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ABSTRACT 

This thesis deals with location-allocation in networks under 

conditions of congestion. The problem is to simultaneously find the 

optimal districting policy which determines how a region should be 

partitioned into separate service areas, and the optimal locations of 

facilities to house mobile service units. 

In the event of congestion of service demands, i.e. the arrival 

of one or more calls for service while the server is busy, these calls 

enter a queue which is depleted according to a first-come-first-served 

discipline. State-of-the-art research treating service networks under 

conditions of congestion has provided an analytic solution for the 

optimal location of a single mobile server and a heuristic solution 

method for 2-server network districting. 

An alternate location and allocation solution improvement 

procedure is developed to combine the location algorithm of a single 

mobile service unit with districting heuristics for two or more 

servers. This heuristic procedure which is a monotone-decreasing 

convergent process may or may not result in the optimal solution. For 

two servers the previously developed single server location algorithm 

and the 2-server districting heuristic are used in the 2-server 

location allocation heuristic. In order to find location-allocation 

policies for more than two servers the 2-server districting heuristic 

is extended to treat networks with three or more servers. The 

presentation of a solution method for the general case of m servers 

and n nodes follows the development of heuristic solutions for the 2 

and 3 server location-allocation problems. 



The significance of the methods presented in this thesis 

increases with the degree of congestion. While for low demand rates 

the expected response time is not very sensitive to changes in 

'location-allocation policies, at high rates of demand even slight 

changes in location or districting policies could be °disasterous'1. 

Solution procedures in the form of flowcharts are presented as 

well as computational results for up to five servers and twenty-five 

nodes. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation  

This thesis deals with the location-allocation (LA) problem in 

congested networks. The LA problem may generally be defined as 

simultaneously finding the optimal districting (allocation, zoning, 

area designation) policy, which determines how a region should be 

partitioned into separate service areas, and the optimal locations of 

facilities to house the service units. LA policy decisions apply to 

public emergency services such as police, ambulance and fire services 

as well as to business services such as courier, taxi and road 

maintenance. The nodes of the network are demand points while service 

units may be located anywhere on the network (on nodes or on links) 

and travel along links representing transportation arteries of an 

urban environment. 

Ahituv and Berman1 consider the hierarchy of policy decisions in 

service networks, and state that the positioning of these policies in 

the hierarchy depends mainly on financial and political implications. 

The LA policy making process which has a long-term impact on 

expenditures and is highly subject to political considerations, 

captures the top level of this hierarchy. In addition, the 

consequences of LA policies prevail over the long-term and the degree 

of flexibility that is available to modify these policies, once 

implemented, is very low. Thus, the choice of reliable LA models for 
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policy decisions is of great importance. 

Studies in recent years have dealt with LA both in the context of 

planar and network problems. However, no attempt has been made to 

present a method of optimal LA taking congestion into account. 

Solving this problem with the consideration of congestion, i.e. the 

arrival of one or more calls for service while the server -is busy, is 

more realistic. In such a case, demands for service may either be 

rejected or placed in a queue. 

The purpose of this thesis is to solve the above problem, allowing 

the queueing of service demands to take place. The consideration of 

congestion in location and allocation models makes them highly 

complex. An analytic solution exists for the optimal location of a 

single mobile server on a network allowing the queueing of service 

demands, but the same problem for two servers cannot be solved 

analytically. A solution of the districting problem with congestion 

has only been provided for two servers (and two districts) using a 

heuristic rather than an exact algorithm. Here, the problem is 

extended to combine the location algorithm with the heuristic solution 

to the districting problem for two and more servers. The approach is 

to begin with a solution to the LA problem with two mobile servers. 

The next step is to find a solution to the districting problem with 

three mobile service units and to combine this solution with the 

location algorithm in such a way as to obtain a LA policy for three 

servers. Finally, an attempt is made to present a heuristic 
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solution for the general case of n nodes and m servers. 

Note should be made to the fact that heuristics are used both for 

the solution of the districting problem and the LA problem. 

Therefore, although reference is made throughout this thesis to 

"optimal" districting and LA policies or solutions, they may or may 

not be equal to the global optimum. 

The next section reviews some of the relevant research done in 

this area. Section 1.3 summarizes the two papers which provide a 

basis for the development of this thesis and the last section of this 

chapter describes the content of the thesis. 

1.2 A Brief Literature Review 

1.2.1 General Discussion  

Research of LA problems covers a wide range of areas and may be 

subdivided into various categories. In terms of the type of system 

dealt with, solution methods have been suggested for public emergency 

and non-emergency as well as business services, manufacturing systems, 

distribution systems and LA problems related to financial planning. 

Studies in this area may also be categorized according to the type of 

representation given to the modeled system, i.e. as a planar or a 

network problem. Some studies deal with the solution of multicriteria 

LA problems while most are based on the single objective of average or 

maximum cost minimization. 
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By their nature, LA solution methods treat the problem of facility 

location as well as the districting problem. This literature review 

first deals with studies on facility location and is followed by a 

review of some studies related to districting. Finally, research 

dealing with various LA problems is discussed. 

1.2.2 Facility Location Studies  

Studies in the field of location theory have dealt both with 

planar and network problems. When it is assumed that facilities can 

locate anywhere on a plane, a co-ordinate system is used to specify 

locations. This assumption is appropriate when the transportation 

network is highly developed and there is no restriction as to the 

location of facilities on the plane. Network location problems 

constrain facility locations to the network only, and for this type of 

problem the additional data required is presented in form of a 

distance matrix. As this thesis deals with networks only, the review 

of location literature is limited to location problems on networks. 

A recent paper by Tansel, Francis and Lowe28 presents the 

state-of-the-art in network location theory. It includes 

approximately 100 references, roughly 60 dating from 1978. It divides 

the studies into various categories and points out relations between 

them. The authors devote a major portion of their survey to single 

objective location problems through a discussion on studies related to 

the p-centre and p-median problems with and without mutual 
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communi'cation (cooperation) between servers. The paper further treats 

the distance constraints problem which involves locating new 

facilities on a network so that they are within specified distances of 

existing facilities as well as within specified distances of one 

another, multiple objective location problems and path location 

problems. 

A text by Handler and Mirchandani "  discusses recent developments 

in median and centre problems as well as other location problems such 

as those dealing with multiobjective location, congestion and 

multistop location (or the traveling salesman location problem). 

Related directly to this thesis are publications dealing with 

optimal location in stochastic service systems. Jarvis 13 discusses 

spacially distributed queueing systems which are closely related to 

public safety systems. He presents an iterative procedure which seeks 

the optimal locations for facilities providing service under 

conditions of congestion and cooperation among the servers. Berman 

and Larson4 treat the case of congestion and extend Hakimi's median to 

the uncertain availability of servers to a random call. In this paper 

they treat the case of cooperation between servers but develop results 

just for the special case in which on-scene service time is much 

greater than travel time for all servers. Berman, Larson and Chiu3 

present an analytic solution to the case of a single mobile server on 

a network where stochastic calls for service enter a queue when the 

server is not available. For the one facility one server case, the 

problem is solved in its full generality. This paper is discussed in 

detail in Sub-Section 1.3.1. 
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1.2.3 Studies on Districting  

The treatment of districting has not been as extensive as that of 

facility location. Some research deals solely with districting while 

others treat this subject in the wider context of LA policy decisions 

and are discussed in Sub-Section 1.2.4. 

It should be noted that throughout this thesis and in the 

literature surveyed, the concept of districting is interchangeable 

with the concepts of zoning, area designation and allocation. All 

these refer to the partitioning of the whole region into separate 

service areas based on one or more criteria. 

Larson and Stevenson 16 deal with the sensitivity of expected 

response times to the design of response areas. Keeney 14 presents a 

method of determining response areas based on the criterion of 

dispatching the closest service unit. Ignall 12 treats the allocation 

problem with specific reference to fire services with the criterion of 

minimizing response distance subject to constraints on workload 

imbalances. Berman and Wand  consider optimal response areas based on 

two objectives: the minimization of the expected cost of the 

operating system and the minimization of the percentage of customers 

that will not be served within some pre-specified time period. 

Carter, Chaiken and Ignall 7 deal with the issue of cooperation between 

two urban emergency service units serving separate response areas. 

They determine district boundaries that minimize average response time 

and those that equalize workload. Jarvis 13 presents a 
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procedure for determining dyn amic allocations of servers to customers 

for the general case of m servers and notes similar results to those 

of Chaiken et al. for the 2-server case. His analysis is based on the 

continuous time Markov "hypercube" model developed by Larson'7. 

A recent study by Berman and Larson  focuses on 2-server 

districting in stochastic networks. The paper contains exact methods 

for finding the optimal districting policy for low or high (feasible) 

demand rates, and for a general demand rate, a heuristic is presented. 

This paper is further discussed in Sub-Section 1.3.2. 

1.2.4 Studies on Location-Allocation  

Most studies on location-allocation do not restrict the location 

of facilities to a network and rather deal with locations on a plane. 

As previously stated, this topic has been dealt with in a variety of 

contexts some of which are presented here. 

LA problems were first formulated by Cooper8 who later developed 

heuristic solutions to these problems  and an exact solution to the 

transportation LA problem. 10 Cooper was also the first to formulate 

the "Alternate Method"9 for solving LA problems which is used in this 

thesis in the context of congestion. Beaumont  presents a review and 

discussion of LA models in the plane dividing them into median 

problems, centre problems, covering problems, hierarchial LA models 

and dynamic LA models. 

Neebe23 presents a branch and bound algorithm for the p-median 
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transportation problem. Madsen 19 surveys methods of solving combined 

location-routing and LA-routing problems. Love 18 describes an 

algorithm which locates variable facilities in relation to existing 

facilities situated on one route and performs the allocation 

simultaneously with the location. Wesolowsky and Truscott3° formulate 

a dynamic (multiperiod) LA model with the objective of specifying a 

plan for facility locations and relocations and for optional 

allocations of demands which minimize static distribution costs and 

the costs of relocating facilities. 

Solutions to large scale LA problems are treated by Nambiar, 

Gelders and Van Wassenhove21 through a heuristic approach to the 

location of processing factories, the siting of collection stations 

and the vehicle routing problem of transporting raw material to the 

central processing factories. The problem described involves 15 

processing factories, 300 collection stations and 50 vehicles. 

Murtagh and Niwattisyawong2° describe a procedure based on large-scale 

non-linear programming for solving the multi-depot LA problem. In 

this paper both the locations of depots and the allocation of 

customers are allowed to vary simultaneously and numerical experience 

with 5 and 10 depots and 50 customers is described. 

LA in the context of emergency medical services is treated by Or 

and Pierskalla24 for regional blood banking. They present algorithms 

to decide how many blood banks to set up, where to locate them, how to 

allocate hospitals to the banks and how to route a periodic supply 

operation. Narula and Ogbu22 suggest several heuristics to solve a 
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2-hierarchial LA problem where p1 health centres and p2 hospitals are 

to be located among n potential locations so as to minimize total 

weighted travel distance. 

The treatment of LA problems under stochastic conditions has been 

very limited. Sheppard25 formulates a general conceptual framework 

for dealing with uncertainty in LA problems and Stidhani26 deals with 

the application of probabilistic demand to static LA models. 

1.3 Summary of Research Leading to this Study 

1.3.1 Location of the Stochastic Queue Median  

Berman, Larson and Chiu3 deal with the problem of finding the 

optimal location for a single mobile server and extend Hakimi's 

one-median problem to include the treatment of congestion. In the 

median problem the objective is to minimize the average distance (or 

the average travel time or the average cost) traveled by the server 

(or servers) in the case of mobile servers and static demand points. 

While Hakimi's work took into account only the probabilistic spatial 

nature of service demands, Berman et al. also consider a probabilistic 

arrival time process for service demands and probabilistic service 

times. The incorporation of temporal as well as spatial uncertainties 

under conditions of congestion may be treated either by service 

demands being rejected or placed in a queue due to the unavailability 

of the server. In the case of service demands placed in a queue the 
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criterion for server location is the minimization of the average time 

of response which is the sum of mean in-queue delay and mean travel 

time. 

When congestion is not considered, the optimal server location 

exists on a node of the network, and an analogous result exists for 

the multi-median problem. In the case of a network incorporating an 

M/G/1 queuing system (Poisson input, general [independent] service 

times, and a single server) operating in steady state, it was found 

that for the case of zero queue capacity the optimal facility location 

is at the median, and that for the infinite queue capacity case the 

optimal solution can either be on a node or on a link. 

The problem is described as follows: Service demands occur at the 

nodes of an undirected network G(N,L) with node set N(IN!=n) and link 

set L. Each node j generates an independent stream of demands with rate 
n 

Xh. ( E h.=1), where X > 0 is the network-wide demand rate and h. is the 
j=1 3 - 3 

probability that a random service demand originates at node j. Travel 

distance from point x c G to node j c N is d(x,.j) and travel distance 

on link (i,j) is A single mobile server is located at a facility 

at point x c G and can be dispatched for immediate service whenever it 

is located and free at point x. From the point in time that the 

server is dispatched to node j there is a travel time of d(x,j)!v 

where v is the travel speed. The server then incurs an expected on-scene 

service time of Rj , a return travel time equal to (-1)d(x,j)/v where 

> 1 and an expected off-scene service time of 1L (for a given node j, 



R and Wj are assumed to be independent random variables). The components 

of the service time are shown in Figure 1.1. 

Total service time = S. 

k >1 
travel time on-scene follow-ip off-scene 
to the scene service travel time service 

time time 

 > 
( d(x,j)/v 

Service 
deoEnd occurs 
frau node j 

j 
 ( l)d(x,j)/v X W. time 

FIGURE 1.1 Time Sequence for a Demand for Service 

If additional demand occurs whenever the server is busy, the new 

demand enters a queue that is depleted according to a first-come-first-

served (FCFS) discipline. Therefore, given facility location x, the 

expected response time TR(x) associated with a random service demand 

is the sum of the mean in-queue delaY Rq (X) and the expected travel 

time T(x). 

7R(X) = •W•q (X) +T(x) 

If the mobile server is assumed to be located between nodes a 

and b at a distance x from node a (where k is the length of link (a,b) 

and d(i,j) is the shortest distance between nodes i, j e N), then the 

mean service time is given by: 

(x) = + . + [E h. minx + d(a,j); (-x) + d(b,j)}] 
3 
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and the expected travel time to the site of the demand is given by: 

i n 
t(x) = -[ E h. minx + d(a,j); (.-x) + d(b,j)}] 

j=i 3 

For an N/G/l queueing system the mean in-queue delay is given by: 15 

'9q(x) = 

For ?C( x) < 1 

For XS(x) > 1 

where: (x) = h j LV min{x + d(a,j); (-x) + d(b,j)} + R + W]2 

and E denotes the expectative operator. The objective is to find x 

such that 

TR(X) -TR iLx e (a', b'), (a', b') e L 

x is called a stochastic queue median. 

Next, the concept of breakpoints is introduced. The node set N 

may be divided into two disjoint sets A and B as follows: 

A = j; x + d(a,j) < (9,-x) + d(b,j)}; B = N-A 

When changing x along the link (a,b) the sets A and B may change. 

Breakpoints are all the points on G(N,L) at which the sets A and B 

change. 

It was found that TR(x) is a continuous piece-wise convex 

differentiable function of x for any interval on link (a,b) bounded by 

two breakpoints when it is finite, and that the only points of 



- 13 - 

nondifferentiability are at the breakpoints. Therefore, given any 

interval [x1, x2] where x1 and x2 are adjacent breakpoints, if the 

right derivative of 7R(x) at x=x1 is negative 'and the left derivative 

at x=x2 is positive then 7R(x) has a local minimum over (x1,x2). This 

local minimum can be calculated analytically. 

The algorithm for finding the stochastic queue median is based on 

the local convexity of TR(x) and the method for finding breakpoints. 

The set of all breakpoints is calculated for each link of the network, 

the minimum value of TRW is found for each link and compared to all 

other links to come up with the optimal location x * on link (a,b) * and 

the corresponding mean travel time TR(x*). The complete algorithm is 

presented in the appendix to this chapter. 

Examination of the variation in x with the total demand rate x 

from 0 to a maximum possible value Xmax 'max is the smallest value of 

X for which the queue explodes for all possible server locations) 

shows that the trajectory of the optimal locations x*(X) starts at the 

Hakimi median when X0+ and returns to the median as 'X approaches 

Amax Mean travel time t(x) dominates the solution for low values of 

X and the denominator of the expression for the mean in-queue delay 

dominates for high values of X. For intermediate values of X, the 

numerator of the mean in-queue delay plays an important role in 

determining x* The paper3 also includes a heuristic for finding the optimal 

location. The advantage of this heuristic is that not all links of 

the network have to be considered but only those links that lie on an 
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"assumed feasible trajectory" of the optimal solution. Computational 

experience has shown that the heuristic provides identical results to 

those derived by the exact algorithm. 

1.3.2 2-Server Network Districting in the Presence of Queueing  

A second source which serves as a basis for this thesis is a 

paper by Berman and Larson5 which deals with the problem of finding an 

optimal districting policy in a network that is served by two units 

which act independently as Ni/Gil servers. The locations of the two 

servers are fixed and the assignment criterion of nodes to servers is 

the minimization of the overall expected response time to a new call 

for service. The solution provides two independent districts that 

operate as separate Ni/Gil systems. 

In this system X1 e G(N,L) is the fixed location of unit i,i1,2 

and a districting policy determines the partition of the set N into 

two sets N1, N2 such that N1(N2=Ø with N1 being the set of nodes in 

the district of service unit i. No cooperation exists between the two 

districts and therefore, if server i is busy when a demand for service 

in its district occurs, the call enters a queue that is depleted 

according to a FCFS discipline. 

For each district, the scenario described in Sub-Section 1.3.1 is 

appropriate. Here, for district i the expected travel time is: 

t' 
jEN1 
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where h1 = E .h• and the mean in-queue delay is given by: 
jN 1 

(xh 1 )S1 

2(1-(xh 1)1) 

where Si is the expected total service time for server i: 

= E .(h/hi)[d(Xl,j)/v + + Wi 
jcN 1 

and S1 is the second moment of the total service time for server i: 

S' = E • (hIh 1)Etd(X 1 )/v + R + 012 
ic N1 

where E is the expectation operator. 

For a given policy (N19N2) the overall expected response time to a 

random call for service, which is the sum of the mean in-queue delay and 

the expected travel time, is given by: 

= h1 T + h2 T 

The optimal policy (NI ,N2)* is the one that minimizes i ,2. 

The paper shows that all x values x > 0 can be divided into four 

regions as follows: 

Region A includes all A values, 0 < X < AA for which the optimal solution 

is the same one as for X = 0, i.e. based on the proximity of each 

server to the set of demand nodes. 
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Region D includes all X values X .?)max for which a feasible solution does 

not exist (the system blows up) 

Region C includes all X values X - < 'max for which there is one optimal 

policy for all values in the region. This policy is found by 

solving the following minimax problem: 

min max + 
Xii =0,1 tj=l ij i i i 

i=1,2 

2 
s.t. E X .=1 

i=1 13 

where: 

xii = 

j=1, . . . 

J1 if node j is assigned to server i 

1. o otherwise 
for i=1,2 j=1,   

The above rninimax problem is equivalent to the following linear mixed 

integer programming problem: 

min w 

s.t. z X ijaij < W i=1,2 

= 0,1 i=1,2 
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where aij = h[d(X 1 )/v + 

Region B consists of all the A values x  < X < c and for this region 

there may be many optimal policies for different A values. 

A flowchart of the heuristic used to solve this problem is 

presented in the appendix to this chapter. The heuristic starts with 

the choice of an initial solution which may either be the optimal 

policy for Region A or Region C or any other feasible policy. It 

involves the minimization of a non-linear objective function subject 

to linear and integrality constraints as follows: 

2 
minimize E 

i=1 

n n 
E X. .h )A( E X h E[ d(X 1,j)Iv + R 
j=llJj j=l iii + 

n 
2[1-X jE 1Xh(d(X 1,j)/v +T,] 

= 

n 
+ E X." j'4h4d(X 1,j)/v 

j=1  

j=1..... 

n 
X..h.(d(X 1,j)/v +i +i 1 ) < 

j= " 

X1, =O,l i=1,2 j=1.....n 

i=1,2 

The "Method of Convex Combinations" 29 is used to solve the non-linear 

mathematical programming problem by using a linear approximation to 
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the objective function subject to the same constraints as the original 

problem, and iteratively improving the solution by finding a direction 

in which the objective function decreases. The solution obtained by 

the above method may involve at the most the splitting of one node 

between two servers. In such a case the solution may be expressed as 

a convex combination of two integer solutions that are identical 

except for the split node. A sequence of node switches is performed 

on each integer solution to search for an improved policy (lower 

expected response time), and the best solution of the two sequences of 

node switches is taken as the "optimal" solution. In case of an 

integer solution, this solution is taken as the best policy and no 

node switching is required. 

1.4 Summary and Outline  

1.4.1 Location-Allocation on Congested Networks  

In most systems the inter-arrival times of calls for service and 

service times are probabilistic. Congestion may occur in the sense 

that all servers of the network or any subset of servers may be busy 

when new calls for service arrive. The case of possible 

unavailability of servers has not been taken into account in LA 

studies to date. 

Studies in recent years and specifically those described in 

Section 1.3 have dealt with urban emergency service networks taking 

congestion into account. An analytic solution for the optimal 
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location of one mobile server and a heuristic for the 2-server 

districting problem in the presence of queueing have been developed, 

but LA problems have not been treated in this context. This work 

combines these solutions and extends them in order to provide models 

for the combined LA problem. 

1.4.2 2-Server Location-Allocation  

Chapter 2 deals with the LA problem for a network served by two 

independent mobile service units. The objective is to find the 

optimal split of demand nodes where the servers operate as two 

separate N/G/l sub-systems and to find the optimal location for each 

server within its service area. 

Once the best districting policy is found given a location 

policy, an improved location (in terms of the expected response time) 

for the two service units is searched for in each region. If an 

improved location policy is found, a new districting policy based on 

the last improved server locations is found, and so on until there is 

no improvement in the solution. Following a formal presentation of 

the problem and a heuristic solution method, computational results are 

given and discussed. 

1.4.3 3-Server Location-Allocation  

An extension of the study described in Sub-Section 1.3.2 deals 

with the problem of network districting with three mobile service 
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units and is presented in Chapter 3. Exact solutions to this problem 

may be found for low rates of demand (Region A) and high (feasible) 

rates of demand (Region C). For any (general) demand rate, a heuristic 

solution is presented which is based on the solution to the 2-server 

problem. The development of such a heuristic is essential for the 

solution of the 3-server LA problem. Combining the heuristic for the 

solution of the 3-server districting problem with the one server 

location algorithm in a similar manner as described for the two server 

case, results in an efficient heuristic for the solution of the 

3-server LA problem. This heuristic, as well as a summary and 

discussion of results, are included in the third chapter. 

1.4.4 Location-Allocation of rn Servers and n Nodes  

The final and most valuable product of this study is in the form 

of a heuristic to solve the LA problem for the general case of any 

number of servers and demand nodes. 

The heuristics developed for networks with two and three servers 

are extended in order to treat the general case. The rn-server 

districting heuristic iteratively improves the allocation of nodes 

between a different pair of servers at each step, while keeping all 

the other districts fixed. -Chapter 4 describes the districting and LA 

heuristics developed for m servers, presents and discusses 

computational results. 

A summary of this thesis and a discussion are included in 

Chapter 5. 
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APPENDIX  

a. An Algorithm for Finding the Optimal Location  

The following algorithm for finding the optimal location x 

based on the local convexity of 7R(x) and the method for finding 

breakpoints. For any differentiable function f(x) the right 

derivative of f(x) is defined as: 

f(x) - f(x +IAxI) 

+ 0 

and the left derivative of f(x) is defined as: 

f(x) = urn 
+ 

f(x - IxI) - f(x) 

is 

In the following algorithm, T R * is a running value for minimum 

mean response time, and (a,b)* and x denote the link and location on 

the link that yield that value. The algorithm is as follows: 

Step 1: Set = M (M very large). 

Step 2: Take any link (a,b) s L and calculate the set of all 

breakpoints. Say that the power of this set BP is m+1, so 

that there are rn intervals in which TR(x) is differentiable. 

Step 3: Set I = 1. 

Step 4: Set y = 1th entry in BP 
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Set z = I + 1st entry in BP 

Calculate TR(Y), TR(z), TR (y), R (z). 

If •(') = +00 and TR(z) = + , I = I + 1 and return to the 

beginning of Step 4. 

If T(y) = + and TR,(z) > 0, go to Step 5. 

If T.<_(y) < 0 and TR(z) = 4, go to Step 5. 

If TR-< < 0 and %•(z) > 0, go to Step 5. 

Otherwise compare 7R(y) and TR(z)toTR*. If either TR(y) or 

TR(z) is less than 7R* , update TR with a new minimum and set 

x = y or z (whichever yields the lower TO and (a, b)* = 

(a,b). 

Step 5: Calculate the local minimum Xmin of TR over (y,z). If 

Rmin < update T and record new incumbent 

X = X 11 (a,b) = (a,b). 

Step 6: If I < m, I <- I + 1 and go to Step 4. Otherwise remove (a,b) 

from L; if there are links remaining in L go to Step 2. 

Otherwise FINISH. The optimal location is x on link (a,b)*, 

yielding a minimum mean travel time TR(x*). 
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b. The 2-Server Districting Heuristic5 

The following figure depicts the heuristic solution method for the 

2-server districting problem: 

Solve the continuous version of ((4) 

and  obtOin a solution e?. define P 

YES 

NO 

x; •fY ; • (I Y)Z. 

i'I.2 J.I  ii 0< .< I 

uhere for some 

01k ' 02k 0, 0, Z k 

and ror3 /k 

0,1 

Consider the solution 

Define T2 :100 

Evaluate EAT for X1 and denote it 

by TO and 

£ 0 
00 

YES 

£ •t1 
Define a new solution 

for j It, i1, 

xit • i1,2 

Evaluate EAT at 

Define X2 

T2 To 

Is a 

better 

solution 

obtained 

NO 

t  

YES 
Define 

and update T0. 

YES 

Define x1ij ij' ' 

Define X 

Compare P1 to 72 and to the optimal solution values 

of Regions A and C. The OPTIMAL SOLUTION is the 

one that gives the minimum value. 
ERT IS THE EXPECTED RESPONSE TIME 

FIGURE 1.A.1 2-Server Districting Flowchart 



CHAPTER 2 

2-SERVER LOCATION-ALLOCATION 

ON CONGESTED NETWORKS 

2.1 Introduction and Outline  

This chapter presents a heuristic to solve the 2-mobile server LA 

problem allowing queueing of service demands to take place. The 

heuristic utilizes solution methods discussed in Sub-Sections 1.3.1 

and 1.3.2 and involves an alternate location and allocation solution 

improvement procedure with the criterion of minimizing the overall 

expected time of response. 

The chapter starts with the definition of the problem. Section 

2.3 introduces notation and assumptions, explains the method of 

solution and presents a flowchart describing the heuristic solution 

method. The subsequent section includes illustrative ex amples on 

three different networks. The last section presents a discussion 

related to the computational results which were derived by a computer 

code in APL. 

2.2 Problem Definition and Procedure  

In general, the problem may be defined as simultaneously finding 

the optimal districting (allocation) policy which determines the 

24 - 



- 25 - 

partitioning of the whole region into two independent service areas 

(districts) and the optimal locations of facilities to house the 

service units in each area. Here, the queueing of service demands 

takes place in the event of congestion of demands, i.e. when calls for 

service arrive while the server designated to serve these calls is 

busy. As each district is considered independent, no cooperation 

between servers exists. Therefore, if a call for service in one 

district arrives while its server is busy, it enters a queue of 

service demands although the server in the other district may be 

available at that time. 

The criterion of optimality is the minimization of the overall 

total expected response time to a random call for service. This value 

is calculated over both regions taking into account the probabilistic 

spatial nature of the arrival of service calls as well as the temporal 

nature of the arrival of calls for service and total service times. 

The alternate location and allocation solution improvement 

procedure which is described in this chapter is a logical solution 

technique for this problem. As the heuristic searches both for the 

optimal locations of servers (or locations of facilities to house the 

service units) and the optimal allocation of nodes to servers, once an 

improved districting policy is found for a given set of server 

locations, the last set of locations may not be the optimal one for 

each new district. Therefore, new optimal locations are found treating 

each district as an independent region. With this new set of server 
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locations the optimal districting policy is found and this sequence is 

repeated until there is no improvement in the overall total expected 

response time. 

This is a monotone-decreasing convergent process but the final 

result of the heuristic may or may not be equal to the global optimum. 

Results presented later in this chapter indicate that in most cases, 

using the 2-median as the initial location policy results in the best 

solution. 

2.3 The 2-Server Location-Allocation Heuristic  

2.3.1 Notation and Assumptions  

Notation and assumptions presented in this section relate not only 

to the material in this chapter but also to the problems discussed in 

subsequent chapters. Reference throughout this thesis is made to these 

notation and assumptions which are therefore presented here in detail. 

Let G(N,L) be an undirected network with node set N(NI= n) and 

link set L. Service demand can occur only at the nodes of the network 

with each node .j generating an independent Poisson stream with rate 
n 

Xh. ( E h.=1). Travel distance from a point x G to node j e N is 
j=1 

d(x,j). Travel time is equal to the travel distance divided by travel 

speed v. 

There are two mobile servers on the network which may be located 

at any point on G(N,L). Let X1 c G(N,L) be the location of unit i, 
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i = 1,2. Location X1 is presented as a vector of three components: a, 

xs and b, where server i is located on link (a,b) at a distance of xs 

from a. Note that if xs' is equal to zero, server i is located at 

node a and if xs' is equal to X, server i is located at node b. 

A districting policy is defined as any partition of the set N into 

two sets N', N2 such that N' fl N2 = 0, with N1 being the set of nodes 

in the district of service unit i. Given that server i is free and 

given a demand from node .j N1, the server is immediately dispatched 

to node j. No cooperation is allowed between the two districts and 

therefore, if server i is not free when a demand at node j occurs, the 

call enters a queue which operates according to a FCFS discipline. 

A LA policy [(X1,X2),(N 1,N2)] is a combination of a location 

decision (Xi ,X2) and a districting decision (N1,N2) as described 

above, with X and X2 being the locations of the servers for Districts 

1 and 2, respectively. Although a restriction regarding the 

districting policy exists, i.e. Ni f)N2 = 0, there is no restriction 

as to the location policy. Therefore, X, 1=1,2, may theoretically be 

located at any point on the network, even outside its own district, 

although this would be highly unlikely under an optimal LA policy and 

could occur only under conditions of extreme congestion. 

A 2-server LA policy involves two independent MIGI1 queueing 

systems. The expected total service time for server i is: 

= E (h./h1)[d(X1 ,.j)Iv + R1. + 
jeN ' ' ' 
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where h1 = > 1. 
jeN 

and are the expected on-scene and off-scene. service times of 

server i at node j, respectively, and accounts for the fact that a 

round trip back to the facility is required for each call. (e.g., if 

3=2 the travel time from the server's facility to the demand node is 

equal to the travel time back from the demand node to the facility). 

The second moment of the total expected service time for server i is: 

2 

Si = E .(h./h1)E[d(X 1,j)/v + R + wJ2. 
jeN1 ' 

where E is the expectation operator. 

For district i the expected waiting time is: 

(xh 1)S1 

2(1-(Xh') 1) 

and the expected travel time to a random call is: 

Ti = E .(h./hl)d(Xi,j)/v 
jcN 1 

Therefore, the expected response time for each district is given by: 

.2 
(h 1)S 1 

T1 =t +11 =  . .  

q 2(1-Xh 1)') 

For a given LA policy [(X1,X2), (N 1,N2)] the expected response time to 
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a random demand is given by: 

= h1T + h2T 

and the objective is to find an optimal LA policy [(X1,X2), (Nl,N2)]* 

that minimizes the expected response time, where a call for service 

may occur in any one of the two districts. 

Here, for simplicity of presentation, whenever a server is located 

at a node, the three components a, xs, and b are replaced by the 

number of the node at which the facility is located. For example, if 

one server is located at Node 2 and the second is located between 

Nodes 3 and 5 at a distance of 2 from Node 3, this location would be 

represented by: 

NODE 2 
, , 

The regular notation for a districting policy is in the form of 

Xij  as described in Sub-Section 1.3.2. Here for easier illustration, 

the notation used for a districting policy is in form of two rows with 

the nodes appearing in row i being allocated to server i. Therefore, 

if in a 5-node network Nodes 1, 2 and 3 are allocated to the first 

server and Nodes 4 and 5 to the second, this districting policy would 

appear as follows: 

(1,2,3 
' 4,5 

A LA policy combining the above location and districting policies 
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would be represented by the following notation: 

r(NODE 2 (1,2 ,3 
L\3 , 2 , 5 4,5 

2.3.2 The Method of Solution  

The alternate location and allocation solution improvement 

heuristic developed for the LA problem for two mobile servers on a 

congested network with queues incorporates the two studies described 

in Section 1.3. 

The solution begins with the choice of an initial location policy 

(X1,X2)0. The 2-facility network districting is performed according 

to the procedure developed by Berman and Larson5 but with one change. 

The original heuristic proposes to start the heuristic with an initial 

feasible solution which could be the solution of Region A or Region C 

or any other feasible policy. Computational experience has shown that 

in some cases the heuristic does not provide the "optimal" solution 

when the better of the, solutions of Regions A or C at the given demand 

rate is taken as the initial policy. Therefore, the procedure used 

here is to obtain two solutions; one which is obtained based on the 

solution of Region A as the initial policy and the second based on the 

solution of Region C. The two final results are compared and the 

better of the two is taken as the "optimal" districitng policy. 

Given the initial location policy, an'optimal"districting policy 

(Ni ,N2) is found and the network is now split into two independent 

1 districts N and N2. The overall service demand rate for 
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district i, i=1,2 is given by1 = X E .h. and the probability that a 
jeN 1 

random call for service in district i originated at node i, i E N is 

equal to hi = h.I E 1h.. In this heuristic the optimal server 
3 jeN 

location for each district is not restricted to its own district but 

may be located anywhere on the network. The likelihood of a server 

being located outside of its own district is nevertheless very small. 

The best server location in each district is now found independently 

according to the procedure described in Sub-Section 1.3.1 for locating 

the stochastic queue median, giving a new location policy (X1,X2)1. 

The overall expected response time T' 2 given the policy 

[X1,X2)1, (N 1,N2)1] may be equal to or lower than that under the 

Policy [(X1,X2)0, (N1,N2)1]. If the expected response times under 

both policies are equal, no further improvement is possible and the 

best LA policy (which may be sub-optimal) has been found. If the last 

policy provides an overall expected response time which is smaller 

than under the previous policy, the sequence is continued. A new 

districting policy (N1,N2)2 is found with the servers located 

according to policy (Xi ,X2)1, and the overall expected response time 

under policy [(X1,X2)1, (N i ,N2)2] is compared to that under policy 

r1'v 1 v2\ I' 
LY' ,A %I'M  I'I and 50 on. 

A LA iteration K may consist of a districting policy evaluation or 

of the evaluation of both districting and location policies as shown 

in Figure 2.1. Computational experience has shown that the initial 

location of the servers may affect both the number of iterations 
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required to minimize the expected response time and the best solution 

that the heuristic converges onto. As shown in Section 2.4., the most 

"efficient" initial location policy is that of the 2-median. 

Intuitively, the superiority of the 2-median as the initial solution 

is expected. Berman et a1 3 showed that for low and high feasible 

demand rates, the optimal server location (for one server) is at the 

median. Therefore, the 2-median is a "strong" starting point for low 

and high X values for the two server case and in most cases as good as 

any other starting point for intermediate X values. 

2.3.3 A Flowchart of the Heuristic  

The flowchart in Figure 2.1 depicts the heuristic used to solve 

the LA problem with 2 mobile servers on a congested network with 

queues. 

A solution is found when no improvement occurs in the overall 

expected response time following the last policy evaluation. This can 

occur both following the evaluation of a districting policy or 

following the solution of the optimal location. In each case the 

expected response time under the updated LA policy is compared to that 

of the previous policy. 

2.4 Illustrative Examples  

The results presented in this section were obtained from a 

computer code programmed in APL. 



Find the 2-median and use it as the initial 

location policy (X',X2)0. 

K I 

Find the best districting policy 

(N ',N2)K given the last location policy. 

(X ',X2)K. 

Evaluate ERT K K for LA policy 

[(x l,x2)K ,(N',N2)K] 

ERT* ERTK_1,K 

((xI,12),(NI,N?)3* • ((X 1,X2) ,cu1,2) ] 
K-i K 

4  

ERT ERTK K 

}K'( N1 N2 

YES 

YES 

NO 

Find the optimal location policy 

(x l,x2)K given the last districting 

policy (Nl N2)K. 

 I  
Evaluate ERT KK for LA policy 

[(X',X2 

The optimal LA policy is 

with an ERT of ERT 

NO 

ERT is the overall network expected response time 

FIGURE 2,1 2-Server Location-

Allocation Flowchart 



- 34 - 

Three networks which consist of 5, 10 and 25 nodes are used as 

illustrative examples. Initially, solutions were found for a simple 

5-node network. The best policies found for the 10 and 25-node 

networks are more complex, less intuitive and therefore, more 

interesting to observe. These networks are depicted in Figures 2.2, 

2.3 and 2.4, respectively. In these figures, a number adjacent to a 

node is the fraction of network service requests emanating from that 

node, and a number adjacent to a link is the link travel distance. 

For each network "optimal" LA policies were evaluated at various X 

values and for some X values optimal policies were evaluated starting 

with different initial location policies to examine the sensitivity of 

this heuristic to changes in the initial policy. 

The results presented in Tables 2.1, 2.2 and 2.3 are all based on 

an initial location of the servers at the 2-median. 

For the three networks the following server specifications apply 

for both servers: =2, v=1, R + Wi =1. (Here we assume deterministic 

on-scene and off-scene service times). 

The results presented in the tables indicate that for low values 

of X the best LA policy is to locate the servers at the 2-median and 

to allocate demand nodes based on their proximity to the servers. 

(This policy is named the median-proximity LA policy). Above a 

certain demand rate for each network (which will be called x for the 

LA problems) the above LA policy becomes sub-optimal and the LA policy 

changes for different demand rates. 
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0.15382 

0.53838 

0.00016 

FIGURE 2.2 5-Node Network 

0.15382 

0.15382 



T3LE 2.1 2 Server Location-Allocation 
for the 5-&xie Nfftvwk 
(2 MEdiai = 2,5) 

Enid 
Rate 

X 

Initial 
Location 

1 
(X ,X2)0 

"Optimal" Location-Allocation 
Micy 

1 [(X ,X2),(N',N2)]* 

-Optimal" 
Expected 

Tim 
ERT* 

f&ube- of 
Iterations 

K 

0.0002 (NODE 2 
'NODE 51 

2 (1,2,3,4\ 
[( NODE LNODE  

0.770725 2 

0.002 ,NODE 2 
'NODE 51 

r,MOEE 2 (1234)] 
L NODE 5'" 5 

0.779882 2 

0.01 NODE 2 
NODE 51 

r NODE 2 123)] 
L(NODE 51( 4,5 

0.821516 2 

0.05 (NODE 2 
'NODE 51 

2 (l 2,3)J 
[( NODE L NOI 5'" 4,5 

1.056641 2 

0.1 ,NODE 2 
'NODE 51 

r,NODE 2 
L325 1" 35 

1.238439 3 

0.2 NODE 2 
NODE 51 

r,NODE 2 ,1 ,2,4, 
Lt3,2,5 1,t 3,5 Li 

1.677555 3 

0.3 ,NODE 2 
'NODE & 

NODE 2 (1,2,4)1 
3,2,5 3,5 '- 

2.334255 3 

0.45 (NODE 2 
'NODE 5) 

r,'NODE 2\ 
L3,2,5 3,5 '-

4.319237 2 

0.5 ,NODE 2 
'NODE 51 

re.NODE 2 (1,2,4\1 
L3,2,5 1, 3,5 1-1 

5.687277 2 

0.60 NODE 2 
'NODE 51 

r,. NODE 2 (1,2,4\ 
L3,2,5 1, 3,5 Li 

14.387263 2 

0.65 (NODE 2 
'NODE 5' 

r,'NODE 2 ,l,2,4 
L3,2,5 J 3,5 Li 

5006.6 2 



- 37-

0.26 

0,04 

FIGURE 2.3 10-Node Network 



TABLE 2.2 2-Server Location-Allocation 
for the 10-Node Netirk 
(2 M3Jii = 1,4) 

[iaJ 
Rate 

X 

Initial 
Location 

(X,X)0 

(tinal" Location-Allocation 
Fbi icy 

[(Xl,X2),(Nl,N2)]* 

"(t*na1" 
Expected 

Response Time 
ERT* 

I&nbe of 
Iterations 

K 

0.0001 (NODE 1) 
'NODE 4 

NODE 1 1,2, 
'NODE 4''(3,4,5,6,7,8,9,l0 

2.592191 2 

0.002 (NODE 1) 
NODE 4 

[(NODE 1) (12 
NODE 4 ' 3,4,S,6,7,8,9,lO'] 

2.634281 2 

0.01 ,NODE 1. 
'NODE 4' 

NODE 1 p1,2, 
NODE 4'"3,4,5,6,7,8,9,1O 

2.821611 2 

0.25 NODE 1 
NODE 4) 

riN0DE 1\ (1,2, 
L NODE 41,3,4,5,6,7,8,9,lO11 

3.223953 2 

0.05 (NODE 1 
'NODE 41 

[(NODE 1) (1,2,6, )J 
L NODE 4'"3,4,5,7,8,9,1O 

4.062005 3 

0.075 (NODE 1 
NODE 4) 

NODE 1 1,2,3,6, 
[(NODE 4'4,5,7,8,9,1& 

5.182217 2 

0.10 NODE 1) 
NODE 4 

r(l4.S3825) ,1,5, 
LNODE 4 "2,3,4,6,7,8,9,10 

6.193862 3 

0.15 ,NODE 1) 
'NODE 4 

r(l,l.°950,S\ 125 
L NODE 4 " 3,4,6,7,8,10 - 

9.707420 2 

0.20 NODE 1. 
NODE 41 

ri'1'°•6359'5 (1,2,5 
L NODE 4 

18.136714 3 

0.25 (NODE 1) 
NODE 4 

[(NODE 1 (1,2,5 
NODE 

63.088462 2 

0.274 NODE 1\ 
NODE 41 

rtNODE 1 (1,2,3,10 ' 

[( NODE 5'"4,5,6,7,8,9' 
143.186052 2 
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FIGURE 2.4 25-Node Network 



1LE 2.3 2 Server Loccx)-Aflocation 
fbr the 254be Itwrk 
(2 Wian - 2,14) 

(nJ 
Rate 

Initial 
Lecaticu 

"qtiiial" Locati-A11ocgion 
Ibi icy 

9tiialM 
Bqecte1 

Jsnise Tim 
B1 

Rmbw of 
Iterations 

K 

0.002 NODE 2 
NODE 14' 

r,NXE 2 ,1,2,3,4,5,6,7,8,9 
NODE 14' "10,11,12,13,14,15,16,17,18,lg,2o,21,22,23,24,25 

6.507963 2 

0.006 NODE 2 
'MIE 14 

riNE 2 (1,2,3,4,5,6,7,8,9 
LMXE 14 "10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 

6.855182 2 

0.01 NODE 2 
MJCE 14 

r NODE 2 
'-MXE 14 ' 10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 

7.234175 2 

0.02 2 
Nn 14 

[(NE 4 ) (1,2,3,4,5,6,7,8,9,12,15 
M)CE 14 "10,fl,13,14,16,17,18,19,20,21,22,23,24,25' 

8.168542 2 

0.03 NODE 2 
ME 14 

4JCE 4 1 ,1,2,3,4,5,6,7,8,9,11,12,15 
MJCE 14'"10,13,14,16,17,18,19,20,2].,22,23,24,25 

9.2252&) 2 

0.04 N€ 2 
'MIE 14' 

r,NODE 4 ,1,2,3,4,5,6,7,8,9,11,12,1546 , 

'-'MIE 14 "10,13,14,17,18,19,20,21,22,23,24,25'.' 
10.508229 2 

0.05 ,FCAE 2 
'tK)C€ 14' 

r,MXE 7 ,1,2,3,4,5,6,7,8,9,11,12,15,15 
14"10,13,14,17,18,lg,20,21,22,23,24,25'J 

12.036448 2 

0.075 (NODE 2 
MXE 14' 

r, ' " NO(E 7 ,1,2,3,4,5,6,7,8,9,U,12,13,15,16 
'-'MX€ 1410,14,17,18,19,20,21,22,23,24,25'.' 

18.056227 2 

0.093 M3C€ 2 
MJCE 14 

[(t43CE 7 ) 
NODE 14 ' 10,14,17,18,19,20,21,22,23,24 

25.183175 2 

0.10 (NODE 2 
NODE 14 

NODE 7 
MJE 14 ' 10,14,17,18,19,20,21,22,23,24, 

33.683345 2 

0.128 ,MI€ 2 
'MIE 14' 

r NODE 4 (1,2,3,4,5,6,7,8,9,11,12,13,16,17,25, 
L(MXE 14"10,14,15,18,19,20,21,22,23,24 '-' 

319.770584 2 
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The results shown in Table 2.1 for the 5-node network are 

interesting to observe. For low values of A the best LA policy is the 

median-proximity LA policy. Above X which is between 0.002 and 0.01 

there is a range of A values within which the best location policy 

remains at the 2-median while the districting changes. Although Node 

4 is closer to the server at Node 2, within this range of A values it 

is allocated to Node 5. The best policy changes again at a demand 

rate between 0.1 and 0.2, where the best location of servers is at 

Node 2 and half way between Nodes 3 and 5. The best districting 

policy allocates Nodes 1, 2 and 4 to the server at Node 2, and Nodes 3 

and 5 to the server located half way between them. This LA policy 

remains "optimal" up to Am = 0.650100, where the system explodes 

(i.e., the average demand rate exceeds the average service rate). 

It is also interesting to observe the progression of the solution 

sequence to the point of convergence. As an example, the alternate 

procedure for the 5-node network at A = 0.1 is presented in Table 2.4. 

Starting at the 2-median as the initial location, Nodes 1 and 2 are 

allocated to the server at Node 2 and Nodes 3, 4 and 5 are allocated 

to the server at Node 5. For the first district the optimal server 

location is at Node 2 while for the second the optimal location is 

between Nodes 3 and 5 at a distance of 2.0068 from Node 3. Based on 

this new location policy Node 4 switches to the server at Node 2 which 

also serves Nodes 1 and 2, while Nodes 3 and 5 continue to be served 

by the second server. The optimal location of the server serving 

Nodes 1, 2 and 4 is found to be at Node 2 and for Nodes 3 and 5 the 



RATE OF 

DEMAND 
A 

, 1,2 
'3,4,5 

ER101 ERT11 

112,4 

ERT12 x2 E'122 (N1,N2)3 'R123 

0.1 NODE 2 
(NODE 5) 

1.327774 NODE 2 1.238797 
'3,5 

1.238440 trw 2 
1'JL1L 

'3,2,5 
1.238439 

TABLE 2.4 A Location-Allocation Solution Sequence 
for the 5-Node Network at X=O.l 

p1,2,4 
' 3,5 

1.238439 
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server is located half way between them as they have the same fraction 

of demand. No further improvement is possible and the best LA policy 

is therefore: 

r( NODE 2 , 1,2 ,4 
), 3,5 

As shown in Table 2.2 for the 10-node network, X is between 0.025 

and 0.05, and above that value the best location alternates between 

the 2-median and locations that are close to it. The best allocation 

policy changes gradually for demand rates above Xp, and max is equal 

to 0.274725. Table 2.3 includes the best policies for the 25-node 

network. Here the results are similar to those for the 10-node network 

in the sense that while the median-proximity policy is optimal for 

X < x., there is a gradual change in the best LA policy as the demand 

rate increases towards X max = 0.128370. 

2.5 Discussion of Results  

It was expected that for low demand rates the optimal LA policy 

would be the median-proximity policy and that is indeed the result for 

demand rates below x for all three networks. For high demand rates, 

in all three cases the best location policy is not at the 2-median and 

for the 25-node network the best districting policy is not the same as 

the solution for Region C (refer to Sub-Section 1.3.2) when the servers 

are located at the 2-median. In this case, had the best location been 

at the median, the optimal districting policy would have been equal to 
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that of Region C, but due to the shift of the servers away from the 

2-median, the corresponding districting is equal to the optimal policy 

of Region C given that final server location. 

The servers are not located at the 2-median for high demand rates 

although it was shown  that for one server the optimal location returns 

to the median as approaches X This is explained by noting that 

each server is located as expected at the median of its own district, 

but due to the particular districting at high demand rates the medians 

of the two districts may not be equal to the 2-median. 

An additional example with three nodes is presented in order to 

illustrate the changes in "optimal" LA policies with increasing A 

values. The 2-median of this network which is shown in Figure 2.5 is 

at Nodes 2 and 3. 

0.10 

4 0.15 

FIGURE 2.5 3-Node Network 

0.75 

The "optimal" LA policies are shown in Figure 2.6 along a line 

representing A values from 0 to ax = 0.80. 

Here for x < 0.197 the best LA policy is the median-proximity 

policy. Above that value the best districting changes from that based 

on proximity and the location of the server of Nodes 1 and 2 
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initially moves towards Node 1 and then changes direction and moves 

towards Node 2 as the demand rate increases. At approximately 

X = 0.64 the optimal location of the server of this district reaches 

Node 2 and it remains there until the system explodes. At all X 

values above A the best districting is the same as the solution for 

Region C, i.e. the server for Node 3 is located at that node 

and Nodes 1 and 2 are served by the server located at Node 2. 

In their paper5, Berman et al. presented this 3-node network with 

the servers located at Nodes 1 and 3. They showed that given this 

location policy the optimal districting for Region C is to allocate 

Node 2 to the server located at Node 1 and to allocate Nodes 1 and 3 

to the server located at Node 3. This result is most non-intuitive 

because the server located at Node 1 does not serve Node 1 itself but 

is assigned to serve Node 2 which is the farthest node from the 

server. For this example with the servers located at Nodes 1 and 3 

the system explodes at X max = 0.689. The LA solution which provides a 

better location policy at high A values also permits a greater 

feasible range of A values (A max = 0.80). Due to this location policy 

the best districting at high demand rates is more intuitive, with 

Nodes 1 and 2 allocated to the server at Node 2, and Node 3 allocated 

to the server at Node 3. 

All LA policies derived based on the 2-median as the initial 

location were found to be best. When an initial location policy other 

than the 2-median was taken, the solution was either optimal or 

sub-optimal. Therefore, these results indicate that the 2-median is 



NODE  2 1 NODE 3',3 
1,3.966,2 (12)J r 1,3.700 ,2 (12)J 1(1,3727,2 (12)] r 1,4.852 

NODE 3 NODE 3 ) ' NODE 3)' NODE 
1-,NODE 2 , 1,2 
Lr DE 31% 3 

0 0.197 

I I 

0.198 0.35 0.4 0.62 

FIGPE 2.6 "Optimal" Location-Allocation Policies at 
Various X Values for the 3-Node Network 

0.64 0.80 
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the preferred initial policy. 

A modified procedure to the original districting heuristic was 

proposed in Sub-Section 2.3.2. The following example illustrates the 

significance of using both the solutions of Regions A and C as initial 

policies in this heuristic. For the 10-node network, with a demand 

rate of 0.15 and the servers located at Nodes 1 and 4 the solution of 

Region C is found to be with an expected response time of 

12.489371, and that of Region A is 3,4,5,6,7,8,9,1O with an expected 

response time of 21.988860. The districting heuristic using the 

solution of Region C as the initial policy provides the following 

1 23solution: ('4:5,7 1'o) with an expected response time of 10.955628, 

while with the solution of Region A the final result is 

with an expected response time of 10.004818. 

Therefore, a choice of an initial policy based on expected response 

times would have provided a sub-optimal solution and as a "better" 

initial policy cannot be determined in advance, both should be used 

separately and the final results compared in order to determine the 

"optimal" solution. 

Figure 2.7 includes a graph of the expected response time for all 

three networks as a function of the demand rate. The relationship 

between the ERT and the demand rate for low X values is close to 

linear. At high X values and especially as A approaches X max (which 

is different for each network) the ERT increases very rapidly. The 

shape of the three graphs suggests, convexity of the expected response 

time as a function of X. 



-48 - 

35 

II IIi I I i I Ii I II I 
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FIGURE 2.7 Expected Response Times athI Optimal 1LA 

Policies for the 5, 10 and 25 Node 

Networks with Two Servers 



CHAPTER 3 N 

3 - SERVER LOCATION-ALLOCATION 

ON CONGESTED NETWORKS 

3.1 Introduction and Outline  

In this chapter the LA problem in a 3-server network is 

considered. The state-of-the-art in network districting under 

conditions of congestion includes the treatment of two servers and is 

described in Sub-Section 1.3.2. In order to solve the 3-server LA 

problem a heuristic solution to the 3-server districting problem was 

developed and is presented in this chapter. 

The solution to 3-server districting is based on the 2-server 

case. It extends the previous work by introducing an iteration 

procedure that improves the districting between two servers at each 

iteration, while keeping the allocation of nodes to the third server 

constant. At each iteration the 2-server districting is found for two 

different servers and this sequence is performed until a whole cycle 

does not improve the solution. 

Aside from the 3-server districting heuristic which is an 

extension of the heuristic solution method for two servers, the LA 

solution technique follows the same steps outlined in Chapter 2. Due 

to this similarity, reference should be made to notation and 

- 49 - 
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definitions presented earlier. 

The chapter begins with a definition of the problem in Section 3.2. 

Section 3.3 treats the 3-server districting problem and includes a 

discussion of the solution method, a flowchart of the heuristic and a 

summary of experimental results. The LA problem with three servers is 

treated in Section 3.4 which also includes a summary of results and 

discussion. All results presented in this chapter were derived 

through APL computer codes. 

3.2 Problem Definition  

As the formal definition of this problem is similar to that for 

two servers, only a brief description is provided and the reader may 

refer to Sub-Section 1.3.2 for further detail. 

Three mobile service units are located when available at fixed 

locations on the network G(N,L). Let X1 E G(N,L) be the location of 

unit i, i=1,2,3. A districting policy is defined as any partition of 

the set N into three mutually exclusive sets N1, N2 and N3, with Ni 

being the set of nodes in the district of service unit i. A LA policy 

for three servers is a combination of a location decision (X1,x2,X3) 

and a districting decision (Ni ,N2,N3) to form a combined policy 

[(X1,x2,x3), (N 1,N2,N3)]. Given that server i is free and given a 

demand from node j E Ni, the server is immediately dispatched to node 

j. No cooperation is allowed between the three districts and 

therefore, if server i is busy when a demand at Node j occurs, the 
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call enters a queue which is depleted according to a FCFS discipline. 

The expected total service time for server i, the second moment of the 

total service time, the expected waiting time and the expected travel 

time to a random demand are as shown in Sub-Section 1.3.2. For a 

given location policy (X1,X2,X3) and a districting policy (N1,N2,N3), 

the expected response time to a random demand is given by: 

T1'2'3 =  1-1 h + h2i + h 

and the problem is to find the optimal LA policy [(X',X2,X3),(N',N2,N3)]* 

that minimizes T' 2'3 when a call for service may occur in any one of 

the three districts. 

The notation for location and districting policies for three 

servers follows the same format as for two servers but consists of 

three rows, each row related to a different server. 

3.3 3-Server Network Districting in the  

Presence of Queueing  

3.3.1 The Method of Solution  

As in the two server case, the interval of all , values x > 0 can 

be divided into the four regions described earlier. Therefore, for A 

values in Regions A and C there is one optimal solution for all x 

values in each region, there is no feasible solution for A values in 

Region D (where A > Ama) and there may be many possible optimal 
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policies for different X values in Region B. 

The heuristic begins with the determination of optimal 

districting policies for Regions A and C. Each policy at a time is 

taken as the initial solution, the heuristic is solved twice and the 

better solution of the two is taken as the overall "optimal" solution. 

Following the determination of an initial solution, one district is 

kept constant and the best 2-facility districting policy is found for 

the two remaining servers. The new solution, therefore, consists of 

the fixed district and the best districting for the two other servers 

discluding the demand nodes that were fixed. Now, a different 

district is kept fixed and the best districting policy is found for 

the two remaining servers in the same manner. In this heuristic a 

cycle is defined as a sequence of three iterations. At each iteration 

the allocation of nodes to a different server is kept the same as in 

the initial pqlicy and the best districting policy is found for the 

other two servers. For example, cycle L may be composed of the 

iterations shown in Table 3.1, starting with policy (Nt, N, N)L. 

ITERATION 
NUMBER 

FIXED 
POLICY 

BEST 2-SERVER 
DISTRICTING 

3-SERVER 
DISTRICTING POLICY 

1 N1-N0 2,N3 (N1,N1) 

( 13 \ N2,N21 

1 2 3L (N1,N1,N1) 

,12 3L N2,N2,N2, 

3 3..3 N3 -N0 ,12., N3,N31 ,12 3L N3,N3,N3, 

TABLE 3.1 Iterations of One Cycle for a 3-Server Network 
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In the above table N indicates an allocation of nodes to server i in 

iteration Z. If for a whole cycle there is no improvement of the 

overall expected response time compared to the expected response time 

of then this policy is taken as the best 3-facility 

districting policy. 

Special attention should be given to the restructuring of the 

input variables for each iteration Z. As one district is kept fixed, 

(say N1) only the remaining nodes are to be allocated among the two 

servers located at X2 and X3. For the 2-facility districting 

calculations the fixed nodes are assigned zero demand and the new 

fraction of demand at node j, j c N + N3 becomes h = h./ E 2 3h.. 
3 3jN+N 

The total demand rate used for the same calculations reduces due to the 

fixing of Ni and it becomes XZ = E 3h.. For each iteration 
jeN+N 

these values are updated to take into account the new fixed nodes. 

The flowchart in Figure 3.1 depicts the heuristic for 3-facility 

districting in the presence of queueing. Computational experience has 

justified the intuitive "cycle" criterion of reaching the final 

solution of the heuristic. The reason that an improvement over a 

whole cycle is searched rather. than a comparison only with the 

previous iteration, is that a better policy may be obtained at any 

stage of the cycle. Some examples show no improvement for the first 

two iterations and a better policy obtained at the third iteration, 

but once a whole cycle has not provided an improvement, all the 

possibilities (according to this heuristic) have been exhausted and no 

better solution can be obtained. 
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Take the solution of Region A as the initial 

districting policy (ll 1,N,N) 

I. Ll 

SET N N and find"optimal" policy 

(N,N) to get 

Calculate ERT1 

SET 11 N and find optimal policy 

(N,N) to get (N2 2,N,N) 1. 

Calculate ERT 

SET N ug and find the optimal policy 

(ll,N) to get 

Calculate ERT 

ERT min(ERT 1,ERT2,ERT3) and (Hl,N2,N3)t 

is the corresponding districting policy. 

YES 

NO 

LET: (n,N,N) 1°1 

ERT ERTL 

(N1 N2 N3) (Il1,N2,N3) 

Lo 

Take the solution of Region C as the 

initial districting policy (N J,N.N) 

ERT • ERT' 

(N N2,N3)C C. (Nl ,N2,N3)L 

ERT* • min(ERTA,ERIC) and (N1,N2.N3) 

is the corresponding best 

districting policy 

FIGURE 3.1 3-Server Districting Flowchart 
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3.3.2 Siimnary of Results  

A code in APL was formulated and provided the results presented 

in this section. The three networks illustrated in Figures 2.2, 2.3 

and 2.4 were used as examples for the heuristic and for each network 

optimal districting policies were found for given facility locations 

and varying demand rates. These results are presented in Tables 3.2, 

3.3 and 34 for the 5, 10 and 25 node networks, respectively. 

For the 5-node network, the range of X values in Region A is 

relatively small. For this network and at the given facility 

locations there is one "optimal" policy for all feasible demand rates 

above XA (0.006 < X < 0.007) which is the same as the unique optimal 

policy found for Region C. The best districting policy for low demand 

rates is based on the proximity of nodes to servers as expected. 

As the network gets congested with increasing demand there is a 

change in node allocation. Over 50% of calls for service originate at 

Node 2 which is served exclusively by the server located at Node 2. 

The nodes allocated to the server at Node 3 are Nodes 1 and 3 which is 

similar to the allocation for low rates of demand. The server at Node 

5 which is the most isolated node of the network continues to serve 

Node 5 itself but also has Node 4 allocated to it when congestion 

occurs. Due to the high proportion of calls occurring at Node 2, the 

overall network expected response time under congestion conditions is 
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TABLE 3.2 3-Server Districting 
for the 5-Node Network 

0iand 
Rate 

A 

Facility 
Locations 
1 2 3' 

(X ,X ,X ' 

Best Districting 
Policy 
1 2 3* 

(N ,N ,N ) 

Best Expected 
Response Time 

* 

ERT 

0.002 / NODE 2 
NODE 3 
NODE5 

(2,4) 
1,3 
 5 

0.309798 

0.006 NODE 2 
NODE 3 
NODES 

•2,4) 
1,3 
5 

0.312920 

0.007 NODE 2 
NODE 3 
NODE 5 

(12  
,3 

4,6 

0.313703 

0.01 j NODE 2 
I NODE 3 
\NOOE 5 

2 
1,3 
4,5 

0.316055 

0.04 NODE 2 \ 
NODE 3 I 
NODE 5 / 

I 2 
11,3 
\4,5 

0.340251 

0.1 NODE 2 I 
NODE 3 I 
NODE 5/ 

2 
1,3 
4,5 

0.392653 

0.3 ( NODE 2 
i NODE 3 
NODE 5 

/ 2 
11,3 
4,5 

0.619367 

0.45 NODE 2 
NODE 3 
NODE 5 

(12  I 
,3 

4,5 

0.874009 

0.65 NODE 2 \ 
NODE 3 I 
NODE 5 / 

2 I 
1,3 
4,5 

1.461891 

0.80 I NODE 2 
I NODE 3 
\NODE S 

I 2 
11,3 
\4,5 

2,404566 

1.00 I NODE 2 \ 
I NODE 3 I 

NODE 5/ 

f 2 
11,3 
14,5 

8.620167 

1.0835 NODE 2 \ 
NODE 3 I 
NODE 5 / 

2 
1,3 
4,5 

120929628.96 
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TABLE 3.3 3-Server Districting 
for the 10-Node Network 

Demand 
Demand 

X 

Facility 
Locations 

(X',X2,X3) 

Best Districting 
Policy 

(Nl t42 N3)* 

Best Expected 
Response Time 

ERT* 

0.01 NODE i 1,2 
NODE 4J 
(NODE 5/ 

( 3,4,8,9,10 
\ 5,6 ,7 

1.877868 

0.1 NODE 1 \ 
NODE 4 I 
(NODE 5 / 

(1 :2 
 34,8,9,10 
5,6,7 

3.158937 

0.11 / NODE 1 \ 
NODE 4 

5/ 

(1,2 :: 10 \ 
NODE3,89 4,567 

3.358176 

0.125 / NODE 1 \ 
NODE 4 I 
NODE 5 / 

/ 1,2 
I 3,8,9,10 
\ 4,5,6,7 

3.640244 

0.15 /NODE 1 \ 
NODE 4 I 

\NODE 5 / 
/1,2 
I 3,8,9,10 
\4,5,6,7 

4.216321 

0.20 NODE 1 
NODE 4 
(NODE 5 

/ 1,2 \ 
3,4,8,10 

\ 5,6,7,9 

5.715255 

0.25 / NODE 1 \ 
NODE 4 I 

\NODE 5 / 

/1,2 \ 
I 3,4,7,8,9 
\5,6,10 

7.830401 

0.35 1 NODE 1 \ 
I NODE 4 
\ NODE 5 / 

/1,2,3 \ 
( 4,7,9,10 \ 5 , 6 , 8 

14.321850 

0.45 ( NODE 1 
NODE 4 

\NODE 5 

/ 1,2,9 
( 3,4,7 ,8 
\s,6,lo 

32.543407 

0.475 / NODE 1 
NODE 4 
\ NODE 5 

/ 1,2,9 
( 3,4,7,8 
\ 5,6,10 

43.532804 

0.50 / NODE 1 
I NODE 4 
NODE 5 

/1,2,6,9 \ 
1 3,4,7,8 
\ 5,10 

62.033854 

0.5494 ,' NODE I \ 
NODE 4 

\NODE &J 

/ 1,2,6 ,9 \ 
3,4,7,8 

\5,1O 

14013.719 



TABLE 3.4 3-Server Districting 
for the 25-Node Network 

Demand 
Rate 

X 

Facility 
Locations 

(X1,X2,X3) 

Best Districting 
Policy 

(Nl,N2,N3)* 

Best 
Expected 

Response Time 
ERT* 

0.01 NODE 2 \ 
NODE 171 
NODE 22/ 

1,2,3,4,5,6,7,8,9 
11,12,13,15,16,17,18,19,20 
10,14,21,22,23,24,25 

4.637452 

0.03 NODE 2 
NODE 17 
(NODE 22 

1,2,3,4,5,6,7,8,9 
11,12,13,15,16,17,18,19,20 
10,14,21,22,23,24,25 

5.135768 

0.05 NODE 2 
NODE 17 
NODE 22 

1,2,3,4,5,6,7,8,9 
11,12,13,15,16,17,18,19,20 
10,14,21,22,23,24,25 

5.713128 

0.075 (NODE 2 
NODE 17 

\NODE 22 

/1,2,3,4,5,6,7,8,9 
(11,12,13,15,16,17,18,19,20 
10,14,21,22,23,24,25 

6.578128 

0.10 NODE 2 \ 
NODE 171 
(NODE 22/ 

1,2,3,4,5,6,7,8,9 
11,12,13,15,16,17,18,19,20 

(10,14,21,22,23,24,25 

7.65845 

0.15 NODE 2 
NODE 17 
NODE NODE 22 

1,2,3,4,5,6,7,8,9 
11,12,13,15,16,17,18,19,2 
10,14,21,22,23,24,25 

10.901296 

0.20 NODE 2 
NODE 17 
(NODE 22 

1,2,3,4,5,6,7,8,9 
11,12,13,15,16,17,18,19,20 
10,14,21,22,23,24,25 

17.473365 

0.225 NODE 2 
NODE 17 
NODE 22 

2,3,4,5,6,7,8,9 
(111,12,13,15,16,17,18,19,20 
10,14,21,22,23,24,25 

24.291865 

0.25 NODE 2 
NODE 17 
NODE 22 

1,2,3,4,5,6,7,8,9,13 
11,12,,15,16,17,18,19,20 
10,14,21,22,23,24,25 

39.095461 

0.2909 (NODE 2 
NODE 17 
NODE 22 

11,2,3,4,5,6,7,8,9,11 
(12,15,16,17,18,19,20,21 
\1O,13,14,22,23,24,25 

399.367879 
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improved by relieving the server at Node 2 of Node 4 and assigning it 

to the next closest server which is located at Node 5. 

For the 10 node network X  occurs at 0.10 < X < 0.11 and Region B 

includes several "optimal" policies depending on the values of X. For 

the three servers located at Nodes 1, 4 and 5 the system explodes at 

Xmax = 0.54945 and Xc occurs at 0.45< X <0.5. Figure 3.2 

illustrates the changes in best districting policies with changes in 

the demand rate. It is interesting to note that in the case of 

A = 0.15 the server at Node 4 serves a district to which Node 4 itself 

does not belong. In this case, Node 4 is served by the server at Node 

5 rather than by the server located at Node 4 itself. Figure 3.2 

illustrates that even for a relatively simple problem with ten nodes 

and three servers, intuition would not suffice to determine "optimal" 

districting policies under congestion at the various rates of demand. 

For A values in Region B there are at least five "optimal" districting 

policies that are different from those for Regions A and C. 

In the case of the 25 node network, the districting policy based 

on the proximity of nodes to servers is best for close to 70% of the 

range of feasible A values. Region C includes a small range of x 

values and only one "optimal" policy which is different from the 

policies for Regions A and C was found for demand rates in Region B. 

3.4 3-Server Location-Allocation  

The alternate location and allocation solution improvement 

procedure described in Chapter 2 is applicable to the 3-server case. 
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The 5, 10 and 25 node networks shown in Figures 2.2, 2.3 and 2.4, 

respectively, were used as illustrative examples. 

The results for the 5 node network indicate that there are only 

two different "optimal" policies for all feasible A values greater 

than zero (for A = 0 the median-proximity policy is optimal). For low 

rates of demand the best location policy is not equal to the 3-median. 

Here, due to the fact that Nodes 1 and 3, each with the same fraction 

of demand, are both in one district, the best location is halfway 

between them. The best districting is based on proximity to the 

servers. The best location does not change for higher A values but 

the best districting changes to the solution of Region C. 

The results for the 10 node network which are shown in Table 3.6 

indicate that the best location policy for all A values is to locate 

the servers at the 3-median. Due to the unique location policy for 

all rates of demand, the variation of "optimal" districting policies with 

changes in demand rates resembles the typical results presented in the 

original paper by Berman and Larson5. The median-proximity policy is 

optimal for low rates of demand and the best solution for high rates 

of demand is locating servers at the 3-median and allocating nodes to 

servers according to the solution of Region C. For intermediate A 

values there are at least two different "optimal" districting 

policies. 

It is interesting to compare the solution to the LA problem for 

the 10-node network at A = 0.15, with the best districting policy when 

the three servers are located at Nodes 1, 4 and 5, as shown in Table 

3.3 and illustrated in Figure 3.2. Locating the servers at 
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<X max 

(Region C) 

FIGURE 3.2 "Optimal" 3-Server 
Districting Policies at 
Different Demand Rates for the 
10-Node Network, 

(The Servers are located at 
Nodes 1, 4 and 5) 
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Nodes 1, 4 and 5 is inferior to a location policy which places the 

servers at the 3-median, as in the second case the expected response 

time is approximately 67% of that in the first. Due to this "weak" 

location of servers the system becomes congested at a lower A value 
INODE 1 

ma = 0.54945 for location policy NODE 4 compared to ?trnax = 0.689655 
X NODE 5 

NODE :L1 - 

for location policy NODE SI) and the best districting in the first 
NODE 8J 

case is very unusual and non-intuitive as described in Sub-Section 3.3.2. 

For the 25 node network, although the best location changes from 

the 3-median at 0.01 < A < 0.1, the districting policy based on the 

proximity of nodes to servers remains the best policy for 50% of the 

range of feasible A values and changes for high values of A. 

The results presented in Tables.3.5, 3.6 and 3.7 are all based on 

initial locations of the servers at the 3-median. For comparison 

purposes, results based on other initial locations which differ from 

those based on the 3-median are shown in Table 3.8. In the first 

example, using the 3-median as the initial location results in a 

better LA solution. In the second case the 3-median also provides the 

best solution but in the third case the final solution using the 

3-median is sub-optimal. It is interesting to note that while in the 

second example a different initial location policy than the 3-median 

provided the best solution, the same initial location gave a worse 

solution than the 3-median in the third example. As previously 

stated, in general, computational experience has shown that using the 

p-median as the initial location in the LA heuristic results in the 

best solutions. 



- 63 - 

TABLE 3.5 3 Server Location-Allocation 
for the 5-Node Network 

(3 Median = 1,2,5) 

Demand 
Rate 

X 

Initial 
Location 
Policy 

(X1,X2,X3) 

Optimaf' Location-Allocation 
Policy 

* 

U(X',X2,x3),(N',N2,N3)3 

"Optimal" 
Expected 
Reponse Time 
ERT* 

Number 
of 
Iterations 

K 

0.0001 NODE 1 
NODE 2 

5 

,1,3 /13\j 
ODE 2 .12,4NODE 

N ODE 5 \5/ 

0.308303 2 

0.001 NODE 1 
NODE 2 
(NODE 5 

3 1 
DE 2j, 24 1,3 •'5: 

[$DE 5!  

0.308831 2 

0.005 DE 1 
DE 2 

5 DE S 

1,1,3 1,3 1 
NODE 2 , 2,4 

[•NODE 5 15 

0.311186 2 

0.0075 NODE 1 
NODE 2 
NODE 

11,1,3 1,3 1 
I NODE 2 * 2 I 
LNODE 5 4,5 j 

0.312664 2 

0.05 'NODE 1 
NODE 2 
NODE 5 

,1,3 11,3 1 
ODE 2 ,l 2 

N ODE 5 \4,5 

0.338678 2 

0.10 NODE 1 
NODE 2 
NODE 5 

DE 21 
1,3 •Ij3)] 

[$DE 5/ 4,5 

0.371799 2 

0.20 NODE 1 

NODE 5 

2 1,3 1 11,1 D E,3 , 2 
INO 
LNODE 5 4,5, 

0.447849 2 

0.50 NODE 1 
NODE 2 
NODE 

I NODE21 
11,1,31 •Ij3•] 

L\NODE E/ 4,5 

0.809784 2 

0.80 NODE 1 

E , NODE 5 

1,1,3 1,3 1 
NODE2 2 
[•NODE 5 4,5 

1.825810 2 

1.00 
NODE 2 DE2 
NODE 1• • 

S 

1,3 1,3 

, 2NODE [$DE 5 4,5 

6.163920 2 

1.08 NODE 1 
NODE 2 

5 

,1,3 1,3 1 
ODE 2JNODE N ODE 5/ 4,5 

143.094 2 
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TABLE 3.6 3 Server Location-Allocation 
for the 10-Node Network 

(3 Median = 1,5,8) 

Demand 
Rate 

X 

Initial 
Location 
Policy 

(X1,X2,X3) 

40ptinal Location-Al location 
Policy 

{(Xl,X2,x3),(N',N2,N3)]* 

'optimal" 
Expected 

Reponse Time 
ERT* 

Number 
of 

Iterations 

K 

0.0001 NODE 1 
NODE S 
NODE 8 

?NODE 1 1,2 1 
NODE 5) 3,4,5,6 
NODE 8/ 7,8,9,10 

1.530673 2 

0.01 
NODE 5 
•NODE 1• • 

8 

oDE 1 1,2 1 

ODE 5 3,4, 5,6NODE NODE 8 7,8,9,10 

1.598467 2 

0.05 NODE 1 
NODE 5 
NODE 8 

NODE 5 4,5,6 
[•NODE 1 1,2,3 1 

NODE 8 7,8,9,10 

1.896215 2 

0.10 NODE 1 
NODE 5 
•NODE 8 

[•NODE 1 1,23 1 
NODE 54,5,6 
 NODE 8 7,8,9,10 

2.327628 2 

0.15 NODE 1 
NODE 5 
NODE 8 

INODE 1 1,2,3 1 
I NODE 5 4,5,6 
LNODE 8 •7,8,9,10 

2.844104 2 

0.20 NODE 1 
NODE 5 
NODE 8 

[•NODE 1 1,2,3 1 
NODE 5 4,,6 
NODE 8 7,8,9,10 

3.474785 2 

0.30 NODE 1 
NODE 5 
NODE 8 

NODE 1 1,2,3 1 
DE 5 4,5,6 
 8 7,8,9,10 

5.285523 2 

0.40 NODE 1 
NODE 5 

8 

1 
[•JIN'OoEj 5 

OOE 8 

1,3 1 
2,4, 5NODE 
6,7,8,9,10 

3.406807 2 

0.50 NODE 1 
NODE 5 

8 

 1 
NODE 5 

[INODE 

NODE 8 

1,3 

2,4, 56NODE 
7,8,9,10 

1 14.266762 2 

0.60 1NODE 1 \ 
INODE 5 I 

8! 

f•NODE 1) 1,3 1 
NODE 5) 2,4,5 ,6\NODE 
NODE 8/ 7,8,9,10 IJ 

31.252438 2 

0.65 NODE 1 
NODE 5 
NODE 8 

fN0DE 1 1,3 1 
I NODE 5 2,4,5,6 
LNODE 8 7,8,9,10 

64.290360 2 
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TABLE 3.7 3 Server Location-Allocation 
for the 25-Node Network 

(3 Median = 2,17,22) 

Demand 
Rate 

A 

Initial 
Location 
Policy 

(X1,X2,x3) 

"Optimal' Location-Al location 
Policy 

[(Xl ,X2,x3),(Nl,N2,N3)]* 

"Optimal" 
Expected 

Reponse Time 
ERT* 

Number 
of 

Iterations 

K 
0.0001 / NODE 2 

NODE 17 
22 / 

[( NODE  2 1,2,3,4,5,6,7,8,9 "\l 
 NODE 17 11,12,13,15,16,17,18,19, 201NODE 

NODE 22 10,14,21,22,23,24,25 / 

4.415171 2 

0.01 /NODE 2 
NODE 17 1 
NODE 22 / 

ooE 2 \ 1,2,3,4,5,6,7,8,9 
ODE 17) 11,12,13,15,16,17,18,19,20) 

N ODE 22, 10,14,21,22,23,24,25 J 
4.637452 2 

0.04 /NODE 2 \, 
NODE 17 

22 

[;NODE 2 \ p1,2,3,4,5,6,7,8,9 \1 
NODE 17 11,12,13,15,16,17,18,19,20)\NODE 
N0DE 22) ,1O,14,21,22,23,24,25 / 

5.413427 2 

0.08 (NODE 2 \ 
NODE 17 I 

22 / 
[(NODE 4 (j il,3,4,5,6,7,8,9 
II NODE 17 \NODE,12,13,15,16,17,1819,20) 
L\NODE 22 10,14,21,22,23,24,25 / 

6.731615 2 

0.10 1 NODE 2 \ 
NODE 171 
NODE 22 / 

[•NODE  4 11,2,3,4,5,6,7,8,9 ) 
 NODE 17 [11,12,13,15,16,17,18,19,20 
 NODE 22 10,14,21,22,23,24,25 

7.586372 2 

0.15 0.15 / NODE 2 \ 
NODE 171 

22/ 

1,2,3,4,5,6,7,8,9 ci 
NODE 17) 11,12,13,15,16,17181920NODE 
NODE 22/ 4,25 ) 

[(NODE 4I (10,14,21,22,23,2 
10.741405 2 

0.20 / NODE 2 \ 
NODE 17 1 

22/ 

[( NODE 4 fl,2,3,4,5,6,7,8,9,1117.178178 
NODE 171 NODE[12,13,15,16,17,18,lg,20 
NODE 24! 110,14,21,22,23,24,25 

2 

0.25 (NODE 2 ', 

I NODE 17 l 
22! 

[(NODE 4 '1,2,3,4,5,6,7,8,9,11 \j 
 NODE 17 \NODE(12,13,15,16,17,18,19,20 
N00E 22 \10,14,21,22,?3,24,25 J 

37.422912 2 

0.29095 / NODE 2 I 
I NODE 17 1 

22 / 

NODE 4 /1,2,3,4,5,6,7,8,9,11 384.16 
NODE 17 NODE,12,13,15,16,17,18,19,20 

R NODE 22 \10,14,21,22,23,24,25 

2 



EX. NETWORK DEMAND 
RATE 
(x) 

INITIAL LOCATION 
POLICY 

(3-MEDIAN) 

NUMBER OF 
ITERATIONS 

K 

BEST LOCATION- 
ALLOCATION POLICY 

ERT OTHER INITIAL 
LOCATION POLICIES 

NUMBER OF 
ITERATIONS 

K 

BEST LOCATION-ALLOCATION 
POLICY 

ERT 

1. 10 NODE 0.01 NODE 1 \ 
NODE 5 I 
(NODE 8/ 

2 NODE 1 1,2 
NODE 5 3,4,5,6 

[(NODE 8 7,8,9, ID J 

1 1.598467 
(NODE 4 . NODE 1 

(NODE  5 

2 r NODE 1 1,2 
J NODE 4 ,f 3,4,8,9,10 

NODE 5 \5,6,7 - 

1.877868 

2. 10 NODE 0.05 NODE 1 
NODE 5 
NODE 8 

2 II NODE 1 1,2,3 'l 
I(NODE 5 4,5,6 
1\NODE 8 7,8,9,10/ 

1.896215 NODE 2 
NODE4NODE 
NODE 9 

2 [• NODE  ii 1,2 Ii 
51, 4,5,6,7 

 NODE 9/ 3,8,9,10 

1.899527 

3. 10 NODE 0.10 (NODE 1 
NODE 5 

8 

2 E 1 
NODE 5 14,5,6 1NODE 

[( NOD 

NODE 8 

jl,2,3 

7,8,9, 10 - 

1 2.327628 (NODE 2\ 
41 L NODE 9! 

2 NODE 1 1,2 

 NODE 5 3,4,5,6\NODE 
[( NODE  9 7,8,9,10 •] 

2.270688 

TABLE 3.8 Best Location-Allocation Policies Based 
on Different Initial Locations 
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Finally, a comparison of results for three servers with those for 

two servers suggests that the improvement in performance of the 

system in terms of decrease in expected response time when 3 servers 

are employed is greater than the increase in resources, especially for 

high demand rates. For example, for a five node network with X =0.5, 

an increase of 50% in resources from 2 to 3 servers results in an 

expected response time which is approximately 14% of the expected 

response time for two servers. With three servers the demand rate at 

which the system explodes increases, i.e. the systems can operate at 

greater rates of demand than with two servers, as shown in Table 3.9. 

In addition, for demand rates that are feasible in both cases the 

advantage of three servers compared to two increases as the demand 

rate goes up, as shown in Figure 3.3 for the 5 node network. 
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NUMBER OF NODES NUMBER OF SERVERS A max 

5 2 0.6501 
5 3 1.0835 

10 2 0.2747 
10 3 0.6897 

25 2 0.1284 
25 3 0.2910 

TABLE 3,9 x max Values for Two and Three Servers for the Three 
Networks 
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FIGURE 3.3 Comparison of Performance of Two and Three Servers 
at"Optimal'Locatjon-A]Jocatjon Policies for the 5-Node Network 



CHAPTER 4 

rn-SERVER LOCATION-ALLOCATION  

ON CONGESTED NETWORKS  

4.1 Introduction and Outline  

In Chapters 2 and 3 solution methods were derived for the LA 

problem with two and three servers, respectively, and with no 

restriction as to the size of the network (the number of nodes). The 

state-of-the-art theory in location and districting under conditions 

of congestion was utilized in developing the 2-server LA heuristic. 

An extension to the 2-server districting provided a heuristic method 

for districting with three servers, based on which the 3-server LA 

heuristic was developed. This chapter extends the treatment of the LA 

problem under congestion to the general case of m servers and n nodes. 

In order tosolve the rn-server LA problem, the development of an 

rn-server districting heuristic was required. Other than that, both 

the location algorithm used for finding each district's stochastic 

queue median and the alternate location and allocation solution 

improvement procedure described earlier remain practically unchanged. 

The logic behind the rn-server districting heuristic solution 

method is similar to that described for three servers in Chapter 3. 

Here, the iteration procedure improves the districting between two 

servers at a time, keeping the previous allocation of nodes to all the 

other servers constant. Each iteration uses a different pair of 

- 70 - 
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servers and a cycle of iterations consists of all possible 

combinations of server pairs. The districting heuristic continues to 

search for a better solution as long as the best iteration of the last 

cycle is better than the best iteration of the previous one. 

Chapter 4 starts with a definition of the problem in Section 4.2. 

Section 4.3 deals with the rn-server districting problem and includes a 

discussion of the heuristic solution method, a flowchart of the 

heuristic and an illustrative example. The rn-server LA problem is 

treated in Section 4.4. A flowchart for the general case is provided 

and two illustrative examples are presented to emphasize the 

usefuliness of this heuristic. A discussion related to the 

computational results is included at the end of this section. 

Computer codes in APL for the rn-server location algorithm (one server 

in each district), the rn-server districting heuristic and the LA 

heuristic are included in the appendix to this chapter. 

4.2 Problem Definition  

The formal problem definition which is included for the sake of 

completion follows the detailed description presented for the 2-server 

case in Sub-Section 1.3.2 and is similar to the problem definition for 

two and three servers. In the general case, m mobile service units 

are located when available at fixed locations on the network G(N,L). 

Let X1 E: G(N,L) be the location of unit i, i=1,2,...,m. A districting 

policy is defined as any partition of the set N into m mutually 

l exclusive sets N,N2 1 ...,Nm with N being the set of nodes in the 
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district of service unit i. A LA policy for m servers is a 

combination of a location decision (Xl,X2,...,Xm) and a districting 

decision (Nl,N2,...,Nm) to form a combined policy 

nv v2 v\ fi I Mm 
LA A , . . . A / \I1 ,I , . . . 

Given that server i is free and given a demand from node 3 

the server is immediately dispatched to node j. No cooperation is 

allowed between the m districts and therefore, if server i is busy 

when a demand at node j occurs, the call enters a queue which is 

depleted according to a FCFS discipline. 

For any location policy (Xl,X2,...,Xm) and districting policy 

(Nl,N2,...,Nm), the expected response time to a random demand is: 

1 

T,2,...,m = h1T + h2T + .... + hi 

and the problem is to find the optimal LA policy [(Xl,X2, ... ,Xm), 

(Nl,N2,...,Nm)]* that minimizes when a call for service may 

originate from any node in any one of the m districts. 

4.3 rn-Server Network Districting  

in the Presence of Queueing  

4.3.1 The Method of Solution  

For X values in Regions A and C there are unique optimal 

districting solutions but as it is not known in advance to which 

region a given demand rate belongs, the following heuristic utilizes 

both of these two solutions as starting points for an iterative 
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sequence of solution improvements. 

Starting with any given location of servers, the optimal 

districting policies for Regions A and C are found. Computational 

experience has shown that in some cases, although one of the two 

policies may be superior (with a lower expected response time) to the 

other, at a given rate of demand, the final solution based on this 

initially superior policy may be inferior to the other (this was 

discussed in Chapter 2). Therefore, although the amount of 

computation may largely increase compared to the use of only one 

initial policy, it is recommended to go through the heuristic twice, 

once starting with the solution of Region A and a second time with the 

solution of Region C. 

For each initial solution the best districting policy for two 

servers is found while the other servers and the nodes allocated to 

them remain constant. This is done for all possible server pairs with 

the other districts remaining the same as under the initial 

districting policy. The number of combinations of server pairs is a 

function only of the number of servers and is equal to ( m(m1) 

if the network has five servers (X 1, X2, X3, X4, X5), there are ten 

possible server pairs as follows: 

1. (Xi ,X2) 3. (X1,X4) 5. (X29X3) 7. (X2,X5) 9. (X3,X5) 

2. (X1,X3) 4. (X1,X5) 6. (X2,X4) 8. (X3,X4) 10. (X4,X5) 

For twenty servers there are 190 combinations and for fifty servers 

there are 1225 possible server pairs. 

Each iteration uses a different pair of servers for which the best 
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districting policy is found while the other districts remain the same as in 

the initial solution. A cycle of iterations consists of m(i-1) 

possible iterations and at the end of a cycle the best iteration is 

taken as the initial policy for the next cycle. This sequence 

continues until a complete cycle does not provide a policy which is 

better than the best policy of the previous cycle. 

In the case of a 5-server network, cycle L includes ten 

iterations as shown in Table 4.1 starting with policy 

1 2 3 4 5L 
N0, N0, N0, N0, N01 

ITERATION 
NUMBER 

FIXED 
DISTRICTS 

2-SERVER 
DISTRICTING 

5-SERVER DISTRICTING 
POLICY 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

345 NQ,N0,N0 

RI2 N 4  RI 5  

110,110, 110 

RI 2  RI 3  RI 5  
I1, I1, 110 

RI 2  N 3  RI 4  
I1, I1 110 

RI' N 4  N 5  
I1, I1, 110 

N' RI 3  RI 5  
I1, 110 

RI' N 3  RI 4  
I1, I1 110 

N' R12 5 
11oI1o, N0 

N' N2 N4 
I1 I1 110 

N' RI2 3 
i'I0, I1, N0 

, 1 2L 

(N' RI3L 
I12,I12J 

(RI' N4 \L 
II13,I13) 

, 1 5L 
N4,N41 

(N,N)L 

IN 2 RI4\L 
11 6) 

, 2 5L N7,N7, 

(N 3  R14\L 

(N3 NS \L 
II19I1g) 

L 

10' 10 

1 2 3 4 N5 L 

(NiRI 2  RI 3  RI 4  RIS\L 
1 I1 11o,I1,I1o,I1o) 

fN N 2  RI 3  RI 4  R15\L 
I I13 11o,11o,113,I1) 

IN' RI2 RI3,N N 4  RIS\L 
¶ 114,11,11o,11o,I14) 

IN 1 RI2 N 3  RI 4  N5\L 
% I1 115,115, I1 110) 

(NiRI 2  RI 3  RI4 NS\L 
I1Q I1 I1 116, I1Q) 

(Ml 2 3 4 R1 5 \' 
I10, N7 , N0, N0, 117 / 

IN' RI 2  RI 3  RI 4  RI5\L 
t 110, 110,118, I1, 110) 

(RI' RI 2  RI 3  RI 4  RI5\L 
% I1 I1, llg, I1, 1191 

TABLE 4.1 Iterations of One Cycle for a 5-Server Network 
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In iteration Number 8, for example, Districts 1, 2 and 5 remain 

the same as under the initial policy and the best districting policy 

is found between Servers 3 and 4. 

In a similar manner to the procedure for three servers, prior to 

each iteration Z the fixed nodes are assigned zero demand and the new 

fraction of demand at node j, i C Na + N  (where Xa and X are the two 

servers to which the non-fixed nodes are allocated) becomes 

h. = h./E bh.. Also, the demand rate for these two districts 
3jEN+N 

reduces to X = X E a bh. due to the fixing of all the other nodes. 
jEN +N 

The flowchart in Figure 4.1 depicts the rn-server districting 

heuristic for a congested network with queues. The purpose of 

assigning a negative value to ERTA at the outset is to indicate 

initially that the best solution is based on the solution to Region A 

as a starting point, and once a non-negative value is assigned to 

ERTA, the best solution is based on the solution of Region C as the 

starting point. After ERIC is found, the best of the two solutions is 

taken as the "optimal" districting policy. 

A computer code of this heuristic is included in the •appendix to 

this chapter. 

4.3.2 An Illustrative Example  

The network used to illustrate the rn-server districting heuristic 

is the 25-node network shown in Figure 2.4. In this example, there 

are five mobile servers and the five facilities to house these servers 
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Find the solutions to 

Regions A and C 

Take the solution of Region A as 

the initial Districting Policy 
1 12 m 

Go through a cycle of m(m-1) 

iterations (as shown in Table 4.1 

for a 5-server network) with 

2'..., N)L as the starting policy. 

LET: ERIL min(ERT1,ERT2,  ERTm(m_l) 

and (N1,N21. .. ,Nm)L is the 2 

corresponding districting policy 

YES 

NO 

LET: (N,t ..... Nr5L 4l (Nl ,Nrn)l 

LET: ERT = ERTL 

,N2,  Nm)A=(N l,N?..... 

I  

Take the solution of Region C 

as the initial districting policy 
1 12 m 

0' O'•' 0 

 $ 

FIGURE 4.1 rn-Server Districting 
Flowchart 

LET: ERTC ERTL 

(N 1,N2 Nm)C=(Nl,N2 Nm)L 

ERT= Fnin(ERTA,ERTC) and (N',N2,   

is the corresponding "optimal" 

districting policy 
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NODE 2 
NODE 8 

are located according to the following location policy: NODE 14 
NODE 17 
NODE 22 

The overall network demand rate X is 0.01, and a value of one is 

assigned to (R+W) and v. 

The heuristic starts with the optimal districting policy of 

Region A as the initial solution. With five servers a cycle consists 

of ten iterations and at the end of the first cycle the best iteration 

of the cycle is not better than the initial solution. Therefore, the 

initial solution is taken as the best interim districting policy 

(N ',N2,N3,N4,N5)A. 

Now, the optimal districting policy of Region C is taken as the 

initial solution. As a demand rate of 0.01 is relatively low, this 

initial solution is inferior to the solution of Region A. 

Nevertheless, after five cycles the "optimal" solution 

(N',N2,N3,N4,N5)c is found to be equal to that of (Ni ,N2,N3,N4,N5)A 

and is taken as the overall "optimal" districting policy. This 

solution process is illustrated in Table 4.2. 

The strength of the iteration procedure is shown in the above 

example where an inferior solution (in this case the optimal 

districting policy of Region C) converges after a number of cycles 

onto the "optimal" solution. 



CUI 
L 

SOIJMON TO 
REGION A ERT (N1H2N3N4NS,I. ERT 

A 

0 

1,2,3,4,5 

( \ 
6,7,8,9,11 13 
10,14,20,21 
12,15,16,17,18,19 
22,23,24,25 1 

3.261605 

1,2,3,4,5 \ 
(6,7,8,9,11,13 
I 10,14,20,21 
12,15,16,17,18,19 
\22,23,24,25 J 

3.261605 

'1,2,3,4,5 
/6,7,8,9,11,13 
I 10,14,20,21 
12,15,16,17,18,19 

\22,,24,25 J 
3.2618)5 

QCLE SOLUrION To 
REGION C ERT Bd 

0 

2 

3 

5 

1,2,3,4,5 
6,7,8,12,1 9,25 3,15 
10,14,20,21,22,23 
11,16,17,18,19 / 

(24 

I 3.8450 

1,2,3,4,5,9,25\ 
6,7,8,12,13,15 
10,14,20,21 
11,16,17,18,19 

(22,23,24 1 

/1,2,3,4,5 9,25 
(6,7,8 ,11,13 
10,14,20,21 
\ 12,15,16,17,18,19 
22,23,24 

/1,2,3,4,5 9 
I 6,7 8,11,13 
I 10,14,20,21 

12, 15, 16,17, 18, 19 
22,23,24,25 

61,,27 ,3,4,5,8,9,11,13 

(10,14,20,21 
'12,15,16,17,18,19 
'22,23,24,25 

/1,2,3,4,5 
6,7,8,9,1113 
10,14 ,20,21 
12,15,16,17,18,19/ 

'22,23,24, 25 

\ 
I 

1 

/ 

/ 

\ 
I 

/ 

3.497536 

3.326290 

3.277349 

3.261605 

3.261605 

fl,2,3,4,5 
'6,7,8,9,1113 \ 
I 10,14,20,21 
12,15,16,17,18,19/ 
\22,23,24, 25 / 

3.26160 5 

TABLE 4.2 Districting Solution for the 5-Server, 25-Node Exaiiple 
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4.4. rn-Server Location-Allocation  

4.4.1 Flowchart and Illustrative Examples  

The flowchart shown in Figure 4.2 represents the LA heuristic for 

the general case of m servers and n nodes in a congested network with 

queues. Although it is similar to the flowchart in Figure 2.1, the 

notation in Figure 4.2 refers to the general problem. A computer code 

in APL for solving the general LA problem is included in the appendix 

to this chapter. 

Two examples are presented here to illustrate the alternate 

location and allocation solution procedure in detail. In both 

NODE 2 
I NODE 8 

examples the servers are initially located at the 5-median I NODE 14 
I NODE 17 
L NODE 24 

In one example the "optimal" LA policy is found at a low demand rate 

and in the second example a relatively high demand rate for this 

network is used and the solution procedure involves a greater number 

of cycles to reach the-optimal solution. 

Tables 4.3 and 4.4 include best location and districting policies 

as the heuristic converges towards the optimal solution for demand 

rates of 0.01 and 0.5, respectively. 

At X = 0.01 the optimal solution is reached after one complete 

iteration. Starting at the 5-median of this network the best 

allocation policy is found to be that of Region A. The optimal 

location of servers, given a districting policy that is equal to the 



Find the p-median and use it 

as the intial location policy 

(X l,X2..... 

Find the best districting policy 

given the last location policy (X',X2 

Evaluate ERT Kl K for LA policy 

[(x I,X?,...,Xm)Kl , (N1,N2,.. .N)KJ 

ERT ERTKlK 

((X 1,X2 xm),(ul,N2,...,Nm)]* 

NX',X2 X'11) ,H,.,NTh)KJ 
K-i' 

* 

ERT ERTKK 

[(X1,X2 xm),(Nl,N2Nm))* 

NO 

YES 

Find the optimal location policy 

(x 1,x 2,. ..,Xm)K given the last 

districting policy (N',N2,  Nm) 

a  

Evaluate ERTKK for LA policy 

[(x1,x2.....Xm)(N1N2 

YES 

The "optimal" LA policy is 

with an ERT of ERT* 

Is 
ERTKK 

ERT K ,K 
NO 

ERT is the overall network expected response time 

FIGURE 4.2 rn-Server Location-Allocation FLowchart 
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solution of Region A, is the 5-median and therefore, no further 

improvement is possible. The best LA policy at this low demand 

/NODE 2 •\ il,2,3,4,5 
/ NODE 8 \ / 6,7,8,9,11,13 

rate is the median-proximity LA policy NODE 14 , 10,14,20,21,22 
NODE 17 / \ 12,15,16,17,18,19 
NODE 24 / \23,24,25 / 

While in the first example the "optimal" LA policy is equal to the 

best solution obtained at the end of the first iteration, for the 

higher demand rate of 0.5 the heuristic converges onto the "optimal" 

solution after several iterations. The improvement in expected response 

time between the initial solution and the "optimal" LA policy is 

significant. This is due to the greater sensitivity of the system to 

changes in server location or network districting at high demand rates. 

As shown in Table 4.4 the initial expected response time, following 

the determination of the first districting policy with the servers 

located at the 5-median, is equal to 17.172809. The best location 

policy changes in the next step, moving the second server from Node 8 to 

a position close to Node 11 and the fifth server is relocated from Node 

24 to a location between Nodes 23 and 24. This change in location 

policy in itself reduces the expected response time by about 17% to 

14.274396. Following a total of three alternate districting policy 

solutions (the last districting solution being equal to the previous 

districting policy) and three location policies (including the initial 

5-median) the "optimal" LA policy is found to be 

-1NODE 2 \ /1,2,3,4,5,6 — 
I NODE 11 \ I 8,11,12,13,15 
NODE 14 7,9,10,14,20,21 with an expected response time ANODE 17 , 16,17,18,19 
23,2.175150,24 I \ 22,23,24,25 — 



(X1,X2,X3,X4,X5)0 (N1,N2,N3,N4,N5)1 ERT01 (X1,X2,X3,X4,X5)1 ERT1.1 

/NODE 2 \ 
NODE 8 
NODE 14 
NODE 17 
\ NODE 24 / 

/1,2,3,4,5 \ 
6,7,8,9,11,13 ' 

10,14,20,21,22 
\ 12,15,16,17,18,19/ 
\ 23,24,25 / 

2.719937 

/NODE 2 
NODE 8 
NODE 14 
NODE 17 
NODE 24 

2.719937 

TABLE 4.3 Location-Allocation Solution Sequence for X= 0.01 

(X',x2,X3,X4,x5)0 (N1,,N3,N4,N5)1 1,1 
ER112 

/NODE 2 \ 
NODE 8 
NODE 14 
NODE 17 / , 
\NODE 24 

/1,23,4,5, \ 
6,7,8,9,11,12 \ 
10,14,15,20,21 
13,16,17,18,19 / 

\22,23,24,25 I 

17.172809 

/NODE 2 
I 8,6.7861449 11 ' 

NODE 14 
NODE 17 

\23,2.175150,24/ 

14.274396 

/1,2,3,4,5,6 
1 8,11,12,13,15 

7,9,10,14,20,21 
\ 16,17,18,19 
\22,23,24,25 

13.827382 

(X1,X2,X3,)4,X5) ERT2 (NI ,N2,N3,N4,N5) 
2 3 ERT23 

/ NODE  
NODE U 
NODE 14 
NODE 17 

\23,2.175150,24/ 

13.813671 

/1,2,3,4,5,6 
' 8,11,12,13,15 

7,9,10,14,20,21 
16,17,18,19 
\ 22,23,24,25 

13.813671 

TABLE 4.4 Location-Allocation Solution Sequence for X= 0.5 
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of 13.813671. This "optimal" expected response time is approximately 

20% smaller than the expected response time under the initial LA 

policy. 

4.4.2 Some Further Observations  

Observation of some interim results in the example of X = 0.5 

provides further insight into the problem. 

The median-proximity policy which is the best LA policy for 

X = 0.01 proves to be disastrous at a demand rate of 0.5; the system 

explodes and the expected response time becomes infinite. 

Although this is the case for a location of servers according to 

the 5-median and districting by proximity of nodes to servers (the 

solution of Region A), given other location policies at x = 0.5 the 

solution of Region A as the initial policy of the districting 

heuristic is superior to the solution of Region C. Also, as 

previously mentioned, an initial solution for the districting 

heuristic that is superior to another may provide an inferior final 

districting policy and therefore both the solutions to Regions A and C 

should be used as initial solutions at each districting policy 

evaluation. 

Finally, to once again exhibit the superiority of the 5-median as 

the initial location policy, Tables 4.5 and 4.6 show the LA solution 

sequence for the 25-node network, with the initial location being 

different from the 5-median. The only change made to the initial 

location compared to the previous two examples is that the fifth 
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server is now located at Node 22 instead of Node 24. For X = 0.01 the 

computational effort doubles although the "optimal" solution is 

ultimately reached and in the case of ?. = 0.5, two more iterations are 

required in order to reach the "optimal" solution. 



(X1,X2,X3,X4,X5)1 (N1,N2,N3,N4,N5)1 

/ NODE 2 
NODE 8 
NODE 14 
I NODE 17 
\NODE 22/ 

(X1,X,X3,X4,X5)2 

I NODE 2 
NODE 8 
NODE 14 
NODE 17 
NODE 24 

/ 1,2,3,4,5 
1 6,7,8,9,11,13 

10,14,20,21 
12,15,16,17,18,19 
\ 22,23,24,25 1 

'R122 

2.719937 

ERr01 

3.261605 

(X1,x2,X3,X4,?)1 

/ NODE 2 
MJCE 8 
NODE 14 
NODE 17 
NODE 24 

FRI11 

2.870753 

(N1,N2,N3,N4,N5)2 

/ 1,2,3,4,5 
6,7,8,9,11,13 
10,14,20,21,22 

\ 12,15,16,17,18,19 
\ 23,24,25 

TABLE 4.5 Location-Allocation Solution Sequence for X0.01 
(Initial Location Not at 54'€diai) 

FRI12 

2.719937 



(X1,X2,X3,x4,x5)0 (N1.N2.N3.N4,N5)1 F.Rr (X1,x2,X3,x4,x5)1 FRI11 (N1,N2,N3,N4,N5)2 FRI12 

'NODE 2 
NODE 8 
NODE 14 
roii 17 
NODE 22 / 

/ 1,2,3,4,5 
/ 6,7,8,11,12,13 
( 10,14,20,21,22,23 
\ 15,16,17,18,19 / 

\ 24,25 / 

31.065704 

/ NODE 2 8,3.982149,11 
NODE 14 
NODE 17 / 
\ NODE 24 / 

21.185316 

/ 1,2,3,4,5,6 
I 8,11,12,15 

7,9,10,14,20,21 
\ 13,16,17,18,19 
\ 22,23,24,25 

15.029241 

(X,X2,X3,X4,x5)2ERT2,2 (N',N2,N3,N4,N5)3 ERT23 (X',X2,X3,x4,x5)3 FRI33 

NODE 2 
8,6.786144,11 \ 
NODE 14 
NODE 17 / 
23,2.175150,24 / 

14.274396 

/1,2,3,4,5,6 \ 
' 8,11,12,13,15 \ 
7,9,10,14,20,21 
16,17,18,19 

\22,23,24,25 / 
13.827382 

/NODE 2 
' NODE 11 
NODE 14 
NODE 17 
\ 23,2. 175150,24 1 

13.813671 

FRI34 

/1,2,3,4,5,6 \ 
I 8,11,12,13,15 
7,9,10,14,20,21 
16,17,18,19 

\22,23,24,25 

13.813671 

TABLE 4.6 Location-Allocation Solution Seajence for AO.5 
(Initial Location Fit at 5-ii) 
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APPENDIX  

V LOC_M 
(1) A A PROGRAM TO FIND OPTIMAL ONE-SERVER LOCATIONS IN M DISTRICTS 
(2) INPUT: LA (DEMAND RATE),XX(OISTRICTING POLICY),DISTMAT (01ST. MATRIX) 
(3) A H (FRACTIONS OF DEMAND),M (NUMBER OF SERVERS) 
(4) A N (NUMBER OF NODES),V (VEHICLE SPEED),AL (R+W) 
(5) A OUTPUT: X (OPTIMAL LOCATIONS),ERTS (OVERALL NETWORK ERT) 
(6] ' LAMBDA IS EQUAL TO ';LA 
(7) ' THE DISTRICTS ARE' 
(8) XX 
(9) HH*(M,N)pO 
(10) EXP'-LAM'-MpO 
(11] X*(M,3)pO 
(12) ERTS-0 
(13) HI-H 
(14) LA1.-LA 
(15) DISTANCE A A SUBROUTINE FOR MINIMUM DISTANCE MATRIX 
(16) I'0 
(17) BIC:I-1+1 
(18) .J.-0 
(193 C1C:JJ+1 
[203 HH[I;J]*H1( ,J)x(XX(I;JJ1) 
(21) (J<N)/CIC 
(22] LAM(I)+LA1x(+/HH[1)) 
(23] (I<M)/B1C 
(24) Q-0 
(25) DIC:Q-Q+1 
(26) H+HH(Q;)+(+/MII(Q;]) 
(27) LA4LAM(Q) 
(28) LOC A OPTIMAL LOCATION SUBROUTINE 
(29] X[Q;1]+WODA 
(30) X(Q;2)+XS 
(31] X(Q;3)NODB 
(32) EXP(Q)'TRS 
(33) ERTSERTS+EXP(Q]x(+/HH(Q;]) 
(34) (Q<M)/DIC 
(35) ' THE OPTIMAL LOCATION IS 
(363 X 
(37) 'WITH AN ERT OF ';ERTS 

V 

FIGURE 4,A.l : A Computer Code for Optimal m-Server Location 
(one server in each district) 
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FIGURE 4.A.2: A Computer Code for rn-Server 
Districting. 

' ALLOC_M 

(1) A A PROGRAM TO FIND THE OPTIMAL M-SERVER DISTRICTING POLICY 
12) A INPUT: LA (DEMAND RATE),X (LOCATION POLICY),DISTMAT (DIST. MATRIX), 
[3] A H (FRACTION OF DEMAND),M (NUMBER OF SERVERS), 
[4] A N (NUMBER OF NODES),V (VEHICLE SPEED),AL (R+W) 
(5) A OUTPUT: XX (OPTIMAL DISTRICTING POLICY),ERSS (OVERALL NETWORK ERT) 
[6] 'LAMBDA IS EQUAL TO ';LA 
(7) 1 THE SERVERS ARE LOCATED AT 
(8] x 

(9] COMBIN A SUBR. TO FIND ALL SERVER PAIR COMBINATIONS 
[10) XXAR'-(PN,M,N)pO 
(11) HI-H 
(12) LAI-LA 
[13) ERSS.-10E17 
[i..) HZ-NOO 
[15) XA-X 

(16] DISTANCE A SUBR. FOR MINIMUM DISTANCE MATRIX 
(17) CREATEDISTH A SUBR, FOR MATRIX OF DISTANCES OF NODES FROM SERVERS 
[18] KAP-1 

[19] AAM A SUBR. TO FIND THE OPTIMAL SOLUTION OF REGION A 
[20) XXZXX'-AAX 
(21) 1 THE INITIAL POLICY AA IS' 
(22) AAX 
(23] CYCLE-0 
(24] -AOA 
(25) ABA:KAPfKK-0 
(26) ERSS1OE17 
[27) CCM A SUBR. TO FIND THE OPTIMAL SOLUTION OF REGION C 
(28] XXZ-XX'-CCX 
(29) ' THE INITIAL POLICY CC 15' 
(30] CCX 
(31] CYCLE-0 
[32] AOA:KK'-O 
(33] ERTM A SUBR. TO CALCULATE THE ERT 
[34) ERTZZ-ERTT 
[35] •(ERSS10E17)/BDA 
(36) CYCLECYCLE+1 
(37] ' CYCLE ';CYCLE 
(38) AAA:KK+KK+1 
(39) ' ITERATION ';KK 
(40) XX-XXZ 
[41] XXT-XX((PERM(KK;1));)+XX[(PERM[KK;2)).] 
(42) J-O 
(43) ABB:J.-J+1 
[44] HZ[J1.-H(J]xXXT[J)I 
(45) - (J<PJ)/ABB 
(46) H'HZ+(+/HZ) 
(47) LA.-LAx(+/HZ) 
[48] X2 3p(X((PERM(KK;1]);)), (X((PERM[KK;2]);)) 
(49] • THE LOCATION OF SERVERS IS' 
[50] X 
(51] CREATEDIST 
(52) KOP.--1 
(53) LINCC 
(54] XX-CC 
(55] -'BONA 
[56] RUNA:AA2 
(57) XXAA 
(58) KOP-O 
(59) BONA:ALLOC A OPTIMAL 2-SERVER DISTRICTING SUBR. 
(60) -'(KOP-1)/FIH 
[61] XXAA-XX 
(62] ERT 
(63) ERA-ERTT 
fill  -FTI 

cont' d 
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(65) FIH:XXCCXX 
(66) ERT 
167) ERS'-ERTT 
168) •RUNA 
[69) F11:(ERAERS)/FIJ 
[70) XX.-XXCC 
(71) ERTT.-ERS 
(72) .FIK 
[73) FIJ:XX'-XXAA 
(74) ERTT+ERA 
(75) FIK:' THE BEST ALLOCATION IS 
(76) XX 
[77) ' WITH AN ERT OF ';ERTT 
(78) J.-0 
[79) ACA:J'-J+l 
[8')) xXZ((PERHtKK 1));J] -XX1 1 ;J] )0<T(J11 
[81) xXZ[(PERM(KKI2))J).-XX(2;J1XXXT[fll 
(821 -.(J<N)/ACA 
(53) XX.-XXAR[KK;;)'XXZ 
(84) X-XA 
(85) H-Ill 
(86) LA-LA1 
[87) CREATEDISTM 
(881 ERTM 
(89) PERM[KK;3)'-ERTT 
[90) ' ALLOCATION 
[91) XX 
(92) ' ERT ';ERTT 
[93) *(KK<PN)/AAA 
(94) ORD.-4PERM(;31 
(95) XXZ.XX*XXAR[(ORD[1))) 
[96] ERTZZ*PERM((ORD(11)3) 
(97) 1 THE BEST ALLOCATION FOR THIS CYCLE IS 
(98) XX 
(99) BOA:' WITH AN ERT OF ';ERTZZ 
[100) (ERTZZERSS) /ADA 
(101) ERSS"ERTZZ 
[102) -AOA 
(103) ADA:(KAP0)/zAX 
[104) EAAT+ERSS 
[105) XAAX-XX 
(106] ' THE OPTIMAL DISTRICTING WITH AA AS THE INITIAL POLICY IS' 
(107) XAAX 
[108) ' WITH AN ERT OF ';EAAT 
(109] -ABA 
[110) ZAX:ECCT-ERSS 
(111) XCCX'-XX 
(112) ' THE OPTIMAL DISTRICTING WITH CC AS THE INITIAL POLICY IS' 

(113) XCCX 
[114) ' WITH AN ERT OF';ECCT 
(115) -.(EAATECCT)/ZBX 
[116) XX-XCCX 
[117) ERSS'-ECCT 
(118) ZIZ 
[119) ZBX:XX.-XAAX 
(120) ERSS-ECCT 
[121) zlz:' THE OPTIMAL ALLOC_M IS' 
(122) XX 
(123) $ WITH AN ERT OF ';ERSS 

V 



V LOCALLOC_M 
(1) A A PROGRAM TO FIND THE OPTIMAL LOCATION-ALLOCATION POLICY 
(2) A INPUT: X (INITIAL LOCATION POLICY), LA (DEMAND RATE) 
(3) A DISTMAT (01ST. MATRIX),H (FRACTION OF DEMAND) 
(4) A H (NUMBER OF SERVERS),N (NUMBER OF NODES) 
(5) A V (VEHICLE SPEED), AL (R+W) 

(6) K-I 
(7) RES.-10E17 
(8) I11-H 
(9) LA1-LA 
(10) RUM:' LOCATION-ALLOCATION ITERATION ';K 
(11) ALLOC_M 
(12) RES'-ERSS 
1133 (KI)/5IA 
(14) TIP(XXXXP) 
(15) (((+/,TIP)i(MXN) )I) /SOF 
126) BIA:xXP'-XX 
(17) LOC_M 
(18) .(K1)/PIL 
(193 TIZ(XXP) 
(20) •( ( (+/,T)Z)(3xM))1) /SOF 
(21) PIL:XP-X 
122) H-HI 
(23) LM-LA1 
(24) KK+1 
(25) RUN 
(26) SOF:' THE OPTIMAL LOCATION-ALLOCATION POLICY IS' 
(27) ' LOCATION' 

128) X 
(29) ' ALLOCATION' 
(30) XX 
(31) 'WITH AN ERT OF ';ERTS 

V 

FIGURE 4.A.3: A Computer Code for rn-Server 
Location-Allocation. 



CHAPTER 5 

StJt'!tPRY AND CONCLUSIONS  

This chapter provides a brief summary of the previous chapters 

and reviews the main conclusions. Chapter 1 presented the problem and 

emphasized the importance of LA decisions under conditions of 

congestion and queueing of service demands. Chapter 1 also included a 

brief literature review, a more detailed presentation of two papers 

that led to this study and a summary and outline of the following 

chapters. 

In Chapter 2, the previously formulated one server location 

algorithm and the 2-facility districting heuristic were combined into 

a 2-facility LA heuristic. The heuristic is based on an alternate 

location and allocation solution improvement procedure which is a 

monotone-decreasing convergent process. Although the final result of 

the heuristic may or may not be equal to the global optimum, 

computational results indicated that the best results are in most 

cases obtained when the 2-median is used as the initial location 

policy. 

Using a code of the heuristic in APL "optimal" 2-server LA 

policies were found for three networks: with 5, 10 and 25 nodes, and 

at various demand rates. For low values of X, the median-proximity 

policy was found to be "optimal". For high demand rates, the best 

location of servers is not necessarily at the 2-median but the best 

districting policy is equal to the unique solution of Region C 
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given the best location policy. For intermediate A values it was 

found that there may be many "optimal" solutions as shown in the case 

of the 25-node network. 

In order to illustrate the changes in "optimal" LA policies with 

increasing A values, 2-server LA policies were found for a 3-node 

network. Graphs of the expected response time as a function of the 

demand rate for the 5, 10 and 25 node networks were presented at the 

end of the chapter which suggest convexity of the expected response 

time as a function of A. 

Chapter 3 dealt with the 3-server LA problem on a congested 

network which required the development of a 3-server districting 

heuristic. An iteration procedure was introduced which improves the 

districting between two servers at each iteration, while keeping the 

allocation of nodes to the third server constant. This heuristic was 

coded in APL and computational results of the districting heuristic 

were presented. 

The alternate location and allocation solution improvement 

procedure presented in Chapter 2 was used for obtaining the "optimal" 

LA policy with three servers. The superiority of the 3-median as an 

initial location of servers was shown by comparing final solutions of 

the heuristic using the 3-median as the initial location to final 

solutions that were based on a different initial location policy. In 

most cases the 3-median proved to be either as good or better than any 

other initial location policy. 
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Finally, a comparison of results for three servers with those for 

two servers showed that especially at high demand rates the percentage 

improvement in expected response time is greater than the percentage 

increase in resources (the number of servers)., Also shown was the 

greater range of demand rates under which three servers can operate in 

various networks compared to two servers. 

The use of the alternate location and allocation solution 

improvement procedure for two and three servers as well as the 

extension of the 2-server districting heuristic to the case of three 

servers, served as preliminary work to the treatment of the general 

case in Chapter 4. In order to solve the rn-server LA problem, the 

development of an rn-server districting heuristic was required. This 

heuristic extended the 3-server districting solution procedure to m 

servers by improving the districting between two servers at a time, 

keeping the previous allocation of nodes to all other servers 

constant. 

The choice of an initial districting policy according to the 

original 2-server districting study was modified in this thesis. 

Rather than taking the better of the solutions of Regions A and C as 

the initial solution of the districting heuristic and running through 

it only once (as suggested by Berman and Larson5), it was found that 

both should be used as initial solutions in two separate runs. The 

better result of the two is then taken as the "optimal" solution. 

Even for a small number of servers (two or three), computational 

experience had shown that in some cases this procedure which largely 
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increases the computational effort, provides a better districting 

policy. 

To illustrate the usefulness of the rn-server LA heuristic, two 

examples were presented. Both were of a 5-server, 25-node network, 

one with a low demand rate and the second example with a relatively 

high demand rate. For the low demand rate, the best LA policy was 

found to be equal to the median-proximity policy. In the second case, 

the best LA policy was not at all obvious and required several 

iterations until the final solution was reached. Solving the same two 

problems but with initial location policies not equal to the 5-median 

provided the "optimal" solutions but required more iterations. 

A general observation of the alternate location and allocation 

solution sequence refers to the relative improvement of the solution 

throughout this sequence. In general, the greatest relative 

improvement occurs in the first iteration (i.e. when an optimal 

location is found for the first districting policy), with the expected 

response time subsequently decreasing by smaller increments. With a 

"weak" initial location policy the initial improvement is usually 

larger than when the p-median is used. 

The significance of the solution methods presented in this thesis 

increases with the degree of congestion in the networks analyzed. 

While for low demand rates the expected response time is not very 

sensitive to changes in LA policies, at high rates of demand even 

slight changes in server locations or in node allocations could be 

"disastrous". It was shown that even for simple networks optimal LA 
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policies at high demand rates may not be intuitive and that using the 

median-proximity LA policy at high demand rates can cause the system 

to explode. 

All computations were done on a Honeywell Information Systems 

computer through the Multics operating systems running on DPS-8-M 

processors. Although most of the coding was in APL, the integer 

programming computations related to the examples in Chapter 4 were 

performed by the MPS (Mathematical Programming System) in Multics. 

The following table provides CPU computation times for problems of 

varying complexity at a demand rate of 0.1. In these examples, only 

the best of the solutions of Regions A and C was taken as the initial 

solution of the districting heuristic at each iteration, and the 

p-median was used as the initial location policy. 

NUMBER OF NODES NUMBER OF SERVERS CPU TIME (minutes:seconds) 

5 

10 

25 

5 

10 

25 

2 

2 

2 

3 

3 

3 

1:15 

5:30 

31:00 

2:00 

8:15 

32:00 

TABLE 5.1 Examples of CPU Computation Times 

for the Location-Allocation Problem 
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It is believed that further improvement is possible in the 

solution methods presented in this thesis and especially in the 

districting heuristics. A decrease in the number of iterations in 

each cycle would largely reduce the computational effort. Further 

study should also deal with the determination of a lower bound 

solution and a comparison of results obtained through heuristics to 

this lower bound. Work is currently being done to improve the 

efficiency of the computer codes in APL. Although computational 

results point in the direction of convexity of the expected response 

time as a function of the demand rate, this characteristic does not 

have an apparent use in the determination of optimal LA policies. 

Future study can treat the LA problem in congested networks with 

probabilistic link lengths. An extension to this study could also 

allow more than one mobile service unit at each facility. Another 

area of future research may treat cooperation between districts, but 

as the M/GIk queueing problem is not analytically solvable, some 

approximations would have to be introduced in a solution to this 

problem. Finally, it may be more appropriate for certain systems to 

solve the centre problem taking congestion into account. This change 

would affect both the location and districting solutions of the LA 

heuristic by changing the criterion of optimality from the 

minimization of average response time to the minimization of maximum 

response time. 
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