
Java: Memory Consistency and Process Coordination�

Lisa Higham†and Jalal Kawash‡

Department of Computer Science, The University of Calgary, Canada, T2N 1N4

Fax: +1 (403) 284 4707, Phone: +1 (403) 220 7696, 220 7681

fhigham|kawashg@cpsc.ucalgary.ca

Abstract

In Java, some memory updates are necessarily visible to some threads but never to others. A def-
inition of Java memory consistency must take this fact into consideration to capture the semantics of
non-terminating systems, such as a Java operating system. This paper presents a programmer-centered
formal definition of Java memory behavior that captures those semantics.

Our definition is employed to prove that it is impossible to provide fundamental process coordi-
nation in Java, such as critical sections and producer/consumer coordination, without the use of the
synchronized andvolatile constructs. However, we show that a weaker form of synchronization
suffices to solve some of these problems in Java.

keywords: Java, Java Virtual Machine, memory consistency models, process coordination, critical sec-
tion problem, producer/consumer problem, non-terminating systems.

1 Introduction

The Java Virtual Machine (JVM) [15] provides a global shared memory and a local memory for each Java
thread. Because intricate rules (see Appendix A) determine the communication between these memories,
and because much of this communication is optional (at the discretion of the implementor), the possible
behaviors of multi-threaded Java programs are complicated. For instance, memory accesses can be visible
to some threads but not to others [15, 8] (henceforth called theinvisibility phenomenon.) These complicated
interactions of threads and memories make it imperative to provide programmers with a formal and precise
definition of the memory behavior of JVM. The definition should be given in the programmer’s terms, by
specifying the constraints that Java imposes on the outcomes of the read and write operations used by the
programmer.

Previous work by Gontmakher and Schuster [5, 6] provides such a definition (henceforth denoted Java1)
of Java memory consistency (Section 4.1). Java1 captures the possible outcomes of any terminating Java
computation. However, as will be seen, for terminating computations it is possible to circumvent deal-
ing explicitly with the invisibility phenomenon. We show (Section 4.2) that Java1 is not correct for non-
terminating computations such as those of a Java operating system. Section 4.3 extends and adjusts Java1

to our new definition, Java∞, which does deal with invisibility and which is correct for both terminating
and non-terminating Java computations. We also provide a precise and short operational definition of the
memory behavior of JVM (Section 3) that captures all the Java ordering constraints.

�Department of Computer Science, The University of Calgary Research Report # 98/622/13.c
 Lisa Higham and Jalal Kawash.
†Supported in part by the Natural Sciences and Engineering Research Council of Canada grant OGP0041900.
‡Supported in part by a Natural Sciences and Engineering Research Council of Canada post-graduate scholarship(B).



Existing definitions of weak memory consistency models ([14, 7, 1, 3, 11]) apply to terminating compu-
tations. However, process coordination is required in non-terminating systems, such as distributed operating
systems, and interesting subtilities arise when extending from terminating to potentially non-terminating
computations. Section 4.2 examines and formalizes what is required for a non-terminating computation to
satisfy a given memory consistency condition. Later, this formalism is used to show that although Java
is coherent when restricted to terminating computations (as proved by Gontmakher and Schuster), non-
terminating Java is not (Section 5.1). Java consistency is also compared with SPARC’s total store ordering,
partial store ordering, and weak ordering in Section 5.2.

Section 6 shows that Java cannot support solutions to fundamental process coordination problems, such
as the critical section and producer/consumer problems, without the use of expensive synchronization con-
structs such asvolatile variables orlocks. However, Section 7 shows that a form of “in-between”
synchronization would allow Java to support some process coordination much more cheaply than is possible
with what Java does provide.

Before proceeding with the technical results, we need the definitions of Section 2.

2 Preliminaries

2.1 Memory consistency framework

A multiprocessor machine consists of a collection of processors together with various memory components
and communication channels between these components. The behavior of such a machine can be described
by specifying the sequence of events that the machine executes when implementing a given program instruc-
tion. Alternatively, it can be described by precisely specifying the constraints on the perceived outcomes and
orderings of the instructions that can result from an execution. Given a particular machine architecture, our
goal is to formulate these constraints on computations. This subsection overviews our general framework for
specifying a memory consistency model, and for modeling the corresponding machine architecture. Various
memory consistency models that are used in this paper are defined in the next subsection. A comprehensive
treatment appears elsewhere [11, 10].

We model a multiprocess system as a collection of processes operating viaactionson a collection of
shared dataobjects. In general, these objects may be of any type, but in this paper it suffices to consider only
read(p,x,v) (processp reads valuev from registerx) and write(p,x,v) (processp writes valuev to registerx)
actions.

A processis a sequence of invocations of actions, and theprocess computationis the sequence of actions
created by augmenting each invocation in the process with its matching outcome. A(multiprocess) system,
(P;J), is a collectionP of processes and a collectionJ of objects, such that the actions of each process inP
are applied to objects inJ. A system computationis a collection of process computations, one for eachp in
P.

Let (P;J) be a multiprocess system, andO be all the (read and write) actions in a computation of this
system.Ojp denotes all the actions that are in the process computation ofp in P. Ojx are all the actions that
are applied to objectx in J. Let Ow denote the write actions andOr denote the read actions.

A sequence of read and write actions to the same object isvalid if each read returns the value of the
most recent preceding write. Alinearizationof a collection of read and write actionsO, is a linear order1

(O;<L) such that for eachx, the subsequence(Ojx;<L) of (O;<L) is valid forx.
A (memory) consistency modelis a set of constraints on system computations. These constraints are

given in terms of partial order requirements on the actionsO of a computation. Several partial orders

1A linear order is an irreflexive partial order(S;R) such that8x;y2 S x6= y, eitherxRyor yRx.

2



are used in the definitions of memory consistency models. One common partial order is(O;
prog
�!), called

program order, which is defined byo1
prog
�!o2, if and only ifo2 follows o1 in the computation of some process

p. A computation satisfies some consistency modelD if the computation meets all the constraints ofD. A
system provides memory consistencyD if every computation that can arise from the system satisfies the
consistency modelD.

A multiprocessor machineimplements an actionby proceeding through a sequence ofeventsthat depend
on the particular machine and that occur at the various components of the machine. The events in this
sequence and the action that is implemented by them are said tocorrespond. A processor of a machine
implements a processby initiating, in program order, the implementation of the actions corresponding to
the action-invocations of the process. A multiprocessor machineimplements a system(P;J) by having each
processor implement a process inP. A machine executionis described by the sequence of resulting machine
events.2

2.2 Memory consistency models

Following are the definitions for sequential consistency (SC) [14], coherence [7], Pipelined-RAM (P-RAM)
[16, 1], Goodman’s processor consistency (PC-G) [7], weak ordering (WO) [3], coherent weak ordering
(WOcoherent), SPARC total store ordering (TSO) and partial store ordering (PSO) [18, 11].

Define the partial order(O;
weak�prog
�! ), calledweak program order, by: Actiono1

weak�prog
�! o2 if o1

prog
�!o2

and either 1) at least one offo1;o2g is a synchronization action, or 2)9o0 such thato0 is a synchronization
action ando1

prog
�!o0

prog
�!o2, or 3)o1 ando2 are to the same object.

Let O be all the actions of a computationC of the multiprocess system(P;J). ThenC is:
SC if there is a linearization(O;<L) satisfying(O;

prog
�!)� (O;<L).

coherent if for each objectx2 J there is a linearization(Ojx;<Lx) satisfying(Ojx;
prog
�!)� (Ojx;<Lx).

P-RAM if for each processp 2 P there is a linearization(Ojp[Ow;<Lp) satisfying(Ojp[Ow;
prog
�!) �

(Ojp[Ow;<Lp).

PC-G if for each processp2 P there is a linearization(Ojp[Ow;<Lp) satisfying 1)(Ojp[Ow;
prog
�!) �

(Ojp[Ow;<Lp), and 2)8q2 P and8x2 J (Ow\Ojx;<Lp) = (Ow\Ojx;<Lq).

WO if for each processp2P there is some linearization(Ojp[Ow;<Lp) satisfying 1)(Ojp[Ow;
weak�prog
�! )�

(Ojp[Ow;<Lp), and 2)8q2 P (Ow\Osynch;<Lp) = (Ow\Osynch;<Lq).

WOcoherent if for each processp2 P there is some linearization(Ojp[Ow;<Lp) satisfying the two condi-
tions of WO and8q2 P and8x2 J (Owjx;<Lp) = (Owjx;<Lq).

In the following, (A]B) denotes the disjoint union of setsA andB, and if x 2 A\B then the copy
of x in A is denotedxA and the copy ofx in B is denotedxB. Let Oa denote the set of swap atomic
actions andOsb denote the set of store barrier actions provided by the SPARC architecture [18]. Let
Or denote the set of actions with read semantics. Then,Ow \ Or = Oa.

TSO if there exists a total order(Ow;
writes
�!) such that(Ow;

prog
�!) � (Ow;

writes
�! ) and8p2 P there is a total

order(Ojp]Ow;
mergep
�! ), satisfying:

1. (Ojp;
prog
�!) = (Ojp;

mergep
�! ), and

2Events in a multiprocessor can be simultaneous. For example, two different working memories may be simultaneously updated.
However, because the same outcome would arise if these simultaneous events were ordered one after the other in arbitrary order,
we can assume that the outcome of a machine execution arises from asequenceof events.

3



2. (Ow;
writes
�!) = (Ow;

mergep
�! ), and

3. if w2 (Ojp\Ow) thenwOjp
mergep
�! wOw, and

4. ((Ojp]Ow)n(Oinvisiblep [Omemwritesp);
mergep
�! ) is a linearization, where

Oinvisiblep = fw j w2 (OwnOjp)\Ojx^ 9w0 2Ojx\Ojp\Ow ^w0
Ojp

mergep
�! w

mergep
�! w0

Ow
g

Omemwritesp = fwOw j w2Ojp\Owg, and

5. letw2 (Ojp\Ow) anda2 (Ojp\Oa), if w
prog
�!a, thenwOw

mergep
�! a, and ifa

prog
�!w, thena

mergep
�! wOjp

PSO if there exists a total order(Ow;
writes
�!) such that8x, (Ow\Ojx;

prog
�!) � (Ow\Ojx;

writes
�!) and8p2 P

there is a total order(Ojp]Ow;
mergep
�! ), satisfying items 1 through 4 of TSO and (5) ifsb2 (Ojp\Osb)

andw, u2 (Ojp\Ow) andw
prog
�! sb

prog
�! u, thenwOw

mergep
�! uOw.

3 Java Virtual Machine

The Java Virtual Machine (JVM) [15] is an abstract machine introduced by SUN to support the Java pro-
gramming language [8]. Its behavior is specified in the Java manuals [8, 15] and is quoted in Appendix A.
This section provides a simple, precise alternative but equivalent description [13].

The components and events of JVM are depicted in Figure 1 for a two-thread machine. Theworking

��
��
Thread

6use
?assign

��
��
Thread

6use
?assign

Working
Memory

6load

?
store

Working
Memory

6load

?
store

Waiting
Area

6read

?
write

Waiting
Area

6read

?
write

Main Memory

�

?

lock

unlock

-

?

lock

unlock

Figure 1: A two-thread JVM architecture

memoryis local to a thread and is accessible byuse andassign events. Themain memoryis accessible to
a thread byload, store, read, andwrite events3. To commit anassign to main memory, the working
memory performs astore event. Later, the main memory performs a subsequentwrite event, which
updates main memory. Before a thread attempts touse a variable that is not in its working memory, main

3Main memory is also accessible bylock andunlock events. This paper does not deal in detail with these events since we are
interested in the memory consistency of Java in the context of ordinary reads and writes.

4



memory performs aread event. Later, the working memory issues aload bringing the variable to the
working memory. A component called thewaiting areais introduced to model the delay betweenstores
andwrites and betweenreads andloads.

For memory consistency concerns in Java, a thread is considered to be a sequence of prog-read and
prog-write actions, which are implemented in the JVM machine as follows. Lett be a thread,x an object,
andv a value. Also choicef fg designates a non-deterministic choice to performf or not.

(A.1)
prog-read(t;x;v):

if x is not int’s working memory
then get(t;x;v)
elsechoicef get(t;x;v) g
use(t;x;v)

(A.2)
prog-write(t;x;v):

assign(t;x;v)
choicef put(t;x;v) g

where get(t;x;v) and put(t;x;v) are defined by:
get(t,x,v):

read(t,x,v)
load(t,x,v)

put(t;x;v):
store(t;x;v)
write(t;x;v)

A Java programS is a collection of threads. Any Java machine executionE of S is a sequence of events
of the typesfassign, use, store, load, write, read g satisfying the additional constraints that follow.

Let o1 ando2 be actions inf prog-read, prog-writeg, e1, e2, ande be events, and lete1
E
�!e2 denotee1

precedese2 in E.
1. If o1

prog
�!o2 ande1 (respectively,e2) is theuse or assign corresponding too1 (respectively,o2), then

e1
E
�!e2.

2. If assign(t;x;v)
E
�! load(t;x;u), then there is astore(t;x;v) satisfyingassign(t;x;v)

E
�! store(t;x;v)

E
�! load(t;x;u).

3. Let e2 f store(t;x;v), load(t;x;v) g. If e
E
�! store(t;x;u), then there exists anassign(t;x;u)

satisfyinge
E
�! assign(t;x;u)

E
�! store(t;x;u).

4. Let o1 ando2 2 Ojx\Ojp ando1
prog
�!o2 and lete1 ande2 be any events corresponding too1 ando2

respectively, thene1
E
�!e2.

It is easily confirmed that the memory consistency model arising from this description is equivalent to
that of an even simpler machine where each get and put (Algorithms A.1 and A.2) are atomic events [13],
and that these models are unchanged from that arising from the original set of rules describing JVM [13].

For consistency with previously defined memory models, we use the termprocessto refer to a Java
threadin the rest of the paper.

4 Java Memory Consistency Model

The rules of Java that determine the interaction between working memories and main memory permit a
process’s write action to be invisible to another process. This is highlighted by the appearance of the choice
function in algorithms A.1 and A.2 for prog-read and prog-write. We distinguish two kinds of invisibilities.
First, certainstores are optional, which makes someassigns visible to the process that issued them, but
invisible to others. We use the termcovert to refer to this kind of invisibility. Second, aload is optional
when a process already has a value for the required variable recorded in its working memory, which can

5



cause ause to retrieve a stale value rather than seeing a newly written value. We use the termfixatefor this
kind of invisibility.

To define the memory consistency model of Java, the obstacles that arise from covert and fixate invisibil-
ities can be cleanly and elegantly finessed as long as computations are finite [5, 6] as shown in Section 4.1.
Those ideas, however, do not suffice for non-terminating Java computations. After resolving exactly what is
meant by a consistency condition for a non-terminating system in Section 4.2, we provide a new definition
of consistency that is correct for both terminating and non-terminating Java computations (Section 4.3).

4.1 Consistency of terminating Java computations

Gontmakher and Schuster [5, 6] gave non-operational definitions for Java memory behavior. We use Java1

for their “programmer’s view” characterization, after translation to our framework. Given two actionso1

ando2 both inOjp for somep2 P, theJava partial program order, denoted (
jpo
�!), is defined by:o1

jpo
�! o2

if o1
prog
�! o2 and one of the following holds:

1. o1,o2 2 Ojx, or

2. o1 2 Or , o2 2 Ow, ando1 returns the value written byo0 whereo0 2 Owjq q 6= p, or

3. there existso0 such thato1
jpo
�! o0 ando0

jpo
�! o2.

Definition 4.1 [5] Let O be all the actions of a computation C of the multiprocess system(P;J). Then C is

Java1 if there is some linearization(O;<L) satisfying(O;
jpo
�!)� (O;<L).

Notice that this definition requires one linearization for all actions. Gontmakher and Schuster [5, 6] prove
that their definition does capture exactly all terminating Java computations. There are two essential ideas in
forming the linearization:

� certain covert writes can be moved to the end of the linearization so that these writes are never read
by any other process and hence do not negate validity.

� fixate reads could be moved earlier in the linearization to precede the writes that are invisible to the
reader so that the stale value returned is valid.

Furthermore, Java partial program order is just enough to permit these writes and reads to move as described.
A problem arises with Definition 4.1 when a system is non-terminating because the end of the computa-

tion is not defined.

4.2 Consistency models for non-terminating systems

Consider Computation 1, where processp continues to read 0 forx even thoughq at some point writes 1
to x. This could arise as a Java computation either 1) from a fixate invisibility ofp to the updated value
of x because (after its firstload) none ofp’s uses is preceded by a matchingload, or 2) from a covert
invisibility of x becauseq’s assign was not succeeded by astore.

Computation 1
�

p : [r(x)0]; [r(x)0]; [r(x)0]; [r(x)0]; :::
q : w(x)1

Does Computation 1 satisfy Definition 4.1? Certainly for any finite prefix ofp’s computation, say
after i reads byp, it is Java1, since the linearization[r(x)0]i w(x)1 satisfies the definition. However the
linearization(s) required by a consistency model are meant to capture each system component’s “view” of
the computation. For Java, the given linearization means that[r(x)0]i w(x)1 is consistent with each process’s
view. We expect that, as the computation continues, processes extend their respective views, but do not
“change their minds” about what happened earlier. We will return to this example after we capture what it
means for a non-terminating system to satisfy a given consistency condition.

6



Let O be all actions of some finite computationC of a system(P;J), and letD be a memory consistency
model. To establish thatC satisfies consistency modelD, we provide a set of sequencesS , each composed
of actions inO, that satisfy the constraints ofD. Each sequence is meant to capture a component’s “view”
of the computation, or some kind of agreement between such views. Call such anS a set ofsatisfying
sequencesfor (C;D).

For the definitionD to hold for a non-terminating computation,C, we (informally) have two require-
ments. First, ifC is paused, then the prefix, saŷC, that has been realized so far, should have satisfying
sequences for(Ĉ;D). Second, ifC is resumed and paused again later, say atC̃, then there are satisfying
sequences for(C̃;D) that are “extensions” of the satisfying sequences for(Ĉ;D). That is, we do not want
to allow a component to reconstruct its view of what the computation did in the past. We formalize this
intuition as follows.

A sequences extendŝs if ŝ is a prefix ofs. A set of sequencesS= fs1; : : : ;sng extendsa set of sequences
Ŝ= fŝ1; : : : ; ŝng if for eachi, si extends ˆsi .

Definition 4.2 Let D be a memory consistency model for finite computations. A non-terminating computa-
tion C=

S
p2PfCpg satisfiesD if 8p2 P and for every finite prefix̂Cp of Cp, there is a finite prefix̂Cq of Cq

8q 6= p, such that
1. Ĉ =

S
q2PfĈqg satisfies D, and

2. for any finiteC̃p that extendsĈp and is a prefix of Cp, there is a finite prefix̃Cq of Cq 8q 6= p, such that

� C̃ =
S

q2PfC̃qg extendsĈ, and

� C̃ satisfies D, and

� the satisfying sequencesS̃ for (C̃;D) extend the satisfying sequencesŜ for (Ĉ;D).

If we apply Definition 4.2 to Definition 4.1, Computation 1 is not Java1. That is, any linearization of
a finite prefix of the computation that containsq’s write and satisfies Definition 4.1 cannot be extended to
a linearization for a longer prefix of the computation that still satisfies the definition. (Instead, the write
action byq would have to be moved to the new end of the linearization.) We need a definition of Java that is
equivalent to Definition 4.1 for finite computations but that preserves semantic commitments in the course
of non-terminating computations.

4.3 Java consistency

We first define Java2, which is equivalent to Java1 but is described from the point of view of processes.

Definition 4.3 Let O be all the actions of a computation C of the multiprocess system(P;J). Then C isJava2
if there is a total order(Ow;

writes
�!) satisfying8p2 P:

1. there is a linearization(Ojp[Ow;<Lp) such that(Ojp[Ow;
jpo
�!) � (Ojp[Ow;<Lp), and

2. (Ow;<Lp) = (Ow;
writes
�!).

Claim 4.4 Java1 is equivalent to Java2.

Proof: Java1 ) Java2. Given(O;<L) guaranteed by Definition 4.1, the total order(Ow;
writes
�!) is built by

projecting(O;<L) to write actions. Similarly,(Ojp[Ow;<Lp) is built from (O;<L) by deleting all read
actions byq 6= p. The argument that Definition 4.3 holds is trivial.

Java2 ) Java1. By condition 2 of Definition 4.3, for anyp the order ofOw in <Lp is the same as that

in
writes
�! . Let (Ow;

writes
�!) be w1;w2; :::;wn. Then(Ojp[Ow;<Lp) = S0;w1;S1; :::;Sn;wn;Sn where theSi ’s

contain onlyp’s read actions. Construct(O;<L) by adding theSi ’s to (Ow;
writes
�!) each afterwi but before

7



wi+1. Since each<Lp is a linearization and since only read actions are added, validity follows immediately.

We further adjust Definition 4.3 to cope with invisibility and hence capture both terminating and non-
terminating Java computations.
Definition 4.5 Let O be all the actions of a computation C of the multiprocess system(P;J). Then C isJava∞
if there is some total order(Ow;

writes
�! ) and8p2 P there is a subset Ovisp of Ow satisfying:

1. there is a linearization(Ojp[Ovisp;<Lp) such that(Ojp[Ovisp;
jpo
�!) � (Ojp[Ovisp;<Lp), and

2. (Ovisp;<Lp) = (Ovisp;
writes
�!).

Notice that the setOvisp in Definition 4.5 is the set of writes that “so far” are visible to processp. Notice

also that Computation 1 does satisfy Definition 4.5. For any prefix ofi reads byp, (Ow;
writes
�!) = w(x)1, Ovisp

= /0, andOvisq = Ow = w(x)1. So,(Ojp[Ovisp;<Lp) = [r(x)0]i and(Ojq[Ovisq;<Lq) = w(x)1. Also, for
eachi these satisfying sequences are extensions of the satisfying sequences fori�1. The revised definition
captures exactly what “happened” in the sense thatw(x)1 took place fromq’s view but not fromp’s.

Theorem 4.6 For finite computations, Java∞ is equivalent to Java2.

Proof: Java2 ) Java∞. For all p setOvisp to Ow. In this case Definition 4.5 is identical to Definition 4.3.
Java∞ ) Java2. Let C be a finite computation satisfying Definition 4.5. Denote byL(p) (Ojp[

Ovisp;<Lp) guaranteed by Definition 4.5. We build the linearizations(Ojp[Ow;<cLp
), denoteddL(p), from

L(p) and show they satisfy Definition 4.3.

Initially set dL(p) to L(p). If Ovisp = Ow, then the case is trivial. Otherwise,Ovisp � Ow and there exists
a non empty set of invisible writes with respect top, Oinvp = OwnOvisp.

Let (Ow;
writes
�!) given by Definition 4.5 bew1 w2 ::: wn, and leti be the smallest index in(Ow;

writes
�!) such

thatwi 2Oinvp. Locatewj in L(p) where j is the smallest index inL(p) such thati < j (note thatwj 2Ovisp).

Insertwi into dL(p) immediately beforewj but after any preceding action ofwj . If both wi andwj are to the

same object, no further action is needed. Otherwise, certain reads indL(p) will be moved as follows.

Let dL(p) beS1 w1 S2 w2 ::: Sj wi wj ::: Sn wn. Note thatSi are finite sequences of reads. Letwk be the

first write in dL(p) such thatk > i andwk andwi are to the same object, sayx. Move (Sj+1 Sj+2 ::: Sk)jx to
the place sandwiched bySj andwi . The whole procedure is repeated for the next smallesti.

The resultingdL(p) are linearizations. First of all, note that initiallydL(p) are linearizations because they
are set toL(p). If validity has been violated by the construction, thenwi andwj must be to two different

objects. Otherwise, it could not have been violated becausewi was inserted immediately beforewj in dL(p).
Thus, there must be a read,r, of x returning a value that is different from the value written bywi and

r succeedswi in dL(p). If r precedeswk, then the insertion ofwi did not violate validity. Therefore,r must
precedewk which means thatr is in the sequence(Sj+1 Sj+2 ::: Sk)jx which was moved to precedewi. That
is, the validity violation that the insertion ofwi introduced was restored by construction.

We still need to show thatdL(p) is consistent with
jpo
�!. SinceL(p) is consistent with

jpo
�!, we need

to argue that the above construction did not violate it. Note first of all that(Ow;
writes
�!) maintains

jpo
�! by

Definition 4.5, and that our construction maintains
writes
�! . So, we need only consider actions inOjp. In other

words, we need only show that the movement of(Sj+1 Sj+2 ::: Sk)jx did not violate
jpo
�!.

Note that such a movement is moving only reads backwards; i.e.,
jpo
�! could be only violated if

prog
�! is vi-

olated between actions on the same object. However, this simply can not be the case because(Sj+1 Sj+2 :::Sk)jx
precedeswk and there is no other write tox in the interval betweenwi andwk. Furthermore, the original
order of the reads in(Sj+1 Sj+2 ::: Sk)jx is not affected by such a movement.

8



For the remainder of this paper, Java and Java∞ are used interchangeably.

5 Comparing Java with Various Consistency Models

5.1 Java versus coherence

Gontmakher and Schuster [5, 6] argue that Java is Coherent. Their proof relies on the regular languageR,
which is an elegant distillation of the rules for a single Java process (Appendix A Section A.1 Rules 2, 3, 4
and 5).

R

8<
:

Order = (load-block | store-block)�

load-block = load(use)�

store-block = assign(use | assign)� store(use)�

They claim that the events corresponding to the actions of a single process to a fixed variable satisfy
R. In fact, if anassign(t;x;v) is not followed by aload(t;x;u), then a subsequentstore is optional. A
modification ofR to R̂captures this more general situation (λ denotes the empty string.)

bR
8>><
>>:

Order = (load-block | store-block)� tail-block

load-block = load(use)�

store-block = assign(use | assign)� store(use)�

tail-block = assign(use | assign)� j λ

Coherence still holds for any computation such that for each variable, and for each process, the events
corresponding to the actions of that process on that variable satisfyR̂. Their proof requires only a slight
modification so that in the linearization eachtail-block follows everyload-block andstore-block.
Thus we can conclude that all finite Java computations are coherent.

Unfortunately, non-terminating Java computations are not necessarily coherent. When there is only one
variable, notice that Java1 and coherence are the same. Computation 1 is Java∞ but it is not Java1. Since
it uses only one variable, it cannot be coherent. One important consequence of this is that Java∞ cannot
support solutions to the nonterminating coordination problemP1C1-queue (see Section 6) even though it has
been shown [9, 12] that coherence suffices to solve this problem. The following computation [5] is coherent
but not Java.

Computation 2
�

p : r(x)1 w(y)1
q : r(y)1 w(x)1

Hence, Java and coherence are not comparable (except for finite computations.)

5.2 Java versus other consistency models

Gontmakher and Schuster [5, 6] show by examples that:
� Java and P-RAM are incomparable.

� Java and PC-G are incomparable.
Since their examples are finite, these same conclusions apply to Java∞.

It is easily verified that Computation 2 is WOcoherent, and (the non-treminating) Computation 1 is not
WOcoherent. Therefore, Java and WOcoherent(consequently WO) are incomparable.

To see that PSO [18, 11] is strictly stronger than Java, imagine a situation in which the working memory
in JVM mimics the behavior of the store buffer in PSO. Specifically, (1) everyassign is paired with a

9



store and (2) everyuse that follows astore by the same process on the same variable is paired with a
load that follows thestore. The following claim makes this intuition evident.

Claim 5.1 PSO (consequently, TSO) is strictly stronger than Java.

Proof:
We show that PSO is strictly stronger than Java2. LetL(p) denote the linearizations((Ojp]Ow)n(Oinvisiblep[

Omemwritesp);
mergep
�! ) guaranteed by PSO. We construct the linearizations(Ojp[Ow;<Lp), denoteddL(p), and

show that they satisfy Definition 4.3.
Initially, dL(p) is set toL(p) for all p. We proceed by adding the actions inOinvisiblep to dL(p). Recall that,

Oinvisiblep = fw jw2 (OwnOjp)\Ojx^ 9w0 2Ojx\Ojp\Ow ^w0
Ojp

mergep
�! w

mergep
�! w0

Ow
g. Everyw2Oinvisiblep

is added todL(p) beforew0 but after any preceding action tow0. If there are more than one suchw by the

same process on the same object, these are inserted intodL(p) such that their program order is maintained.

Sincew andw0 are on the same object,dL(p) are obviously linearizations.

Since program order is maintained in(Ojp;
mergep
�! ) and in(Ow\Ojx;

mergep
�! ) (by PSO),

jpo
�! (

jpo
�!�

prog
�!) is

maintained in((Ojp]Ow)n(Oinvisiblep [Omemwritesp);
mergep
�! ). Therefore, we need to show that the insertion

of w does not violate
jpo
�!. dL(p) contains no reads byq 6= p, and

prog
�! was maintained among actions in

Oinvisiblep We still need to argue that insertingw beforew0 does not cross past aw00 by q on x. That is, there

is now00 such that bothw andw00 are inOjq\Ojx for q 6= p satisfyingw00
mergep
�! w (or, w00 prog

�!w), butw<Lpw
00.

Note thatw0
Ojp

mergep
�! w

mergep
�! w0

Ow
. We have two cases, eitherw0

Ojp

mergep
�! w00

mergep
�! w

mergep
�! w0

Ow
, or w00

mergep
�! w0

Ojp.

In the first case,w00 2 Oinvisiblep and must have been inserted todL(p) beforew. In the second,w is placed

betweenw00 andw0 by construction. Therefore,
jpo
�! is maintained.

Finally, we note that Java Computation 1 is impossible in a PSO or TSO system.
Since TSO is strictly stronger than PSO and since Java2 is strictly stronger than Java, we conclude that

TSO and PSO are strictly stronger than Java.

The following table summarizes these observations.

M coherence P-RAM PC-G WOcoherent WO TSO PSO
Java)M NO NO [6] NO [6] NO NO NO NO
M ) Java NO [6] NO [6] NO [6] NO NO YES YES

6 Coordination Impossibilities

This section confirms that without thesynchronized or volatile constructs, fixate and covert invisibili-
ties make Java too weak to support solutions to coordination problems such as the critical section problem
(CSP) [17] or the producer/consumer problem (PCP) [2].

6.1 Critical section problem

Given that each process executes:
repeat

<remainder>
<entry>
<critical section>
<exit>

until false

10



a solution to CSP must satisfy:
� Mutual Exclusion: At any time there is at most one process in its<critical section>.

� Progress: If at least one process is in<entry>, then eventually one will be in<critical section>.

Theorem 6.1 There is no Java1 algorithm that solves CSP even for two processes.

Proof: Assume for the sake of contradiction that there is a mutual exclusion algorithmA that solves CSP
in Java1. for processesp and q. If A runs with p in < entry> and withq in < remainder>, then by
the Progress property,p must enter its< critical section> producing a partial computation of the form of
Computation 3.

Computation 3
�

p : op
1;o

p
2; :::;o

p
k (p is in its < critical section>)

q : λ
whereλ denotes the empty sequence andop

i denotes theith action of p. Similarly, if A runs withq in
< entry> and withoutp participating, a computation of the form of Computation 4 results.

Computation 4
�

p : λ
q : oq

1;o
q
2; :::;o

q
l (q is in its < critical section>)

Now consider Computation 5.

Computation 5
�

p : op
1;o

p
2; :::;o

p
k (p is in its < critical section>)

q : oq
1;o

q
2; :::;o

q
l (q is in its < critical section>)

We show that Computation 5 satisfies the conditions of Definition 4.1. First, build<L as follows.
(O;<L) = Pf ;o

p
1;o

p
2; : : : ;o

p
k ;Sf . Initially, Pf is empty andSf = oq

1;o
q
2; : : : ;o

q
l . Certain actions are removed

from Sf and appended toPf . Examineoq
i in Sf in order fromi = 1 to l . If oq

i 2Or jx for somex and there is
no oq

j such thatj < i andoq
j 2Owjx, then appendoq

i to Pf and remove it fromSf .
SequencePf contains only reads byq returning initial values,op

1;o
p
2; :::;o

p
k is Computation 3, and for

every read inSf there is a preceding write to the same object. Hence,Pf ;o
p
1;o

p
2; :::;o

p
k ;Sf is a linearization.

Moreover(O;
jpo
�!) � (O;<L) by construction. Therefore, Computation 5 is a possible Java1 computation.

However, in this computation bothp andq are in their critical sections simultaneously, contradicting the
requirement thatA satisfies Mutual Exclusion.

Since Java1 is stronger than Java the following corollary is immediate.
Corollary 6.2 There is no Java algorithm using only ordinary actions that solves CSP even for two pro-
cesses.

6.2 Producer/consumer problems

Producers and consumers are assumed to have the following forms:
producer:
repeat

<entry>
<producing>
<exit>

until false

consumer:
repeat

<entry>
<consuming>
<exit>

until false
We denote the producer/consumer queue problem asPmCn-queue wherem andn are respectively the

number of producer and consumer processes. A solution toPmCn-queue must satisfy the following:

� Safety: There is a one-to-one correspondence between produced and consumed items.

� Progress: If a producer (respectively consumer) is in<entry>, then it will eventually be in<producing>
((respectively<consuming>) and subsequently in<exit>.

11



� Order: consumers consume items in the same order as that in which the items were produced.

PmCn-set denotes the producer/consumer set problem. A solution forPmCn-set must satisfy Safety and
Progress only.

The fixate or covert invisibility makes consumers (respectively, producers) unware of actions of produc-
tion (respectively, consumption). The following theorem requires no proof.

Theorem 6.3 There is no Java algorithm using only ordinary actions that solves PmCn-queue or PmCn-set
even for n= m= 1.

Even Java1 is too weak to support a solution for general cases ofPmCn-queue. The solutions forP1C1-
queue andPmCn-set we presented before [9, 12] are correct for any coherent system. Thus, they are correct
for Java1.

Theorem 6.4 There is no Java1 algorithm that solves P1Cn-queue or PmC1-queue even for n= 2 or m= 2.

Proof: The proof is similar to that of Theorem 6.1. We give the proof forP1Cn-queue, thePmC1-queue case
is very similar.

Suppose there is a solution toP1Cn-queue for some system, with producerp and two consumersc and
d. Consider Computation 6 wherep places itemι in the queue and quits, thenc removes itemι while d is
idle:

Computation 6

8<
:

p : op
1;o

p
2; :::;o

p
k (p has produced itemι:)

c : oc
1;o

c
2; :::;o

c
l (c has consumed itemι:)

d : λ
By Progress, this computation must be possible in the system. Similarly the following computation is

also possible in the system. The Order property guarantees thatc will consume itemι in Computation 6,
and thatd will consume the same itemι in Computation 7

Computation 7

8<
:

p : op
1;o

p
2; :::;o

p
k (p has produced itemι:)

c : λ
d : od

1;o
d
2; :::;o

d
m (d has consumed itemι:)

Notice that the sequence forp is identical in both Computation 6 and Computation 7, and thatp com-
pletes this sequence beforec or d begin.

We will show that if Computation 6 and Computation 7 are possible then so is the computation:

Computation 8

8<
:

p : op
1;o

p
2; :::;o

p
k (p has produced itemι:)

c : oc
1;o

c
2; :::;o

c
l (c has consumed itemι:)

d : od
1;o

d
2; :::;o

d
m (d has consumed itemι:)

We show that Computation 8 satisfies Definition 4.3. Since Java1 is equivalent to Java2 this will be
enough to prove the claim.

Let (Ow;
writes
�!) be (op

1;o
p
2; :::;o

p
k ; oc

1;o
c
2; :::;o

c
l ; od

1;o
d
2; :::;o

d
m)jw

4. Let (Ojp[Ow;<Lp) be op
1;o

p
2; :::;o

p
k ;

(oc
1;o

c
2; :::;o

c
l ; od

1;o
d
2; :::;o

d
m)jw. This is clearly a linearization that is consistent with

prog
�! (thus with

jpo
�!) as

well as with
writes
�! . Also let(Ojc[Ow;<Lc) be(op

1;o
p
2; :::;o

p
k )jw; o

c
1;o

c
2; :::;o

c
l ; (o

d
1;o

d
2; :::;o

d
m)jw. (op

1;o
p
2; :::;o

p
k )jw;

oc
1;o

c
2; :::;o

c
l is a prefix of Computation 6; therefore, it is valid. Since(od

1;o
d
2; :::;o

d
m)jw contains only

writes, (Ojc[Ow;<Lc) is a linearization. Furthermore, it is consistent with both
writes
�! and

prog
�!. Now

construct(Ojd[Ow;<Ld) to be(op
1;o

p
2; :::;o

p
k )jw; Pf ; (oc

1;o
c
2; :::;o

c
l )jw; Sf . Initially, Pf is empty andSf =

(od
1;o

d
2; :::;o

d
m). Certain actions are removed fromSf and appended toPf . Examineod

i in Sf in order from
i = 1 to j. If od

i 2Or jx for somex and there is nood
j such thatj < i andod

j 2Owjx, then appendod
i to Pf and

remove it fromSf .

4If S is a sequence of actions, thenSjw denotes the subsequence ofS including only write actions.

12



At the end,Pf contains only reads byq returning values written byp or returning initial values. Thus,
(op

1;o
p
2; :::;o

p
k )jw; Pf is valid because it is part of Computation 7. Furthermore, for every read inSf there is a

preceding write to the same object. Hence,Pf ;(oc
1;o

c
2; :::;o

c
k)jw;Sf is a linearization and consequently so is

(Ojd[Ow;<Ld). Moreover, it is consistent with
writes
�! and

jpo
�!.

However, in Computation 8 bothc andd have consumed the same item, contradicting the Safety re-
quirement. Thus we can conclude that a solution toP1Cn-queue is impossible in Java2.

Corollary 6.5 There is no Java1 algorithm that solves PmCn-queue for m+n� 3.

7 Coordination Possibilities

Solving CSP or PCP is trivial with the use ofvolatileandsynchronized constructs. However,synchronized
methods andvolatile variables are expensive in execution time;volatiles guarantee sequential consis-
tency (SC) [5], which is not a necessary requirement to solve coordination problems. For example, PC-G
suffices to solve CSP [1]. This section shows that a significant weakening of the constraints onvolatiles
, which we call “read-volatile”, suffices to support solutions to some common coordination problems. We
suspect that read-volatiles would allow much more parallelism than Java’svolatile variables.

Define aread-volatilevariable to be one that only satisfies rule A.4.1 for volatile variables. The next
claim shows that read-volatiles would suffice to solve theP1C1-queue problem.

class ProducerConsumer f
item[] Q = new item[n+1]; (initialized to ?)

void producer() f
int in;
item itp;

in = 1;
do f

while (Q[in] 6= ?) nothing;
... produce itp;
Q[in] = itp;
in = in + 1 mod n+1;

g while true;
g

void consumer() f
int out;
item itc;

out = 1;
do f

while (Q[out] = ?) nothing;
itc = Q[out];
Q[out] = ?;
out = out + 1 mod n+1;
... consume itc;

g while true;
g
g

Figure 2:ALGM, a multi-writerP1C1-queue algorithm

13



Claim 7.1 Read-volatiles are sufficient to solve P1C1-queue in Java.

Proof: ALGM (Figure 2) solvesP1C1-queue in Java if every read is a read-volatiles. For simplicity, assume
that Q is of size one (one item). The extension to the general case is straight forward. Also assume the
producer is producing integers incrementally from1 to n, and let?= 0. All reads inALGM are assumed to
be read-volatiles. We will refer to the producer and consumer byp andc respectively.

� Safety:
To prove Safety we need to prove thatp can neither over-produce nor secret-produce and thatc can
neither over-consume nor secret-consume.

For p to over produce, we have to have two consecutive writes byp as such:w(Q)i w(Q)i +1. This
means that we have the following ordering from the point of view ofp: w(Q)i r (Q)v w(Q)i + 1 by
jpo
�!. By the algorithm,v= 0. Becauser(Q)v is a read-volatile, its correspondinguse is preceded by
aload. Rule B.1.2 guarantees that there is a matchingstore for theassign corresponding tow(Q)i
(keep in mind that all actions are to the same location). In other words,r(Q)v must have seen a 0
which means thatw(Q)i was overwritten. Onlyc writes 0’s. By a similar argument, we can conclude
that i was consumed beforei +1 was produced.

To see thatp can not secret-produce, note that anyw(Q)i is always followed byr(Q)v. Rule B.1.2
guarantees that there is always a matchingstore for w(Q)i.

The argument forc is similar.

� Progress:
Assume thatALGM gets to a deadlock state. Therefore,p is stuck in its while loop and seesQ 6=?.
Similarly, c seesQ =?. By rule B.4.1, bothc andp are reading from main memory. By the register
property,Q is either? or different but can not be both. This means that eitherp or c can proceed.

� Order:
Assumec consumes two items out of order. This means thatp producesw(Q)i w(Q)i+1 in this order,
but c consumesi +1 beforei. This is simply impossible because by Definition 4.5 there is a total
order on writes that bothp andc must agree on. Or, simply Java does not allow the two writes (w(Q)i
andw(Q)i +1) to be written out to main memory out of program order.

Therefore, read-volatiles are sufficient to solveP1C1-queue in Java.

We have shown before that we can exploit a solution forP1C1-queue to build a solution forPmCn-set
[9, 12]. Thus the following corollary.

Corollary 7.2 Read-volatiles are sufficient to solve PmCn-set in Java.

14



A Java Ordering Constraints

In this appendix, we quote the ordering rules from the Java manuals [8, 15]. Let T be a thread, V be a
variable, and L be a lock variable.

A.1 Rules for one thread

1. “A useor assignby T of V is permitted only when dictated by execution by T of the Java program
according to the standard Java execution model. For example, an occurrence of V as an operand of the
+ operator requires that a singleuseoperation occur on V; an occurrence of V as the left-hand operand
of the assignment operator = requires that a singleassignoperation occur. Alluseandassignactions
by a given thread must occur in the order specified by the program being executed by the thread. If
the following rules forbid T to perform a required use as its next action, it may be necessary for T to
perform a load first in order to make progress.”

2. “A storeoperation by T on V must intervene between anassignby T of V and a subsequentload by
T of V. (Less formally: a thread is not permitted to lose the most recent assign.)”

3. “An assignoperation by T on V must intervene between aload or storeby T of V and a subsequent
storeby T of V. (Less formally : a thread is not permitted to write data from its working memory back
to main memory for no reason.)”

4. “After a thread is created, it must perform anassignor loadoperation on a variable before performing
a useor storeoperation on that variable. (Less formally: a new thread starts with an empty working
memory.)”

5. “After a variable is created, every thread must perform anassignor load operation on that variable
before performing auseor storeoperation on that variable. (Less formally: a new variable is created
only in main memory and is not initially in any thread’s working memory.)”

A.2 Rules for thread-main memory interaction

1. “For everyloadoperation performed by any thread T on its working copy of a variable V, there must be
a corresponding precedingreadoperation by the main memory on the master copy of V, and theload
operation must put into the working copy the data transmitted by the correspondingreadoperation.”

2. “For everystore operation performed by any thread T on its working copy of a variable V, there
must be a corresponding followingwrite operation by the main memory on the master copy of V,
and thewrite operation must put into the master copy the data transmitted by the correspondingstore
operation.”

3. “Let action A be aload or storeby thread T on variable V, and let action P be the correspondingread
or write by the main memory on variable V. Similarly, let action B be some otherload or storeby
thread T on that same variable V, and let action Q be the correspondingread or write by the main
memory on variable V. If A precedes B, then P must precede Q. (Less formally: operations on the
master copy of any given variable on behalf of a thread are performed by the main memory in exactly
the order that the thread requested.)”

A.3 Rules for locks

1. “With respect to a lock, thelock andunlockoperations performed by all the threads are performed in
some total sequential order. This total order must be consistent with the total order on the operations
of each thread.”

15



2. “A lock operation by T on L may occur only if, for every thread S other than T, the number of
precedingunlockoperations by S on L equals the number of precedinglock operations by S on L.
(Less formally: only one thread at a time is permitted to lay claim to a lock; moreover, a thread may
acquire the same lock multiple times and does not relinquish ownership of it until a matching number
of unlock operations have been performed.)”

3. “An unlockoperation by thread T on lock L may occur only if the number of precedingunlockopera-
tions by T on L is strictly less than the number of precedinglockoperations by T on L. (Less formally:
a thread is not permitted to unlock a lock it does not own.)”

4. “Between anassignoperation by T on V and a subsequentunlockoperation by T on L, astoreopera-
tion by T on V must intervene; moreover, thewrite operation corresponding to thatstoremust precede
the unlockoperation, as seen by main memory. (Less formally: if a thread is to perform an unlock
operation on any lock, it must first copy all assigned values in its working memory back out to main
memory.)”

5. “Between alock operation by T on L and a subsequent use orstoreoperation by T on a variable V,
an assignor load operation on V must intervene; moreover, if it is aload operation, then theread
operation corresponding to thatload must follow thelock operation, as seen by main memory. (Less
formally: a lock operation behaves as if it flushes all variables from the thread’s working memory,
after which it must either assign them itself or load copies anew from main memory.)”

A.4 Rules for Volatiles

1. “A useoperation by T on V is permitted only if the previous operation by T on V wasload, and aload
operation by T on V is permitted only if the next operation by T on V isuse. Theuseoperation is said
to be ”associated” with thereadoperation that corresponds to theload.”

2. “A storeoperation by T on V is permitted only if the previous operation by T on V wasassign, and
anassignoperation by T on V is permitted only if the next operation by T on V isstore. Theassign
operation is said to be ”associated” with thewrite operation that corresponds to thestore.”

3. “Let action A be auseor assignby thread T on variable V, let action F be theload or storeassociated
with A, and let action P be thereador write of V that corresponds to F. Similarly, let action B be ause
or assignby thread T on variable W, let action G be theloador storeassociated with B, and let action
Q be theread or write of V that corresponds to G. If A precedes B, then P must precede Q. (Less
formally: operations on the master copies of volatile variables on behalf of a thread are performed by
the main memory in exactly the order that the thread requested.) ”

A.5 Other rules

These rules can be inferred from several places in the Java manuals. We quote these from [5].

1. “The operations performed by any one thread are totally ordered. Auseof V or a storeto V in one
of the program orders always uses the most recent value that was given to V by anassignor a load
operation in that order.”

2. “The operations performed by the main memory for any one variable are totally ordered. Aread in
the order of one of the variables always yields the value that was written by the lastwrite in that order.
If there is no precedingwrite in the order, the value yielded byread is sone initial value.”

3. “ It is not permitted for an instruction to follow itself.”

16



References

[1] M. Ahamad, R. Bazzi, R. John, P. Kohli, and G. Neiger. The power of processor consistency. InProc.
5th ACM Symp. on Parallel Algorithms and Architectures, pages 251–260, June 1993. Also available
as College of Computing, Georgia Institute of Technology technical report GIT-CC-92/34.

[2] E. W. Dijkstra. Cooperating sequential processes. Technical Report EWD-123, Technological Univer-
sity, Eindhoven, the Netherlands, 1965. Reprinted in [4].

[3] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multiprocessors.Proc. of the
13th Annual Int’l Symp. on Computer Architecture, pages 434–442, June 1986.

[4] F. Genuys, editor.Programming Languages. Academic Press, 1968.

[5] A. Gontmakher and A. Schuster. Java consistency: Non-operational characterizations of Java memory
behavior. Technical Report CS0922, Computer Science Department, Technion, November 1997.

[6] A. Gontmakher and A. Schuster. Characterizations of Java memory behavior. InProc. of the 12th Int’l
Parallel Processing Symp., April 1998.

[7] J. Goodman. Cache consistency and sequential consistency. Technical Report 61, IEEE Scalable
Coherent Interface Working Group, March 1989.

[8] J. Gosling, B. Joy, and G. Steele.The Java Language Specifications. Addison-Wesley, 1996.

[9] L. Higham and J. Kawash. Critical sections and producer/consumer queues in weak memory systems.
In Proc. of the 1997 Int’l Symp. on Parallel Architectures, Algorithms, and Networks, December 1997.

[10] L. Higham, J. Kawash, and N. Verwaal. Defining and comparing memory consistency models. In
Proc. of the 10th Int’l Conf. on Parallel and Distributed Computing Systems, pages 349–356, October
1997.

[11] L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part I: Definitions and com-
parisons. Technical Report 98/612/03, Department of Computer Science, The University of Calgary,
January 1998. Submitted to IEEE Trans. on Computers.

[12] L. Higham, J. Kawash, and N. Verwaal. Weak memory consistency models part II: Process coordi-
nation problems. Technical Report 98/613/04, Department of Computer Science, The University of
Calgary, January 1998. Submitted to IEEE Trans. on Computers.

[13] J. Kawash. Process coordination in modern distributed systems. Ph.D. Dissertation Draft, The Univer-
sity of Calgary.

[14] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Trans. on Computers, C-28(9):690–691, September 1979.

[15] T. Lindholm and F. Yellin.The Java Virtual Machine Specification. Addison-Wesley, 1996.

[16] R. J. Lipton and J. S. Sandberg. PRAM: A scalable shared memory. Technical Report 180-88, Depart-
ment of Computer Science, Princeton University, September 1988.

[17] M. Raynal.Algorithms for Mutual Exclusion. The MIT Press, 1986.

[18] D. L. Weaver and T. Germond, editors.The SPARC Architecture Manual version 9. Prentice-Hall,
1994.

17


