(
JN
A

)T ]
(3.183)

Hence, we have the following one-shot distillable rates.

Theorem 3.19. For F = MISC or DISC

DISTILLϵF(N ) = log max n (3.184)
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such that

Tr
[
γA
(
JN
A

)T ]
⩾ 1− 1

n
− ϵ , (3.185)

DA(γA) = 0 , (3.186)

ρA0
∈ D(A0) , (3.187)[

ρA0
− 1

n
DA0

(ρA0
)

]
⊗ IA1

⩾ γA ⩾ − 1

n
DA0

(ρA0
)⊗ IA1

(specifically for F = MISC) , (3.188)

n− 1

n
DA0

(ρA0
)⊗ IA1

⩾ γA ⩾ − 1

n
DA0

(ρA0
)⊗ IA1

(specifically for F = DISC). (3.189)

Remark 6. The first condition in the above theorem, i.e., Eq. (3.185) follows by substituting (3.172) in

Tr[JΘ
AB1

((JN
A )T ⊗ ϕ+B1

)] and using the fact that Tr
[
ϕ+A1

ϕ+A1

]
= Tr

[
ϕ+A1

]
, and then plugging the result in

(3.183). The lhs of (3.188) is a consequence of (3.178) and (3.179) whereas the rhs is a consequence of

(3.177) and (3.179). Similarly, for DISC, the lhs of (3.189) is a consequence of (3.179) and (3.182) whereas

the rhs of (3.189) is a consequence of (3.177) and (3.179).

Remark 7. Note that Dϵ
MISC(N ) = Dϵ

DISC(N ) when |A0| = 1, and their common rate matches that given

in Refs. [231, 232] for distilling coherence from static resources (i.e. states). However for channels, the MISC

and DISC distillable coherence can possibly differ. We leave it as an open problem to find channels that

have such a property.

Example 1. Let us consider the partially depolarizing channel N dep
λ,d : B(A1)→ B(A1),

N dep
λ,d (χ) = λχ+ (1− λ)Tr[χ]uA1

. (3.190)

where d = |A1|. The Choi matrix of this channel is given by

JNdep

A1Ã1
= λϕ+

A1Ã1
+

1− λ
d

IA1Ã1
, (3.191)

We exploit the symmetry by noting that both ϕ+
A1Ã1

and IA1Ã1
are U∗⊗U invariant. We restrict our twirling

to an average over the group of incoherent unitaries, i.e., each U involves a permutation and/or a change in

relative phase. Note that dephasing commutes with this operation so if Eq. (3.179) holds before the twirl,

it will also hold after. The action of twirling will convert ρA1
⊗ IÃ1

→ uA1
⊗ IÃ1

while converting αA into
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an operator of the form

αA1Ã1
= p

∑
i̸=j

|ij⟩⟨ij|+ q
∑
i

|ii⟩⟨ii|+ r
∑
i ̸=j

|ii⟩⟨jj|

= p
∑
i̸=j

|ij⟩⟨ij|+ (q − r)
∑
i

|ii⟩⟨ii|+ rϕ+
A1Ã1

. (3.192)

The eigenvalues of αA1Ã1
are easily seen to be {p, q − r, q − r + rd}, and so equations (3.177) and (3.178)

require that p, q − r ⩾ 0 and p, q − r+ rd ⩽ 1
d . From equation (3.179), we must also have p = q = 1

nd . With

these constraints in place, our goal is to maximize n such that

Tr
[
αT
A1Ã1

JNdep

A1Ã1

]
= (1− λ)

(d− 1)

nd
+

(
1

nd
− r
)

(λd+ (1− λ)) + r(λd2 + (1− λ)). (3.193)

This function is strictly increasing w.r.t. r, and the constraints necessitate that r ⩽ min{n−1
d−1

1
nd ,

1
nd}. So

when n ⩽ d, we take r = n−1
d−1

1
nd and obtain

Tr
[
αT
A1Ã1

JNdep

A1Ã1

]
= (1− λ)

d− 1

nd
+

d− n
nd(d− 1)

(λd+ (1− λ)) +
n− 1

nd(d− 1)
(λd2 + (1− λ))

= (1− λ)
1

n
+ λ. (3.194)

Notice that when λ = 1 we obtain Tr
[
αT
A1Ã1

JNdep

A1Ã1

]
= 1. This says that log n bits can be perfectly distilled,

which is expected: the free superchannel just consists of inputting ϕ+
A1Ã1

into the given channel and then as

post-processing performs a MIO map that converts ϕ+
A1Ã1

into ϕ+B1
. On the other hand, if n ⩾ d, we take

r = 1
nd and Eq. (3.194) becomes

Tr
[
αT
A1Ã1

JNdep

A1Ã1

]
= (1− λ)

1

n
+
d

n
λ. (3.195)

Notice also that in this case our optimizer ρA0 is completely dephased, which means our solution for MISC

is also the solution for DISC. We summarize our findings as follows.

Lemma 3.20. For the partial depolarizing channel N dep
λ,d and 0 ⩽ ϵ < 1,

DISTILLϵMISC

(
N dep
λ,d

)
= DISTILLϵDISC

(
N dep
λ,d

)
=


log⌊ 1−λ

1−λ−ϵ⌋ if ϵ < (d−1)(1−λ)
d

log⌊ 1−λ+λd1−ϵ ⌋ if ϵ ⩾ (d−1)(1−λ)
d

. (3.196)
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Example 2. We next consider the partial dephasing channel N∆
λ,d : B(A1)→ B(A1),

N∆
λ,d(χ) = λχ+ (1− λ)D(χ). (3.197)

The Choi matrix of this channel is given by

JNdep

A1Ã1
= λϕ+

A1Ã1
+ (1− λ)

d∑
i=1

|ii⟩⟨ii|. (3.198)

By the same argument as before, we can assume without loss of generality that αA has the form

αA1Ã1
= p

∑
i̸=j

|ij⟩⟨ij|+ (q − r)
∑
i

|ii⟩⟨ii|+ rϕ+
A1Ã1

. (3.199)

However this time the fidelity with ϕ+B1
is given by

Tr
[
αT
A1Ã1

JN∆

A1Ã1

]
=

(
1

nd
− r
)
d+ r(λd2 + (1− λ)d). (3.200)

Again, the constraints of the problem demand r ⩽ min{n−1
d−1

1
nd ,

1
nd}. When n ⩽ d, it holds that

Tr
[
αT
A1Ã1

JN∆

A1Ã1

]
=

d− n
n(d− 1)

+
n− 1

n(d− 1)
(λd+ (1− λ))

=
1 + (n− 1)λ

n
. (3.201)

On the other hand, when n ⩾ d, we take r = 1
nd to obtain

Tr
[
αT
A1Ã1

JN∆

A1Ã1

]
=
λd+ (1− λ)

n
. (3.202)

These are the same maximum fidelities as the depolarizing channel, and we therefore have the following

conclusion.

Lemma 3.21. For the partial dephasing channel N∆
λ,d and 0 ⩽ ϵ < 1,

DISTILLϵMISC

(
N∆
λ,d

)
= DISTILLϵDISC

(
N∆
λ,d

)
=


log⌊ 1−λ

1−λ−ϵ⌋ if ϵ < (d−1)(1−λ)
d

log⌊ 1−λ+λd1−ϵ ⌋ if ϵ ⩾ (d−1)(1−λ)
d

. (3.203)
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3.5.6 One shot probabilistic distillation of coherence

In this sub-section, we consider the problem of probabilistic distillation of coherence from quantum channels.

For probabilistic conversions, the free superchannels need to be non-deterministic or probabilistic. A com-

pletely positive supermap Θ is called a probabilistic superchannel if there exists a superchannel Ξ ∈ S(AB)

such that Ξ ⩾ Θ. Here the greater-than-equal notation means that the difference Ξ − Θ is a completely

positive map. Let us denote the set of probabilistic supermaps taking a dynamical system A to a dynamical

system B by Sprob(AB). It is interesting to remark that, all physical realizable manipulations that send

completely positive and trace-preserving map to completely positive and trace non-increasing map are prob-

abilistic superchannels. The concept of probabilistic superchannel is known as measurement on quantum

channels in Ref. [125], and probabilistic quantum networks in Ref. [122]. The existence of a superchannel Ξ

such that Ξ ⩾ Θ sets linear constraints for Θ ∈ Sprob(AB); that are

TrB1 [JΘ
AB ] ⩽ XB0A0 ⊗ IA1 , (3.204)

TrA0 [XB0A0 ] = IB0 , (3.205)

where JΘ
AB denotes the Choi operator of Θ.

The probabilistic distillation of coherence from channels is the process of transforming a given quantum

channel N to a d-dimensional maximally coherent state |ϕ+d ⟩ := (1/
√
d)
∑d−1
i=0 |i⟩. If we also allow the fidelity

between the output state and the maximally coherent state to be no less than 1− ϵ under free probabilistic

superchannels, then, the maximal probability in distilling ϕ+d with error tolerance ϵ is characterized by the

following optimization problem

P ϵFprob
(N ; d) := max p

s.t. Θ(N ) = pσ,

F (σ, ϕ+d ) ⩾ 1− ϵ, Θ ∈ Fprob, (3.206)

where Fprob denotes the set of all free probabilistic superchannels, such as MISCprob and DISCprob. In

particular, the elements of MISCprob are probabilistic superchannels that are MISC, and the elements of

DISCprob are probabilistic superchannels that are DISC. Since the target of distillation is a quantum state,

the operator XB0A0
in Eqs. 3.204 and 3.205 can be replaced by some quantum state ρA0

. By fixing the error

tolerance ϵ, the maximal probability of distilling ϕ+d under MISCprob is characterized as follows.

Proposition 1. Given error tolerance ϵ, the single-shot probabilistic distillation of dynamical coherence for
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N under MISCprob is given by the following optimization problem

P ϵMISCprob
(N ; d) = max Tr[ZA · JN

A ]

s.t. Tr[XA · JN
A ] ⩾ (1− ϵ)Tr[ZA · JN

A ],

0 ⩽ XA ⩽ ZA ⩽ ρA0
⊗ IA1

,

D(Z) = dD(X), Tr[ρA0
] = 1, (3.207)

where JN
A represents the Choi matrix of NA.

Proof. The proofs of the above propositions are provided in Appendix A.4.

By further restricting the capability of manipulating quantum operations, the maximal probability of dis-

tilling ϕ+d under DISCprob is solved by

Proposition 2. Given error tolerance ϵ, the single-shot probabilistic distillation of dynamical coherence for

N under DISCprob is given by the following optimization problem

P ϵDISCprob
(N ; d) = max dTr[D(XA) · JN

A ]

s.t. Tr[XA · JN
A ] ⩾ d(1− ϵ)Tr[D(XA) · JN

A ],

0 ⩽ XA ⩽ dD(XA) ⩽ ρA0
⊗ IA1

,

Tr[ρA0
] = 1. (3.208)

Proof. The proofs of the above propositions is similar to the one in Appendix A.4 with the difference being

in the conditions of DISC instead of MISC.

3.6 Outlook and Conclusions

In this chapter, I have developed the resource theory of dynamical coherence using the classical channels as

free channels. In previous works on the quantum resource theory of dynamical coherence [143, 196, 197, 198,

209], the free channels were taken to be the free operations from the QRT of static coherence, like MIO, IO,

etc. However, if we consider distributed quantum computing scenarios, one encounters channels with noisy

pre- and post-processing links. In this case, a natural candidate for free channels are those with completely

dephasing pre- and post- processing. What emerges is a resource theory in which the free objects are the set

of classical channels. Note that in such a theory, the T-gate (crucial for quantum computation) is not free
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and even the quantum identity channel is not free as the preservation of coherence should be considered a

resource.

Similar to the static QRT of coherence where the free operations can have a non-free dilation, in our work

on dynamical QRT of coherence, the free superchannels can have a non-free realization. That means, the pre-

and post-processing channels need not be classical. The only requirement on the set of free superchannels

comes from the golden rule of QRT. This implies that the free superchannels must never generate coherent

channels when the input channels are classical, even when tensored with identity, i.e., even when the free

superchannel acts on a part of the input classical channel. This enlargement of the set of free superchannels

is necessary for a meaningful resource theory of coherence. Take for example the set of free superchannels

which can be realized only by classical pre- and post-processing channels. In this case, the output channel

is always classical irrespective of the input channel, eliminating all the advantage offered by a quantum

channel. Thus, such free superchannels cannot be used to study the resource theory of quantum coherence.

In section 3.3, we start by defining four sets of free superchannels. We name them as maximally incoher-

ent superchannels (MISC), dephasing-covariant incoherent superchannels (DISC), incoherent superchannels

(ISC), and strictly incoherent superchannels (SISC). We show that the set of free superchannels in the

dynamical resource theory of coherence can be characterized analogous to the free channels in the static

resource theory of coherence. We also show that MISC and DISC can be characterized just on the basis of

their Choi matrices and dephasing channels which is given in Eq. (3.57) and (3.65) for MISC and DISC,

respectively.

Section 3.4 then deals with the quantification of dynamical coherence. In section 3.4.1, we find the

complete set of monotones for MISC and DISC. That means, to see if we can convert from one quantum

channel to another, it is sufficient to check if all the monotones of this (complete) set acting on one channel

are greater than the other. A complete family of monotones for a general resource theory of processes was

presented in [89]. It is, in general, a hard problem to compute these functions and in some cases like LOCC-

based entanglement, it is even NP-hard. We show that for the resource theory of dynamical coherence,

these functions (under MISC and DISC) can be computed using an SDP (Eq. (3.73)). Next, in section

3.4.2, we also find monotones that are based on the relative entropy. In [145], Gour and Winter showed

that the generalization of relative entropy from states to channels is not unique. In their work, they listed

six relative entropies as measures of dynamical resources. They also introduced a new type of smoothing

called “liberal” smoothing. We show in section 3.4.2 that out of these relative entropies defined in [145],

three relative entropies clearly form a monotone under MISC. For the case of DISC, we show that the

channel divergence for a given channel and the same channel acted on by the dephasing superchannel forms

a resource monotone under DISC. We then discuss various types of channel log-robustness of coherence,
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which are based on the max-relative entropy of channels Dmax, and we show that it can be computed with

an SDP (Eq. (3.88)). For the qubit case, we calculated the log-robustness of coherence for classical channels,

identity channel, replacement channel, depolarizing channels, and unitary channels. We also show that the

log-robustness of coherence of channels is additive under tensor product (Lemma 3.10). We then define a

“liberally” smoothed log-robustness of coherence which when regularized is equal to a regularized relative

entropy introduced in [145] (i.e., it satisfies AEP), and behaves monotonically under completely resource

non-generating superchannels. .

The next section is dedicated to the problem of interconversion of one resource into another. In section

3.5.1, we define a conversion distance between two channels (Eq. (3.115)). A given channel can be simulated

using another if the interconversion distance is very small. For MISC and DISC, we showed that the

interconversion distance can be computed using an SDP (Theorem 3.13). We then calculated the exact,

asymptotic, and liberal cost of coherence of a channel and found that the liberal cost of coherence is equal

to a variant of regularized relative entropy. Lastly, in this section, we also define the one-shot distillable

coherence for MISC and DISC, and calculate it for partial depolarizing and partial dephasing channels.

Due to the realization of a superchannel as a pre- and post-processing channel, there are added complex-

ities in the generalization of a quantum resource theory of states to channels as mentioned in [89]. In our

case, we see that the simple generalizations do not work. For example, while calculating coherence costs, we

had to introduce the concept of liberal cost (based on liberal smoothing as defined in [145]) to show it to be

equal to a relative entropy.

Clearly, this work is just a start of a whole unexplored field of the quantum resource theory of dynamical

coherence. For instance, one can solve for interconversion, cost etc. for ISC and SISC. One can define more

sets of superchannels analogous to how various free operations are defined in the static case. We also leave

as open the problem of finding an example of a channel where the MISC and DISC distillable coherence are

different. In section 3.5.5, we worked out the distillable coherence for the partial depolarizing channel and

the partial dephasing channel and found no difference for MISC and DISC case.
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Chapter 4

Resource theory of multi-qubit magic

channels

4.1 Introduction and background

In recent years, several schemes have been developed to achieve fault-tolerant quantum computation, and

most of them use the stabilizer formalism [26, 112, 233, 234, 235]. The stabilizer formalism consists of

the preparation of stabilizer states, application of Clifford gates, and measurements in the computational

basis. Within this formalism, pure non-stabilizer states (popularly known as magic states) are used as a

resource to promote fault-tolerant quantum computation to universal quantum computation. This model

of quantum computation is known as the magic state model of quantum computation and finding magic

distillation rates and estimating classical simulation cost of quantum circuits are active areas of research

in this field [97, 112, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252,

253, 254, 255, 256, 257, 258, 259, 260, 261]. While formulating optimal rates promise better distillation

protocols, improved classical simulations help benchmark the computational speedups offered by quantum

computers [13, 253, 256, 258, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271]. It follows from the Gottesman-

Knill theorem that it is possible to efficiently simulate any stabilizer circuit on a classical computer, hence

rendering stabilizer states and operations useless for universal quantum computation [272, 273]. For this

reason, this model fits the mold of quantum resource theories where all the states and operations that cannot

provide any quantum advantage are treated as free [37, 82, 90, 249, 253, 274, 275].

Using the above criterion to define free elements, considerable work has been directed towards developing

the resource theory of magic states and channels [90, 97, 247, 251, 253, 258, 259, 260, 270, 271, 276, 277, 278,
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279]. In this process, two branches have emerged: one branch deals with odd d-dimensional qudits, and the

other branch deals with the practically important case of multi-qubit systems. In the former case, a clear

connection between quantum speedup and the negativity of the Wigner representation of the state/channel

has been established [90, 97, 245, 246, 247, 280, 281, 282, 283, 284, 285]. However, in the latter case, a

discrete phase space approach cannot be cleanly applied without restricting free states to some subset of

stabilizer states or excluding some Clifford operations [249, 251, 255, 286, 287, 288, 289, 290]. Thus, to retain

all stabilizer states and operations as free elements (in the multiqubit scenario), alternative approaches have

been taken [248, 252, 253, 256, 257, 258, 271, 279, 283, 289, 291, 292].

In [253], Howard and Campbell presented a scheme where all density matrices are decomposed as real lin-

ear combinations of pure stabilizer states. Borrowing the idea from the resource theory of entanglement [293],

they introduced the robustness of magic which is the minimum ℓ1-norm of all such decompositions. They

showed that it is a resource monotone under all stabilizer operations and linked it to the runtime of a classical

simulation algorithm, thus giving robustness of magic an operational meaning. Using robustness of magic,

they also formulated lower bounds on the cost of synthesizing magic gates. Taking this approach forward,

Seddon and Campbell enlarged the set of free operations from stabilizer operations to the set of completely

stabilizer preserving operations (CSPOs) and introduced channel robustness of magic for multi-qubit chan-

nels [258]. They decomposed a channel as a linear combination of CSPOs and defined channel robustness as

the minimum ℓ1-norm of all such decompositions. They also formulated a classical algorithm and linked its

runtime with the channel robustness thus efficiently simulating a circuit consisting of CSPOs.

Since CSPOs cannot provide any quantum advantage, we extend the resource theory of magic states to

the channel case by treating CSPOs as free. We introduce two sets of free superchannels, CSPO preserv-

ing superchannels and completely CSPO preserving superchannels, to manipulate quantum channels. Since

there is no physical restriction over such sets of free superchannels, they are useful in finding fundamental

limitations on the ability of a quantum channel to generate magic states. Besides, studying such superchan-

nels gives us no-go results in resource interconversion tasks involving more restricted type of operations such

as the set of stabilizer operations.

This work is organized as follows. In section 4.3, we define and characterize the two above-mentioned

sets of free superchannels. Then in section 4.4, we generalize the key operational magic monotones defined

for states to the channel domain, namely the generalized robustness of magic states and the min relative

entropy of magic states. Using these monotones, in section 4.5, we formulate single shot bounds on distilling

single qubit magic states from a quantum channel and the magic cost of simulating a channel under the

free superchannels. However, due to the complexity in determining whether a state is a stabilizer state or

not [253, 280, 294], finding the lower bound on distillation under completely CSPO preserving superchannels
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is still an open problem. In section 4.5, we also show that interconversion among single-qubit states under

CSPOs is an SDP feasibility problem and hence, can be efficiently solved. As our last result, in section

4.6, we provide an algorithm to classically simulate a general quantum circuit and relate the runtime of this

algorithm to the generalized robustness of dynamical magic resources and a desired precision.

4.1.1 Stabilizer formalism

In this subsection, we give a brief overview of the stabilizer formalism as defined for a system of n qubits.

For single-qubit systems, the Pauli group consists of Pauli matrices and the identity matrix, together with

multiplicative factors ±1, ±i. We will denote this group as P1 = (±1,±i){I,X, Y, Z}. For multi-qubit

systems, general Pauli group on n-qubits consists of all n-fold tensor products of Pauli matrices (including

identity), together with the multiplication factors ±1,±i. We will denote the n-qubit Pauli group as Pn.

We say a pure, n-qubit state |ψ⟩ is a stabilizer state if there exists an Abelian subgroup of the Pauli group

S ⊂ Pn such that M |ψ⟩ = |ψ⟩ for all M ∈ S. The elements of the subgroup S are called stabilizers of |ψ⟩,

and the total number of elements in S is equal to 2n. One can also define a stabilizer subspace (with more

than one stabilizer state) as the span of the elements of the set VS = {|ψ⟩ : M |ψ⟩ = |ψ⟩ ∀M ∈ S} as the

set of simultaneous +1-eigenvalues of all the elements of a set S ⊂ Pn. From this definition, it is clear that

−I /∈ S and which in turn can be used to show that S will be an Abelian subgroup. Further, from group

theory we know that every group has a generator set which is the set of those group elements from which all

the elements of the group can be generated. The advantage of using independent generators to describe a

group is that they provide a compact means of describing the group. A group G with size |G| has a set of at

most log(|G|) independent generators. In this chapter, when we refer to the set of generators, we will mean

the set of independent generators. A stabilizer group S with 2l elements can be expressed using l generators.

With each generator, the dimension of the stabilizer subspace is halved. For example, the Pauli matrix Z is

the stabilizer of state |0⟩ and is the generator of the stabilizer group S = {I, Z}. When the stabilizer group

is generated by XX and ZZ, the stabilizer subspace is the span of the state (1/
√

2)(|00⟩ + |11⟩), whereas

when the stabilizer group is generated by ZZI and ZIZ, the stabilizer subspace is the span of the states

{|000⟩, |111⟩}. Note that in this context, the notation XX or ZZ denote a tensor product and not a matrix

multiplication. For a given stabilizer group on n qubits with l generators, the dimension of the stabilizer

subspace VS is equal to 2n−l. For the purposes of this thesis, we are only interested in stabilizer groups

S with l = n independent generators. Then, for different stabilizer groups S, there is a unique stabilizer

state |ϕ⟩ stabilized by S and we can specify a stabilizer state by giving an n-element generating set. In

this chapter, we will refer to the set of pure n-qubit stabilizer states as the set of all such unique stabilizer
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Figure 4.1: The set of qubit stabilizer states. The six pure stabilizer states: |0⟩, |1⟩, |+⟩, |−⟩, | + i⟩, | − i⟩,
form the vertices of the octahedron.

states that can be described using n stabilizers. For single-qubit states, six different stabilizer groups can be

formed each corresponding to a pure stabilizer state. Below we list these six pure stabilizer states with their

following stabilizers

±X|±⟩ = |±⟩ (4.1)

±Y | ± i⟩ = | ± i⟩ (4.2)

Z|0⟩ = |0⟩ (4.3)

−Z|1⟩ = |1⟩ . (4.4)

The mixed stabilizer states of a system A1 are defined as convex combination of pure stabilizer states, i.e.,

STAB(A1) = conv{|ϕ⟩⟨ϕ| : |ϕ⟩ ∈ STAB(A1)} where |ϕ⟩ ∈ STAB(A1) represent the pure stabilizer states.

For qubits, the set of stabilizer states form an octahedron inside the Bloch sphere as shown in Fig. 4.1. We

can also define the set of stabilizer states using Clifford unitaries which are the unitaries that preserve the

Pauli group under conjugation. Let U represent an element of Clifford unitaries such that UPU† ∈ Pn for all

P ∈ Pn. Then the set of stabilizer states can be represented as conv{U |0⟩⟨0|U† : U ∈ Clifford}. This simply

means that all stabilizer states can be generated by applying Clifford unitaries on the |0⟩ state. Moreover,

one can show that the Clifford group can be generated by the gate set {H,S,CNOT} where H represents

the Hadamard gate, S represents the phase gate, and CNOT represents the controlled-NOT gate. This
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can be easily verified for the qubit case where all the six pure stabilizer states can be formed by applying

different sequences of H and S gates on |0⟩. Clifford unitaries, along with preparation and measurement in

computational basis, together constitute the set of stabilizer operations. Evolution of stabilizer states under

Clifford unitaries can be efficiently tracked classically; even the measurement of Pauli operators on stabilizer

states can be efficiently simulated [272, 273]. This is briefly discussed in Sec.4.1.2. A quantum circuit that

comprises stabilizer operations, and classical randomness and conditioning, is known as a stabilizer circuit.

The usefulness of the stabilizer formalism comes in quantum error correction and in efficiently simulating

stabilizer circuits classically [272]. Below we give a brief sketch of classical simulation of stabilizer circuits

as the partition of free and resource states. We will see later in this chapter that the efficient classical

simulability of circuits lead to the partition of the free and resources states and channels when we discuss

the resource theory of magic.

4.1.2 Classical simulation of stabilizer circuits

Stabilizer states can be easily described using the operators that stabilize them. To check if a state is

stabilized by a group S, we only need to check whether the state is stabilized by the generators of S. The

key idea behind simulating stabilizer circuits classically lies in the way we track the evolution of the input

state under stabilizer operations. So, we need to understand how Clifford unitaries and Pauli measurements

transform the stabilizer states [73, 233].

Let VS denote the stabilizer subspace stabilized by the group S and let |ψ⟩ be an element of VS . Then,

if a unitary operation U is applied to |ψ⟩, for any element M ∈ S we can write

U |ψ⟩ = UMU∗U |ψ⟩ (4.5)

which implies that the state U |ψ⟩ is stabilized by UMU∗. From this we can say that if M1,M2, . . . ,Ml

generate the group S, then UM1U
∗, UM2U

∗, . . . , UMlU
∗ generate the group USU∗ = {UMU∗ : M ∈ S}.

The advantage we get from this is that for certain special unitaries, the transformation of the stabilizer

generators take a very simple form. Specifically, we are interested in the special unitaries that are building

blocks of Clifford unitaries, i.e., the Hadamard gate, the phase gate, and the controlled-NOT gate. We list

in Table 4.1 the transformations of Pauli matrices under these unitaries. Using this table we can find the

generators of the output state. For instance, if a state is initially stabilized by X, after being acted upon by

H, it will be stabilized by Z.

Next, we need to see how the stabilizers of a stabilizer state transform under Pauli measurement. Suppose

we make a measurement of M on the state |ψ⟩. We can assume without loss of generality that M is a product
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conjugation by H conjugation by S conjugation by CNOT1,2

X → Z
Y → −Y
Z → X

X → Y
Y → −X
Z → Z

X1 → X1X2

X2 → X2

Z1 → Z1

Z2 → Z1Z2

Table 4.1: Pauli evolution under Clifford unitaries

of Pauli matrices with no multiplicative factor. Also let {M1,M2, . . . ,Ml} be the generators of |ψ⟩. If M

commutes with all the generators of |ψ⟩, then, the measurement does not disturb the state and the output is

still |ψ⟩. If M anti-commutes with one or more generators, then we can form new generators such that there

is only one generator, say M1, which anti-commutes with M . Then, after measurement, the generators of ψ

remain the same except M1 which is replaced by M or −M with equal probability.

Thus, for a given stabilizer state, it is efficient to track the evolution of the generators of the input state

as Clifford operations and Pauli measurements act on it. Hence, any stabilizer circuit with stabilizer input

can be efficiently simulated. This result is known as the Gottesman-Knill theorem [272].

4.2 Review of prior art

4.2.1 Resource theory of magic: odd d-dimensional case

For odd d-dimensional systems, it has been shown that quantum states and channels that have a positive

Wigner representation cannot provide any quantum advantage. That is, circuits made from operations with

positive Wigner representation can be classically simulated when the input states also have a positive Wigner

representation. These states and operations cannot also be used to distill such magic states that can promote

fault-tolerant quantum computation to universal quantum computation [90, 97]. Moreover, the set of states

and operations that have a positive Wigner representation strictly contain the set of stabilizer states and

operations. Thus, quantum states and operations that can provide any quantum advantage or from which

useful magic states can be distilled become a resource for the purpose of quantum computation, and the states

and operations that cannot provide any advantage are identified as free. Further, it has also been shown

that odd d-dimensional states with negative Wigner representation are also contextual, hence establishing

contextuality as the physical phenomena responsible for quantum advantage for the odd d-dimensional

case [249]. With this identification of free and resource states and operations, static and dynamic resource

theories of magic have been developed [90, 97, 247, 253, 276]. To quantify magic in both static and dynamic

resource theories, the negativity of the Wigner representation has been used. The negativity of Wigner

representation has been used to formulate bounds on various resource interconversion tasks including magic
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distillation rates. Besides, it has also been connected to the runtime of classical simulation algorithms, thus

giving it an operational interpretation [90, 97].

4.2.2 Resource theory of magic: multi-qubit case

Wigner representation is very successful in classifying free and resource elements in the resource theory of

magic for the odd case as is clear from the previous subsection. However, for the practically important case

of multi-qubit systems, no such function has been defined that clearly classifies the set of states or operations

that cannot provide any quantum advantage while also containing the set of stabilizer states and operations.

If the approach that is used for odd-dimensional qudits is applied, we get a Wigner function that is positive

for some non-stabilizer states and negative for some stabilizer states. The existing approaches for which a

Wigner function is well-defined do not cover the full set of stabilizer states and operations [251, 254, 255].

Other approaches using Wigner distributions have the problem of efficiently simulating the evolution under

Clifford gates [246, 286, 287]. Recently, another multi-qubit phase-space representation was proposed which

covered the full set of stabilizer operations and states [288]. This representation lacks a nice property that

the class of positively represented states should be closed under tensor products. So, to date, we don’t have

a representation that clearly classifies the classically simulable states and operations while containing the set

of stabilizer states and operations.

To retain all multi-qubit stabilizer states and operations as free, alternative approaches need to be

taken. Howard and Campbell came up with an approach where they decomposed a density matrix as

a real linear combination of pure stabilizer state projectors [253]. Such a decomposition is not unique.

This decomposition can be viewed as a quasi-probability distribution where the ℓ1 norm of non-stabilizer

states is strictly greater than 1. ℓ1 norm is the sum of the absolute values of the coefficients used in the

decomposition. They introduced a monotone called the robustness of magic which behaves monotonically

under stabilizer operations and showed its resource-theoretic applications. The robustness of magic was

defined as the minimum over the ℓ1 norm obtained for each decomposition of a state. Besides, they devised

a classical simulation algorithm for stabilizer circuits with arbitrary input, and connected its runtime with

the robustness of input magic states, thus giving robustness of magic an operational interpretation. Recently,

in 2020, three other monotones using the same idea were proposed in [271] by varying the decomposition

of the magic state. Further, Seddon and Campbell in [258] used the same idea and defined a monotone

called channel robustness. To do that, they introduced and characterized a new set of operations called

completely stabilizer preserving operations (CSPOs). To find the robustness of any arbitrary channel, they

decomposed the channel using CSPOs. They proved that the set of CSPOs strictly contains the set of
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stabilizer operations. Moreover, they gave channel robustness an operational interpretation by connecting

it with the runtime of a classical simulation algorithm and showed that any circuit made from CSPOs with

stabilizer states as inputs can also be classically simulated. Using this property, we partition the set of

channels as free and resources, and develop a resource theory of multi-qubit magic channels.

4.3 Free elements of resource theory of multi-qubit magic opera-

tions

4.3.1 Completely stabilizer preserving operations (CSPO)

The set of completely stabilizer preserving operations or CSPOs was introduced in [258] and comprises of all

the quantum operations that preserve stabilizer states in a complete sense. The set of completely stabilizer

preserving operations taking system A0 to system A1 will be denoted by CSPO(A0 → A1) or CSPO(A). Let

EA ∈ CPTP(A). Then EA is a completely stabilizer preserving operation if for any system R0 it holds that

EA(ρR0A0
) ∈ STAB(R0A1) ∀ ρR0A0

∈ STAB(R0A0) . (4.6)

These operations can alternatively be defined using their Choi matrices as follows

EA ∈ CSPO(A) ⇐⇒ JE
A

|A0|
∈ STAB(A) . (4.7)

In [258], it was also shown that the action of CSPOs on a stabilizer state can be efficiently simulated

classically. This set is the largest known set of operations in the multi-qubit scenario that do not provide

any quantum advantage and as such they are perfect candidates for the free channels of a dynamical resource

theory of magic. To manipulate quantum channels, we choose the two natural sets of superchannels – namely,

the set of CSPO preserving superchannels and the set of completely CSPO preserving superchannels – as

the set of free superchannels in our work. We will denote the set of CSPO preserving superchannels taking

dynamical system A to dynamical system B by F1(A → B) and the set of completely CSPO preserving

superchannels taking dynamical system A to dynamical system B by F2(A → B). In the following two

subsections we define and characterize the two sets of free superchannels.
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4.3.2 CSPO preserving superchannels

Definition 4.1. Given two dynamical systems A and B, a superchannel Θ ∈ S(A→ B) is said to be CSPO

preserving superchannel if

ΘA→B [NA] ∈ CSPO(B) ∀ NA ∈ CSPO(A) . (4.8)

Let {Wj} be the set of stabilizer witnesses for system B0B1. Then, using the above definition and the

set of stabilizer witnesses, we can characterize the set of CSPO preserving superchannels using their Choi

matrices as follows. The Choi matrix of a superchannel Θ ∈ F1(A→ B) must satisfy the following conditions

JΘ
AB ⩾ 0 , (4.9)

JΘ
AB0

= JΘ
A0B0

⊗ IA1

|A1|
, (4.10)

JΘ
A1B0

= IA1B0
, (4.11)

Tr
[
JΘ
AB(ϕi ⊗Wj)

]
⩾ 0 ∀ ϕi ∈ STAB(A0A1),Wj . (4.12)

In the above, the first three conditions follow from the requirement of Θ to be a superchannel [119]. The

condition in equation (4.12) simply uses the fact that if a CSPO preserving superchannel takes the extreme

points of the stabilizer polytope to a stabilizer state, then it will also take any convex combination of them to

a stabilizer state. However, finding all stabilizer witnesses is a hard problem, but for small dimensions, they

can be found and the above characterization can be used as a set of conditions in resource interconversion

tasks formulated as conic optimization problems.

4.3.3 Completely CSPO preserving superchannels

Definition 4.2. Given two dynamical systems A and B, a superchannel Θ ∈ S(A → B) is said to be

completely CSPO preserving if

ΘA→B [NAR] ∈ CSPO(BR) ∀ N ∈ CSPO(AR) (4.13)

In other words, a superchannel is completely CSPO preserving if, for every input CSPO, the output is

also CSPO, even if the superchannel acts only on a subsystem of the input channel.

Theorem 4.3. Let Θ ∈ S(A→ B). Then Θ ∈ F2(A→ B) if and only if

1

|A1B0|
JΘ
AB ∈ STAB(AB) (4.14)
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Proof. We first prove that if Θ is a completely CSPO preserving superchannel (i.e., belongs to F2(A→ B)),

then its normalized Choi matrix is a stabilizer state. For the other side, we show that if a superchannel Θ is

not a completely CSPO preserving superchannel, then its normalized Choi matrix is not a stabilizer state.

Let Θ ∈ S(A → B) be a completely CSPO preserving superchannel. By definition, a superchannel

can be realized using a pre-processing channel E ∈ CPTP(B0 → E1A0) and a post-processing channel

F ∈ CPTP(E1A1 → B1) [119]. The normalized Choi matrix of the superchannel can be expressed in terms

of these pre- and post-processing channels in the following way:

1

|A1B0|
JΘ
AB = idA1B0

⊗ (idA0
⊗FE1A1→B1

) ◦ (idA1
⊗ EB0→A0E1

)
(
ϕ+
A1Ã1

⊗ ϕ+
B0B̃0

)
, (4.15)

where ϕ+
A1Ã1

(ϕ+
B0B̃0

) represents the maximally entangled state in the system A1Ã1(B0B̃0). Eq.(4.15) can be

diagrammatically illustrated using Fig.4.2.

Figure 4.2: Normalized Choi matrix of a superchannel

Define N ∈ CPTP(A0 → Ã0A1Ã1) such that

N (ρA0) := ρA0 ⊗ ϕ+A1Ã1
, (4.16)

for any input density matrix in A0. Note that the normalized Choi matrix of N is a stabilizer state.

Therefore, N is a completely stabilizer preserving operation [258]. Using such a channel we can view the

Choi matrix of a superchannel as shown in Fig. 4.3.

Since Θ is a completely CSPO preserving superchannel, and N is a CSPO as defined in Eq.(4.16), the

output channel Θ[N ] is a CSPO and so, Θ[N ](ϕ+
B0B̃0

) is a stabilizer state.
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Figure 4.3: Choi matrix of a completely CSPO preserving superchannel viewed as a CSPO

Hence, the normalized Choi matrix of a completely CSPO preserving superchannel is a stabilizer state.

For the other side of the proof, let Θ ∈ S(A→ B) be a superchannel that is not completely CSPO pre-

serving. Then there exists a CPTP map E ∈ CSPO(A0R0 → A1R1) such that ΘA→B [EAR] /∈ CSPO(B0R0 →

B1R1). Therefore, for some stabilizer witness WBR̃, it holds that

Tr

[
WBR̃TrAR

[
|A0|
|B0|

J1⊗Θ

ARBR̃

(
JE
AR

|A0R0|
⊗ IBR̃

)]]
< 0 . (4.17)

After some algebraic manipulations, the above inequality reduces to

Tr

[(
JE
AR

|A0R0|
⊗WBR̃

)
|A0|
|B0|

J1⊗Θ

ARBR̃

]
< 0 . (4.18)

Since the normalized Choi matrix of E is a stabilizer state, the following inequality

Tr

[
(|ϕ⟩AR⟨ϕ| ⊗WBR̃)

1

|A1B0R0R1|
J1⊗Θ

ARBR̃

]
< 0 (4.19)

must hold for some pure stabilizer state |ϕ⟩AR. From [258] we know that (|ϕ⟩AR⟨ϕ| ⊗ WBR̃) is a valid

stabilizer witness. Hence,

1

|A1B0R0R1|
J1⊗Θ

ARBR̃
/∈ STAB(ARBR̃) (4.20)
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which is equivalent to

1

|A1B0R0R1|
J1
RR̃
⊗ JΘ

AB /∈ STAB(ARBR̃) (4.21)

and that implies

1

|A1B0|
JΘ
AB /∈ STAB(AB) . (4.22)

Therefore, we can conclude that the normalized Choi matrix of a superchannel is a stabilizer state if and

only if the superchannel is completely CSPO preserving.

4.4 Magic measures

In this section, we quantify magic states and channels. We extend the generalized robustness and the min-

relative entropy magic measures from the state to the channel domain [257, 271]. These quantifiers arise

from the standard resource theoretic techniques and are related to the channel divergences which have been

studied recently in detail in [119, 145, 146, 147, 295, 296, 297, 298]. Next, we formally define the geometric

measure for magic states which to the best of our knowledge has not been defined earlier. We couldn’t find

any operational use of this monotone and leave it as an open problem. Note that, we will denote the (free)

robustness of magic as R, the generalized robustness of magic as Rg, the min relative entropy of magic states

as DSTAB
min , the hypothesis testing relative entropy of magic states as Dϵ, STAB

min , and the min relative entropy

of magic channels as DCSPO
min . For completeness, we have briefly discussed robustness of magic and hypothesis

testing relative entropy of magic states in Appendix B.3 and B.4, respectively.

4.4.1 Generalized robustness of dynamical magic resources

The generalized robustness for magic states was defined in [271]. Below we generalize it for the channel case

and define the log of generalized robustness for a magic channel NA ∈ CPTP(A0 → A1) as

LRg(NA) = min
E∈CSPO(A0→A1)

Dmax(NA∥EA) (4.23)

= log min{λ : λ E ⩾ N ; E ∈ CSPO(A0 → A1)} (4.24)
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This optimization problem can be expressed in terms of Choi matrices as

LRg(NA) = log minλ (4.25)

s.t. : λJE
A ⩾ JN

A ,

JE
A0

= IA0
,

JE
A

|A0|
∈ STAB(A0A1)

which can be simplified as

LRg(NA) = log min
Tr[ωA]

|A0|
(4.26)

s.t. : ωA ⩾ JN
A ,

ωA0
= Tr[ωA]

IA0

|A0|
,

ωA
Tr[ω]

∈ STAB(A0A1) .

The dual of the above primal problem can be written as

LRg(NA) = log sup Tr[αAJ
N
A ]

s.t. : Tr

[
ϕi

(
αA + βA0

⊗ IA1
− Tr[βA0

]
IA
|A0|

)]
⩽

1

|A0|
∀ ϕi ∈ STAB(A0A1),

αA ⩾ 0, βA0
∈ Herm(A0) .

(4.27)

Some properties of the generalized robustness of magic channels are listed below.

1. Faithfulness. LRg(NA) = 0 ⇐⇒ N ∈ CSPO(A0 → A1). The proof is similar to the state case.

2. Monotonicity. LRg(Θ[N ]) ⩽ LRg(N ) for any free superchannel Θ ∈ F1(A → B) or Θ ∈ F2(A → B).

The proof follows from the data-processing inequality as

LRg(Θ[N ]) = min
F∈CSPO(B)

Dmax(Θ[N ]∥F)

⩽ min
E∈CSPO(A)

Dmax(Θ[N ]∥Θ[E ])

⩽ min
E∈CSPO(A)

Dmax(N∥E) .

(4.28)

3. Sub-additivity. LRg(N ⊗M) ⩽ LRg(N ) + LRg(M). The proof easily follows from equation (4.23).
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Remark 8. Eq.(4.24) can be rewritten (without the log) as

Rg(NA) = min
{
λ ⩾ 1 :

N + (λ− 1)M
λ

∈ CSPO(A0 → A1) ,

M∈ CPTP(A0 → A1)
}
. (4.29)

Hence, for any λ ⩾ Rg(NA), a channel NA can then be expressed as

NA = λE − (λ− 1)M (4.30)

for some E ∈ CSPO(A0 → A1) and some M∈ CPTP(A0 → A1).

4.4.2 Min-relative entropy of magic resources

Below, we present another monotone, the min relative entropy of magic states and channels. The min-relative

entropy of a magic state ρ is defined as

DSTAB
min (ρ) := min

σ∈STAB
Dmin(ρ∥σ) (4.31)

= min
σ∈STAB

(− log2 Tr[Pρσ]) (4.32)

= − log2 max Tr[Pρσ] (4.33)

s.t. :σ ∈ STAB ,

= − log2 max Tr[Pρϕ] (4.34)

s.t. :ϕ ∈ STAB .

where Pρ denotes the projection onto the support of ρ. Similarly, the min-relative entropy of a magic channel

N can be defined as

DCSPO
min (NA) := min

E∈CSPO(A)
Dmin (N∥E) (4.35)

= min
E∈CSPO(A)

sup
ψ∈D(R0A0)

Dmin (N (ψ)∥E (ψ)) . (4.36)

Below we list some of the properties of the min-relative entropy of magic states and channels.
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1. Faithfulness. The min-relative entropy of magic states and channels is faithful, i.e.,

DCSPO
min (NA) = 0 ⇐⇒ N ∈ CSPO(A0 → A1) (4.37)

DSTAB
min (ρA0

) = 0 ⇐⇒ ρ ∈ STAB(A0) . (4.38)

2. Monotonicity. The min-relative entropy is a magic monotone under CSPOs for the state case, and

under CSPO preserving and completely CSPO preserving superchannels for the channel case. Thus,

for any state ρ ∈ D(A0) it follows that DSTAB
min (E(ρ)) ⩽ DSTAB

min (ρ) for any E ∈ CSPO, and for any

channel N ∈ CPTP(A0 → A1), it follows that DCSPO
min (Θ[N ]) ⩽ DCSPO

min (N ) for any Θ ∈ F1(A→ B) or

Θ ∈ F2(A → B). The proof for the state case is given below which follows from the data-processing

inequality as

DSTAB
min (E(ρ)) = min

σ∈STAB
Dmin(E(ρ)∥σ)

⩽ min
σ∈STAB

Dmin(E(ρ)∥E(σ))

⩽ min
σ∈STAB

Dmin(ρ∥σ) .

(4.39)

Proof for the channel case follows similarly.

3. Sub-additivity. Sub-additivity holds for min-relative entropies of both static and dynamic magic re-

sources, i.e., DSTAB
min (ρ1 ⊗ ρ2) ⩽ DSTAB

min (ρ1) + DSTAB
min (ρ2) for any two density matrices ρ1 and ρ2, and

DCSPO
min (N ⊗M) ⩽ DCSPO

min (N ) + DCSPO
min (M) for any two quantum channels N and M. Moreover,

for single qubit states, the min-relative entropy of magic states is additive, i.e., DSTAB
min (ρ1 ⊗ ρ2) =

DSTAB
min (ρ1) +DSTAB

min (ρ2) [257]. The proof of this is provided in Appendix B.2.

4.4.3 Geometric magic measure for static resources

In this subsection, we formally define the geometric magic measure for states which to the best of our

knowledge has not been defined before. Inspired from the geometric measure of entanglement [299], we

define the geometric magic measure for pure states as

g(ψ) = 1− max
ϕ∈STAB

Tr[ψϕ] (4.40)

For general mixed states, we can extend the above measure using fidelity as

g(ρ) = 1− max
σ∈STAB

F 2(ρ, σ) (4.41)
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where F (ρ, σ) := Tr
[√√

σρ
√
σ
]

is the fidelity between two states ρ and σ. Below we list the properties of

this measure:

1. Faithfulness: g(ρ) = 0 if and only if ρ ∈ STAB.

2. Monotonicity: g(E(ρ)) ⩽ g(ρ) ∀ E ∈ CSPO. The proof is similar to the proof of monotonicity of

geometric measures in [82].

3. Subadditivity: g(ρ1 ⊗ ρ2) ⩽ g(ρ1) + g(ρ2). This follows easily if we let σ1 and σ2 be the respective

optimal stabilizer states such that g(ρ1) = 1− F 2(ρ1, σ1) and g(ρ2) = 1− F 2(ρ2, σ2). Then

max
σ∈STAB

F (ρ1 ⊗ ρ2, σ) = max
σ

Tr

[√√
σ(ρ1 ⊗ ρ2)

√
σ

]
(4.42)

⩾ Tr

[√
(
√
σ1ρ1
√
σ1)⊗ (

√
σ2ρ2
√
σ2)

]
(4.43)

= F (ρ1, σ1)F (ρ2, σ2) (4.44)

where the inequality follows by choosing σ = σ1 ⊗ σ2.

4.5 Interconversions

Resource interconversion is one of the central themes of resource theory. In this section, we discuss the

conditions for qubit interconversions under CSPOs in 4.5.1, and the conversion of magic states to channels

and vice-versa under CSPO preserving and completely CSPO preserving superchannels in 4.5.2. We also

formulated the interconversion distance which is given in Appendix B.1.

4.5.1 Qubit interconversion under CSPOs

For the resource theory of magic, any pure magic state can be used as a resource to achieve universal quantum

computation [236]. The procedure involves distilling a pure magic state from a given magic state and then

using a few copies of this pure magic state to perform any quantum computation. Experimentally, it of

interest to distill single qubit magic states, and the common choices are that of the |T ⟩ state or the |H⟩ state

where:

|T ⟩⟨T | = 1

2

(
I + (X + Y ) /

√
2
)
, (4.45)

|H⟩⟨H| = 1

2

(
I + (X + Y + Z) /

√
3
)
. (4.46)
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Here, we are interested in a more general problem of finding whether a given single qubit magic state

can be converted to another by repeated application of CSPOs. Equivalently, we want to find out which

set of states on the Bloch sphere can be reached by restricting ourselves to the application of CSPOs on a

single qubit magic state. For multiqubit systems, this problem is an NP-hard problem because the number

of stabilizer states increases super-exponentially as we increase the dimension. For the qubit case, we use

geometry to our advantage and provide the following theorem for the conversion of a state ρ into a state σ.

We show that this interconversion problem can be cast as a linear programming feasibility problem. For the

purpose of this theorem, let us define C(ρ) := {UρU† : U ∈ Clifford} as the set of Clifford equivalent states

of ρ. We show in the proof of the theorem below that for a single qubit state ρ, the set C(ρ) contains 24

elements unless the state has additional symmetry, in which case the number of elements are less than 24.

For instance, C(|0⟩⟨0|) contains only 6 elements which are all the pure single-qubit stabilizer states.

Theorem 4.4. Let A be a (4× 30) matrix with first 24 columns being the Bloch vectors of the elements of

C(ρ), the next 6 columns being the Bloch vectors of the pure qubit stabilizer states, and the last row being

all ones. Let b be the (4 × 1) vector with the first three entries being the Bloch vector corresponding to the

state σ and the fourth entry being equal to 1. Then, the state ρ can be converted to the state σ using CSPOs

if there exists an x ∈ R30
+ such that Ax = b.

Remark 9. The problem of finding x such that Ax = b and x ⩾ 0 is known as an SDP feasibility problem

and can be solved using standard techniques in convex analysis [173, 174]. It also has a dual given by

the Farkas lemma. Using the dual of the above feasibility problem, we can say that the state ρ cannot be

converted to σ if there exists a y ∈ R3 such that ATy ⩾ 0 and b · y < 0.

Proof. From [258] and Eq. (4.7), we know that the normalized Choi matrix of any CSPO is a stabilizer state.

Let EA0→A1
∈ CSPO(A) such that both A0 and A1 are single qubit systems. If we denote a pure two qubit

maximally entangled stabilizer state as ψent and a single qubit stabilizer state as ϕ, we can write the action

of EA on any input ρ ∈ D(A0) as

E(ρA0
) = TrA0

[
JE
A (ρA0

⊗ IA1
)
]

(4.47)

= |A0|

∑
i

piTrA0

[
ψenti (ρA0 ⊗ IA1)

]
+
∑
j,k

pj,kTrA0

[(
(ϕj)A0

⊗ (ϕk)A1

)
(ρA0 ⊗ IA1)

] (4.48)

=
∑
i

piUi(ρA0) + |A0|
∑
j,k

pj,kTr
[
(ϕj)A0

ρA0

]
(ϕk)A1

(4.49)

=
∑
i

piUi(ρA0
) +

∑
k

qkϕk , (4.50)

114



where qk = |A0|
∑
j pj,kTr [ϕjρ]. In the above, the second equality follows because any two-qubit stabilizer

state can be expressed as a convex combination of pure two-qubit entangled and pure two-qubit separable

stabilizer states. From the above equations, we see that the action of a (qubit input and output) CSPO on

a qubit can be represented as a convex combination of the action of completely stabilizer preserving unitary

operations and stabilizer replacement channels. (An alternative proof can also be found in [300]). Note that

for two-qubit states, there are a total of 60 pure stabilizer states of which only 24 are entangled [280]. Hence

there are only 24 single-qubit unitary gates that are completely stabilizer preserving. These unitary gates

are listed in Appendix B.6 and are Clifford unitaries. Therefore, any state can be transformed to at the most

24 states (including itself) on the Bloch sphere using these unitary gates. For a single qubit state, which can

be expressed as a vector (r1, r2, r3)T in the Bloch sphere, its transformations using these unitary gates are

given in Appendix B.6. Furthermore, if we view the Bloch sphere as been divided into 8 octants according

to (±X,±Y,±Z) and each octant to be further subdivided into three subsets such that for one subset it

holds that |⟨X⟩| ⩽ |⟨Y ⟩|, |⟨Z⟩|, for second subset it holds that |⟨Y ⟩| ⩽ |⟨X⟩|, |⟨Z⟩|, and for the third subset

we have |⟨Z⟩| ⩽ |⟨X⟩|, |⟨Y ⟩|, then using table B.2 in Appendix B.6, we can say that any arbitrary state in

some subset (of an octant) is Clifford equivalent to a state in any other subset. Therefore, we can conclude

from the equations and the arguments above that the set of states that can be generated from a given state

under the action of CSPOs must belong to a convex polytope in the Bloch sphere, the extreme points of

which are the Clifford-equivalent states of the given state and the stabilizer states. Further, if we let {ri}

denote the set of Bloch vectors of the Clifford equivalent state of ρ, {sk} denote the Bloch vectors of the

pure single qubit stabilizer states, and b as the Bloch vector of E(ρ), then from Eq (4.50), we can write the

Bloch vector b as

b =
∑
i

piri +
∑
k

qksk . (4.51)

We can now express the above in the form of the equation Ax = b, where the matrix A is a (3× 30) matrix

consisting of ri’s and sk’s as column vectors, and x is the (30× 1) vector consisting of non-negative numbers

summing to one. We can include this last condition on x by inserting a (1, 1, . . . , 1) row in A thus making

A, a (4 × 30) matrix. Therefore, we can now say that a state ρ can be converted to a state σ with Bloch

vector b if there exists a vector x ∈ R30 such that

Ax = b, and (4.52)

x ⩾ 0 . (4.53)
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Geometrical interpretation of Theorem 4.4

The above interconversion conditions can be also be expressed and visualized on a Bloch sphere. To find

whether a qubit can be converted to another using CSPOs, from Eq. (4.50) we get that it is enough to

check whether the target state (or any of its Clifford equivalent state) lies outside the facets of the convex

polytope (generated by the original state) that together cover any subset of any octant. For convenience,

let us choose this subset to be the positive octant (+X,+Y,+Z) for which |⟨X⟩| ⩽ |⟨Y ⟩|, |⟨Z⟩| and denote it

by PX . Hence, it is enough to find only those extreme points of the convex polytope which are used to form

the facets that together cover PX . Using the hyperplane separation theorem, we can then find whether the

target state lies inside this convex polytope. Now, let the Bloch vector corresponding to ρ (or its Clifford

equivalent state) belonging to PX be denoted by r1 = (rx, ry, rz). We denote the neighbouring Clifford

equivalent states which are used to form the facets of the convex polytopes as

r2 = (rz, rx, ry) ,

r3 = (ry, rz, rx) ,

r4 = (−rx, rz, ry) ,

r5 = (−ry, rx, rz) ,

r6 = (ry,−rx, rz) ,

r7 = (0, 0, 1) ,

r8 = (0, 1, 0) ,

r9 = (−rz, ry, rx) ,

r10 = (rz, ry,−rx) .

(4.54)

Now depending on the location of r1 in PX , there are three possible ways to form a convex polytope. Since

we are only interested in the facets of these polytopes that cover PX , we list below the set of vectors which,

for each possible polytope, form a facet partially covering PX :

Possibility 1: (r1, r6, r7), (r1, r7, r5), (r1, r5, r4), (r1, r4, r3), (r1, r3, r2), (r1, r2, r6), (r3, r4, r8)

Possibility 2: (r1, r3, r2), (r1, r2, r7), (r1, r7, r4), (r1, r4, r8), (r1, r8, r3)

Possibility 3: (r1, r10, r3), (r1, r3, r2), (r1, r2, r4), (r1, r4, r9), (r1, r9, r8), (r1, r8, r10), (r4, r2, r7)

In figures 4.4 and 4.5, we have marked the location of the points in possibility 1 and possibility 2, respectively,

highlighted (with red arcs) the subset they belong to, and connected the points in the way they are connected
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Figure 4.4: Points corresponding to possibility 1 Figure 4.5: Points corresponding to possibility 2

in the convex polytope for a particular possibility.

Using these set of vectors for each possible convex polytope, it is straightforward to find the vector (say

v) perpendicular to each facet such that the inner product of v with all vectors lying inside that facet is less

than or equal to the inner product of v with one of the vectors on the surface of the facet. Let’s call this

inner product as v. All the vectors on the other side of this facet will then give a value more than v when

their inner product is calculated with v. Therefore, by finding all such vectors perpendicular to each facet,

we find the conditions to verify whether a vector lies inside or outside the facets. Hence, a state ρ can be

converted to a state σ using completely stabilizer preserving operations if and only if

s · ui ⩽ ui, ∀ i = 1, . . . , 7 or

s · vj ⩽ vj , ∀ j = 1, . . . , 5 or

s ·wk ⩽ wk, ∀ k = 1, . . . , 7

(4.55)

where s corresponds to the Bloch vector of the Clifford equivalent state of σ in PX . The vectors ui’s, vj’s,

and wk’s are the vectors perpendicular to the facets of the respective possible polytopes, and ui’s, vj ’s, and

wk’s are the constants which can be calculated from the inner product of ui, vj , and wk with any vector

lying on the surfaces of the respective facets of the possible polytopes.

Remark 10. The code for the above interconversion has been uploaded in a public git repository and can

be freely accessed using the link in 1. In the same link, we have also provided a code to construct a convex

polytope from a given state. The code can also be used to construct convex polytopes for various states at

1https://github.com/gaurav-iiser/Resource-Theory-of-multiqubit-magic-channels
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the same time, and hence can be used to check whether a convex polytope corresponding to some state lies

inside another convex polytope or not.

4.5.2 Cost and Distillation bounds under CSPO preserving and completely

CSPO preserving superchannels

In this subsection, we find bounds on the cost of converting a magic state to a multi-qubit magic channel and

the bounds on distilling magic states from a quantum channel using both CSPO preserving and completely

CSPO preserving superchannels. For the case of distillation, we focus on distilling pure single qubit magic

states because a pure magic state is enough for achieving universality in the magic state model of quantum

computation. Besides, due to the complexity involved in verifying whether a state is a stabilizer state, we

leave the problem of finding the upper bound of cost and lower bound of distillation using completely CSPO

preserving superchannels as open.

Since any pure magic state can be used as a resource to perform universal quantum computation, we

define the dynamical magic cost of converting a pure magic state to a channel N ∈ CPTP(B0 → B1) under

CSPO preserving superchannels or completely CSPO preserving superchannels as

COSTF1(2)
(NB) = min log{|A1| : Θ[ψA1

] = NB , ψ ∈ D(A1), Θ ∈ F1(2)(A1 → B)} . (4.56)

If we want the cost of simulating a channel in terms of a particular magic state ψ ∈ D(A1), we define cost as

COSTψ,F1(2)
(NB) = min

{
n : Θ[ψn] = NB ,

Θ ∈ F1(2)(A1 → B)
}
. (4.57)

Distillation of a pure single qubit magic state ψ from a channelN ∈ CPTP(A0 → A1) using CSPO preserving

or completely CSPO preserving superchannels is defined as

DISTILLϵψ,F1(2)
(NA) = max{n : F (Θ[N ], ψn) ⩾ 1− ϵ, Θ ∈ F1(2)(A→ B1)} . (4.58)

Proposition 3. COSTF1(N ) ⩽ log(|A1|) if for some system A1, we have

max
ψ∈D(A1)

DSTAB
min (ψA1

) ⩾ LR(NB) (4.59)

where LR(NB) is the log of the robustness of NB . If ψ is a given single qubit magic state, then it follows
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that

COSTψ,F1
(N ) ⩽

⌈
LR(N )

DSTAB
min (ψ)

⌉
. (4.60)

Proof. Let for some ψ ∈ D(A1), the following is satisfied

DSTAB
min (ψA1

) ⩾ LR(NB) . (4.61)

Now consider the following superchannel Θ ∈ S(A1 → B) whose action on any input state ρ ∈ D(A1) is

given as

Θ[ρ] := Tr[ψρ]N + (1− Tr[ψρ])M , (4.62)

where M is the optimal CSPO chosen from the definition of the channel robustness, R(N ). It is easy to

verify that Θ[ψ] = N . From Eq. (4.61), we also get that

− log Tr[ψσ] ⩾ log(1 + R(N )) ∀σ ∈ STAB(A1) . (4.63)

Hence, for any σ ∈ STAB(A1), it holds that Tr[ψσ] ⩽ 1
1+R(N ) , implying that Θ ∈ F1(A1 → B). Thus, the

cost of converting a pure magic state to a magic channel NB using CSPO preserving superchannels is no

greater than log(|A1|) if maxψ∈D(A1)D
STAB
min (ψA1

) ⩾ LR(N ) .

Further, if ψ is a given single qubit pure magic state, then using the additivity of min-relative entropy of

single qubit magic states, we get

COSTψ,F1
(NB) ⩽

⌈
LR(N )

DSTAB
min (ψ)

⌉
. (4.64)

Remark 11. We numerically verify that the bound in Eq. (4.60) is not trivial. As an example, we use the

|T ⟩ state (DSTAB
min (|T ⟩⟨T |) = 0.2284) to calculate the upper bound of cost of creating some magic states. We

present the comparison of the upper bound of our results of cost with the lower bound obtained in [253] as a

table (see table 4.2). Note that in [253] the free operations were stabilizer operations. In the table, a general

resource state |U⟩ = U |+⟩ where |+⟩ is the maximally coherent state and U is some unitary gate. Also, some

special states include the |H⟩ state which is the single-qubit state with Bloch vector (1, 1, 1)/
√

3 and has

robustness
√

3, |χ⟩ state is the two-qubit state with maximum robustness of
√

5 for two-qubit states, and

|Hoggar⟩ state is the three-qubit state which maximizes robustness for three-qubit states and has robustness

3.8.
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State
upper bound from our

work
lower bound from [253]

|H⟩ 2 2
|CS1,2⟩ 3 3
|T1,2,3⟩ 4 3
|χ⟩ 4 4
|CCZ⟩ 4 4
|CS12,13⟩ 4 4
|T1CS2,3⟩ 5 4
|T1CS12,13⟩ 5 5
|Hoggar⟩ 6 6

Table 4.2: Comparison of magic costs

Remark 12. We would like to emphasize here that we provide a general result for the case of channels by

giving a precise formula to find the upper bound on the cost that depends on the log-robustness of the magic

channel and the min-relative entropy of the single-qubit magic state.

Proposition 4. The cost of converting a pure magic state ψA1
∈ D(A1) to a target channel NB ∈

CPTP(B0 → B1) using CSPO preserving or completely CSPO preserving superchannels is lower bounded

by

LRg(NB)

LRg(ψA1
)
⩽ COSTψ,F1(2)

(NB) . (4.65)

Proof. The proof follows from the standard resource theoretic methods and can be seen as a special case of

theorem 1 of [301] together with the sub-additivity of generalized robustness of magic resources.

Proposition 5. Given a channel N ∈ CPTP(A0 → A1) and a single qubit state ψ, the following holds

DISTILLψ,F1(2)
(NA) ⩽

DCSPO
min (NA)

DSTAB
min (ψ)

. (4.66)

Proof. The proof of the above proposition also follows from standard resource theoretic methods [301, 302]

and the additivity of min-relative entropy of single-qubit magic states. For completeness, we provide the

proof in Appendix B.5.

Proposition 6. The lower bound on distilling a single qubit pure magic state ψ from a channel N ∈

CPTP(A0 → A1) using a CSPO preserving superchannel is given by

DISTILLϵψ,F1
(NA) ⩾

⌊
Dϵ, STAB

min (J̃N
A )

LR(ψ)

⌋
, (4.67)

where J̃N
A is the normalized Choi matrix of the channel N , and Dϵ, STAB

min (·) represents the hypothesis testing

relative entropy of magic states which we have defined in Appendix B.4.
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Proof. Let n be the largest non-negative integer such that Dϵ, STAB
min (J̃N

A ) ⩾ nLR(ψ). Then, we can construct

the following superchannel Θ ∈ S(A→ B1) such that for any input channel M∈ CPTP(A0 → A1)

Θ[M] := Tr[J̃M
A E]ψn + (1− Tr[J̃M

A E])σ , (4.68)

where σ ∈ STAB(B1) is chosen from the definition of R(ψn), and E is the optimal POVM element chosen

in the definition of hypothesis testing relative entropy of magic states, Dϵ, STAB
min (J̃N ). We first notice that

for such a superchannel

F (Θ[N ], ψn) ⩾ Tr[Θ[N ]ψn] (4.69)

⩾ Tr[J̃NE] (4.70)

⩾ 1− ϵ (4.71)

where the last inequality comes from the fact that E is optimal in Dϵ, STAB
min (J̃N ).

Since Dϵ, STAB
min (J̃N

A ) ⩾ nLR(ψ), we get

− log Tr[Eσ] ⩾ log(1 + R(ψ))n ⩾ log(1 + R(ψn)) (4.72)

for all σ ∈ STAB(A0A1). Therefore, if the input M ∈ CPTP(A0 → A1) is a CSPO, then − log Tr[EJ̃M
A ] ⩾

log(1 + R(ψn)) which implies that

Tr[EJ̃M
A ] ⩽

1

1 + R(ψn)
.

Hence, Θ is a CSPO preserving superchannel. Thus, we can distill atleast n copies of the single qubit state

ψ from the channel N where n satisfies Dϵ, STAB
min (J̃N

A ) ⩾ nLR(ψ).

4.6 Classical simulation algorithm for circuits

The goal of a classical simulation algorithm is to estimate Born rule probabilities or to find the expectation

value of an observable. To this purpose, a class of algorithms, known as the quasiprobability simulation

techniques, have recently been developed that make use of the quasiprobability decomposition of magic

states or channels [245, 250, 253, 258, 271]. The runtime of these algorithms has been shown to be of the

order of the square of the robustness [253, 258], or the square of another similar monotone, the dyadic

negativity [271]. In [271], another simulation technique, the constrained path simulator for states was

introduced with the idea to reduce the runtime of the simulation. This simulation technique offers constant
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runtime by compromising with the precision in estimating the expected value. Before discussing the dynamic

constrained path simulator, we give a brief sketch of the quasiprobability simulator for completeness as part

of our algorithm also depends on it.

The quasiprobability simulator for multi-qubit systems was first presented in [253] and two other varia-

tions of this quasiprobability simulators were presented in [271]. The runtimes of all these quasiprobability

simulators depend on the product of the squares of the robustness of input magic states. The idea of the

quasiprobability simulator for estimating the expectation value, Pρ, of an observable P given a stabilizer

operation E and an arbitrary input state ρ, as given in [253], is as follows. The input magic state is first

decomposed as a linear combination of pure stabilizer states. Let ρ be the input state decomposed as

ρ =
∑
i xiϕi, where ϕi’s are pure stabilizer states and xi’s are quasiprobabilities. These quasiprobabilities

can be used to form a probability distribution pi = |xi|/
∑
i |xi|. Now using this probability distribution, an i

value is sampled and Gottesman-Knill theorem is used to obtain an eigenvalue m = ±1 for the measurement

of P on E(ϕi). With this eigenvalue, we obtain another value M = sign(xi)m
∑
i |xi| where sign(xi) is equal

to 1 for xi > 0 and -1, otherwise. By repeating this sampling process many times, the mean value of M

can be found which is an “unbiased estimator” of Pρ. Then, for random variables bounded in the interval

[−
∑
i |xi|,+

∑
i |xi|], Hoeffding inequalities are used to show that N samples will estimate the mean to

within δ of the actual mean with probability exceeding 1−ϵ where ϵ = 2 exp[−Nδ2/2(
∑
i |xi|)2]. Put simply,

the number of samples required are of the order of (
∑
i |xi|)2. This quantity is the least when we used the

most optimal decomposition and is then known as the robustness of magic. Thus, the number of samples

and the runtime scales quadratically in the robustness. Now, using the same idea the expectation value of an

observable given an arbitrary circuit can also be estimated. In this case, the runtime similarly depends on

the channel robustness of each channel used in the circuit [258]. The question then is whether the runtime

of the algorithm can be reduced any further. To do that, we allowed for some error in the expectation

value, and modify the static constrained path algorithm presented in [271] for the general case of a circuit

composed of a sequence of channels acting on an initial stabilizer state and ending with a measurement of

some Pauli observable. We modify the static constrained path simulator algorithm such that we achieve the

estimate with a precision more than or equal to a desired precision. With this modification, the runtime of

the algorithm is not a constant but depends on the desired precision (or the desired error). For any non-zero

error, the runtime never exceeds that of a quasiprobability simulator for channels. Moreover, if there is no

bound on the error/precision, the algorithm achieves a constant runtime.

The overall idea of the constrained path simulator for states is as follows. A magic state ρ ∈ D(A1) can

be decomposed as ρ = tσ+ − (t− 1)ρ− for some t ⩾ 1, σ+ ∈ STAB(A1), and ρ− ∈ D(A1). The constrained

path simulator for states works by constraining the quasiprobability decomposition of a state to the positive
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part, i.e., by making the approximation ρ ≈ tσ+. Then, the algorithm estimates tTr[EO(σ+)] upto ϵ error

using a Clifford simulator such as the quasiprobability simulator. Here, E is some Pauli observable, and O

is a CSPO. This estimate is then used to obtain the expectation value Tr[EO(ρ)] and the estimation error.

The runtime of the algorithm is decided by the Clifford simulator used. By defining ϵ as the product of a

constant c and t, the algorithm was shown to have a constant runtime.

Constrained path simulator for channels. Let N be a circuit composed of a sequence of n channels

and let the ith circuit element be denoted by Ni. As mentioned previously in remark 8, the circuit element

Ni can be decomposed using some CSPO Ei and some other channel Mi such that Ni = λiEi − (λi − 1)Mi

where λi is the generalized robustness of Ni. Then, for the whole circuit we can write

N = Nn ◦ · · · ◦ N1 = (λn · · ·λ1)(En ◦ · · · ◦ E1) + . . .+ ((λn − 1) · · · (λ1 − 1))Mn ◦ · · · ◦M1

= (λn · · ·λ1)(En ◦ · · · ◦ E1) + ((λn · · ·λ1)− 1)M

= λE + (λ− 1)M

(4.73)

where λ = λn · · ·λ1, E = En◦· · ·◦E1 andM follows from simple arithmetic manipulation of the first equation

and is the probabilistic combination of the sequence of channels where each sequence contains atleast one

Mi. The aim of the algorithm is to estimate Tr[EN (|0⟩⟨0|)] with a precision more than or equal to some

target precision and a runtime less than what can be achieved by a quasiprobability simulator.

The algorithm starts by replacing the original circuit N with another circuit N ′ to achieve the mean

estimate up to some target error ∆∗. The algorithm first replaces the channel Nj with λjEj if λj , the

generalized robustness of Nj , is less than some fixed real number λ∗. Here, Ej is the optimal CSPO such

that λjEj ⩾ Nj . The choice of λ∗ ensures that the estimation error never exceeds the target allowed

error. Then, using the static Monte Carlo routine introduced in [258] for circuits, the algorithm estimates

λ′Tr[EN ′(|0⟩⟨0|)] up to ϵ error where λ′ is the product of the generalized robustnesses of the replaced channels

and the error ϵ equals a constant c multiplied with λ′. Next, using ϵ, λ′, and the estimate we obtained above,

the algorithm outputs the estimate of the expectation value Tr[EN (|0⟩⟨0|)] up to error ∆ ⩽ ∆∗ following

some trivial steps.

In the static Monte Carlo routine, the runtime of the algorithm is decided by finding the total number

N of steps required to achieve the mean estimate up to an additive error ϵ with success probability 1− pfail.

The number of steps N that the static Monte Carlo takes is given by

N =
⌈
2ϵ−2∥q∥21 log(2p−1

fail)
⌉

(4.74)
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where ∥q∥1 =
∏
j R(Nj) and R(Nj) is the robustness of the circuit element Nj as defined in [258]. In our

hybrid algorithm, since we choose to keep some channels and replace some with CSPOs, the number of steps

to estimate λTr[EN ′(|0⟩⟨0|)] upto ϵ error with success probability 1− pfail is given by

N =

2ϵ−2λ2
∏

j:λj>λ∗

R(Nj)2 log(2p−1
fail)

 (4.75)

=

2c−2
∏

j:λj>λ∗

R(Nj)2 log(2p−1
fail)

 (4.76)

where c is a pre-defined small constant. In this sense, the number of steps only depend on the robustness of

the channels whose λi > λ∗. Note that if all the channels are selected by the algorithm, we essentially have

the runtime as that of static Monte Carlo routine. If all the channels are replaced in the initial steps then

we get a constant runtime.

Algorithm Dynamic constrained path simulator

Input: (i) Sequence of channels N1, . . . ,Nn such that the target channel N = Nn ◦ · · · ◦ N1. (ii) Real
numbers 0 < c, pfail << 1 and Pauli observable E. (iii) Desired error ∆∗.
Pre-Computation: (i) λ∗ = (∆∗ + 1)1/n. (ii) For each circuit element, an optimal decomposition in
terms of CSPOs is determined.
Output: (i) Born rule probability estimate Ê. (ii) Error ∆ such that, |Ê − Tr [EN (|0⟩⟨0|)] | ⩽ ∆, and
∆ ⩽ ∆∗.

1: for i ← 1 to n do
2: λi ← Λ+(Ni), and denote the optimal free channel by Ei.
3: if λi ⩽ λ∗ : then
4: Ni ← λiEi
5: end if
6: end for
7: N ′ ←

(∏
j:λj⩽λ∗ λj

)
(Fn ◦ · · · ◦ F1), where N ′ denotes the new circuit that will be used to find the

estimate and Fk’s denote the circuit elements given be

Fk =

{
Ek if λk ⩽ λ∗

Nk otherwise
(4.77)

8: ϵ← cλ where λ =
∏
j:λj⩽λ∗ λj

9: Let EN ′ be an estimate of λTr[EN ′(|0⟩⟨0|)] upto ϵ error and success probability 1− pfail.
10: Emax ← min{1, EN ′ + ϵ+ λ− 1}
11: Emin ← max{−1, EN ′ − ϵ− λ+ 1}
12: Ê ← (Emax + Emin)/2
13: ∆← (Emax − Emin)/2

Analysis

As with the constrained path simulator for states, the choice of Emax and Emin ensure that for all λ and
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EN ′ , the following inequality holds with probability 1− pfail

|Ê − Tr[EN (|0⟩⟨0|)]| ⩽ ∆ (4.78)

To justify the choice of λ∗, let λ∗ be the generalized robustness of each channel used in the circuit and λ∗

times the optimal CSPO for each channel is considered in the above routine. Then, for any ∆ we have

∆ ⩽ λ(1 + c)− 1 (4.79)

and hence we require λ(1 + c)− 1 ⩽ ∆∗. Assuming there are n channels in the circuit, we get

λ∗ ⩽

(
∆∗ + 1

1 + c

)1/n

(4.80)

≈ (∆∗ + 1)1/n (4.81)

Since this is the worst-case analysis, in practical scenarios we will have λ ⩽ λ∗(equality only arising when

the circuit consists of just one channel applied n times), and therefore ∆ ⩽ ∆∗.

4.7 Conclusion

In this work, we developed the dynamical multi-qubit resource theory of magic channels by identifying the

completely stabilizer preserving operations (CSPOs) as the set of free operations. CSPOs are a perfect

candidate for the free channels of a resource theory of magic channels because they form the largest known

set of operations that cannot provide any quantum advantage. In previous resource theoretic studies of magic

channels, the superchannel approach was only taken in [90] where the authors considered the odd-dimensional

qudit case and the free channels were the completely positive Wigner preserving operations (CPWPO).

There, the free superchannels were chosen to be the ones that completely preserve the set of CPWPO.

In this paper, we defined and characterized two sets of free superchannels - namely, the CSPO preserving

superchannels and the completely CSPO preserving superchannels. We characterized completely CSPO

preserving superchannels in terms of their Choi matrices, and in particular, we showed that a superchannel

is completely CSPO preserving if and only if its normalized Choi matrix is a stabilizer state. We then

defined monotones for states and channels which include the generalized robustness of magic channels, the

min-relative entropy of magic channels, and the geometric magic measure for states. We also addressed

some resource interconversion problems, specifically proving that the qubit interconversion under CSPOs
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can be solved with simple linear programming. We then determined a closed formula for the upper and

lower bound on both the cost of simulating a channel from a qubit and distilling a qubit magic state from

a channel, under CSPO preserving superchannels. We also formulated the lower bound on the qubit cost of

simulating a magic channel, and the upper bound on distilling a pure qubit magic state from a magic channel

under completely CSPO preserving superchannels using the standard resource theoretic techniques. Finally,

we gave a classical simulation algorithm to find expectation values given a general quantum circuit. The

algorithm works by selecting and replacing some circuit elements with some CSPO, based on a parameter

that depends on the minimum target precision required. Hence, due to this selective replacement algorithm,

the runtime of our algorithm also depends on the precision required. If the precision required is too tight,

then the runtime reaches that of the static Monte Carlo simulation algorithm given in [258], whereas, if

there is no bound on the precision, the algorithm has a constant runtime and can be seen as a generalization

of the constrained path simulator introduced in [271] for states. These classical simulation algorithms help

benchmark the quantum computational speedup and there is a lot left to explore in the general circuit

case. Apart from that, it would be interesting to explore non-deterministic transformations and catalytic

transformations under CSPO preserving and completely CSPO preserving superchannels. Lastly, because

of the difficulty in verifying whether a state is a stabilizer or not, we were unable to find lower bounds on

distilling magic states using completely CSPO preserving operations and leave it as an open problem.
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Chapter 5

Lorenz majorization among quantum

channels

5.1 Introduction

One of the primary objectives of both classical and quantum information theory is to find conditions

under which interconversion among resources is possible. For instance, interconversion among probabil-

ity distributions using doubly stochastic matrices is characterized by majorization. Majorization is a

pre-order on vectors which finds its applications in variety of subjects including quantum information

(see [113, 114, 303, 304, 305, 306] and references within). Another pre-order known as relative majorization

generalizes the concept of majorization between vectors to a pair of vectors. While majorization con-

cerns interconvertibility among vectors, relative majorization concerns interconvertibility among pairs of

vectors [307, 308]. A pair of vectors is said to relatively majorize another pair of vectors if there exists a

column stochastic matrix that transforms the former pair to the latter. Relative majorization generalizes

the concept of majorization between vectors when either the first or the second vector of both the pairs is

the uniform distribution.

Interestingly, relative majorization between pairs of probability distributions has an elegant geometrical

characterization in terms of symmetric convex regions called testing regions [98]. By symmetric, we mean

that if (x, y) belongs to the testing region, then so does (1− x, 1− y). In 1953, Blackwell established that a

pair of probability distributions can be transformed to another pair of distributions if and only if the testing

region of the former pair contains that of the latter [98]. These conditions can also be expressed using the

upper/lower boundary of the testing region known as the upper/lower Lorenz curves. Then, if the testing
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region of one pair contains that of the other, we say that the first pair Lorenz majorizes the other.

Lorenz curves were first introduced in 1905 by Max Lorenz to compare the distribution of income and

wealth within an economy [309]. Since then, these curves have been used for comparing distributions in

various fields because of the simple geometrical characterization that they offer [82, 98, 310, 311, 312]. After

Blackwell established the interconversion conditions for pairs of probability distributions using Lorenz curves

in 1953, Alberti and Uhlmann in 1980, extended these results from pairs of probability distributions to pairs

of qubits [313]. To gain more insights in quantum states’ interconversion and to draw analogies between

classical probability theory and quantum theory, the idea of Lorenz curves and testing region defined for

pairs of probability distributions was generalized to quantum states recently in 2017 [308, 314, 315]. These

generalizations were used as a tool to show the existence of a transformation from a pair of states to another

in various resource theories like athermality, thermodynamics, and magic [306, 307, 308, 315, 316, 317, 318].

In this work, we tackle interconversion problems among pairs of channels and find conditions using

Lorenz curves. To this purpose, we generalize the concept of Lorenz majorization, quantum testing region,

and quantum relative majorization to the channel domain in Sec. 5.3. We also generalize the definition

of Hilbert α divergences to quantum channels and find equivalent conditions of Lorenz majorization in its

terms. Using this generalization, we find conditions for converting a pair of probability distributions to a pair

of classical channels in terms of Lorenz curves. We show equivalence in Lorenz and relative majorization for

interconversion among pairs of classical channels when the resultant pair of channels has a two-dimensional

output. These interconversion conditions are provided in Sec. 5.4. In the end, we conclude by presenting

some open problems.

5.2 Background

5.2.1 Testing region and Lorenz majorization for pairs of states

The testing region T (ρA0 , σA0) of a pair of states ρ, σ ∈ D(A0) is defined as the set of achievable points

(x, y) = (Tr[Λσ] ,Tr[Λρ]) (5.1)

where 0 ⩽ Λ ⩽ IA0
is a POVM element. The quantum Lorenz curve is defined to be the upper boundary of

T (ρ, σ). A pair of states is said to Lorenz majorize another pair if the testing region of the former contains

that of the latter.

The lower Lorenz curve can be expressed as an optimization problem which is closely related to the

hypothesis testing relative entropy. The hypothesis testing relative entropy (see [319, 320, 321] and references
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within) for a pair of states ρ, σ ∈ D(A0), is defined for 0 ⩽ ϵ ⩽ 1 as follows:

Dϵ
H (ρ∥σ) := − logQϵ (ρ∥σ) (5.2)

where

Qϵ (ρ∥σ) := min Tr [σΛ] (5.3)

s.t. 0 ⩽ Λ ⩽ IA0
(5.4)

Tr [ρΛ] ⩾ 1− ϵ . (5.5)

The function Qϵ(ρ∥σ) for all 0 ⩽ ϵ ⩽ 1 defines the lower Lorenz curve of the pair (ρ, σ). Since Qϵ(ρ∥σ) is a

semi-definite program, it is efficiently computed.

To see how the testing region and the upper and lower Lorenz curve looks like, let us take a simple example

of diagonal states. Let ρ and σ be diagonal states with entries (1/3, 1/4, 1/4, 1/6) and (1/12, 1/6, 1/3, 5/12)

on their diagonals, respectively. Then the lower Lorenz curve will have following extreme points:

(0, 0), (1/3, 1/12), (7/12, 3/12), (5/6, 7/12), (1, 1)

which can be easily computed. Using the symmetry of the testing region we can easily find the extreme

points of the upper Lorenz curve, and construct the full testing region corresponding to (ρ, σ).

5.2.2 Hilbert α divergence for states

Hilbert α divergence, a family of divergences, was introduced in [308] as a tool to characterization quantum

relative majorization for quantum states. Given a pair of quantum states ρ and σ, for all α ⩾ 1, the following

is defined:

supα(ρ/σ) := sup
α−1I⩽Λ⩽I

Tr[Λρ]

Tr[Λσ]
(5.6)

and the corresponding divergence is defined as:

Hα(ρ∥σ) :=
α

α− 1
log2 supα(ρ/σ) (5.7)

The properties of the Hilbert α divergence of states can be found in [308].
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5.3 Quantum relative Lorenz curves and Hilbert α divergences for

channels

We can extend the definition of relative majorization from the state to the channel domain as follows

Definition 5.1. Let N ,M ∈ CPTP(A) and E ,F ∈ CPTP(B) be two pairs of quantum channels. We say

that (N ,M) relatively majorize (E ,F) and write

(N ,M) ≻ (E ,F) ⇐⇒ E = Θ[N ] and F = Θ[M] (5.8)

where Θ ∈ S(A→ B).

Next, we generalize the notion of a testing region for a pair of channels. Using this, we extend the concept

of Lorenz majorization to the channel domain.

Definition 5.2. Given two quantum channels N ,M ∈ CPTP(A), the associated testing region, denoted

T (N ,M), is defined as the set of achievable points

(x, y) = (Tr [ΛRA1MA0→A1(ψRA0)] , Tr [ΛRA1NA0→A1(ψRA0)]) (5.9)

where 0 ⩽ ΛRA1 ⩽ IRA1 , and ψ ∈ D(RA0). Equivalently, using the Choi matrices JN
A and JM

A of the channels

N andM, and process positive operator values measures (PPOVM) we can write the set of achievable points

as

(x, y) =
(
Tr
[
Λ′
A0A1

JM
A

]
,Tr

[
Λ′
A0A1

JN
A

])
(5.10)

where 0 ⩽ Λ′
A0A1

⩽ ρA0
⊗ IA1

is a process POVM, and ρ ∈ D(A0). The quantum Lorenz curve is defined to

be the upper boundary of T (N ,M).

Definition 5.3. Let N ,M ∈ CPTP(A) and E ,F ∈ CPTP(B) be two pairs of quantum channels. We say

that (N ,M) Lorenz majorizes (E ,F) and write

(N ,M) ≻L (E ,F) ⇐⇒ T (N ,M) ⊇ T (E ,F) (5.11)

The hypothesis testing relative entropy (see [319, 320, 321] and references within) for a pair of states
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ρ, σ ∈ D(A0), is defined for 0 ⩽ ϵ ⩽ 1 as follows:

Dϵ
H (ρ∥σ) := − logQϵ (ρ∥σ) , (5.12)

Qϵ (ρ∥σ) := min
0⩽Λ⩽IA0

Tr[ρΛ]⩾1−ϵ

Tr [σΛ] (5.13)

The channel hypothesis testing relative entropy can similarly be generalized using process POVM as

Definition 5.4. The channel hypothesis testing relative entropy can be defined as

Dϵ
H(N∥M) = sup

ψ
Dϵ
H(N (ψ)∥M(ψ)) (5.14)

= sup
ψ

(− logQϵ(N (ψ)∥M(ψ))) (5.15)

= − log inf
ψ
Qϵ(N (ψ)∥M(ψ)) (5.16)

= − logQϵ(N∥M) (5.17)

and hence we can define Qϵ(N∥M) as

Qϵ(N∥M) := inf
ψ
Qϵ(N (ψ)∥M(ψ)) (5.18)

= inf Tr[M(ψ)Λ] (5.19)

s.t. 0 ⩽ Λ ⩽ I , (5.20)

Tr[N (ψ)Λ] ⩾ 1− ϵ , (5.21)

ψ ∈ D(RA0) (5.22)

= inf Tr[JMΛ′] (5.23)

s.t. : 0 ⩽ Λ′
A0A1

⩽ ρA0
⊗ IA1

, (5.24)

Tr[ρ] = 1 , (5.25)

Tr[JNΛ′] ⩾ 1− ϵ . (5.26)

where we have used the fact that any bipartite pure state |ψ⟩RA0 can be written as |ψ⟩RA0 = Mψ ⊗

IA0
|Φ+⟩Ã0A0

using a linear map Mψ : A0 → R and the unnormalized maximally entangled state |Φ+⟩Ã0A0
,

and M†
ψMψ = ρ ∈ D(A0).

We can extend the definition of Hilbert α divergences to quantum channels as follows: Given two quantum
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channels N ,M∈ CPTP(A), we defined for all α ⩾ 1, the following quantity:

supα(N/M) := sup
ρ∈D(R0A0)

supα (NA(ρR0A0)/MA(ρR0A0))

= sup
ψ∈D(R0A0)

supα(NA(ψR0A0
)/MA(ψR0A0

))

= sup
ψR0A0

,

α−1I⩽ΛR0A1
⩽I

Tr[ΛR0A1NA(ψR0A0)]

Tr[ΛR0A1
MA(ψR0A0

)]
.

Using the above quantity, the Hilbert α divergence can be defined as

Hα(N/M) :=
α

α− 1
log2 supα(N/M) . (5.27)

Theorem 5.5. Let N ,M∈ CPTP(A0 → A1). Then

1. for all α ⩾ 1, Hα(N∥M) ⩾ 0 with equality if and only if N =M;

2. for all α ⩾ 1, the data-processing inequality holds for any superchannel Θ ∈ S(A→ B), Hα[Θ(N )∥Θ(M)] ⩽

Hα(N∥M);

3. H∞(N∥M) = limα→∞Hα(N∥M) = Dmax(N∥M)

4. H1(N∥M) = limα→1Hα(N∥M) = 1
2 ln(2)∥N −M∥⋄

Proof of property 1.

Hα(N∥M) =
α

α− 1
log2 supα(N/M)

=
α

α− 1
log2 sup

ψ∈D(R0A0)

supα(N (ψ)/M(ψ))

= sup
ψR0A0

Hα(N (ψ)∥M(ψ))

⩾ 0

where the second equality follows from the definition of supα(N/M) and the inequality follows from the fact

that for states ρ, σ ∈ D(R0A1), Hα(ρ∥σ) ⩾ 0 [308]. It was shown in [308] for the state case that Hα(ρ∥σ) = 0

if and only if ρ = σ. Therefore, in the channel case, we can conclude that Hα(ρ∥σ) ⩾ 0 holds if and only if

N =M.

Proof of property 2. Let Θ ∈ S(A → B) be realized using some pre-processing channel E ∈ CPTP(B0 →
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E0A0) and post-processing channel F ∈ CPTP(E0A1 → B1). Then for all α ⩾ 1 it holds that

supα (Θ[N ]∥Θ[M]) = sup
ψR0B0

supα (Θ[N ](ψ)/Θ[N ](ψ))

= sup
ψR0B0

α−1I⩽ΛR0B1
⩽I

Tr [Λ(Θ[N ](ψ))]

Tr [Λ(Θ[M](ψ))]

= sup
ψR0B0

α−1I⩽ΛR0B1
⩽I

Tr [Λ(F ◦ (I ⊗N ) ◦ E(ψ))]

Tr [Λ(F ◦ (I ⊗M) ◦ E(ψ))]

= sup
ψR0B0

α−1I⩽Λ⩽I

Tr [F∗(Λ)((I ⊗N ) ◦ E(ψ))]

Tr [F∗(Λ)((I ⊗M) ◦ E(ψ))]

⩽ sup
ρ∈D(R0E0A0)

α−1I⩽Λ′
R0E0A1

⩽I

Tr [Λ′(N (ρ))]

Tr [Λ′(M(ρ))]

= sup
ϕ∈D(R0E0A0)

α−1I⩽Λ′
R0E0A1

⩽I

Tr [Λ′(N (ϕ))]

Tr [Λ′(M(ϕ))]

= supα(N/M) .

Therefore, Hα[Θ(N )∥Θ(M)] ⩽ Hα(N∥M) for all α ⩾ 1.

Proof of property 3 and 4. By taking the limit α→∞ we get

lim
α→∞

Hα(N∥M) = lim
α→∞

α

α− 1
log2 sup

ψ∈D(R0A0)

supα(N (ψ)/M(ψ)) (5.28)

= sup
ψ∈D(R0A0)

log2

(
sup

0⩽Λ⩽I

Tr[ΛN (ψ)]

Tr[ΛM(ψ)]

)
(5.29)

= sup
ψ∈D(R0A0)

log2 inf{λ : λM(ψ) ⩾ N (ψ)} (5.30)

= log2 inf{λ : λJM
A ⩾ JN

A } (5.31)

= Dmax(N∥M) (5.32)

Now by taking the limit α→ 1 we get
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H1(N∥M) = lim
α→1

Hα(N∥M) = lim
α→1

(
sup

ψ∈D(R0A0)

α

α− 1
log2 sup

α−1I⩽Λ⩽I

Tr[ΛN (ψ)]

Tr[ΛM(ψ)]

)
(5.33)

= sup
ψ∈D(R0A0)

1

2 ln(2)
∥N (ψ)−M(ψ)∥1 (5.34)

=
1

2 ln(2)
∥N −M∥⋄ (5.35)

where the second equality follows from Theorem 1 property 4 of [308].

Theorem 5.6. Consider two pairs of quantum channels (N ,M) ∈ CPTP(A0 → A1) and (E ,F) ∈ CPTP(B0 →

B1) such that (N ,M) ≻L (E ,F). The following are equivalent:

1. for all t ⩾ 0, ∥N − tM∥⋄ ⩾ ∥E − tF∥⋄;

2. for all α ⩾ 1,

Hα(N∥M) ⩾ Hα(E∥F)

Hα(M∥N ) ⩾ Hα(F∥E)

3. for all 0 ⩽ ϵ ⩽ 1, Dϵ
H(N∥M) ⩾ Dϵ

H(E∥F)

The proof of this theorem is broken down into the following lemmas.

Lemma 5.7. Given two pairs of quantum channels (N ,M) ∈ CPTP(A) and (E ,F) ∈ CPTP(B) such that

(N ,M) ≻L (E ,F), the following are equivalent:

(i) T(N ,M) ⊇ T(E ,F);

(ii) ∥t1N + t2M∥⋄ ⩾ ∥t1E + t2F∥⋄ for all t1, t2 ∈ R;

(iii) ∥N − tM∥⋄ ⩾ ∥E − tF∥⋄ for all t ⩾ 0.

Proof. To show the equivalence of property (ii) with (i), let (n,m) and (e, f) be the generic elements

of T(N ,M) and T(E ,F), respectively. Then, using the separation theorem for convex sets, we get that

T(N ,M) ⊇ T(E ,F) if and only if, for any v = (a, b) ∈ R2,

max
(n,m)∈T(N ,M)

[an+ bm] ⩾ max
(e,f)∈T(E,F)

[ae+ bf ] (5.36)
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Now,

max
(n,m)∈T(N ,M)

[an+ bm] = max
0⩽Λ⩽I

max
ψ∈D(R0A0)

{aTr[ΛN (ψ)] + bTr[ΛM(ψ)]} (5.37)

= max
0⩽Λ⩽I

max
ψ∈D(R0A0)

{Tr[(aN (ψ) + bM(ψ))Λ]} (5.38)

= max
ψ∈D(R0A0)

Tr[(aN (ψ) + bM(ψ))+] (5.39)

=
1

2

(
max
ψ

(∥aN (ψ) + bM(ψ)∥1 + Tr[aN (ψ) + bM(ψ)])

)
(5.40)

=
1

2
(∥aN + bM∥⋄ + a+ b) (5.41)

This shows that Eq. (5.36) is satisfied if and only if ∥aN + bM∥⋄ ⩾ ∥aE + bF∥⋄. To show the equivalence of

ii and iii, first note that iii is a special case of ii. To prove that iii implies ii, let us first take the case when

t1, t2 ⩾ 0 or t1, t2 ⩽ 0, then ∥t1E + t2F∥⋄ = ∥t1N + t2M∥⋄ because E , F , N ,M are completely positive

maps. Hence, we can consider the case t1 > 0 > t2 or t2 > 0 > t1. Either of the choices will give the same

result, because for any matrix A it holds that ∥A∥ = ∥−A∥ for any norm. Now, by restricting to the former

choice, we can rescale both t1 and t2 by the positive factor 1/t1 to obtain the desired statement.

Lemma 5.8. For any choice of quantum channels N andM,

supα(N/M) = inf{λ ⩾ 1 :
∥λM−N∥⋄

λ− 1
⩽
α+ 1

α− 1
}

Proof.

supα(N/M) = sup
ψ∈D(R0A0)

sup
α−1I⩽Λ⩽I

Tr[ΛN (ψ)]

Tr[ΛM(ψ)]
(5.42)

= inf

{
λ : λ ⩾

Tr[ΛN (ψ)]

Tr[ΛM(ψ)]
, ∀ ψ ∈ D(R0A0), α−1I ⩽ Λ ⩽ I

}
(5.43)

= inf
{
λ : Tr[Λ(λM(ψ)−N (ψ))] ⩾ 0, ∀ ψ ∈ D(R0A0), α−1I ⩽ Λ ⩽ I

}
(5.44)

= inf{λ ∈ R : α−1Tr[(λM(ψ)−N (ψ))+] ⩾ Tr[(λM(ψ)−N (ψ))−], ψ ∈ D(R0A0)} (5.45)

where, in the last equality, we used the decomposition A = A+−A− for Hermitian operators and the choice

Λ = α−1P+ +P− where P± are the projectors onto the positive and negative part of λM(ψ)−N (ψ). Then,

using the relations

λ− 1 = Tr[(λM(ψ)−N (ψ))+]− Tr[(λM(ψ)−N (ψ))−]
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for all ψ ∈ D(R0A0), and

∥λM−N∥⋄ = sup
ψ∈D(R0A0)

∥λM(ψ)−N (ψ)∥1

= sup
ψ

( Tr[(λM(ψ)−N (ψ))+]

+ Tr[(λM(ψ)−N (ψ))−] )

we find that

Tr[(λM(ψ)−N (ψ))−] ⩽
λ− 1

α− 1
(5.46)

holds if and only if ∥λM−N∥⋄ ⩽ λ−1
α−1 + Tr[(λM(ψ)−N (ψ))+]. From this, we easily get that

supα(N/M) = inf

{
λ ⩾ 1 :

∥λM−N∥⋄
λ− 1

⩽
α+ 1

α− 1

}

Lemma 5.9. For any choice of quantum channels N andM, the function

f(λ) =
∥λM−N∥⋄

λ− 1
(5.47)

is monotonically nonincreasing in the domain λ ⩾ 1 with f(1) =∞ and f(∞) = 1.

Proof. Since the function f(λ) = ∥λσ−ρ∥1

λ−1 is monotonically nonincreasing for any density matrices ρ, σ, the

equation (5.47) will hold for the channel case and f(1) =∞ and f(∞) = 1.

Lemma 5.10. Consider two pairs of quantum channels (N ,M) and (E ,F). Then, the following are equiv-

alent:

(i) for all α ⩾ 1, supα(N/M) ⩾ supα(E/F) and infα(N/M) ⩽ infα(E/F);

(ii) ∥tM−N∥⋄ ⩾ ∥tF − E∥⋄ for all t ⩾ 0.

Proof. The proof for channels is similar to the state case in [308].

Lemma 5.11. Given two pairs of quantum channels (N ,M) and (E ,F) on dynamical system A and B

respectively, the following are equivalent:

(i) Qϵ(N∥M) ⩽ Qϵ(E∥F), for all ϵ ∈ [0, 1];

(ii) ∥pN −M∥⋄ ⩾ ∥pE − F∥⋄ for all p ⩾ 0.
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Proof. From Equations (5.23) to (5.26), we know that Qϵ(N∥M) can be expressed as an SDP. It’s dual can

be expressed as

Qϵ(N∥M) = sup (1− ϵ)p− t (5.48)

s.t. tIA0
⩾ αA0

⩾ 0 , (5.49)

αA ⩾ pJN
A − JM

A , (5.50)

t ∈ R, p ⩾ 0 . (5.51)

To get the supremum in Eq. (5.48), we can first optimize over t by keeping p fixed. Notice that minimizing t

subject to Eqs. (5.49) and (5.50) is equal to the half of the diamond norm between pN and M [129]. Thus,

Qϵ(N∥M) can be expressed as

Qϵ(N∥M) = sup
p⩾0

fϵ(p) (5.52)

where

fϵ(p) := (1− ϵ)p− 1

2
∥pNA −MA∥⋄ (5.53)

Using the above function, the equivalence in (i) and (ii) can be shown by following similar steps as given

in Lemma 5 of [308].

5.4 Interconversions

Theorem 5.12. Let E ,F ∈ CPTP(A0 → A1) and N ,M∈ CPTP(B0 → B1). Then (E ,F) ≻L (N ,M) ⇐⇒

(E ,F) ≻ (N ,M) in the following cases:

I. When |A0| = 1 and A1, B0, B1 are classical systems. That is, a pair of classical states can be converted

to a pair of classical channels if and only if the pair of classical states Lorenz majorizes the pair of

classical channels.

II. When A0, A1, B0, B1 are classical systems and |B1| = 2. That is, a pair of classical channels can be

converted to a pair of classical channels with two-dimensional output if and only if the former pair

Lorenz majorizes the latter.

We break the proof of the above theorem (and its cases) into several lemmas.
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Lemma 5.13 (Theorem 5.12 Case I). Let ρ, σ ∈ C(A1) be classical states in systems A1 and N ,M∈ C(B).

Then,

(ρ, σ) ≻ (N ,M) ⇐⇒ (ρ, σ) ≻L (N ,M) (5.54)

Proof. It follows directly from the definitions that (ρA1
, σA1

) ≻ (NB ,MB) =⇒ (ρA1
, σA1

) ≻L (NB ,MB).

For the proof of other direction, we just need to show the existence of a superchannel Θ ∈ S(A1 → B) such

that Θ[ρ] = N and Θ[σ] =M. Since N andM are classical channels, their Choi matrices, JN
A and JM

A , are

diagonal and can be expressed as |A1|× |A0| column stochastic matrices. Let us denote the columns of these

matrices by ni and mi, respectively, where i = {1, . . . , |A0|}. The testing region associated with (N ,M) is

then the convex combination of the testing regions T(ni,mi) and the Lorenz curve associated with (N ,M)

is the upper boundary of the convex region T (N ,M). Then, the condition (ρ, σ) ≻L (N ,M) implies that

the Lorenz curve of (ρ, σ) is never below the Lorenz curve of (ni,mi) for all i = {1, . . . , |A0|}. From [308]

we know that if a pair of classical states Lorenz majorizes another pair of classical states then there exists a

channel that transforms the former into the latter. Then, for every i ∈ {1, . . . , |A0|} there exists a channel

Ei ∈ CPTP(A1 → B1) that can transform the pair of states (ρA1 , σA1) to the pair of classical states in system

B1 with diagonals (ni,mi). Using these Ei’s, we can now define a superchannel Θ ∈ S(A1 → B) as

JΘ
A1B :=

∑
i

|i⟩⟨i|B0
⊗ JEi

A1B1
. (5.55)

It is straightforward to verify that the above superchannel transforms the pair of state (ρ, σ) to the pair of

channels (N ,M).

Lemma 5.14. Let N ,M ∈ C(A0 → A1) and E ,F ∈ C(B0 → B1) where |A0| = |A1| = 2 = |B0| = |B1|.

Then,

(N ,M) ≻ (E ,F) ⇐⇒ (N ,M) ≻L (E ,F) (5.56)

Proof. The proof of (N ,M) ≻R (E ,F) =⇒ (N ,M) ≻L (E ,F) follows from the definition. For the other

side, let us look at the Lorenz curves of both pairs of qubit classical channels. Since (N ,M) ≻L (E ,F),

either the individual Lorenz curves L(ei, fi) for i = {1, 2} lie below either of L(ni,mi) for i = {1, 2} or they

do not. In the former case, we know from the results of the state case that there exists a classical channel

transforming one pair of incoherent states to another when one Lorenz majorizes the other. Then wlog,
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Figure 5.1: Classical Lorenz curve of two pairs of classical channels

suppose (ni,mi) ≻L (ei, fi) for i = (1, 2). Then, there exist classical channels R1 and R2 transforming the

pairs (n1,m1) and (n2,m2) to (e1, f1) and (e2, f2), respectively. Then the Choi matrix of the superchannel

Θ ∈ S(A→ B) that transforms the pair of channels (N ,M) to (E ,F) is given by

JΘ = |0⟩⟨0|A0
⊗ JR1

A1B1
⊗ |0⟩⟨0|B0

+ |1⟩⟨1|A0
⊗ JR2

A1B1
⊗ |1⟩⟨1|B0

(5.57)

For the latter part, when the Lorenz curve of (N ,M) lies above that of {ei, fi} for both i = {1, 2}, but

either one or both of these are not contained in L(ni,mi) for i = {1, 2} (refer Fig.5.1), we can always find

two pairs of pure bipartite states of the form
√
p|00⟩ +

√
1− p|11⟩ whose Lorenz curves have a extreme

point on the line connecting the extreme points of L(n1,m1) and L(n2,m2) and which always lie above

the Lorenz curves L(ei, fi) for i = 1, 2, respectively. This is true because the Lorenz curve is convex. Let

|ψ1⟩ =
√
p|00⟩+

√
1− p|11⟩ be such that

L
(
NA0→A1

(
ψ1Ã0A0

)
,MA0→A1

(
ψ1Ã0A0

))
≻L L(e1, f1) (5.58)
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and let |ψ2⟩ =
√
q|00⟩+

√
1− q|11⟩ be such that

L
(
NA0→A1

(
ψ2Ã0A0

)
,MA0→A1

(
ψ2Ã0A0

))
≻L L(e2, f2) . (5.59)

Notice that the states M(ψ1),M(ψ2), N (ψ1), and N (ψ2) are diagonal. Using these, we can define two

classical channels P,Q ∈ C(C1 → A0A1)/C(B0 → B1) where |C1| = 2, and with Choi matrices JP and JQ

as given by

JP = |0⟩⟨0| ⊗ NA0→A1

(
ψ1Ã0A0

)
+

|1⟩⟨1| ⊗ NA0→A1

(
ψ2Ã0A0

)
,

JQ = |0⟩⟨0| ⊗MA0→A1

(
ψ1Ã0A0

)
+

|1⟩⟨1| ⊗MA0→A1

(
ψ2Ã0A0

)
(5.60)

Then, it can be easily verified that the following Choi matrix of a superchannel Θ converts the pair of classical

channels (N ,M) to another pair of classical channels (P,Q)

JΘ
AB = |0⟩⟨0|A0

⊗ JΘ1

A1B1
⊗ |0⟩⟨0|B0

+ |1⟩⟨1|A0
⊗ JΘ2

A1B1
⊗ |1⟩⟨1|B0

= |0⟩⟨0|A0
⊗
[
|0⟩⟨0|A1

⊗
(
p (|0⟩⟨0| ⊗ |0⟩⟨0|)B1

⊗ |0⟩⟨0|B0

+ q (|0⟩⟨0| ⊗ |0⟩⟨0|)B1
⊗ |1⟩⟨1|B0

)
+ |1⟩⟨1|A1 ⊗

(
p (|0⟩⟨0| ⊗ |1⟩⟨1|)B1

⊗ |0⟩⟨0|B0

+ q (|0⟩⟨0| ⊗ |1⟩⟨1|)B1
⊗ |1⟩⟨1|B0

) ]
+ |1⟩⟨1|A0

⊗
[
|0⟩⟨0|A1

⊗
(
(1− p) (|1⟩⟨1| ⊗ |0⟩⟨0|)B1

⊗ |0⟩⟨0|B0

+ (1− q) (|1⟩⟨1| ⊗ |0⟩⟨0|)B1
⊗ |1⟩⟨1|B0

)
+ |1⟩⟨1|A1

⊗
(
(1− p) (|1⟩⟨1| ⊗ |1⟩⟨1|)B1

⊗ |0⟩⟨0|B0

+ (1− q) (|1⟩⟨1| ⊗ |1⟩⟨1|)B1
⊗ |1⟩⟨1|B0

) ]
.

(5.61)

Finally, the superchannel to convert the pair of channels (P,Q) to (E ,F) can be found in a similar way we

formulated Eq. (5.57). Thus, we can find superchannels that convert (N ,M) to (P,Q) and (P,Q) to (E ,F),

making the transformation of (N ,M) to (E ,F) possible.

Lemma 5.15. Let N ,M ∈ C(A0 → A1) and E ,F ∈ C(B0 → B1) be such that |A1| = |B1| = 2. Then
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(N ,M) ≻L (E ,F) ⇐⇒ (N ,M) ≻ (E ,F).

Proof. When |A1| = |B1| = 2, the stochastic matrices corresponding to N and M are 2 × |A0| matrices,

and the ones corresponding to E and F are 2 × |B0| matrices. The Lorenz curve of (N ,M) is the convex

curve formed from the extreme points of the Lorenz curves of (ni,mi) for all i = {1, . . . , |A0|}. Likewise, the

Lorenz curve of (E ,F) is the convex curve formed from the extreme points of the Lorenz curves of (ej , fj) for

all j = {1, . . . , |B0|}. Since ni,mi, ej and fj are two-dimensional probability vectors, we can use Lemma 5.14

to find a state ψj such that (I ⊗ N (ψj), I ⊗M(ψj)) Lorenz majorizes the pair (ej , fj). Thus, we can find

a channel that transforms (N ,M) to (ej , fj) for all j. Using this, we can construct a superchannel that

converts (N ,M) to (E ,F).

Lemma 5.16 (Theorem 5.12 Case III). Let N ,M∈ C(A0 → A1) and E ,F ∈ C(B0 → B1). Then (N ,M) ≻L

(E ,F) ⇐⇒ (N ,M) ≻ (E ,F) holds if |B1| = 2.

Proof. With each vertex of the Lorenz curve of (N ,M), we can construct a Lorenz curve corresponding to

a pair of two-dimensional classical states or probability vectors (pi, qi) which can be achieved by evolving

some state through N and M. Thus, using these pi and qi, we can form stochastic matrices corresponding

to two channels P,Q ∈ C(R1 → R2) where |R1| is equal to the number of extreme points of the Lorenz

curve of (N ,M) and |R2| = 2. Thus, a superchannel can be constructed that converts the pair of channels

(N ,M) to (P,Q). Since the Lorenz curve of (E ,F) lies below that of (N ,M) (and hence is below that of

(P,Q)), from Lemma 5.15 we can find a superchannel that transforms the pair of channels (P,Q) to (E ,F).

Therefore, (N ,M) ≻L (E ,F) ⇐⇒ (N ,M) ≻ (E ,F) when E ,F ∈ C(B0 → B1) where |B1| = 2.

5.5 Summary

In this chapter, I generalized Lorenz majorization to the channel domain. In Section 5.3, we defined the

testing region for a pair of channels by using a process POVM and extended the definition of Hilbert α

divergence for a pair of channels. We also formulated equivalent conditions for Lorenz majorization between

a pair of channels in terms of Hilbert α divergence that we defined for channels. In section 4.5, we solve

some interconversion problems among states and channels and found the conditions for equivalence between

relative and Lorenz majorization. In Lemma 5.13, we show that there exists a superchannel to convert

a pair of classical states to a pair of classical channels if the pair of classical states Lorenz majorizes the

pair of classical channels. We also made progress towards completing the picture of Lorenz and relative

majorization equivalence for the classical case. Until now, it was known that Lorenz and relative majorization
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are equivalent for pairs of probability distributions and classical states. In Lemma 5.16, we show equivalence

in Lorenz and relative majorization for the case when a pair of channels N ,M ∈ CPTP(A0 → A1) Lorenz

majorizes a pair of channels E ,F ∈ CPTP(B0 → B1) where |B1| = 2. We leave as open the last piece of

puzzle in the classical case i.e., the equivalence of Lorenz and relative majorization for classical channels

when |B1| > 2. We would like to conclude by giving the following conjecture. Let (ρ1, ρ2) ∈ D(A0) and

(σ1, σ2) ∈ D(A1) be such that (ρ1, ρ2) ≻L (σ1, σ2), and (ρ′1, ρ
′
2) ∈ D(B0) and (σ′

1, σ
′
2) ∈ D(B1) be such that

(ρ′1, ρ
′
2) ≻L (σ′

1, σ
′
2). Then, we conjecture that

(ρ1 ⊗ ρ′1, ρ2 ⊗ ρ′2) ≻L (σ1 ⊗ σ′
1, σ2 ⊗ σ′

2) . (5.62)
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Chapter 6

Limitations on simulating a unitary

channel using fixed processor

6.1 Introduction

In quest for automation, programming devices or machines is a vital step. In the language of classical

computing, programs (software) allow us to execute any sequence of logical operations on a user-defined

data using a fixed processor (hardware). Similarly, one hopes to realize automation in the quantum era.

Quantum computers, powered by the laws of quantum mechanics, promise to process information and

perform computation in a manner far more superior than classical computers [25]. A fundamental model

to realize universal quantum computation is that of a fixed programmable quantum processor – a concept

similar to its classical counterpart. A mathematical abstraction of such a model is a bipartite processor

with one of the inputs being a specifically programmed quantum state that helps the processor implement a

desired unitary gate on the other input quantum state.

This idea of (universal) quantum programmability was first proposed by Nielsen and Chuang [47]. They

showed that in order to simulate distinct unitaries, the program states must be orthogonal. This result implies

that the dimension of the programming system must scale up to infinity, thus disproving the existence of

a universal quantum processor. Luckily, in an imprecise manner, universal programmability of quantum

processors can still be reached, and bounds on the dimension of the program state have been calculated for

the following cases:

(i) Approximate Quantum Programming: The desired gate is implemented by allowing some errors quan-

tified by distance functions of quantum channels, such as channel fidelity or diamond norm (see
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Refs. [322, 323, 324] and references therein).

(ii) Probabilistic Quantum Programming: The target gate is simulated probabilistically. Specific protocols

include the gate-teleportation presented in Ref. [325] (see Refs. [42, 44, 45, 326, 327] and references

therein).

In the above approaches to approximately or probabilistically simulate a unitary gate, the processor needs

to be scaled. Considering the fact that scaling makes it hard to prevent errors in computation, a physically

motivated constraint is to fix the dimensions of the input and output systems of the processor. With this

restriction, several questions emerge, such as how to quantify a programmable processor, how to compare

the efficiency of different processors for simulating a given unitary, and what are optimal ways to achieve

the peak performance using a particular processor.

To address these questions, we adopt the most general approach of manipulating a quantum processor,

i.e., by encoding program states into entangled states and decoding information through joint measurements.

We show that these operations (the input program state and the joint measurements) together are completely

characterized by the process positive operator valued measure (PPOVM) introduced in the theory of quantum

channel measurement [117]. Using this framework, we quantify the performance of a processor with the help

of average fidelity between quantum channels. This measure can be used to compare the average performance

of different processors. We also derive a trade-off relation between the average fidelity error and the maximum

success probability of simulating a target unitary channel. We show that this trade-off is a semidefinite

program and, hence, is efficiently computable. We also apply our framework to a practical scenario by

constraining the quantum computational ability of implementing only certain types of PPOVMs. In the

end, we numerically demonstrate the trade-off between success probability and average error by considering

various processors.

6.2 Unitary channel simulation using a fixed quantum processor

6.2.1 Preliminaries

There are two different ways of composition of quantum channels: parallel and sequential. For quantum

channels E : A0 → A1 and F : B0 → B1, the Choi operators of their parallel composition E ⊗ F is given by

JE
A⊗JF

B , with JE
A and JF

B stand for the Choi operator of E and F , respectively. To investigate the sequential

composition of quantum channels, the concept of link product is used [120, 122].

Definition 6.1 (Link Product). For two matrices M and N , which have system X in common, their link
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Figure 6.1: Choi operator of point-to-point channel Figure 6.2: Choi operator of bipartite channel

product M ⋆N is defined as

TrX [MTX ·N ], (6.1)

where TX represents the partial transpose over system X. The system connecting two matrices together,

i.e. X, has been “swallowed” by the product ⋆.

Using the link product, the Choi operator of F ◦ E is given by JF ⋆ JE , where E ∈ CPTP(A0 → A1) and

F ∈ CPTP(A1 → B1). Note that the link product is commutative up to the SWAP over systems [120, 122].

An illustration of Choi operators of a single-partite and a bipartite channel is given in Fig. 6.1 and 6.2.

6.2.2 Limitations on deterministic protocols

A fixed quantum processor that can be used for simulating any arbitrary channel is known as a programmable

processor. A programmable quantum processor, also known as a programmable quantum gate array [47],

consists of two parts: a fixed quantum processor E , which is a bipartite quantum channel from A0B0 to

A1B1 shared between a user Alice and an agent Bob, and a family of programs PU , encoded into quantum

states {ρU }. To implement a target gate U on the user’s side, Bob selects the program state ρU and inserts

it into the quantum processor E , as modeled in Fig. 6.3. Then the action of the induced quantum channel

F (on Alice’s side) on a state σA0
is given by

F(σA0
) = TrB1

[E(σA0
⊗ ρU )] . (6.2)

Using the Choi operator, it is straightforward to check that

JF = JE ⋆ (ρU ⊗ IB1). (6.3)

To benchmark the performance of simulating quantum gate on Alice’s side remotely, we consider the
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Figure 6.3: Deterministic Universal Quantum Processor.

fidelity between the resultant channel F and the target gate U . In particular, for distinct quantum channels,

we have

Definition 6.2 (Channel Fidelity). Given two channels E1 and E2, from A0 to A1, the channel fidelity FC

is defined as

FC(E1, E2) := F

(
1

|A0|
JE1 ,

1

|A0|
JE2

)
, (6.4)

where F stands for the Uhlmann’s fidelity for quantum states, JE1 and JE2 are Choi operators of channels

E1 and E2 respectively.

According to the definition of Uhlmann fidelity, Eq. (6.4) can be rewritten as

FC(E1, E2) =
1

|A0|2

(
Tr[

√√
JE1JE2

√
JE1 ]

)2

. (6.5)

If one of the channels considered in FC(E1, E2) is a unitary channel, say E2 = U , then the above equation can

be further simplified to

FC(E1,U) =
1

|A0|2
Tr[JE1 · JU ]. (6.6)

Using the channel fidelity, we can quantify the distance between the resultant channel F as given in Eq. (6.3)

and the target unitary U as

FC(F ,U) =
1

|A0|2
Tr[JE

AB ⋆ (ρU ⊗ IB1) · JU
A ], (6.7)

with A := A0A1 and B := B0B1. Our goal here is to find the highest fidelity, i.e. optimal performance, with
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respect to all program states ρU . To do that, let us define a quantity M as

M(E ,U) :=
1

|A0|2
TrAB1 [JE

AB · (JU
A ⊗ IB1)], (6.8)

which depends only on the fixed quantum processor E and the target gate U . Then, the channel fidelity

FC(F ,U) follows the following condition

FC(F ,U) ⩽ max Tr[M(E ,U) · ρ]

s.t. ρ ⩾ 0, Tr[ρ] = 1. (6.9)

Hence, in this deterministic case, the performance of universal quantum programming is characterized by

the following theorem

Theorem 6.3 (Optimal Performance). Given a bipartite quantum processor E ∈ CPTP(A0B0 → A1B1)

and a target quantum channel U , the optimal performance of the fixed processor with respect to the target

unitary channel is upper-bounded by

FC(F ,U) ⩽ λ1(M(E ,U)), (6.10)

where λ1(·) stands for the largest eigenvalue of (·) with M(E ,U) defined in Eq. (6.8).

This immediately implies the following limitation on the error in simulating a unitary channel from the fixed

processor.

Corollary 6.4. If there exists a program state ρU such that FC(TrB1
◦ E(ρU ),U) ⩾ 1− ϵ for target gate U ,

then

ϵ ⩾ 1− λ1(M(E ,U)). (6.11)

From an experimental point of view, the optimal bound of Eq. (6.9) also indicates that to approximate

a desired unitary channel U , Bob should prepare the eigenstate |ψ⟩ of the operator M(E ,U) with respect to

the eigenvalue of λ1(M(E ,U)). Written explicitly, that is,

M(E ,U)|ψ⟩ = λ1(M(E ,U))|ψ⟩. (6.12)

Thus, given the quantum processor E and the target gate U , taking the state as |ψ⟩, obeying Eq. (6.12), as
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the program state will help Bob achieve the optimal performance.

The question now is can we improve the average performance of the processor for simulating a desired

unitary. In other words, can we reduce the error in simulation? To tackle this problem, we need to use

probabilistic protocols.

6.2.3 Limitations on probabilistic protocols

From Nielsen and Chuang’s no-programming theorem [47], we know that quantum theory prevents us from

building universal programmable quantum gate arrays without scaling the dimensions to infinity. Thus,

establishing a machine that can execute universal quantum computation is impossible. However, there are

two different ways to bypass this no-go theorem:

• Approximate programmable devices: simulating a channel on Alice’s side which is very close to the

desired unitary U . For more details, see Refs. [322, 323, 324] and references therein.

• Probabilistic programmable devices: probabilistically simulating target unitary U on Alice’s side. For

more details, see Refs. [42, 44, 45, 326, 327] and references therein.

In practical settings, however, there is no reason why we should restrict ourselves to approximate or prob-

abilistic protocols alone. Instead, we should consider probabilistic programmable devices with some error

tolerance.

To that end, we employ the concept of process positive operator-valued measure (PPOVM) for quantum

channels [117] which has been discussed in Sec. 2.2.5. Denote the Choi operator of PPOVM as JΘx (where

Θx := Mx ◦ ρB0R, and ρB0R is the input state to the channel and Mx is the measurement done on the

output), it is straightforward to check that it satisfies the following conditions:

JΘx ⩾ 0, (6.13)∑
x

JΘx = ρB0 ⊗ IB1 . (6.14)

Here, the state ρB0 is the reduced state of ρB0R, i.e. ρB0 := TrR[ρB0R].

Given a quantum processor E ∈ CPTP(A0B0 → A1B1), and a PPOVM {Θx}x with each Θx : (1 →

B0R) to (RB1 → C), as illustrated in Fig. 6.4, the resultant quantum operation Θx[E ] ∈ CP(A0 → A1) is

completely positive (CP) and trace-non-increasing (TNI). Its action on state σA0 is characterized by

JΘx

B ⋆ JE
AB ⋆ σA0

= pxJ
Fx

A ⋆ σA0
, (6.15)
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Figure 6.4: Probabilistic Universal Quantum Processor.

where px is the probability of obtaining the measurement outcome x by implementing Θx, and Fx represents

the quantum channel conditioned on receiving x.

Figure 6.5: Example of probabilistic universal quantum programming with quantum processor E = SWAP.
Here, the PPOVM Θx is chosen as {ρB0 ,Mx = |x⟩⟨x|}. In this case, the probability distribution associated
with measurement outcome x depends on the input state on system A0.

We remark that, generally, the probability px not only depends on the quantum processor E and the

manipulation process Θx, but also on the input state σA0
∈ D(A0). For instance, consider the following

example: the quantum processor E is chosen as the SWAP gate between systems A and B (see Fig. 6.5).

Meanwhile, we set the PPOVM {Θx}x as {ρB0
, |x⟩⟨x|}x. In this case, it is straightforward to check that

the probability distribution px associated with the measurement outcome x depends on the input state of

the system A0. Moreover, px can be any real numbers between 0 and 1. In particular, by preparing the

quantum state σA0
=
∑
x λx|x⟩⟨x|, we see that px = λx holds for any probability distribution {λx}x. Hence,

even though the quantum processor E and PPOVM {Θx}x are already given, it is generally impossible to

determine the value of px when the input state on system A0 is absent. Let us assume that the input state
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on A0 system is σA0 , then the probability distribution px is given by

px = Tr[EA0B0→A1B1(σA0 ⊗ ρB0R) · IA1 ⊗Mx]. (6.16)

Similarly, the conditional channel Fx not only depends on the quantum processor E and the manipulation

process Θx, but also on the input state in system A0. Assume the input state is σA0
∈ D(A0), it then follows

that

Fx(σA0) =
TrB1R[EA0B0→A1B1

(σA0
⊗ ρB0R) · IA1

⊗Mx]

Tr[EA0B0→A1B1(σA0 ⊗ ρB0R) · IA1 ⊗Mx]
=

Θx[E ](σA0
)

px
. (6.17)

Then the channel fidelity between Fx and U is given by

FC(Fx,U) =
1

|A0|2
Tr[JFx · JU ]. (6.18)

Using this, we get a bound on the quantity pxFC(Fx,U) as

pxFC(Fx,U) =
1

|A0|2
Tr[JΘx[E] · JU ]

=
1

|A0|2
Tr[(JΘx

B0B1
)TB0B1 · JE

A0A1B0B1
· JU
A0A1

]

⩽ max
Θx∈PPOVM

1

|A0|2
Tr[(JΘx

B0B1
)TB0B1 · JE

A0A1B0B1
· JU
A0A1

]. (6.19)

Denote the operator N(E ,U), or briefly N , as

N(E ,U) :=
1

|A0|2
TrA0A1

[JE
A0A1B0B1

· JU
A0A1

]. (6.20)

Now the upper bound of pxFC(Fx,U) becomes

max Tr[JΘx ·N ]

s.t. JΘx ⩾ 0, JΘx ⩽ ρB0
⊗ IB1

, Tr[ρB0
] = 1, (6.21)

which equals to

min λ

s.t. X ⩾ N, TrB1 [X] = λ IB0 . (6.22)
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Without loss of generality, we assume that the optimal value of Eq. (6.22) is achieved by λ∗(N); that is

λ∗(N) := min λ

s.t. X ⩾ N, TrB1
[X] = λ IB0

, (6.23)

which depends only on the operator N . Consider another optimization problem

µ∗(N) := min µ

s.t. Y ⩾ N, TrB1
[Y ] ⩽ µ IB0

, (6.24)

with the optimal value being denoted as µ∗(N). Now it is straightforward to check that

λ∗(N) ⩾ µ∗(N). (6.25)

On the other hand, suppose that µ∗(N) in Eq. (6.24) is achieved by some solution Y ∗, then we can construct

the following operator

X∗ := Y ∗ + (µ∗(N) IB0
− TrB1

[Y ∗])⊗ τB1
, (6.26)

with τB1
being an arbitrary quantum state acting on system B1. And the operator X∗ satisfies the following

properties

X∗ ⩾ N, (6.27)

TrB1
[X∗] = µ∗(N) IB0

, (6.28)

which are exactly the restrictions of Eq. (6.23). Thus, we have

λ∗(N) ⩽ µ∗(N). (6.29)

Combining Eq. (6.25) with 6.29, we obtain the following lemma,

Lemma 6.5. For the operator N defined in Eq. (6.20), the optimization problems Eq. (6.23) and (6.24) are

equivalent; namely

λ∗(N) = µ∗(N). (6.30)
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It is now straightforward to check that {Y = N,µ = λ1(TrB1 [N ])} forms a dual feasible solution of the

optimization problem Eq. (6.21), and {JΘx = ρB0
⊗ IB1

, ρB0
= |ϕ⟩⟨ϕ|}, with TrB1

[N ]|ϕ⟩ = λ1(TrB1
[N ])|ϕ⟩,

forms a feasible solution of the primal formulation of Eq. (6.21). This implies that

λ1(TrB1
[N ]) ⩾ µ∗(N) ⩾ λ1(TrB1

[N ]). (6.31)

Namely,

µ∗(N) = λ1(TrB1 [N ]). (6.32)

The previous proof depends heavily on the duality of SDPs. Alternatively, Eq. (6.21) can be directly

solved as follows. We can assume ρBi
is a full rank density matrix, because otherwise, one can always

add an arbitrary small perturbation to make it full rank. Then, by introducing the new variable J̃ :=

(ρ
−1/2
Bi

⊗ I) JΘx (ρ
−1/2
Bi

⊗ I), the constraint of the optimization program can equivalently be written as

0 ⩽ J̃ ⩽ IBiBo
, Tr[ρBi

] = 1, ρBi
⩾ 0. (6.33)

With this new variable, the objective function becomes

Tr[JΘx ·N ] = Tr[(ρ
1/2
Bi
⊗ I) J̃ (ρ

1/2
Bi
⊗ I)N ] (6.34)

= Tr[J̃ (ρ
1/2
Bi
⊗ I)N (ρ

1/2
Bi
⊗ I)]. (6.35)

Since (ρ
1/2
Bi
⊗ I)N (ρ

1/2
Bi
⊗ I) ⩾ 0, this is clearly maximized at J̃ = IBiBo

, which turns the objective function

into

Tr[(ρ
1/2
Bi
⊗ I)N (ρ

1/2
Bi
⊗ I)] = Tr[(ρBi

⊗ I)N ] = TrBi
[ρBi

TrBo
N ]. (6.36)

Maximizing this over ρBi under the conditions in (6.33) then results in λ1(TrBo [N ]).

Thus, for any probabilistic physical process Θx, representing an element of PPOVM, when applied on

a fixed processor, we get the following proposition between the highest success probability and the channel

fidelity between the target unitary and resultant channel.

Proposition 7. Given a bipartite quantum processor E ∈ CPTP(A0B0 → A1B1) and a target quantum

channel U ∈ CPTP(A0 → A1), denote the output quantum operation under PPOVM Θx as pxFx, where

px stands for the success probability and Fx represents the output channel. Then, for any input state on
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system A0, the success probability px and channel fidelity FC(Fx,U) in probabilistic programming scenario

satisfy the following relation

pxFC(Fx,U) ⩽ λ1(TrB1
[N ]), (6.37)

where N is defined in Eq. (6.20).

It now follows immediately that

Corollary 6.6. Given a bipartite quantum processor E ∈ CPTP(A0B0 → A1B1) and a target quantum

channel U , if there exist a PPOVM Θx = {ρB0R,Mx} and a input state σA0 such that FC(Fx,U) ⩾ 1− ϵ for

target gate U , then

ϵ ⩾ 1− λ1(TrB1
[N ])

px
, (6.38)

where px is given by Eq. (6.16), and N is defined in Eq. (6.20).

We remark that Eq. (6.31) implies that, to achieve the optimal bound for successful probability and

performance, Bob should select |ϕ⟩ satisfying

TrB1
[N ]|ϕ⟩ = λ1(TrB1

[N ])|ϕ⟩, (6.39)

as the program state. Let us move on to investigating the relation between the operator M defined in

Eq. (6.8) and the operator N defined in Eq. (6.20), we thus see

TrB1
[N ] = M. (6.40)

Hence, the optimal bound for deterministic protocols obtained in Thm. 6.3 coincides with the optimal bound

of the product of successful probability and channel fidelity in probabilistic protocols derived in proposition 7.

In other words, one of the optimal strategies for Bob to achieve the highest pxFC(Fx,U) is a deterministic

protocol consisted of {|ψ⟩⟨ψ|B0
,TrB1

}.

6.2.4 Average performance of a quantum processor

To quantify the performance of a processor E with respect to a desired unitary channel U , we choose the

average performance of E as our figure of merit. We consider the average performance because finding the

fidelity between two channels by optimizing over all quantum states is very hard to compute. The average
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performance is a good indicator of how well a unitary channel can be simulated by a fixed processor. It

can also be used to compare how well two processors can simulate a target unitary. The performance of

E ∈ CPTP(A0B0 → A1B1) averaged over all input states ψ ∈ D(A0) is given as follows

Px(E ,U) :=

∫
dψ pψxF (Fx(ψ),U(ψ)), (6.41)

where the resultant channel Fx(ψ) is given by

Fx(ψ) =
TrB1

[Mx · E(ψ ⊗ ρ)]

pψx
, (6.42)

and outcome x happens with probability pψx , which is characterized by

pψx = Tr[Mx · E(ψ ⊗ ρ)]. (6.43)

Here, F stands for the Uhlmann’s fidelity for quantum states, ρ is the program state, and dψ denotes the

Haar measure, i.e.
∫
dψ = 1. Another useful quantity is the so-called average fidelity FA(E ,U), which is

defined as

Definition 6.7 (Average Fidelity). Given a quantum channel E ∈ CPTP(A0 → A1) and a unitary channel

U ∈ CPTP(A0 → A1), we define the average fidelity between them as

FA(E ,U) :=

∫
dψ⟨ψ|U† ◦ E(ψ)|ψ⟩, (6.44)

where U†(·) = U†(·)U .

Here, the average fidelity quantifies how well the channel E simulates a desired gate U , and is closely related

with the channel fidelity defined in Def. 6.2. More precisely, they satisfy the following relation:

Lemma 6.8. Given a quantum channel E ∈ CPTP(A0 → A1) and a unitary channel U ∈ CPTP(A0 → A1),

their average fidelity FA(E ,U) and channel fidelity FC(E ,U) are connected through the following equation

FA(E ,U) =
|A0|FC(E ,U) + 1

|A0|+ 1
. (6.45)

Note that, above Lem. 6.8 was first proved by M. Horodecki, P. Horodecki, and R. Horodecki in Ref. [328].

(See also Ref. [329] for a simpler proof.)

To simplify the formula of Eq. (6.41), we use the fact that Px(E ,U) is invariant under channel twirling

operation T :
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Definition 6.9 (Channel Twirling). Given a quantum channel E ∈ CPTP(A0 → A1), with |A0| = |A1|, we

define the channel twirling T acting on E as

T (E) :=

∫
dU U† ◦ E ◦ U , (6.46)

where U†(·) = U†(·)U , and dU stands for the Haar measure over special unitary group SU(|A0|).

Now it is straightforward to check that

∫
dψ⟨ψ|T ◦ U† ◦Θx[E ](ψ)|ψ⟩ =

∫
dψ

∫
dV ⟨ψ|V †U† ◦Θx[E ](V ψV †)V |ψ⟩

=

∫
dψ⟨ψ|U† ◦Θx[E ](ψ)|ψ⟩

= Px(E ,U). (6.47)

On the other hand, the Choi operator of T is given by

JT = Φ+ ⊗ Φ+ +
1

|A0|2 − 1
(I − Φ+)⊗ (I − Φ+), (6.48)

where Φ+ represents the maximally entangled state. Thus, the average performance Px(E ,U) can be rewritten

as

Px(E ,U) =

∫
dψ⟨ψ|T ◦ U† ◦Θx[E ](ψ)|ψ⟩ (6.49)

=

∫
dψ⟨ψ|JT ⋆ JU†◦Θx[E] ⋆ ψ|ψ⟩ (6.50)

=

∫
dψ⟨ψ|[(Φ+ ⋆ JU†◦Θx[E])Φ+ + ((I − Φ+) ⋆ JU†◦Θx[E])

I − Φ+

|A0|2 − 1
] ⋆ ψ|ψ⟩. (6.51)

For the sake of convenience, we define ax and bx as

ax := Φ+ ⋆ JU†◦Θx[E] =
1

|A0|
Tr[JU · JΘx[E]] = |A0|pxFC(Fx,U), (6.52)

bx := Tr[JΘx[E]]. (6.53)

Equipped with this notation, Eq. (6.51) can be further simplified as

Px(E ,U) =

∫
dψ⟨ψ|( bx − ax

|A0|2 − 1
I +

ax|A0|2 − bx
|A0|2 − 1

Φ+) ⋆ ψ|ψ⟩ (6.54)

=
ax

|A0|+ 1
+

bx
|A0|(|A0|+ 1)

. (6.55)
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Hence, for each measurement outcome x, the average performance is upper bounded by the channel fidelity

and the trace of JΘx◦E ; that is

Px(E ,U) =
|A0|pxFC(Fx,U)

|A0|+ 1
+

Tr[JΘx[E]]

|A0|(|A0|+ 1)
(6.56)

⩽ max
Θx∈PPOVM

(
|A0|pxFC(Fx,U)

|A0|+ 1

)
+ max

Θx∈PPOVM

(
Tr[JΘx[E]]

|A0|(|A0|+ 1)

)
(6.57)

=
|A0|λ1(TrB1

[N ])

|A0|+ 1
+

|A0|
|A0|(|A0|+ 1)

(6.58)

=
|A0|λ1(TrB1

[N ]) + 1

|A0|+ 1
, (6.59)

where Eq. (6.58) is obtained by applying our proposition 7. To conclude, we have the following theorem.

Theorem 6.10. Given a bipartite quantum processor E ∈ CPTP(A0B0 → A1B1) and a target quantum

channel U ∈ CPTP(A0 → A1). Denote the output quantum operation under PPOVM Θx as pψxFx, where

ψ ∈ D(A0), pψx stands for the success probability and Fx represents the output channel. Then, the average

performance Px(E ,U) has the following upper bound

∫
dψ pψxF (Fx(ψ),U(ψ)) ⩽

|A0|λ1(TrB1
[N ]) + 1

|A0|+ 1
, (6.60)

where N is defined in Eq. (6.20).

Note that here the equality can be achieved by taking deterministic protocols. Moreover, Eq. (6.56) is

equivalent to

∫
dψ⟨ψ|U† ◦Θx[E ](ψ)|ψ⟩ =

|A0|⟨Φ+|U† ◦Θx[E ](Φ+)|Φ+⟩
|A0|+ 1

+
Tr[JU†◦Θx[E]]

|A0|(|A0|+ 1)
. (6.61)

It is straightforward to check that the same equation holds for any completely positive (CP) and trace-non-

increasing (TNI) map Λx,

∫
dψ⟨ψ|Λx(ψ)|ψ⟩ =

|A0|⟨Φ+|Λx(Φ+)|Φ+⟩
|A0|+ 1

+
Tr[JΛx ]

|A0|(|A0|+ 1)
, (6.62)

which generalizes Lem. 6.8 investigated in Ref. [328].

Besides the average performance, we are also interested in the average probability px :=
∫
dψ pψx . Written

explicitly, we have

px :=

∫
dψ pψx =

∫
dψTr[Θx[E ](ψ)], (6.63)
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which is also invariant under channel twirling as

∫
dψTr[T ◦Θx[E ](ψ)] =

∫
dψ

∫
dUTr[U† ◦Θx[E ] ◦ U(ψ)] (6.64)

=

∫
dU

∫
dψTr[Θx[E ] ◦ U(ψ)] (6.65)

=

∫
dψTr[Θx ◦ E(ψ)]. (6.66)

It now follows immediately that

∫
dψ pψx =

∫
dψTr[T ◦Θx[E ](ψ)] (6.67)

=

∫
dψ
(
I ⋆ JT ⋆ JΘx[E] ⋆ ψ

)
(6.68)

=

∫
dψ

(
I ⋆

[
(Φ+ ⋆ JΘx[E])Φ+ + ((I − Φ+) ⋆ JΘx[E])

I − Φ+

|A0|2 − 1

]
⋆ ψ

)
. (6.69)

Similar to the definitions of Eqs. 6.52 and 6.53, we define the quantity cx as

cx := Φ+ ⋆ JΘx[E]. (6.70)

Note that in general ax ̸= cx. Now
∫
dψ pψx can be further simplified as

∫
dψ pψx =

∫
dψ

(
I ⋆

[
cx|A0|2 − bx
|A0|2 − 1

Φ+ +
bx − cx
|A0|2 − 1

I

]
⋆ ψ

)
(6.71)

=

∫
dψ

([
cx|A0|2 − bx
|A0|(|A0|2 − 1)

I +
|A0|(bx − cx)

|A0|2 − 1
I

]
⋆ ψ

)
(6.72)

=
bx
|A0|

. (6.73)

Then we have the following lemma.

Lemma 6.11. Given a quantum channel E and a protocol Θx, the average probability of obtaining x over

all input states ψ ∈ D(A0) is characterized by the following equation

∫
dψTr[Θx[E ](ψ)] =

bx
|A0|

=
Tr[JΘx[E]]

|A0|
. (6.74)

This implies the following corollary

Corollary 6.12. Given a bipartite quantum processor E ∈ CPTP(A0B0 → A1B1) and a target quantum

channel U , if there exists a PPOVM Θx = {ρB0R,Mx} such that F (Fψx (ψ),U(ψ)) ⩾ 1− ϵ for any input state
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ψ, then

ϵ ⩾ 1− |A0|(|A0|λ1(TrB1
[N ]) + 1)

bx(|A0|+ 1)
= 1− |A0|(|A0|λ1(TrB1

[N ]) + 1)

Tr[JΘx◦E ](|A0|+ 1)
, (6.75)

where N is defined in Eq. (6.20).

Here the proof is a simple combination of Thm. 6.10 and Lem. 6.11.

Note that the above limitation on the error in Eq. (6.75) depends on Θx and thus can be improved. In

finding the upper bound of the average performance Px(E ,U), rather than taking the maximization over all

of RHS of Eq. (6.56), if we only take the maximization over either of the terms on RHS, we can get a tighter

bound. That is, let

m = min

(
max

Θx∈PPOVM

(
|A0|pxFC(Fx,U)

|A0|+ 1

)
+

Tr[JΘx[E]]

|A0|(|A0|+ 1)
,
|A0|pxFC(Fx,U)

|A0|+ 1
+ max

Θx∈PPOVM

(
Tr[JΘx[E]]

|A0|(|A0|+ 1)

))
(6.76)

= min

(
|A0|λ1(TrBo

[N ])

|A0|+ 1
+

Tr[JΘx[E]]

|A0|(|A0|+ 1)
,
|A0|pxFC(Fx,U)

|A0|+ 1
+

|A0|
|A0|(|A0|+ 1)

)
. (6.77)

Then the error is lower bounded by

ϵ ⩾ 1− |A0|m
Tr[JΘx◦E ]

.

6.2.5 Trade-off between success probability and average fidelity error

Another advantage of using the average fidelity is that we can express the trade-off between success probabil-

ity and average fidelity error as a semidefinite program. Since we want to maximize the success probability

px of simulating a unitary channel U , keeping the average fidelity between the resultant channel Fx and U

lower bounded by 1− ϵ, we can express this maximization as an optimization problem as

max px (6.78)

s.t. Θx[E ] = pxFx (6.79)

FA (Fx,U) ⩾ 1− ϵ (6.80)
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Now using the relation between average and channel fidelity, we can write the maximum success probability

as

max px (6.81)

s.t. JΘx[E] = pxFx, (6.82)

Tr
[
JΘx[E]JU]+ |Ai|
|Ai|(|Ai|+ 1)

⩾ 1− ϵ (6.83)

If we define ωAiAo
:= pxJ

Fx

AiAo
, then the above optimization problem can be expresed as

max
Tr[ω]

|A0|
(6.84)

s.t. JΘx ⋆ Jε = ω, (6.85)

|Ai|
Tr[ω] Tr[ωJU ] + |Ai|
|Ai||Ai + 1|

⩾ 1− ϵ, (6.86)

JΘx

BiBo
⩽ ρBi

⊗ IBo
, ωAiAo

⩾ 0, ωAi
=
IAi

|Ai|
Tr[ω] (6.87)

which becomes the following semidefinite program

max
Tr[ω]

|A0|
(6.88)

s.t. JΘx

B ⋆ JE
AB = ω, (6.89)

JΘx ⩽ ρBi
⊗ IBo

, (6.90)

1

Tr[ω]
Trr

[
ωAJ

U
A

]
⩾ |Ai| − ϵ(|Ai|+ 1) (6.91)

ωA ⩾ 0, ωAi
=
IAi

|Ai|
Tr[ω] (6.92)

6.3 Resource-theoretic bounds for quantum programming

Practically, the agent Bob might not have access to all possible quantum operations and measurements on

his side due to the restrictions on his laboratory. It is thus quite natural to apply a quantum resource-

theoretic framework to the study of universal quantum programming. In this subsection, we investigate

the fundamental trade-off between successful probability and performance from a perspective of dynamical

coherence, where all classical communications, i.e. classical channels, are ‘free’ [37].
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6.3.1 Limitations in static coherence

In this subsection, we investigate the case where all the program states {ρU } are incoherent, see Fig. 6.3.

The channel fidelity between JE ⋆ (ρU ⊗ IB1) and the target gate U is upper bounded by

max Tr[M(E ,U) · ρ]

s.t. ρ ⩾ 0, Tr[ρ] = 1, DB0
(ρ) = ρ, (6.93)

whose dual is given by

ι∗(M) := min ι

s.t. ιI ⩾M + Z, DB0(Z) = 0, Z† = Z. (6.94)

Written in full, that is

Theorem 6.13 (Optimal Performance with Incoherent Program States). Given a bipartite quantum pro-

cessor E ∈ CPTP(A0B0 → A1B1) and a target quantum gate U , then the optimal performance of universal

quantum programming with incoherent program states ρU is upper bounded by

FC(F ,U) ⩽ ι∗(M), (6.95)

where F := TrB1
◦ E(ρU ) and ι∗(M) is defined in Eq. (6.94).

Then we get the following limitation on the performance with incoherence program states.

Corollary 6.14. If there exists an incoherent program state ρU such that FC(TrB1
◦ E(ρU ),U) ⩾ 1 − ϵ for

target gate U , then

ϵ ⩾ 1− ι∗(M). (6.96)

6.3.2 Limitations in dynamical coherence

For probabilistic universal quantum programming in dynamical coherence, we start by introducing some

relevant concepts in probabilistic causal networks and dynamical coherence. First of all, to manipulating

quantum channels probabilistically, we need to implement the so-called sub-superchannel. For more infor-

mation, refer to Refs. [122, 125, 330]. A completely positive map Θ is called a sub-superchannel, if there
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exists a superchannel Ξ such that Ξ ⩾ Θ. Here the greater-than-equal notation means Ξ−Θ is a CP map.

In chapter 3, we considered a set of free superchannels called MISC. Using this set of superchannels, we

can now define a set of free sub-superchannels and call it maximally incoherent sub-superchannels (MISsub).

Like the definition of MISC, we can define MISsub as follows

Definition 6.15 (Maximal Incoherent Sub-Superchannel (MISsub)). A sub-superchannel Θ taking quantum

channels in CPTP(B
′

0 → B0) to completely positive trace-preserving maps in CPTNI(B1 → B
′

1) is said to

be maximal incoherent sub-superchannel (MISsub) if it satisfies

∆B′ ◦Θ ◦∆B = Θ ◦∆B , (6.97)

where ∆B′ := DB′
1
⊗DB′

0
, and ∆B := DB1

⊗DB0
.

Denoting the set of all possible sub-superchannels from dynamical system (B
′

0 → B0) to dynamical

system (B1 → B
′

1) by Ssub(B
′

0 → B0, B1 → B
′

1), and all probabilistic protocols for Bob – PPOVMs on B –

by PPOVM(C→ B0, B1 → C), it now follows immediately that

PPOVM(C→ B0, B1 → C) ⊆ Ssub(B
′

0 → B0, B1 → B
′

1). (6.98)

In the case of dynamical coherence, the free maximal incoherent process POVM (MIPPOVM) is then defined

as

Definition 6.16 (Maximal Incoherent Process POVM (MIPPOVM)). A process POVM {Θx}x from (1→

B0) to (B1 → C) is said to be maximal incoherent process POVM (MIPPOVM) if it satisfies

Θx ∈ PPOVM(C→ B0, B1 → C) ∩ MISsub, (6.99)

for all x.

As the earliest input system B
′

0 and the latest output system B
′

1 of PPOVMs from (C→ B0) to (B1 → C)

are trivialized, i.e. B
′

0 = B
′

1 = C, the set of all MIPPOVMs coincides with the set of all PPOVMs; that is

MIPPOVM = PPOVM. (6.100)

Thus, the average performance of the processor under MISsub is same as using a PPOVM that we discussed

earlier.
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6.4 Numerical examples

By using the port-based teleportation processor as considered in [50], we first plot the lower bound of error

using Equation (6.77) (which is tighter than Equation (6.75)) for a range of single-parameter family of

unitary gates as target. A unitary gate belonging to this family has the form

U(θ) =

 cos(θ/2) − sin(θ/2)i

− sin(θ/2)i cos(θ/2)

 .

By fixing our PPOVM Θx, i.e., by fixing the input program state and by fixing the POVM element, the

relation between the minimum error and the angle of the target unitary can be seen in Fig.6.6.
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Figure 6.6: Variation of minimum error with varying target unitary keeping the program state and measure-
ment fixed

Next, using the results of Section 6.2.5, we also plot the trade-off between probability and average error

for a fixed target unitary gate for the case when the processor is the dephasing map and the case when the

processor is the depolarizing map. The action of the dephasing map ∆p on a state ρA0
is defined as

∆p(ρ) := (1− p)diag(ρ) + pρ (6.101)
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Figure 6.7: Trade-off between success probability and average fidelity error for different parameters of the
dephasing channel

0 0.2 0.4 0.6 0.8 1 1.2

error

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

su
cc

es
s 

pr
ob

ab
ili

ty

depolarizing prob: 0
depolarizing prob: 0.2
depolarizing prob: 0.5
depolarizing prob: 0.8
depolarizing prob: 0.95
depolarizing prob: 1

Figure 6.8: Trade-off between success probability and average fidelity error for different parameters of the
depolarizing channel
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where p ∈ [0, 1]. If p = 0, we get a completely dephasing map D defined as D(·) =
∑
i |i⟩⟨i|(·)|i⟩⟨i| = diag(·)

and for p = 1, we get the identity channel. The action of the depolarizing map ∆′
p on a state ρA0

is defined

as

∆′
p := (1− p) I

|Ai|
+ pρ (6.102)

where p ∈ [0, 1]. Using these two channels as processors and a fixed unitary channel U whose Choi matrix

JU is given by

JU =



0.5636 0.4959 0.4959 −0.5636

0.4959 0.4364 0.4364 −0.4959

0.4959 0.4364 0.4364 −0.4959

−0.5636 −0.4959 −0.4959 0.5636


, (6.103)

we get the trade-off plots between the average fidelity error and the success probability for varying parameter

p of the dephasing channel in Fig. 6.7 and that of the depolarizing channel in Fig. 6.8. Moreover, with the

same target unitary channel we also plot the trade-off between probability and average fidelity error for a

random unital channel with real entries, which is given in Fig. 6.9. The entries of the Choi matrix of the

unital channel used as a processor are given in Fig. 6.10
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Figure 6.9: Trade-off between success probability and average fidelity error when a random unital channel
is used as a processor

Figure 6.10: Entries of the Choi matrix of the Unital channel
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Chapter 7

Summary and future outlook

In this chapter, I present a summary of my results followed by some open problems.

7.1 Summary of results

In chapter 3, we developed the resource theory of coherence present in quantum channels. In this resource

theory, the underlying physical principle we followed was that the free dynamical objects cannot preserve

or manipulate coherence. This led us to identify classical channels as the free elements in this theory.

Thus, all other coherent quantum channels were classified as resources, including the identity channel as

it preserves the coherence of quantum systems. To manipulate dynamical resources, we considered two

free sets of superchannels, maximally incoherent superchannels (MISC) and dephasing covariant incoherent

superchannels (DISC), and characterized these superchannels in terms of their Choi matrices in Sec. 3.3.

After the partition of the set of channels as free and resources, we formulated various types of resource

measures to quantify the coherence of quantum channels in Sec. 3.4. Our first resource measure was a

complete family of monotones. If the value of all the monotones of this family for a channel is greater than that

of another channel, then the former channel can be converted to the latter using the free superchannels. Next,

in Sec. 3.4.2, we showed that there are only three out of the six relative entropies defined for channels that

are dynamical coherence monotones under MISC. For DISC, we defined a new divergence-based monotone as

the channel divergence between a given channel and the channel evolved under the dephasing superchannel.

Our third measure was the max-relative entropy of coherence or the log-robustness of coherence for channels

defined in Sec. 3.4.3. We showed that log-robustness of coherence is an operational monotone which was used

to express the coherence cost of simulating a channel from the maximally coherent state. After formulating

these various types of dynamical coherence measures, we solved some resource interconversion problems in
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Sec. 3.5. First, in Sec. 3.5.1, we defined the conversion distance from a channel to another, and showed that

it is an SDP and, hence, can be efficiently computed. If the conversion distance from one channel to another

is zero, it implies that the former can be deterministically converted to the latter using free superchannels.

After defining the conversion distance, we defined the coherence cost and the coherence distillation of a

channel. The coherence cost of a channel is defined as the log of the minimum dimension of the maximally

coherent state that can be converted to the channel using free superchannels. We found that the exact

coherence cost of a channel can be expressed using the log-robustness of coherence. We also formulated

expressions for approximate and liberal coherence costs of a channel. Lastly, we defined the single-shot exact

distillable coherence as the log of the maximum dimension of the maximally coherent state that can be

obtained from a given quantum channel. We showed that single-shot coherence distillation can be expressed

as a non-linear optimization problem. However, when we allow for probabilistic distillation, the optimization

problem can be expressed as an SDP.

In chapter 4, we developed a resource theory of multi-qubit magic channels. Unlike the odd-dimensional

case where the negativity of the Wigner representation quantifies the magic of quantum channels, no such

function has been formulated for the multi-qubit domain. Therefore, alternative approaches need to be

taken to quantify multi-qubit magic resources. In our work, we identified the set of completely stabilizer

preserving operations (CSPOs) as the set of free channels because CSPOs strictly contain the set of stabilizer

operations and any circuit formed using CSPOs is efficiently simulable classically. The resources then, are all

the other multi-qubit magic channels. For resource manipulation, we defined two sets of free superchannels in

Sec. 4.3, namely, the CSPO preserving and the completely CSPO preserving superchannels. We characterized

these sets of superchannels in terms of their Choi matrices. We found that a superchannel is a completely

CSPO preserving superchannel if and only if its normalized Choi matrix is a stabilizer state. In Sec. 4.4,

we generalized the key magic monotones from the state to the channel domain, namely, the generalized

robustness of magic and the min relative entropy of magic. Using these monotones, we formulated the

bounds on the cost and distillation of magic resources in Sec. 4.5. Unlike the resource theory of coherence,

the resource theory of magic does not admit a unique maximal resource, and any pure magic state can be

used as a resource to achieve universal quantum computation. So, we define the cost of simulating a magic

channel using a pure magic state as the minimum copies of a given state that are required to convert it to

the desired channel using free superchannels. Similarly, distillation of a pure magic state is defined as the

maximum number of copies of the target state that can be obtained from a given channel. Apart from cost

and distillation, we also found the conditions for interconversion among qubits under CSPOs in Sec. 4.5.1.

We showed that it is a linear programming feasibility problem and hence can be efficiently solved. Lastly,

we devised a classical simulation algorithm to estimate the expectation values of an observable in Sec. 4.6.
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The runtime of this algorithm depends on the allowed error and the generalized robustness of the circuit

elements.

In chapter 5, we worked on the problem of interconversion among pairs of channels. We investigated

how such an interconversion is related to the testing region of the channels. The motivation behind this

stems from the equivalence of relative and Lorenz majorization among pairs of probability distributions

established by Blackwell in the mid of the twentieth century. A pair of probability distributions is said to

Lorenz majorize another pair if the testing region, a convex symmetric region, of the former pair contains

that of the latter. This equivalence was also shown to hold for a pair of qubits in Ref. [313]. The definition

of testing region and Lorenz majorization was generalized for quantum states in Ref. [308], which were

used as a tool to find conditions for interconversion among pairs of quantum states in various resource

theories. In our work, in Sec. 5.3, we generalized these definitions from the state to the channel domain, and

characterized Lorenz majorization among channels using diamond norm and Hilbert α divergences. We also

addressed interconversion among pairs of classical channels in Sec. 5.4. We showed the equivalence of Lorenz

majorization and relative majorization in two cases. In the first case, we showed that if a pair of classical

states Lorenz majorizes the pair of classical channels, then the former pair can be converted to the latter. In

the second case, we showed that any pair of classical channels can be converted to a pair of classical channels

(with the latter pair’s output being two-dimensional) if and only if the former pair Lorenz majorizes the

other.

In chapter 6, we considered the problem of programming a bipartite processor to simulate a unitary

channel. In the settings usually considered in the literature, the processor is scalable, thus allowing for

universal computation. However, given the current scenario where it is hard to prevent errors upon scaling,

we consider fixed processors, i.e., processors with fixed input and output dimensions. Further, suppose the

bipartite processor is shared between Alice and Bob, where Bob needs to apply some unitary gate on his

quantum system by using the fixed processor. To do that, Alice prepares a bipartite program state and

inputs one of her systems into the processor. She uses the other system of her program state to make a

joint measurement on the output state she got from the processor. Given this setting, we quantified the

average performance of a processor to simulate a target unitary and found limitations on the performance

of deterministic and probabilistic protocols in Sec. 6.2. The average performance helps in comparing two

processors to simulate a target unitary, and the limitations help in identifying the optimal resources to

achieve the best performance. We also formulated a trade-off relation between the success probability and

the average fidelity error in Sec. 6.2.5. We showed that this trade-off can be expressed in terms of an SDP.

In the end, we found limitations on simulating a unitary channel using a fixed processor for two cases when

Alice has limited computational power. In one case, the restriction we imposed was that Alice can only

168



input classical states, and in the other case, Alice can only perform maximally incoherent operations. In the

end, we numerically plotted the trade-off between success probability and average fidelity error for different

processors.

7.2 Conclusion and open problems

In our work on the coherence of quantum channels in Chapter 3, we classified classical channels as free and all

quantum channels as resources. To manipulate dynamical resources, we defined the free set of superchannels

as the set of linear maps that preserve classical channels. It is not yet clear if there is an operational way

to define another set of free superchannels. To quantify the resources we defined three relative entropies of

coherence and showed that the max relative entropy of coherence has an operational interpretation in terms

of exact coherence cost. It is an interesting problem to define other coherence measures not based on relative

entropies and to find their operational meaning. Further, we worked on single-shot resource interconversion,

specifically the exact, approximate, and liberal coherence costs of channels, and the exact and probabilistic

distillation of coherence. Finding expressions or bounds on other types of resource interconversion problems

like probabilistic coherence cost or catalytic resource interconversion problems are still open.

In our work on the resource theory of multi-qubit magic channels in Chapter 4, the criterion we used

to identify the free channels was an efficient classical simulation of circuits. It is an open problem for the

multi-qubit case to formulate a function (like the Wigner function for the odd case) to characterize the

magic resources useful for achieving universal quantum computation in the magic state/channel model of

quantum computation. Since finding such a function is a very hard problem, finding alternate approaches to

characterize and quantify magic resources is an interesting problem. Further, given that the set of CSPOs

can be classically simulated, it is not yet known whether there exists a larger set of operations from which

pure magic states cannot be distilled. Apart from identifying such channels, it is also not clear if there is

an operational way to define the set of free superchannels. Moreover, using the free sets of superchannels

that we defined, we were unable to find the upper bound on the cost and the lower bound on distillation

under completely CSPO preserving superchannels, and have left it as open. Lastly, we devised a classical

simulation algorithm to estimate the expectation value of an observable given a general quantum circuit.

An interesting future direction would be to generalize simulation algorithms not based on quasiprobability

simulators, and figure out if there is a way to substantially improve the runtime.

In chapter 5, we aimed at finding interconversion conditions among pairs of quantum channels. Using

our generalization, we were able to find conditions for interconversion among pairs of classical channels when

the resultant channels’ output dimension is two. It is an open problem to find out if the same conditions

169



hold when the dimension of the resultant pair is greater than two. If proven, it would be an elegant

result for classical channels, implying that the problem of interconversion among pairs of classical channels

is a completely geometric problem, similar to the classical state case. Apart from that, how Lorenz and

relative majorization are related to channel interconversion for different dynamical resource theories is open

for investigation. Another direction for further research would be to extend our results to interconversion

among families of channels. To solve this, one needs to generalize and characterize the testing region and

find if the equivalence between Lorenz and relative majorization still holds for families of classical channels

with the same constraints.

In chapter 6, we quantified the performance of a fixed processor using average fidelity. An open problem

is to figure out other ways to quantify and compare the performance of fixed processors. The limitations on

various protocols also indicate that there is an underlying uncertainty principle guiding the programmability

of quantum processors. Other possible directions that are still unexplored include finding limitations by

restricting the program states and measurements to certain types of states and measurements. Besides, we

only considered single use of the fixed processor. It would be interesting to investigate how several uses of

the processor can be used to better approximate a desired unitary channel.
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[93] Stefan Bäuml, Siddhartha Das, and Mark M. Wang, Xinand Wilde. Resource theory of entanglement

for bipartite quantum channels. arXiv:1907.04181, 2019.

[94] Thomas Theurer, Saipriya Satyajit, and Martin B. Plenio. Quantifying dynamical coherence with

dynamical entanglement. Phys. Rev. Lett., 125:130401, Sep 2020.

[95] Eric Chitambar, Gilad Gour, Kuntal Sengupta, and Rana Zibakhsh. Quantum bell nonlocality as a

form of entanglement. Phys. Rev. A, 104:052208, Nov 2021.

[96] Quntao Zhuang, Peter W. Shor, and Jeffrey H. Shapiro. Resource theory of non-gaussian operations.

Phys. Rev. A, 97:052317, May 2018.

[97] Victor Veitch, S A Hamed Mousavian, Daniel Gottesman, and Joseph Emerson. The resource theory

of stabilizer quantum computation. New Journal of Physics, 16(1):013009, jan 2014.

178



[98] David Blackwell. Equivalent Comparisons of Experiments. The Annals of Mathematical Statistics,

24(2):265 – 272, 1953.

[99] Wim van Dam and Gadiel Seroussi. Efficient quantum algorithms for estimating gauss sums, 2002.

[100] John Watrous. Quantum computational complexity, 2008.

[101] Hefeng Wang, Sixia Yu, and Hua Xiang. Efficient quantum algorithm for solving structured problems

via multi-step quantum computation, 2019.

[102] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Mip*=re. arXiv,

2020.

[103] Ashley Montanaro. Quantum algorithms: an overview. npj Quantum Information, 2(1):15023, Jan

2016.

[104] William K. Wootters and W. S. Leng. Quantum entanglement as a quantifiable resource. Philosophical

Transactions: Mathematical, Physical and Engineering Sciences, 356(1743):1717–1731, 1998.

[105] Ryszard Horodecki, Pawe l Horodecki, Micha l Horodecki, and Karol Horodecki. Quantum entanglement.

Rev. Mod. Phys., 81:865–942, Jun 2009.

[106] Julio I de Vicente. On nonlocality as a resource theory and nonlocality measures. Journal of Physics

A: Mathematical and Theoretical, 47(42):424017, oct 2014.

[107] Paul Hausladen, Richard Jozsa, Benjamin Schumacher, Michael Westmoreland, and William K. Woot-

ters. Classical information capacity of a quantum channel. Phys. Rev. A, 54:1869–1876, Sep 1996.

[108] Howard Barnum, M. A. Nielsen, and Benjamin Schumacher. Information transmission through a noisy

quantum channel. Phys. Rev. A, 57:4153–4175, Jun 1998.

[109] Charles H. Bennett, Peter W. Shor, John A. Smolin, and Ashish V. Thapliyal. Entanglement-assisted

classical capacity of noisy quantum channels. Phys. Rev. Lett., 83:3081–3084, Oct 1999.

[110] Charles H. Bennett, Peter W. Shor, John A. Smolin, and Ashish V. Thapliyal. Entanglement-assisted

capacity of a quantum channel and the reverse shannon theorem, 2001.

[111] A. S. Holevo. On entanglement-assisted classical capacity. Journal of Mathematical Physics,

43(9):4326–4333, 2002.

[112] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-tolerant universal

quantum computation. Nature, 549(7671):172–179, Sep 2017.

179



[113] Rajendra Bhatia. Matrix Analysis, volume 169. Springer, 1997.

[114] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press,

Cambridge; New York, 1994.

[115] David Bohm. Quantum Theory. Dover Books, 1989.

[116] Paul Adrien Maurice Dirac. The Principles of Quantum Mechanics. Clarendon Press, 1930.

[117] Mário Ziman. Process positive-operator-valued measure: A mathematical framework for the description

of process tomography experiments. Phys. Rev. A, 77:062112, Jun 2008.

[118] A. Jamio lkowski. Linear transformations which preserve trace and positive semidefiniteness of opera-

tors. Reports on Mathematical Physics, 3(4):275–278, 1972.

[119] Gilad Gour. Comparison of quantum channels by superchannels. IEEE Transactions on Information

Theory, 65(9):5880–5904, 2019.

[120] G. Chiribella, G. M. D'Ariano, and P. Perinotti. Transforming quantum operations: Quantum su-

permaps. EPL (Europhysics Letters), 83(3):30004, jul 2008.

[121] G. Chiribella, G. M. D’Ariano, and P. Perinotti. Quantum circuit architecture. Phys. Rev. Lett.,

101:060401, Aug 2008.

[122] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Theoretical framework for quantum

networks. Phys. Rev. A, 80:022339, Aug 2009.

[123] Giulio Chiribella, Giacomo Mauro D’Ariano, Paolo Perinotti, and Benoit Valiron. Quantum compu-

tations without definite causal structure. Phys. Rev. A, 88:022318, Aug 2013.

[124] Paolo Perinotti. Causal Structures and the Classification of Higher Order Quantum Computations,

pages 103–127. Springer International Publishing, Cham, 2017.

[125] John Burniston, Michael Grabowecky, Carlo Maria Scandolo, Giulio Chiribella, and Gilad Gour. Nec-

essary and sufficient conditions on measurements of quantum channels. Proceedings of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 476(2236):20190832, 2020.

[126] Alessandro Bisio and Paolo Perinotti. Theoretical framework for higher-order quantum theory. Pro-

ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475(2225):20180706,

2019.

180



[127] Marco Tomamichel. Quantum Information Processing with Finite Resources. Springer International

Publishing, 2016.

[128] John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.

[129] John Watrous. Semidefinite programs for completely bounded norms. Theory of Computing, 5(11):217–

238, 2009.

[130] Gilad Gour. Uniqueness and optimality of dynamical extensions of divergences. PRX Quantum,

2:010313, Jan 2021.
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[161] Michal Kočvara and Michael Stingl. Pennon: A code for convex nonlinear and semidefinite program-

ming. Optimization Methods and Software, 18(3):317–333, 2003.

[162] Samuel Burer and Changhui Choi. Computational enhancements in low-rank semidefinite program-

ming. Optimization Methods and Software, 21(3):493–512, 2006.

[163] Brian Borchers and Joseph G. Young. Implementation of a primal–dual method for sdp on a shared

memory parallel architecture. Computational Optimization and Applications, 37(3):355–369, Jul 2007.

[164] Zaiwen Wen, Donald Goldfarb, and Wotao Yin. Alternating direction augmented lagrangian methods

for semidefinite programming. Mathematical Programming Computation, 2(3):203–230, Dec 2010.

[165] Eftychios Pnevmatikakis and Liam Paninski. Fast interior-point inference in high-dimensional sparse,

penalized state-space models. In Neil D. Lawrence and Mark Girolami, editors, Proceedings of the

183



Fifteenth International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings

of Machine Learning Research, pages 895–904, La Palma, Canary Islands, 21–23 Apr 2012. PMLR.

[166] Brendan O’Donoghue, Eric Chu, Neal Parikh, and Stephen Boyd. Conic optimization via operator

splitting and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,

169(3):1042–1068, Jun 2016.

[167] Lijun Ding, Alp Yurtsever, Volkan Cevher, Joel A. Tropp, and Madeleine Udell. An optimal-storage

approach to semidefinite programming using approximate complementarity, 2019.

[168] Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A

robust ipm framework and efficient implementation, 2021.

[169] Brian Borchers. Csdp, a c library for semidefinite programming. Optimization Methods and Software,

11(1-4):613–623, Jan 1999.

[170] Jos F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optimization

Methods and Software, 11(1-4):625–653, 1999.
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[186] Ángel Rivas, Susana F. Huelga, and Martin B. Plenio. Quantum non-markovianity: characterization,

quantification and detection. Reports on Progress in Physics, 77(9):094001, aug 2014.

[187] Gerardo Adesso, Thomas R. Bromley, and Marco Cianciaruso. Measures and applications of quantum

correlations. Journal of Physics A: Mathematical and Theoretical, 49(47):473001, nov 2016.

[188] Kavan Modi, Aharon Brodutch, Hugo Cable, Tomasz Paterek, and Vlatko Vedral. The classical-

quantum boundary for correlations: Discord and related measures. Rev. Mod. Phys., 84:1655–1707,

Nov 2012.

185



[189] Wojciech H. Zurek. Decoherence and the transition from quantum to classical. Phys. Today, 44N10:36–

44, 1991.

[190] Wojciech Hubert Zurek. Decoherence and the Transition from Quantum to Classical — Revisited,
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[294] Héctor J. Garćıa, Igor L. Markov, and Andrew W. Cross. On the geometry of stabilizer states. Quantum

Info. Comput., 14(7 & 8):683–720, May 2014.

[295] Yunchao Liu and Xiao Yuan. Operational resource theory of quantum channels. Phys. Rev. Research,

2:012035, Feb 2020.

[296] Mark M. Wilde, Mario Berta, Christoph Hirche, and Eneet Kaur. Amortized channel divergence for

asymptotic quantum channel discrimination. Letters in Mathematical Physics, 110(8):2277–2336, Aug

2020.

193



[297] Kun Fang, Omar Fawzi, Renato Renner, and David Sutter. Chain rule for the quantum relative

entropy. Phys. Rev. Lett., 124:100501, Mar 2020.

[298] Gilad Gour and Mark M. Wilde. Entropy of a quantum channel. Phys. Rev. Research, 3:023096, May

2021.

[299] Tzu-Chieh Wei and Paul M. Goldbart. Geometric measure of entanglement and applications to bipar-

tite and multipartite quantum states. Phys. Rev. A, 68:042307, Oct 2003.

[300] Arne Heimendahl, Markus Heinrich, and David Gross. The axiomatic and the operational approaches

to resource theories of magic do not coincide, 2020.

[301] Bartosz Regula and Ryuji Takagi. One-shot manipulation of dynamical quantum resources. Phys. Rev.

Lett., 127:060402, Aug 2021.

[302] Xiao Yuan, Pei Zeng, Minbo Gao, and Qi Zhao. One-shot dynamical resource theory. arXiv:2012.02781,

2020.

[303] G. H. Hardy, John E. Littlewood, and George Pólya. Inequalities. Cambridge University Press,
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no-programing theorem. Phys. Rev. Lett., 122:080505, Feb 2019.

[324] Yuxiang Yang, Renato Renner, and Giulio Chiribella. Optimal universal programming of unitary gates.

Phys. Rev. Lett., 125:210501, Nov 2020.

[325] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of universal quantum computation

using teleportation and single-qubit operations. Nature, 402(6760):390–393, Nov 1999.

[326] Jaehyun Kim, Yongwook Cheong, Jae-Seung Lee, and Soonchil Lee. Storing unitary operators in

quantum states. Phys. Rev. A, 65:012302, Dec 2001.

[327] Mark Hillery, Vladimir Buz̆ek, and Mario Ziman. Programmable quantum gate arrays. Fortschritte

der Physik, 49(10-11):987–992, 2001.

[328] Micha l Horodecki, Pawe l Horodecki, and Ryszard Horodecki. General teleportation channel, singlet

fraction, and quasidistillation. Phys. Rev. A, 60:1888–1898, Sep 1999.

[329] Michael A Nielsen. A simple formula for the average gate fidelity of a quantum dynamical operation.

Physics Letters A, 303(4):249–252, 2002.

[330] Bartosz Regula and Ryuji Takagi. Fundamental limitations on distillation of quantum channel re-

sources. Nature Communications, 12(1):4411, Jul 2021.

[331] Francesco Buscemi and Nilanjana Datta. The quantum capacity of channels with arbitrarily correlated

noise. IEEE Transactions on Information Theory, 56(3):1447–1460, 2010.

196



Appendix A

Appendix for chapter 3

A.1 Proof of dual of the log-robustness

Finding the dual of the log-robustness(LRC(NA)) is equivalent to finding the dual of 2LRC(NA). From (3.88),

we can write 2LRC(NA) as

min
{ 1

|A0|
Tr[ωA] : ωA ⩾ JN

A , DA[ωA] = ωA , ωA0
= Tr[ωA]uA0

, ωA ⩾ 0
}

(A.1)

where uA0
=

IA0

|A0| . The primal problem of the above conic linear program can be stated as

min
{ 1

|A0|
Tr[ωAIA] : Γ(ωA)−H2 ∈ K2 , ω ⩾ 0

}
(A.2)

where Γ(ωA) is a linear map and is expressed as a 3-tuple such that Γ(ωA) = (ωA0
−Tr[ωA0

]uA0
, ωA , ωA−

D(ωA)). The separation of elements in the tuple can be understood as a direct sum between the subspaces in

a larger vector space. Likewise, H2 is also expressed as a 3-tuple such that H2 = (0A0 , J
N
A , 0A). The cone K2

can be expressed as a 3-tuple as K2 = {(0A0
, ζA , 0A) : ζA ⩾ 0}. Hence, the dual cone K∗

2 = {(ZA0
, βA,WA) :

ZA0
∈ Herm(A0), βA ⩾ 0, WA ∈ Herm(A)}.

Therefore, it is easy to see that the dual to the above primal problem is

max
{ 1

|A0|
Tr[βAJ

N
A ] : IA − Γ∗(ZA0

, βA,WA) ⩾ 0 , ZA0
∈ Herm(A0) , WA ∈ Herm(A) , βA ⩾ 0

}
(A.3)

In order to find Γ∗(ZA0
, βA,WA), we need to equate

Tr[(ZA0
, βA,WA)Γ(ωA)] = Tr[Γ∗(ZA0

, βA,WA)ωA] (A.4)
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From the LHS of (A.4), we find

Tr[(ZA0 , βA,WA)Γ(ωA)] = Tr[ZA0(ωA0 − Tr[ωA0 ]uA0)] + Tr[βA ωA] + Tr[WA (ωA −D(ωA))] (A.5)

Therefore,

Γ∗(ZA0
, βA,WA) = ZA0

⊗ IA1
− Tr[ZA0

]uA0
⊗ IA1

+ βA +WA −D(WA) (A.6)

So, we can rewrite the first constraint in the dual problem as

IA
|A0|

− ZA0
⊗ IA1

+ Tr[ZA0
]uA0

⊗ IA1
− βA −WA +D(WA) ⩾ 0 (A.7)

Now let ηA ⩾ 0 obey the following conditions

DA(ηA) = DA0 (ηA0)⊗ uA1 , DA1 [ηA1 ] = IA1 (A.8)

Any such matrix can be expressed as (uA0
− ZA0

+ Tr[ZA0
]uA0

)⊗IA1
−WA+D(WA). Hence, we can express

(A.7) as

ηA ⩾ βA ⩾ 0 (A.9)

Since, JN
A ⩾ 0, therefore from the above equation we get

Tr[ ηA J
N
A ] ⩾ Tr[βA J

N
A ] (A.10)

Hence, we can recast the dual problem in the following form

max
{

Tr[ ηA J
N
A ] : DA(ηA) = DA0

(ηA0
)⊗ uA1

, DA1
[ηA1

] = IA1
, ηA ⩾ 0

}
(A.11)

Therefore,

LRC(NA) = log max
{

Tr[ ηA J
N
A ] : DA(ηA) = DA0(ηA0)⊗ uA1 , DA1 [ηA1 ] = IA1 , ηA ⩾ 0

}
(A.12)

which is Eq.(3.89).
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A.2 Proof of Theorem 3.13 and the dual of the conversion distance

for MISC and DISC

In [129], it was shown that the diamond norm can be expressed as the following SDP

1

2
∥EB −FB∥⋄ = min

ω⩾0;ω⩾JE−F
B

∥ωB0
∥∞ ∀ E ,F ∈ CPTP(B0 → B1) . (A.13)

Note that (A.13) can be rewritten as [145]

1

2
∥EB −FB∥⋄ = min{λ : λQB ⩾ EB −FB ;QB ∈ CPTP(B0 → B1)} . (A.14)

Taking EB = ΘA→B [NA] and FB =MB , dF(NA →MB) in (3.115) becomes

dF(NA →MB) = min{λ : λQB ⩾ ΘA→B [NA]−MB ,QB ∈ CPTP(B0 → B1) , Θ ∈ F(A→ B)} . (A.15)

For the case F = MISC, let us start by denoting ωB as the Choi matrix of λQB and αAB as the Choi

matrix of Θ, we can express dF(NA →MB) as

dF (NA →MB) = minλ

subject to : (1) λIB0
⩾ ωB0

, (2) ωB ⩾ 0 , (3) ωB ⩾ TrA
[
αAB

(
(JN
A )T ⊗ IB

)]
− JM

B ,

(4) αAB ⩾ 0 , (5) αAB0 = αA0B0 ⊗ uA1 , (6) αA1B0 = IA1B0 ,

(7) Tr[αABX
i
AB ] = 0 ∀ i = 1, . . . , n

(A.16)

where n ≡ |AB|(|B|−1) and {Xi
AB}ni=1 are the bases of the subspace KF defined in (3.63). Here, constraints

(1-3) are due to diamond norm, constraints (4-6) follow from the requirement of Θ to be a superchannel and

constraint (7) is due to the requirement that Θ ∈ F.

Now consider a linear map L : R ⊕ Herm(B) ⊕ Herm(AB)→ Herm(B0) ⊕ Herm(B) ⊕ Herm(AB0) ⊕

Herm(A1B0) ⊕n R where ⊕n R denotes R⊕ . . .⊕ R︸ ︷︷ ︸
n

.

Its action on a generic element µ = (λ , ωB , αAB) of R⊕Herm(B)⊕Herm(AB) such that λ ∈ R+ , ωB ⩾

0 , αAB ⩾ 0 is

L(µ) :=
(
λIB0

− ωB0
, ωB − Tr

[
αAB

(
(JN
A )T ⊗ IB

)]
, αAB0

− αA0B0
⊗ uA1

, αA1B0
,

Tr[αABX
1
AB ] , . . . ,Tr[αABX

n
AB ]
) (A.17)
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Taking a generic element ν = (βB0 , γB , τAB0 , ζA1B0 , t1, . . . , tn) of Herm(B0)⊕Herm(B)⊕Herm(AB0)⊕

Herm(A1B0)⊕n R such that βB0
⩾ 0 , γB ⩾ 0 , we have

L∗(ν) =
(

Tr[βB0
] , γB−βB0

⊗IB1
, τAB0

⊗IB1
−(JN

A )T⊗γB−τA0B0
⊗uA1

⊗IB1
+τA1B0

⊗IA0B1
+
∑
i

tiX
i
AB

)
.

(A.18)

Following [149], the dual is given by

dF (NA →MB) = max
{
− Tr

[
JM
B γB

]
+ Tr [ζA1B0

]
}

(A.19)

where the maximum is subject to

βB0 ⊗ IB1 ⩾ γB ⩾ 0 , 1 ⩾ Tr[βB0 ] ,

ζA1B0
∈ Herm(A1B0) , τAB0

∈ Herm(AB0) , t1, . . . , tn ∈ R ,

JN
A ⊗ γB + τA0B0

⊗ uA1
⊗ IB1

− τAB0
⊗ IB1

− τA1B0
⊗ IA0B1

−
∑
i

tiX
i
AB ⩾ 0 .

(A.20)

For the case of F = DISC, note that the only distinction is in the choice of basis of the subspace KF. So,

in this case, the dual is given by

dF (NA →MB) = max
{
− Tr

[
JM
B γB

]
+ Tr [ζA1B0

]
}

(A.21)

where the maximum is subject to

βB0
⊗ IB1

⩾ γB ⩾ 0 , 1 ⩾ Tr[βB0
] ,

ζA1B0
∈ Herm(A1B0) , τAB0

∈ Herm(AB0) , t1, . . . , tn ∈ R ,

JN
A ⊗ γB + τA0B0

⊗ uA1
⊗ IB1

− τAB0
⊗ IB1

− τA1B0
⊗ IA0B1

−
∑
i

tiY
i
AB ⩾ 0 .

(A.22)

Therefore, we see that dF(NA →MB) is an SDP in the dynamical resource theory of quantum coherence if

the free superchannels belong to MISC or DISC.

200



A.3 Upper bound on the log-robustness of coherence and the log-

robustness of quantum Fourier transform channel and the

maximally coherent replacement channel

The log-robustness of a channel NA can be expressed as

LRC(NA) = log max
{

Tr
[
ηAJ

N
A

]
: DA (ηA) = DA0

(ηA0
)⊗ uA1

, DA1
[ηA1

] = IA1
, ηA ⩾ 0

}
(A.23)

= log max

{
|A0A1|Tr

[
ηA
|A1|

JN
A

|A0|

]
: DA (ηA) = DA0

(ηA0
)⊗ uA1

, DA1
[ηA1

] = IA1
, ηA ⩾ 0

}
(A.24)

Let ρA :=
ηA
|A1|

, σA :=
JN
|A0|

and observing that ρA, σA ∈ D(A), we can rewrite the above expression as

LRC(NA) = log max

{
|A0A1|Tr [ρAσA] : DA(ρA) = DA0

(ρA0
)⊗ uA1

|A1|
, DA1

[ρA1
] = uA1

, ρA ⩾ 0

}
(A.25)

Recall that the maximum of the trace of the product of two density matrices is 1 and can be obtained if the

two density matrices are same and pure, i.e., ρA = σA and Tr[σ2
A] = Tr[σA] = 1. Therefore, for any channel

NA

LRC(NA) ⩽ log |A0A1| (A.26)

with |A0| = |A1| = d, the upper bound on the log-robustness of coherence becomes

LRC(NA) ⩽ log d2 . (A.27)

To achieve this upper bound of the log-robustness of coherence, we require

ηA
|A1|

=
JN
A

|A0|
(A.28)

and σA =
JN
A

|A0|
to be pure. Thus, for σA to be pure, NA has to be a unitary channel, i.e.,

JN
A =

∑
x,y

|x⟩⟨y| ⊗ U |x⟩⟨y|U† , (A.29)

Since for a unitary channel JN
A = ηA (|A0| = |A1| for a unitary channel), JN

A has to follow the constraints

201



in (A.23) which can be expressed as

DA(JN
A ) = DA0

(
JN
A0

)
⊗ uA1 , (A.30)

DA1
[JN
A1

] = IA1
, (A.31)

JN
A ⩾ 0 . (A.32)

Constraint in (A.32) follows from the definition of a Choi matrix of a channel and (A.31) follows trivially

for the Choi matrix of any unitary channel U . From constraint in (A.30), we can find the condition on the

unitary matrix to achieve the upper bound of the log-robustness of coherence of channels in the following

way. First, we can write the lhs of (A.30) as

DA(JN
A ) = DA

(∑
x,y

|x⟩⟨y| ⊗ U |x⟩⟨y|U†

)
(A.33)

=
∑
x,y,i,j

δx,iδy,j |i⟩⟨i| ⊗ ⟨j|U |x⟩⟨y|U†|j⟩|j⟩⟨j| (A.34)

=
∑
i,j

|i⟩⟨i| ⊗ ⟨j|U |i⟩⟨i|U†|j⟩|j⟩⟨j| (A.35)

=
∑
i,j

|uij |2 |i⟩⟨i| ⊗ |j⟩⟨j| (A.36)

where uij = ⟨j|U |i⟩. Simplifying the rhs of constraint in (A.30) we get

DA0

(
JN
A0

)
⊗ uA1

= IA0
⊗ uA1

. (A.37)

Now equating (A.36) and (A.37) we get

∑
i,j

|uij |2 |i⟩⟨i| ⊗ |j⟩⟨j| = IA0
⊗ uA1

, (A.38)

which implies that

|uij |2 =
1

|A1|
=

1

d
∀ i, j (A.39)

of a unitary channel that achieves the upper bound of the log-robustness of coherence.
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A.3.1 Log-robustness of coherence of QFT channel

The action of a Quantum Fourier Transform (QFT) on a basis vector is given by

Fd|i⟩ =
1√
d

d−1∑
k=0

ωik|k⟩ (A.40)

where d denotes the dimension of the system the QFT is acting on and ω is the complex root of unity.

Therefore, a general element of the QFT matrix can be written as

⟨j|Fd|i⟩ =
ωij√
d
. (A.41)

It is trivial to check that it follows the condition required to achieve the upper bound of the log-robustness

of coherence, i.e.,

|⟨j|Fd|i⟩|2 =

∣∣∣∣ωij√d
∣∣∣∣2 (A.42)

=
1

d
. (A.43)

Therefore, the log-robustness of quantum Fourier transform channel (NFd

A ) is

LRC(NFd

A ) = log d2 = 2 log d . (A.44)

A.3.2 Log-robustness of maximal replacement channels

The Choi matrix of a maximal replacement channels NA is given by

JN
A = id⊗ ϕ+A1

(A.45)

where the density matrix of the maximally coherent state in dimension d is given by

ϕ+A1
=

1

d



1 1 1 · · · 1

1 1 1 · · · 1

1 1 1 · · · 1

...
...

...
...

1 1 1 · · · 1


d×d

(A.46)
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Using (A.23), we can find the log-robustness of JN
A as follows

LRC(NA) = log max Tr[ηAJ
N
A ] (A.47)

= log max Tr[ηA(idA0
⊗ ϕ+A1

)] (A.48)

= log2 max Tr[ηA1
ϕ+A1

] (A.49)

where ηA follows the following conditions

DA(ηA) = DA0
(ηA0

)⊗ uA1
, DA1

[ηA1
] = IA1

, ηA ⩾ 0 (A.50)

(A.49) suggests that the Choi matrix of the maximal replacement channel is the log of the max of the sum of

all the elements of ηA1
divided by d. And from the constraints on ηA, we know that the diagonal elements of

ηA1
are all 1’s. Hence, the maximum value would be obtained when all the elements of ηA1

are equal to 1. If

any off-diagonal element (and so its diagonally opposite element) are greater than 1 then the determinant of

the leading principal minor will be negative which contradicts the positive semi-definite constraint imposed

on ηA. Hence, the log-robustness of a maximally coherent replacement channel, i.e., a channel NA that

replaces any input by the maximally coherent state of dimension d is given by

LRC(NA) = log d . (A.51)

In conclusion, we find that the ratio between the log-robustness of coherence of QFT channel and the

maximal coherent replacement channels is always 2 implying that 2 maximal replacement channels are

required to simulate a QFT channel. One interpretation of this finding can be given by combining the

resources of entanglement and coherence. As noted above, a distinguishing feature between the QFT and

the maximal replacement channel is that the latter is entanglement-breaking. Hence even though it can

generate maximal coherence, in the process of doing so it will destroy any entanglement the primary system

may have with an external one. For example, when acting on the first subsystem in the entangled state√
1/2(|00⟩ + |11⟩), the qubit replacement channel will yield ρ1 = ϕ+2 ⊗ I/2, while the QFT will yield

|ψ2⟩ =
√

1/2(|0+⟩+ |1−⟩), where |±⟩ =
√

1/2(|0⟩ ± |1⟩).

A combined resource theory of entanglement and coherence was studied in Ref. [209]. In particular, the

asymptotic convertibility of states using local incoherent operations was considered, and for a given state

ρAB , one can define the optimal rate sum RC + RE of coherent bits (RC) and entangled bits (RE) needed

to asymptotically prepare the state ρAB . It turns out that state |ψ2⟩ has twice the resource cost as state
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ρ1, when resource cost is measured in terms of the smallest rate sum RC + RE . Here, RC and RE are the

asymptotic rates of coherence and entanglement used to build the state. Hence the greater resource power

of the QFT versus the replacement channel becomes operationally manifest in this way.

A.4 Proof of proposition 1 (Maximal Probability of Success in

Distillation of Dynamical Coherence under MISC)

For a given error tolerance ϵ and quantum channel N , the maximal probability of achieving F (σ, ϕ+d ) ⩾ 1− ϵ

with Θ(N ) = pσ is equal to

P ϵFprob
(N ; d) = max{p |Θ[N ] = pϕ+d,ϵ,Θ ∈ Sprob}. (A.52)

with ϕ+d,ϵ = (1− ϵ)ϕ+d + ϵ(I − ϕ+d )/(d− 1).

Similar to ϕ+d , state ϕ+d,ϵ is also invariant under twirling operation, which is a free channel in the theory

of coherence; that is T (ϕ+d,ϵ) = ϕ+d,ϵ. Then for any superchannel Θ satisfying Θ[N ] = pϕ+d,ϵ, we also have

T ◦Θ[N ] = pϕ+d,ϵ. Mathematically, the Choi operator of T ◦Θ is given by

JT ◦Θ
A0A1B1

= TrB1
[ϕ+d,B1

· JΘ]⊗ ϕ+d,B1
+

TrB1 [(IB1 − ϕ+d,B1
) · JΘ]

d− 1
⊗ (IB1

− ϕ+d,B1
). (A.53)

Define X and Y as

XTA0A1 := TrB1 [ϕ+d,B1
· JΘ], (A.54)

Y TA0A1 := TrB1 [(1B1 − ϕ+d,B1
) · JΘ]/(d− 1), (A.55)

which are positive semidefinite operators on systems A = A0A1. With these notations, the Choi operator of

T ◦Θ can be simplified as

JT ◦Θ = XT ⊗ ϕ+d + Y T ⊗ (1− ϕ+d ). (A.56)
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Hence the maximal probability of distilling ϕ+d with error tolerance ϵ under MISsub can be characterized as

P ϵMISCprob
(N ; d) = max Tr[ZA · JN

A ]

s.t. Tr[XA · JN
A ] ⩾ (1− ϵ)Tr[ZA · JN

A ],

0 ⩽ XA ⩽ ZA ⩽ ρA0
⊗ IA1

,

D(Z) = dD(X), Tr[ρA0
] = 1, (A.57)

which is theorem 1.
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Appendix B

Appendix for chapter 4

B.1 Interconversion Distance

We define the interconversion distance from a state ρ ∈ D(A0) to another state σ ∈ D(A1) as

d(ρA0
→ σA1

) =
1

2
min

E∈CSPO(A0→A1)
∥E(ρ)− σ∥1 (B.1)

= min
E∈CSPO

(
max

0⩽P⩽I
Tr [(E(ρ)− σ)P ]

)
(B.2)

Using the dual of trace norm, we can express the above interconversion distance as follows

d(ρ→ σ) = minTr[X + Y ] (B.3)

s.t.

 X E(ρ)− σ

E(ρ)− σ Y

 ⩾ 0 , (B.4)

X ⩾ 0 , Y ⩾ 0 , (B.5)

JE
A0A1

⩾ 0 , JE
A0

= IA0 , (B.6)

JE
A0A1

|A0|
∈ STAB (B.7)

B.2 Proof of additivity of min-relative entropy of magic for qubits

To prove the additivity of min-relative entropy of magic for qubits, first note that the projector onto the

support of a qubit state is identity if the state is mixed, else it is the state itself if it is pure. For the proof,

we construct the following four possible cases for qubits ρ1 or ρ2
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1. For ρ1, ρ2 > 0, we get

DSTAB
min (ρ1 ⊗ ρ2) = − log2 max

ψ∈STAB
Tr[(Pρ1 ⊗ Pρ2)ψ] (B.8)

= − log2 max Tr[(I ⊗ I)ψ] (B.9)

= 0 (B.10)

= DSTAB
min (ρ1) +DSTAB

min (ρ2) (B.11)

2. For ρ1 > 0 and ρ2 = |χ⟩⟨χ|, we get

DSTAB
min (ρ1 ⊗ ρ2) = − log2 max

ψ∈STAB(A1A2)
Tr[(Pρ1 ⊗ Pρ2)ψ] (B.12)

= − log2 max
ϕ∈STAB(A2)

Tr[|χ⟩⟨χ|ϕ] (B.13)

= DSTAB
min (ρ2) (B.14)

= DSTAB
min (ρ1) +DSTAB

min (ρ2) (B.15)

3. For ρ1 = |χ⟩⟨χ| and ρ2 > 0, we get the same result as obtained in 2, i.e.,

DSTAB
min (ρ1 ⊗ ρ2) = DSTAB

min (ρ1) +DSTAB
min (ρ2) (B.16)

4. For the case when both ρ1 and ρ2 are pure and let ρ1 = |χ⟩⟨χ| and ρ2 = |ω⟩⟨ω|, we get

DSTAB
min (ρ1 ⊗ ρ2) = − log2 max

ψ∈STAB
Tr[(|χ⟩⟨χ| ⊗ |ω⟩⟨ω|)ψ] (B.17)

= − log2 F (|χ⟩⟨χ| ⊗ |ω⟩⟨ω|) (B.18)

= − log2 (F (|χ⟩⟨χ|)F (|ω⟩⟨ω|)) (B.19)

= DSTAB
min (ρ1) +DSTAB

min (ρ2) (B.20)

where the second equality follows from the definition of stabilizer fidelity as defined in [257]. The third

equality follows from Theorem 5 and Corollary 3 of [257].

Therefore, for single-qubit states we find that the min-relative entropy of magic is additive.

208



B.3 Robustness of magic

We define the robustness of magic of a quantum state as

R(ρ) = min

{
λ ⩾ 0 :

ρ+ λσ

λ+ 1
∈ STAB, σ ∈ STAB

}
(B.21)

which is slightly different from how it was originally defined in [253]. We use this definition because any

resource monotone must be zero for free elements. Likewise, we define channel robustness of magic of a

quantum channel N as

R(NA) = min

{
λ ⩾ 0 :

N + λE
λ+ 1

∈ CSPO, E ∈ CSPO

}
(B.22)

which agains differs slightly from the definition of channel robustness of magic in [258].

Both these quantities are magic monotones and are sub-multiplicative under tensor products. Therefore,

the log of the robustness of magic (denoted as LR) is sub-additive i.e.,

LR(ρ⊗m) ⩽ mLR(ρ) , (B.23)

LR(N⊗m) ⩽ mLR(N ) . (B.24)

where LR(ρ) = log(1 + R(ρ)) and LR(N ) = log(1 + R(N )).

B.4 Hypothesis testing relative entropy of magic

The hypothesis testing relative entropy of magic or the operator smoothed min-relative entropy of magic is

defined as

Dϵ, STAB
min (ρ) = min

σ∈STAB
Dϵ

min(ρ∥σ) (B.25)

= min
σ∈STAB

(− log min Tr[Eσ] (B.26)

s.t. 0 ⩽ E ⩽ I, (B.27)

Tr[Eρ] ⩾ 1− ϵ ) (B.28)

For ϵ = 0, the hypothesis testing relative entropy of magic becomes equal to the min-relative entropy of

magic, i.e., Dϵ=0, STAB
min (ρ) = DSTAB

min (ρ).
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B.5 Proof of proposition 5

First we note that for any EA ∈ CPTP(A) and any Θ ∈ CSPSC(A→ B1) we have

Dmin

(
ψ⊗k∥Θ[E ]

)
= − log2 Tr

[
ψ⊗kΘ[E ]

]
(B.29)

⩾ DSTAB
min (ψ⊗k) (B.30)

= kDSTAB
min (ψ) (B.31)

where the inequality follows from the definition of min-relative entropy of magic for states and the last

equality follows from its additivity for single-qubit states.

The hypothesis testing relative entropy [319, 331] between two states ρ1 and ρ2 is given by

Dϵ
Hyp(ρ1∥ρ2) := − log2 min{Tr[Mρ2] : 0 ⩽M ⩽ I , Tr[Mρ1] ⩾ 1− ϵ} . (B.32)

and its channel counterpart can be given as

Dϵ
Hyp (NA∥MA) := sup

ψ∈D(R0A0)

Dϵ
Hyp (N (ψR0A0

)∥M(ψR0A0
)) (B.33)

Using this definition, we then have

kDSTAB
min (ψ) ⩽ min

E∈CSPO
Dmin(ψ⊗k∥Θ[E ]) (B.34)

⩽ min
E∈CSPO

Dϵ
Hyp(Θ[N ]∥Θ[E ]) (B.35)

⩽ min
E∈CSPO

Dϵ
Hyp(N∥E) (B.36)

where the second inequality follows from the definition of hypothesis testing relative entropy and the last

inequality follows from the data-processing inequality. And therefore, we get

DISTILLϵψ(NA) ⩽
minE∈CSPO(A0→A1)D

ϵ
Hyp(N∥E)

DSTAB
min (ψ)

(B.37)

which for exact distillation process (i.e., ϵ = 0) will become

DISTILLψ(NA) ⩽
DCSPO

min (NA)

DSTAB
min (ψ)

(B.38)
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B.6 Single qubit Unitary CSPOs

Table B.1 lists the set of 24 unitary gates which are completely stabilizer preserving along with corresponding

(unnormalized) Choi matrices. Table B.2 gives an account of the states generated by these unitary CSPOs.

Since a single qubit state can be represented as a vector (r1, r2, r3)T in the Bloch sphere, we will give below

the vectors to which this vector transforms on the application of the above unitaries.
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Unitary gate state corresponding to

associated Choi matrix

I |00⟩+ |11⟩

X |01⟩+ |10⟩

Z |00⟩ − |11⟩

XZ |01⟩ − |10⟩

H |0+⟩+ |1−⟩

HX |0−⟩+ |1+⟩

HZ |0+⟩ − |1−⟩

HXZ |0−⟩ − |1+⟩

S |00⟩+ i|11⟩

XS |01⟩+ i|10⟩

ZS |00⟩ − i|11⟩

XZS |01⟩ − i|10⟩

HS |0+⟩+ i|1−⟩

HSZ |0+⟩ − i|1−⟩

HXS |0−⟩+ i|1+⟩

HXSZ |0−⟩ − i|1+⟩

SH |0 + i⟩+ |1 − i⟩

SHZ |0 + i⟩ − |1 − i⟩

SHX |0 − i⟩+ |1 + i⟩

SHXZ |0 − i⟩ − |1 + i⟩

SHS |0 + i⟩+ i|1 − i⟩

SHSZ |0 + i⟩ − i|1 − i⟩

SHSX i|0 − i⟩+ |1 + i⟩

SHSXZ i|0 − i⟩ − |1 + i⟩

Table B.1: Unitary CSPOs and their Choi ma-
trices.

Unitary gate Transformed vector

I r1, r2, r3

SH r2, r3, r1

HSZ r3, r1, r2

X r1,−r2,−r3

SHXZ r2,−r3,−r1

HS r3,−r1,−r2

Z −r1,−r2, r3

SHX −r2,−r3, r1

HXSZ −r3,−r1, r2

Y −r1, r2,−r3

SHZ −r2, r3,−r1

HXS −r3, r1,−r2

SHS r1, r3,−r2

HZ r3, r2,−r1

XZS r2, r1,−r3

SHSX r1,−r3, r2

H r3,−r2, r1

ZS r2,−r1, r3

SHSZ −r1, r3, r2

HX −r3, r2, r1

S −r2, r1, r3

SHSXZ −r1,−r3,−r2

HY −r3,−r2,−r1

XS −r2,−r1,−r3

Table B.2: Possible transformations of a Bloch
vector using unitary CSPOs.
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Appendix C

Copyright and content reuse

statements

In this appendix, we reproduce the statements we received from the sources of our published works [37, 91],

allowing us to reuse the content of these articles in this thesis.
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