Java: Memory Consistency and Process Coordination

Lisa Highardand Jalal Kawash
Department of Computer Science, The University of Calgary, Canada, T2N 1N4
Fax: +1 (403) 284 4707, Phone: +1 (403) 220 7696, 220 7681
{higham|kawash}@cpsc.ucalgary.ca

Abstract

In Java, some memory updates are necessarily visible to some threads but never to others. A def-
inition of Java memory consistency must take this fact into consideration to capture the semantics of
non-terminating systems, such as a Java operating system. This paper presents a programmer-centered
formal definition of Java memory behavior that captures those semantics.

Our definition is employed to prove that it is impossible to provide fundamental process coordi-
nation in Java, such as critical sections and producer/consumer coordination, without the use of the
synchronized andvolatile constructs. However, we show that a weaker form of synchronization
suffices to solve some of these problems in Java.

keywords: Java, Java Virtual Machine, memory consistency models, process coordination, critical sec-
tion problem, producer/consumer problem, non-terminating systems.

1 Introduction

The Java Virtual Machine (JVM) [15] provides a global shared memory and a local memory for each Java
thread. Because intricate rules (see Appendix A) determine the communication between these memories,
and because much of this communication is optional (at the discretion of the implementor), the possible
behaviors of multi-threaded Java programs are complicated. For instance, memory accesses can be visible
to some threads but not to others [15, 8] (henceforth callethttigbility phenomenon.) These complicated
interactions of threads and memories make it imperative to provide programmers with a formal and precise
definition of the memory behavior of JVM. The definition should be given in the programmer’s terms, by
specifying the constraints that Java imposes on the outcomes of the read and write operations used by the
programmer.

Previous work by Gontmakher and Schuster [5, 6] provides such a definition (henceforth denoted Java
of Java memory consistency (Section 4.1). Jasaptures the possible outcomes of any terminating Java
computation. However, as will be seen, for terminating computations it is possible to circumvent deal-
ing explicitly with the invisibility phenomenon. We show (Section 4.2) that Javanot correct for non-
terminating computations such as those of a Java operating system. Section 4.3 extends and agjusts Java
to our new definition, Javg which does deal with invisibility and which is correct for both terminating
and non-terminating Java computations. We also provide a precise and short operational definition of the
memory behavior of JVM (Section 3) that captures all the Java ordering constraints.

“Department of Computer Science, The University of Calgary Research Report # 98/622/18a Higham and Jalal Kawash.
TSupported in part by the Natural Sciences and Engineering Research Council of Canada grant OGP0041900.
*Supported in part by a Natural Sciences and Engineering Research Council of Canada post-graduate scholarship(B).

Existing definitions of weak memory consistency models ([14, 7, 1, 3, 11]) apply to terminating compu-
tations. However, process coordination is required in non-terminating systems, such as distributed operating
systems, and interesting subtilities arise when extending from terminating to potentially non-terminating
computations. Section 4.2 examines and formalizes what is required for a non-terminating computation to
satisfy a given memory consistency condition. Later, this formalism is used to show that although Java
is coherent when restricted to terminating computations (as proved by Gontmakher and Schuster), non-
terminating Java is not (Section 5.1). Java consistency is also compared with SPARC's total store ordering,
partial store ordering, and weak ordering in Section 5.2.

Section 6 shows that Java cannot support solutions to fundamental process coordination problems, such
as the critical section and producer/consumer problems, without the use of expensive synchronization con-
structs such asolatile variables orlocks. However, Section 7 shows that a form of “in-between”
synchronization would allow Java to support some process coordination much more cheaply than is possible
with what Java does provide.

Before proceeding with the technical results, we need the definitions of Section 2.

2 Preliminaries

2.1 Memory consistency framework

A multiprocessor machine consists of a collection of processors together with various memory components
and communication channels between these components. The behavior of such a machine can be described
by specifying the sequence of events that the machine executes when implementing a given program instruc-
tion. Alternatively, it can be described by precisely specifying the constraints on the perceived outcomes and
orderings of the instructions that can result from an execution. Given a particular machine architecture, our
goal is to formulate these constraints on computations. This subsection overviews our general framework for
specifying a memory consistency model, and for modeling the corresponding machine architecture. Various
memory consistency models that are used in this paper are defined in the next subsection. A comprehensive
treatment appears elsewhere [11, 10].

We model a multiprocess system as a collection of processes operatiagtigiason a collection of
shared databjects In general, these objects may be of any type, but in this paper it suffices to consider only
read,x,v) (processp reads valuer from registerx) and writeo,x,v) (processp writes valuev to registerx)
actions.

A processds a sequence of invocations of actions, anditoeess computatiois the sequence of actions
created by augmenting each invocation in the process with its matching outcofmaultiprocess) system
(P,J), is a collectionP of processes and a collectidrof objects, such that the actions of each proce$3 in
are applied to objects i A system computatiois a collection of process computations, one for epa
P.

Let (P,J) be a multiprocess system, af@dbe all the (read and write) actions in a computation of this
system.O|p denotes all the actions that are in the process computatipindP. O|x are all the actions that
are applied to objectin J. Let O, denote the write actions ari@ denote the read actions.

A sequence of read and write actions to the same objedlid if each read returns the value of the
most recent preceding write. lkearizationof a collection of read and write actio, is a linear order
(O, <L) such that for eack, the subsequend®|x, <) of (O, <) is valid forx.

A (memory) consistency modsla set of constraints on system computations. These constraints are
given in terms of partial order requirements on the actiGnef a computation. Several partial orders

1A linear order is an irreflexive partial ordé®, R) such thatyx,y € S x# vy, eitherxRyor yRx

are used in the definitions of memory consistency models. One common partial ofdlalp—rf@), called
program order which is defined byolwoz, if and only if o, follows 04 in the computation of some process
p. A computation satisfies some consistency mdidlthe computation meets all the constraintsDof A
system provides memory consisteryif every computation that can arise from the system satisfies the
consistency modeD.

A multiprocessor machinenplements an actioby proceeding through a sequenceeéntghat depend
on the particular machine and that occur at the various components of the machine. The events in this
sequence and the action that is implemented by them are sawmtrespond A processor of a machine
implements a procedsy initiating, in program order, the implementation of the actions corresponding to
the action-invocations of the process. A multiprocessor madhipements a syste(®,J) by having each
processor implement a proces$inA machine executiors described by the sequence of resulting machine
events’

2.2 Memory consistency models

Following are the definitions for sequential consistency (SC) [14], coherence [7], Pipelined-RAM (P-RAM)
[16, 1], Goodman’s processor consistency (PC-G) [7], weak ordering (WO) [3], coherent weak ordering
(WOcoheren), SPARC total store ordering (TSO) and partial store ordering (PSO) [18, 11].

Define the partial ordefO, Weaﬂrog), calledweak program orderby: Action olweaigrogoz if 01@02
and either 1) at least one ¢b,,0,} is a synchronization action, or Zp’ such thao' is a synchronization
action anmlgo’%oz, or 3) o1 ando, are to the same object.

Let O be all the actions of a computati@hof the multiprocess syste(#,J). ThenC is:
SC if there is a linearizatiorfO, <) satisfying(O,M) C (O, <L).

coherent if for each objectx € J there is a linearizatiofO|x, <) satisfying(O|x, @) C (O]x, <L,)-
pros

P-RAM if for each procesy € P there is a linearizatioiO|pU Ow, <i,) satisfying (O|puU OW,J) C
(OlpUOW, <t,)-

PC-G if for each proces® € P there is a linearizatiofO|pU Oy, <. ,) satisfying 1)(o|puow’%) C
(OlpUOw, <L), and 2)vq € P andvx € J (OyNOJx, <L) = (OwNOIX, <L)

WO if for each procesg € P there is some linearizatidi©®| pu Oy, < ,) satisfying 1)(O|pU Oy, Weaﬂrog) -
(OlpUOw, <i,), and 2)¥q € P (Ow N Osynch <1,) = (OwN Osynch <L,)-

WO oherent if for each proces® € P there is some linearizatiofO|puU Oy, <|,) satisfying the two condi-
tions of WO andvq € P andVvx € J (Ow|x, <) = (Ow|X, <L,)-

In the following, (AW B) denotes the disjoint union of sefsandB, and ifx € AN B then the copy

of xin Ais denotedxa and the copy ok in B is denotedkg. Let O, denote the set of swap atomic
actions andOg, denote the set of store barrier actions provided by the SPARC architecture [18]. Let
O, denote the set of actions with read semantics. TBgm) O, = O,.

TSO if there exists a total ordeiOw, ™% such that{Ow, %) C (Ow, Y™ andVp € P there is a total
merge o
order(O|pw Oy, —), satisfying:

1. (Olp, ™) = (0|p, =3"), and

2Events in a multiprocessor can be simultaneous. For example, two different working memories may be simultaneously updated.
However, because the same outcome would arise if these simultaneous events were ordered one after the other in arbitrary order,
we can assume that the outcome of a machine execution arises fequencef events.

it merg
wr| es) Eb and

3. ifwe (O|meW) thenwo‘p by Wo,,, and

4. ((O| py Ow)\(oinvisiblep U Omemwriteg)amﬂfb) is a linearization, where

Oinvisible, = {W| W € (Ow\O|p) NOx A IW € O]xNO|pN Oy Awo‘pmer% W, 1
Omemwriteg = {wg, | W€ O|pn Oy}, and
5. letwe (O|pN0Oy) andac (O|pN0O,), if w2, thenwowmﬂfpa, and ifa®™w, thenamﬂfbwo‘p

PSO if there exists a total orde(nOW,W”tes) such thatyx, (OwNOJx, 2%) C (0w N O|x, ™% andVp € P
there is a total ordeO| pw OW, gQ)) satisfying items 1 through 4 of TSO and (556 (O|pN Osgp)
pro merge
andw, u € (O|pN Oy) andw 2% sb ™% u, thenwg,, — Uo,-

3 Java Virtual Machine

The Java Virtual Machine (JVM) [15] is an abstract machine introduced by SUN to support the Java pro-
gramming language [8]. Its behavior is specified in the Java manuals [8, 15] and is quoted in Appendix A.
This section provides a simple, precise alternative but equivalent description [13].

The components and events of JVM are depicted in Figure 1 for a two-thread machineorkimey

Working Working
Memory Memory
A A
load load
store store
Y Y
Waiting Waiting
Area Area
4 A
read read
rite rite
\ 4 YY Y
Main Memory

Figure 1: A two-thread JVM architecture

memoryis local to a thread and is accessibleds¢ andassign events. Thenain memorys accessible to
a thread byload, store, read, andwrite events3. To commit amassign to main memory, the working
memory performs atore event. Later, the main memory performs a subseguetite event, which
updates main memory. Before a thread attempisstoa variable that is not in its working memory, main

3Main memory is also accessible hyck andunlock events. This paper does not deal in detail with these events since we are
interested in the memory consistency of Java in the context of ordinary reads and writes.

4

memory performs aead event. Later, the working memory issued@d bringing the variable to the
working memory. A component called thiting areais introduced to model the delay betweetores
andwrites and betweerreads andloads.

For memory consistency concerns in Java, a thread is considered to be a sequence of prog-read and
prog-write actions, which are implemented in the JVM machine as followst heta threadx an object,
andv a value. Also choicd f } designates a non-deterministic choice to perfdror not.

(A1) (A.2)
prog-readt, x,v): prog-write(t, X, v):
if X is not int’s working memory assign(t,X,V)
then get(t,x,v) choice{ put(t,x,v) }
elsechoice{ gett,x,v) }
use(t,X,V)

where gett,x,v) and puft,x,v) are defined by:

get(t,x,v): put(t, X, Vv):
read(t,x,Vv) store(t,X,V)
load(t,X,V) write(t,X,V)

A Java prograngis a collection of threads. Any Java machine execuliaf Sis a sequence of events
of the types{assign, use, store, load, write, read } satisfying the additional constraints that follow.

Let 0; and o, be actions in{ prog-read, prog-writg e;, &, ande be events, and Ie&1£>e2 denotee;
precede®; in E.
1. 0f 01@02 ande; (respectivelygy) is theuse or assign corresponding t@; (respectivelyp,), then

E
€ —€E.
2. Ifassign(t,x,V) &, load(t,Xx,u), then there is atore(t, X, Vv) satisfyingassign(t, X, V) BN store(t,X,V)
£, load(t,x,u).
3. Letee { store(t,X,V), load(t,x,v) }. If et store(t,X,u), then there exists asssign(t,X, u)
satisfyingei assign(t,X, u) E, store(t,X,U).
4. Leto; ando; € O|xNO|p and 01%02 and lete; ande, be any events correspondingdp and o,
respectively, theﬂliez.
It is easily confirmed that the memory consistency model arising from this description is equivalent to
that of an even simpler machine where each get and put (Algorithms A.1 and A.2) are atomic events [13],
and that these models are unchanged from that arising from the original set of rules describing JVM [13].

For consistency with previously defined memory models, we use thepmroessto refer to a Java
threadin the rest of the paper.

4 Java Memory Consistency Model

The rules of Java that determine the interaction between working memories and main memory permit a
process’s write action to be invisible to another process. This is highlighted by the appearance of the choice
function in algorithms A.1 and A.2 for prog-read and prog-write. We distinguish two kinds of invisibilities.
First, certainstores are optional, which makes soragsigns visible to the process that issued them, but
invisible to others. We use the tertovertto refer to this kind of invisibility. Second, &oad is optional

when a process already has a value for the required variable recorded in its working memaory, which can

cause aise to retrieve a stale value rather than seeing a newly written value. We use thieafor this
kind of invisibility.

To define the memory consistency model of Java, the obstacles that arise from covert and fixate invisibil-
ities can be cleanly and elegantly finessed as long as computations are finite [5, 6] as shown in Section 4.1.
Those ideas, however, do not suffice for non-terminating Java computations. After resolving exactly what is
meant by a consistency condition for a non-terminating system in Section 4.2, we provide a new definition
of consistency that is correct for both terminating and non-terminating Java computations (Section 4.3).

4.1 Consistency of terminating Java computations

Gontmakher and Schuster [5, 6] gave non-operational definitions for Java memory behavior. We use Java
for their “programmer’s view” characterization, after translation to our framework. Given two adjons

andoy both inO|p for somep € P, theJava partial program orderdenoted fp—%), is defined by, LY 02
if 01 prog 0, and one of the following holds:
1. 01,0, € OJx, or

2. 01 € Oy, 0; € Oy, ando; returns the value written by whereo’ € Oy|q q# p, or

. jpo jpo
3. there exist®’ such thab; P8 o ando XS 0s.

Definition 4.1 [5] Let O be all the actions of a computation C of the multiprocess sy&ged. Then C is

Java if there is some linearizatio(O, <|) satisfying(O,ﬂ) C (O, <y).

Notice that this definition requires one linearization for all actions. Gontmakher and Schuster [5, 6] prove
that their definition does capture exactly all terminating Java computations. There are two essential ideas in
forming the linearization:

e certain covert writes can be moved to the end of the linearization so that these writes are never read
by any other process and hence do not negate validity.

¢ fixate reads could be moved earlier in the linearization to precede the writes that are invisible to the
reader so that the stale value returned is valid.
Furthermore, Java partial program order is just enough to permit these writes and reads to move as described.
A problem arises with Definition 4.1 when a system is non-terminating because the end of the computa-
tion is not defined.

4.2 Consistency models for non-terminating systems

Consider Computation 1, where procgssontinues to read O for even thoughg at some point writes 1
to x. This could arise as a Java computation either 1) from a fixate invisibiliy tof the updated value
of x because (after its firstoad) none ofp's uses is preceded by a matchingad, or 2) from a covert
invisibility of x becausey's assign was not succeeded bysaore.
Computation 1 { p: [r(¥0] [()0}, [r(x)0], [r (), .
g:w(x)1

Does Computation 1 satisfy Definition 4.1? Certainly for any finite prefiyp'sfcomputation, say
afteri reads byp, it is Java, since the linearizatiofr (x)0]' w(x)1 satisfies the definition. However the
linearization(s) required by a consistency model are meant to capture each system component’s “view” of
the computation. For Java, the given linearization meanstha0]' w(x)1 is consistent with each process’s
view. We expect that, as the computation continues, processes extend their respective views, but do not
“change their minds” about what happened earlier. We will return to this example after we capture what it
means for a non-terminating system to satisfy a given consistency condition.

Let O be all actions of some finite computati@of a system(P,J), and letD be a memory consistency
model. To establish that satisfies consistency mode| we provide a set of sequencgseach composed
of actions inQ, that satisfy the constraints Bf. Each sequence is meant to capture a component’s “view”
of the computation, or some kind of agreement between such views. Call sutraa®t ofsatisfying
sequencebor (C,D).

For the definitionD to hold for a non-terminating computatio@, we (informally) have two require-
ments. First, ifC is paused, then the prefix, s@y that has been realized so far, should have satisfying
sequences fo((f,D). Second, ifC is resumed and paused again later, sa§,ahen there are satisfying
sequences fo«é,D) that are “extensions” of the satisfying sequences(tﬁ)lD). That is, we do not want
to allow a component to reconstruct its view of what the computation did in the past. We formalize this
intuition as follows.

A sequence extends$if Sis a prefix ofs. A set of sequenceS= {s,,...,s,} extendsa set of sequences
S={$,...,$} if for eachi, s extendss’

Definition 4.2 Let D be a memory consistency model for finite computations. A non-terminating computa-
tion C = Upep{Cp} satisfiesD if Vp € P and for every finite prefi€, of Cp, there is a finite prefic of Cq
Yq # p, such that

1. € =Uqyep{Cy} satisfies D, and

2. for any finiteC, that extend€,, and is a prefix of G, there is a finite prefi€, of G, Vq# p, such that

o C=Uqep{Cq} extend<, and
o C satisfies D, and
e the satisfying sequenc8sfor (C,D) extend the satisfying sequen&efor (C,D).

If we apply Definition 4.2 to Definition 4.1, Computation 1 is not Jav&hat is, any linearization of
a finite prefix of the computation that contaig's write and satisfies Definition 4.1 cannot be extended to
a linearization for a longer prefix of the computation that still satisfies the definition. (Instead, the write
action byq would have to be moved to the new end of the linearization.) We need a definition of Java that is
equivalent to Definition 4.1 for finite computations but that preserves semantic commitments in the course
of non-terminating computations.

4.3 Java consistency

We first define Java which is equivalent to Jaydut is described from the point of view of processes.
Definition 4.3 Let O be all the actions of a computation C of the multiprocess sydem Then C islava
if there is a total order(OW,Vﬂef) satisfyingvp € P:

1. there is a linearizatiofO|pU Oy, <Lp) such that(O|pU Oy, ﬂ) C (O|pU Oy, <Lp), and

2. (Ow,<L,) = (Ow,"™%).
Claim 4.4 Java is equivalent to Java

Proof: Java = Java. Given(O,<,) guaranteed by Definition 4.1, the total ord@k, ™S is built by
projecting (O, <) to write actions. Similarly(O|pU Oy, <L) is built from (O, <) by deleting all read
actions byg # p. The argument that Definition 4.3 holds is trivial.

Java = Java. By condition 2 of Definition 4.3, for anp the order ofOy, in <, is the same as that
writes write:

in *=5°. Let (Ow, =) be Wy, Wy,...,Wn. Then(O|pUOy,<L,) = So,Wi,SL, .., S, Wn, S, where theS’s

contain onlyp's read actions. Constru¢O, <) by adding the§’s to (Ow,ms) each aftew; but before

wit1. Since each<, is a linearization and since only read actions are added, validity follows immediately.
[|

We further adjust Definition 4.3 to cope with invisibility and hence capture both terminating and non-
terminating Java computations.
Definition 4.5 Let O be all the actions of a computation C of the multiprocess sydeh Then C islava,

if there is some total ordefO,, ") andVp € P there is a subset @, of O, satisfying:
1. there is a linearizatiofO|pU Oyis,, <r,) such that{O|pU Ois,, Jp —) € (O]pUOuis,, <L,), and

it
2. (Ovis,, <Lp) = (Ovisy, —)-
Notice that the seD\;s, in Definition 4.5 is the set of writes that “so far” are visible to procpsblotice
write

also that Computation 1 does satisfy Definition 4.5. For any prefixezds byp, (Ow, —) = w(X)1, Ouis,
= 0, andOyis, = Ow = W(x)1. S0,(O|pU Oyis,, <L,) = [r(X)0]' and (O|qU Ovis,, <L,) = (x)1. Also, for
eachi these satisfying sequences are extensions of the satisfying sequericed farhe revised definition
captures exactly what “happened” in the sensewtaj1 took place fromy's view but not fromp’s.
Theorem 4.6 For finite computations, Javais equivalent to Java
Proof: Java = Java,. Forallp setOyis, t0 Ow. In this case Definition 4.5 is identical to Definition 4.3.
Java, = Java. Let C be a finite computation satisfying Definition 4.5. Denote Lti)p) (O|pu
Ouvis,; <L,) guaranteed by Definition 4.5. We build the linearizati¢@p U Oy, <) denoted_(p), from
L(p) and show they satisfy Definition 4.3.
Initially set L/(B) toL(p). If Ovis, = Ow, then the case is trivial. OtherwisB,is, C Oy and there exists
a non empty set of invisible writes with respectdOjny, = OW\O\,isp.

Let (Ow, "™ given by Definition 4.5 bev, W ... wn, and leti be the smallest index ifOyw, %% such
thatw; € Ojny,- LocatewJ in L(p) wherej is the smallest index ih(p) such that < j (note that; € Oyis,).
Insertw; into L(p) immediately beforev; but after any preceding action of. If both w; andw; are to the
same object, no further action is needed. Otherwise, certain redf(lg)imvill be moved as follows.

Let L/(B) beS wi S Wy ... § wi wj ... § wy. Note that§ are finite sequences of reads. kgtbe the

first write in L/(B) such thak > i andwy andw; are to the same object, sayMove (Sj;1 Sj;2 ... S)|x to
the place sandwiched 8 andw;. The whole procedure is repeated for the next smallest
The resulting_/(ﬁ) are linearizations. First of all, note that initial&ﬁ) are linearizations because they
are set td_(p). If validity has been violated by the construction, thgnandw; must be to two different
objects. Otherwise, it could not have been violated becauses inserted immediately befovg in L/(B).
Thus, there must be a read,of x returning a value that is different from the value writtenviayand

r succeedsy in L/(B). If r precedesvy, then the insertion ofy; did not violate validity. Therefore, must
precedeni which means that is in the sequencesS;; 1 S ... S)[x which was moved to precede. That
is, the validity violation that the insertion e, introduced was restored by construction.

We still need to show that/(B) is consistent with!*3. SinceL(p) is consistent Withﬂ we need
to argue that the above construction did not violate it. Note first of all (t@a,tvm maintains-"3 by
Definition 4.5, and that our construction malntawr' 3> . So, we need only consider actionsdnp. In other
words, we need only show that the movement§f.1 Sjo ... &)[x did not violate 1?3

Note that such a movement is moving only reads backwards could be only violated it is vi-
olated between actions on the same object. However, this simply can not be the case (Scase ... S)|x

precedesvk and there is no other write toin the interval betweem; andwg. Furthermore, the original
order of the reads i(S;+1 Sj;2 ... &)|x is not affected by such a movement. |

8

For the remainder of this paper, Java and Ja@ used interchangeably.

5 Comparing Java with Various Consistency Models

5.1 Javaversus coherence

Gontmakher and Schuster [5, 6] argue that Java is Coherent. Their proof relies on the regular |&guage
which is an elegant distillation of the rules for a single Java process (Appendix A Section A.1 Rules 2, 3, 4
and 5).

Order = (load-block | store-block)*
R<{ 1load-block = load(use)*
store-block = assign(use | assign)* store(use)”

They claim that the events corresponding to the actions of a single process to a fixed variable satisfy
R. In fact, if anassign(t,x,V) is not followed by aload(t,x,u), then a subsequestore is optional. A
modification ofR to R captures this more general situatidndenotes the empty string.)

Order = (load-block | store-block)* tail-block
load-block = load(use)”

store-block = assign(use | assign)® store(use)”
tail-block = assign(use | assign)*|A

)

Coherence still holds for any computation such that for each variable, and for each process, the events
corresponding to the actions of that process on that variable s&isfyheir proof requires only a slight
modification so that in the linearization eathil-block follows everyload-block andstore-block.

Thus we can conclude that all finite Java computations are coherent.

Unfortunately, non-terminating Java computations are not necessarily coherent. When there is only one
variable, notice that Jayaand coherence are the same. Computation 1 is.Jaugit is not Java Since
it uses only one variable, it cannot be coherent. One important consequence of this is thatalea
support solutions to the nonterminating coordination proldR@y-queue (see Section 6) even though it has
been shown [9, 12] that coherence suffices to solve this problem. The following computation [5] is coherent
but not Java.
p:r()1w(y)l
a:r(y)Lw(x)1
Hence, Java and coherence are not comparable (except for finite computations.)

Computation 2 {

5.2 Java versus other consistency models

Gontmakher and Schuster [5, 6] show by examples that:
e Java and P-RAM are incomparable.

e Java and PC-G are incomparable.
Since their examples are finite, these same conclusions apply te. Java

It is easily verified that Computation 2 is Wgerens @and (the non-treminating) Computation 1 is not
WOcqonerent Therefore, Java and W@erent (COnsequently WO) are incomparable.

To see that PSO [18, 11] is strictly stronger than Java, imagine a situation in which the working memory
in JVM mimics the behavior of the store buffer in PSO. Specifically, (1) eweryign is paired with a

store and (2) everyuse that follows astore by the same process on the same variable is paired with a
load that follows thestore. The following claim makes this intuition evident.

Claim 5.1 PSO (consequently, TSO) is strictly stronger than Java.
Proof:

We show that PSO is strictly stronger than JavatL (p) denote the linearizationgO|pw OW)\(Oinvisib@ U
Omemuwriteg); — merge’5) guaranteed by PSO. We construct the linearizat{@jpu Oy, <), denoted_/(B), and
show that they satisfy Definition 4.3.

Initially, (p) is set toL(p) for all p. We proceed by addlng the actlon@m.v.s.b@ to L(p) Recall that,

merg merg

is added td_(p) beforew but after any preceding action ws. If there are more than one suehby the
same process on the same object, these are inserted(jpit@uch that their program order is maintained.
Sincew andw’ are on the same objedt(p) are obviously Iinearizations

Since program order is maintained(@|p, — gﬁb) and |n(OWﬁO|x) (by PSO),— LI (— LA C ﬂ) is
maintained in((O|p W OW)\(O.m,.S.b@ U Omemwr.teg) mergeb) Therefore, we need to show that the insertion

of w does not violate!™S. L(p) contains no reads by # p, and ™ was maintained among actions in
Oinvisible, Ve still need to argue that insertingbeforew does not cross pastvd’ by gonx. That s, there

is now” such that bothv andw” are inO|gN O|x for q # p satlsfylngW’ W (or, V\/’Jw) butw< w".

mert mert mer mer mer mer
Note that\/\/o‘ el —gf'sv\/ We have two cases, elth%‘ Rk UVt Oy g%w’ ,orw’ g%V\/C)'p

In the first casew” € Oinvisible, @nd must have been msertedl_t(p) beforew. In the secondy is placed

betweenw’ andw by construction. Therefore@ is maintained.

Finally, we note that Java Computation 1 is impossible in a PSO or TSO system.

Since TSO is strictly stronger than PSO and sinceJasvstrictly stronger than Java, we conclude that
TSO and PSO are strictly stronger than Java. [|

The following table summarizes these observations.

M coherence P-RAM | PC-G | WOcoherent | WO | TSO | PSO
Java= M NO NO [6] | NO [6] NO NO | NO | NO
M =-Java| NO [6] NO [6] | NO [6] NO NO | YES | YES

6 Coordination Impossibilities

This section confirms that without thgnchronized or volatile constructs, fixate and covert invisibili-
ties make Java too weak to support solutions to coordination problems such as the critical section problem
(CSP) [17] or the producer/consumer problem (PCP) [2].

6.1 Critical section problem

Given that each process executes:
repeat
<remainder-
<entry>
<critical section>
<exit>
until false

10

a solution to CSP must satisfy:
e Mutual Exclusion: At any time there is at most one process in<tsritical sectiorn>.

e Progress:|If at least one process is ientry>, then eventually one will be irccritical section>.
Theorem 6.1 There is no Javaalgorithm that solves CSP even for two processes.

Proof: Assume for the sake of contradiction that there is a mutual exclusion algohittimait solves CSP
in Java. for processeg andg. If A runs withp in < entry > and withqg in < remainder>, then by
the Progress property must enter its< critical section>> producing a partial computation of the form of
Computation 3.
p:of,05,...,0f (pisinits < critical section>)
q:A

whereA denotes the empty sequence anﬁdjenotes thé'" action of p. Similarly, if A runs withq in
< entry> and withoutp participating, a computation of the form of Computation 4 results.
p:A
g:04,09,...,0! (qisinits < critical section>)
Now consider Computation 5.

p:o},05,...,0f (pisinits < critical section>)

g:04,05,...,0/ (qisinits < critical section>)

We show that Computation 5 satisfies the conditions of Definition 4.1. First, kyilés follows.
(O,<L) = Py,07,0,...,0f,Ss. Initially, P is empty andSs = 0],03,...,0;. Certain actions are removed
from S and appended tB;. Examineoiq in St in order fromi = 1 tol. If oiq € O |x for somex and there is
no o? such thatj < i andoj1 € Oul|x, then append to Py and remove it fronSy.

Sequencd’s contains only reads bg returning initial valuespf,og,...,olf is Computation 3, and for

every read ir; there is a preceding write to the same object. Heﬁcmlp,og, ...,olf, St is a linearization.

Computation 3 {

Computation 4 {

Computation 5 {

Moreover(O,ﬂ) C (0O,<\) by construction. Therefore, Computation 5 is a possible;Jesmputation.
However, in this computation both andq are in their critical sections simultaneously, contradicting the
requirement thaf satisfies Mutual Exclusion.]

Since Javais stronger than Java the following corollary is immediate.
Corollary 6.2 There is no Java algorithm using only ordinary actions that solves CSP even for two pro-
cesses.

6.2 Producer/consumer problems

Producers and consumers are assumed to have the following forms:

producer: consumer:

repeat repeat
<entry> <entry>
<producing> <consuming
<exit> <exit>

until false until false

We denote the producer/consumer queue problef@s-queue wheren andn are respectively the
number of producer and consumer processes. A solutiBp@e-queue must satisfy the following:

e Safety: There is a one-to-one correspondence between produced and consumed items.

e Progress:If a producer (respectively consumer) isientry>, then it will eventually be inr<producing>
((respectively<consuming-) and subsequently irexit>.

11

e Order: consumers consume items in the same order as that in which the items were produced.

PCh-set denotes the producer/consumer set problem. A solutioRfor-set must satisfy Safety and
Progress only.

The fixate or covert invisibility makes consumers (respectively, producers) unware of actions of produc-
tion (respectively, consumption). The following theorem requires no proof.

Theorem 6.3 There is no Java algorithm using only ordinary actions that solygS,Rjueue or RC,-set
even forr=m= 1.

Even Javais too weak to support a solution for general caseB¥,-queue. The solutions fd?,C;-
queue andP,C,-set we presented before [9, 12] are correct for any coherent system. Thus, they are correct
for Java.

Theorem 6.4 There is no Javaalgorithm that solves f£,-queue or RC;-queue even for = 2 or m= 2.

Proof: The proof is similar to that of Theorem 6.1. We give the proofRgE,-queue, thd>,C;-queue case
is very similar.
Suppose there is a solution RCr-queue for some system, with produgeand two consumers and
d. Consider Computation 6 whepeplaces item in the queue and quits, th&removes item while d is
idle:
p:of,09,...0f (phas produced item)
Computation 6 ¢ c:0§,05,...,07 (chas consumed item)
d:A
By Progress, this computation must be possible in the system. Similarly the following computation is
also possible in the system. The Order property guarantees thiltconsume item in Computation 6,
and thatd will consume the same itemin Computation 7
p:of,0b,....0f (phas produced item)
Computation7 ¢ c:A
d:of,0d,...,08 (d has consumed iter)
Notice that the sequence fpris identical in both Computation 6 and Computation 7, and thedm-
pletes this sequence befarer d begin.

We will show that if Computation 6 and Computation 7 are possible then so is the computation:

p:of,0b,...0f (phas produced item)

Computation 8 ¢ c:0§,05,...,07 (chas consumed item)
d:o§,09,...,08 (d has consumed item)
We show that Computation 8 satisfies Definition 4.3. SinceJavaquivalent to Jayathis will be
enough to prove the claim.
Let (Ow, %) be (of,0D,...,0, §,05,...,0f, 0f,03,...,08)[wA. Let (O|pUOw,<(,) bead?,0b,....ob,

. jpo
(05,05, ...,0%, of, od, ...,0%)|w. This is clearly a linearization that is consistent Wi (thus with) as

well as with™™5". Also let(OlcUOy, <i.) be (o}, 05, ...,0f)w, of, 5, ..., of, (0,09, ...,0%) [w. (0,08, ...,00) |w,

05,05,...,0f is a prefix of Computation 6; therefore, it is valid. Singa,03,...,0d)/w contains only
writes, (O|cU Oy, <L) is a linearization. Furthermore, it is consistent with b8#S° and 223, Now

construct(O|d U Oy, <|,) to be(of,05,...,0f)|w, P, (05,05, ...,0f)|w, St. Initially, P is empty andS¢ =

(0f,09,...,08). Certain actions are removed froBa and appended tBs. Examineo! in S in order from
i=1toj. If of € Or|xfor somexand there is nof such thatj < i andof € Ow|x, then append to Pt and
remove it fromS;.

4If Sis a sequence of actions, th8mv denotes the subsequenceSincluding only write actions.

12

At the end,P; contains only reads by returning values written by or returning initial values. Thus,
(of,og, ...,olf)|w, Pz is valid because it is part of Computation 7. Furthermore, for every regdthrere is a
preceding write to the same object. Heng, (05,05, ...,05)|w, St is a linearization and consequently so is

(O]dU Oy, <L,). Moreover, it is consistent with'S* and 223
However, in Computation 8 both andd have consumed the same item, contradicting the Safety re-

quirement. Thus we can conclude that a solutioR;t&,-queue is impossible in Java
[|

Corollary 6.5 There is no Javaalgorithm that solves FC,-queue for m+n > 3.

7 Coordination Possibilities

Solving CSP or PCP is trivial with the usewdlatile andsynchronized constructs. Howevegynchronized
methods andgrolatile variables are expensive in execution timelatiles guarantee sequential consis-
tency (SC) [5], which is not a necessary requirement to solve coordination problems. For example, PC-G
suffices to solve CSP [1]. This section shows that a significant weakening of the constraintsaetiles
, which we call “read-volatile”, suffices to support solutions to some common coordination problems. We
suspect that read-volatiles would allow much more parallelism than Javkis ile variables.

Define aread-volatilevariable to be one that only satisfies rule A.4.1 for volatile variables. The next
claim shows that read-volatiles would suffice to solveR§f@;-queue problem.

class ProducerConsumer{
item[] Q = new item[n+1]; (initialized to 1)

void producer() {
int in;
item itp;
in = 1;
do {
while (Q[in] # 1) nothing;
. produce itp;
in = in + 1 mod n+1;
} while true;

void consumer () {
int out;
item itg;
out = 1;
do {

while (Q[out] = L) nothing;
ite = Qlout];
Qlout] = L;
out = out + 1 mod n+1;
... consume itc;

} while true;

Figure 2:ALGy, a multi-writerP,C;-queue algorithm

13

Claim 7.1 Read-volatiles are sufficient to solvgd?-queue in Java.

Proof: ALGy (Figure 2) solve$;C;-queue in Java if every read is a read-volatiles. For simplicity, assume
that Q is of size one (one item). The extension to the general case is straight forward. Also assume the
producer is producing integers incrementally fréro n, and letL= 0. All reads inALGy are assumed to
be read-volatiles. We will refer to the producer and consumer &ydc respectively.
e Safety:
To prove Safety we need to prove thatan neither over-produce nor secret-produce andctlcan
neither over-consume nor secret-consume.

For p to over produce, we have to have two consecutive writeg &g such:.w(Q)i w(Q)i + 1. This
means that we have the following ordering from the point of viewp:ofw(Q)i r (Q)v w(Q)i + 1 by

Eliy By the algorithmy = 0. Because(Q)v is a read-volatile, its correspondinge is preceded by
aload. Rule B.1.2 guarantees that there is a matcBitigre for theassign corresponding tav(Q)i
(keep in mind that all actions are to the same location). In other wof@$y must have seen a 0
which means thaw(Q)i was overwritten. Only writes 0’s. By a similar argument, we can conclude
thati was consumed beforer 1 was produced.

To see thap can not secret-produce, note that ani@)i is always followed by (Q)v. Rule B.1.2
guarantees that there is always a matchitigre for w(Q)i.

The argument fot is similar.

e Progress:
Assume thaALGy gets to a deadlock state. Therefopds stuck in its while loop and seé€s# | .
Similarly, c seesf) =1.. By rule B.4.1, bothc andp are reading from main memory. By the register
property,q is either_ L or different but can not be both. This means that either c can proceed.

e Order:
Assumec consumes two items out of order. This means ghatoduceswv(Q)i w(Q)i + 1 in this order,
but ¢ consumes + 1 beforei. This is simply impossible because by Definition 4.5 there is a total
order on writes that both andc must agree on. Or, simply Java does not allow the two writég)
andw(Q)i + 1) to be written out to main memory out of program order.

Therefore, read-volatiles are sufficient to sok€;-queue in Java. []

We have shown before that we can exploit a solutionF2;-queue to build a solution fdP,C,-set
[9, 12]. Thus the following corollary.

Corollary 7.2 Read-volatiles are sufficient to solvg@®-set in Java.

14

A Java Ordering Constraints

In this appendix, we quote the ordering rules from the Java manuals [8, 15]. Let T be a thread, V be a
variable, and L be a lock variable.

Al

1.

Rules for one thread

“A useor assignby T of V is permitted only when dictated by execution by T of the Java program
according to the standard Java execution model. For example, an occurrence of V as an operand of the
+ operator requires that a singlseoperation occur on V; an occurrence of V as the left-hand operand

of the assignment operator = requires that a siagkgnoperation occur. Aluseandassignactions

by a given thread must occur in the order specified by the program being executed by the thread. If
the following rules forbid T to perform a required use as its next action, it may be necessary for T to
perform a load first in order to make progress.”

. “A storeoperation by T on V must intervene betweenaasignby T of V and a subsequeitdad by

T of V. (Less formally: a thread is not permitted to lose the most recent assign.)”

. “An assignoperation by T on V must intervene betweetoad or storeby T of V and a subsequent

storeby T of V. (Less formally : a thread is not permitted to write data from its working memory back
to main memory for no reason.)”

. “After a thread is created, it must performassignor load operation on a variable before performing

auseor storeoperation on that variable. (Less formally: a new thread starts with an empty working
memory.)”

. “After a variable is created, every thread must perfornassignor load operation on that variable

before performing aseor storeoperation on that variable. (Less formally: a new variable is created
only in main memory and is not initially in any thread’s working memory.)”

Rules for thread-main memory interaction

. “For everyload operation performed by any thread T on its working copy of a variable V, there must be

a corresponding precedimgadoperation by the main memory on the master copy of V, andoid
operation must put into the working copy the data transmitted by the correspaedithigperation.”

. “For everystore operation performed by any thread T on its working copy of a variable V, there

must be a corresponding followingrite operation by the main memory on the master copy of V,
and thewrite operation must put into the master copy the data transmitted by the correspstating
operation.”

. “Let action A be doad or storeby thread T on variable V, and let action P be the correspondiad

or write by the main memory on variable V. Similarly, let action B be some okba&d or store by

thread T on that same variable V, and let action Q be the corresporetagr write by the main
memory on variable V. If A precedes B, then P must precede Q. (Less formally: operations on the
master copy of any given variable on behalf of a thread are performed by the main memory in exactly
the order that the thread requested.)”

Rules for locks

. “With respect to a lock, thieck andunlockoperations performed by all the threads are performed in

some total sequential order. This total order must be consistent with the total order on the operations
of each thread.”

15

. “A lock operation by T on L may occur only if, for every thread S other than T, the number of

precedingunlock operations by S on L equals the number of precedting operations by S on L.
(Less formally: only one thread at a time is permitted to lay claim to a lock; moreover, a thread may
acquire the same lock multiple times and does not relinquish ownership of it until a matching number
of unlock operations have been performed.)”

. “An unlockoperation by thread T on lock L may occur only if the number of preceditigckopera-

tions by T on L is strictly less than the number of precedouk operations by T on L. (Less formally:
a thread is not permitted to unlock a lock it does not own.)”

. “Between arassignoperation by T on V and a subsequentockoperation by T on L, &toreopera-

tion by T on V must intervene; moreover, theite operation corresponding to thetbremust precede

the unlock operation, as seen by main memory. (Less formally: if a thread is to perform an unlock
operation on any lock, it must first copy all assigned values in its working memory back out to main
memory.)”

. “Between dock operation by T on L and a subsequent usetore operation by T on a variable V,

an assignor load operation on V must intervene; moreover, if it idomd operation, then thesad
operation corresponding to thialad must follow thelock operation, as seen by main memory. (Less
formally: a lock operation behaves as if it flushes all variables from the thread’s working memory,
after which it must either assign them itself or load copies anew from main memory.)”

Rules for Volatiles

1. “A useoperation by T on V is permitted only if the previous operation by T on V lwad, and aoad

A5

operation by T on V is permitted only if the next operation by T on Use Theuseoperation is said
to be "associated” with theead operation that corresponds to tload.”

. "A storeoperation by T on V is permitted only if the previous operation by T on V assgn and

anassignoperation by T on V is permitted only if the next operation by T on étizre Theassign
operation is said to be "associated” with thiate operation that corresponds to thire”

. “Let action A be auseor assignby thread T on variable V, let action F be tload or storeassociated

with A, and let action P be theeador write of V that corresponds to F. Similarly, let action B base

or assignby thread T on variable W, let action G be fload or storeassociated with B, and let action

Q be theread or write of V that corresponds to G. If A precedes B, then P must precede Q. (Less
formally: operations on the master copies of volatile variables on behalf of a thread are performed by
the main memory in exactly the order that the thread requested.) ”

Other rules

These rules can be inferred from several places in the Java manuals. We quote these from [5].
1. “The operations performed by any one thread are totally orderaaseaf V or a storeto V in one

of the program orders always uses the most recent value that was given to Vakgignor aload
operation in that order.”

2. "“The operations performed by the main memory for any one variable are totally ordemedd /&

the order of one of the variables always yields the value that was written by theritesin that order.
If there is no precedingrite in the order, the value yielded lsgadis sone initial value.”

3. "Itis not permitted for an instruction to follow itself.”

16

References

[1] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor consistefegcin
5th ACM Symp. on Parallel Algorithms and Architectyrpages 251-260, June 1993. Also available
as College of Computing, Georgia Institute of Technology technical report GIT-CC-92/34.

[2] E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Technological Univer-
sity, Eindhoven, the Netherlands, 1965. Reprinted in [4].

[3] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocesBoos. of the
13th Annual Int'l Symp. on Computer Architectupages 434-442, June 1986.

[4] F. Genuys, editorProgramming LanguagedAcademic Press, 1968.

[5] A. Gontmakher and A. Schuster. Java consistency: Non-operational characterizations of Java memory
behavior. Technical Report CS0922, Computer Science Department, Technion, November 1997.

[6] A. Gontmakher and A. Schuster. Characterizations of Java memory behaviiodnof the 12th Int!l
Parallel Processing SympApril 1998.

[7] J. Goodman. Cache consistency and sequential consistency. Technical Report 61, IEEE Scalable
Coherent Interface Working Group, March 1989.

[8] J. Gosling, B. Joy, and G. Steel€he Java Language Specificatiomsddison-Wesley, 1996.

[9] L. Higham and J. Kawash. Critical sections and producer/consumer queues in weak memaory systems.

In Proc. of the 1997 Int'l Symp. on Parallel Architectures, Algorithms, and Netw@&sember 1997.

[10] L. Higham, J. Kawash, and N. Verwaal. Defining and comparing memory consistency models. In
Proc. of the 10th Int'l Conf. on Parallel and Distributed Computing Systqrages 349-356, October
1997.

[11] L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part I: Definitions and com-
parisons. Technical Report 98/612/03, Department of Computer Science, The University of Calgary,
January 1998. Submitted to IEEE Trans. on Computers.

[12] L. Higham, J. Kawash, and N. Verwaal. Weak memaory consistency models part Il: Process coordi-
nation problems. Technical Report 98/613/04, Department of Computer Science, The University of
Calgary, January 1998. Submitted to IEEE Trans. on Computers.

[13] J. Kawash. Process coordination in modern distributed systems. Ph.D. Dissertation Draft, The Univer-
sity of Calgary.

[14] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. on Computer€-28(9):690-691, September 1979.

[15] T. Lindholm and F. Yellin.The Java Virtual Machine SpecificatioAddison-Wesley, 1996.

[16] R.J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical Report 180-88, Depart-
ment of Computer Science, Princeton University, September 1988.

[17] M. Raynal.Algorithms for Mutual ExclusionThe MIT Press, 1986.

[18] D. L. Weaver and T. Germond, editor§he SPARC Architecture Manual version Brentice-Hall,
1994,

17

