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Abstract

Background: In recent years, the microbiome field has undergone a shift from clustering-based methods of
operational taxonomic unit (OTU) designation based on sequence similarity to denoising algorithms that identify
exact amplicon sequence variants (ASVs), and methods to identify contaminating bacterial DNA sequences from
low biomass samples have been developed. Although these methods improve accuracy when analyzing mock
communities, their impact on real samples and downstream analysis of biological associations is less clear.

Results: Here, we re-processed our recently published milk microbiota data using Qiime1 to identify OTUs, and
Qiime2 to identify ASVs, with or without contaminant removal using decontam. Qiime2 resolved the mock
community more accurately, primarily because Qiime1 failed to detect Lactobacillus. Qiime2 also considerably
reduced the average number of ASVs detected in human milk samples (364 + 145 OTUs vs. 170 £ 73 ASVs, p <
0.001). Compared to the richness, the estimated diversity measures had a similar range using both methods albeit
statistically different (inverse Simpson index: 143+ 85 vs. 156 +8.7, p=0.031) and there was strong consistency
and agreement for the relative abundances of the most abundant bacterial taxa, including Staphylococcaceae and
Streptococcaceae. One notable exception was Oxalobacteriaceae, which was overrepresented using Qiime1
regardless of contaminant removal. Downstream statistical analyses were not impacted by the choice of algorithm
in terms of the direction, strength, and significance of associations of host factors with bacterial diversity and overall
community composition.

Conclusion: Overall, the biological observations and conclusions were robust to the choice of the sequencing
processing methods and contaminant removal.
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Background

Amplicon sequencing targeting bacterial 16S rRNA gene
has so far been the most commonly used sequencing
method for microbiome studies. In recent years there
have been novel developments in several aspects of se-
quencing processing including a shift from clustering-
based methods of operational taxonomic unit (OTU)
designation based on sequence similarity (commonly >
97%) [1, 2] to denoising algorithms which identify exact
amplicon sequence variants (ASVs) [3-9]; thereby in-
creasing ecological precision. Performance of the denois-
ing methods has been assessed mostly on mock
communities [7-12]. However, the impact of these dif-
ferent methods on characterizing real biospecimens and
downstream analysis of biological associations is less
clear. The detection of true biological and ecological var-
iations appears to be robust to the choice of sequencing
processing method (OTU vs. ASV) in a few studies on
soil, mouse feces, and human intestinal biopsies [12—14],
but head-to-head comparisons are lacking for most hu-
man microbiota communities.

Another issue receiving increasing attention in
sequencing-based microbiome analysis is contamin-
ation introduced during DNA extraction and library
preparation. This is especially of concern for low bio-
mass samples where the signal-to-noise ratio is very
low [15, 16]. In this case, reproducible downstream
analyses plausibly depend on the identification and
removal of potential contaminants. Milk is a low bio-
mass sample and thus highly susceptible to reagent
contaminants in culture-independent sequencing-
based microbiota profiling [17]. To our knowledge,
the majority of previously published milk microbiota
studies are based on OTU-picking methods and have
not assessed the potential reagent contaminants [18].
Therefore, the comparability and generalizability of
different studies in terms of the milk microbiota com-
position and association with maternal and infant
characteristics are not known. To address these
knowledge gaps, we re-processed our recently pub-
lished 16S rRNA gene sequencing milk microbiota
dataset [19] using Qiimel closed-reference OTU pick-
ing and Qiime2 denoising method with or without
contaminant removal using decontam [20]. We ad-
hered to the quality control process and taxonomy as-
signment threshold commonly used by these methods
(97% for Qiimel and 99% for Qiime2) to examine the
real world impact of these different approaches on
downstream analysis. The datasets resulting from
these four approaches (Fig. la) were used to assess
the comparability of results in terms of microbiota
features (taxonomy, alpha, and beta diversity) and test
the hypothesis that biological associations are robust
to the choice of upstream data processing.
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Results

We analyzed 18 replicates (3 per PCR plate in 2 sequen-
cing runs) of a mock community consisting of 8 differ-
ent bacterial species with a known composition
(ZymoBIOMICS™ Microbial Community Standard,
Zymo Research, USA). While the Qiimel method de-
tected an average (SD) of 223 (50) OTUs in the mock
community samples, Qiime2 performance was closer to
the expected composition, detecting 12 (3) ASVs (Table
S1). Although contaminant removal did not considerably
reduce the number of OTUs, it decreased the average
(SD) ASVs to 9 (3) effectively eliminating the potential
contaminants (Table S1). Overall, there was a good
agreement between the observed and expected taxo-
nomic composition with both methods (Fig. 1b). How-
ever, two notable differences were observed. Most
prominently, Qiime2 performed better at identifying
Lactobacillus: the actual contribution of this genus to
the mock community was 19%; the estimated relative
abundance was < 1% using Qiimel compared to 16%
using Qiime2. Moreover, the proportion of identified
taxa not belonging to the mock community (likely con-
taminants) was higher with Qiimel (~12% vs. 0.1% in
Qiime2). Neither method could accurately identify
Escherichia coli or Salmonella enterica present in the
mock community; however, for both methods, the rela-
tive abundance of taxa identified as Enterobacteriaceae
was within the range of the combined relative abun-
dances of these two enteric bacteria. Thus, overall,
Qiime2 provided a more accurate representation of the
mock community (Table S1 and Fig. 1b) in agreement
with previous studies [7—12].

Overall when comparing the four approaches, the
mean depth of sequencing per sample was slightly lower
in Qiime2 compared to Qiimel both before and after
contaminant removal. The differences in library size
within each method before and after decontam were
negligible (Figure S1). Despite differences in the initial
number of OTUs/ASVs in total and on average, Qiimel
and Qiime2 resulted in a similar number of remaining
OTUs/ASVs (298 and 299 respectively before contamin-
ant removal) after filtering taxa with less than 0.01%
mean relative abundance (Table S1). This suggests the
majority of “noisy true reads” (true reads containing se-
quencing errors [10]) initially retained by Qiimel were
eliminated by applying abundance-based filtering. In
agreement with the literature [10, 12], there was a con-
siderable difference in the number of observed OTUs/
ASVs prior to filtering very low abundant taxa (364 +
145 average OTUs vs. 170 + 73 average ASVs per sam-
ple, Table S1). The bacterial richness at OTU/ASV level
remained higher in Qiimel vs. Qiime2 even after data fil-
tering, regardless of contaminant removal (394 +91 vs.
148 + 44, p < 0.001) (Fig. 1c). In contrast, milk microbiota
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Fig. 1 Microbiota composition in a mock community and human milk samples using a clustering-based method (Qiime1) and a denoising
algorithm (Qiime2) with and without contaminant removal. a Schematic of the study design. b Composition of the mock community by Qiime1
and Qiime2 prior to contaminant removal (each dataset = combined data from 8 replicates). ¢ Comparison of milk microbiota richness (observed
OTUs/ASVs) and diversity (inverse Simpson index) between Qiime1 and Qiime2 with and without contaminant removal. d Correlation of the
relative abundances of milk genera between Qiime1 and Qiime2 prior to contaminant removal (See also Figures. S2 and S3 and Tables S2 and
S3) (each dataset = combined data from 393 milk samples). Each dot represents a classified genus. Contaminant removal doesn't impact the
associations (not shown). @ Comparison of the composition of abundant families (> 1% mean relative abundance) between Qiime1 and Qiime2
with or without contaminant removal. Contaminant removal reduced the relative abundance of certain low-abundance taxa (e.g.
Caulobacteraceae and Rhodospirillaceae) and proportion of Other taxa (OTUs with less than 1% mean relative abundance) estimated by QiimeT,
but generally did not affect the microbiota profile estimated by Qiime2. f Agreement and consistency between methods by intraclass correlation
for alpha diversity and 13 most abundant families. * p < 0.05, *** p < 0.001

diversity was slightly but significantly higher with Qiime2
regardless of contaminant removal (14.3 £85 vs. 15.6 £
8.7 p<0.05) (Fig. 1c) suggesting that the number of the
abundant taxa remained consistent in both Qiimel and
Qiime2 methods.

Next, we compared the relative abundance (Fig. 1d)
and prevalence (Figure S2) of genera belonging to the
major milk phyla (Figure S3 and Table S2) between
methods and observed high degrees of correlation, espe-
cially for Firmicutes, Actinobacteria, and Bacteroidetes
(Table S3). In comparing abundant genera (>0.01%
mean relative abundance) (Figure S3 and Table S4), rela-
tive abundances remained highly correlated (Figure S4).
Overall, the relative abundances of the most abundant
families (> 1% mean relative abundance) including Strep-
tococcaceae and Staphylococcaceae were not consider-
ably impacted by the choice of the sequencing
processing method, with and without contaminant re-
moval (Fig. le and Figure S5). However, there were not-
able differences between methods for some other taxa.
For example, at the family level, Oxalobacteriaceae was
detected at higher relative abundances by Qiimel com-
pared to Qiime2 (14.1% +8.4% vs. 7.2% + 4.1%, Figure
S5), while Enterobacteriaceae and Caulobacteraceae
were only observed as top abundant families using
Qiimel (Fig. le). In addition, Oxalobacteriaceae and
Comamonadaceae were not assigned taxonomy at genus
level using Qiimel, whereas some members of these
families including Acidovorax (family Comamonada-
ceae), Ralstonia, and Massilia (Oxalobacteriaceae) were
resolved by Qiime2. In contrast, Methylibium (family
Comamonadaceae) and Erwinia (family Enterobacteria-
ceae) were only identified by Qiimel as abundant taxa.
Overall, the total proportion of less abundant OTUs/
ASVs (<1% mean relative abundance) was higher in
Qiime?2 (Fig. 1e) while the number of true abundant taxa
was less biased, possibly due to the lack of binning of
multiple similar sequence variants into an OTU. In
agreement with this interpretation, contaminant removal
considerably increased the proportion of less abundant
taxa only in Qiimel suggesting that some of the abun-
dant taxa were consistent of contaminants (Table S1).

Overall, agreement and consistency between different
methods (Fig. 1f) were quite low for milk microbiota
richness, highlighting the sensitivity of this measure to
the choice of bioinformatics method. Nevertheless, a
very high inter-class correlation for inverse Simpson
index (0.95) and relative abundances for the majority of
the abundant families (above 0.75 for 10/13 families)
suggests an acceptable degree of agreement and
consistency, which would be required for downstream
analyses to generate comparable results.

Given the differences in microbiota alpha diversity and
taxonomic structure resulting from the choice of pro-
cessing approaches (Fig. 1), we explored whether the
processing approach also influenced the association of
microbiota and metadata variables. To do this, we 1)
assessed the association of mode of breastfeeding with
milk microbiota beta diversity and 2) compared the asso-
ciation of maternal, infant, and early life factors, breast-
feeding practices, and other milk components with milk
microbiota richness, diversity, and overall composition
as previously described [19]. We have previously identi-
fied mode of breastfeeding to be significantly associated
with milk microbiota beta diversity [19]. Here, we ob-
served similar beta diversity association patterns with
mode of breastfeeding regardless of the sequencing pro-
cessing method or contaminant removal (Fig. 2). Overall,
there were high degrees of concordance in the direction,
strength, and significance of association between milk
microbiota diversity and overall composition with the in-
dependent variables assessed using both methods, re-
gardless of contaminant removal (Fig. 3). However, some
method-related differences were observed for associa-
tions with microbiota richness. While the direction and
strength of associations using Qiime2 without contamin-
ant removal were comparable to the Qiimel, contamin-
ant removal generally resulted in weaker associations
and lower effect size estimates when using Qiime2-
processed data (e.g. for maternal atopy, infant sex, and
mode of breastfeeding). Occasionally, the direction of as-
sociation was also different in Qiime2/decontaminated
compared to the other processing methods (e.g. for pre-
natal smoking and fatty acids profile) (Fig. 3).
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Discussion

We compared the milk microbiota composition and as-
sociations with maternal, infant, early life, and milk fac-
tors on data processed by a clustering-based method
into OTUs vs. a denoising method resulting in ASVs.
Additionally, we compared the impact of contaminant
removal on the statistical conclusions. Overall, richness
was strongly impacted by the choice of the bioinformat-
ics approach while statistical contaminant removal had
minimal additional impact. There was an acceptable
agreement and consistency in the relative abundances of
the dominant milk bacteria and milk diversity. Addition-
ally, the main conclusions remained robust to the choice
of data processing.

Sequencing-based microbiome studies are highly influ-
enced by the various bioinformatics and data processing
choices [21, 22]; specifically, with the recent shift from
clustering-based OTU picking methods to denoising al-
gorithms identifying ASVs with higher ecological accur-
acy. Generally, it is not clear how the results of
previously published milk microbiota studies using

OTU-picking methods would compare to the more re-
cent results including ours using ASV methods. In a
head-to-head comparison of an OTU-picking method
with a denoising algorithm, we observed high degrees of
agreement and consistency in milk microbial features re-
gardless of the methods. Our results suggest that al-
though milk microbiota richness and some members of
the microbial community are strongly influenced by the
choice of sequencing processing method, there is high
agreement and consistency between methods for esti-
mating microbiota diversity and quantifying the majority
of the most abundant taxa. Addition of a contaminant
removal step resulted in minor shifts in the composition
of the most abundant taxa as well as association of rich-
ness with a few of the variables assessed when using
Qiime2-processed data. The overall conclusions of the
study and the main determinants of milk microbiota
composition (e.g. consistent association of feeding mode
with milk microbiota composition [19]) remained robust
to the choice of OTU vs. ASV methods with or without
contaminant removal.
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Microbiota features t Diversity Overall
Algorithm Qiimel Qiime2 Qiimel Qiime2 Qiimel Qiime2
Contaminant removal - + - + - + - | + - | + - | +
Factorsy B p| B p| B p| B p| B p| B pP| B pP| B p|R p|R p|R p|R p
Maternal factors|
Age (years)| -0.37 -0.35 -0.37 -0.23 0.04 0.04 0.04 -0.02
Pre-pregnancy BMI (Kg/m2)| -0.92 -1.07 -0.92 -0.25 0.00 -0.01 0.00 -0.04 055 * 0.60 * 043 0.45 *
History of atopy |22i58] 20T 756 ~ | 0.99 0.94 0.99 0.97
Secretor status| 1.25 0.50 125 1.46 -1.25 -1.29 -1.25 -1.23 041 ~ 040 ~ 039 ~ 035
Ethnicity| - - - - - - - - 0.82 0.80 0.74 0.66
Asian vs. Caucasian [-26.13 §28193) -26.13 -9.31 0.15 0.18 0.15 -0.53 - - - -
First Nations vs. Caucasian [-28.45 -27.44 -28.45 -0.67 0.76 0.80 0.76 0.49 - - -
Other vs. Caucasian| -1.28 -0.27 -1.28 4.94 -0.30 -0.26 -0.30 0.16 - - - -
Prenatal smoking -7.60 046 * 046 * 039 ~ 048 *
Infant factors
Birth weight (g)| -0.01 -0.02 -0.01 -0.01 0.00 0.00 0.00 0.00
Male sex * [27:63 ~ [29559 * 824 ~ * * [F098] + 7181 *|o050 * 043 * 049 * 058 *
Gestational age (weeks)| -2.71 -3.09 -2.71 -0.84 0.03 0.02 0.03 0.00
Early life factors|
Mode of delivery| - - - - - - - 0.64 0.62 0.59 0.63
C/S elective vs. NVD 6.52 5.76 2.61 ~[225 ~ 229 ~ 209 - - - -
C/S emergency vs. NVD ~ ~ ~ -1496 * |-1.49 -1.44 -1.49 -1.74 - - - -
Maternal intrapartum antibiotics * 1089 * |-1.67 ~ [-1.61 ~ [-167 ~  -1.86 * 025
Maternal postpartum antibiotics before 3-4 months | -5.84 -5.22 -5.84 -5.73 -1.00 -0.96 -1.00 -1.41 0.45
Child antibiotics before 3-4 months | -6.17 -5.59 -6.17 -5.48 088 ~
Number of older siblings| - - - - 088 * 08 * 087 * 092 *
One vs. None| 0.48 -2.07 0.48 3.37 - - - -
>Two vs. None 13.93 - - -
Breastfeeding
Lactation stage at sample collection (weeks)| -1.34 -1.29 -0.41 -0.06 -0.05 -0.06 -0.05 ** 0.56 * 0.75 ** 059 ** .
Exclusive BF (breast milk only) at sample collection 4.90 0.80 0.85 0.80 0.49 0.74 ** 095 0.82 p coefficient
Some indirect BF *EH *RX *AX 1912 *** * * * *
Duration of BF (months)| 3.98 ** 3.96 ** 398 ** 164 **% 019 * 019 * 019 * 021 ** HighT =
Duration of exclusive BF (months)| 3.87 4.25 3.87 1.59 037 ~ 038 * 037 ~ 033 ~
Milk factors
HMO concentration (mg)| 0.71 0.72 0.71 0.33 -0.21 -0.21 -0.21 -0.28 0.40 0.34 0.33 0.31 Low =
HMO Simpson’s diversity| -1.85 -1.84 -1.85 -1.21 0.27 0.27 0.27 0.23 |
HMO profile PC1| -0.36 -0.16 -0.36 0.44 0.66 0.67 ~ 066 ~ 0.61 041 ~ 038 ~ 036 ~ 037 ~
Fatty acid profile PC1| -2.27 -2.72 -2.27 2.73 0.17 0.13 0.17 0.37 049 * 051 * 045 * 043 *

Principal Component 1 * p <0.05, ** p < 0.01, *** p < 0.001

Fig. 3 Impact of four sequence processing approaches on observed associations of milk microbiota richness (observed OTUs/ASVs), diversity
(inverse Simpson index), and overall composition with maternal, infant, early life, breastfeeding, and milk factors. We re-processed our published
16S rRNA gene sequencing milk microbiota dataset [19] using Qiime1 and Qiime2 with or without contaminant removal resulting in four datasets
(see also Fig. 1a). Beta coefficients from univariate linear regression (richness and diversity) or R? from redundancy analysis (overall composition)
are presented and colour coded within each microbiota feature. Results of Qiime2 with contaminant removal are originally reported in Moossavi
et al. [19]. BF, breastfeeding; BMI, body mass index; C/S, Cesarean section; HMO, human milk oligosaccharide; NVD, normal vaginal delivery; PCT,

While the overall agreement between different data
processing approaches was high, some differences
stood out. For example, the relative abundance of
Oxalobacteriaceae, an environmental bacteria and a
common reagent contaminant, was lower using
denoising methods, potentially in line with higher
classification accuracy of the denoising approaches.
Notably, there was not a difference in the relative
abundance of Owxalobacteriaceae before and after
identification and removal of potential reagent con-
taminants using decontam, potentially highlighting the
limitation of these methods for low biomass samples
[23]. Computational methods, while helpful, do not
replace the need for careful study design, sample
handling, and reagent controls. Additionally, culture-
based methods such as culture-enriched molecular
profiling may inform the sequencing results of low
biomass samples [24].

While new bioinformatic methods are typically evalu-
ated using mock communities, we have provided a real-
word comparison of two commonly used sequencing
processing approaches (Qiimel vs. Qiime2). A limitation
of our study is that both approaches are sequencing-

dependent and prone to reagent contaminants, and
therefore neither can verifiably identify “true” milk taxa.
Thus, while we have provided evidence that the statis-
tical results obtained by the two approaches are compar-
able, it is important that the microbiological and
ecological implications be studied using controlled ex-
perimental designs.

Conclusion

In summary, we have shown that Qiime2 resolved the
mock community more accurately and there were high
degrees of agreement and consistency in milk microbiota
features regardless of the choice of the sequencing pro-
cessing approach (OTU vs. ASV). In light of our obser-
vation that the associations with metadata and the main
conclusions were robust to the choice of sequence pro-
cessing approaches and contamination removal, previous
studies of milk microbiota and potentially other low bio-
mass samples using OTU picking approaches are likely
valid both in terms of the composition of the abundant
taxa and associations, especially for metrics that put less
emphasis on richness.
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Methods

Study design

We used our published data on milk microbiota [19]
(SRA accession number: PRJNA481046) in the CHILD
cohort [25]. Each mother provided one sample of milk
at 3—4 months postpartum [mean (SD) 17 (5) weeks
postpartum] in a sterile milk container provided by the
CHILD study. Milk microbiota was profiled by sequen-
cing the V4 hypervariable region of 16S rRNA gene on a
MiSeq platform (Illumina, San Diego, CA, USA) as pre-
viously described [19].

Microbiome sequencing processing

Overlapping paired-end reads were separately processed
with a clustering-based (Qiimel) and a denoising algo-
rithm (Qiime2). In the clustering-based approach,
paired-end reads were merged using the PANDAseq as-
sembler [26]. Sequences with low quality base calling
scores (<20) as well as those containing ambiguous
bases in the overlapping region were discarded. The sub-
sequent fastq file was processed using the open-source
software Qiime v1.9.1 [27]. Assembled reads were
demultiplexed according to the barcode sequences and
chimeric reads were filtered using UCHIME [28]. Reads
were clustered into OTUs using closed-reference OTU
picking based on 97% similarity using UCLUST [29].
Representative sequences from each OTU were assigned
a taxonomy using RDP Classifier [30] and aligned to the
2013 release of the Greengenes reference database at
97% sequence similarity [31] using PyNAST [32]. In the
denoising approach, overlapping paired-end reads were
processed with DADA?2 pipeline [7] using the open-
source software Qiime 2 v.2018.6 (https://Qiime2.org)
[27]. Unique ASVs were assigned taxonomy and aligned
to the 2013 release of the Greengenes reference database
at 99% sequence similarity [31].

OTU/ASV table pre-processing and filtering

Initial pre-processing of the OTU/ASV table was con-
ducted using the Phyloseq package [33]. As previously
reported [19], the mean (SD) sequencing depth was 47,
710 (18,643). Samples with less than 25,000 sequencing
reads were excluded (n = 35) and the remaining samples
(n =393) were rarefied to the minimum 25,000 sequen-
cing reads per sample. OTUs/ASVs only present in the
mock community or negative controls and OTUs/ASVs
belonging to phylum Cyanobacteria, family of mitochon-
dria, and class of chloroplast were removed. OTUs/ASVs
with less than 20 reads across the entire dataset (nz = 393
samples) were also removed. The numbers of sequen-
cing reads of taxa were then relativized to the total sum
of 25,000. This dataset was used for analysis unless
otherwise specified.
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Reagent contaminant removal

Potential reagent contaminants were identified using decon-
tam package based on either the frequency of the OTUs/
ASVs in the negative control or the negative correlation
with DNA concentration using default parameters [20].

Performance assessment on mock community

The baseline performance of each method was assessed
on DNA extracted from a high biomass mock commu-
nity consisting of 8 bacterial species with known relative
abundances (ZymoBIOMICS™ Microbial Community
Standard, Zymo Research, USA).

Statistical analysis

Depth of sequencing and alpha diversity (observed
OTUs/ASVs and inverse Simpson index) were compared
between methods (n =4 datasets) using Student’s ¢ test.
Within the 4 most abundant phyla, the prevalence (per-
centage of samples containing the taxa) and average
relative abundance of classified genera were compared
between Qiimel and Qiime2 prior to contaminant re-
moval using Pearson correlation. Agreement and
consistency of community alpha diversity and relative
abundances of the most abundant families were assessed
by interclass correlation by 2-way random and fixed sin-
gle measurement models using Psych package [34, 35].
Association of mode of breastfeeding with milk micro-
biota beta diversity was assessed on Bray-Curtis dissimi-
larity matrix and was tested by permutational ANOVA
(PERMANOVA) using the vegan package [36]. Separ-
ately for each method (within the 7 =393 milk sam-
ples), the association of maternal, infant, early life,
breastfeeding, and milk factors was assessed by linear
regression (for microbiota alpha diversity) and redun-
dancy analysis (RDA, for microbiota composition).
RDA was performed with 1000 permutations using
the vegan package [36] following zero-replacement
and centre log-ratio transformation [37, 38].
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