
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2015-08-21

Double Double Electromagnetically

Induced Transparency

Alotaibi, Hessa

Alotaibi, H. (2015). Double Double Electromagnetically Induced Transparency (Doctoral thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/25740

http://hdl.handle.net/11023/2401

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Double Double Electromagnetically Induced Transparency

by

Hessa M. M. Alotaibi

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF PHILOSOPHY

GRADUATE PROGRAM IN PHYSICS AND ASTRONOMY

CALGARY, ALBERTA

August, 2015

c© Hessa M. M. Alotaibi 2015



Abstract

This study demonstrates that tripod (t) atom-field electronic structure can yield rich elec-

tromagnetically induced transparency phenomena, even at room temperature. In particular,

we introduce double double electromagnetically induced transparency (DDEIT), wherein

signal and probe fields each have two transparency windows. Their group velocities can be

matched in either the first or second pair of transparency windows. Moreover, signal and

probe fields can each experience coherent Raman gain in the second transparency window.

Our investigation has demonstrated that the self-phase modulation (SPM) and cross-phase

modulation (XPM) vanish at the center of two transparency windows for resonant coupling

field. However, the values of the XPM and SPM in the region of the second EIT window are

improved by a factor of 1000 compared to their values in the region of the first EIT window

under the same conditions, and have non-zero values at the center of the second EIT window

for nonresonant coupling field.

Additionally, we derive an analytical solution for the wave equation describing the propa-

gation of the probe field whose amplitude-envelope function is described by the fundamental

mode Laguerre-Gaussian function. Our solution exhibits that the group velocity of the probe

field reduces as the field propagates through the medium. The group velocity reduction is a

consequence of spatially-varying susceptibility. The variation of the susceptibility is estab-

lished by employing signal field whose amplitude-envelope functions is also described by the

fundamental mode Laguerre-Gaussian function.

For Doppler-broadened media, we devise a scheme to control and reduce the probe-field

group velocity at the center of the second transparency window. We derive numerical and

approximate analytical solutions for the width of electromagnetically induced transparency

(EIT) windows and for the group velocities of the probe field at the two distinct trans-

parency windows, and we show that the group velocities of the probe field can be lowered
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by judiciously choosing the physical parameters of the system. Our modeling enables us to

identify three signal-field strength regimes quantified by the Rabi frequency, for slowing the

probe field. Our scheme exploits the fact that the second transparency window is sensitive

to a temperature-controlled signal-field nonlinearity, whereas the first transparency window

is insensitive to this nonlinearity.
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Chapter 1

Introduction

1.1 Background and Literature Review

This chapter comprises of two parts. The first presents the background and literature review

on electromagnetically induced transparency (EIT), including its history, definition, basic

concepts, importance, and applications. It also discusses the necessity of double-EIT (DEIT)

for some optical applications. Publication dates were relied upon in writing about the

historical order of EIT prediction. The second part of this chapter introduces the subject of

the research, including challenges and motivations, the problem statement, objectives, and

the research contribution.

1.1.1 History of EIT

The propagation of an electric pulse in an absorptive medium without attenuation has been

observed through a process known as self-induced transparency [1]. In this, the energy of

a 2π pulse is absorbed by the ensemble of two-level atoms during the first half of the 2π

pulse. Then, during the second half of the pulse, the energy is redelivered to the optical

field. Finally, the ensemble is returned to its state of equilibrium. In this way, the 2π

pulse is able to propagate in an unattenuated manner, through the absorbing medium [2].

The possibility of making a medium transparent by quantum resonance was first pointed

out by Manykin and Afanas’ev [3] by studying the suppression of two-photon absorption.

Making the medium transparent results from reducing the probability of several quantum

transitions in each atom of a given medium, and the consequence of the corresponding phase

relations between the waves [3]. This was called “bleaching” the medium. The bleaching of

a two-photon absorbing medium, through the interference of two coherent channels of the

Background and Literature Review 1



excitation of a two-photon transition, was verified experimentally 20 years later [4].

The first experimental prediction of the transmission of an electric pulse through the

medium of three-level atoms was performed by Kocharovskaya and Khanin [5] and was called

coherent bleaching of a three-level medium. Using an electronic structure similar to that

presented in Fig. 1.1(a), the authors demonstrated that a train of ultra-short optical pulses

interacting with a three-level atom can effectively excite coherence in the lower-frequency

transition, when splitting between the lower levels |1〉 and |2〉 is a multiple of the pulse rep-

etition frequency, and the intensity of the laser radiation is sufficiently high. Consequently,

the medium becomes transparent to the laser field. The bleaching of a medium required a

coherent population trapping (CPT) condition [6]. That is the two photon detuning must

vanish (δp − δc = 0) (see Fig. 1.1(a)). This result was predicted through the examination

of the same atom-level structure Fig. 1.1(a), but in the case of continuous excitation. Addi-

tionally, they detected and presented the properties of the transparency window, and found

the minimum light intensity at which bleaching of the medium is possible.

The process of transmission of electromagnetic waves through an absorptive medium

without attenuation based on atomic coherence and quantum interference has been known

as EIT since a 1990 study by Harris et al. [7]. This demonstrated the possibility of creating

a nonlinear medium with resonantly enhanced nonlinear optical susceptibility, and revealed

an improvement in conversion efficiency and parametric gain, combined with induced trans-

parency. It also detected the effect of the Doppler broadening and coherence dephasing on

the transparency window.

The work of Harris et al. prompted interest in EIT. It inspired examination of vari-

ous atomic configurations under different physical conditions, to discover different optical

property improvements and applications based on EIT. Electromagnetically induced trans-

parency has been successfully demonstrated in various experiments, using different nonlinear

media [8–23]. It has found applications in the field of fiber optics [22, 24], superconductor
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circuit [25–27], semiconductor material [28], Bose-Einstein condensates [29], and optome-

chanics [30], It has also found applications for diverse purposes, such as storage and slow

light [18, 20, 23], lasing without inversion [12–17], frequency wave mixing, frequency conver-

sion, and parametric gain nonlinear process [7, 31, 32], large Kerr nonlinearity [10, 11, 33],

and optical clock[34, 35].

The goal here is not to present a comprehensive review of all research related to EIT, but

to summarize the definitions and some important results used in this study. First, the basic

idea of EIT is briefly reviewed, and the EIT phenomena explained using three quantum

concepts. Then, two important applications of EIT are presented: slow light and lasing

without inversion. The last subsection discusses DEITs ability to enhance the nonlinear

interaction between the propagating electromagnetic waves.

1.1.2 Definition of EIT and its Basic Physical Concepts

Electromagnetically induced transparency exploits interfering electronic transitions in a

medium to eliminate absorption [36] and dramatically modify dispersion [37, 38] over a

narrow frequency band. Usually, the resonant excitation would lead to strong absorption.

However, if the atoms are prepared by EIT, the absorption is essentially switched off, and the

usual correlation of high refractive index with high absorption can be broken [39]. This leads

to the creation of media with unique optical properties. The sufficient system of realizing

transparency or enhancing transmission consists of two applied fields and a three-level atom

system. The frequencies of the applied fields must differ from a Raman non-allowed transi-

tion of the medium [40]. The system in Fig. 1.1(a) shows an example to which the concept of

EIT applies. The levels |1〉 and |3〉 are coupled by the probe field, whose absorption should

be minimized. The interaction strength is defined by the Rabi frequency Ωp. The upper

level |3〉 is coupled to |2〉 by coupling field with Rabi frequency Ωc. The transition |1〉 ↔ |2〉

is Raman forbidden transition.
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Figure 1.1: (a) Three-level Λ electronic structure with high-energy state |3〉 and lower-energy levels

|1〉, |2〉. Transitions are driven by probe (p) and coupling (c) fields, with frequencies ωx and

detunings δx with x∈ {p, c}. (b) Same atom in dressed state generated by strong-c field, levels |2〉

and |3〉 are hybridized into |±〉. (c) Four-level N-scheme structure constructed by attaching a fourth

level to the Λ configuration coupled by weak-signal field.

The mechanisms of EIT can be explained using three quantum physical concepts [36, 39,

40]: dark-state analysis, quantum interference and probability amplitudes, or dressed-state

analysis.

1.1.2.1 Quantum Interference and Probability Amplitudes

In EIT, the interference occurs between alternative transition pathways, driven by the applied

fields within the internal states of the quantum system. Interference effects arise because in

quantum mechanics the probability amplitudes which may be positive or negative in sign,

must be summed and squared to obtain the total transition probability between the relevant

quantum states [36, 40]. Interference between amplitude may lead to either enhancement or

complete cancellation in the total transition probability. For the atom-field scheme shown

in Figure 1.1(a), the probability amplitudes of state |3〉 is driven by two terms of equal
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magnitude and opposite sign. One driving term is proportional to the probability amplitude

of state |1〉. The other term is oppositely phased and proportional to the probability am-

plitude of state |2〉. These driving terms have the same frequency and balance, so that the

probability amplitude of state |3〉 is zero [36, 41]. Thus, the transition to state |3〉 vanishes

and the system is driven to EIT.

1.1.2.2 Dark-State Analysis

Another approach to understand EIT is based on the concept of dark-state analysis [39, 40].

For exact two photon resonance at δpc = δp− δc = 0, one of the three eigenstates of the total

Hamiltonian that describe the optical system in Fig. 1.1(a) turn out to be an antisymmetric

coherent superposition of the two lower bare states

|D〉 =
Ωc |1〉 − Ωp |2〉√
|Ωp|2 + |Ωc|2

. (1.1)

It is important to note that no component of the bare state |3〉 appears in these superpo-

sitions. The superposition state |D〉 is not coupled to state |3〉 because the total dipole

moment for the transition from state |D〉 to the bare state |3〉 could equal zero [40]. If the

magnitudes of the applied fields are appropriately balanced, the negative sign in the super-

position of |1〉 and |2〉 causes the transition moment 〈D|d |3〉 to vanish, with d the dipole

transition moment operator. If the atoms are formed in this state, there is no possibility

of excitation to |3〉, hence no absorption. The state |D〉 is called a dark state, because it

acquires the entire population of the system through optical pumping. Thus, spontaneous

emission from state |3〉 populate state |D〉, but absorption losses from state |D〉 back to state

|3〉 are not possible.

1.1.2.3 Dressed-State Analysis

On the other hand, if Ωp � Ωc, the subsystem of state |2〉 and |3〉 can be described in terms

of the dressed state, with the weakly coupled state |1〉 attached to the subsystem as shown

in Fig. 1.1(b). For a strong resonant coupling at the single-photon resonance δc = 0 the
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dressed states of the subsystem are [39, 40]

|+〉 =
|2〉+ |3〉√

2
, |−〉 =

|2〉 − |3〉√
2

. (1.2)

The transition amplitude at ωp frequency from the ground state |1〉 to the dressed states

will be the sum of the contribution to the dressed states |+〉 and |−〉

〈1|d |+〉+ 〈1|d |−〉 ∼ 〈1|d |2〉+ 〈1|d |3〉√
2

+
〈1|d |2〉 − 〈1|d |3〉√

2
(1.3)

∼ d12 + d13√
2

+
d12 − d13√

2
.

However, the transition of between states |1〉 and |2〉 is dipole forbidden, that is d12 = 0.

Then the transition amplitude reduce to zero, which implies vanishing the absorption and

the system is driven to EIT.

The implementation of EIT is subject to a number of parameter, for example the choice

of the atomic energy-level configuration must satisfy the condition that is, dipole allowed

transition |1〉 ↔ |3〉 and |2〉 ↔ |3〉 while the transition |1〉 ↔ |2〉 is dipole forbidden. Decay to

other energy levels outside of the specified optical system must be considered which leads to

an open system. Collision in the medium must be minimized, to reduce the dephasing of the

coherence [36, 39]. The coupling field must be strong enough to overcome the inhomogeneous

broadening at high temperature implementation [42]. The line width of the applied laser

must also be limited, to reduce the coherence dephasing [43–45].

1.1.3 Electromagnetically Induced Transparency Applications.

Electromagnetically induced transparency affects many applications such as storage and slow

light [18, 20, 23], lasing without inversion [12–17], frequency wave mixing, frequency conver-

sion, and parametric gain nonlinear process [7, 31, 32], large Kerr nonlinearity [10, 11, 33],

and optical clock [34, 35]. Here, the basic ideas behind two of these applications is discussed:

slow light and lasing without inversion. These will be discussed during examination of the

t configuration.
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1.1.3.1 Lasing Without Inversion (LWI)

Under the condition in which EIT occurs and absorption vanishes, the gain can present

without the requirement of population inversion in bare states or even in the dressed states.

Any small population in the upper states established by incoherent pumping is enough to

produce a gain [46–50]. The concept is expanded to employ EIT to obtain lasing without

inversion, and much theoretical work has been undertaken on this issue [12–17]. Electromag-

netically induced transparency might lead to the construction of short wavelength lasers [48],

restricted by population inversion.

1.1.3.2 Slow Light

The EIT technique promotes a high transmission of light through an opaque medium, in

addition to enhances the dispersion of the light through medium. The dispersion at the

center of EIT window has a similar value, as in the case of high absorption when EIT

is not the case. However, in the region of the EIT window, the medium show normal

dispersion. The value of the dispersion in this region depends on the shape of the curve, which

is controlled by the strong-coupling field. When the coupling-field intensity is small, the

dispersion profile can be very steep and the group velocity becomes anomalously low. This

offers the possibility of slowing down the speed of light by EIT [18, 20–23, 30]. Slow light has

essential application in the field of classical and quantum optics. In optical communication

and quantum information processing, slow light enhances light-matter interaction times,

thereby leading to an increase in nonlinear interactions [11, 19, 20, 51]. It also enables storage

of the quantum state of light for a sufficiently long time, to enable quantum memory [52].

In the field of classical optics, slow light may lead to new types of delay lines [53], and

ultra-sensitive Sagnac interferometers [54].
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1.1.4 Double Electromagnetically Induced Transparency

Electromagnetically induce transparency is not only used to improve the linear optical pro-

cess, but also employed to modify the nonlinear optical response of a medium. It has been

used to improve frequency wave mixing, frequency conversion, and parametric gain nonlin-

ear processes [7, 31, 32] by greatly reducing the phase-matching requirements. This leads to

frequency mixing with greatly enhanced efficiencies. It also used to increase the nonlinear

interaction to generate large, Kerr-type nonlinearity [8–10, 51], which is requisite to obtain

large cross-phase modulation (XPM) [51] and large self-phase modulation(SPM) [55, 56].

For these purposes the optical system has been upgraded to include more quantum states

and more applied fields than that presented in Fig. 1.1(a).

Using EIT, Schmidt and Imamoğlu [51] show that it is theoretically possible to achieve

Kerr nonlinearity several orders of magnitude greater than the conventional Kerr nonlin-

earity produced by three level scheme under similar condition. Their theory was applied

on configuration, as shown in Fig. 1.1(c), where they add a fourth level attached to the Λ

system by a weak signal field. Experimentally, a phase shift of 7.5◦ has been measured at

low light intensity in the four-level N-type scheme, with a cold atom [9]. The interaction

between the probe and the signal fields is limited by temporal walk-off, which result of dif-

ferent group velocities of the probe and signal pulses. The probe pulse propagates with slow

group velocity due to EIT, while the signal-field group velocity is close to speed of light in

vacuum.

The temporal walk-off dilemma has been treated by creating two simultaneous trans-

parency windows: one for a signal and the other for a probe field. The proposed schemes

based on this idea are called DEIT [57–61]. Figure 1.2 shows different proposed schemes,

used to generate DEIT. Double EIT enhances XPM shift by forcing the two weak fields

to interact for a sufficiently long time, by matching their group velocities. Several Experi-

ments based on DEIT-XPM enhancement have been reported. For example, in cold atom a
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phase shift of 5◦ between the two weak fields in a four-level t-atomic configuration has been

achieved [33]. In hot atom, a 12◦ XPM phase shift has been observed using an inverted-Y

system at 60◦ C temperature [10]. Another experiment demonstrate low-light XPM with

double-slow light pulses, based on EIT with a cold atom [11].
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Figure 1.2: Schematic diagrams of the multi-levels atomic system proposed to implement DEIT.

Transitions are driven by weak probe (p) and signal (s) fields, and strong coupling (c) and tuner (t)

fields with Rabi frequencies Ωx with x∈ {p, c, s, t}. (a) Four-level t-electronic structure. (b) Four-

level inverted Y-scheme structure. (c) Five-level M-scheme configuration.

Double EIT is valuable for coherent control and enabling long-lived nonlinear interactions

between weak fields, which could enable deterministic all-optical two-qubit gates for quantum

computing [57–61] and all-optical fiber switch [24].

Although, the three-levels atom explains EIT, four levels are required for DEIT, such

as the t atom-field configuration [57] in Fig. 1.2(a). The four-level t-atomic configuration

interacting with three electromagnetic fields that were adopted in this research have been

studied before. For example, Paspalakis and Knight [62] slowed and control the group

velocity of a weak field by varying the Rabi frequencies of the coupling-laser fields. They also

showed that the system can exhibit double-transparency windows and, in general, the group

velocity of the probe-laser field can obtain, at most, two different values at transparency.

The work of Rebic et al. [57] presents the feasibility of implementing a quantum-phase gate

using the t system. They discussed the degree of symmetry between two transparency
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windows, so that the probe and the signal-group velocities can be made equal. They also

discussed the possibility of achieving large cross Kerr nonlinearities between the two weak

fields. They suggested operating the system in the region of the EIT window, but not at the

equal-detuning frequency, where Kerr-nonlinearity vanishes. They were able to obtain large

XPM, but at the expense of increasing the absorption of the weak fields. Tripod-electronic

configuration is used to realize simultaneous group-velocity reduction, and storage of the

probe and signal fields in the first window [61].

This study presents a t configuration with rich EIT phenomena, which has not been

presented before. This is what we call DDEIT, whereby both the signal and the probe fields

can have two EIT windows, given the right parameter choices. This new, second EIT win-

dow for each of the signal and probe fields exhibits a coherent Raman gain, which is also a

new prediction. In this approach, we adopt the same conditions as [57] in studying the t

configuration. However, in the analysis, the effect of the signal field on the linear suscep-

tibility of the probe, and vice versa, are included. By using DDEIT, the group velocities

of each of the signals and probes can simultaneously be matched in the first transparency

window, and for a different value of group velocity, also in the second window. Further, it

is assumed that there are equal, stationary population distributions in states |1〉 and |3〉,

i.e., ρ11 ≈ ρ33 ≈ 1
2

causes either the signal or the probe field to experience a coherent gain

(amplification) in the second transparency window. This could not be seen by [62] due to

their assumption that the system is prepared and remains at the ground state. Unlike the

case of EIT with amplification (EITA) for a three-level ∆ atom [26], in which the gain is

due to sum-frequency generation and need phase matching condition to achieve gain, here

the gain is due to stimulated Raman scattering (SRS) and the phase-matching condition are

automatically satisfied.
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1.2 Challenge and motivation

The t atom-field structure carries many characteristics that may be of significant interest

in the field of nonlinear optics. One of these characteristics, DEIT, was discussed in the

previous section [33, 57, 61, 62]: a signal and a probe would each have an EIT window,

and both could be decelerated at the same time and interact via XPM. However, there are

many other important properties owned by this atom-field configuration that are hidden

and have not been addressed previously, so require further study. Therefore, this research

examines the t atom-field structure in new region, in which the detuning of the probe

and signal fields are equal, but differ from the coupling-field detuning. In this region, a

new transparency window appears in both the probe and signal-absorption profiles. These

have not been studied previously, and could carry an important characteristic, capable of

improving optical properties in either the linear or nonlinear domains. The presence of the

transparency window in the absorption profile of both the probe and signal fields motivates

the employment of the new window as an alternative point of operation, which could lead to

a more efficient atom response. That is, the new window could be implemented for group-

velocity matching between the signal and probe-propagating waves, and could be used for

larger XPM shift than the first window. Therefore, theoretical analysis is undertaken of the

linear and nonlinear optical properties over the narrow frequency band of the transparency

window. These include:

(i) Examination of the linear absorption and group velocity for different driving-

field intensities and coherence dephasings, at low temperatures, and finding

the condition to match the group velocities of probe and signal fields.

(ii) Investigation of the optical properties of the t atom-field configuration under

various temperatures, where the inhomogeneous Doppler broadening affects

behavior. The investigation includes determination of the width of the new

transparency window, and the group velocity at the center of that window, in
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addition to study of their evolution for various temperatures.

(iii) Detection of the variation of Kerr nonlinearity in response to the variation of

the coupling-field detuning, and determining how this could modify the SPM

and XPM.

(iv) Investigation of the spatial variation of the group velocity and phase shift,

when the probe and signal fields are propagating-Gaussian beams.

The t configuration is complicated, and finding general analytical solutions describing the

absorption and dispersion appears to be impossible. Therefore, theoretically analyzing the

above points based on an analytical solution is challenging, and requires reliance on assump-

tions to simplify the problem. Ultimately, an approximate analytical solution is reached,

often valid in the narrow frequency band of the second transparency window.

1.3 Problem statement

Low group velocity and high XPM are requisites for many applications in quantum and

nonlinear optics. Slow light enhances light-matter interaction times, leading to an increase

in nonlinear interactions [11, 19, 20, 51] and possibly in new types of delay lines [53], as

well as ultra-sensitive Sagnac interferometers [54]. Conversely, high cross-phase modulation

could enable deterministic all-optical two-qubit gates [57–61] in quantum computing, and

all-optical fiber switch [24] in the fiber-optics field.

Operating an optical system under EIT condition significantly reduces the group velocity,

and enhances nonlinear optical properties. However, what has been accomplished until now

is lower than what is required for many optical applications. In this thesis, a strategy for

operating the t atom-field configuration is established, based on the choice of frequency

detuning of applied fields. This strategy could contribute toward the improvement of the

optical properties, required by many applications. Under this strategy, our t atom-field
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system exhibits enhanced optical properties under some assumptions, for certain conditions.

This study proposes to operate the t atom-field configuration in new regions of frequency

detuning, where the detuning of the probe and signal fields are equal, but differ from the

coupling-field detuning. The t atom-field configuration is highly symmetrical between the

two transparency windows of the signal and probe fields. It can be used to make the signal

and probe-field group velocities equal, and to obtain XPM for both fields. The optical system

operating in the new region of frequency detuning leads to:

(i) High XPM at the center of each transparency window of signal and probe

fields, by controlling the coupling-field detuning.

(ii) Nonlinear interaction between the probe and signal fields at high temperatures,

maintains the width of the second window constant. This result permits a

further reduction of the intensity of the signal field without losing the EIT

transparency window. Further, it gets a lower probe-field group velocity at

the second window than at the first window.

(iii) A reduction in the group velocity of both probe and signal fields, as they

propagate through the medium by altering its dielectric. This can be done

using both fields as a fundamental Gaussian beam. How fast the group velocity

reduction can be is controlled by varying the beam waist of the Gaussian fields.

1.4 Objectives

The main objective here is to theoretically analyze the t atom-field structure in the new

region, wherein the detuning of the probe and signal fields are equal but differ from the

coupling-field detuning. It examines the linear and nonlinear-optical properties of the

medium in response to probe and signal fields in low and high temperatures, and uncov-

ers the existence of new phenomena and improvement in optical properties. This theoretical
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study also focuses on finding techniques to lower the group velocity of the propagating weak

fields, and increasing the nonlinear interaction between them to achieve large XPM by in-

volving several sub-objectives. These are:

(i) Determining the limit of the coupling-field detuning values, at which the Kerr

nonlinearity of both probe and signal fields achieve high values through ana-

lyzing the dispersion of analytical solutions in the region of the new window.

(ii) Employing the Gaussian field instead of the infinite plane waves, to alter the di-

electric of the nonlinear medium as the beam propagates through the medium.

The medium dielectric varies as the propagation distance of the field changes.

The field-medium interaction becomes equivalent to treating the medium as in-

homogeneous. This technique of creating inhomogeneity could modify and en-

hance linear and nonlinear interactions. To realize the effects of using Gaussian

signal beam on the a Gaussian probe beam-output function, the wave equation

is solved, and the modulated-output probe-field wave function is found. The

probe-field output wave function carries all information about how the ampli-

tude and phase of the wave function evolve during the propagation, through

the nonlinear-optical medium.

(iii) Proposing a mechanism to slow the probe field in the second transparency

window of Doppler-broadened DDEIT. For this slowing to be achieved, we

need to balance two competing requirements. One is to slow the probe pulse

in Doppler-broadened EIT and reduce the driving field intensity, as the group

velocity is proportional to the driving-field intensity. Conversely, the driving-

field intensity must be sufficiently large to circumvent inhomogeneous broad-

ening [63–67]. An analytical expression is derived that enables the finding

of a parameter regime, whereby these competing requirements can be satis-

fied simultaneously. Our analytical technique is based on approximating the
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Maxwell-Boltzmann velocity distribution for atoms, through Lorentzian dis-

tributions over the narrow but relevant domain of small atomic velocities [65].

1.5 Contribution

This thesis introduces some important, previously unpredicted features of the t atom-field

configuration. These include:

Double double-electromagnetically induced:

The DDEIT phenomenon discussed here has a property in which both the sig-

nal and probe fields have two EIT windows, given the right parameter choices.

That is, both fields can pass through the medium without absorption, and

with a lower group velocity than the speed of light, at two different EIT trans-

parency windows. There is DEIT for the signal and probe for the first EIT

windows, and DEIT for the second EIT windows of the signal and probe. For

identical probe and signal-Rabi frequencies, the optical properties of both fields

at the first and second window are identical. Therefore, their group velocities

can be matched in either the first or second pairs of transparency windows.

The presence of this window can be explained in terms of the coherence be-

tween atomic levels in both the bare and semi-classical dressed bases. Through

this DDEIT phenomenon, one could send bichromatic signals and probe fields

through the medium, with the lower-frequency chromatic component of the

signal and probe fields traveling with one simultaneously matched group veloc-

ity, and the upper-frequency chromatic component also traveling through the

medium at a different but simultaneously matched-group velocity. The wide

importance of EIT in, for example, slow light in atomic vapors [61], optical

fibers [22], and Bose-Einstein condensates [29] as well as in solid-state systems

such as optonanomechanics [30] and superconducting artificial atoms [68], in-

Contribution 15



dicates the broad applicability of our DDEIT properties.

Raman gain under EIT condition:

The gain is achieved with the following usual Raman-gain conditions are not

required in our system: The pump does not need to be much stronger than

the Stokes field; the population inversion at the operating transition |1〉 ↔ |3〉

is not required; and the detuning from intermediate level |4〉 dose not to be

large, except that δp = δs which could be zero. This condition is not required

for the system discussed here, because at steady state the system is trapped to

a dark state, which is a superposition of the Raman-scattering states, leaving

|4〉 unoccupied. The only condition required to amplify the probe field is

%33 |Ωs|2 > %11 |Ωp|2 and to amplify the signal field is %11 |Ωp|2 > %33 |Ωs|2. The

overall gain occurs in the second window due to nonlinear process, whereby

the higher order terms of probe and signal fields become significant, and can

not be ignored. Amplification can not be detected in the probe and signal

field outputs simultaneously, because the gain appears in the probe field is

accompanied by absorption of the signal field, and vice versa.

Enhancement of the nonlinear index of refraction:

At the second EIT window, where δp = δs 6= δc, enhancement in the SPM

and XPM of nonlinear index of refraction by a factor of 1000 was achieved

in the region of the new transparency window. This contrasts with its value

in the first EIT for the same parameters, and under the same conditions. At

the center of the EIT window, the SPM and the XPM of both the probe and

signal fields vanish. However, it was found that if the signal field is not in

resonance either with the |3〉 ↔ |−〉 or with |3〉 ↔ |+〉 transitions, both SPM

and XPM of the probe field are displaced from zero, and reach their maximum

value when δc = δs
2

. Similarly, for the signal field, to get a non-zero value for
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the SPM and XPM of the signal field, the probe field must not be in resonance

either with the |3〉 ↔ |−〉 or with the|3〉 ↔ |+〉 transitions.

Gaussian-beam effect on optical properties:

In this study, the lowest-order Laguerre Gaussian beam was used, to replace

the infinite-plane probe and signal fields in the optical susceptibility, and to

describe the induced polarization of the probe-field transition. Then the wave

equation was solved, so that it described the propagation of the Gaussian

probe field through the t atom-field configuration, and was able to find the

modulated-output probe-field wave function. The solution shows the changes

that occur in the amplitude and the phase of the wave during its propagation

within the media.

The use of the Gaussian beam for the probe and signal fields makes the optical

susceptibility spatially dependent, and varies as the beams propagate through

the medium. The variation of the optical susceptibility modify the group

velocity of the probe field, but not the nonlinear phase shift. An additional

term appears in the denominator of the group velocity of the probe field, and

leads to a further reduction in the group velocity, as long as z > 0 (where z is

the propagation distance). The reduction of the group velocity of the probe

field is controlled by the signal-field beam waist.

Group-velocity reduction:

The optical system is examined at various temperatures under Doppler-broade-

ning effect, but is limited to the condition that the probe field is weak compared

to the signal field. The second EIT window promises for more reduction in

group velocity. The presence of a nonlinear interaction between the probe and

signal fields in optical susceptibility has an impact in enabling temperature-

controlled modification of the optical response. At the second window the
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nonlinear interaction signifies the ability to reduce the narrowing of width as

the Doppler width increases and permits observing the second window for low-

intensity signal field and leads to a further reduction in the group velocity at

the second EIT window.

The signal-field boundary values are identified as Ωsl
and Ωsh

. These two values

assist in specifying the regime of the signal-field strength values that could

result in slower probe-field group velocity than for the first window. The low-

strength regime is the best for realizing low group velocity, but the EIT window

could be difficult to resolve. The middle-strength regime is more robust in that

the second EIT window is expected to be resolvable and the group velocity is

expected to be low. The high-strength regime is less interesting as the group

velocity is relatively high.
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Chapter 2

Tripod Atom-Field Configuration

2.1 Introduction

In this chapter, we analyze our atom-field system, which is composed of four-level atom

driven by three detuned electromagnetic fields. The applied fields couple the four level atoms,

such that the atom-field system constructs a t configuration. We reprise the Hamiltonian

equation for our t atom-field system in Sec. 2.2. Then, in Sec. 2.3, we present the dynamic

in an open system, where the spontaneous and dephasing are considered by determining the

equation of motion of the density-matrix elements. We analyze the population of the t atom-

field system for various driving-field strengths and different detunings of the probe field, and

obtain a general expression for atomic populations in steady state for three cases of probe-

field detuning in terms of deriving fields Rabi frequencies in Sec. 2.4. Our investigations of

the atomic population behavior are based on the dressed-state analysis and on the numerical

calculations of atomic population as a function of time. In Sec. 2.5, we discuss the steady-

state solution of the density-matrix element. First, we examine the numerical solution for

general applied fields, then derive an analytical solution based on a constant population

assumption and constrained by the applied-fields strength values. A brief discussion of

the semi-classical dressed picture, which connects the t electronic structure to a double-

Λ electronic structure, to explain how each signal and probe fields experience DEIT windows

are introduced in Sec. 2.5.3. Finally, we summarize our results in Sec. 2.6.
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2.2 Atom-Field Hamiltonian

The Hamiltonian system that describes the coupling of four non-degenerate states by three

coherent radiation fields shown in Fig. 2.1(a) is

Ĥ(t) = Ĥ0 + Ĥdr(t), (2.2.1)

where Ĥ0 is the unperturbed part that represents the free-atom Hamiltonian, and Ĥdr(t)

is the part of the Hamiltonian representing the interaction of the atom with the incident

fields. States |1〉, |2〉, |3〉 and |4〉 are the eigenstates of the unperturbed part of Ĥ(t), with

eigenvalues }ω1, }ω2, }ω3 and }ω4 respectively. Using the completeness relation

∑
ı

|ı〉〈ı| = 1, (2.2.2)

Ĥ0 can be written as

Ĥ0 =
∑
ı

|ı〉〈ı|Ĥ0|ı〉〈ı| (2.2.3)

=|1〉〈1|H0|1〉〈1|+ |2〉〈2|H0|2〉〈2|+ |3〉〈3|H0|3〉〈3|+ |4〉〈4|H0|4〉〈4|

=~ω1|1〉〈1|+ }ω2|2〉〈2|+ }ω3|3〉〈3|+ }ω4|4〉〈4|

=
4∑
ı=1

}ωı|ı〉〈ı|,

with Ĥ0|ı〉 = }ωı|ı〉.

The part of the Hamiltonian Ĥdr(t) that represents the interaction of the atom with the

radiation field E(z, t) polarized in ε-direction perpendicular to the propagation z-direction

can be written as

Ĥdr(t) = −d ·E(z, t), (2.2.4)

where d is the dipole moment, and the electric field is represented by

E(z, t) =
∑
l

El(z, t) =
∑
l

ξfl(z, t)e
i(ωlt+klz) + ξ∗fl(z, t)e

−i(ωlt+klz)

2
, (2.2.5)
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Figure 2.1: (a) Four-level t-electronic structure with high-energy state |4〉 and lower-energy levels

|1〉, |2〉 and |3〉 in order of increasing energy. Transitions are driven by probe (p), coupling (c) and

signal (s) fields, with frequencies ωx and detunings δx with x∈ {p, c, s}. Decay rates for levels |i〉

are γi for i ∈ {2, 3, 4} and dephasing rates are γφi for i ∈ {2, 3}. (b) Same atom in the semi-classical

dressed state for a strong-c field, which corresponds to a double-Λ level structure. Levels |2〉 and |4〉

are hybridized into |±〉.

with l ∈ {c, p, s} represents the field mode, ξfl(z, t) is the slowly modulated amplitude

envelope function of the field, and ξ∗fl(z, t) is its complex conjugate, and kl is the wave

number, defined as kl = 2π
λl

.

The summation in (2.2.5) considers the positive frequency only. The field modes are:

a coupling field of angular frequency ωc interacting with pair of states |2〉 ↔ |4〉, a probe

field of angular frequency ωp coupling the transition |1〉 ↔ |4〉, and a signal field of angular

frequency ωs coupling the transition |3〉 ↔ |4〉, as shown in Fig. 2.1(a). The terms e±ikz
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which appear in Eq. (2.2.5) as a Maclaurin series can be written as

e±ikz = 1± ikz − 1

2
k2z2 ± · · · , (2.2.6)

where z is on the order of atomic dimension a0. As klz ≈ a0

λl
, we can obtain a good approx-

imation for E(z, t) by retaining only the first term (i.e. eikz ≈ 1). This is called the dipole

approximation [69], in which an applied field of a wavelength that highly exceeds the size of

the atom is treated as spatial independence.

Using the completeness relation (2.2.2), Ĥdr(t) can be written as

Ĥdr(t) =− (|1〉〈1|+ |2〉〈2|+ |3〉〈3|+ |4〉〈4|)d (|1〉〈1|+ |2〉〈2|+ |3〉〈3|+ |4〉〈4|) ·E(z, t)

=− (|1〉〈1|d|4〉〈4| ·Ep(t) + |2〉〈2|d|4〉〈4| ·Ec(t) + |3〉〈3|d|4〉〈4| ·Es(t) (2.2.7)

+|4〉〈4|d|1〉〈1| ·Ep(t) + |4〉〈4|d|2〉〈2| ·Ec(t) + |4〉〈4|d|3〉〈3| ·Es(t)) .

The frequency components of the coupling, probe and signal fields are tuned close to reso-

nance with respect to the one-photon transition. Therefore, the three nearly resonant electric

fields are expected to only produce transitions between |2〉 → |4〉, |1〉 → |4〉 and |3〉 → |4〉

respectively. Thus, we can disregard off-resonance terms, and Eq. (2.2.7) is reduced to

Ĥdr(t) =− (d14 · ε̂pσ̂14 + d41 · ε̂pσ̂41)
ξpf (z, t)e

iωpt + ξ∗pf (z, t)e
−iωpt

2
(2.2.8)

− (d24 · ε̂cσ̂24 + d42 · ε̂cσ̂42)
ξcf (z, t)e

iωct + ξ∗cf (z, t)e
−iωct

2
,

− (d34 · ε̂sσ̂34 + d43 · ε̂sσ43)
ξsf (z, t)e

iωst + ξ∗sf (z, t)e
−iωst

2
,

where ε̂l for l ∈ {c, p, s} are the direction vectors of field of mode l, σ̂ı = |ı〉〈| is the

projection operator, and dı = d∗ı = 〈ı|d|〉 are the dipole matrix elements of the |ı〉 ↔ |〉

transition for ı 6= . We assume the transitions |1〉 ↔ |2〉, |1〉 ↔ |3〉 and |2〉 ↔ |3〉 are

dipole-forbidden. Thus

d12 = d23 = d13 = 0. (2.2.9)

The terms σ̂ıe
iωlt for ı >  and σ̂ıe

−iωlt, where ı <  varies rapidly, the average over a

time larger than 1
ωı

is zero. Therefore, these terms can be neglected, which is called the
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rotating wave approximation. It is a good approximation, and amounts to keeping energy-

conservative term (i.e., transition from a low energy state to a higher energy state is combined

with the absorption of photons, and transition from a high energy state to a lower energy

state is combined with the emission of photons). Then Ĥdr(t) reduces to

Ĥdr(t) =− 1

2

(
d14 · ε̂pξpf (z, t)e

iωptσ̂14 + d41 · ε̂pξ
∗
pf

(z, t)e−iωptσ̂41

)
(2.2.10)

− 1

2

(
d24 · ε̂cξcf (z, t)e

iωctσ̂24 + d42 · ε̂cξ
∗
cf

(z, t)e−iωctσ̂42

)
− 1

2

(
d34 · ε̂sξsf (z, t)e

iωstσ̂34 + d43 · ε̂sξ
∗
sf

(z, t)e−iωstσ̂43

)
.

Defining the strength of the resonant interaction between the applied fields and the four-level

atom by

Ωp(z, t) = −
d14 · ε̂pξpf (z, t)

~
, Ω∗p(z, t) = −

d41 · ε̂pξ
∗
pf

(z, t)

~
, (2.2.11)

Ωc(z, t) = −
d24 · ε̂cf ξc(z, t)

~
, Ω∗c(z, t) = −

d42 · ε̂cξ
∗
cf

(z, t)

~
,

Ωs(z, t) = −
d34 · ε̂sξsf (z, t)

~
, Ω∗s (z, t) = −

d43 · ε̂sξ
∗
sf

(z, t)

~
,

which are known as the on-resonance Rabi frequency flopping frequencies or, more often,

simply as the Rabi frequencies. Then, we can write Eq. (2.2.10) as

Ĥdr(t) =
~
2

(Ωp(z, t)eiωptσ14 + Ωc(z, t)e
iωctσ24 + Ωs(z, t)e

iωstσ34 + H.c.), (2.2.12)

and the atom-field Hamiltonian Eq. (2.2.1) as

Ĥ(t) =
4∑
ı=1

}ωı|ı〉〈ı|+
~
2

(Ωp(z, t)eiωptσ14 + Ωc(z, t)e
iωctσ24 + Ωs(z, t)e

iωstσ34 + H.c.), (2.2.13)

with H.c. denoting the Hermitian conjugate.

2.2.1 Interaction-Picture and Time-Independent Rotating Frame

To study the evolution of a quantum system, we start with the system in a well-defined state

at initial time t0, and trace its evolution up to time t, using the Schrödinger equation [70]

i~
∂|ψ〉
∂t

= Ĥ|ψ〉, (2.2.14)
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following one of three general pictures and many combinations thereof. In every case, we

get the same result. Therefore, in order to decide which picture is going to be used, we

must define the problem and the output we need. The picture that most easily leads to the

required output is the preferable one.

The first is called the Schrödinger picture, which puts all the time dependence in the

state vector, and the evolution is determined by integrating the Shrödinger equation (2.2.14)

with the state vector, defined by

|ψch(t)〉 =
∑
n

Cı(t) |ı〉 , (2.2.15)

where the expansion coefficient Cn(t) carries the time dependent of the total Hamiltonian,

and is required to calculate the expectation value for any quantum observable .

The second is the Heisenberg picture, which puts all the time dependence in the operators,

leaving the state vector stationary in time [70]. The evolution of the system is determined

by integrating the equation of motion for the observable operator. This is useful when we

want to know a few observables of the system. The Heisenberg picture allows us to focus on

these observables and get the required answer without solving the entire problem.

The interaction picture is the third way to trace the evolution of a quantum system. It is

an intermediary picture, between the Schrödinger and Heisenberg pictures. It is particularly

useful for cases where the Hamiltonian can be written in the form of Eq. (2.2.1); that is, as a

sum of two terms, one describing the free part Ĥ0 which is time independent, and the other

describing the interaction part Ĥdr(t) which is time dependent. In the interaction picture,

the Hamiltonian is defined as the transformation of the interaction term by the free part of

the Hamiltonian. This picture puts only the interaction energy time dependence into the

state vector [70]

|ψI(t)〉 =
∑
n

cı(t) |ı〉 , (2.2.16)

where cn(t) carries only the time dependent, due the interaction energy.
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In the interaction picture, with respect to the free-atom Hamiltonian Eq. (2.2.3), the

atom-field system Hamiltonian has the form

V̂ (t) = Û †(t)Ĥdr(t)Û(t), (2.2.17)

with Û(t) as the unitary transformation operator, defined as

Û(t) =e
−iĤ0t

~ (2.2.18)

=
4∑
i=1

e−iωit|i〉〈i|,

where we use the fact that the eigenstates of H0 are orthonormal (i.e.; 〈ı|〉 = 0 for ı 6= ,

and 〈ı|ı〉 = 1 to get the second line of (2.2.18). By substituting Eq. (2.2.12) and Eq. (2.2.18)

into Eq. 2.2.17 we get

V̂ (t) =
~
2

(
Ωpe−iδptσ̂14 + Ωce

−iδctσ̂24 + Ωse
−iδstσ̂34 + H.c.

)
, (2.2.19)

with δp as the detuning of the probe field from |1〉 ↔ |4〉 transition, δc as the detuning of

the coupling field from |2〉 ↔ |4〉 transition, and δs as the detuning of the signal field from

|3〉 ↔ |4〉 transition, mathematically represented by:

δp :=ω41 − ωp, (2.2.20)

δc :=ω42 − ωc, (2.2.21)

δs :=ω43 − ωs, (2.2.22)

respectively.

The atom-field system Hamiltonian described by Eq. (2.2.19) involves terms oscillating at

different optical frequencies. Thus, our next step is to find a Hermitian operator to transform

the Hamiltonian to a rotating frame, in order to eliminate the time dependence [71]. The

transformation we apply is constructed to remove all time dependence from the interaction

Hamiltonian. This new basis is known as the rotating-frame basis, and is related to the old

basis by

|ψ′〉 = Û ′(t)|ψ〉, (2.2.23)
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with Û ′(t) given by

Û ′(t) = e
−iÂt

~ , (2.2.24)

where A is a self-adjoint operator. The corresponding transformed Hamiltonian Ĥ ′ for the

transformed wavefunction |ψ′〉 can be found using the following steps.

We Start from the fact that our transformed basis evolves according to the Schrödinger

picture,

i~
∂|ψ′〉
∂t

= Ĥ ′|ψ′〉. (2.2.25)

Substituting Eq. (2.2.23) into (2.2.25), we get

i~
∂(Û ′(t)|ψ〉)

∂t
= Ĥ ′|ψ′〉, (2.2.26)

i~

(
Û ′(t)

∂|ψ〉
∂t

+
∂Û ′(t)

∂t
|ψ〉

)
= Ĥ ′|ψ′〉.

By substituting Eq. (2.2.24) into (2.2.26), and using

i~
∂|ψ〉
∂t

= V̂ |ψ〉, (2.2.27)

the following is obtained:

Û ′(t)V̂ (t)|ψ〉+ ÂÛ ′|ψ〉 = Ĥ ′|ψ′〉, (2.2.28)

Û ′(t)V̂ (t)Û ′†(t)Û ′(t)|ψ〉+ ÂÛ ′Û ′†(t)Û ′(t)|ψ〉 = Ĥ ′|ψ′〉,

Û ′(t)V̂ (t)Û ′†(t)|ψ′〉+ Â|ψ′〉 = Ĥ ′|ψ′〉,

where Û ′†(t)Û ′(t) = 1 is used to get the last line in (2.2.28). This step gives us the trans-

formed Hamiltonian Ĥ ′

Ĥ ′ = Û ′(t)V̂ (t)Û ′†(t) + Â. (2.2.29)

In the case of our atom-field system, the operator Â used to eliminate the time dependence

is defined by

Â = 3δpσ11 + (2δp + δc)σ22 + (2δp + δs)σ33 + 2δpσ44, (2.2.30)
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and the unitary transformation operator is defined by

Û ′(t) = e
−3iδpt

~ σ11 + e
−i(2δp+δc)t

} σ22 + e
−i(2δp+δs)t

~ σ33 + e
−2iδpt

~ σ44. (2.2.31)

The resulting Hamiltonian after transformation is given by [72]

Ĥ ′ =Ĥ ′0 +
~
2

(
Ωpσ̂14 + Ωcσ̂24 + Ωsσ̂34 + H.c.

)
, (2.2.32)

for

Ĥ ′0 := δpcσ̂22 + δpsσ̂33 + δpσ̂44, (2.2.33)

and

δxy := δx − δy. (2.2.34)

We added 3δp(σ11 + σ22 + σ33 + σ44) to the transformed Hamiltonian Ĥ ′, which shifts the

eigenvalue by 3δp. This has no physical effect, as the physically relevant terms are the

differences between energy levels. This form of Hamiltonian is the same as the one determined

by [57].

2.3 Open-System Dynamics and Density-Matrix Elements

All the information about any quantum system can be extracted from the state vector |Ψ〉

by calculating the expectation value O

〈O〉 = 〈Ψ|O|Ψ〉. (2.3.1)

In some cases we may not know the state of the system |Ψ〉, but know the probability PΨ

of the system being in the state |Ψ〉. In these cases, we need to take in addition to the

quantum mechanical average, the ensemble average over many identical systems that have

been similarly prepared. So, instead of Eq. (2.3.1) we now have[73]

〈〈O〉〉ensemble =
∑

Ψ

PΨ〈Ψ|O |Ψ〉 (2.3.2)
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which can be written as

〈〈O〉〉ensemble =
∑
φ

∑
Ψ

PΨ〈Ψ|O |φ〉 〈φ |Ψ〉 (2.3.3)

=
∑
φ

∑
Ψ

PΨ〈φ |Ψ〉 〈Ψ|O |φ〉

=
∑
φ

〈φ|ρO |φ〉

= Tr(Oρ),

where (2.2.2) is used in the second line of (2.3.2), and the density operator ρ is defined by

ρ =
∑

Ψ

PΨ |Ψ〉 〈Ψ|. (2.3.4)

Thus, to extract any information about a system in which we do not know |Ψ〉, the density

operator gives a more general description than can be provided by the state vector. It

contains all possible information about the system, and any physical system can be described

by ρ. It is also useful to apply the density operator to describe quantum systems with various

types of damping that cannot be directly incorporated into the equation of motion for the

probability amplitude.

In the presence of damping, the atomic dynamics and state time evolution described by

the density operator are governed by a master equation for the atomic density operator. The

resulting Lindblad master equation is [72]

%̇ =− i

}
[%, Ĥ ′] +

4∑
ı<

γı
2

(σı%σı − σ%− %σ)

+
4∑
=2

γφj
2

(σ%σ − σ%− %σ), (2.3.5)

with % the density matrix in the rotated frame. The Lindblad master equation includes both

spontaneous emissions and dephasing, where γı is the decay rate of state |〉 → |ı〉, and γφı

is the dephasing of state |ı〉. By substituting Eq. (2.2.32) into Eq. (2.3.5) we get ten optical

Bloch equations. Six more optical Bloch equations are obtained from complex conjugates of
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the six off-diagonal density matrix expressions shown below:

%̇12(t) =

(
−1

2
γ2 + iδpc

)
%12(t)− i

2
[−Ω∗c%14(t) + Ωp%24(t)] ,

%̇13(t) =

(
−1

2
γ3 + iδps

)
%13(t)− i

2
[−Ω∗s%14(t) + Ωp%43(t)] ,

%̇14(t) =

(
−1

2
γ4 + iδp

)
%14(t) +

i

2
[Ωc%12 + Ωs%13 + Ωp (%11(t)− %44(t))] ,

%̇23(t) =

(
−1

2
Γ32 − iδsc

)
%23(t)− i

2
[Ωc%43(t)− Ω∗s%24(t)] ,

%̇24(t) =

(
−1

2
Γ42 + iδc

)
%24(t)− i

2
[−Ωp%21(t) + Ωc (%44(t)− %22(t))− Ωs%23] ,

%̇43(t) =

(
−1

2
Γ43 − iδs

)
%43(t) +

i

2

[
−Ω∗c%23(t) + Ω∗s (%44(t)− %33(t))− Ω∗p%13(t)

]
, (2.3.6)

and four equations represent the equations of motion for the population:

%̇11(t) =γ21%22(t) + γ31%33(t) + γ41%44(t)− i

2

[
Ωp%41(t)− Ω∗p%14(t)

]
,

%̇22(t) =− γ21%22(t) + γ32%33(t) + γ42%44(t)− i

2
[−Ω∗c%24(t) + Ωc%42(t)] ,

%̇33(t) =− γ31%33(t)− γ32%33(t) + γ43%44(t)− i

2
[−Ω∗s%34(t) + Ωs%43(t)] ,

%̇44(t) =− γ4%44(t)− i

2
[Ωc%24(t)− Ω∗c%42(t) + Ωs%34(t)− Ω∗s%43(t) + Ωp%14(t)− Ω∗p%41(t)].

(2.3.7)

The decay rates in Eqs. (2.3.6) and (2.3.7) are

γ :=
∑
ı<

(γı + γφ). (2.3.8)

As the dephasing rate between the forbidden transitions is not zero, γ2 = γφ2 and γ3 =

γφ3. We now have the requisite equations of motion for the density-matrix elements to solve

the dynamics.

The diagonal elements represent the probability of atoms being in base state |ı〉, for a

quantum system in a mixture or pure vector state. For this reason, %ıı is called the population

of the state |ı〉. The off-diagonal elements express the interference between states |ı〉 and |〉

when the state |ψ′〉 is in coherent linear superposition of these states. See Appendix B for

details about the meaning of the diagonal and off-diagonal elements of the density matrix.

Open-System Dynamics and Density-Matrix Elements 29



To summarize, we derived the equations of motion of the density-matrix elements for

the t atom-field system in the presence of decaying and dephasing. We reviewed several

fundamental points that will help us study, understand and interpret the optical properties

of the t atom-field system. The density operator contains all possible information about the

quantum system, and provides a more general description than the state vector. The diagonal

elements of the density matrix describe the population of the quantum state, while the off-

diagonal elements describe the coherence and are used to calculate the induced polarization

of an applied field.

2.4 Dressed-State Analysis and Atomic Population

In this section, we use the diagonal elements of the density matrix obtained in the previous

section 2.3 to study the population of each atomic state. However, general analytical ex-

pression of the atomic population using Eqs. (2.3.6) and (2.3.7) is not feasible, due to the

difficulty of decoupling the equations of motion of coherence from those of the population.

Therefore, we analyze the dynamics of the atomic population using the interpretation from

the dressed-state analysis and the numerical calculation of the atomic population described

by the diagonal elements of the density matrix.

General expressions for the eigenstates of the Hamiltonian Eq. (2.2.32) are complex. To

simplify, we choose to find the eigenstates for the three following tractable cases:

2.4.1 Probe-Field Detuning Equal to the Coupling-Field Detuning

The first case is δpc = 0, or, equivalently, δp = δc. We allow δs to assume any different value.

In this case, one of the eigenvalues Λ1 = 0 corresponds to eigenstate

|ψD〉 = − Ω∗c√
|Ωc|2 + |Ωp|2

|1〉+
Ω∗p√

|Ωc|2 + |Ωp|2
|2〉 . (2.4.1)

This eigenstate is a dark state, as it does not contain a contribution from state |4〉 and

is not coupled to state |4〉. This is evident from studying the total dipole moment d4D
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for a transition from state |ψD〉 to the bare state |4〉. If the magnitudes of the coupling

field and probe field are appropriately balanced, the negative sign in the superposition of |1〉

and |2〉 (2.4.1), which form the state |ψD〉, cause the transition moment 〈ψD|d4D|4〉 to vanish.

If the atoms are formed in this state, there is no possibility of excitation to |4〉, hence no

absorption.

For the case of the coupling field being much stronger than the probe field, (Ωc � Ωp),

state |1〉 is almost equivalent to |ψD〉. Thus, atoms decaying to state |1〉 are trapped in this

state, and remain so throughout the interaction. The atomic probability of being in state |1〉

is

P1 = |〈1 |ψD〉|2 =
|Ωc|2

|Ωc|2 + |Ωp|2
, (2.4.2)

and being in state |2〉 is

P2 = |〈2 |ψD〉|2 =
|Ωp|2

|Ωc|2 + |Ωp|2
. (2.4.3)

We numerically solve the master equation and plot atomic populations in Fig. 2.2. After a

time of order of the radiative lifetime, the atoms should be trapped in the dark state |ψD〉,

which we verify by comparing the populations in Fig. 2.2 with the calculated dark-state

populations. The disappearance of the probe-field absorption Im%14 supports the claim that

the atom has decayed into a dark state. Furthermore, state |4〉 does not become populated.

For Fig. 2.2(a) the dark state is equivalent to state |1〉, whereas, for Fig. 2.2(b) it is a

superposition of states |1〉 and |2〉. The atoms are pumped into the state by the combined

actions of the coupling, signal and the probe fields, and spontaneous emissions. At steady

state, the distribution of atoms largely depends on the magnitude of the driving fields,

following the rule of Eqs. (2.4.2) and (2.4.3).

The other three eigenstates are

|ψı〉 =
Ωp |1〉+ Ωc |2〉+ ΛıΩs

Λı−δps
|3〉+ 2Λı|4〉√

|Ωp|2 + |Ωc|2 + |Ωs|2|Λı|2
|Λı−δps|2 + 4|Λı|2

, (2.4.4)

with eigenvalues Λı (ı ∈ 2, 3, 4), where each {Λı} is a root of the eigenvalue equation.
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Figure 2.2: The populations of state |1〉 and |2〉 are represented by %11 (dotted line) and %22

(dashed line) respectively as a function of time t, and the absorption of the probe and signal fields,

represented by 5Im[%ij ](black-solid line) and (red-solid line) respectively, evaluated numerically by

solving the master equation. (a) Coupling field is stronger than the probe field with Ωc = γ4 and

Ωp = 0.3γ4. (b) Coupling and probe fields have the same strength with Ωc = Ωp = γ4. The

system is initially prepared with %
(0)
11 = 1 and %

(0)
22 = %

(0)
33 = %

(0)
44 = 0. The chosen parameters are

γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωs = 0.3γ4, δs = 0.5Ωc and δp = δc = 0.

4Λ3−4Λ2(δps + δp) + Λ(4δpsδp − |Ωc|2 − |Ωp|2 − |Ωs|2)

+ δps(|Ωc|2 + |Ωp|2) = 0. (2.4.5)

Although the atoms are not prepared in the dark state, detuning plays an important role

in their distribution. Thus, when δpc = 0, and after a period of the same order as atom

relaxation time, the atoms are trapped in the dark state, and their distribution in the bare

state |1〉 and |2〉 depends on the magnitude of Ωc and Ωp.

2.4.2 Probe-Field Detuning Equal to the Signal-Field Detuning

We now study the case in which the probe and signal fields are at two-photon resonance

with a |1〉 ↔ |3〉 transition (i.e. δps = 0). We allow the coupling-field detuning δc to assume
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any value. In this case the Hamiltonian (2.2.32) has an eigenvalue Λ′ = 0 with eigenstate

|ψ′D〉 =
−Ω∗s√

|Ωs|2 + |Ωp|2
|1〉+

Ω∗p√
|Ωs|2 + |Ωp|2

|3〉 , (2.4.6)

and eignvalues Λ′ı (ı ∈ 1, 2, 3) with eigenstates

|ψ′ı〉 =
Ωp |1〉+ Λ′ıΩc

Λ′ı−δpc
|2〉+ Ωs |3〉+ 2Λ′ı|4〉√

|Ωc|2Λ′2ı
(Λ′ı−δpc)2 + |Ωp|2 + |Ωs|2 + 4Λ′2ı

, (2.4.7)

where each Λ′ı is a root of the eigenvalue equation

4Λ′3−4Λ′2(δpc + δp) + Λ′(4δpcδp − |Ωc|2 − |Ωp|2 − |Ωs|2)

+ δpc(|Ωs|2 + |Ωp|2) = 0. (2.4.8)

The eigenstate |ψ′D〉 is also a dark state, as it does not contain a contribution from state |4〉

and is not coupled to state |4〉.

Atomic populations for states |1〉 and |3〉 are calculated numerically, and shown in Fig. 2.3.

At steady state, the atoms are trapped in the dark state |ψ′D〉 as long as the coupling field is

greater than or equal to the probe and the signal fields. We claim that the atom is trapped

in the dark state, because if it were in one of the bright states of Eq. (2.4.7), the following

phenomena would arise.

(i) We would expect to see some population in states |2〉 and |4〉, whereas in

Figs. 2.3(a) and (b), the populations of states |1〉 and |3〉 total almost one,

making the combined population of states |2〉 and |4〉 nearly zero.

(ii) For the case that Ωc � Ωs > Ωp, as shown in Fig. 2.3(c), if the system is in a

bright state the population in state |3〉 will exceed the population in state |1〉

(i.e. %33 > %11). However, the opposite is true; most of the population has

been transferred to |1〉.

(iii) the absorption would not disappear for a bright state, but in Figs. 2.3(a),(b),(c)

absorption vanishes; hence the atoms are trapped in the dark state |ψ′D〉.
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At steady state, the populations in |1〉 and |3〉 are governed by the signal and probe-field

Rabi frequencies, according to

P ′
1 = |〈1|ψ′D〉|2 =

|Ωs|2

|Ωs|2 + |Ωp|2
, (2.4.9)

and

P ′
3 = |〈3|ψ′D〉|2 =

|Ωp|2

|Ωs|2 + |Ωp|2
, (2.4.10)

respectively.

2.4.3 The Three Fields of Equal Detuning

The last case pertains to the three detunings that are equal [57], (δp = δc = δs), which

results in zero two-photon resonance. Two of the eigenstates are degenerate eigenstates,

with eigenvalues Λ̃1 = Λ̃2 = 0:

|ψ̃D1〉 =
−Ω∗s√

|Ωs|2 + |Ωp|2
|1〉+

Ω∗p√
|Ωs|2 + |Ωp|2

|3〉 ,

|ψ̃D2〉 =
ΩcΩp |1〉 − (Ω2

p + Ω2
s) |2〉+ ΩcΩs |3〉√(

|Ωc|2 + |Ωp|2 + |Ωs|2
) (
|Ωp|2 + |Ωs|2

) . (2.4.11)

These two states are dark, as neither contains contribution from state |4〉, or involves tran-

sitions to state |4〉. However, the remaining eigenstates retain a component of all the bare

atomic states:

|ψ̃±〉 =
Ωp |1〉+ Ωc |2〉+ Ωs |3〉 ± 2Λ̃±|4〉√
|Ωc|2 + |Ωp|2 + |Ωs|2 + 4(Λ̃±)2

, (2.4.12)

with

Λ̃± =
1

2

(
δp ±

√
δ2

p + Ω2
p + Ω2

c + Ω2
s

)
, (2.4.13)

the corresponding eigenvalues.

The steady-state atomic populations for the case

δp = δs = δc = 0, (2.4.14)

Dressed-State Analysis and Atomic Population 34



0.00001 0.00002
t HsL

-0.5

0.5

1.0

·ii, 5Im@·ijD

(a)

0.00001 0.00002
t HsL

-0.5

0.5

1.0

·ii, 5Im@·ijD

(b)

0.00001 0.00002
t HsL

-0.5

0.5

1.0

·ii, 5Im@·ijD

(c)

Figure 2.3: Populations of level |1〉 and |3〉 are represented by %11 (dotted line) and %33 (dashed

line) respectively, as a function of time t. The absorption of the probe and signal fields, represented

by 5Im[%ij ] (black-solid line) and (red-solid line) respectively, is evaluated numerically by solving

the master equation. (a) Signal and probe-field strengths are of equal magnitude less than coupling

field, with Ωs = Ωp = 0.5γ4, while Ωc = γ4. (b) Coupling, signal and probe-field strengths are of

equal magnitude Ωc = Ωs = Ωp = 0.35γ4. (c) Signal-field strength is stronger than the probe field,

with Ωc = γ4, Ωs = 0.5γ4, and Ωp = 0.15γ4. Other parameters are γ4 = 18 MHz, γ3 = 10 kHz,

γ2 = 40 kHz, δs = δp = 0.5Ωc, and δc = 0. Initial populations are %
(0)
11 = 1 and %

(0)
22 = %

(0)
33 = %

(0)
44 = 0.

are shown Fig. 2.4. In all cases, the atomic population is distributed between state |1〉, |2〉

and |3〉, and excludes |4〉. This exclusion suggests that, for cases (a), (b) and (c), atoms are

trapped in the dark state |ψ̃D2〉, but we now see that this could be true for case (a) but not

for cases (b) and (c).

In Fig. 2.4(b), we have Ωp,Ωc � Ωs, which means that if the system is in dark state |ψ̃D2〉

the population in |1〉 must be higher. However, we actually found that the population of

state |3〉 was higher, and it exhibited the opposite behavior to that shown in Fig. 2.4(c). Thus,

the system corresponding to Figs. 2.4(b) and 2.4(c) could be trapped in |ψ̃D1〉. However,

the low population in state |2〉 prevents us from coming to this conclusion as well. From

this argument, we concluded that the system is not in a pure dark state, but relaxes into a

mixture of two dark states (2.4.11), which is also a dark state given by

%̃D = PD1 |ψ̃D1〉 〈ψ̃D1|+ PD2 |ψ̃D2〉 〈ψ̃D2| , (2.4.15)
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where PD1 is the probability of being in state |ψ̃D1〉 and PD2 is the probability of being in

state |ψ̃D2〉, such that

PD1 + PD2 = 1. (2.4.16)

The probability for state |1〉 being populated is

P̃1 = 〈1 |%̃D| 1〉

=
1

|Ωp|2 + |Ωs|2

(
PD1 |Ωs|2 +

PD2 |Ωp|2 |Ωc|2

|Ωc|2 + |Ωp|2 + |Ωs|2

)
, (2.4.17)

for state |2〉 being populated is

P̃2 = 〈2 |%̃D| 2〉

=
PD2

∣∣Ω2
p + Ω2

s

∣∣2(
|Ωc|2 + |Ωp|2 + |Ωs|2

) (
|Ωp|2 + |Ωs|2

) , (2.4.18)

and for state |3〉 being populated is

P̃3 = 〈3 |%̃D| 3〉

=
1

|Ωp|2 + |Ωs|2

(
PD1 |Ωp|2 +

PD2 |Ωs|2 |Ωc|2

|Ωc|2 + |Ωp|2 + |Ωs|2

)
. (2.4.19)

The relation between P̃1, P̃2 and P̃3 is

P̃1 + P̃2 + P̃3 = 1, (2.4.20)

from Tr %̃D = 1.

We use numerical calculations of the population in state |2〉 and Eq. (2.4.18) to determine

the value of PD2. Once PD2 is known, PD1 is calculated from Eq. (2.4.16). The agreement

between the numerical values of %11 and %33, and the calculated values of P̃1 and P̃3 using

Eqs. (2.4.18) and (2.4.19) respectively, verifies that the system is in a mixture of the two

dark states (2.4.11).

We see that for certain two-photon detunings, the system is eventually trapped in a dark

state, even if the atom has not been prepared initially (at t = 0) in a dark state. The atom
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is driven into the dark state by the combined action of coupling, signal, and probe fields and

spontaneous emissions.

For stationary atoms, the steady-state atomic population depends on probe-field detun-

ing due to the dark-state dependence on probe-field detuning. Thus, changing the probe-field

detuning modifies the steady-state population in each energy state if the probe field is com-

parable in strength to the signal field, even if both are quite weak when compared to the

coupling-field strengths shown in Fig. 2.5(a). However, the dependence of the atomic popu-

lation on probe-field detuning decreases as the probe-field strength becomes weaker than the

signal-field strength. This feature is apparent when comparing Fig. 2.5(a) with Fig. 2.5(b).

Almost the entire population is evidently trapped in the dark state |ψD〉 when δpc = 0, and

in dark state |ψ′D〉 when δps = 0. This corresponds to state |1〉 when Ωs � Ωp.
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Figure 2.4: Populations of levels |1〉, |2〉 and |3〉 represented by %11 (dotted line), %22 (dotted-dashed

line), and %33 (dashed line) respectively, as a function of time t evaluated numerically by solving

the master equation. The conditions are (a) Ωs = Ωp = 0.3γ4 and Ωc = γ4, (b) Ωp,Ωc � Ωs with

Ωc = Ωp = γ4 and Ωs = 0.3γ4, and (c) Ωs,Ωc � Ωp with Ωc = Ωs = 1γ4 and Ωp = 0.3γ4. The

initial population is %
(0)
11 = 1 and %

(0)
22 = %

(0)
33 = %

(0)
44 = 0. Other parameters are γ4 = 18 MHz,

γ3 = 10 kHz, γ2 = 40 kHz and δp = δs = δc = 0. Insets (a), (b) and (c) are the absorptions of

probe and signal fields represented by 5Im%14 and 5Im%34 respectively.
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Figure 2.5: Numerically evaluated steady-state populations at zero temperature %11 (dotted line),

%22 (dotted-dashed line), %33 (dashed line), and %44 (solid line) versus probe-field detuning δp.

Parameter choices are (a) Ωs = Ωp = 0.3γ4, and (b) Ωs � Ωp. Ωs = 0.3γ4 and Ωp = 0.01γ4. Other

parameters are γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, δs = 0.5Ωc, and δc = 0.

2.5 Steady-State Solution for the Density-Matrix Element

In the previous section 2.4, we saw that the population and coherence elements %14 and %34

of the density matrix tend to have constant values after a period comparable to the atom

relaxation time. The behavior of the density-matrix elements allows us to equate Eqs. (2.3.6)

and (2.3.7) to zero, and to study the variation of the coherence and population elements of

the density matrix as functions of the applied fields frequency detunings.

In this section, we study the coherence elements %14 and %34 as functions of the probe field

and signal-frequency detunings respectively, when they reach the steady-state condition. We

start with a numerical-analysis solution, calculated without approximations or assumptions,

followed by an analytical analysis determined with some assumptions and approximated

conditions.

2.5.1 Numerical Steady-State Solution

The density-matrix elements %14 and %34 are related to the polarization and optical suscepti-

bility (3.3.6), (3.3.13) and (3.3.14); hence, they carry all the optical properties of the medium,
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in response to probe and signal fields respectively. We start section 2.5 by studying %14 and

%34 when they reach the steady state, by solving Eqs. (2.3.6) and (2.3.7) numerically. The

advantages of the numerical solution are that it gives a general solution, and exact behavior.

In Figure 2.6, we plot the real and imaginary parts of %14 versus the probe-field detuning

and %34 versus signal-field detuning, for γ4 � γ2, γ3 defined by (2.3.8) and |Ωc|2 � |Ωp|2, |Ωs|2.

As stated earlier, the real and the imaginary parts of the coherence %ı are related to disper-

sion and absorption respectively. We found that at zero two-photon detuning δpc = 0 and

δps = 0, both the real and imaginary parts are almost zero (i.e., the absorption is near zero

where the index of refraction is one). The medium is driven to electromagnetically induced

transparency (EIT). The physical origin of EIT can be understood in term of the dark states

discussed in the previous section 2.4. The atoms are pumped into the dark state by the

combined action of the strong coupling and weak probe and signal fields and spontaneous

emissions. The EIT is induced in an atom in the radiative lifetime, since this is the time for

an excited atom to decay to an uncoupled dark state.

It also clear from Fig. 2.6 that, for identical probe and signal-Rabi frequencies, %14 and

%34 have identical behavior. Both fields can pass through the medium without absorption,

and with a lower group velocity than the speed of light, at two different EIT transparency

windows. This system creates DEIT windows for the double fields; thus we call it DDEIT.

The first DEIT window occurs when δpc = 0, and both signal and probe fields have identical

optical properties. The second DEIT window occurs when δps = 0, and both signal and

probe fields have identical optical properties at this window. The plots of the imaginary

part of %14 and %34 in Fig. 2.6 show that the first DEIT has higher window width than the

second DEIT window. The Figure also shows that the slopes of the real parts of %14 and %34

at the region of the second EIT window apparently exceed the slope at the region of the first

window for the given parameters.

Our next step, is to change some parameters, such as the Rabi frequencies, decay rate and
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dephasing, and see how this influences the DDEIT system. We considered the probe-field

case first, and then the signal-field case, which is similar.
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Figure 2.6: Numerically evaluated steady-state coherences %14 (dashed line) versus probe-field

detuning δp and %34 (dotted line) versus signal-field detuning δs. Parameter choices are Ωs = 0.2γ4

and Ωp = 0.2γ4. Other parameters are γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, and

δc = 0.

2.5.1.1 Parameters Affect the Density-Matrix Element %14

The effect of the signal-field Rabi frequency on the probe-field optical profile can be observed

in Fig. 2.7. The signal field mainly affects the second EIT (i.e., when δps = 0), but it has

negligible effect on the first EIT window. Increasing the signal-field Rabi frequency value

increases the width of second EIT and decreases the slope of dispersion in the region of the

second window, as shown in Figs. 2.7(a) and (b) respectively.

For a lower value of γ3, the absorption of the probe field is almost zero, but increases

the value of γ3, will increase the absorption of the probe field when δps = 0, as shown in

Figs. 2.7(a) and (c) respectively. The decay and dephasing rate from level |3〉 do not influence

the transparency of the first window.

The effect of the coupling field on the medium response to the probe field is shown in

Fig. 2.8. The coupling-field strength controls the width of the first EIT transparency window,

as well as the dispersion inclination. Higher values of the coupling-Rabi frequency result in
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increased width of the EIT window, and in a lower dispersion slope at the region of the first

window when δpc = 0 as shown in Figs. 2.8(a) and (b) respectively. The coupling field does

not influence the absorption or dispersion at the second EIT window.
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Figure 2.7: Numerically evaluated steady-state coherences %14 versus probe-field detuning δp, for

two different values of signal-field Rabi frequencies; Ωs = 0.1γ4 (dashed line) and Ωs = 0.6γ4 (bold-

dashed line). (a),(b) γ3 = 50 kHz. (c),(d) γ3 = 200 kHz. Other parameters are γ4 = 18 MHz,

γ2 = 40 kHz, Ωc = γ4, Ωp = 0.1γ4 and δc = 0.

The dephasing and decay rate from level |2〉 affect the absorption at the first window.

For a lower value of γ2 the absorption of the probe field is zero, while a higher value of γ2

leads to a higher absorption of the probe field at δpc = 0, as shown in Figs. 2.8(a) and (c)

respectively. The decay and dephasing rates from level |2〉 do not influence the transparency

of the second window.

There is a limited value of γ2 and γ3 associated with the coupling and signal-field Rabi

frequencies respectively, for which the absorption is still close to zero at the first and second-

EIT transparency windows. However, the numerical solution does not help to determine this
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value, or show how the coherence decay rates γ2 and γ3 are related to Ωc and Ωs respectively,

to achieve minimum absorption. We expect the relation between γ3 and Ωs, and that between

γ2 and Ωc, are similar to those obtained for Λ scheme [39]. If we consider our system as

double-Λ schemes, the first (Λ1) is constructed by |1〉, |2〉 and |4〉, and the second (Λ2) is

defined by |1〉, |3〉 and |4〉. Then, the relation is expected to be

|Ωc|2 � γ2γ4, (2.5.1)

for Λ1, and

|Ωs|2 � γ3γ4, (2.5.2)

for Λ2. The only way to test the validity of our numerical-analysis conclusion that leads to

these two relations, is to compare the product of γ2γ4 to |Ωc|2 for the values presented in

Figs. 2.8(a) and (c), and then do the same for the second window by comparing the product

of γ3γ4 to |Ωs|2 for the value introduced in Figs. 2.7(a) and (c). In case (a) of both figures, the

relations (2.5.2) and (2.5.1) are satisfied and the absorption value is close to zero. However,

for case (c) of both figures, the absorption increases when the relations (2.5.2) and (2.5.1)

are not satisfied. Although we able to examine the validity of (2.5.2) and (2.5.1) for the

cases shown in the Figs. 2.7 and 2.8, it does not mean that this is valid for all cases. We

need to derive these relations analytically to prove their validity in all cases.

In conclusion, the signal field and the coherence decay of level |3〉 are the critical pa-

rameters that affect the absorption and dispersion of the probe field at the second EIT

window, while the coupling field and coherence decay of state |2〉 represent the parameters

that influence the absorption and dispersion at the first EIT transparency window. The

relations (2.5.2) and (2.5.1) are important to achieve minimum absorption and observe the

EIT window for the probe field, if we prove their validity, in general.

2.5.1.2 Parameters Affect Density-Matrix Element %34

Similar to the probe-field cases studied in the previous subsection and shown in Figs. 2.7 and 2.8,

we now examine the signal-field propagation in the atomic medium. In Figs. 2.9 and 2.10
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we plot the imaginary and real parts of %34, which describe the absorption and dispersion of

the signal field by the medium. We used different parameters for each figure, to test their

effects on the two transparency windows of the signal field.
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Figure 2.8: Numerically evaluated steady-state coherences %14 versus probe-field detuning δp for

two different values of coupling-field Rabi frequencies; Ωc = γ4 (dashed line) and Ωc = 2.4γ4 (bold-

dashed line). (a),(b) γ2 = 40 kHz. (c),(d) γ2 = 1 MHz. Other parameters are γ4 = 18 MHz,

γ3 = 5 kHz, Ωs = 0.2γ4, Ωp = 0.2γ4, δs = 0.5Ωc and δc = 0.

Similar to the probe-field case, the coupling-field strength affects the width of the first

EIT transparency window, as well as the dispersion inclination of the signal field. A higher

value of the coupling-Rabi frequency leads to a wider EIT window, and to a lower dispersion

slope in the region of the first window when δpc = 0, as shown in Figs. 2.10(a) and (b)

respectively. The coupling field does not influence the absorption or the dispersion at the

second EIT window.

The dephasing and decay rate from level |2〉 affect the absorption at the first window,

increasing the value of γ2, increases the absorption of the signal field and vice versa (see
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Fig. 2.10(a) and (c)). The decay and dephasing rate from level |2〉 do not influence the

transparency of the second window.

The relation connects the probe-field Rabi frequency to the coherence decay γ3, that

governs the absorption of the signal field at the second window is similar to (2.5.2), but

modified to

|Ωp|2 � γ3γ4, (2.5.3)

while the relation governs the signal-field absorption at the first EIT window, remains the

same as (2.5.1).
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Figure 2.9: Numerically evaluated steady-state coherences %34 versus signal-field detuning δs for

two different values of probe-field Rabi frequencies. Parameter choices are Ωp = 0.1γ4 (dashed line)

and Ωp = 0.6γ4 (bold-dashed line). (a),(b) γ3 = 50 kHz. (c),(d) γ3 = 200 kHz. Other parameters

are γ4 = 18 MHz, γ2 = 40 kHz, Ωc = γ4, Ωs = 0.1γ4, and δc = 0.

We can summarize this subsection in two points: First, The probe field and the coherence

decay of level |3〉 are the critical parameters that effect the absorption and dispersion of the
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signal field at the second EIT window, and the coupling field and coherence decay of state

|2〉 are key parameters that influence the absorption and dispersion at the first EIT window.

Second, the relations (2.5.3) and (2.5.1) are important to achieve minimum absorption and

observe the EIT windows for the signal field.
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Figure 2.10: Numerically evaluated steady-state coherences %34 versus signal-field detuning δs for

two different values of coupling-field Rabi frequencies; Ωc = γ4 (dashed line) and Ωc = 2.4γ4 (bold-

dashed line). (a),(b) γ2 = 40 kHz. (c),(d) γ2 = 1 MHz. Other parameters are γ4 = 18 MHz,

γ3 = 5 kHz, Ωs = 0.2γ4, Ωp = 0.2γ4, and δc = 0.

2.5.2 Analytical Steady-State Solution

A general analytical solution for %14 and %34 is impossible without assumptions or approxi-

mated conditions. Therefore, in our system we impose the equal-population condition

%11 ≈ %33 ≈ 0.5. (2.5.4)

Condition (2.5.4) makes the equations somewhat solvable analytically, as the equations of

motion for population (2.3.7) are effectively decoupled from the equations of motion for
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coherence (2.3.6). We also assume that

Ωc > Ωp,Ωs, (2.5.5)

which implies

|Ωc|2 � |Ωp|2 , |Ωs|2 , (2.5.6)

which is always valid for all chosen values of Ωc, Ωp and Ωs. This assumption makes it possible

to decouple %24 from other coherences, by eliminating the Ω∗s%24 and Ωp%24 terms from %̇23(t)

and %̇12(t) equations in (2.3.6) respectively, because their influence is weak compared to other

terms.

Then, the off-diagonal steady-state density-matrix element %14 can be calculated

%14 = Ωp

i (%11 − %44) + Ωs

γ3−2iδps
%43

γ4 − 2iδp + |Ωc|2
γ2−2iδpc

+ |Ωs|2
γ3−2iδps

, (2.5.7)

where

%43 = Ω∗s
−i (%33 − %44) +

Ω∗p
γ3−2iδps

%14

Γ43 + 2iδs + |Ωc|2
Γ32+2iδsc

, (2.5.8)

is the optical response to the signal field for the |4〉 → |3〉 transition direction and

Γkl = γk + γl. (2.5.9)

We substitute Eq. (2.5.8) into Eq. (2.5.7) to obtain

%14 = iΩp

(%11 − %44)
(

Γ43 + 2iδs + |Ωc|2
Γ32+2iδsc

)
+ (%11 − %44) |Ωp|2

γ3−2iδps
+ (%44 − %33) |Ωs|2

γ3−2iδps(
Γ43 + 2iδs + |Ωc|2

Γ32+2iδsc

)(
γ4 − 2iδp + |Ωc|2

γ2−2iδpc
+ |Ωs|2

γ3−2iδps

)
+ |Ωp|2

γ3−2iδps

(
γ4 − 2iδp + |Ωc|2

γ2−2iδpc

) .
(2.5.10)

Equation (2.5.10) generalizes the previous expression for the response function [57], which

focuses on the special case of equal detuning between all fields and ignores signal-field and

nonlinear probe-field terms.

Our assumption of constant population surprised us with the presence of negative ab-

sorption; in other words, a gain in the absorption profile of the probe field, as shown in
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Fig. 2.11(a). The amplification of the probe field was absent in the numerical solution. To

explain the gain presence and its source, we need to understand each term in the analytical

solution (2.5.10).

The analytical solution (2.5.10) consists of three terms. The imaginary part of the first

term is positive, which is represented by the dashed line in Fig. 2.11 and due to the optical

linear process of the probe field, since the nonlinear term |Ωp|2 in the denominator does

not have an influential effect in the first term, and can be ignored. This is evident from

Eq. (2.5.7), where this term is represented by the first, and excludes any nonlinear terms in

the probe-field Rabi frequency. The first term reflects the expected absorption, which results

of having more population in level |1〉 than level |4〉, and is responsible for the presence of

the EIT windows, as shown in Fig. 2.11.
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Figure 2.11: Im[%14] versus probe-field detuning δp. (a) Ωs = 0.2γ4, Ωp = 0.15γ4. (b) Ωs = Ωp =

0.2γ4. Parameter choices are γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, δs = 9 MHz, and

δc = 0 with all terms of Eq. (2.5.10) included (solid line), %43 ≡ 0 imposed (dashed line), gain term

(dotted-dashed line), nonlinear absorption term (dotted red line) and for Ωs ≡ 0 (dotted line).

With existence of the analytical solution (2.5.10), the presence of EIT windows in the

imaginary profile of the first term can be explained using quantum interference. The EIT

window at δp = δc is due to the destructive interference between the indirect channels for

the excitation |1〉 → |4〉 (which involves the multi-photon transition channels of the coupling
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field between level |2〉 and |4〉 described by |Ωc|2 in the denominator [74]), and the direct

transition of the probe field between |1〉 and |4〉. On other hand, the vanishing of absorption

at δp = δs is due to the destructive interference between the indirect channels, which involves

the multi-photon transitions of the signal field between level |3〉 and |4〉 described by |Ωs|2

in the denominator [74], and the direct transition of the probe field between |1〉 and |4〉.

The second term is proportional to |Ωp|2. It is due to the nonlinear process in the probe

field. The imaginary part of this term reflects the higher order of absorption in the probe

field, which results of having more population in level |1〉 than level |4〉. The third term of

Eq. (2.5.10) is proportional to |Ωs|2, and contributes to the gain if the population in state |3〉

is higher than the population in |4〉. The second and third terms have an influential effect

when δs = δp, and thus cannot be ignored. The validity of ignoring these terms is evident in

Fig. 2.11, near δp = δc = 0, but not far away from the region where the signal and higher-

order probe-field effects are key to interference. Their effect is described by the dotted-red

line and dotted-dashed- black line of Fig. 2.11 respectively.

To explain the parameter choices in Fig. 2.11, we refer to Fig. 2.1. Specifically, we

consider 87Rb and assign |1〉, |2〉 and |3〉 to the 5S1/2 level with F = 1, mF = 0, F = 2 and

mF = {−2, 0} respectively. Level |4〉 corresponds to level 5P1/2 with F = 2 and mF = −1.

The decay rates [61] and field strengths are given in the captions of figures.

The last two terms arise due to signal-driven coherence via |1〉 ↔ |3〉 coherence: %̇13 =

(−1
2
γ3 + iδps)%13 − i

2
(−%14Ω∗s + %43Ωp), which shows that the coherence is responsible for

coupling the signal and probe-driven transitions. This |1〉 ↔ |3〉 coherence is crucial to

establish the requisite interfering channels, in order for the gain to outweigh the effects of

absorption [14, 50].

For perfect EIT, i.e. vanishing linear absorption at δp = δs, the gain which is represented

by the imaginary part of the third term is negative in our system, and exceeds the nonlinear
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absorption represented by the second term by satisfying the following relations

%33 |Ωs|2 > %11 |Ωp|2 , (2.5.11)

where %44 is excluded from the above equation because the population in |4〉 vanishes at

steady state. Since there is no decay from |3〉 to |2〉, any population pumped by the coupling

field to |4〉 will then decay to |1〉 and |3〉 (see Sec. 2.4 for more detail about atom population).

Reaching this point, explains why a net gain is observed when we assume constant pop-

ulation in our analytical solution, and is not observed in the case of a numerical solution.

For equal Ωp and Ωs the population %11 = %33 = 0.5 (see Fig. 2.3(a)). In this case, the

second and third terms cancel each other out, because they are equal and opposite in sign,

as shown in Fig. 2.11(b). Hence, no net gain is observed using either numerical calculation

as in Fig. 2.7(a), or using analytical calculation as in Fig. 2.11(b).

For the case Ωs > Ωp, the population changes such that %11 > %33, as shown in Fig. 2.3(c).

Since the change in the populations of %11 and %33 due to the variation of Ωs occurs in such

a way that condition (2.5.11) always fails in real situations, we do not observe gain in

the numerical calculations, as seen in Fig. 2.7(a). However, the assumption of constant

population while varying the driving field makes (2.5.11) valid when Ωs > Ωp, which is the

case for the analytical solution in Fig. 2.11(a).

In both numerical and analytical analyses, the physical mechanism responsible for the

gain is present, but we require condition (2.5.11) to observe it. If we maintained %11 and %33

constant, we would observe gain in our system. One suggestion to achieve condition (2.5.4),

is to apply incoherent excitation from ground state |1〉 to the excited state |4〉 with a constant

pumping rate rp.

The equations of motion of the density-matrix element with incoherent pumping are

similar to those without incoherent pumping Eqs. (2.3.6) and (2.3.7), differing only in the

replacement

γ4 →γ4 + 2rp, γ3 → γ3 + rp, (2.5.12)
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and

γ2 →γ2 + rp, Γ34 → Γ34 + rp. (2.5.13)

The incoherent pumping adds more dephasing, but does not change the form of the

equations of motion for coherence. As shown in Fig. 2.12, the gain is achieved by applying

incoherent pumping. The incoherent pumping modifies the population in states |1〉 and |3〉

such that %33 > %11. We discuss incoherent pumping in more detail in Chapter 6.
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Figure 2.12: Numerically steady-state density matrix elements (a) Im[%14] and (b) %11 (dotted line)

and %33 (dashed line) versus probe detuning δp, using constant pumping rate rp = 1 MHz. Other

parameters are Ωs = 0.2γ4, Ωp = 0.15γ4, γ4 = 24MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, δs = 13

MHz and δc = 0.

The density master approach shows that coherence between the bare levels |1〉 and |3〉

is crucial for any overall gain. However, it does not describe the precise mechanisms which

provide the gain in the system. The gain in the second window, when δs = δp, could be the

result of one of two physical processes:

The first process is amplification without inversion (AWI), which is defined as amplifi-

cation of a probe-laser field in a system that exhibits no population inversion on the probe

transition in a bare or dressed state. Two conditions are required for this mechanism to

occur [14, 15, 46]. The first condition is destructive quantum interference to prevent any
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absorption of the probe field due to the transition from |1〉 to |4〉, which is satisfied by the

first term of Eq. (2.5.10). The second condition, amplification is taken from the medium via

depletion of the upper operating level, which then requires incoherent pumping to populate

the upper level. This condition is described by the term (%44 − %33) of Eq. (2.5.10). Thus,

the system will always exhibit gain as long as (%44 < %33); however, this raises a question:

What happens if there are no atoms occupy state |4〉, i.e., if %44 = 0? does the t atom-field

exhibit gain when δs = δp? The answer, according to Eq. (2.5.10), is yes. Thus, the gain

exists at the second window, even if there is no atom in the upper state |4〉. Therefore, this

scheme does not qualify as AWI.

The second process that could be responsible for the presence of gain in our system is

Raman scattering, which occurs among the electronic states and works without population

inversion at the operating transition |1〉 → |4〉 (i.e. occurs even with %44 = 0), but needs

population inversion between two lower levels which define the direction of frequency conver-

sion. State |4〉 plays the role of intermediate state in Raman scattering, and states |1〉 and |3〉

represent the initial state and the final state of the electronic-Raman transition respectively.

To observe Raman gain in general, population inversion must occur between state |1〉 and

|3〉. For example, to achieve gain in the probe field (anti-Stokes), the population in state |3〉,

which represents the initial state of Raman transition, must be greater than the population

in state |1〉, which represents the final state of Raman transition; thus %33 > %11. Hence, the

number of scattered signal photons required to stimulate the emission of probe photons is

greater than the number of absorbed probe photons. Thus, the stimulated emission of the

probe photon will be greater than the absorbed probe photon, and as a result the probe field

is amplified. To amplify the signal field (stokes) %11 must be greater than %33. In this case,

scattering of the probe field induces emission in the signal field. The gain in our system is

due to Raman scattering, but instead of the requirement of %11 > %33, condition (2.5.11) is

required to amplify the probe field.
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The analytical optical response of the signal field is described by

%34 = iΩs

(%33 − %44)
(
γ4 + 2iδp + |Ωc|2

γ2+2iδpc

)
+ (%33 − %44) |Ωs|2

γ3+2iδps
+ (%44 − %11) |Ωp|2

γ3+2iδps(
Γ43 − 2iδs + |Ωc|2

Γ32−2iδsc
+ |Ωp|2

γ3+2iδps

)(
γ4 + 2iδp + |Ωc|2

γ2+2iδpc

)
+ |Ωs|2

γ3+2iδps

(
Γ43 − 2iδs + |Ωc|2

Γ32−2iδsc

) .
(2.5.14)

The corresponding absorption curve for the signal field is plotted in Fig. 2.13. Similar to the

probe-field case, we observe two EIT windows in the signal-field absorption plot, and gain

in the second window.

The analytical solution of %34 also consists of three terms. The imaginary part of the first

term is positive. It is described by the dashed line in Fig. 2.13, and is due to the optical

linear process of the signal field, since the nonlinear term |Ωs|2 in the denominator doesn’t

have any influential effect in the first term, and thus can be ignored. The first term reflects

the expected absorption, which results of having more population in |3〉 than level |4〉, and

is responsible for the existence of the EIT transparency windows, as shown in Fig. 2.13.

The EIT transparency window at δs = δc is due to the destructive interference between

the indirect channels for the excitation |3〉 → |4〉, which involves multi-photon transition

channels of the coupling field between levels |2〉 and |4〉, as described by the |Ωc|2 term

in the denominator [74], and the direct transition of the signal field between |3〉 and |4〉.

The EIT transparency window at δp = δs is due to the destructive interference between the

indirect channels that involve multi-photon transitions of the probe field between levels |1〉

and |4〉, described by |Ωp|2 term in the denominator [74], and the direct transition of the

signal field between |3〉 and |4〉.

The second term is proportional to |Ωs|2. Its imaginary part represents the nonlinear

absorption in the signal field, which results of having more population in level |3〉 than

level |4〉. The third term in Eq. 2.5.14 is proportional to |Ωp|2, and contributes to the gain

as long as the population in state |1〉 is higher than the population in |4〉. Terms two and

three cannot be ignored when δs = δp. The validity of ignoring these two terms is evident

in Fig. 2.13 near δp = δc = 0, but not far from the region where the probe and higher-order
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signal field effects play a crucial role in the interference. The effects are described by the

dotted-dashed black line and the dotted-red line in Fig. 2.13 respectively.
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Figure 2.13: Im[%34] versus signal-field detuning δs. (a) Ωs = 0.15γ4 and Ωp = 0.2γ4. (b) Ωs =

Ωp = 0.2γ4 for γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, δs = 9 MHz and δc = 0, with

all terms of Eq. (2.5.14) included (solid line), %41 ≡ 0 imposed (dashed line), the gain term (dotted

red line) and the nonlinear absorption term (dotted-dashed line).

The amplification can be understood as a Raman gain by ignoring level |2〉, and con-

sidering only the Λ system that corresponds to the three levels |1〉, |3〉 and |4〉. Under

the two-photon resonance condition, the probe pumps and the signal behave as a Stokes

field [75–77]. However, for perfect EIT at δp = δs, Raman gain can be observed in the signal

profile without population inversion between the states of the Raman transition. But, it still

needs to overcome the nonlinear absorption in the system by satisfying following condition

%11|Ωp|2 > %33|Ωs|2 (2.5.15)

to amplify the signal field (Stokes).

EIT effects introduce new physics, specifically the following normal Raman-gain condi-

tions that are not required in our system: The pump does not need to be much stronger than

the Stokes field, population inversion of the lower levels is not required (but still requires

validation of (2.5.11) and (2.5.15), and detuning from the upper level can be minor.
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Equations (2.5.10) and (2.5.14) show the dependence on population differences %11 − %44

and %33 − %44, which reduces to the usual Raman population condition %33 − %11 in the

limit |Ωs| = |Ωp|. From (2.5.11) and (2.5.15), amplifying one field means increasing the

absorption of the other. When %11|Ωp|2 = %33|Ωs|2 the gain term will cancel the nonlinear

absorption in both Eq. (2.5.10) and Eq. (2.5.14), and only the linear response survives for

both the probe and signal fields, as shown in Figs. 2.11(b) and 2.13(b).

2.5.3 Semi-Classical Dressed-State Analysis

In this section, we further investigate using semi-classical dressed picture [39, 78, 79]. Al-

though the semi-classical dressed equations may not provide analytical simplification, they

do help obtain interpretations of the ongoing physical processes, which could be helpful in

understanding the atom-field interactions. This differs from the conventional dressed atom

picture, in which the field is assumed to be classical, while in the conventional dressed atom

picture the electromagnetic field is quantized.

We assume the bare states |2〉 and |4〉 are strongly coupled by Ωc, whereas Ωp and Ωs

provide weak coupling between |1〉 and |4〉, and |3〉 and |4〉 respectively. The semi-classical

dressed basis is obtained by applying a unitary transformation on the bare basis state vector

|D〉 = ÛT |ψ〉 , (2.5.16)

where |D〉 is the dressed state with basis vectors |+〉, |−〉, |D1〉, and |D3〉, |ψ〉 is the bare

state with basis vectors |1〉, |2〉, |3〉, and |4〉, and ÛT is the unitary transformation matrix

defined by

ÛT =



1 0 0 0

0 ϑ 0 ϑς

0 0 1 0

0 −ϑς 0 ϑ


(2.5.17)

The dressed state |+〉 is symmetric coherent superposition of the two bare states |2〉 and |4〉,

and the dressed state |−〉 is antisymmetric coherent superposition of the two bare states |2〉
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and |4〉, while the dresses states |D1〉 and |D3〉 are the same as |1〉 and |3〉 respectively in

the bare picture. That is

|+〉 = ϑς |4〉+ ϑ |2〉 , (2.5.18)

|−〉 = ϑ |4〉 − ϑς |2〉 , (2.5.19)

|D1〉 = |1〉 , (2.5.20)
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Figure 2.14: Plot of Im(%1±) versus probe detuning δp for the same parameters as in Fig. 2.13(a)

with %1+ (dashed line), %1− (dotted line) and %1+ + %1− (solid line).

and

|D3〉 = |3〉 , (2.5.21)

where ς := R+δc
Ωc

, with R :=
√
|Ωc|2 + δ2

c and ϑ := 1√
1+|ς|2

. For simplification, we assume

the Rabi frequency to be real. The dressed state |+〉 has an eigenvalue shift from state |4〉

by ω+ = δc+R
2

, and |−〉 has an eigenvalue shift by ω− = δc−R
2

. For δc = 0, ω+ = Ωc

2
and

ω− = −Ωc

2
. The t atom-field configuration in the semi-classical dressed state for a strong

coupling field are shown in Fig. 2.1(b).

Mathematically, the semi-classical dressed density matrix is obtained by the unitary

transformation [78, 79]

% 7→ ÛT%Û
†
T. (2.5.22)
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In this semi-classical dressed basis

%1− =

(
ϑς +

iϑΩc

γ2 − 2iδpc

)
%14, (2.5.23)

and

%1+ =

(
ϑ− iϑςΩc

γ2 − 2iδpc

)
%14, (2.5.24)

as plotted in Fig. 2.14. Equations (2.5.23) and (2.5.24) are useful because the undressed

state %14 corresponds to the interfering channel described by %1±. Using Figs. 2.11, 2.14, and

2.1(b) we have clear interpretation of the ongoing physical processes.

First, consider the case of Ωs ≡ 0, which decouples |3〉 from the dynamics and restores

ordinary Λ-atom EIT. The semi-classical dressed picture of Fig. 2.1(b) clarifies the dynamics

where we introduce two dressed states |±〉. The Ωs ≡ 0 line in Fig. 2.11 shows two EIT

absorption peaks at δp±, corresponding to |1〉 ↔ |±〉 transitions respectively.

For Ωs 6= 0, Fig. 2.11 shows that the second absorption peak at δp+ is split by a trans-

parency window with negative absorption (i.e. gain). This splitting of the second peak is

due to the formation of a double-Λ electronic structure [80], as shown in Fig. 2.1(b). Specif-

ically, level |+〉 gives the absorption peak at δp−, but the peak at δp+ is split by competing

transitions |1〉 ↔ |−〉 and |3〉 ↔ |−〉.

This explanation of competing transitions clarifies the splitting of the δ+
p peak, but not

the presence of gain in the second EIT window (δp = δs). In Fig. 2.14, gain in %1+ is apparent

over a wide domain of δp, but is cancelled everywhere in the sum %1+ +%1− except the narrow

second EIT window. This gain is due to off-resonant driving to one of the upper levels, and

Im%1± contributing to Im%14. The gain for the |1〉 ↔ |+〉 is overcome by the loss due to

driving the |1〉 ↔ |−〉 transition at or near resonance. This loss negates the gain for the

probe transition, except in the narrow window, as shown in Fig. 2.14.
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2.6 Summary

To summarize, we have shown that the steady-state atomic population for a t atom-field

system depends on probe-field detuning, due to the dark-state reliance of probe-field detun-

ing. Thus, changing the probe-field detuning modifies the steady-state population in each

energy state if the probe field has comparable strength to the signal field, even if both are

relatively weak compared to the coupling-field strength. However, the dependence of atomic

population on probe-field detuning decreases as the probe-field strength become weaker than

the signal-field strength.

We have also shown that t atom-field electronic structure in a four-levels atom can

produce significant outcomes; in particular, DDEIT with gain for constant-population as-

sumptions.

EIT effects introduce new physics, specifically the following normal Raman-gain condi-

tions that are not required for our system: The pump does not need to be much stronger than

the Stokes field, population inversion of the lower levels is not required, though it requires

validation of (2.5.11) and (2.5.15), and detuning from the upper level can be minor.

We used a semi-classical dressed picture to connect the t electronic structure to a double-

Λ electronic structure, to explain how each signal and probe fields interacts with DEIT

windows. This representation simplifies the master equation, and provides an intuitive un-

derstanding of t atom-field coherent phenomena, particularly those that would otherwise

seem complicated and dispersed.

In the well-studied case of DEIT, a signal and a probe would each have an EIT window,

and both could be decelerated at the same time and interact via XPM. In our case, DDEIT

exhibits DEIT for both the first and second EIT windows of the signal and the probe.
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Chapter 3

Linear and Nonlinear-Optical Susceptibility of Tripod

Atom-Field Configuration

3.1 Introduction

In the previous chapter, the density matrix element was used to characterize the absorption

and dispersion of an applied field within the medium. However, the origin of the relation

connecting the density matrix element to the optical properties, in response to a material

system of an applied field, is discussed here. In this chapter, the derivation of the wave

equation from Maxwell’s equation, in which the polarization acts as a source term, will

be addressed first. With the help of the quantum mechanical rule discussed in (2.3.2), an

expression for the mean value of the polarization or an ensemble of four-level atoms of t

structure is found, in terms of density matrix elements. The relation is used to extract

all information about linear and nonlinear optical properties of the t atom-field system in

response to the applied field, as well as to offer a full description of the optical system. At

this stage, cases of low temperature are focused on, and the Doppler broadening effect is

ignored, as this will be discussed in Chapter 6.

Concerning the linear optical response, the required conditions were derived, to attain

minimum absorption of the probe and signal fields at the EIT windows and to determine the

parameters affecting the width of transparency windows and group velocities in the region

of the EIT windows. Further, at the end of the linear optical susceptibility investigation,

the conditions required to match the group velocities of the probe and signal fields at the

region of the second EIT window were discovered.

For the nonlinear optical response of the t atom-field configuration, the phase- matching
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conditions are satisfied automatically. The propagation-probe and signal waves are subject

to two types of nonlinear-phase shift. One is due to the action of the propagation wave,

which produces SPM, and the second is due to the action of other waves, which produce

XPM. A technique to enhance the nonlinear-phase shift by controlling the propagation wave

detuning was offered. Additionally, the existence of Raman gain under EIT conditions was

revealed, displaying new conditions in which Raman gains can occur.

3.2 Propagation of Electromagnetic Wave in Nonlinear Medium

To examine light propagation through the medium, Maxwell’s equations are used as a starting

point for macroscopic variables in differential forms. The divergence relations are [2, 81]

∇ ·D = ρch,

∇ ·B = 0, (3.2.1)

and the curl relations are [2, 81]

∇×E = −∂B
∂t

,

∇×H =
∂D

∂t
+ J , (3.2.2)

where ρch and J are the electric charge and current densities, respectively. In this thesis,

material is dealt with that has no free charges, and in which there is no current flow. There-

fore, ρch and J will always be zero. Nonmagnetic media is the focus here, for which the

following can be written

B = µ0H , (3.2.3)

where B is the magnetic-induction vector, H is the magnetic field and µ0 is free-space

permeability. The electric induction D is related to the electric field and induced-dipole

polarization P through the constitutive relation [2, 81]

D = ε0E + P , (3.2.4)
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with ε0 being free-space permittivity of . The higher order multi-pole polarizations are

neglected because they are very weak in comparison. In vacuum, P is zero. When light

propagate in the medium, however, the electric field causes distortion in atomic structure,

creating local dipole moments, and thereby induced a polarization depends on E. The

dependence of P on the time history, spatial inhomogeneities, and field intensity leads to

interesting and nontrivial behavior in the propagation of light. When the medium is isotropic

(meaning that the polarization is parallel to the applied electric field, and that each compo-

nent of P is linearly proportional to each component of E) and responds instantaneously to

the electric field, P is simply [81]

P = ε0χ(ω)E, (3.2.5)

where the electric susceptibility χ(ω) in this case is scalar. Appendix C.1 further discusses

the relationship between the applied electric field and the induced electric polarization.

To derive the vector wave propagation equation of an electric field, ∇× is operated on

the first equation of (3.2.2), and operate µ0
∂
∂t

on the second. Next, we use Eq. (3.2.3) to

substitute H by B. By subtracting the two equations, the following is obtained [2]

∇×∇×E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
. (3.2.6)

This is the most general form of the wave equation in nonlinear optics. It can be simplified

using the calculus identity

∇×∇× F = ∇(∇ · F )−∇2F . (3.2.7)

Then, (3.2.6) becomes

∇(∇ ·E)−∇2E = − 1

c2

∂2E

∂t2
− µ0

∂2P

∂t2
. (3.2.8)

The first term in the left-hand side vanishes in linear optics of isotropic media because

∇·D = 0, which implies that ∇·E = 0. However, in nonlinear optics this term is generally

nonvanishing, due to the general relation (3.2.4). However, vanishes if E is transverse,
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infinite plane wave or can be neglected because it is very small specially when the slowly

varying amplitude approximation is valid [81]. This study is concerned with cases in which

a slowly varying amplitude approximation is valid. Then, the wave equation (3.2.8) can be

taken to have the form

∇2E − 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
. (3.2.9)

Depending on the particular problem, it may be decided to work in the time domain, as

in (3.2.9) or instead transform to the frequency domain, by expressing E(t) and P (t) in

terms of their Fourier transforms given by (C.1.5) and (C.1.6) of Appendix C, respectively.

∇2E(ω) +
ω2

c2
E(ω) = −µ0ω

2P (ω), (3.2.10)

where the following fact is used

∂n

∂t
F (t) = (iω)nF (ω). (3.2.11)

3.3 Microscopic Polarization

To obtain the expectation value of the atomic polarization, a macroscopic electric field,

E(z, t), ), is applied to a small volume V of the medium. We assume that V contains N

four-level atoms, and denotes the position vector of the  electron by r. Then, the dipole

moment of the charged particles within the small volume V is [77]

d = −e
∑


r, (3.3.1)

and the expectation value of the atomic polarization in terms of the dipole moment is [77]

P =
N〈d〉

V
. (3.3.2)

The expectation value of the dipole moment is determined by Eq. (2.3.2)

P =
N

V
Tr(dρ). (3.3.3)
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By evaluating the trace for the four-level system, the following is obtained

P =
N

V
(d21ρ12 + d31ρ13 + d41ρ14 + d32ρ23 + d42ρ24 + d43ρ34 + c.c.), (3.3.4)

with ρij being the density matrix element in the original frame. As the transitions between

the states |1〉, |2〉 and |3〉 are dipole forbidden, we use (2.2.9), which reduces (3.3.4) to

P = N (d41ρ14 + d42ρ24 + d43ρ34 + c.c.), (3.3.5)

with N = N
V

as the atom density. In the following, the notation |ı〉 → |〉 indicates a one-way

transition, that is, a transition from level |ı〉 to level |〉. The notation |ı〉 ↔ |〉 indicates

two-way transitions, that is a transition from level |ı〉 to level |〉 and from level |〉 back to

level |ı〉.

Each term in Eq. (3.3.5) describes the induced polarization of the |i〉 → |j〉 transition. In

the atom-field system, the optical response of the medium to the probe field and the signal

field is studied, so the terms that oscillate with ωp and ωs are tracked. As the probe field is

coupled |1〉 ↔ |4〉 transition, these terms exist in d41ρ14 and its conjugate. The term d41ρ14

describes the induced optical polarization by the probe field in the |1〉 → |4〉 transition

direction, while its conjugate d14ρ41 describes the induced optical polarization by the probe

field in the |4〉 → |1〉 transition direction. As with the signal field, the terms that oscillate

with ωs exist in d43ρ34 and its conjugate. Then, the following can be written as

pce
iωct = Nd42ρ24 = Nd42%24e

iωct, p∗ce
−iωct = Nd24ρ42 = Nd24%42e

−iωct, (3.3.6)

ppe
iωpt = Nd41ρ14 = Nd41%14e

iωpt, p∗pe
−iωpt = Nd14ρ41 = Nd14%41e

−iωpt,

pse
iωst = Nd43ρ34 = Nd43%34e

iωst, p∗se
−iωst = Nd34ρ43 = Nd34%43e

−iωst,

Using Appendix C Eqs. (C.1.2) and (C.1.24) in vector notation, optical susceptibility up to

the third order of the density matrix element is related by

ε0χ
(1)(ωp)ξp(t) + ε0

∑
l

K(ωp;ωc, ωp, ωs)χ
(2)(ωp;ωc, ωp, ωs)ξl(t)ξp(t) (3.3.7)

+ ε0
∑
ab

K(ωp;ωc, ωp, ωs)χ
(3)(ωp;ωc, ωp, ωs)ξa(t)ξb(t)ξp(t) = Nd41%14,
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where K is defined in (C.1.15), and l, a and b varies over the different applied electric field

modes. The signal field is similar

ε0χ
(1)(ωs)ξs(t) + ε0

∑
l

K(ωs;ωc, ωp, ωs)χ
(2)(ωs;ωc, ωp, ωs)ξl(t)ξs(t) (3.3.8)

+ ε0
∑
ab

K(ωs;ωc, ωp, ωs)χ
(3)(ωs;ωc, ωp, ωs)ξa(t)ξb(t)ξs(t) = Nd43%34.

For centrosymmetric materials which display inversion symmetry, such as gases and liquids,

χ(2) vanishes identically [81]. Then (3.3.7) and (3.3.8) reduces to following respectively

ε0χ
(1)(ωp)ξp(t) + ε0

∑
ab

K(ωp;ωc, ωp, ωs)χ
(3)(ωp;ωc, ωp, ωs)ξa(t)ξb(t)ξp(t) = Nd41%14,

(3.3.9)

and

ε0χ
(1)(ωs)ξs(t) + ε0

∑
ab

K(ωs;ωc, ωp, ωs)χ
(3)(ωs;ωc, ωp, ωs)ξa(t)ξb(t)ξs(t) = Nd43%34,

(3.3.10)

It is convenient to introduce χp and χs defined as

χp = χ(1)(ωp) +
∑
ab

K(ωp;ωc, ωp, ωs)χ
(3)(ωp;ωc, ωp, ωs)ξa(t)ξb(t), (3.3.11)

and

χs = χ(1)(ωs) +
∑
ab

K(ωs;ωc, ωp, ωs)χ
(3)(ωs;ωc, ωp, ωs)ξa(t)ξb(t), (3.3.12)

respectively. Then (3.3.9) and (3.3.10) become

ε0χp(ωp)ξp(t) = Nd41%14, (3.3.13)

and

ε0χs(ωs)ξs(t) = Nd43%34, (3.3.14)

respectively. From the two relations above, it can be concluded that the rotated frame

density matrix elements %14 and %34 carry all the optical responses of the medium to the
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probe and signal fields, respectively. As the imaginary part of optical susceptibility describes

the absorption, and the real part describes the dispersion, the density matrix elements %14

and %34 will give the same description. The imaginary part of %14 and %34 describe how the

probe and signal fields are absorbed and amplified by the medium, while the dispersion of

the probe and signal are described by the real parts of %14 and %34 respectively.

3.4 Linear Optical Susceptibility and Linear Optical Parameters.

First, the solutions of the wave equation in the linear regime are considered. An expression

for polarization is obtained from (C.1.8) for the case m = 1

P (ω) = ε0χ
(1)(ω)E(ω). (3.4.1)

By inserting (3.4.1) into (3.2.10) the following is obtained

∇2E(ω) +
ω2

c2

[
1 + χ(1)(ω)

]
E(ω) = 0. (3.4.2)

The dielectric tensor is defined as

ε(ω) = 1 + χ(1)(ω), (3.4.3)

then (3.4.2) becomes

∇2E(ω) +
ω2

c2
ε(ω)E(ω) = 0. (3.4.4)

Assuming that the dielectric tensor does not depend on the coordinates, (i.e.; homogeneous

media), possible set of solutions are running waves

E(r, ω) = ξ0e
± iω
c

√
ε(ω)·r. (3.4.5)

For simplicity, it can be assumed that Eq. (3.4.5) describes a planar wave traveling along

the z-axis. This depends on the exponential sign in (3.4.5) whether the wave is running into

the positive or negative direction. If a wave running in a positive direction is selected, the

following is obtained

E(ω) = ξ0e
iω
c

√
ε(ω)z. (3.4.6)
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ξ0 is the field amplitude at z = 0.

If (3.4.6) is examined in more detail, it is found that the dielectric function may be

complex, hence it has imaginary and real parts. The square root will also be a complex

function. Therefore, the following is produced

√
ε(ω) = Re

[√
ε(ω)

]
+ iIm

[√
ε(ω)

]
. (3.4.7)

By substituting (3.4.7) into (3.4.6) the following occurs

E(ω) = ξ0e
iω
c

Re
[√

ε(ω)
]
z−ω

c
Im
[√

ε(ω)
]
z
. (3.4.8)

Equation (3.4.8) describes a damped wave with a z-dependent amplitude

E(ω) = ξ0e
−ω
c

Im
[√

ε(ω)
]
z
. (3.4.9)

Further, the phase

φ =
ω

c
Re
[√

ε(ω)
]
z. (3.4.10)

Therefore, the propagation constant is

k(ω) =
ω

c
n(ω), (3.4.11)

which has reciprocal length unit, and the refractive index n(ω)

n(ω) = Re
[√

ε(ω)
]
. (3.4.12)

The intensity of wave is proportional to the square of the field modulus

I ∝ |E|2 , (3.4.13)

the intensity damps inside the medium as

I = I0e
−2ω

c
Im
[√

ε(ω)
]
z

= I0e
−αz, (3.4.14)
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where I0 is the intensity of the light at the entrance of medium. This exponential decay

of light intensity for wave traveling in a lossy medium is well known as Lambert’s law of

absorption with a frequency-dependent absorption coefficient α defined as

α(ω) = 2
ω

c
Im
[√

ε(ω)
]
. (3.4.15)

The absorption coefficient is given in reciprocal length units. The reciprocal value of the

absorption coefficient is sometimes called penetration depth.

Another interesting parameter measure how fast the actual energy travels can be de-

termined from the fundamental relation (3.4.11), and is called group velocity. The group

velocity is important when there are number of electric waves with slightly different frequen-

cies travel together, each with different phase velocity

vp =
ω

k(ω)
. (3.4.16)

The group velocity then, is the velocity of envelope wave of all the individual different

frequencies defined by

vg =
∂ω

∂k(ω)
. (3.4.17)

Using (3.4.11), the following can be written

∂k(ω)

∂ω
=
n(ω)

c
+
ω

c

∂n(ω)

∂ω
. (3.4.18)

Then the group velocity is just the reciprocal of (3.4.18)

vg =
c

n(ω) + ω ∂n(ω)
∂ω

. (3.4.19)

Now, all linear optical parameters necessary to describe the light propagation inside an opti-

cal medium are in existence. Once the optical susceptibility is known, the optical parameters

given by (3.4.11), (3.4.15) and (3.4.19) can be determined.

Before further describing the atom-field system, the optical parameter equations, (3.4.12)

and (3.4.15), are simplified, focusing on the case of nonlinear optics, where the imaginary and
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real parts of the linear optical susceptibility are less than one, which implies that |χ(ω)| < 1.

For √
ε(ω) =

√
1 + χ(1)(ω), (3.4.20)

we can use the Taylor series of
√

1 + χ(1)(ω) about χ(1)(ω) = 0 that converges for |χ(ω)| ≤ 1

√
1 + χ(1)(ω) = 1 +

χ(1)(ω)

2
−
(
χ(1)(ω)

)2

8
+

(
χ(1)(ω)

)3

16
+ · · · , (3.4.21)

Keeping only the first two terms, while neglecting the higher order terms we get√
1 + χ(1)(ω) ≈ 1 +

χ(1)(ω)

2
= 1 +

Re
[
χ(1)(ω)

]
2

+
Im
[
χ(1)(ω)

]
2

. (3.4.22)

Then, the real and the imaginary parts of the optical susceptibility can be written as

Re
[√

ε(ω)
]
≈ 1 +

Re
[
χ(1)(ω)

]
2

, (3.4.23)

and

Im
[√

ε(ω)
]
≈

Im
[
χ(1)(ω)

]
2

. (3.4.24)

Consequently, Eq. (3.4.12) becomes

n(ω) ≈ 1 +
Re
[
χ(1)(ω)

]
2

, (3.4.25)

and Eq. (3.4.15) can be written as

α(ω) ≈ ω

c
Im
[
χ(1)(ω)

]
. (3.4.26)

Using Eq. (3.3.13) with the definition of the Rabi frequency Eq. (2.2.11), the probe-field

optical susceptibility can be written as

χp(ω) = ηp
%14

Ωp

, (3.4.27)

with %14 is defined by (2.5.10), and

ηp =
N |d41|2

ε0}
. (3.4.28)
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As with the probe field, using (3.3.14) and the definition Rabi frequency in (2.2.11), it is

possible to write the signal-field optical susceptibility, in term of the density matrix element

as

χs(ω) = ηs
%34

Ωs

, (3.4.29)

with %34 is defined by (2.5.14), and

ηs =
N |d43|2

ε0}
. (3.4.30)

From (3.4.27), (2.5.10) and (3.3.11) we can define the optical susceptibility of the atom-field

system oscillating in the probe-field frequency, up to third order as

χp(ω) = χ(1)
p (ω) + χ(NL)

p (ω), (3.4.31)

where

χ(NL)
p (ω) = χ(3)

p1
(ω)
∣∣∣ξpf

∣∣∣2 + χ(3)
p2

(ω)
∣∣ξsf

∣∣2 . (3.4.32)

The first term of Eq. (3.4.31) is the linear optical susceptibility, defined by

χ(1)
p (ω) =

iηp(%11 − %44)

γ4 − 2iδp + |Ωc|2
γ2−2iδpc

+ |Ωs|2
γ3−2iδps

. (3.4.33)

While the second term of Eq. (3.4.31) represents the nonlinear optical susceptibility, which

is used to describe the nonlinear process, with

χ(3)
p1

(ω) =
iηp1

(%11 − %44)

(γ3 − 2iδps)
(

Γ43 + 2iδs + |Ωc|2
Γ32+2iδsc

) × 1−
γ4−2iδp+

|Ωc|2
γ2−2iδpc

γ4−2iδp+
|Ωc|2

γ2−2iδpc
+
|Ωs|2

γ3−2iδps

γ4 − 2iδp + |Ωc|2
γ2−2iδpc

+ |Ωs|2
γ3−2iδps

, (3.4.34)

and

χ(3)
p2

(ω) =
iηsp (%44 − %33)

(γ3 − 2iδps)
(

Γ43 + 2iδs + |Ωc|2
Γ32+2iδsc

) × 1

γ4 − 2iδp + |Ωc|2
γ2−2iδpc

+ |Ωs|2
γ3−2iδps

, (3.4.35)

are the third-order nonlinear optical susceptibilities at probe-field frequency, with

ηp1
=
N |d41|4

}3ε0
, (3.4.36)
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and

ηsp =
N |d41|2 |d43|2

}3ε0
. (3.4.37)

Similar to the probe-field case, the linear and third-order nonlinear optical susceptibilities

for the signal field can be written using (3.4.29), (2.5.8) and (3.3.12) as

χs(ω) = χ(1)
s (ω) + χ(NL)

s (ω), (3.4.38)

with

χ(NL)
s (ω) = χ(3)

s1
(ωs)

∣∣ξsf

∣∣2 + χ(3)
s2

(ω)
∣∣∣ξpf

∣∣∣2 , (3.4.39)

is the nonlinear optical susceptibility. The linear-optical susceptibility at signal-field fre-

quency is defined by

χ(1)
s (ω) =

iηs (%33 − %44)

Γ43 − 2iδs + |Ωc|2
Γ32−2iδsc

+ |Ωp|2
γ3+2iδps

. (3.4.40)

The nonlinear terms of optical susceptibility present in Eq. (3.4.39) are defined by

χ(3)
s1

(ω) =
iηs1 (%33 − %44)

(γ3 + 2iδps)
(
γ4 + 2iδp + |Ωc|2

γ2+2iδpc

) × 1−
Γ43−2iδs+

|Ωc|2
Γ32−2iδsc

Γ43−2iδs+
|Ωc|2

Γ32−2iδsc
+
|Ωp|2

γ3+2iδps

Γ43 − 2iδs + |Ωc|2
Γ32−2iδsc

+ |Ωp|2
γ3+2iδps

, (3.4.41)

and

χ(3)
s2

(ω) =
iηsp (%44 − %11)

(γ3 + 2iδps)
(
γ4 + 2iδp + |Ωc|2

γ2+2iδpc

) × 1

Γ43 − 2iδs + |Ωc|2
Γ32−2iδsc

+ |Ωp|2
γ3+2iδps

, (3.4.42)

are the third-order nonlinear-optical susceptibilities at signal-field frequency, with

ηs1 =
N |d43|4

}3ε0
, (3.4.43)

This section has restricted its discussion to the linear term of optical susceptibility, repre-

sented by (3.4.33) and (3.4.40). Discussion of the nonlinear terms, described by Eqs. (3.4.34),

(3.4.35), (3.4.41), and (3.4.42) follows later.

Linear Optical Susceptibility and Linear Optical Parameters. 69



-5-10 5 10
∆p HMHzL

-0.1

0.1

0.2

0.3
Im@Χp

H1LD

(a)

-5-10 5 10
∆p HMHzL

-0.1

-0.2

0.1

0.2
Re@Χp

H1LD

(b)

-5-10 5 10
∆s HMHzL

-0.1

0.1

0.2

0.3
Im@Χs

H1LD

(c)

-5-10 5 10
∆s HMHzL

-0.1

-0.2

0.1

0.2
Re@Χs

H1LD

(d)

Figure 3.1: Im[χ
(1)
l ] and Re[χ

(1)
l ] as function of the field detuning δl, with l ∈ {p, s} and approxi-

mate linear equation determined by finding the derivative of dispersion using (6.3.30) (dashed line).

(a),(b) Ωs = 0.2γ4 and δs = 9 MHz. (c),(d) Ωp = 0.2γ4 and δp = 9 MHz. Other parameters are

γ4 = 18 MHz, Ωc = γ4, γ3 = 1 kHz, γ2 = 40 kHz, δc = 0, %11 = %33 = 0.5, N = 1× 1014 cm−3, and

using 87Rb atom dipole moments |d14| = |d34| = 1.269× 10−29 C·m.

The linear optical response is shown in Fig. 3.1. We plot the imaginary and real parts

of the linear optical susceptibility for the probe field in Figs 3.1(a) and 3.1(b) respectively,

while for the signal-electric field in Fig. 3.1(c) and Fig. 3.1(d) respectively. The real and

Imaginary parts of the linear optical susceptibility for both field almost vanishes at δp,s = δc,

the center of the first EIT window and at δp = δs, the center of the second EIT window.
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3.4.1 Absorption Constant

According to Eq. (3.4.26), the absorption constant of the probe field, as function of the

frequency detuning δp is defined by

αp1
=
ω41 − δp

c
Im
[
χ(1)

p (ωp)
]
, (3.4.44)

with χ
(1)
p (δp) is defined by (3.4.33) and ω41 is the transition frequency of |1〉 → |4〉 as defined

in (2.2.20) and (2.2.22).

The minimum absorption occurs at δp = δc = 0 and at δp = δs. The equation of the

probe field absorption constant at δp = δc = 0

αp1
=
ω41

c
Im
[
χ(1)

p

]
minp1

, (3.4.45)

with Im
[
χ

(1)
p

]
minp1

determined by setting Ωs = 0 in Eq. (3.4.33) but Ωc 6= 0, then evaluating

the imaginary part at δp = δc = 0. We obtain

Im
[
χ(1)

p

]
minp1

=
ηp (%11 − %44) γ2

γ4γ2 + |Ωc|2
γ2→0−−−→ 0, (3.4.46)

with zero absorption attained for γ2 = 0. If γ2 6= 0, then the minimum absorption is reached

when

|Ωc|2 � γ4γ2. (3.4.47)

The equation for the absorption of the signal field when δs = δc = 0

αs1 =
ω43 − δs

c
Im
[
χ(1)

p (ωs)
]
, (3.4.48)

where the minimum signal-field absorption occurs for

αs1 =
ω43

c
Im
[
χ(1)

s

]
mins1

, (3.4.49)

with Im
[
χ

(1)
s

]
mins1

determined by setting Ωp = 0 in Eq. (3.4.40) but Ωc 6= 0, then evaluating

the imaginary part at δs = δc = 0. We obtain

Im
[
χ(1)

s

]
mins1

=
ηs (%33 − %44) Γ32

Γ43Γ32 + |Ωc|2
Γ32→0−−−→ 0, (3.4.50)
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Figure 3.2: Im[χ
(1)
l ] and Re[χ

(1)
l ] as function of the field detuning δl, with l ∈ {p, s} for γ2 = 1 kHz

(dashed line) and γ2 = 10 MHz (bold-dashed line). (a),(b) Ωs = 0.2γ4 and δs = 9 MHz. (c),(d)

Ωp = 0.2γ4 and δp = 9 MHz. Other parameters are γ4 = 18 MHz, Ωc = γ4, γ3 = 1 kHz, δc = 0,

%11 = %33 = 0.5, N = 1 × 1014 cm−3, and using 87Rb atom dipole moments |d14| = |d34| =

1.269× 10−29 C·m.

with zero absorption attained for Γ32 = 0. If Γ32 6= 0, then the minimum absorption is

reached when

|Ωc|2 � Γ43Γ32. (3.4.51)

Although, γ3 affects the absorption of the signal field as is evident from the denominator of

(3.4.50), Eqs. (3.4.47) and (3.4.51) are consistent with the expectation in (2.5.1) for γ4 � γ3.

Figure 3.2 shows how the coherence decay including spontaneous decay and dephasing from

state |2〉 affects the absorption of the probe and signal fields at the first EIT window. When

the value of γ2 satisfies conditions (3.4.47) and (3.4.51), the absorption is close to zero. With
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higher values of γ2 for which (3.4.47) and (3.4.51) are not correct, the absorption increases.

In order to calculate the minimum absorption for the second transparency window when

δp = δs, we set Ωp 6= 0, Ωs 6= 0 and Ωc 6= 0 under the approximation that

γ4 �
|Ωc|2

2δ2
sc

γ2

2
, (3.4.52)

and evaluate Im
[
χ

(1)
p

]
and Im

[
χ

(1)
s

]
from Eq. (3.4.33) and Eq. (3.4.40) to obtain the absorp-

tion minimum of probe field

Im
[
χ(1)

p

]
minp2

= ηp
(%11 − %44) γ3

γ4γ3 + |Ωs|2
, (3.4.53)

and the absorption minimum of signal field

Im
[
χ(1)

s

]
mins2

= ηs
(%33 − %44) γ3

Γ43γ3 + |Ωp|2
, (3.4.54)

respectively. If it is necessary to reduce absorption, decay from level |3〉 must be minimized,

i.e., γ3 → 0. For the case γ3 6= 0, the condition

|Ωs|2 � γ3γ4, (3.4.55)

is required to minimize the absorption of the probe field, and the condition

|Ωp|2 � γ3Γ43, (3.4.56)

is necessary to minimize the absorption of the signal field. In Fig. 3.3, the linear optical

susceptibility of the probe and the signal fields are plotted, using two different values of

γ3. The absorption almost reaches zero, as the value of γ3 satisfies conditions (3.4.55) and

(3.4.56). However, the absorption becomes higher for the value of γ3 for which the conditions

(3.4.55) and (3.4.56) are not valid, as shown in Figs. 3.3(a) and (c). Additionally, the high

value of γ3 increases absorption at the first EIT window for signal field.

Now, it is possible to write the absorption constant of the probe field, when δp = δs using

(3.4.48) and(3.4.53) as

αp2
=
ω41 − δs

c
ηp

(%11 − %44) γ3

γ4γ3 + |Ωs|2
, (3.4.57)
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Figure 3.3: Im[χ
(1)
l ] and Re[χ

(1)
l ] as function of the field detuning δl, with l ∈ {p, s} for γ3 = 1 kHz

(dashed line) and γ3 = 1 MHz (bold-dashed line). (a),(b) Ωs = 0.2γ4 and δs = 9 MHz. (c),(d)

Ωp = 0.2γ4 and δp = 9 MHz. Other parameters are γ4 = 18 MHz, Ωc = γ4, γ2 = 40 kHz, δc = 0,

%11 = %33 = 0.5, N = 1 × 1014 cm−3, and using 87Rb atom dipole moments |d14| = |d34| =

1.269× 10−29 C·m.

and the absorption constant of the signal field for same frequency detuning, using (3.4.48)

and (3.4.54) as

αs2 =
ω43 − δp

c
ηs

(%33 − %44) γ3

Γ43γ3 + |Ωp|2
, (3.4.58)

In conclusion, the coherence decay from level |2〉 plays an important role in controlling

the absorption of the applied probe and signal fields at the first EIT window around the

region where δp,s = δc. The coherence decay from level |3〉 has an influential impact on

controlling the absorption of the applied probe and signal fields at the second EIT window,

around the region where δp = δs and the absorption of the signal field around the region of
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the first EIT, where δs = δc.

3.4.2 Refractive Index and Group Velocity

The index of refraction for the atom-field system, in response to probe-field propagation, is

np(ωp) = 1 +
1

2
Re
[
χ(1)

p (ωp)
]
. (3.4.59)

Then the group velocity of the probe field inside the medium can be calculated using the

group-velocity relation defined by (3.4.19)

vgp
=

c

1 + 1
2
Re
[
χ

(1)
p (ωp)

]
+ ω

2

∂Re
[
χ

(1)
p (ωp)

]
∂ωp

∣∣∣∣∣∣∣
ω0

, (3.4.60)

where ω0 is the frequency of the applied field at the center of the EIT window. The refractive

index of an optical medium in response to the signal field can be written as

ns(ω) = 1 +
1

2
Re
[
χ(1)

s (ωs)
]
, (3.4.61)

and the group velocity is

vgs
=

c

1 + 1
2
Re
[
χ

(1)
s (ωs)

]
+ ωs

2

∂Re
[
χ

(1)
s (ωs)

]
∂ωs

∣∣∣∣∣∣∣
ω0

. (3.4.62)

At the center of each EIT window, the real part is zero or close to zero as shown in

Figs.3.1(b) and (d). Therefore, Eqs. (3.4.60) and (3.4.62) can be simplify to

vgp
=

c

1 + ωp

2

∂Re
[
χ

(1)
p (ωp)

]
∂ωp

∣∣∣∣∣∣∣
ω0

, (3.4.63)

and

vgs
=

c

1 + ωs

2

∂Re
[
χ

(1)
s (ωs)

]
∂ωs

∣∣∣∣∣∣∣
ω0

, (3.4.64)

respectively.
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In term of δp and δs, Eqs. (3.4.63) and (3.4.64) become

vgp
=

c

1 + (ω41 − δcen)
∂Re[χ

(1)
p ]

∂δp

∣∣∣
δcen

, (3.4.65)

and

vgs
=

c

1 + (ω43 − δcen) ∂Re[χ
(1)
s ]

∂δs

∣∣∣
δcen

, (3.4.66)

where δcen is the detuning at the center of each window. For the nonlinear optical medium

where the second term of the denominator of Eqs. (3.4.65) and (3.4.66) is much larger than

for the first, it is possible to neglect the first term and write the group velocity of the probe

and signal fields inside the medium as

vgp
≈ c

(ω0 − δcen)
∂Re[χ

(1)
p ]

∂δp

∣∣∣
δcen

(3.4.67)

and

vgs
≈ c

(ω0 − δcen) ∂Re[χ
(1)
s ]

∂δs

∣∣∣
δcen

. (3.4.68)

The group velocity is proportionally reciprocal to the derivative of the dispersion, so is

proportionally reciprocal of the slope of a straight line tanging the dispersion curve at the

point δl = δcen. Using the definition of the derivative we obtain

∂Re[χ
(1)
l ]

∂δl

∣∣∣∣∣
δcen

= lim
δl→δcen

Re[χ
(1)
l (δl)]− Re[χ

(1)
l (δl = δcen)]

δl − δcen

, (3.4.69)

it is possible to find an approximated analytical expression for the group velocity of the

probe and signal fields, at both EIT windows, with l ∈ {p, s}.

The analytical group velocity of the probe at the first EIT window, for γ4 � γ3 is

vgp1
≈ c

ω14−δc
2

ηp(%11−%44)(|Ωc|2−γ2
2)

(γ2γ4+|Ωc|2)
2

, (3.4.70)

and at the second window, for γ4 � γ2 is

vgp2
≈ c

ω14−δs
2

ηp(%11−%44)(|Ωs|2−γ2
3)

(γ3γ4+|Ωs|2)
2

. (3.4.71)
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Similar to the case of absorption, the coherence decay from state |2〉 has a significant effect

on the group velocity of the probe field and could change its value at δp = δc, if γ2 value fails

to satisfy condition (3.4.47). This can be seen in Fig. 3.2(b), where the incline of dispersion’s

line changes due to the change of γ2. However, Ωc is the primary controlled parameter that

can be used to modify the group velocity of the probe field for inequality (3.4.47) being

satisfied.

The effect of the coupling on the group velocity of the probe field is shown in Fig. 3.4(a).

Increasing the value of Ωc decreases the dispersion’s derivative, which is represented by the

slope of the tangent line to the dispersion curve at δp = δc point. Consequently, the group

velocity of the probe field within the medium increases.

At δp = δs, the coherence decay of state |3〉 affects the group velocity of the probe field for

unsatisfied (3.4.55). Figure 3.3(b) shows how γ3 effects the dispersion inclination around the

region where δp = δs. Increasing the vale of γ3 will increase the group velocity. Conversely,

for a satisfied (3.4.55) the only controlled parameter is Ωs. The effect of Ωs on the group

velocity of the probe field when δp = δs is similar to the effect of the Ωc on the group velocity

of the probe field when δp = δc as shown in Fig. 3.4(b). Thus increasing Ωs decreases the

group velocity and vice versa.

The analytical expression for the group velocity of the signal at the first EIT window,

when δp = δc and for γ4 � γ3 can be written as

vgs1
≈ c

ω34−δc
2

ηs(%33−%44)(|Ωc|2−Γ2
32)

(Γ32Γ43+|Ωc|2)
2

(3.4.72)

At the second EIT window, when δs = δp and for γ4 � Γ32, the group velocity can be written

as

vgs2
≈ c

ω34−δs
2

ηs(%33−%44)(|Ωp|2−γ2
3)

(Γ32Γ43+|Ωp|2)
2

. (3.4.73)

The signal-field case differs from the probe-field case. Not only does the coherence decay

from state |2〉 significantly affect the group velocity of the signal field at δs = δc, but also the
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decay from |3〉 plays an important role in modifying the group velocity of the signal field,

when the chosen value of γ2 and γ3 unsatisfied condition (3.4.51). The effect of γ2 and γ3 is
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Figure 3.4: Re[χ
(1)
l ] as function of the field detuning δl, with l ∈ {p, s}. (a) Ωc = γ4 (dashed line),

Ωc = 2γ4 (bold-dashed line), δs = 0.5Ωc, and Ωs = 0.2γ4. (b) Ωs = 0.2γ4 (dashed line), Ωs = 0.4γ4

(bold-dashed line), Ωc = γ4, and δs = 0.5Ωc. (c) Ωc = γ4 (dashed line), Ωc = 2γ4 (bold-dashed

line), δp = 0.5Ωc, and Ωp = 0.2γ4. (d) Ωp = 0.2γ4 (dashed line), Ωp = 0.4γ4 (bold-dashed line)

Ωc = γ4, and δs = 0.5Ωc. The approximate linear equation determined by finding the derivate

of dispersion using (3.4.69) is represented by (dotted line). Other parameters are γ4 = 18 MHz,

γ2 = 40 kHz, γ3 = 1 kHz, δc = 0, %11 = %33 = 0.5, N = 1× 1014 cm−3, and using 87Rb atom dipole

moments |d14| = |d34| = 1.269× 10−29 C·m.

demonstrated in Figs. 3.2(d) and 3.3(d), where the inclination of dispersion line modifies, due

to the change of γ2 and γ3 respectively. For condition (3.4.51) being satisfied, the coupling-

field Rabi frequency is the main parameter that can be used to control the group velocity

of the signal field as shown Fig. 3.4(c). Increasing the value of Ωc decreases the dispersion
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derivative, represented by the slope of the line tangent to the dispersion curve at δs = δc

point, as shown in Fig. 3.4(c). Consequently, the group velocity of the signal field inside the

medium increases.

When δp = δs, the coherence decay of state |3〉 affects the group velocity of the signal field

for condition (3.4.56) is not satisfied. Figure 3.3(d) shows how γ3 influences the dispersion

inclination around the region where δp = δs. Increasing the vale of γ3 increases the group

velocity. For a satisfied (3.4.56), the only controlled parameter is Ωs. Increasing the value

of Ωs decreases the group velocity and vice versa.

Although the probe-field group velocity reacts similarly to the signal-field group velocity,

in response to the decoherence of the lower levels, and to the applied fields in each EIT

window of the DDEIT system, several parameters must be taken into account, to match the

group velocities. Referring to the analytical expression of the group velocity of the probe

field at the first windows (3.4.70), and the analytical expression of group velocity of the

signal field (3.4.72), it can be seen that the group velocities can be matched if the following

condition is achieved

ηp(ω14 − δc)(%11 − %44) = ηs(ω34 − δc)(%33 − %44), (3.4.74)

which can be reduced to

%11 − %44 = %33 − %44, (3.4.75)

if we specifically consider 87Rb and assign |1〉, |2〉 and |3〉 to the 5S1/2 level with F =

1, mF = 0, F = 2 and mF = {−2, 0} respectively. Level |4〉 corresponds to level 5P1/2

with F = 2 and mF = −1. In this case ω14 = ω34 = 2π · 377.110 THz, and |d41| = |d43| =

1.269 × 10−29 C·m. Otherwise, all the parameters must be chosen such that the left-hand

side of (3.4.74) is equal to the right-hand side. Matching the group velocity of the probe

and signal fields at the second EIT window, when δp = δs, needs an additional requirement,

Ωp = Ωs.
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3.5 Nonlinear-Optical Susceptibility

The solution of the wave equations (3.2.9) or (3.2.10) in the nonlinear regime is now dis-

cussed [2]. It is customary to separate the polarization into its linear and nonlinear parts

P (ω) = ε0χ
(1)(ω)E(ω) + P (NL)(ω), (3.5.1)

with

P (NL)(ω) =
∞∑
m=2

P (m)(ω), (3.5.2)

and P (m)(ω) are given by (C.1.8). Substituting (3.5.1) into the wave equation (3.2.10) we

get

∇2E(ω) +
ω2

c2
E(ω) = −µ0ω

2ε0χ
(1)(ω)E(ω)− µ0ω

2P (NL)(ω). (3.5.3)

Let us take the electric field to be linearly polarized in ε-direction perpendicular to the

direction of propagation and in the form of

E(r, ω) = ξ(r, ω)e±ik·r, (3.5.4)

where the envelope function ξ(r, ω) is complex; it incorporates both amplitude and phase

information about the wave and, in general, is a function of all three space coordinates.

To simplify the analysis, it will be assumed that the ξ(r, ω) are infinite plane wave, which

propagate in the z-direction, so that ξ(r, ω) is a function of z only, such that ±ik · r = ±kz,

with a positive sign for forward-traveling waves in the z-direction and a negative sign for

backward wave. Thus (3.5.4) can be written as

E(z, ω) = ξ(z, ω)e±ikz. (3.5.5)

Then we can write (3.5.3) according to the above assumption as

∂2E(z, ω)

∂z2
+
ω2

c2
E(z, ω) = −µ0ω

2ε0χ
(1)(ω)E(z, ω)− µ0ω

2P (NL)(z, ω). (3.5.6)

Similarly, polarization is taken as an infinite plane wave that propagates in z-direction and

is polarized in the ε-direction

P (NL)(z, ω) = p(NL)(z, ω)e±ikz, (3.5.7)
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with p(NL)(z, ω) is the polarization-envelope wave function. The possibility of a wavevector

mismatch is not allowed, by choosing the wavevector k of the polarization, similar to the

electric field [2]. This is because all nonlinear optical processes involved in our optical

system satisfy the phase-matching condition automatically, which appears in the optical

susceptibility described by (3.4.31) and (3.4.38). By substituting (3.5.5) and (3.5.7) into the

wave equation (3.5.6), the following equation is obtained

∂2ξ(z, ω)

∂z2
+ 2ik

∂ξ(z, ω)

∂z
− k2ξ(z, ω) +

ω2

c2
ξ(z, ω) = −µ0ω

2ε0χ
(1)(ω)ξ(z, ω)−µ0ω

2p(NL)(z, ω).

(3.5.8)

The wave envelope ξ(z, ω) varies with distance through the medium, as a result of both

linear and nonlinear processes. If the variations of ξ(z, ω) both in magnitude and phase are

sufficiently slow with distance z, it can be assumed that∣∣∣∣∂2ξ(z, ω)

∂z2

∣∣∣∣� ∣∣∣∣k∂ξ(z, ω)

∂z

∣∣∣∣ . (3.5.9)

This is known as a slowly-varying envelope approximation [2], and suggests that it is possible

to neglect the second derivative of ξ(z, ω), with respect to z in (3.5.8), so that for a forward-

traveling wave we have

2ik(ω)
∂ξ(z, ω)

∂z
− k2(ω)ξ(z, ω) = −ω

2

c2

[
1 + χ(1)(ω)

]
ξ(z, ω)− µ0ω

2p(NL)(z, ω), (3.5.10)

where c = 1√
µ0ε0

is used in the right-hand side of Eq. (3.5.10). Using the definition of the

propagation constant k (3.4.11) and the linear absorption constant (3.4.15), we can write

the wave equation as

2ik(ω)
∂ξ(z, ω)

∂z
− k2(ω)ξ(z, ω) = −k2(ω)ξ(z, ω)− iα2(ω)

4
ξ(z, ω)− µ0ω

2p(NL)(z, ω),

2ik(ω)
∂ξ(z, ω)

∂z
= − iα2(ω)

4
ξ(z, ω)− µ0ω

2p(NL)(z, ω). (3.5.11)

If the definition of the polarization envelope described in Appendix C by (C.1.16) is used,

we can write the forward-traveling wave equation as

∂ξ(z, ω)

∂z
= −α

2(ω)

8k(ω)
ξ(z, ω) +

iε0µ0ω
2

2k(ω)
χ(NL)(ω)ξ(z, ω), (3.5.12)
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with

χ(NL)(ω) =
∞∑
m=2

χ(m)(ω). (3.5.13)

For the probe field mode, Eq. (3.5.12) becomes

∂ξp(z, ω)

∂z
= −

α2
p(ω)

8kp(ω)
ξp(z, ω) +

iω2

2c2kp(ω)
χ(NL)

p (ω)ξp(z, ω), (3.5.14)

with χ
(NL)
p (ω) is defined by (3.4.32), and for signal-field mode, the wave equation (3.5.12)

becomes

∂ξs(z, ω)

∂z
= − α

2
s (ω)

8ks(ω)
ξs(z, ω) +

iω2

2c2ks(ω)
χ(NL)

s (ω)ξs(z, ω), (3.5.15)

with χ
(NL)
s (ω) is defined by (3.4.39).

As discussed in section (3.4.1), the linear absorption constant vanishes, or has an ex-

tremely small value at the center of each of EIT windows for conditions (3.4.47), (3.4.51),

(3.4.55), and (3.4.56) are all satisfied. Evaluating (3.5.14) and (3.5.14) for negligible absorp-

tion, the following are obtained:

∂ξp(z, ω)

∂z
= i

ω2

c2

χ
(NL)
p (ω)

2kp(ω)
ξp(z, ω), (3.5.16)

and

∂ξs(z, ω)

∂z
= i

ω2

c2

χ
(NL)
s (ω)

2ks(ω)
ξs(z, ω). (3.5.17)

Assuming that the medium is homogeneous (i.e., the medium’s dielectric does not depend

on the coordinates), then the wave equation solution for the probe field

ξp(z, ω) = ξ0pe
iω

2

c2

χ
(NL)
p (ω)

2kp(ω)
z
, (3.5.18)

and for the signal field

ξs(z, ω) = ξ0se
iω

2

c2
χ

(NL)
s (ω)
2ks(ω)

z, (3.5.19)

where ξ0s and ξ0s are the values of the envelope function at z = 0. The nonlinear optical

susceptibility can be written as

χ
(NL)
l (ω) = Re

[
χ

(NL)
l (ω)

]
+ iIm

[
χ

(NL)
l (ω)

]
, (3.5.20)
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where l ∈ {p,s}, the real part represents the nonlinear dispersive, and the imaginary part

describes either the nonlinear absorption or amplification depending on its sign. For positive

Im
[
χ

(NL)
l (ω)

]
, the field is absorbed as it passes through the medium, while for negative

Im
[
χ

(NL)
l (ω)

]
the field is amplified as it passes through the medium. The nonlinear phase

shift by the probe field can be written as

φNLp(ω) =
ω

c

Re
[
χ

(NL)
p (ω)

]
2np(ω)

z. (3.5.21)

The nonlinear absorption constant, or the gain constant of the probe field, can be written as

αNLp(ω) =
ω

c

Im
[
χ

(NL)
p (ω)

]
np(ω)

. (3.5.22)

Similarly, the signal-field nonlinear-phase shift can be written as

φNLs(ω) =
ω

c

Re
[
χ

(NL)
s (ω)

]
2ns(ω)

z. (3.5.23)

The nonlinear absorption constant, or gain constant of the signal field, can be written as

αNLs(ω) =
ω

c

Im
[
χ

(NL)
s (ω)

]
ns(ω)

, (3.5.24)

where (3.4.11) is used to substitute the propagation constant with the index of refraction.

Nonlinear optical phenomena are generated by the wave propagation inside the medium,

or due to the interaction of optical waves inside a nonlinear medium. The presence of

nonlinear-optical phenomena is known by studying the optical response, represented by the

imaginary and real parts of the nonlinear-optical susceptibility. Therefore, in the following

two sections, a detailed study of the nonlinear-optical susceptibility terms is provided. This

provides complete information about which types of optical phenomena are occurring in our

optical system.

3.5.1 Stimulated Raman Scattering

The nonlinear optical susceptibility of the atom-field optical system is represented by Eqs. (3.4.32)

and (3.4.39). The second terms in each of the nonlinear-optical susceptibility equations result
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from the interaction of the probe and signal fields, through the nonlinear medium. Such an

interaction can amplify one of the incident applied fields under appropriate condition through

SRS, which is represented by the imaginary parts of (3.5.27) and (3.5.28). The nonlinearity

of the medium also provides a coupling between the incident waves through a phenomenon

referred to as XPM, which is described by the real parts of (3.5.27) and (3.5.28). Cross-

phase modulation occurs because the effective refractive index of a wave proportional to the

intensity of the other copropagating waves, which is known as the optical-Kerr effect [81].

Raman scattering can be described using quantum mechanics, as the process in which

the material system absorbs a photon at ωx, emits a photon at ωy and makes a transition to

some excited state at ~(ωx − ωy) [75]. When the Raman scattering is stimulated by highly

intense incident beam such that the initially scattered waves enhance further scattering of

the incident wave, leading to an exponential growth of the total scattered wave, and the

scattered light is characterized by narrow linewidth [82], then Raman scattering is known

as SRS [82, 83]. For a molecular system, the final state in the process is usually a vibra-

tional or rotational level. Therefore, the process results from the coupling of light wave to

vibrational or rotational waves [75, 76, 82, 83]. However, for an atomic system the Raman

scattering is due to the coupling of the incident waves to the electronic states. The initial

and final states are electronic states and define the Raman transition, so it is known as

stimulated electronic Raman scattering (SERS) [84–86]. In SRS, phase matching condition

is automatically satisfied [81].

The basic SERS of our field-atom system scheme is illustrated in the electronic-energy

level diagram of Fig. 3.5. The probe field excites a Raman transition between the electronic-

ground state |1〉 and the excited |3〉. In this way, Raman-shifted (Stokes) radiation is pro-

duced at the frequency of the signal field

ωs = ωp − ω13, (3.5.25)

where ωp is the probe-field frequency, and ~ω13 is the energy of the electronic-Raman transi-
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tion [85]. Similarly, the signal field excites a Raman transition between the electronic-ground

state |1〉 and the excited |3〉. In this way, Raman-shifted (anti-Stokes) radiation is produced

at the frequency of the probe field

ωp = ωs + ω13, (3.5.26)
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Figure 3.5: Energy-level diagram showing the SERS scheme in our atom-field system. The genera-

tion of signal Stokes field frequency is shown by the dashed-line transition path, while the generation

of probe anti-Stokes field frequency is shown by solid-line transition path.

In usual Raman scattering, the detuning from intermediate level which in this case is

level |4〉 needs to be so large (far from material resonance) so that no population is created

in the intermediate level [77]. However, in the atom-field system used here, no constraints on

the detuning from |4〉 are considered, except that δp = δs which could take the value of zero.

This condition is not required in this system, as we know from Sec. 2.4.2 that the system

is trapped at steady state to a dark state, which is superposition of the states defining the

Raman transition, leaving |4〉 unoccupied.

Stimulated electronic Raman scattering appears in our atom-field system through the
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imaginary parts

χ(3)
p2

(ω)
∣∣ξsf

∣∣2 , (3.5.27)

and

χ(3)
s2

(ω)
∣∣∣ξpf

∣∣∣2 , (3.5.28)

of Eqs. (3.4.32) and (3.4.39) respectively, with χ
(3)
p2

(ω) defined by (3.4.35) and χ
(3)
s2 (ω) de-

fined by (3.4.42). Stimulated electronic Raman scattering occurs in the probe-field optical

response, as well as in the signal-field optical response. Hence, the process is accompanied

with absorption of probe field, as well as absorption of signal field, described by the imaginary

of the first term of Eqs. (3.4.32) and (3.4.39) respectively.

χ(3)
p1

(ω)
∣∣∣ξpf

∣∣∣2 , (3.5.29)

and

χ(3)
s1

(ω)
∣∣ξsf

∣∣2 , (3.5.30)

with χ
(3)
p1

(ω) represented by (3.4.34) and χ
(3)
s1 (ω) by (3.4.41). The imaginary parts of (3.5.27),

(3.5.29), (3.5.28) and (3.5.30) are illustrated in Figs. 3.6(a) and 3.7(a). The stimulated-

Raman amplification appears in the figures as the negative profile, while the absorption is

the positive profile. The stimulated Raman amplification and the nonlinear absorption reach

their maximum when δp = δs.

Using Eq. (3.5.21), the probe-field absorption coefficient can be written as

αNLp(ω) =
ω

c

Im

[
χ

(3)
p1

(ω)
∣∣∣ξpf

∣∣∣2 + χ
(3)
p2

(ω)
∣∣ξsf

∣∣2]
2np(ω)

. (3.5.31)

According to Eq. (3.5.18), the probe field experiences an exponential growth (amplified) if

the second term is dominant, while it experiences an exponential decay if the first is dominant

term. The second term exceeds the first if the relation (2.5.11) is satisfied.
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Similarly, the signal-field absorption constant can be obtained from Eq. (3.5.23)

αNLs(ω) =
ω

c

Im

[
χ

(3)
s1 (ω)

∣∣ξsf

∣∣2 + χ
(3)
s2 (ω)

∣∣∣ξpf

∣∣∣2]
ns(ω)

. (3.5.32)

The signal-field amplitude spatial variation is described by Eq. (3.5.19). For negative

αNLs(ω), the signal field experiences an exponential growth. This occurs if the second term

exceeds the first, while positive αNLs(ω) implies that the signal field experiences attenuation.

As discussed in earlier, the second term exceeds the first when (2.5.15) is valid.
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Figure 3.6: Nonlinear-optical susceptibility. (a) Im
[
χ

(3)
p1

]
(dashed line) and Im

[
χ

(3)
p2

]
(dotted line).

(b) Re
[
χ

(3)
p1

]
(dashed line) and Re

[
χ

(3)
p2

]
(dotted line), as function of the probe-field detuning δp,

using 87Rb dipole moments |d14| = |d34| = 1.269×10−29 C·m. Other parameters are γ4 = 18 MHz,

Ωc = γ4, Ωs = 0.2γ4, γ3 = 10 kHz, γ2 = 40 kHz, δs = 0.5Ωc, δc = 0, %11 = %33 = 0.5, and

N = 1× 1014 cm−3.

The absorption of the probe field (3.5.29) appears as an amplification in signal field

(3.5.28), and the absorption of the signal field (3.5.30) appears as an amplification in the

probe field (3.5.27). However, the resultant output depends on the weight of each term.

Thus, if the detected probe field is amplified, this implies that the signal field is absorbed.

Amplification can not be detected simultaneously in the probe and signal-field outputs.
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Figure 3.7: Nonlinear-optical susceptibility. (a) Im
[
χ

(3)
s1

]
(dashed line) and Im

[
χ

(3)
s2

]
(dotted line).

(b) Re
[
χ

(3)
s1

]
(dashed line) and Re

[
χ

(3)
s2

]
(dotted line), as function of the signal-field detuning δs,

using 87Rb dipole moments |d14| = |d34| = 1.269×10−29 C·m. Other parameters are γ4 = 18 MHz,

Ωc = γ4, Ωp = 0.2γ4, γ3 = 10 kHz, γ2 = 40 kHz, δp = 0.5Ωc, δc = 0, %11 = %33 = 0.5, and

N = 1× 1014 cm−3.

3.5.2 Phase Modulation

The phase of a field propagating through a nonlinear medium can be modulated either by its

own intensity, or by the intensity of other field propagating in the same nonlinear medium.

The process is known as SPM for phase modulation, due to the variation of its own intensity,

and as XPM for phase modulation, due to variations in the other field intensity.

By substituting (3.4.32) into (3.5.33), the nonlinear probe-field phase shift can be exam-

ined as it propagates through the medium

φNLp(ω) =
ω

c

Re

[
χ

(3)
p1

(ω)
∣∣∣ξpf

∣∣∣2 + χ
(3)
p2

(ω)
∣∣ξsf

∣∣2]
2np(ω)

z. (3.5.33)

The phase equation consist of two terms; the first term

φSPMp(ω) =
ω

ε0c2

Re
[
χ

(3)
p1

(ω)
]
Ip

n2
p(ω)

z, (3.5.34)

with the probe-field intensity defined by

Ip =
cε0np(ω)

2

∣∣∣ξpf

∣∣∣2 , (3.5.35)
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represents the probe field SPM. While the second term

φXPMp(ω) =
ω

ε0c2

Re
[
χ

(3)
p2

(ω)
]
Is

np(ω)ns(ω)
z, (3.5.36)

with the signal-field intensity is defined by

Is =
cε0ns(ω)

2

∣∣ξsf

∣∣2 , (3.5.37)

is the XPM of the probe field. Referring to Fig. 3.7, the SPM and the XPM of the probe field

vanishes at the center of two transparency windows; i.e.; at δp = δc and δp = δs. However,

the SPM and the XPM around the region of the second window exceed their values around

the region of the first window. The values of SPM and XPM at the region of second window

are higher than their values in the region of first window by a factor of 1000.

The detuning of the coupling field plays an important role in modifying the values of SPM

and XPM at the center of the second windows, when δp = δs. Figure 3.8(a) demonstrates the

variation of SPM and XPM as function of the coupling-field detuning. When the coupling

field is in resonance with |2〉 ↔ |4〉 transition, the nonlinear dispersion response SPM and

XPM vanishes. However, detuning the coupling field to lower or higher energy than |2〉 ↔ |4〉

transition, displaces the value of XPM and SPM from zero, and both reach their maximum

values when δc = δs
2

. The SPM and XPM vanish also, when the coupling-field detuning reach

the signal-field detuning δc = δs = δp = 0.

It is possible to investigate which term is responsible for the variation of the SPM and

XPM in response to the coupling field, by analyzing the real part of χ
(3)
p2

(ω), when δp = δs.

From Eq. (3.4.35), the real part of χ
(3)
p2

(ω) can be written as, when δp = δs

Re
[
χ(3)

p2
(ω)
]

=
2ηsp (%44 − %33)

γ3

[(
Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)2

+ 4
(
δs − |Ωc|2δsc

Γ2
32+4δ2

sc

)2
] (3.5.38)

×

(
δs − |Ωc|2δsc

Γ2
32+4δ2

sc

)(
γ4 + |Ωc|2γ2

γ2
2+4δ2

pc
+ |Ωs|2

γ3

)
+
(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)(
Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)
(
γ4 + |Ωc|2γ2

γ2
2+4δ2

pc
+ |Ωs|2

γ3

)2

+ 4
(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)2 ,
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Figure 3.8: Real part of the nonlinear-optical susceptibility versus coupling-field detuning.

(a) Re
[
χ

(3)
p1

]
(dashed line) and Re

[
χ

(3)
p2

]
(dotted line), for δs = 9 MHz and Ωs = 0.2γ4. (b) Re

[
χ

(3)
s1

]
(dashed line) and Re

[
χ

(3)
s2

]
(dotted line), for δp = 9 MHz and Ωp = 0.2γ4. Other parameters are

γ4 = 18 MHz, Ωc = γ4, γ3 = 10 kHz, γ2 = 40 kHz, %11 = %33 = 0.5, N = 1 × 1014cm−3 and

using 87Rb dipole moments |d14| = |d34| = 1.269× 10−29 C·m.

where ηsp is defined by (3.4.37). The terms |Ωc|2γ2

γ2
2+4δ2

pc
and + |Ωc|2Γ32

Γ2
32+4δ2

sc
are of order of magnitude

of γ2 and Γ32; therefore, they can be neglected compared to γ4 and Γ43. Then Eq. (3.4.35)

becomes

Re
[
χ(3)

p2
(ω)
]
≈

2ηsp (%44 − %33)
[(
δs − |Ωc|2δsc

Γ2
32+4δ2

sc

) (
γ3γ4 + |Ωs|2

)
+ γ3Γ43

(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)]
[
Γ2

43 + 4
(
δs − |Ωc|2δsc

Γ2
32+4δ2

sc

)2
] [(

γ3γ4 + |Ωs|2
)2

+ 4γ2
3

(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)2
] .

(3.5.39)

For negligible absorption, when condition (3.4.55) is valid

Re
[
χ(3)

p2
(ω)
]
≈

2ηsp (%44 − %33)
[(
δs − |Ωc|2δsc

Γ2
32+4δ2

sc

)
|Ωs|2 + γ3Γ43

(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)]
[
Γ2

43 + 4
(
δs − |Ωc|2δsc

Γ2
32+4δ2

sc

)2
] [
|Ωs|4 + 4γ2

3

(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)2
] . (3.5.40)

When δs = δp, the detuning inequality δsc = δpc � γ2,Γ32 that holds, which lead to simplifi-

cation of (3.5.38) yielding

Re
[
χ(3)

p2
(ω)
]
≈

2ηsp (%44 − %33)
(
δs − |Ωc|2

4δsc

)
|Ωs|2[

Γ2
43 + 4

(
δs − |Ωc|2

4δsc

)2
] [
|Ωs|4 + 4γ2

3

(
|Ωc|2
4δpc
− δp

)2
] . (3.5.41)
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By neglecting the term 4γ2
3

(
|Ωc|2
4δpc
− δp

)2

compared to |Ωs|4, we reach the final approximate

equation of Re
[
χ

(3)
p2

(ω)
]

as function of coupling-field detuning

Re
[
χ(3)

p2
(δc)
]
≈

2ηsp (%44 − %33) δ2
sc

(
δs − |Ωc|2

4δsc

)
|Ωs|2

[
δ2

scΓ
2
43 + 4

(
δscδs − |Ωc|2

4

)2
] . (3.5.42)

Thus, the XPM vanishes for δs = δc and for

δs −
|Ωc|2

4δsc

= 0, (3.5.43)

which can be written as

δs −
|Ωc|2

4δs

= δc. (3.5.44)

However, at the second EIT window, δs 6= δc is always true. Therefore, XPM vanishes only

whenever (3.5.43) is correct. In the cases studied, the coupling field has been selected to be

in resonance with the |2〉 ↔ |4〉 transition, thus δc = 0. Accordingly, the signal field was

chosen to be in resonance with the dressed state |3〉 ↔ |−〉, i.e., δs = Ωc

2
. This makes the

second EIT window, at δp = δs, located at the center of the absorption peak of |1〉 → |−〉

transition. This choice of frequency detuning makes

δs −
|Ωc|2

4δs

= 0, (3.5.45)

or in different form (
δs −

|Ωc|
2

)(
δs +

|Ωc|
2

)
= 0. (3.5.46)

This means that, to enhance the nonlinear index of refraction of the probe field, the signal

field must not be in resonance either with dressed state |3〉 ↔ |−〉 or with the dressed

state |3〉 ↔ |+〉. This result can be generalized to the case of SPM, since analyzing

Re
[
χ

(3)
p1

(ω)
]

leads to the same result as above.

Similar to the probe-field case, the phase shift of the signal field can be written as

φNLs(ω) =
ω

c

Re

[
χ

(3)
s1 (ω)

∣∣ξsf

∣∣2 + χ
(3)
s2 (ω)

∣∣∣ξpf

∣∣∣2]
2ns(ω)

z. (3.5.47)
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The SPM term is represented by the first term of (3.5.47)

φSPMs(ω) =
ω

ε0c2

Re
[
χ

(3)
s1 (ω)

]
Is

n2
s (ω)

z, (3.5.48)

where the signal-field intensity defined by (3.5.37). The XPM term is described by the second

term of (3.5.47)

φXPMs(ω) =
ω

ε0c2

Re
[
χ

(3)
s2 (ω)

]
Ip

np(ω)ns(ω)
z, (3.5.49)

where the probe-field intensity defined by (3.5.35). The detuning of the coupling field mod-

ifies the values of SPM and XPM in the same way as it does with the probe field (see

Fig. 3.8(b)). Increasing or decreasing the energy of the coupling field from the |2〉 ↔ |4〉

transition energy displace the SPM and XPM value from zero. Reaching their maximum

when δc = δp
2

. The values SPM and XPM return to the zero value at equal detunings.

The approximated equation of Re
[
χ

(3)
s2 (ω)

]
as function of coupling-field detuning is de-

rived, when δs = δs in similar way to (3.5.42)

Re
[
χ(3)

s2
(δc)
]
≈

2ηsp (%44 − %11) δpc

(
δp − |Ωc|2

4δpc

)
|Ωp|2

[
δ2

pcγ432 + 4
(
δpcδp − |Ωc|2

4

)2
] . (3.5.50)

Thus, the XPM vanishes for δp = δc and for

δp −
|Ωc|2

4δpc

= 0, (3.5.51)

which are exactly the same conditions for vanishing SPM and XPM of probe field at δp = δs.

Therefore, to enhance the nonlinear index of refraction of the signal field, the probe field

must not be in resonance either with dressed state |3〉 ↔ |−〉 or with dressed state |3〉 ↔ |+〉.

The result can be generalized to the case of SPM, as analyzing Re
[
χ

(3)
s1 (ω)

]
leads to the same

result.

3.6 Summary

The wave equations for the probe and signal-field modes have been solved. The phase and

amplitude of the wave function are controlled by the real and imaginary part of the optical
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susceptibility respectively. A close study of the linear term of the optical susceptibility shows

that the absorption and the group velocity of the probe and signal fields can be reduced at

the DDEIT windows, by adjusting the values of γ4, γ3, and γ2 such that the inequalities

(3.4.47), (3.4.51), (3.4.55), and (3.4.56) are all satisfied Then, the applied fields can be used

for better control of both absorption and the group velocity.

Nonlinear-optical phenomena are generated in the t atom-field system, discovered by

analyzing the nonlinear optical susceptibility. The imaginary part of the nonlinear-optical

susceptibility reveals the existence of two optical phenomena: Raman amplification and

nonlinear absorption. The real part reveals the dependence of the index of refraction on the

intensity of the applied field through SPM and XPM optical process.

Raman amplification, as a process, exists in both the probe and the signal fields, but

cannot be detected in both field outputs simultaneously. The gain of the probe field is

accompanied by nonlinear absorption, and the gain of the signal field is accompanied by

nonlinear absorption. When the gain of either field exceeds its absorption, the field is

amplified. The amplification occurs only if (2.5.11) or (2.5.15) are satisfied.

The SPM and the XPM of the probe and signal fields vanishes at the center of each

transparency window. However, their values around the region of the second window exceed

their values around the region of the first window. To enhance the nonlinear index of

refraction of the probe field, the signal field must not be in resonance either with the |3〉 ↔

|−〉 or with the |3〉 ↔ |+〉 transitions. Similar for the signal field, the nonlinear index of

refraction of the signal field can be increased by detuning the probe field off-resonance from

the |3〉 ↔ |−〉 and from the |3〉 ↔ |+〉 transitions.
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Chapter 4

Tripod Atom-Field Configuration using

Gaussian-Probe and Signal Beams

4.1 Introduction

In the previous chapter, linear and nonlinear interactions were dealt with, by assuming that

all interacting waves are infinite plane waves. However, in practice, the incident radiation is

commonly focused on the nonlinear-optical medium, in order to increase the intensity, and

hence to increase the efficiency of the nonlinear-optical interactions excited by focused laser

beams. The output modes of most conventional lasers are designed so that the output beam

is the lowest-order Hermite-Gaussian, or Laguerre-Gaussian functions.

In this chapter, Gaussian beams replace the infinite-plane probe and signal fields in the

optical susceptibility, describing the induced polarization of the probe-field transition. To

understand the effects of using the Gaussian signal beam on the Gaussian probe beam output

function, the wave equation is solved analytically, and the modulated output probe-field wave

function is found. This carries all information on how the amplitude and phase of the wave

function evolve during their journey within the nonlinear optical medium.

The signal-Gaussian beam is used to alter the dielectric of the nonlinear medium, as the

beam propagates through the medium. The mediums dielectric varies as the propagation

distance of the signal field changes. The signal field-medium interaction becomes equivalent

to treating the medium as if it is inhomogeneous. The technique of altering the medium’s

dielectric could modify and enhance the linear and nonlinear interactions.

This chapter is organized as follows: In Sec. 4.2, the derivation of the paraxial equation

and the fundamental Laguerre-Gaussian solution of the paraxial wave equation are discussed,
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which are used as input to the optical system. After the discussion of the replacement of

the infinite-plane probe and signal waves with fundamental Gaussian-probe and signal fields

in the optical susceptibilities in Sec. 4.3, the optical susceptibility simplified in Sec. 4.4.

The solution of the wave equation using Gaussian-signal and probe fields is elaborated in

Sec. 4.5. Then the modulation of optical parameters of the output wave function is explored

in Sec. 4.6. Finally, Sec. 4.7 provides a summary.

4.2 Paraxial-Wave Equation and Fundamental-Mode Gaussian Beam

To derive the paraxial equation we start with wave equation defined by 3.2.9

∇2E − 1

c2

∂2E

∂t2
= µ0

∂2P

∂t2
. (4.2.1)

Next, we represent the electric field and polarization as

E(z, r, t) = ξ(z, r)e−i(kz−ωt) + c.c., (4.2.2)

P (z, r, t) = p(z, r)e−i(kz−ωt) + c.c.. (4.2.3)

Here, E and P are allowed to represent non-plane waves by allowing the complex amplitude

ξ and p to be spatially varying quantities. By choosing the wavevector k of the polarization

similar to the electric field we do not allow possibility of a wavevector mismatch. As the z-

direction is specified as the direction of propagation, it is convenience to express the Laplace

operator as

∇2 =
∂2

∂z2
+∇2

T, (4.2.4)

where the transverse Laplacian is give by

∇2
T =

∂2

∂x2
+

∂2

∂y2
, (4.2.5)

in rectangular coordinates, and given by

∇2
T =

1

r

∂

∂r
(r
∂

∂r
) + (

1

r
)2 ∂

2

∂φ2
, (4.2.6)
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in cylindrical coordinates. By substituting (4.2.2) and (4.2.3) into (4.2.1) the following is

obtained:

∇2
Tξ(z, r) +

∂2ξ(z, r)

∂z2
− 2ik

∂ξ(z, r)

∂z
− k2ξ(z, r) +

ω2

c2
ξ(z, r) = −µ0ω

2kp(z, r). (4.2.7)

The medium is assumed to be isotropic and to respond instantaneously to the electric field;

this permits us to use (3.2.5). By separating the polarization into its linear and nonlinear

parts as in (3.5.1), we obtain

∇2
Tξ(z, r)+

∂2ξ(z, r)

∂z2
−2ik

∂ξ(z, r)

∂z
−k2ξ(z, r)+

ω2

c2

[
1 + χ(1)(ω)

]
ξ(z, r) = −µ0ω

2kp(NL)(z, r).

(4.2.8)

For a non-dissipative medium, the last two terms on the left hand side of the wave equation

cancel each other out. Then the wave equation reduces to

∇2
Tξ(z, r) +

∂2ξ(z, r)

∂z2
− 2ik

∂ξ(z, r)

∂z
= −µ0ω

2kp(NL)(z, r). (4.2.9)

Using slowly-wave approximation (3.5.9), the wave equation becomes

∇2
Tξ(z, r)− 2ik

∂ξ(z, r)

∂z
= −µ0ω

2kp(NL)(z, r). (4.2.10)

In the linear regime the wave equation reduces to

∇2
Tξ(z, r)− 2ik

∂ξ(z, r)

∂z
= 0. (4.2.11)

This equation is often known as the paraxial equation. This is solved in such a case by a

beam having a transverse intensity distribution that is everywhere a Gaussian and that can

be represented in the scalar approximation [87]. This type of solution has been discussed in

several text books [88, 89]. Here, we are going to discuss briefly the fundamental Gaussian

beam, as many lasers generate beams in the fundamental mode. Additionally, this order of

Gaussian beam will be used as an input to the optical system

ξ(z, r) = ξ0
w0

w(z)
e
−r2

(
1

w2(z)
+ ik

2R(z)

)
eiΘ(z), (4.2.12)
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with

w2(z) = w2
0

[
1 +

(
λz

πw2
0

)2
]
, (4.2.13)

representing the beam radius,

R(z) = z

[
1 +

(
πw2

0

λz

)2
]
, (4.2.14)

representing the radius of the curvature, and

Θ(z) = tan−1

(
λz

πw2
0

)
, (4.2.15)

which is the called Gouy phase shift, and representing the spatial variation of the wave phase.

It is equal to zero at z = 0, and reaches π as the wave passes through the focus, relative to

an infinite plane wave. The constant w0 in the above equations denotes the beam radius at

z = 0, which is called the beam waist radius. At beam waist, the beam radius w attains its

minimum value w0, and the electric field distribution is most concentrated. The radius of

beam curvature is infinite there, as the phase front is planar at the beam waist. The term

λ is the wavelength of the electric-field wave. The quantity
πw2

0

λ
is called the Rayleigh range

zR and defined as the z-distance at which the radius has expanded by a factor of
√

2. The

confocal length of the beam is defined in term of the Rayleigh range as

b = 2zR. (4.2.16)

For theoretical work it is often convenient to represent the Gaussian beam in more compact

form [81] as

ξ(r) =
ξ0

1− iς(z)
e

−r2

w2
0[1−iς(z)] , (4.2.17)

with ς being the dimensionless longitudinal coordinate defined in term of confocal length b

as

ς(z) =
2z

b
=

z

zR

. (4.2.18)

See Appendix D for the details of how Eq. (4.2.17) is equivalent to (4.2.12).
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4.3 Atom-Field Optical Susceptibilities using Gaussian Beams

Before writing the optical susceptibility of the atom-field system using the Gaussian funda-

mental mode beam, let us first represent the probe and the signal-field input-envelope wave

functions as Gaussian. The probe-field input envelope function can be written as

ξpf (z, r, ω) =
ξp0

1− iςp(z, ω)
e

−r2

w2
0p

[1−iςp(z,ω)] , (4.3.1)

where

ςp(z, ω) =
z

zRp(ω)
, (4.3.2)

and the Rayleigh range of the probe field is calculated from

zRp(ω) =
kpf (ω)w2

0p

2
(4.3.3)

=
bp(ω)

2
,

with kpf (ω) calculated using Eq. (3.4.11), where the linear index of refraction npf (ω) is

defined by (3.4.59) in absence of the signal field as

npf (ω) = 1 +
ηp (%11 − %44)

[
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

]
(
γ4 + |Ωc|2γ2

γ2
2+4δ2

pc

)2

+ 4
(
|Ωc|2δpc

γ2
2+4δ2

pc
− δp

)2 . (4.3.4)

Then the modulus square of the probe-field envelope function can be written as

∣∣∣ξpf (z, r, ω)
∣∣∣2 =

∣∣ξp0

∣∣2 ℘p(r)

1 + ς2
p(z, ω)

(4.3.5)

=

∣∣ξp0

∣∣2 ℘p(r)

1 +
(

2z
bP(ω)

)2 ,

and the modulus square of the probe-field Rabi frequency, defined by (2.2.11) as

∣∣∣Ωpf (z, r, ω)
∣∣∣2 =

∣∣Ωp0

∣∣2 ℘p(r)

1 + ς2
p(z, ω)

(4.3.6)

=

∣∣Ωp0

∣∣2 ℘p(r)

1 +
(

2z
bP(ω)

)2 ,
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with

℘p(r) = e
−2r2

w2
0p , (4.3.7)

where (4.2.18) is used to write the second line of Eqs. (4.3.5) and (4.3.6).

Similar to the probe field, the signal-field input-envelope wave function can be written as

ξsf (z, r, ω) =
ξs0

1− iςs(z, ω)
e

−r2

w2
0s

[1−iςs(z,ω)] , (4.3.8)

where

ςs(z, ω) =
z

zRs(ω)
, (4.3.9)

with zRs being the Rayleigh range of the signal field obtained using

zRs(ω) =
ksf (ω)w2

0s

2
(4.3.10)

=
bs(ω)

2
,

The wave propagation constant ksf (ω) is calculated using (3.4.11), where the signal-field

linear index of refraction nsf (ω) is determined using (3.4.61), but in the absence of the probe

field as

nsf (ω) = 1 +
ηs (%33 − %44)

(
|Ωc|2δsc

Γ2
32+4δ2

sc
− δs

)
(

Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)2

+ 4
(
|Ωc|2δsc

Γ2
32+4δ2

sc
− δs

)2 . (4.3.11)

Then, the modulus square of the signal-field envelope function can be written as

∣∣ξsf (z, r, ω)
∣∣2 =

|ξs0|
2 ℘s(r)

1 + ς2
s (z, ω)

(4.3.12)

=
|ξs0|

2 ℘s(r)

1 +
(

2z
bs(ω)

)2 .

The modulus square of the signal-field Rabi frequency can be obtained using (2.2.11) and

(4.3.12) as

∣∣Ωsf (z, r, ω)
∣∣2 =

|Ωs0|
2 ℘s(r)

1 + ς2
s (z, ω)

(4.3.13)

=

∣∣Ωp0

∣∣2 ℘p(r)

1 +
(

2z
bP(ω)

)2 ,
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with

℘s(r) = e
−2r2

w2
0s . (4.3.14)

Now, we can write the optical susceptibilities of the probe field defined by (3.4.33), (3.4.34),

and (3.4.35) and of the signal field defined by (3.4.40), (3.4.41) and (3.4.42) using Gaussian-

probe and signal beams. The linear term of the probe field modifies to

χ(1)
pG

(z, ω) =
iηp(%11 − %44)

−ג +
|Ωs0 |2℘s

γps− (1+ς2s (z))

, (4.3.15)

with

±ג = γ4 ± 2iδp +
|Ωc|2

γ2 ± 2iδpc

, (4.3.16)

and

γps± = γ3 ± 2iδps, (4.3.17)

and the nonlinear terms modify to

χ(3)
pG1

(z, ω) =
iηp1

(%11 − %44)

γps−ℵ+

×

1− −ג
+−ג

|Ωs0 |
2℘s

γps− (1+ς2s (z))

−ג +
|Ωs0 |2℘s

γps− (1+ς2s (z))

, (4.3.18)

and

χ(3)
pG2

(z, ω) =
iηsp (%44 − %33)

γps−ℵ+

× 1

−ג +
|Ωs0 |2℘s

γps− (1+ς2s (z))

, (4.3.19)

with

ℵ± = Γ43 ± 2iδs +
|Ωc|2

Γ32 ± 2iδsc

. (4.3.20)

Similarly, the signal-field linear optical susceptibility using Gaussian beam is

χ(1)
sG

(z, ω) =
iηs(%33 − %44)

ℵ− +
|Ωp0 |2℘p

γps+(1+ς2p(z))

, (4.3.21)

while the nonlinear terms are

χ(3)
sG1

(z, ω) =
iηs1 (%33 − %44)

γps+
+ג

×

1− ℵ−
ℵ−+

|Ωp0 |
2℘p

γps+ (1+ς2p(z))

ℵ− +
|Ωp0 |2℘p

γps+(1+ς2p(z))

, (4.3.22)
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and

χ(3)
sG2

(z, ω) =
iηsp (%44 − %11)

γps+
+ג

× 1

ℵ− +
|Ωp0 |2℘p

γps+(1+ς2p(z))

. (4.3.23)

The signal field is part of the linear and nonlinear-optical susceptibilities equations of the

probe field. The signal field is Gaussian, and its intensity and strength depend on the z-

coordinate as appears in (4.3.13). Therefore, the probe-field optical susceptibility varies as

the signal field propagates through the medium, and the dielectric of the medium varies with

z-distance. Hence, it can be said that the medium becomes effectively inhomogeneous with

respect to the probe field. This type of inhomogeneity is not due to medium structure and

characteristic, but it is created by the propagation of the signal field through the medium.

The same happens to the signal field; the probe field is part of the optical susceptibility of the

signal field. Therefore, the signal-field optical susceptibility varies as the probe field propa-

gates through the medium. Thus, the propagation of the probe field creates inhomogeneity

effecting the signal field.

4.4 Simplified Atom-Field Optical Susceptibilities in the Region of the Sec-

ond EIT Window

The optical properties of the t atom-field system excited by Gaussian probe and signal

beams are discussed now. It is assumed that the coupling field is an infinite-plane wave. This

assumption makes the optical properties at the first EIT window, when δl = δc, l ∈ {p, s},

not change from those discussed in Sec. 3.4. The modifications occur only at the second

EIT window, when δp = δs. In this section, we simplify the optical susceptibility around the

region, where δp = δs by expanding the linear and the nonlinear term as a polynomial of the

propagation distance z. The simplified form of the optical susceptibility is used to solve the

probe-field wave equation in the next section.
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In the region where δp = δs, the term

D =
1

−ג +
|Ωs0 |2℘s

γps− [1+ς2s (z)]

, (4.4.1)

that appears in the probe-field susceptibility can be written as

D =
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

(
−γps−ג [1+ς2s (z)]

|Ωs0 |2℘s
+ 1
) . (4.4.2)

It is assumed that for all values of z where the wave propagating, the term
−γps−ג [1+ς2s (z)]
|Ωs0 |2℘s

in

the denominator of (4.4.2) is always less than one around the region, where δp = δs. Hence,

the Maclaurin series

1

1 + x
= 1− x+ x2 + · · · , (4.4.3)

for |x| < 1, can be used to write (4.4.2) as

D =
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

[
1−

−γps−ג [1 + ς2
s (z)]

|Ωs0|2℘s

+

−γps−ג) [1 + ς2
s (z)]

|Ωs0|2℘s

)2

− · · ·+

]
. (4.4.4)

Keeping only the first three terms while neglecting the higher order terms, Eq. (4.4.2) can

be approximated as

D ≈
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

[
1−

(
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

)
−ג +

(
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

)2

2ג
−

]
. (4.4.5)

Equations (4.4.5) can be simplified farther by expanding the bracket of the third term

D ≈
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

[
1−

(
γps− [1 + ς2

s (z)]

|Ωs0 |2℘s

)
−ג +

(
γps−

|Ωs0|2℘s

)2 [
1 + 2ς2

s (z) + ς4
s (z)

]
2ג
−

]
.

(4.4.6)

By collecting the terms of same power of z together, we can write (4.4.6) in a reduced form

as

D =
γps− [1 + ς2

s (z)]

|Ωs0|2℘s

[
D0 + D2ς

2
s (z) + D4ς

4
s (z)

]
, (4.4.7)
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with

D0 = 1−
(

γps−

|Ωs0|2℘s

)
−ג +

(
γps−

|Ωs0|2℘s

)2

2ג
−, (4.4.8)

D2 = −
γps−

|Ωs0|2℘s

−ג
[
1− 2

(
γps−

|Ωs0|2℘s

)
−ג
]
,

D4 =

(
γps−

|Ωs0|2℘s

)2

2ג
−.

Each term in (4.4.8) is complex, which can be written as

D0 = D0r + iD0i, (4.4.9)

D2 = D2r + iD2i,

D4 = D4r + iD4i,

where Dmr and Dmi are the real and imaginary parts of Dm respectively, with m ∈ {0, 2, 4}.

Now, the probe-field susceptibilities can be written using the approximation defined by

(4.4.7) and (4.4.8) as

χ(1)
pG

(z, ω) ≈
iηp(%11 − %44)γps− [1 + ς2

s (z)]

|Ωs0 |2℘s

[
D0 + D2ς

2
s (z) + D4ς

4
s (z)

]
, (4.4.10)

χ(3)
pG1

(z, ω) ≈
iηp1

(%11 − %44) [1 + ς2
s (z)]

|Ωs0|2℘sℵ+

[
D0 + D2ς

2
s (z) + D4ς

4
s (z)

]
(4.4.11)

×
(

1−
γps− [1 + ς2

s (z)]

|Ωs0 |2℘s

[
D0 + D2ς

2
s (z) + D4ς

4
s (z)

])
,

and

χ(3)
pG2

(z, ω) ≈ iηsp (%44 − %33) [1 + ς2
s (z)]

|Ωs0|2℘sℵ+

[
D0 + D2ς

2
s (z) + D4ς

4
s (z)

]
. (4.4.12)

Figure 4.1 shows how the approximated optical susceptibility, using Maclurian series of D

defined by Eq. (4.4.5), fits the exact optical susceptibilities using the analytical expressions

(4.3.15), (4.3.19), and (4.3.18) around the region of the second EIT window.
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Figure 4.1: Real and imaginary parts of the linear and nonlinear-optical susceptibility for t atom-

field configuration, approximated using Maclurian series (dashed line) and analytical exact solution

(dotted line) around the region where δp = δs = 9 MHz versus probe-field detunings δp, at z = 0.

Other parameters are γ4 = 18 MHz, Ωc = γ4, Ωs = 0.2γ4, γ3 = 10 kHz, γ2 = 40 kHz, δc = 0,

%11 = %33 = 0.5, N = 1× 1014 cm−3 and using 87Rb dipole moments |d14| = |d34| = 1.269× 10−29

C·m.
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4.5 Solution of the Wave Equation using Gaussian-Probe Beam for t Atom-

Field Optical System

The optical susceptibilities (4.4.10), (4.4.11) and (4.4.12) are polynomial in z. Therefore,

to solve the wave equation we have to treat the medium as inhomogeneous. It is assumed

that the propagation of Gaussian beams have slow spatial variations of the gain and index

of refraction [90]. The variation are sufficiently slow in the vicinity of the beam that the

optical susceptibility can be expanded, keeping only the linear and quadratic terms. If this

condition is satisfied, the propagating beam remains Gaussian, even though its spot size,

phase-front curvature, amplitude, and phase of direction of propagation are significantly

altered by the inhomogeneity of the medium. In this section, the details of how the probe-

field wave equation can be solved are presented. However, the signal-field wave equation

follows the same steps.

To begin, the wave equation defined by (4.2.1) is

∇2E(z, r)− 1

c2

∂2E(z, r)

∂t2
= µ0

∂2P (z, r)

∂t2
. (4.5.1)

Next, we use (3.2.5) to substitute the polarization in (4.5.1)

∇2E(z, r)− 1

c2
[1 + χ(z, ω)]

∂2E(z, r)

∂t2
= 0. (4.5.2)

Upon the assumption that χ(z, ω) is not altered over the wave length by the inhomogeneity

of the medium created by the signal field, the probe field can be written as [90, 91]

Ep(z, t) = ξp(z, r)e−i(
∫
kp(z,ω)dz−ωt)ε̂p, (4.5.3)

where ε̂p is the field-polarization direction, and kp(z, ω) is defined in (3.4.11) as

kp(z, ω) =
ω

c

√
Re
[
χ

(1)
pG(z, ω)

]
, (4.5.4)

kp(z, ω) ≈ ω

c

(
1 +

1

2
Re
[
χ(1)

pG
(z, ω)

])
,
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with χ
(1)
pG(z, ω) are defined in (4.4.10).

The variation of the propagation constant is only along the z-direction, where r in

Eq. (4.3.14) is treated as constant, evaluated at transverse distance r = 0. Consequently,

the propagation of the probe-field envelope function in the presence of the signal field can

be obtained by substituting (4.5.3) into (4.5.2) to obtain

∇2
Tξp(z, r) +

∂2ξp(z, r)

∂z2
− 2ikp

∂ξp(z, r)

∂z
− i

∂kp

∂z
ξp(z, r)− k2

pξp(z, r) (4.5.5)

+
ω2

p

c2

[
1 + χpG(z, ω)

]
ξp(z, r) = 0,

with

χpG(z, ω) = χ(1)
pG

(z, ω) + χ(3)
pG1

(z, ω)
∣∣∣ξpf (z, ω)

∣∣∣2 + χ(3)
pG2

(z, ω)
∣∣ξsf (z, ω)

∣∣2 , (4.5.6)

where
∣∣∣ξpf (z, ω)

∣∣∣2 and
∣∣ξsf (z, ω)

∣∣2 are defined in (4.3.5) and (4.3.12) respectively. The probe-

field envelope function is assumed to vary so slowly with z, such that is the slowly-varying

envelope approximation (3.5.9) are valid and the second derivative in z can be neglected.

∇2
Tξp(z, r)− 2ikp

∂ξp(z, r)

∂z
− i

∂kp

∂z
ξp(z, r) +

ω2
p

c2

[
iIm

[
χ(1)

pG
(z, ω)

]
+ χ(NL)

pG
(z, ω)

]
ξp(z, r) = 0,

(4.5.7)

with ∇2
T are defined in (4.2.5) for rectangular coordinate and in (4.2.6) for cylindrical coor-

dinates, and

χ(NL)
pG

(z, ω) = χ(3)
pG1

(z, ω)
∣∣∣ξpf (z, ω)

∣∣∣2 + χ(3)
pG2

(z, ω)
∣∣ξsf (z, ω)

∣∣2 . (4.5.8)

It is assumed that the variation of the dielectric of the medium which is created by

the signal field doesn’t alter the function type. That is, the beam will remain Gaussian,

so ξp(z, r) can be written as [90]:

ξp(z, r) = ξ0e
−i
(
Qr(z)

r2

2
+T (z)

)
. (4.5.9)

The size of the beam and the curvature of the phase front are governed by the complex

beam parameter Qr. The phase and amplitude of the beam are governed by the complex
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parameter T [90]. If Eq. (4.5.9) is substitute into (4.5.7), it can found by equating equal

powers of z and r so that the beam parameters are governed by the following two equations

Q2
r(z) + kp

dQr(z)

dz
= 0, (4.5.10)

− 2iQr(z)− 2kp
dT (z)

dz
− i

dkp(z)

dz
+
ω2

p

c2

(
iIm

[
χ(1)

pG
(z, ω)

]
+ χ(NL)

pG
(z, ω)

)
= 0.

Thus, the wave equation is reduced to two ordinary differential equations [90]. The assump-

tion (4.5.9) requires that only the linear and quadratic terms in z of Eqs. (4.4.10), (4.4.11)

and (4.4.12) are kept, while the higher order terms are neglected. Now, Eqs. (4.4.10) and

(4.5.8), which are defined by (4.4.11) and (4.4.12) are substituted into (4.5.10)

Q2
r(z) + kp

dQr(z)

dz
= 0, (4.5.11)

− 2iQr(z)− 2kp
dT (z)

dz
− i

dkp(z)

dz
+ i

ω2
p

c2

(%11 − %44)ηp

|Ωs0|2
Im
[
iγps−

[
D0 + (D0 + D2) ς2

s (z)
]]

+
ω2

p

c2

iηp1
(%11 − %44)|Ωp0

|2℘p [1 + ς2
s (z)]

|Ωs0|2ℵ+

[
1 + ς2

p(z)
] [

D0 + D2ς
2
s (z)−

γps−

|Ωs0|2
(
D2

0 + (D0 + 2D2)D0ς
2
s (z)

)]
+
ω2

p

c2
(%44 − %33)

iηsp
ℵ+

[
D0 + D2ς

2
s (z)

]
= 0.

To simplify farther the second equation of (4.5.11), we assume that the fundamental Gaussian-

signal and probe fields are identical in their confocal lengths, then (4.5.11) reduces to

Q2
r(z) + kp

dQr(z)

dz
= 0,

− 2iQr(z)− 2kp
dT (z)

dz
− i

dkp(z)

dz
+ i

ω2
p

c2

(%11 − %44)ηp

|Ωs0|2
Im
[
iγps−

[
D0 + (D0 + D2) ς2

s (z)
]]

+
ω2

p

c2

iηp1
(%11 − %44)|Ωp0

|2℘p

|Ωs0|2ℵ+

[
D0 + D2ς

2
s (z)−

γps−

|Ωs0|2
(
D2

0 + (D0 + 2D2)D0ς
2
s (z)

)]
+
ω2

p

c2
(%44 − %33)

iηsp
ℵ+

[
D0 + D2ς

2
s (z)

]
= 0. (4.5.12)

By substituting the ς2
s (z) defined by (4.3.9) and kp presented by (4.5.4) we get

Q2
r(z) +

ωp

c

[
1 +

ηp

2|Ωs0 |2
(%11 − %44)Re

[
iγps−

(
D0 +

4z2

b2
s

(D0 + D2)

)]]
dQr(z)

dz
= 0,

(4.5.13)
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and

− 2iQr(z)− 2
ωp

c

[
1 +

ηp

2|Ωs0|2
(%11 − %44)Re

[
iγps−

(
D0 +

4z2

b2
s

(D0 + D2)

)]]
dT (z)

dz

− i
ωp

c|Ωs0|2
ηp(%11 − %44)

4z

b2
s

Re
[
iγps− (D0 + D2)

]
+ i

ω2
p

c2

(%11 − %44)ηp

|Ωs0|2
Im

[
iγps−

[
D0 + (D0 + D2)

4z2

b2
s

]]
+
ω2

p

c2

iηp1
(%11 − %44)|Ωp0

|2℘p

|Ωs0|2ℵ+

[
D0 + D2

4z2

b2
s

−
γps−

|Ωs0|2

(
D2

0 + (D0 + 2D2)D0
4z2

b2
s

)]
+
ω2

p

c2
(%44 − %33)

iηsp
ℵ+

(
D0 + D2

4z2

b2
s

(z)

)
= 0. (4.5.14)

To write (4.5.13) and (4.5.14) in more compact form, the following parameters are introduced

kp1
=
ωp

c

(
1 +

ηp

2|Ωs0|2
(%11 − %44)Re

[
iγps−D0

])
,

kp2
=

ωpηp

2|Ωs0|2c
(%11 − %44)Re

[
iγps− (D0 + D2)

]
, (4.5.15)

αp1
=
ω2

p

c2

(%11 − %44)ηp

|Ωs0|2
Im
[
iγps−D0

]
,

αp2
=
ω2

p

c2

(%11 − %44)ηp

|Ωs0|2
Im
[
iγps− (D0 + D2)

]
, (4.5.16)

m1 =
ω2

p

c2

iηp1
(%11 − %44)|Ωp0

|2℘p

|Ωs0|2ℵ+

D0

(
1−

γps−

|Ωs0|2
D0

)
,

m2 =
ω2

p

c2

iηp1
(%11 − %44)|Ωp0

|2℘p

|Ωs0|2ℵ+

(
D2 −

γps−

|Ωs0 |2
(D0 + 2D2)D0

)
, (4.5.17)

n1 =
ω2

p

c2
(%44 − %33)

iηsp
ℵ+

D0,

n2 =
ω2

p

c2
(%44 − %33)

iηsp
ℵ+

D2. (4.5.18)

The second term between the brackets for both m1 and m2 is negligible compared to the

first. The imaginary parts of m1, m2, n1, and n2 are represented by m1i, m2i, n1i, and n2i,

and the real parts are represented by m1r, m2r,n1r, and n2r respectively.
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In term of the above parameters Eqs. (4.5.13) and (4.5.14) become

Q2
r(z) +

[
kp1

+ kp2

4z2

b2
s

]
dQr(z)

dz
= 0, (4.5.19)

− 2iQr(z)− 2

[
kp1

+ kp2

4z2

b2
s

]
dT (z)

dz
+
[
i
(
αp2

+ m2i + n2i

)
+ m2r + n2r

] 4z2

b2
s

− ikp2

8z

b2
s

+
[
i
(
αp1

+ m1i + n1i

)
+ m1r + n1r

]
= 0.

Mathematica software is used to solve Eq. (4.5.19), the following is obtained:

Qr(z) =
2
√
kp1

kp2

bstan−1
[

2z
bs

√
kp2

kp1

]
− 2
√
kp1

kp2
C1

, (4.5.20)

and

T (z) =C2 − iln

[
bstan−1

[
2z

bs

√
kp2

kp1

]
− 2
√
kp2

kp1
C1

]

+
ibstan−1

[
2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

[
m1i + n1i + αp1

− i (m1r + n1r)

−
kp1

kp2

(
m2i + n2i + αp2

− i(m2r + n2r)
)]

+
iz

2kp2

(
m2i + n2i + αp2

− i (m2r + n2r)
)
− i

2
ln
[
b2

skp1
+ 4kp2

z2
]
. (4.5.21)

The constants C1 and C2 in (4.5.21) and ξ0 in (4.5.9) are determined from the boundary

condition. At z = 0 the fundamental input-envelope wave function (4.3.1) must equal to the

modulated-envelope wave function (4.5.9), then we get

ξ0 = ξp0
, C1 =

-iw2
0p

2
, and C2 =

i

2

(
ln
[
b2

skp1

]
+ 2ln

[
iw2

0p

√
kp1

kp2

])
. (4.5.22)

Equations (4.5.20) and (4.5.21) become after substituting the determined constants in (4.5.22)

Qr(z) =
2

bs√
kp1kp2

tan−1
[

2z
bs

√
kp2

kp1

]
+ iw2

0p

, (4.5.23)
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and

T (z) =
i

2

(
ln
[
b2

skp1

]
+ 2ln

[
iw2

0p

√
kp1

kp2

])
− iln

[
bstan−1

[
2z

bs

√
kp2

kp1

]
+ iw2

0p

√
kp2

kp1

]

+
ibstan−1

[
2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
m1i + n1i + αp1

−
kp1

kp2

(m2i + n2i + αp2
)

)
+

iz

2kp2

(
m2i + n2i + αp2

)
+
bstan−1

[
2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
m1r + n1r −

kp1

kp2

(m2r + n2r)

)
+

z

2kp2

(m2r + n2r)

− i

2
ln
[
b2

skp1
+ 4kp2

z2
]
. (4.5.24)

By defining

p(z) =
ibstan−1

[
2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
m1i + n1i + αp1

−
kp1

kp2

(m2i + n2i + αp2
)

)
+

iz

2kp2

(
m2i + n2i + αp2

)
+
bstan−1

[
2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
m1r + n1r −

kp1

kp2

(m2r + n2r)

)
+

z

2kp2

(m2r + n2r) , (4.5.25)

and using some mathematical rules, the modulated-envelope wave function (4.5.9) can be

written in the final form as

ξp(z, r) =
ξ0p√

1 +
4kp2

b2skp1
z2

e
−i

(
Qr(z)

r2

2
−p(z)−tan−1

[
bs

w2
0P

√
kp1kp2

tan−1

[
2z
bs

√
kp2
kp1

]])
√

1 +

(
bs

w2
0P

√
kp1kp2

tan−1
[

2z
bs

√
kp2

kp1

])2
, (4.5.26)

with Qr represented by (4.5.23) and p by (4.5.25). The minus sign appears in the third term

of the exponent is added to make sure that the phase of the modulated wave in absence

of absorption and nonlinear interaction is in the same quadrant as the input-fundamental

wave. Figure 4.2 shows how the phase and the amplitude of the envelope-wave function are

modulated by the absorption and the nonlinear interaction as the beam propagates through

the medium.

Now the wave equation describes the propagation of continuous Gaussian probe field in
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z-direction through the nonlinear-optical medium can be written as

Ep(z, r, t) =
ξ0p√

1 +
4kp2

b2skp1
z2

e
−i

(
Qr(z)

r2

2
+
∫
kp(z)dz−p(z)−tan−1

[
bs

w2
0P

√
kp1kp2

tan−1

[
2z
bs

√
kp2
kp1

]]
−ωpt

)
√

1 +

(
bs

w2
0P

√
kp1kp2

tan−1
[

2z
bs

√
kp2

kp1

])2
ε̂p.

(4.5.27)

Equation (4.5.27) governs the propagation of the probe field through the nonlinear

medium. It carries all the information about how the probe-field amplitude, phase, size

of the beam and the curvature of the phase front are changing with respect to the perpen-

dicular and transverse displacements. Therefore, Eq. (4.5.27) is used in the coming section to

examine the modification of the group velocity and the phase in the direction of propagation

as field propagates through the medium.

4.6 Phase Function and Group Velocity

In this section, we study the displacement evolution of the group velocity and the phase of

a Gaussian probe field propagating through a the nonlinear medium. We show the detailed

calculations leading to closed-form expressions for the group velocity and phase. These

expressions are derived for the probe field but can be generalized to the signal field case.

The phase function of the probe field can be defined from the wave equation (4.5.27) [92]

as

φtot(r, z) =Re

[
Qr(z)

r2

2

]
− Re [p(z)]− tan−1

[
bs

w2
0P

√
kp1

kp2

tan−1

[
2z

bs

√
kp2

kp1

]]
(4.6.1)

+

∫
kp(z, r)dz.

The part of the phase function that describe the phase of direction of propagation is

φz(z) =

∫
kp(z)dz − Re [p(z)]− tan−1

[
bs

w2
0P

√
kp1

kp2

tan−1

[
2z

bs

√
kp2

kp1

]]
, (4.6.2)

while the part of the phase function that describe the phase front curvature is

φr(r, z) = Re

[
Qr(z)

r2

2

]
. (4.6.3)
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Figure 4.2: Real and imaginary parts of the Gaussian-envelope wave function as function of the

propagation distance z for two different values of γ3; (a),(b) γ3 = 0.01 kHz, and (c),(d) γ3 = 1 kHz.

Other parameters are δp = δs = 9 MHz, γ4 = 18 MHz, Ωc = γ4, Ωs = Ωp = 0.1γ4, γ2 = 40 kHz,

δc = 0, %11 = %33 = 0.5, and N = 1 × 1014 cm−3. Using 87Rb constants: |d14| = |d34| =

1.269×10−29 C.m, and ω0 = 2π ·377.11 THz. The dotted line corresponds to the analytical solution

of Eq. (4.5.26), whereas the dashed line corresponds to the numerical solution of Eq. (4.5.14) and

the solid line is the fundamental input wave function in the absence of absorption and nonlinear

interaction described by Eq. (4.3.1).

4.6.1 Group Velocity of Gaussian Beam

To determine the group velocity along the direction of the propagation z-axis, we set r = 0,

and use (4.6.2), where the group velocity is defined by [92],

vgpG
=

1
∂
∂z

(
∂φz

∂ω

)∣∣
ω0

, (4.6.4)
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where ω0 is the central frequency of the probe field, when it is detuned from the |1〉 → |4〉

transition by δp equal to the signal-field detuning from |3〉 → |4〉 transition.

The denominator of Eq. (4.6.4) is equal to

∂

∂z

(
∂φz

∂ω

∣∣∣∣
ω0

)
=
∂

∂z

(
∂
∫
kp(z)dz

∂ω

∣∣∣∣
ω0

)
− ∂

∂z

(
∂Re [p(z)]

∂ω

∣∣∣∣
ω0

)
(4.6.5)

− ∂

∂z

 ∂tan−1

[
bs

w2
0P

√
kp1kp2

tan−1
[

2z
bs

√
kp2

kp1

]]
∂ω

∣∣∣∣∣∣∣∣
ω0

 ,

which can be written as

∂

∂z

(
∂φz

∂ω

∣∣∣∣
ω0

)
=

(
∂kp(z)

∂ω

∣∣∣∣
ω0

)
− ∂

∂z

(
∂Re [p(z)]

∂ω

∣∣∣∣
ω0

)
(4.6.6)

− ∂

∂z

 ∂tan−1

[
bs

w2
0P

√
kp1kp2

tan−1
[

2z
bs

√
kp2

kp1

]]
∂ω

∣∣∣∣∣∣∣∣
ω0

 .

To simplify the calculation of the group velocity, each term in Eq. (4.6.6) is found separately.

To begin

∂kp(z, r)

∂ω

∣∣∣∣
ω0

=
∂kp1

(z, r)

∂ω

∣∣∣∣
ω0

+
∂kp2

(z, r)

∂ω

∣∣∣∣
ω0

4z2

b2
s

. (4.6.7)

This term is due to the linear process, and can be approximated to

∂kp(z, r)

∂ω

∣∣∣∣
ω0

≈ ωpηp

2|Ωs0|2c
(%11 − %44)

∂Re
[
iγps−

[
D0 + (D0 + D2) 4z2

b2s

]]
∂δp

∣∣∣∣∣∣
δp=δs

+
ηp

2|Ωs0|2c
(%11 − %44) Re

[
iγps−

[
D0 + (D0 + D2)

4z2

b2
s

]]∣∣∣∣
δp=δs

. (4.6.8)

Only the first terms of D0 and of D2 + D0 (4.4.8) in the functions kp1
and kp2

(4.5.15) are

kept, while neglecting the higher-order terms, because their effects are negligible compared

to the first terms. Then, kp1
and kp2

can be approximated as

kp1
≈ ωp

c
+ kp2

(4.6.9)

and

kp2
≈ ωp

c

ηp

2|Ωs0 |2
(%11 − %44)Re

[
iγps−

]
. (4.6.10)
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Then Eq. (4.6.8) using the above approximation of kp1
and kp2

can be written as

∂kp(z)

∂ω

∣∣∣∣
ω0

≈ ηp

2|Ωs0|2c
(%11 − %44)

ωp

∂Re
[
iγps−

]
∂δp

∣∣∣∣∣
δp=δs

+ Re
[
iγps−

]∣∣
δp=δs

[1 +
4z2

b2
s

]

≈ ηp

|Ωs0|2c
(%11 − %44)

(
ωp
∂δps

∂δp

∣∣∣∣
δp=δs

+ δps|δp=δs

)[
1 +

4z2

b2
s

]
≈ ω0ηp

|Ωs0|2c
(%11 − %44)

[
1 +

4z2

b2
s

]
. (4.6.11)

The second term in Eq. (4.6.5) is represented by

(
∂Re [p(z)]

∂ω

)∣∣∣∣
ω0

=
∂

∂ω

bstan−1
[

2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
m1r + n1r −

kp1

kp2

(m2r + n2r)

)∣∣∣∣∣∣
ω0

(4.6.12)

+
∂

∂ω

[
z

2kp2

(m2r + n2r)

]∣∣∣∣
ω0

.

The terms m1r and m2r are due to probe-field self-action, that is, the action of the probe

field on itself. The terms n1r and n2r are a result of the action of the signal field on the

probe field. For equal probe and signal-field strengths, m1r is equal to n1r and m2r is equal

to n2r but they are opposite in sign, so their sum vanishes. Consequently, Eq. (4.6.12) also

vanishes. For non-equal value of probe and signal-field strengths, the contribution of (4.6.12)

to the group velocity is negligible compared to the linear term evaluated in (4.6.11). Hence,

this term is neglected.

Using the approximation of kp1
and kp2

in (4.6.10) and (4.6.10) respectively, the following

can written as

kp1
kp2
≈ ωp

c
kp2

(4.6.13)

and

kp2

kp1

≈ c

ωp

kp2
,
kp1

kp2

≈ ωp

ckp2

. (4.6.14)

it is convenient to call the third term of Eq. (4.6.6 as

I3 =

∂

(
tan−1

[
bs

w2
0P

√
kp1kp2

tan−1
[

2z
bs

√
kp2

kp1

]])
∂ω

∣∣∣∣∣∣∣∣
ω0

(4.6.15)
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Then I3 can be written as

I3 ≈
∂

(
tan−1

[
bs

w2
0P

√
kp1kp2

2z
bs

√
kp2

kp1

])
∂ω

∣∣∣∣∣∣∣∣
ω0

≈
∂
(

tan−1
[

2z
w2

0P
kp1

])
∂ω

∣∣∣∣∣∣∣
ω0

,

where the approximation of tan−1θ ≈ θ, for θ � 1 is used to obtain the last line of

Eq. (4.6.16). The above equation is the derivative of the Gouy-phase shift with respect

the frequency

∂Θp(z)

∂ω
=
∂
(

tan−1
[

2z
kp1w

2
0P

])
∂ω

∣∣∣∣∣∣∣
ω0

≈ −
2z

∂kp1

∂ω

w2
0P

(
1 + 4z2

k2
p1
w4

0P

)
k2

p1

∣∣∣∣∣∣∣
ω0

. (4.6.16)

The derivative of kp1
is just the first term of (4.6.11):

∂Θp(z)

∂ω
≈ − 2ω0ηp

w2
0P
|Ωs0|2k2

p1
c
(%11 − %44)

z(
1 + 4z2

k2
p1
w4

0P

) . (4.6.17)

Then, the derivative with respect to z is calculated as

∂

∂z

∂Θp(z)

∂ω

∣∣∣∣
ω0

≈ − 2ω0ηp

w2
0P
|Ωs0|2k2

p1
c

(%11 − %44)(
1 + 4z2

k2
p1
w4

0P

)
 8z

k2
p1
w4

0P

(
1 + 4z2

k2
p1
w4

0P

) − 1

 (4.6.18)

Referring to Fig. 4.3, the third term of Eq. (4.6.18) can be neglected, when compared to the

first term (4.6.11). Therefore, the only term contribute to the group velocity is (4.6.11). The

group velocity for probe field is

vgp ≈
vgp0

1 + 4z2

b2s

, (4.6.19)

with

vgp0 =
|Ωs0|2c

ω0ηp (%11 − %44)
, (4.6.20)

is the group velocity when z = 0.

Comparing Eq. (4.6.19) to the group velocity which has been obtained for the case of

infinite-plane signal wave, represented by Eq. (3.4.71), and certainly for valid (3.4.55), it is
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evident that Eq. (4.6.19) is equal to Eq. (3.4.71) for z = 0, thus vgp0 is equal to the group

velocity of probe field when using infinite-plane signal field. Thus, using Gaussian signal

field adds an extra term to the denominator of the group velocity of the probe field, leads

to further reduction in the group velocity, as long as z > 0.
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Figure 4.3: (a)
∂kp(z)
∂ω . (b) ∂

∂z

∂

(
tan−1

[
2zc

ωpw
2
0P

])
∂ω as a function of the propagation distance z, for

γ3 = 0.1 kHz, δp = δs = 9 MHz, γ4 = 18 MHz, Ωc = γ4, Ωs = Ωp = 0.1γ4, γ2 = 40 kHz,

δc = 0, %11 = %33 = 0.5, and the beam waist w0p = w0p = 500 µm. We use the 87Rb constants:

|d14| = |d34| = 1.269× 10−29 C.m, and ω0 = 2π · 377.11 THz.

The extra term in the group velocity’s denominator has an influential effect when its

value satisfies the following relation

4z2

b2
s

≥ 1. (4.6.21)

The lowest limit of Eq. (4.6.21) corresponds to half of the group velocity of the probe

field when the signal field is an infinite-plane wave. Graphically, it corresponds to half

the intercept point, with vgp-axis as shown in Fig. 4.4. The group velocity of the probe field

reaches half of its initial value when z = zRs .

In Figure 4.4, the group velocity of the probe field is plotted using three different values

of the signal-field beam waist w0s . The signal-field beam waist controls how fast the group

velocity decays as the beam propagates through the medium. Using the values of Fig. 4.4,
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the group velocity reaches half its initial value by propagating 3.95 cm for w0s = 100 µm, 1m

for w0s = 500 µm, and 3.95m for w0s = 1000 µm. A lower value of signal-field beam waist,

a faster decay of the group velocity. However, a lower value of signal-field beam waist also

mean faster decay of the beam intensity.
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5
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Figure 4.4: Group velocity of the probe field versus the propagation distance z, using three-different

values of the signal-field beam waist: w0s = 100 µm (solid line), w0s = 500 µm (dotted line) and

w0s = 1000 µm (dashed line). Other parameters are γ3 = 0.1 kHz, δp = δs = 9 MHz, γ4 = 18 MHz,

Ωc = γ4, Ωs = Ωp = 0.1γ4, γ2 = 40 kHz, δc = 0, %11 = %33 = 0.5. We use the 87Rb constants:

|d14| = |d34| = 1.269× 10−29 C.m, and ω0 = 2π · 377.11 THz.

4.6.2 Phase shift of Gaussian Beam

The phase shift of the probe field in the direction of propagation is given by Eq. (4.6.2. The

phase shift of the propagating-Gaussian probe beam due to the nonlinear self-action is

φSPMpG
= −

bstan−1
[

2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
m1r −

kp1

kp2

m2r

)
+

z

2kp2

m2r (4.6.22)

Using the approximation of tan−1θ ≈ θ, for θ � 1, the following is obtained

φSPMpG
≈ − z

2kp1

(
m1r −

kp1

kp2

m2r

)
+

z

2kp2

m2r

≈ − z

2kp1

m1r. (4.6.23)
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Figure 4.5: Phase shift of the Gaussian-probe beam versus the propagation distance z, φXPMpG

(dashed line), φSPMpG
(dotted line) and the Gouy-phase shift Θ is represented by (solid line), for

two different values of the coupling-field detunings: (a) δc = 0, and (b) δc = 0.1 MHz. Other

parameters are γ3 = 0.1 kHz, δp = δs = 9 MHz, γ4 = 18 MHz, Ωc = γ4, Ωs = Ωp = 0.1γ4,

γ2 = 40 kHz, %11 = %33 = 0.5, and the beam waist w0s = 100 µm. We use 87Rb constants:

|d14| = |d34| = 1.269× 10−29 C.m, and ω0 = 377.11 THz.

The nonlinear-phase shift of the propagating-Gaussian probe beam due to the action of

the signal field is

φXPMpG
=
bstan−1

[
2z
bs

√
kp2

kp1

]
4
√
kp1

kp2

(
n1r −

kp1

kp2

n2r

)
+

z

2kp2

n2r,

≈ − z

2kp1

n1r. (4.6.24)

The second line of (4.6.24) is achieved by following the same mathematical steps for (4.6.23).

The relation kp1
� kp2

is always true for the t atom-field optical system; then the phase

shift can always be approximated to (4.6.24) and (4.6.23). Therefore, the nonlinear-phase

shift equation is similar to using infinite-plane signal and probe fields. Using a Gaussian-

probe and signal beams doesn’t modify the nonlinear interaction.

In Fig. 4.5, the nonlinear phase shift is plotted for two cases. First, when the signal

field is in resonance with |3〉 ↔ |−〉 transition, while the second for the signal field is out of

resonance of |3〉 ↔ |±〉 transitions. As expected, the phase shift is close to zero for the first
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case, but is extremely large for the second (see Sec. 3.5.2 for details of how the coupling-field

detunings modifies the nonlinear phase shift).

4.7 Summary

The wave equation describes the propagation of the Gaussian probe field mode through t

atom-field configuration in which the signal field is also Gaussian have been solved. The

solution is based on treating the medium as inhomogeneous. The inhomogeneity of the

system is a consequence of the variation in the dielectric, due to the propagation of the

signal field within medium. It also assumed that the propagation of the Gaussian probe

beam has slow spatial variations of the gain and index of refraction [90]. The variations are

sufficiently slow in the vicinity of the beam so that the optical susceptibility can be expanded

keeping only the linear and quadratic terms.

Creating an effective inhomogeneity in the medium modifies the group velocity of the

probe field, but not the nonlinear phase shift. The group velocity of the probe field reduces as

the beam propagates through the medium. The reduction in the group velocity is controlled

by the signal-field beam waist.
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Chapter 5

The Potential of Atom-Field Tripod Scheme in the

Scope of Nonlinear Interaction.

5.1 Introduction

The intensive theoretical analysis and predicted equations presented in the previous chapters

make us eligible to compare our proposal for operating atom-field tripod scheme in new re-

gion of frequency detuning with other schemes under the same conditions. It also permit us

to exhibit how the tripod scheme capable of inducing a high nonlinear interaction between

the probe and the signal fields at the level of one photon using experimentally feasible data.

In our calculation, we always satisfy the substantial requirements to resolve EIT experi-

mentally, which insure minimizing the absorption, by eliminating homogeneous broadening

and confining the probe and signal bandwidth within the EIT window, and saturate the

transition.

5.2 Tripod Scheme Operated at the Second DEIT Window in Comparison

to N-Scheme

To demonstrate the potential of the tripod scheme operated in the new region of frequency

detuning where δp = δs 6= δc, we compare the XPM phase shift that can be achieved by the

probe field using our scheme with XPM phase shift obtained by other schemes operated using

the same optical system and under the same conditions. The best nonlinearity enhancement

has been obtained so far by implementing N-scheme [9]. The N-scheme offers non-zero XPM

at the center of the transparency where the absorption vanishes, while all other proposed

schemes has zero XPM at the center of EIT window [57–60]. Therefore, we compare our
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scheme with N-scheme. For Ωs = 2 MHz, Ωc = 2γ4 MHz, and γ4 = 18 MHz, our scheme

produces XPM nonlinearity Re[χ
(3)
p ] = 5.7×10−6 m·V−2 and the probe field phase shifted 90◦

by propagating distance z = 24 µm, while using N-scheme we obtain Re[χ
(3)
p ] = 4.9×10−6 m·

V−2 and the probe field phase shifted 71◦ by propagating the same distance. Appendix A.1

elucidates the calculation details.

Our scheme produces the same order of magnitude of the optical nonlinearity achieved

by N-scheme. However, the tripod scheme has advantage over the N-scheme that both

probe and signal field are part of EIT system, such that both field can achieve a high phase

shift and their group velocity can be lowered simultaneously. Whereas in N-scheme the

interaction between the probe and the signal fields is limited by temporal walk-off, which

result of different group velocities of the probe and signal pulses. The probe pulse propagates

with slow group velocity due to EIT, while the signal-field group velocity is close to speed

of light in vacuum. Operating the tripod scheme in the new region combines the advantage

of the N-scheme by obtaining high nonlinearity and the advantage of the DEIT schemes by

matching and lowering the group velocity of the interacting probe and signal fields.

5.3 Cross Phase Modulation at the Level of One Photon

Our next step is to show the possibility for the probe and signal beams to acquire high

phase shift resolvable experimentally at the level of one photon. Refer to Appendix A.2

for more details of the calculation steps. Using our proposed scheme, it is easy to achieve

high nonlinear interaction capable of realizing a π- phase shift between the probe and the

signal fields, and to slow and match their group velocities. The challenge lies in achieving

a π- phase shift and low matched group velocity, in addition to fulfilling three criteria that

ensure minimizing the absorption and saturating the transition and lead to the creation of

an appropriate environment to attain EIT experimentally:

(i) The ratio |Ωp,s|2
γ4γ3

must be large, that is |Ωp,s|2
γ4γ3

� 1 to obtain the lowest absorption
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and eliminate homogeneous broadening. The necessity for this condition is

discussed in Sec. 3.4.1.

(ii) The DEIT windows must contain the probe and signal field bandwidths to

avoid loss and dissipation. This condition is called the adiabatic limit and can

be satisfied by making the pulse duration of the probe and the signal fields

τp,s >
1

k2p,s
, with k2p,s half-width at the half-maximum of the second EIT

window.

(iii) The transition must be saturated. Laser pulses with large intensity and/or

large interaction times are good choices to fulfill this criterion. Mathematically,

this equivalent to satisfying the condition |Ωp,s| · τp,s � 1.

For example, using a probe and signal pulses of duration τp = τs = 1 µs and a spot area of

radius w0s = w0s = 300 nm will result in π
2

phase shift for each of the probe and signal fields

and low group velocity reaching vp = vs = 0.0146 cm ·s−1 with a delay time of 122 µs, but at

the expense of failing the second and third criteria, which could prevent resolving the EIT

experimentally.

In our previous and next calculations we consider 87Rb. The parameters for the dipole

matrix elements, decay rates [61], and detunings corresponding to our choice of atom and

hyper-fine transition are |d14| = |d34| = 1.269 × 10−29 C·m, γ14 = γ24 = γ34 = 6 MHz,

γ3 = 10 kHz, γ2 = 40 kHz, Ωc = 2γ4, δs = δp = 0.5Ωc and δc = 0.15Ωc. The atomic density

is assumed to be N = 1014 cm−3.

The intensity required to obtain field strength Ωs = Ωp = 1.7 MHz is equal to 245 µW/cm2,

which is sufficient to satisfy the first criterion. The width of the DEIT windows are k2p =

k2s ≈ 0.08 MHz, which require the probe and signal pulse duration τp = τs >
1

0.08
µs to

fulfill the second criterion. Hence, a pulse duration τp = τs = 13 µs is used. For one

photon to produce this required intensity the beam must be focused on an area of ra-

dius w0s = w0s = 50 nm. Then each of the probe and signal fields acquires a phase shift
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φXPMp = φXPMs = 0.35 rad by propagating a distance equal to the confocal length of the

Gaussian probe and signal beams. The group velocity for both fields is matched and lowered

to a value equal to 0.20 cm/s at the entrance of the medium with a pulse delay time equal

to 5.35 µs.

In The previous proposed schemes either achieve high phase shift [9, 10, 51] with mis-

matched group velocity and combined with high absorption, or matched low group veloci-

ties [45, 57–61] with negligible nonlinearity at the center of the EIT window. Operating the

tripod scheme in the new region of frequency detuning combines the advantages of the pre-

vious proposed schemes. Our scheme is capable of inducing a phase shift between the probe

signal field reaching 40◦, and lowering and matching their group velocities in addition to

the fulfillment of the three criteria at the level of one photon. This ensures the propagation

of the probe and signal pulses through the medium without absorption by confining their

bandwidths within the EIT and eliminating homogeneous broadening.

One possible limit to this scheme is the feasibility of not being able to focus the Gaussian

field to an area of radius w0s = w0s = 50 nm. The need for a tightly focused Gaussian

beam is to satisfy the requirement that one photon laser pulse interacts with one atom.

This is consistent with the conditions previously derived for laser pulse energy by Harris

and Luo [93], which demand a sufficient number of photons in the laser pulse to match the

number of atoms in the laser path. Relying on our theoretical calculation, a large XPM with

matched and lowered group velocities, in addition to fulfilling the three criteria discussed

above, is feasible experimentally at the level of a few tens photons using our scheme, if the

laser beam is focused to a spot size of a half wavelength w0s = w0s = λs,p

2
= 395 nm [94] (see

Appendix A.2). The performance of our scheme could be improved further if we were able

to confine the atom in a cavity [95] to make the photon pass through the atom repeatedly,

or bottle [96], to increase the interaction between light and atom and ensure one photon is

interacting with one atom.
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Chapter 6

Doppler-Broadening Effect

6.1 Introduction

At non-zero temperature atoms move randomly due to thermal energy. Thermal atomic

motion leads to a spreading of the absorbed frequency due to the Doppler effect, which

broadens the optical line profile and is known as Doppler broadening [97].

In this chapter, we solve susceptibility numerically and also derive an approximate an-

alytical expression under certain assumption as a function of temperature. The analytical

solution is used to find the widths of transparency windows and also group velocities of the

probe field in each of the two DEIT windows. Our approximate analytical technique is based

on approximating the Maxwell-Boltzmann velocity distribution for atoms by Lorentzian dis-

tributions over the narrow but relevant domain of small atomic velocities [64, 65]. This

approximation is valid as large velocities are sufficiently detuned so as not to affect the

optics.

This chapter focuses on the absorption and dispersion of the probe field at the DEIT win-

dows in the Doppler broadening medium, which is modified by the presence of the coupling

and the signal fields, under certain detunings. The result can be generalized to describe the

absorption and dispersion of the signal field at DEIT windows in the Doppler-broadening

medium, which is modified by the presence of the coupling and the probe fields, under cer-

tain detunings. By comparing (2.5.10) with (2.5.14), it can be seen that %14 and %34 are

symmetric with regard to δp ↔ δs and %11 ↔ %33 exchange, which insure identical dispersive

and absorptive properties of the probe and signal fields for δp = δs and %11 = %33.

This chapter is organized as follows: In Sec. 6.2, Doppler broadening due to tempera-

ture is incorporated into the expression for susceptibility. We solve this susceptibility nu-
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merically. Doppler-broadened optical susceptibility is solved analytically in Sec. 6.3. Our

analytical solution is based on ignoring quadratic dependence of the probe-field Rabi fre-

quency and employing a Lorentzian approximation for a narrow band around the Gaussian

Maxwell-Boltzmann distribution. This approximate expression enables an intuition about

how to control group velocities’ reduction at the second window. In Sec. 6.4, we present

the procedure to reduce the group velocity in the second window. Finally, we summarize in

Sec. 6.5.

6.2 Numerical solution

In our scheme, the electromagnetic field passes through a gas of atoms at temperature T .

Each atom of mass m has a velocity v obeying the Gaussian Maxwell-Boltzmann distribution

f(v) =
1

u
√
π

exp

(
−v

2

u2

)
, u =

√
2kT

m
, (6.2.1)

with v the component of velocity v in the direction of the three copropagating signal, probe,

and coupling fields.

One effect of moving atoms is detuning of resonant frequencies due to the Doppler shift,

which results in a velocity-dependent probe-field susceptibility χp(v). For our Doppler-

broadened system, the susceptibility is thus averaged over the entire velocity distribution

according to [97]

χ̄p :=

∫ ∞
−∞

χp(v)f(v)dv. (6.2.2)

The velocity-dependent expression for susceptibility is obtained from Eq. (6.3.4) by the

replacement

δx 7→ δx +
vωx

c
, x ∈ {p,c,s}, (6.2.3)
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for

ωx =


ω14 ≡ ω0, x = p,

ω24, x = c,

ω34, x = s,

(6.2.4)

the atomic frequencies and c the speed of light in vacuo.

Our scheme relies on neglecting Doppler effect on two-photon detuning δxy (2.2.34), which

is achieved for the copropagating fields driving approximately equal transition frequencies:

ω0 ≡ ω14 ≈ ω24 ≈ ω34. (6.2.5)

This choice is commensurate with our case of a 87Rb gas. For this atom, we assign |1〉, |2〉

and |3〉 to the 5S1/2 level with F = 1, mF = 0 and F = 2, mF = {−2, 0} respectively.

Level |4〉 corresponds to the 5P1/2 level with F = 2 and mF = −1. Therefore, the quanti-

ties {δxy} in Eqs. (6.3.4) do not change under Doppler broadening.

Integration of Eq. (6.2.2) corresponds to a convolution of Lorentzian χp with the Gaussian

profile, which is known as the Voigt profile [98]. The Voigt profile can be solved numerically

but is hard to solve analytically [17, 45, 97, 99].

6.2.1 General Case

This section discusses the numerical solution of Eq. (6.2.2) for general case of Doppler-

broadening effect on optical susceptibility of t atom-field system, without the assumption

of constant population and without any constrains on the strength of the applied fields.

Figures 6.1 and 6.2 show the imaginary and real parts of the probe-field optical suscep-

tibility for two different temperatures. Comparison of these figures with the nonbroadened-

optical susceptibility shown in 2.7 and 2.8, reveals a reduction in the EIT-window width

commensurate with past observations [42, 58, 67, 99], and an increase in the absorption of

probe field for low applied driving field strength. The real part of optical susceptibility has

constant slope at the center of each EIT window. Despite Doppler broadening, both windows

are still evident.
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Figure 6.1: Numerically evaluated steady-state Doppler-broadened optical susceptibility χ̄p versus

probe-field detuning δp at T=50 K (dashed line) and T=300 K (bold-dashed line) for two different

values of signal-field Rabi frequencies (a) and (b) Ωs = 0.1γ4. (c) and (d) Ωs = 0.6γ4. Other

parameters are γ4 = 18 MHz, γ3 = 50 kHz, γ2 = 40 kHz, Ωc = γ4, Ωp = 0.1γ4, δc = 0, δs = 0.5Ωc

and N = 1 × 1014 cm−3. Using 87Rb constants: |d14| = |d34| = 1.269 × 10−29 C·m, and ω0 =

2π · 377.11 THz.

In Sec. 2.5.1, it was found that the signal-field strength is a crucial parameter that affects

the width of the EIT window and the slope of the dispersion curve, when δp = δs. Therefore,

to study the influence of the Doppler effect on the optical properties of the medium in

response to the probe field at that window, the temperature is varied for two different values

of the signal-field Rabi frequencies, while keeping the coupling-field strength constant. For
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low value of Ωs, increasing the temperature leads to an increase in the absorption. Therefore,

to reduce the absorption, a higher signal-field strength is required, as shown in Fig 6.1(c). The

real part of optical susceptibility has constant slope at the center of the second EIT window.

We observe a lower slope for a higher temperature occurs when a low Ωs is applied, as shown

in the inset of Fig. 6.1(b). However, when a high Ωs is applied, almost the same slope of the

dispersion curve is observed at the two different temperatures (see inset, Fig. 6.1(d)).
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Figure 6.2: Numerically evaluated steady-state Doppler-broadened optical susceptibility χ̄p versus

probe-field detuning δp at T=50 K (dashed line), and T=300 K (bold-dashed line) for two different

values of coupling-field Rabi frequencies (a) and (b) Ωc = 0.4γ4, Ωs = Ωp = 0.1γ4. (c) and (d) Ωc =

2.4γ4, Ωs = Ωp = 0.2γ4. Other parameters are γ4 = 18 MHz, γ3 = 50 kHz, γ2 = 40 kHz, and δc = 0,

δs = 0.5Ωc and N = 1× 1014 cm−3. Using 87Rb constants: |d14| = |d34| = 1.269× 10−29 C·m, and

ω0 = 2π · 377.11 THz.
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Next, the effect of Doppler broadening on the optical susceptibility of the probe field

is studied, when δp = δc. In Fig. 6.2, the temperatures for two different values of the

coupling-field strength are changed, while fixing Ωs. For an applied weak value of Ωc, the

absorption increases as the temperature increases. However, for a strong applied coupling

field, absorption remains close to zero for the two examined temperatures values, as shown

in Figs. 6.2(a) and 6.2(c) respectively. The slope of the dispersion curve around the region,

where δp = δc, sharply decreases as the temperature increases, when a weak coupling-field

strength is applied as shown in the inset of Fig. 6.2(b). The difference between dispersion’s

slope values at the two different temperatures is negligible when a strong coupling field is

applied.

To identify the limit for which the applied-field strengths are considered low, and the

limit for which the applied-fields strength are considered high at certain temperature, an

analytical solution that relates the the applied-fields strength to the temperature is required.

This requirement reflects the necessity of an analytical solution.

6.2.2 Temperature-Dependence Atomic Population

Increasing the temperature adds two more phenomena to the atom-field system which we

incorporated into an extended quantum master equation. These two phenomena are thermal

dissipation and Doppler broadening. Our examination of thermal dissipation shows that its

effect is too weak to influence substantially either the coherence or the population. However,

the second phenomenon of Doppler broadening modifies the coherence, as we will see in

Secs. 6.3.3, 6.3.4, and 6.3.5 onward for equal populations in levels |1〉 and |3〉, is discussed

in this subsection in the absence of this equal-population restriction.

Finding an analytical expression for population in Doppler-broadening medium is diffi-

cult. Therefore, we perform numerical studies of atomic populations for various tempera-

tures. Now we proceed to analyze the connection between atomic population and coherence.

At high temperature, Doppler broadening reduces coherence [100, 101] and specifically
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directly reduces the coherences %14 and %34 that are established by the weak fields. Con-

sequently the populations of the states |1〉 and |3〉 change according to the solution of

Eq. (2.3.7). As we will see from the approximate analytical expression for optical suscepti-

bility (6.3.42) that increasing Doppler width WL in Eq. (6.3.42) is responsible for reducing

coherence.

Reduction of coherence and its consequent effects due to Doppler broadening and to

increasing Doppler width are similar to the effects due to adding extra dephasing γφ41

between |1〉 and |4〉 and γφ43 between |3〉 and |4〉 plus increasing the dephasing γφ2 be-

tween |1〉 and |2〉. In Fig. 6.3, we present numerically evaluated atomic populations at

different probe-field detunings δp, for Doppler broadening medium at temperature 100 K as

shown in Figs. 6.3(a), and 6.3(b), and for free Doppler broadening media at zero tempera-

ture accompanied by additional dephasing quantified by γφ41 and by γφ43. We choose the

dephasing γφ41 and γφ43 in Fig. 6.3 to be of the same order of magnitude of WL as shown in

Figs. 6.3(c), and 6.3(d). We observe that Figs. 6.3(a), and 6.3(b) are similar to Figs. 6.3(c),

and 6.3(d).

6.2.2.1 Signal-Field Rabi Frequency Equal Probe-Field Rabi Frequency (Ωs = Ωp)

At δp = δc = 0, the population of atoms in state |3〉 increases as temperature increases, as

shown in Fig. 6.3(a) compared to Fig. 2.5(a). Increasing the temperature from 0 to 100 K

decreases %11 from 1.0 to 0.7 while increasing %33 from 0.0 to 0.2. This population changes

is due to reduction of the coherence %14. The coherence %34 does not have an influence at

δpc = 0. The atom-field system is no longer in the pure dark state |ψD〉. Increasing the

temperature has the effect of displacing the system from the dark state to different state,

where the absorption of the probe field increases. Thus, as the temperature of the system

increases, probe-field absorption becomes very high, thereby potentially preventing the first

EIT window from being observed.

For δp = δs, the atomic population remains the same at different temperatures; i.e.,
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%11 = %33 = 0.5. Therefore, the system remains trapped in the dark state |ψ′D〉 [Eq. (2.4.6)].

The population at that detuning is less sensitive to Doppler broadening. This insensitivity

can be explained as resulting from higher-order nonlinear interactions between the signal and

probe fields resulting from the coupling of %14 to %34 through the presence of the term %13 [72].

This coupling eliminates the effect of Doppler broadening and eliminates the dephasing by

WL. Thus, at the second window, the dressed atom-field dark state is stable with respect

to the Doppler effect, and this stability enables observing the second window even at higher

temperature.
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Figure 6.3: Numerically evaluated steady-state populations %11 (dotted line), %22 (dotted-dashed

line), %33 (dashed line), and %44 (solid line) versus probe-field detuning δp. (a),(b) at 100 K with

γφ41 = γφ43 = 0 MHz and γφ2 = 40 kHz and (c),(d) at zero temperature and incorporating

dephasing γφ41 = γφ43 = 150 MHz and γφ2 = 0.8 MHz. The plots show (a),(c) Ωs = Ωp = 0.3γ4

and (b),(d) Ωs � Ωp, Ωs = 0.3γ4, Ωp = 0.01γ4. Other parameters are γ4 = 18 MHz, γ3 = 10 kHz,

and Ωc = γ4, δs = 0.5Ωc, δc = 0 and N = 1 × 1014 cm−3. Using 87Rb constants: |d14| = |d34| =

1.269× 10−29 C·m, and ω0 = 2π · 377.11 THz.
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6.2.2.2 Signal-Field Rabi Frequency Greater than Probe-Field Rabi Frequency (Ωs � Ωp)

The term Ωp%41(t) − Ω∗p%14(t) of Eq. (2.3.7) is neglected because its effect is very small.

Therefore, for this case, the coherence %14 has negligible effect on the atomic population

of state |1〉. Consequently, the population of |1〉 is not affected by Doppler broadening at

δp = δc.

Under the additional constraint that δps = 0, only %34 affects the population by reducing

%33, and, as %33 for the Doppler-free atomic-field system is almost zero, reducing %34 thus has

no effect on the population of state |3〉. Hence, the population of each level (2.3.7) at zero

temperature will be the same as for the population at any higher temperature. At steady

state, the atoms are all trapped in the state |ψD〉 for δpc = 0 and to |ψ′D〉 for δps = 0.

6.3 Analytical Solution Based on Lorentzian Function

The lack of an exact analytical solution inhibits finding a simple expression relating the

group velocity or width of each EIT window to Doppler broadening. Instead we approxi-

mate the Maxwell-Boltzmann distribution by a Lorentzian function over a narrow velocity

domain [64, 65] to obtain an approximate analytical expression for the optical susceptibility.

This approximation is valid insofar as we are interested in the optical response near the

spectral center.

The analytical steady-state density-matrix element %14 solution for a stationary atom, to

first order in the probe-field Rabi frequency, can be approximated from the exact expression

(2.5.10) as

%
(1)
14 ≈ iΩp

(%11 − %44)
(

Γ43 + 2iδs + |Ωc|2
Γ32+2iδsc

)
+ (%44 − %33) |Ωs|2

γ3−2iδps(
Γ43 + 2iδs + |Ωc|2

Γ32+2iδsc

)(
γ4 − 2iδp + |Ωc|2

γ2−2iδpc
+ |Ωs|2

γ3−2iδps

) , (6.3.1)

We verified this expression numerically for weak signal and weaker probe-Rabi frequen-

cies, i.e., for the condition

|Ωc|2 � |Ωs|2 � |Ωp|2. (6.3.2)

Analytical Solution Based on Lorentzian Function 132



The coherence decay rates are defined in (2.3.8) and (2.5.9). The dephasing rate between

the forbidden transitions is not zero; therefore, γ2 = γφ2 and γ3 = γφ3.

The optical susceptibility for an atomic gas in three dimensions withN the atomic density

and d14 the dipole moment is defined by (3.4.27) as

χp = ηp
%14

Ωp

, (6.3.3)

with ηp defined in Eq. (3.4.28). We can substitute Eq. (6.3.1) into the numerator for χ
(1)
p in

Eq. (6.3.3), which is complicated so we express χ
(1)
p as:

χ(1)
p =

iηp

2(B1 + 2iB2)

(
1− C1 + 2iC2

A1 − 2iA2

)
, (6.3.4)

with the terms A1,2, B1,2 and C1,2 explained below.

To simplify Eq. (6.3.1), we fix the value %44 = 0. This is always true because the atoms

are trapped to the dark state leaving level |4〉 unpopulated. The population of the other

three levels depends on the Rabi frequency of the driving fields. See Sec. 2.4 for more details

of the dark-state analysis and state populations.

The variables in Eq. (6.3.4) are

A1 :=Γ43 +
|Ωc|2 Γ32

Γ2
32 + 4δ2

sc

, A2 :=
|Ωc|2 δsc

Γ2
32 + 4δ2

sc

− δs,

B1 :=γ4 +
|Ωc|2 γ2

γ2
2 + 4δ2

pc

+
|Ωs|2 γ3

γ2
3 + 4δ2

ps

,

B2 :=
|Ωc|2 δpc

γ2
2 + 4δ2

pc

+
|Ωs|2 δps

γ2
3 + 4δ2

ps

− δp, (6.3.5)

C1 :=
|Ωs|2 γ3

γ2
3 + 4δ2

ps

, C2 :=
|Ωs|2 δps

γ2
3 + 4δ2

ps

.

We now have expressions for the steady-state solution (6.3.1) and the corresponding suscep-

tibilities for the probe field (6.3.4).

Expression (6.3.4) is used to calculate and plot the susceptibility, whose imaginary part

is shown in Fig. 6.4(a), and whose real part is shown in Fig. 6.4(b). This absorption plot

clearly displays the first probe window centered at δp = δc and the second EIT window

centered at δp = δs 6= δc.
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Figure 6.4: (a) Absorption and (b) dispersion as a function of the probe-field detuning δp, with

numerical (dotted line), analytical (solid line), and approximate linear equation (dashed line), for

%11 = %33 = 0.5, γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, Ωs = 0.3γ4, Ωp = 0.05γ4, δs =

9 MHz, δc = 0, and N = 1× 1014 cm−3. Using 87Rb constants: |d14| = |d34| = 1.269× 10−29 C·m,

and ω0 = 2π · 377.11 THz.

6.3.1 Atomic Population for Probe-Field Strength Weaker than Signal-Field Strength

In this section, we derive an analytical expression for atomic populations for the case studied

in this chapter. corresponding to Ωc � Ωs � Ωp. The analytical expression can be found

by solving Eqs. (2.3.6) and (2.3.7) restricted to the case that Ωp ≡ 0:

%̇23(t) =

(
−1

2
Γ32 − iδsc

)
%23(t)− i

2
Ωc%43(t),

%̇24(t) =

(
−1

2
Γ42 + iδc

)
%24(t)− i

2
[Ωc (%44(t)− %22(t))− Ωs%23] ,

%̇43(t) =

(
−1

2
Γ43 − iδs

)
%43(t) +

i

2
[−Ω∗c%23(t) + Ω∗s (%44(t)− %33(t))] , (6.3.6)

and

%̇11(t) = γ41%44(t),

%̇22(t) = γ42%44(t)− i

2
[−Ω∗c%24(t) + Ωc%42(t)] ,

%̇33(t) = γ43%44(t)− i

2
[−Ω∗s%34(t) + Ωs%43(t)] ,

1 ≡ %11(t) + %22(t) + %33(t) + %44(t). (6.3.7)
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As we mentioned earlier the |1〉 ↔ |2〉, |1〉 ↔ |3〉, and |2〉 ↔ |3〉 transitions are dipole-

forbidden. Therefore, we restrict γ21 = γ31 = γ32 = 0 in the above equation.

With initial population described by %11(0), %22(0), %33(0), and %44(0), the atomic popu-

lations for the four atomic bare states in the steady state are

%11 =
γ41ZY

γ41ZY + γ43(X − Y )
,

%22 =
γ41Z%22(0) + [Z(Y − γ42)−Xγ43)(1− %11(0)]

γ41ZY + γ43(X + Y )
+

Xγ41%33(0)

γ41ZY + γ43(X − Y )
,

%33 =
Y [(Z + γ43)(1− %11(0)) + γ41%33(0)]

γ41ZY + γ43(X − Y )
,

%44 =
Z(1− %11(0))Y

γ41ZY + γ43(X − Y )
, (6.3.8)

with

X =
|Ωs|2 |Ωc|2

(Γ2
42 + 4δ2

c ) (Γ2
32 + 4δ2

sc)


(

Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)
(4δsδsc + Γ32Γ42)(

Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)2

+ 4
(
|Ωc|2δsc

Γ2
32+4δ2

sc
− δs

)2

+

(
|Ωc|2δsc

Γ2
32+4δ2

sc
− δs

)
(4Γ32δc − Γ42δsc)(

Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)2

+ 4
(
|Ωc|2δsc

Γ2
32+4δ2

sc
− δs

)2

 ,
Y =

|Ωc|2 Γ42

Γ2
42 + 4δ2

c

, (6.3.9)

and

Z =
|Ωs|2

(
Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)
(

Γ43 + |Ωc|2Γ32

Γ2
32+4δ2

sc

)2

+ 4
(
|Ωc|2δsc

Γ2
32+4δ2

sc
− δs

)2 . (6.3.10)

Equations (6.3.8) tell us that, for all probe-field detunings, almost all the atomic population

is in state |1〉 with almost no population in state |3〉. This lack of population in |3〉 eliminates

the effect of the nonlinear signal-probe interaction described by the second term of Eq. (6.3.1).

As we require population in |3〉, we introduce an always-on incoherent pump at rate rp to

maintain population in |3〉.

The equations of motion of the density matrix elements with the incoherent pumping

will change according to (2.5.12) and (2.5.13) . Then the atomic-population equations in the
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presence of the incoherent pumping are modified as

%11 =
ZY (γ41 + rp)

Z (−rpγ42 + 4rpY + γ41Y ) + rpγ43 (Y −X)
,

%22 =
rp (Z (Y − γ42)− γ43X)

Z (−rpγ42 + 4rpY + γ41Y ) + rpγ43 (Y −X)
,

%33 =
rpY (Z + γ43)

Z (−rpγ42 + 4rpY + γ41Y ) + rpγ43 (Y −X)
,

%44 =
rpZY

Z (−rpγ42 + 4rY + γ41Y ) + rpγ43 (Y −X)
, (6.3.11)

with X, Y , and Z defined in Eq. (6.3.9) with replacement (2.5.12) and (2.5.13).

The modified atomic population in the presence of incoherent pumping for the case

Ωs � Ωp is shown in Fig. 6.5(a). The existence of incoherent pumping makes the population

constant for all probe-field detunings. The value of the pumping rate rp controls the popula-

tion in each state. We use rp = 1 MHz to populate states |1〉 and |3〉 with %11 = %33 = 0.44.

At high temperature, when the Doppler effect plays a critical role in repopulating the states,

|3〉 can be repopulated to a value of one-half by using pump rate rp as low as 10 kHz as

shown in Fig. 6.5(b).

In this section, we have presented an incoherent pumping procedure that maintains equal

population between |1〉 and |3〉 for a weak probe field. In the upcoming Sec. 6.3.3, we do

not treat pumping; instead, we assume equal population between |1〉 and |3〉. As we use an

incoherent pump, we should be concerned that coherence is affected, but we see here that

dephasing due to incoherent pumping is negligible for reasonable parameters. Specifically,

the extra dephasing of system from incoherent pumping is of the same order as γφ3 for

Doppler-broadened media [61].

6.3.2 Stationary-Atom Linewidth and Group Velocity

The linewidth of each transparency window ı ∈ {1, 2} is given by the half-width at half-

maximum (HWHM) kı. In this section, we show the calculations leading to closed-form

expressions for the heights, or maxima, of the two absorption windows and also the nadirs,
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or minima, of these absorption windows, for the case where condition (6.3.2) is valid. These

expressions are derived first for the stationary atom and then generalized to the Doppler-

broadened case.
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Figure 6.5: Steady-state populations %11 (dotted line), %22 (dotted-dashed line), %33 (dashed line),

and %44 (solid line) versus probe-field detuning δp for Ωs � Ωp in the presence of incoherent

pumping with constant rate rp evaluated numerically by solving the master equation. The solutions

correspond to (a) low temperature for rp = 1 MHz and (b) for two temperatures 100 K and 400 K

(bold line) with rp = 0.01 MHz. Other parameters are Ωs = 0.3γ4, Ωp = 0.01γ4, γ41 = γ42 = 6 MHz,

γ43 = 12 MHz γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, δs = 13.5 MHz, δc = 0, and N = 1× 1014 cm−3.

Using 87Rb constants: |d14| = |d34| = 1.269× 10−29 C·m, and ω0 = 2π · 377.11 THz.

Identifying the maximum height, hmaxı and minimum height, hminı of the ıth window is

subtle because the two Lorentzian transparency windows are cut asymmetrically into the

overall Lorentzian absorption peak corresponding to zero-coupling field. First, we consider

the i = 1 case.

The maximum is calculated by setting Ωc = 0 = Ωs and evaluating Eq. (6.3.4) at δp =

δc = 0

hmax1 = ηp
%11 − %44

γ4

. (6.3.12)

The minimum hmin1 is determined following the same procedure discussed in Sec. 3.4.1, by
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setting Ωs = 0 but Ωc 6= 0 and evaluating Eq. (6.3.4) at δp = δc = 0. We obtain

hmin1 =
ηp (%11 − %44) γ2

γ4γ2 + |Ωc|2
γ2→0−−−→ 0, (6.3.13)

with zero absorption attained for γ2 = 0. If γ2 6= 0 but condition (3.4.47) holds,

hmin1 →
ηp (%11 − %44) γ2

|Ωc|2
, (6.3.14)

and minimum absorption is reached.

The maximum and minimum of the first transparency window are used to calculate the

half-maximum

κ1 :=
hmax1 + hmin1

2
=
ηp (%11 − %44)

(
2γ4γ2 + |Ωc|2

)
2γ4

(
γ4γ2 + |Ωc|2

) . (6.3.15)

Applying condition (2.5.1) yields

κ1 =
ηp (%11 − %44)

2γ4

. (6.3.16)

For the i = 2 case, we have a Lorentzian transparency window cut into the absorption

curve corresponding to the two conditions Ωs = 0 and Ωc 6= 0 holding. For our case of

DDEIT, we set Ωc = 2δs, which establishes the second transparency window centered at

δp = δs, which is the point that the maximum peak height hmax2 occurs. Therefore, hmax2

can be determined by calculating the Ωs = 0 absorption curve value at δp = δs:

hmax2 = ηp

(%11 − %44)
(
γ4 + Ω2

cγ2

4δ2
sc

)
γ2

4 + 4
(

Ω2
c

4δ2
sc
− δs

)2 . (6.3.17)

Under the approximation that

γ4 �
|Ωc|2

2δ2
sc

γ2

2
, (6.3.18)

we obtain

hmax2 = ηp
%11 − %44

γ4

. (6.3.19)

Thus, hmax1 ≈ hmax2 .
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In order to calculate the minimum of the second transparency window, we set Ωs 6= 0

and Ωc 6= 0 and evaluate Imχ
(1)
p from Eq. (6.3.4) at δp = δs to obtain the minimum

hmin2 = ηp

(
(%11 − %44) γ3

γ4γ3 + |Ωs|2
+

(%44 − %33) |Ωs|2

Γ43

(
γ4γ3 + |Ωs|2

)) . (6.3.20)

The first term in the right-hand side of Eq. (6.3.20) represents the absorption minimum,

whereas the second term represents the maximum gain (negative absorption).

If we wish to reduce absorption, decay from level |3〉 must be minimized, i.e., γ3 → 0. For

the case γ3 6= 0, condition (2.5.2) must be satisfied to minimize the absorption. As Γ43 ≈ γ4,

Eq. (6.3.20) is simplified to

hmin2 = ηp

(
(%11 − %44) γ3

|Ωs|2
+
%44 − %33

γ4

)
. (6.3.21)

As %44 = 0 is assumed, gain exists only when

|%44 − %33|
γ4

� |%11 − %44| γ3

|Ωs|2
, (6.3.22)

or, equivalently, if

|%44 − %33|
|%11 − %44|

� γ3γ4

|Ωs|2
. (6.3.23)

In our case

|%44 − %33|
|%11 − %44|

≈ 1. (6.3.24)

Therefore, we also require condition (2.5.2) in order to achieve gain. The half-maximum is

then

κ2 = ηp

[
(%11 − %44)

(
2γ4γ3 + |Ωs|2

)
γ4

(
γ4γ3 + |Ωs|2

) +
(%44 − %33) |Ωs|2

Γ43

(
γ4γ3 + |Ωs|2

)] . (6.3.25)

For condition (3.4.55) and γ4 � γ3,

κ2 = ηp
(%11 − %33)

γ4

. (6.3.26)

For %11 ≈ %33, κ2 is located at zero absorption.
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By solving

Im[χ(1)
p ] = κı, (6.3.27)

for δpc and δps separately, k1 and k2 are determined respectively with δpc = k1 and δps = k2.

k1 =
|Ωc|2

γ4 +
√

4 |Ωc|2 + γ2
4

, k2 =
|Ωs|2

2
√
γ2

4 + |Ωs|2
, (6.3.28)

respectively. Probe dispersion is shown in Fig. 6.4(b). For detuning δp chosen at the center

of each window, dispersion is zero or close to zero.

For each of windows 1 and 2, group velocity is calculated using (3.4.67)

vg ≈
2c

ng

, ng = (ω41 − δp)
∂Re[χ

(1)
p ]

∂δp

∣∣∣∣∣
δcen

, (6.3.29)

for ng the group index, δcen the detuning at the center of each window (1 and 2) and ω41

the transition frequency between levels |1〉 and |4〉. Detuning δcen equals δc at the first

window and equals δs at the second window. The partial derivative of the dispersion in the

denominator is determined by

∂Re[χ
(1)
p ]

∂δp

∣∣∣∣∣
δcen

= lim
δp→δcen

Re[χ
(1)
p (δp)]− Re[χ

(1)
p (δp = δcen)]

δp − δcen

. (6.3.30)

Therefore, the partial derivative of the dispersion

∂Re[χ
(1)
p ]

∂δp

∣∣∣∣∣
δc

=
ηp |Ωc|2(

γ2γ4 + |Ωc|2
)2 , (6.3.31)

at the center of the first window and

∂Re[χ
(1)
p ]

∂δp

∣∣∣∣∣
δs

=
ηp |Ωs|2

(γ3γ4 + |Ωs|2)2
(6.3.32)

at the center of the second window. Equations (6.3.31) and (6.3.32) yield the slope of the

tangent line to points δp = δcen as shown in Fig. 6.4(b).

In Fig. 6.4(b), the group velocity is shown to be approximately constant in each of the

two EIT windows, which can be seen by the straight-line tangents. The group velocity scales

inversely with slope so the ratio of group velocities for each EIT window is the inverse of the
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ratio of the slopes for each window. From Eqs. (6.3.31) and (6.3.32) and from Fig. 6.4(b),

the group velocity at the first window evidently exceeds the group velocity at the second

window for the given parameters.

Under conditions (3.4.47) and (3.4.55), the group velocity reduces to

vg1
=

2c

ηp

|Ωc|2

ω14

, (6.3.33)

at the first window and to

vg2
=

2c

ηp

|Ωs|2

ω34

(6.3.34)

at the second window. Hence, for stationary atoms, the group velocities in both windows

are linearly proportional to the intensities of the respective driving fields.

6.3.3 Lorentzian Line-Shape Approximation

In this section, we determine an analytical approximation to the optical susceptibility for

a Doppler-broadened system. Our approximation uses a Lorentzian fit to the Maxwell-

Boltzmann velocity distribution over a narrow range of velocity. We use this approximation

to show that the first probe-field transparency window is independent of the signal-field

Rabi frequency and the second transparency window is nonlinear in the signal-field Rabi

frequency. Furthermore, we derive the connection between the transparency window and

the Doppler-broadening width, which is directly dependent on the temperature.

The Lorentzian line-shape function [64]

L
(vω0

c

)
=

1√
π

WL

W 2
L +

(
vω0

c

)2 , (6.3.35)

is a function of the atomic velocity with WL is the HWHM of the Lorentzian profile. To see

that the Lorentzian (6.3.35) approximates the Gaussian (6.2.1) well over a narrow domain,

we first write both functions as Maclaurin series. The Gaussian (6.2.1) is approximated by

f
(vω0

c

)
=

√
ln 2√
πWG

− ω2
0(
√

ln 2)3

c2
√
πW 3

G

v2 +
ω4

0(
√

ln 2)5

c4
√
πW 4

G

v5 − · · · , (6.3.36)

Analytical Solution Based on Lorentzian Function 141



with

WG :=
ω0

c

√
2kT ln 2

m
, (6.3.37)

the HWHM of the Gaussian profile and

L
(vω0

c

)
=

1√
πWL

− ω2
0

c2
√
πW 3

L

v2 +
ω4

0

c4
√
πW 5

L

v5 − · · · , (6.3.38)

for

− 1 <
ω0v

cWL

< 1. (6.3.39)

The two expansions (6.3.36) and (6.3.38) are approximately equal under the conditions that

WL =
1√
ln 2

WG, (6.3.40)

for

− 1� ω0v

cWG

√
ln 2� 1. (6.3.41)

Combining Eqs. (6.3.37) and (6.3.40) yields the connection between the Lorentzian linewidth

and the temperature. These conditions are satisfied near the center of both function pro-

files as shown in Fig. 6.6, where the higher-order terms of Eqs. (6.3.36) and (6.3.38) have

insignificant influence.

Integration of Eq. (6.2.2) using L(v) instead of f(v) has two terms evaluated with the

contour integral using the residue theorem. The final optical susceptibility, including the

Doppler-broadening effect, is

χ̄p(δp) = I1(δp) + I2(δp), (6.3.42)

with δp the detuning (2.2.20). The terms on the right-hand side of Eq. (6.3.42) are

I1 =
iηp

2

√
π

B1 + 2iB2 +WL

, (6.3.43)
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Figure 6.6: Plot of Lorentzian function (dashed line) and Gaussian function (dotted line) versus

normalized atomic velocity.

and

I2 =− iηp

√
π (C1 + iC2)

2 (B1 +WL + 2iB2) (A1 −WL − 2iA2)

− iηpWL

√
π (C1 + iC2)

(A1 +B1 + 2i(B2 − A2)) (W 2
L + 4A2

2 − A2
1 + 4iA1A2)

. (6.3.44)

The HWHM k̄1 of the first transparency window, and the group velocity for this window,

depend on I1(δp) but not on I2(δp) over the domain of δp pertaining to the first window.

In the case of the second transparency window for the probe field, both I1(δp) and I2(δp)

are non negligible for calculating the HWHM k̄2 and group velocity.

In Figure 6.7, we plot the imaginary and real parts of the susceptibility χ
(1)
p as a function

of the probe-field detuning δp at various temperature values based on the average susceptibil-

ity (6.2.2) for the Maxwell-Boltzmann distribution function f(v) and for the approximation

using the Lorentzian function L(v). At low temperatures, for which the broadening is low,

there is a discrepancy between the two functions.

At higher temperatures, for which

W 2
L � γ2

4 , (6.3.45)

the numerical data agree with the analytical data near the center as seen by comparing

the two plots. The plots differ at the tail, which describes far-off-resonant atoms whose
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contribution is negligible. This numerical result validates the Lorentzian approximation for

condition (6.3.45) near the center, which leads to a rather simple form of the inhomogeneously

broadened susceptibility.
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Figure 6.7: Plots of Im[χ
(1)
p ] and Re[χ

(1)
p ] versus probe-field detuning δp at different temperatures for

γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, Ωs = 0.35γ4, δs = 9 MHz, δc = 0, N = 1× 1014

cm−3, and using 87Rb constants: |d14| = |d34| = 1.269 × 10−29 C·m, and ω0 = 2π · 377.11 THz.

(a), (c) and (e) are Im[χ̄p] and (b), (d), and (f) are Re[χ̄p]. We set T= (1, 10, 100) K for (a),(b),

(c),(d) and (e),(f) respectively, which is equivalent to WL = (34.8, 110, 348) MHz, respectively. The

dotted line corresponds to the analytical solution using the Lorentzian line-shape function, whereas

the dashed line is the numerical solution using the Maxwell-Boltzmann distribution function.
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Analyzing the numerical result reveals that condition (3.4.47) and condition

|Ωc|2 > γ2WL, (6.3.46)

are required to observe the first transparency window. These conditions (3.4.47) and (6.3.46)

eliminate the homogeneous broadening and reduce the effect of inhomogeneous broadening,

respectively. At a temperature for which the Doppler broadening satisfies condition (6.3.45),

and Eqs. (6.3.42-6.3.44) are a valid approximation, satisfying condition (6.3.46) certainly

implies satisfying condition (3.4.47). As shown in Fig. 6.7, the width k̄2 of the second

transparency window is not noticeably affected by varying the Doppler width WL. The

reason for the robustness of k̄2 is that the nonlinear interaction in I2, but not in I1,

protects the second window from deleterious temperature effects. Therefore, the strong-

signal-field condition is not required to overcome Doppler broadening damaging the second

transparency window. In other words, condition

|Ωs|2 > γ3WL, (6.3.47)

is no longer mandatory to observe the second window.

Condition (3.4.55) is still required to eliminate the homogeneous broadening for signifi-

cant transparency at the second window. Furthermore, the relaxation of condition (6.3.47)

leads to further reduction of group velocity in Doppler-broadened media, which was limited

by the Doppler width appearing in the right-hand side of condition (6.3.47).

The two terms γ2WL in Eq. (6.3.46) and γ3WL in Eq. (6.3.47) quantify the inhomogeneous

broadening of the two EIT windows. In other words the Doppler broadening alone is not

the whole story; rather the products γ2,3WL incorporating the rates γ2 and γ3 are the key

quantities. In Sec. 6.3.4 we derive the linewidth and the group velocity for which the requisite

conditions (3.4.47) and (3.4.55) for eliminating homogeneous broadening, are always satisfied

for both windows.
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6.3.4 Widths of the Transparency Windows

This section shows first, the calculations leading to closed-form expressions for absorption

maxima, minima, and half maxima of the two absorption windows for Doppler-broadened

case. Then, discusses the dependence of the transparency-window linewidth on temperatures

variation, based on the analytical solution of the optical susceptibility introduce by (6.3.42).

6.3.4.1 Absorption Maxima and Minima

In the case of Doppler-broadened susceptibility, the absorption profile near the center (cor-

responding to zero velocity) is quite flat. As the two windows occur near the center; the

maxima for both windows are the same. The maximum value is calculated for Ωc = Ωs = 0

and for δp = δc:

hDmax1,2 =
ηp

√
π (%11 − %44)

γ4 +WL

. (6.3.48)

The minimum value of the first window is calculated for Ωs = 0 and δp = δc:

hDmin1 =
ηp

√
π (%11 − %44) γ2

|Ωc|2 + γ2 (γ4 +WL)

γ2→0−−−→ 0, (6.3.49)

which requires the condition |Ωc|2 � γ2 (γ4 +WL) to hold in order to reach minimum ab-

sorption. For γ2 6= 0, and for WL � γ4 this condition can be reduced to |Ωc|2 � γ2WL. If

the intensity of the driving field eliminates the inhomogeneous broadening due to Doppler

broadening, it certainly eliminates the homogeneous broadening as well. The half-maximum

of the first window is then equal to

κ̄1 =
ηp

√
π (%11 − %44)

2

2γ2WL + |Ωc|2

γ2W 2
L + |Ωc|2 (γ4 +WL)

. (6.3.50)

For i = 2, the minimum is calculated for Ωc = 0 and δp = δs with the result

hDmin2 =ηp

√
π

[
(%11 − %44) γ3

γ3 (γ4 +WL) + |Ωs|2
− (%44 − %33) |Ωs|2

γ3W 2
L + (WL − γ4) |Ωs|2

+
2 (%44 − %33) |Ωs|2

WL

(
2γ3γ4 + |Ωs|2

)] .
(6.3.51)

The first term in the right-hand side of Eq. (6.3.51) represents the absorption minimum.

This term tends to 0 if γ3 → 0.
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For the case of nonzero dephasing or relaxation decay from state |3〉, condition |Ωs|2 �

γ3 (γ4 +WL) is required to minimize the absorption. For WL � γ4, this condition can be

reduced to (6.3.47). The last two terms of the right-hand side of Eq. (6.3.51) represent the

maximum of the gain. After solving some algebraic expressions, Eq. (6.3.51) becomes

hDmin2 =ηp

√
π

[
(%11 − %44) γ3

γ3 (γ4 +WL) + |Ωs|2
− (%44 − %33) |Ωs|2

WL(2γ3γ4 + |Ωs|2)
(6.3.52)

×2γ3WL(γ4 −WL) + |Ωs|2 (2γ4 −WL)

γ3W 2
L − |Ωs|2 (γ4 −WL)

]
.

Now, we want to examine whether condition (6.3.47), for γ3 6= 0, is required to observe

gain of the Doppler broadening susceptibility. If not, then the existence of gain suppresses

absorption, and the second transparency window is observed even if condition (6.3.47) fails.

We evaluate Eq. (6.3.52) for the condition WL � γ4, in order to simplify the calculation,

and evaluate for condition (3.4.55), which is necessary to minimize the absorption as shown

earlier

hDmin2 = ηp

√
π

[
(%11 − %44) γ3

γ3WL + |Ωs|2
−(%44 − %33)

WL

(
1 +

γ3WL

γ3WL + |Ωs|2

)]
. (6.3.53)

In order for gain to exist,

|%44 − %33|
WL

(
1 +

γ3WL

γ3WL + |Ωs|2

)
� |%11 − %44| γ3

γ3WL + |Ωs|2
, (6.3.54)

which can be simplified by rearranging terms and substituting the quantity

|%44 − %33|
|%11 − %44|

≈ 1 (6.3.55)

to yield

|Ωs|2 +WL

γ3WL

� 0. (6.3.56)

Condition (6.3.56) is always valid even if condition (6.3.47) is not satisfied. Note that the

derivation of inequality (6.3.56) is based on the validity of condition (3.4.55) for homogeneous

broadening. Therefore, condition (3.4.55) is required for the gain to exist in our system,

whereas condition (6.3.47) is not.
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The half-maximum for the second EIT window, without making any approximation, is

κ̄2 =
ηp

√
π

2

[
(%11 − %44)

(
2γ3 (γ4 +WL) + |Ωs|2

)(
γ3 (γ4 +WL) + |Ωs|2

)
(γ4 +WL)

+
(%44 − %33) |Ωs|2

[
2γ3WL(γ4 −WL) + |Ωs|2 (2γ4 −WL)

]
−WL(2γ3γ4 + |Ωs|2)

[
γ3W 2

L + |Ωs|2 (γ4 −WL)
] ]

. (6.3.57)

Applying condition (3.4.55) simplifies this expression to

κ̄2 =
ηp

√
π

2

[
(%11 − %44)

(
2γ3WL + |Ωs|2

)(
γ3WL + |Ωs|2

)
(γ4 +WL)

+
(%44 − %33)

[
2γ3WL(γ4 −WL) + |Ωs|2 (2γ4 −WL)

]
WL

[
−γ3W 2

L + |Ωs|2 (γ4 −WL)
] ]

,

(6.3.58)

For the condition that WL � γ4, Eq. (6.3.58) reduces to

κ̄2 =
ηp

√
π

2WL

(
2γ3WL + |Ωs|2

γ3WL + |Ωs|2

)
(%11 − %33) . (6.3.59)

Thus, the half-maximum of the second EIT window for high Doppler broadening depends on

the population difference between states |1〉 and |3〉. For equal population, the half maximum

is always located at zero where absorption vanishes.

The HWHM of the first and second windows are determined By solving

Im[χ̄p] = κ̄ı, (6.3.60)

for δpc and δps separately, k̄1 and k̄2 are determined respectively with δpc = k̄1 and δps = k̄2.

6.3.4.2 Dependence of the EIT-Window Width on Doppler broadening

The EIT width in a three-level Doppler-broadened Λ system can be maintained by keeping

the temperature of the system constant while changing the driving field [63–67]. Here we

follow a different approach by studying the dependence of the linewidth on temperature

while fixing the intensity of the driving fields. The intensities of the driving fields are chosen

such to eliminate the homogeneous broadening.
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The HWHM of the first window for the Doppler-broadened system is equal to

k̄1 =
|Ωc|2

2

[ (
2γ2WL + |Ωc|2

)
2(γ4 +WL)2

(
γ2WL + |Ωc|2

)
−WL (WL + 2γ4)

(
2γ2WL + |Ωc|2

)]1/2

. (6.3.61)

The width decreases nonlinearly as the Doppler width WL increases as shown in Fig. 6.8.

The condition |Ωc|2 � γ2WL is valid for all WL values in the figure. For a high-intensity

coupling field (6.3.46), the width of the first window reduces to

k̄1 =
|Ωc|2

2
√
WL(2γ4 +WL)

. (6.3.62)

The formula for HWHM can be further simplified if WL � γ4, thereby yielding

k̄1 =
|Ωc|2

2WL

. (6.3.63)

This result is consistent with the previous result for a three-level Λ atom, subject to a high-

intensity driving field, for which the linewidth is proportional to the intensity of the driving

field and inversely proportional to the Doppler width [65]. The HWHM of the second window

of the Doppler-broadened system has a more complicated form than for the first window

k̄2 =
|Ωs|2

2

√
(γ4 +WL) +WL

(
κ̄2 (γ4 +WL)− 1

2

)
4WLγ2

4

(
1
2
− κ̄2 (γ4 +WL)

)
+ |Ωs|2 (γ4 +WL)

, (6.3.64)

where κ̄2 is defined by (6.3.57) is the half-maximum value of Imχ̄p of the second window.

The dependence of the HWHM of the second window on Doppler width is shown in Fig. 6.8.

The width of the second window slightly decreases as the Doppler width increases.

For large Doppler-broadening, WL � γ4, κ̄2 depends on the population difference %11 −

%33. As we set %11 ≈ %33 ≈ 0.5, κ̄2 is always located at Imχ̄p ≈ 0, i. e., where absorption

vanishes. Consequently, the width of the second window remains approximately constant

with respect to Doppler width

k̄2 =
|Ωs|2

2
√

2
√
γ2

4 + 2 |Ωs|2
. (6.3.65)

This independence Doppler broadening width response of the second window is due to the

gain described by ImI2 of Eq. (6.3.42). Expression (6.3.65) reveals that further reduction
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of the group velocity can be achieved by reducing the intensity of the signal field without

losing the transparency window due to Doppler broadening.

The two EIT windows have the same width at the intercept point between the two curves

as shown in Fig. 6.8. For all values of Doppler width the signal field has lower intensity than

the coupling field. The inset to Fig. 6.8 shows how the second window would behave as a

function of WL if the nonlinear contribution I2 were suppressed. This inset makes clear how

important the optical nonlinearity is for achieving quite different temperature sensitivities

of the two transparency windows for the probe field. Mathematically an effect of forcing

I2 ≡ 0 is that the HWHM of the second transparency window is given by a modification of

the HWHM of the first window (6.3.61) with the proviso that Ωc is replaced by Ωs and γ2 is

replaced by γ3.
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Figure 6.8: Numerical (dashed line) and analytical (dotted line) solutions of the HWHM (k̄) for

the (a) first and (b) second EIT transparency windows versus Doppler width WL for γ4 = 18 MHz,

γ3 = 10 kHz, γ2 = 40 kHz, Ωc = γ4, Ωs = 0.35γ4, δs = 9 MHz, and δc = 0. Inset: Numerical

(dashed line) and analytical (dotted line) HWHM of the second EIT window evaluated for the gain

term eliminated.

For atoms copropagating with the probe field, the gain term suppresses the narrowing of
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the width results from Doppler broadening. Generalizing the choice of atomic propagation

direction relative to the direction of the three driving fields would of course lead to different

results [17]

In summary, Eq. (6.3.64) is the full expression of the HWHM of the second transparency

window and accounts for the nonlinear interaction between the probe and the signal fields.

Its behavior is depicted in Fig. 6.8 and shows the insensitivity of the second transparency

window on temperature, which is represented by width WL. Contrariwise the first window

is sensitive to WL.

6.3.5 Group Velocities at the Transparency Windows

From Sec. 6.3.3, we have approximate analytical expressions for susceptibilities at the two

transparency windows. In this section, we determine the derivative of the susceptibility with

respect to the detuning δp and use these partial derivatives of dispersion (6.3.30) to calculate

the group velocities for the probe field in each of the two transparency windows. The response

of the partial derivative of dispersion with respect to Doppler-broadening system is shown

in Fig. 6.9. In this figure, numerical calculations show constant group velocity at the first

window and a sharply increased group velocity at the second window.

The analytical expression for the group velocity of the Doppler-broadened system is

evaluated using Eq. (6.3.29) but with the Doppler-broadened susceptibility (6.3.42) replaced

the free Doppler-broadened susceptibility χ
(1)
p [20]. The partial derivative of Re[χ̄p] at the

center of the first window is

∂Re[χ̄p]

∂δp

∣∣∣∣
δc

=
ηp

√
π|Ωc|2(

γ2WL + |Ωc|2
)2 , (6.3.66)

and at the center of the second window is

∂Re[χ̄p]

∂δp

∣∣∣∣
δs

=
2ηp

√
π |Ωs|2 γ4

(γ4 −WL)
(
γ3WL + |Ωs|2

)2 +
4ηp

√
π |Ωs|2 γ4

WL |Ωs|4
. (6.3.67)

For the first transparency window and for a strong coupling field (6.3.46), the group velocity

of the probe field at the center of the first window has the same group velocity as for
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the Doppler-free case (6.3.33). The negligibility of the Doppler broadening effect is due

to the intensity of the coupling field being large, as can be explained from the analytical

expression (6.3.66).

Figure 6.9 shows agreement between the analytical expression (6.3.66) and the full nu-

merical result applicable for small WL. This agreement diminishes slightly as WL increases.

Therefore, the Lorentzian function can be used to study the Doppler-broadened dispersion

response of the Λ configuration comprising the three states |1〉, |2〉 and |4〉 provided that

condition (6.3.46) is satisfied.
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Figure 6.9: Plots of the numerical (dashed line) and analytical (dotted line) results for the partial

derivative of dispersion with respect to Doppler width for (a) the first window and (b) the second

window for γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, Ωc = 1.5γ4, Ωs = 0.5γ4, δs = 13.5 MHz,

δc = 0, and N = 1 × 1014 cm−3. Using 87Rb constants: |d14| = |d34| = 1.269 × 10−29 C·m, and

ω0 = 2π · 377.11 THz. Inset: numerical (dashed line) and analytical (dotted line) results for the

partial derivative of dispersion vs Doppler width at the second window for I2 ≡ 0.

Our analytical expression is reliable in practical parameter regimes. This agreement

between the analytical Lorentzian approximation and the full numerical result under condi-

tion (6.3.46) is presented in Fig. 6.10 for varying coupling-field Rabi frequency.
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We establish reliability of our approximation by comparing to an approximate Lorentzian

expression derived for a Λ EIT system [20]. In our notation, their result for group index is

ng ∝
γ4 |Ωc|2[

γ2 (γ4 +WL) + |Ωc|2
]2 , (6.3.68)

with the relation between group index and derivative of dispersion Eq. (6.3.66) given by Eq. (6.3.29).

We can neglect γ4 from (6.3.68) according to the approximation (3.4.47). Although re-

sult (6.3.68) is derived for a Λ system and our result Eq. (6.3.66) for a t system, both

results pertain to an EIT window in a strong-coupling regime, and the two Lorentzian-based

approximations agree.
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Figure 6.10: Plot of the numerical (dotted line) and analytical (dashed line) results for the partial

derivative of dispersion versus coupling field at the first window for Doppler width WL = 409 MHz,

γ4 = 18 MHz, γ3 = 10 kHz, γ2 = 40 kHz, δc = δp = 0, and N = 1 × 1014 cm−3. Using 87Rb

constants: |d14| = |d34| = 1.269× 10−29 C·m, and ω0 = 2π · 377.11 THz.

At the second window, the analytical calculation fits the numerical solution for all chosen

Doppler widths in the figure. Eliminating I2 (6.3.44) leads to an equation for group velocity

at the center of the second window being similar equation to Eq. (6.3.66) but with Ωc replaced

by Ωs and γ2 replaced by γ3. Similar dependence on Doppler width is shown in the inset of

Fig. 6.9.

To achieve matched group velocity for the probe pulse propagating through the first and

through the second window, a non-zero nonlinearity is required. The nonlinearity I2 is zero
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only if the condition %44 = %33 = 0 is met. This case for nonlinearity is depicted in the inset

of Fig. 6.9. By fixing %44 = %33 = 0 we have the unwanted additional effect of violating

condition (3.4.55) and thereby destroying the second window.

The intercept point between the two curves shown in Fig. 6.9 reveals the operating

temperature for group velocity matching. At temperatures exceeding the matched group

velocity case, the group velocity in the first window is lower than the group velocity for the

second window and vice versa for temperatures lower than the condition for matched group

velocity.

In summary, we demonstrate three important points in this subsection. First, the

Lorentzian approximation is a useful and valid approximation for studying the dispersion

response of the probe field as long as the conditions (6.3.46) and (6.3.47) for I2 ≡ 0 (6.3.44)

hold. Second, the second term of Eq. (6.3.42) modifies the optical dispersion at the sec-

ond window, which leads to a capacity for group velocity control through manipulating the

temperature. Finally, due to nonlinearity, a signal-field intensity less than the coupling-field

intensity does not necessarily imply that the probe field has lower group velocity at the

second EIT window than at the first window.

6.4 Group-Velocity Reduction

In the previous sections 6.3.4 and 6.3.5, we have studied the behavior of the width and the

group velocity for both EIT windows of the probe field in Doppler broadening media. We

have shown that a high intensity coupling field is required to overcome inhomogeneous broad-

ening, which represents an obstacle for group velocity reduction. The width of the second

EIT window is independent of temperature, which means that the enhanced group-velocity

reduction is superior to the case that would hold if the width did depend on temperature as

temperature dependence could only worsen this effect.

In this section, we derive two expressions that relate the signal-field Rabi frequency Ωs to
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the coupling-field Rabi Ωc and Doppler width WL. Satisfying the first expression guarantees

that the probe field has the same group velocity in each transparency window. Satisfying

the second expression guarantees the same HWHM for the two EIT windows.

The relation between Ωs and Ωc can be satisfied for a wide range of temperatures bounded

above and below by the requirements for the analytical approximations to be valid according

to Eqs. (6.3.45) and (6.3.46). We then use these two expressions to divide the signal-field

intensity to three regimes: a low-strength regime where the group velocity and EIT width

are lower than the first window, a high-strength regime where both group velocity and width

of EIT window are greater than for the first window, and a middle regime where the group

velocity is lower and the width is higher than for the first window.
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Figure 6.11: Plot of the partial derivative of dispersion (dotted-dashed line) and HWHM (dashed

line) for the second EIT window and HWHM (upper horizontal-dotted line) and partial derivative

of dispersion (lower horizontal-dotted line) for the first EIT window versus normalized signal-field

Rabi frequency with Ωc = γ4, WL = 700 MHz, γ4 = 18 MHz, γ3 = 10 kHz, and γ2 = 40 kHz, and

N = 1×1014 cm−3. Using 87Rb constants: |d14| = |d34| = 1.269×10−29 C·m, and ω0 = 2π ·377.11

THz.

In Fig. 6.11, we plot the HWHM and partial derivative of dispersion for the second EIT
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window using Eqs. (6.3.65) and (6.3.67), respectively. We also plot the HWHM and partial

derivative of dispersion for the first EIT window. Intercepts between lines show which signal-

field Rabi frequencies yield matched HWHM or group-velocity conditions. Matched HWHM

occurs at Ωsl
and matched-group velocity occurs at Ωsh

with Ωsl
lower than Ωsh

, and l and h

refer to lower and higher values, respectively. We can choose values of Ωs to control which

of the two windows has higher HWHM and group velocity.

We exploit our analytical expressions for the HWHM and the group velocity at the center

of each window to find the lower and higher boundary values of the signal field. Equating

Eqs. (6.3.63) and (6.3.65) for real values of Ωc and Ωs gives us the lower boundary value

of Ωs:

Ωsl
= 2

3
4 Ωc

√
γ4

WL

. (6.4.1)

Similarly equating Eqs. (6.3.66) and (6.3.67) gives us the higher boundary value of Ωs:

Ωsh
=

2

3

√
9

2
γ3WL +

γ4Ω2
c

3WL

(
19 +

2γ4Ω2
c

W 2
Lγ3

)
. (6.4.2)

Equations (6.4.1) and (6.4.2) reveal which signal-field strength should be selected to achieve

either matched width or matched-group velocity, respectively.

At certain Doppler width, the boundary values of Ωs in Eqs. (6.4.1) and (6.4.2) can be

tuned by varying the coupling-field strength Ωc. Both the matched group velocity and the

matched HWHM have lower value as Ωc is reduced.

In summary, our four-level atom optical system can be operated at the second window

in three different regimes depending on the signal-field strength. In the low-strength regime,

the second window has very low group velocity compared to the first window but also has

a lower EIT width. However, we can operate in this regime for lower group velocity as long

as the width is resolvable experimentally. Alternatively, in the high-strength regime, the

second window has a higher group velocity than for the first window. which makes this

high-strength regime less desirable for low group-velocity experiments.
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6.5 Summary

We have achieved our objective of showing that the second DDEIT window has advantages

over the first window with respect to obtaining an enhanced reduction of group velocity. The

presence of a nonlinear interaction between the probe and signal fields in optical susceptibility

plays a crucial role in enabling temperature-controlled modification of the optical response.

At the second window this term signifies the ability to reduce the narrowing of width and

thereby yields increases of the group velocity as the Doppler width increases. The modified

optical response due to nonlinear interaction permits observing the second window for low

intensity signal field and suggest greater reduction in the group velocities at the second EIT

window.

By identifying the signal-field boundary values Ωsl
and Ωsh

, we are able to identify the

regime of the signal-field strength values that could result in slower group velocity than for

the first window. The low-strength regime is the best for realizing low group velocity, but

the EIT window could be difficult to resolve. The middle-strength regime is more robust in

that the second EIT window is expected to be resolvable and the group velocity is expected

to be low. The high-strength regime is less interesting as the group velocity is relatively

high.

Our approximate analytical calculation succeeds in describing the optical response of

the Doppler-broadened four-level optical system and helps in analyzing the system in the

presence or absence of the nonlinear interaction. These analytical calculations also provide

us with intuition of how the width or group velocities change in a Doppler-broadened system.

Importantly our analytical expression helps us to study the relation between the coupling

and signal fields and to achieve matching of either widths or the group velocities of the two

window. These conditions are not intuitively clear otherwise, and hence would be difficult

to discern using only numerical calculations.
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Chapter 7

Conclusion

The goal of this study has been attained by showing that t-atomic configurations have

interesting characteristics that have not been resolved before, especially DDEIT, wherein

both fields can pass through the medium without absorption, and with a lower group velocity

than the speed of light, at two different EIT windows. This system creates DEIT windows

for the double fields. For identical probe and signal-Rabi frequencies, the optical properties

of both fields at the first and second windows are identical. Therefore, their group velocities

can be matched in either the first or second pair of transparency windows.

The second EIT window in both probe and signal fields is predicted theoretically for the

first time in this work. A theoretical study for this window has been introduced, using a

density-matrix approach, where the observation of this window is explained in terms of the

coherence between atomic levels in both the bare and semiclassical dressed bases. The new

EIT window shows rich characteristics when compared to the first window; as well as lower

constant group velocity, and higher nonlinear-optical susceptibility for both fields, used to

achieve large-phase modulation. This investigation has demonstrated that the SPM and

XPM of both probe and signal fields vanish at the center of two transparency windows.

However, the SPM and XPM around the region of the second window exceed their values

around the region of the first window. The values of SPM and XPM at the region of the

second window are higher than their values in the region of the first window, by a factor of

1000. Our results revealed that the nonlinear index of refraction of the probe field can be

enhanced if the signal field does not resonate either with |3〉 ↔ |−〉 or |3〉 ↔ |+〉 transitions.

Similarly, to get a non-zero value of the SPM and XPM of the signal field, the probe field

must not be in resonance with |3〉 ↔ |−〉 or with |3〉 ↔ |+〉 transitions.
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Another new concept presented in this study is Raman amplification under EIT condition.

This new prediction makes it possible to amplify either one of the weak fields, by scattering

the second in the absence of population inversion between the states that define the Raman

transition, which is a key requirement for Raman gain. The overall gain occurs in the second

window, due to a nonlinear process in which the higher-order terms of probe and signal

fields becomes significant, and cannot be ignored. The gain is achieved without population

inversion at the operating transition, but needs condition (2.5.11) to be satisfied in order

to amplify the probe field, and condition (2.5.15) must be satisfied to amplify the signal

field. Amplification cannot be detected in the probe and signal-field outputs simultaneously,

because the gain that appears in the probe field is accompanied by the absorption of the

signal field, and vice versa.

Furthermore, a solution for the wave equation is presented, and describes the propagation

of a Gaussian probe field, through the t atom-field configuration, in which the signal field is

also Gaussian. The solution is based on the assumption that the medium is inhomogeneous,

a consequence of the variation optical susceptibility, due to the propagation of the signal

field within the medium. It was also assumed that the propagation of the Gaussian probe

beam had slow spatial variations in the gain and index of refraction. The variations are

sufficiently slow in the vicinity of the beam that the optical susceptibility can be expanded,

keeping only the linear and quadratic terms. The solution has assisted in predicting the

changes that occur in the amplitude and phase of the wave during its propagation within

the medium. We also show that generating inhomogeneity within the medium modifies the

group velocity of the probe field, but not the nonlinear phase shift. The group velocity of

the probe field reduces as the beam propagates through the medium. The reduction of the

group velocity is controlled by the signal-field beam waist.

Additionally, this examination has studied the properties of the second transparency win-

dow at high temperatures under the Doppler-broadening effect, but was limited to the con-

159



dition that the probe field is weaker than the signal field. The results demonstrated that the

second EIT window has advantages over the first window, regarding obtaining an enhanced

reduction of group velocity. The presence of a nonlinear interaction between the probe and

signal fields in optical susceptibility plays a crucial role in enabling temperature-controlled

modification of the optical response. The modified optical response, due to nonlinear in-

teraction, permits observation of the second window for the low intensity signal field, and

promises more group-velocity reduction in the second EIT window. It was found that the

nonlinear interaction between the probe and signal fields keep the width of the second win-

dow constant for high Doppler widths. This result permits further lowering of the intensity

of the signal field, without losing the EIT transparency window, and gets lower probe-field

group velocity at the second window than at the first window.

It was also found that in the presence of nonlinear interaction, that the lower strength

of the signal field (which controls the width and group velocity of the second window)

compared to the coupling-field strength (which controls the width and group velocity of the

first window) does not mean that the second window always has a lower group velocity or

a lower EIT window width than the first, for all applied temperatures. By determining

the signal-field boundary values Ωsl
and Ωsh

, it was possible to identify the regime of the

signal-field strength values that could result in slower group velocity than the first window.

The low strength regime is best for realizing low-group velocity, but the EIT window could

be difficult to resolve. The middle-strength regime is more robust, in that the second EIT

window is expected to be resolvable, and the group velocity is expected to be low. The

high-strength regime is less interesting, as the group velocity is relatively high.

Operating the tripod scheme in the new region of frequency detuning merges the advan-

tage of the N-scheme by inducing high nonlinearity at the center of the EIT window and

the advantage of DEIT schemes by lowering and matching the group velocities of the inter-

acting fields within the EIT window. Relying on our theoretical calculation, a large XPM
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sufficient to produce a π-phase shift with matched and lowered group velocities is feasible

experimentally at the level of a few tens photons using our scheme. At the level of a photon

and by satisfying all conditions required to resolve the EIT experimentally, our scheme is

capable of inducing a phase shift between the probe and the signal field reaching 40◦, with

the probe and signal bandwidth confined within the EIT window to ensure the propagation

of the probe and signal pulses through the medium without absorption.
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Appendix A

Optical Parameters Calculation

In this section, we show the detail calculation of the optical parameters including the group

velocity, HWHM of the EIT windows and XPM phase shift using our proposed scheme.

In our calculation we specifically consider 87Rb and assign |1〉, |2〉 and |3〉 to the 5S1/2

with F = 1, mF = 0, F = 2 and mF = {−2, 0} respectively. Level |4〉 corresponds to

level 5P1/2 with F = 2 and mF = −1. The parameters for the dipole matrix elements,

decay rates [61], and detuning correspond to our choice of atom and hyper-fine transition

are |d14| = |d34| = 1.269 × 10−29 C·m, ω0 = 2π · 377.11 THz, γ14 = γ24 = γ34 = 6 MHz,

γ3 = 10 kHz, γ2 = 40 kHz, Ωc = 2γ4, δs = δp = 0.5Ωc and δc = 0.045Ωc.

A.1 Tripod Cross Phase Modulation in Comparison to N-Scheme

The XPM phase shift of the probe field using our scheme is calculated from the second term

of Eq.(3.5.33)

φXPMp(ω) =
ω

c

Re
[
χ

(3)
p 2

(ω)
] ∣∣ξsf

∣∣2
2np(ω)

z, (A.1.1)

with np(ω) ≈ 1at the center of the second EIT window and Re
[
χ

(3)
p2

(ω)
]

defined by Eq. (3.5.38).

In term of the Rabi frequency and using (2.2.11)

∣∣ξsf

∣∣2 =
|Ωs|2 ~2

|d34|2
. (A.1.2)

For Ωs = 2 MHz, which is necessary to obtain the HWHM of the EIT resolvable experi-

mentally k2p,s = 0.12 MHz, and for atomic density N = 1012 cm−3, the real part of the

nonlinear optical susceptibility, Re
[
χ

(3)
p2

(ω)
]

= 5.7× 10−6 m ·V−2 and the XPM phase shift,

φXPMp(ω) = 1.58 rad.
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For the N-scheme the real part of the nonlinear optical susceptibility, Re
[
χ

(3)
pN

]
, using

our notation is defined by [9]

Re
[
χ(3)

pN

]
=

ηspδs |Ωs|2

3 |Ωc|2 (δ2
s + γ2

4)
, (A.1.3)

and the XPM phase shift are calculated using a similar equation to (A.1.1) with Re
[
χ

(3)
p2

(ω)
]

exchanged with Re
[
χ

(3)
pN (ω)

]
. The Re

[
χ

(3)
pN (ω)

]
and the XPM phase shift φXPMpN

(ω) ob-

tained using Ωs = 2 MHz and atomic density N = 1012 cm−3 are 4.9 × 10−6 m · V−2 and

1.24 rad respectively. The above calculation shows that the tripod scheme operated in the

new frequency region and the N-scheme produce the same order of magnitude of optical

nonlinearity.

A.2 Cross Phase Modulation at the Level of One Photon

In the first part of this section, we show by calculation using experimentally feasible data

that the tripod scheme operated in the new frequency region exhibits high nonlinearity that

is able to produce phase shifts in the probe and signal fields equal to π
2

at the level of tens

of photons. During our calculation the fulfillment of the three criteria discussed in Sec. 1.5

are taken into account.

The energy of the single probe and signal photon in 87Rb at 795 nm wavelength and

angular frequency ω0 = 2π · 377.11 THz can be obtained by

E = ~ω0 (A.2.1)

≈ 25× 10−20J.

Then the intensity of the probe and the signal light pulses, each with 65 photons and 10 µs

duration and focused to spot size w0s = w0p = λp,s

2
= 395 nm [94] are

I = Ip,s =
65E

τp,sπw2
0p,s

(A.2.2)

≈ 330 µW · cm−2,
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which is equivalent to the Rabi frequency

Ωp = Ωs =

√
Iγ2

2Isat

, (A.2.3)

≈ 1.9 MHz

where Isat is the saturation intensity for 87Rb atom, which is equal to 1.6 mWcm−2 [23], and

γ14 = γ24 = γ34 = γ = 6 MHz, (A.2.4)

then the group velocity of the signal and probe field in sample of N = 1014 cm−3 and after

propagating a distance z = zRs,p ≈ 0.67 µm are

vgp =
|Ωs|2c

ω0ηp (%11 − %44)

[
1 +

(
z
zRp

)2
] = 2.75 cm · s−1, (A.2.5)

vgs =
|Ωp|2c

ω0ηs (%33 − %44)

[
1 +

(
z
zRs

)2
] = 2.75 cm · s−1, (A.2.6)

and the EIT window widths are

k2p =
|Ωs|2

2
√
γ2

4 + |Ωs0|
2

= 0.1 MHz, (A.2.7)

k2s =
|Ωp|2

2
√
γ2

4 +
∣∣Ωp0

∣∣2 = 0.1 MHz. (A.2.8)

The probe and the signal XPM phase shift are calculated using Eq. (3.5.36) and Eq. (3.5.49)

respectively:

φXPMp = φXPMs = 1.56 rad. (A.2.9)

Now, we check the fulfillment of the three criteria discussed in Sec. 1.5 by calculating the

ratio |Ωp,s|2
γ4γ3

= 20, the product of |Ωp,s| · τp,s = 19, and by comparing the value of τp,s with

the value of 1
k2p,s

. The resultant values ensure that the Rabi frequencies are sufficient to

eliminate the homogeneous broadening and to saturate the transition, and the EIT windows

contain the probe and signal bandwidths.
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Our next step is to show the possibility for achieving a high phase shift at the level of

one photon. The intensity of the probe and signal light pulses, each with one photon and

13 µs duration and focused to spot size w0s = w0p = λp,s

2
= 50 nm, is

I =
E

τp,sπw2
0p,s

(A.2.10)

≈ 245 µW · cm−2.

Using (A.2.3) the Rabi frequency is Ωp = Ωs = 1.7 MHz. The group velocity of the signal

and probe field in a sample of N = 1015 cm−3 and after propagating a distance z = 2zRs,p ≈

0.033 µm are

vgp =
|Ωs|2c

ω0ηp (%11 − %44)

[
1 +

(
z
zRp

)2
] = 0.08 cm · s−1, (A.2.11)

vgs =
|Ωp|2c

ω0ηs (%33 − %44)

[
1 +

(
z
zRs

)2
] = 0.08 cm · s−1, (A.2.12)

and the EIT window widths are

k2p =
|Ωs|2

2
√
γ2

4 + |Ωs0|
2

= 0.076 MHz, (A.2.13)

k2s =
|Ωp|2

2
√
γ2

4 +
∣∣Ωp0

∣∣2 = 0.076 MHz. (A.2.14)

The probe and the signal XPM phase shift are calculated using Eq. (3.5.36) and Eq. (3.5.49)

respectively:

φXPMp = φXPMs = 0.35 rad (A.2.15)

The ratio of |Ωp,s|2
γ4γ3

= 15, and the product of |Ωp,s| · τp,s = 21.5, which ensures that the Rabi

frequencies are sufficient to eliminate homogeneous broadening and to saturate the transition.

By comparing the value of τp,s with the value of 1
k2p,s

, the signal and probe bandwidth are

confined within the EIT window.
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Appendix B

Diagonal and Off-Diagonal Elements of the Density

Matrix

The content of this section is based on [102]. In order to use the density matrix elements to

describe the dynamics of the quantum system, we must first understand what is the physical

meaning of each matrix elements. Let us start with the diagonal elements %φφ

%φφ =〈φ|%|φ〉 (B.1)

=
∑

Ψ

PΨ〈φ |Ψ〉 〈Ψ |φ〉

=
∑

Ψ

PΨ|〈φ |Ψ〉 |2,

the second step in (B.1) follows from (2.3.4). The state vector |Ψ〉 in term of its basis {|φ〉}

can be expressed as

|Ψ〉 =
∑
φ

cφ |φ〉 . (B.2)

Therefore, the term |〈φ |Ψ〉 |2 in the last line of Eq. (B.1) is just |cφ|2, which is the probability

of being in state |φ〉. Thus, Eq. (B.1) gives us the probability of being in base state |φ〉 for

quantum system being in mixture or pure vector state. For this reason, %φφ is called the

population of the state |φ〉.

For the case of the off-diagonal elements of density matrix

ρφϕ =〈φ|ρ|ϕ〉 (B.3)

=
∑

Ψ

PΨ〈φ |Ψ〉 〈Ψ |ϕ〉

=
∑

Ψ

PΨcφc
∗
ϕ,

the term cφc
∗
ϕ is cross term express the interference between states |φ〉 and |ϕ〉 when the

state |Ψ〉 is coherent linear superposition of these states. According to Eq. (B.3) ρφϕ is the
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average of these cross term, taken over all the possible states of the statistical mixture. If

ρφϕ is zero, this means that the statistical average has canceled out any interference effect

between |φ〉 and |ϕ〉. On the other hand, if ρφϕ is different from zero, a certain coherence

effect between these states are occurs. For this reason the off-diagonal elements of ρφϕ are

called coherences.
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Appendix C

Polarization and Optical Susceptibility

The polarization generated in the atomic medium by the applied fields is of primary interest,

since it acts as a source term in Maxwells equations, and determines the electromagnetic

field dynamics. By knowing the induced polarization established by an applied field we

can determine a crucial parameter describe the response of the media to the applied field:

the optical susceptibility χ. Therefore, in this part we review the basic physical concepts of

induced polarization due to an applied field, where we discusses the macroscopic polarization

using different optical representations: time-domain, frequency-domain, and the hybrid of

the time and frequency domain. The content of this section summarizes chapter 2 of [2].

C.1 Macroscopic Polarization

The polarization of the medium under the influence of an applied electric field is described

in terms of a power series in the field

P (t) = P (1)(t) + P (2)(t) + · · ·+ P (m)(t) + · · · , (C.1.1)

where P (1)(t) is linear in the applied field defined by

P (1)(t) = ε0

∫ ∞
−∞
χ(1)(τ)E(t− τ)dτ. (C.1.2)

Here, χ(1)(τ) is a second rank tensor known as the linear optical susceptibility. It is a real

function of the variable τ because it relates two real function polarization and electric fields,

and vanishes for τ < 0 to ensure that P (1)(t) depends only on values of the field for time

before t [2].

The second term of Eq. (C.1.1) is quadratic in the applied field. It is expressed in the
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form [2]

P (2)(t) = ε0

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χ
(2)(τ1, τ2) : E(t− τ1)E(t− τ2), (C.1.3)

where χ(2)(τ1, τ2) is a third-rank tensor that determines the quadratic polarization in the

medium. The causality requirement dictates that χ(2)(τ1, τ2) = 0 when, either τ1 or τ2 is

negative [2].

Similarly, the mth-order polarization P (m)(t) is determined by [2]

P (m)(t) = ε0

∫ ∞
−∞

dτ1 · · ·
∫ ∞
−∞

dτm χ
(m)(τ1, · · · , τm)|E(t− τ1) · · ·E(t− τm). (C.1.4)

The mth-order optical susceptibility χ(m)(τ1, · · · , τm) tensor is of rank m + 1, and is real

function of the m time variable τ1, · · · , τm. It vanishes when any of τm is negative.

Another representation of optical polarization is provided by frequency-domain. Both

the time-domain and frequency-domain representations provide useful descriptions of the

linear and nonlinear-optical properties, and the choice of which is most appropriate largely

depends on the type of applied field. For example, the frequency-domain more appropriate

when considering a monochromatic field, such as that obtained from continuous-wave single-

mode lasers [2]. On the other hand, time-domain representation is more appropriate when

considering short-pulse lasers that are shorter in duration than the fundamental ultrafast

relaxation process of the nonlinear medium [2].

Defining the Fourier time transform and its inverse of function F to be

F (ω) =
1

2π

∫ ∞
−∞
F (t)eiωtdt, F (t) =

∫ ∞
−∞
F (ω)e−iωtdω. (C.1.5)

After the applied field is defined by its Fourier transform, equations (C.1.2), (C.1.3) and

(C.1.4) become transform(C.1.5)

P (1)(t) = ε0

∫ ∞
−∞
χ(1)(ωk;ω)E(ω)e−iωktdω, (C.1.6)

P (2)(t) = ε0

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 χ
(2)(ωk;ω1, ω2) : E(ω1)E(ω2)e−iωkt, ωk = ω1 + ω2,

P (m)(t) = ε0

∫ ∞
−∞

dω1 · · ·
∫ ∞
−∞

dωm χ
(m)(ωk;ω1, · · · , ωm)|E(ω1) · · ·E(ωm)e−iωkt,
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with

ωk = ω1 + · · ·+ ωm,

for P (m)(t), and

χ(1)(ω) =

∫ ∞
−∞
χ(1)(τ)eiωτdτ, (C.1.7)

χ(2)(ωk;ω1, ω2) =

∫ ∞
−∞

dτ1

∫ ∞
−∞

dτ2 χ
(2)(τ1, τ2)ei(ω1τ1+ω2τ2),

χ(m)(ωk;ω1, · · · , ωm) =

∫ ∞
−∞

dτ1 · · ·
∫ ∞
−∞

dτm χ
(m)(τ1, · · · , τm)ei(ω1τ1+···+ωmτm),

as the optical susceptibilities in the frequency domain. By substituting Eq. (C.1.6) into

(C.1.5), we relate the polarization to the electric field in the frequency domain, and the

polarization is determined by the values of the susceptibility tensor at the various frequencies

involved

P (1)(ω) = ε0

∫ ∞
−∞
χ(1)(ωk;ω)E(ω)δ(ω − ωk)dω, ωk = ω (C.1.8)

P (2)(ω) = ε0

∫ ∞
−∞

dω1

∫ ∞
−∞

dω2 χ
(2)(ωk;ω1, ω2) : E(ω1)E(ω2)δ(ω − ωk), ωk = ω1 + ω2,

P (m)(ω) = ε0

∫ ∞
−∞

dω1 · · ·
∫ ∞
−∞

dωm χ
(m)(ωk;ω1, · · · , ωm)|E(ω1) · · ·E(ωm)δ(ω − ωk),

ωk = ω1 + · · ·+ ωm

where the Dirac delta-function is defined by

δ(ω − ωk) =
1

2π

∫ ∞
−∞

e−i(ω−ωk)tdt, (C.1.9)

with δ(ω−ωk) = 0 for ω 6= ωk, δ(ω−ωk)→∞ for ω = ωk, such that
∫∞
−∞ δ(ω−ωk−a)f(ω−

ωk)d(ω − ωk) = f(a)

C.1.1 Monochromatic Applied Field

Consider an applied field consisting of a superposition of monochromatic fields, such as

E(t) =
∑
l

ξle
i(ωlt) + ξ∗l e

−i(ωlt)

2
. (C.1.10)
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Its Fourier transform is given by

E(ω) =
∑
l

ξlδ(ω + ωl) + ξ∗l δ(ω − ωl)
2

. (C.1.11)

We can write the mth-order polarization in the form

P (m)(z, t) =
∑
l

P
(m)
l (z, t) =

∑
l

p
(m)
l ei(ωlt) +

(
p

(m)
l

)∗
e−i(ωlt)

2
, (C.1.12)

with p
(m)
l as the polarization complex envelope function. By substituting (C.1.11) into

(C.1.8) we can obtain an expression for p
(m)
l . The Cartesian µ-component is given by [2]

(
p(m)
ωk

)
µ

= 2ε0
∑

α1···αm

χ(m)
µα1···αm(ωk;ω1, ω2, · · · , ωm)

1

2
ξ1α1

1

2
ξ2α2 · · ·

1

2
ξlαm (C.1.13)

+χ(m)
µα1···αm(ωk;ω2, ω1, · · · , ωm)

1

2
ξ1α1

1

2
ξ2α2 · · ·

1

2
ξlαm

+ further distinguishable terms,

where the repeated cartesian-coordinates α1, · · · , αm are summed over x, y and z. Here, we

consider a specific frequency ωk ≥ 0, and that ω1, ω2, · · · , ωm denotes any of the frequency

modes of the applied electric field of (2.2.5), which together satisfy ωk = ω1 + ω2 + · · ·+ ωl.

The factors 1
2
s appear in the left-hand side of (C.1.13) is because we chose to include 1

2
in the

definition (C.1.11), while the factor 2 in the same side of equation arises from the 1
2

in the

definition (C.1.13). In general, it is rather tiresome to keep track of the various numerical

factors, and this is a source of error. For this reason it is convenient to define the electric

field and polarization without 1
2
.

In contract notation, Eq. (C.1.13) can be written as

(
p(m)
ωk

)
µ

= ε0
∑

α1···αm

∑
l

K (ωk;ω1, ω2, · · · , ωl)χ(m)
µα1···αm (ωk;ω1, ω2, · · · , ωl) (ξ1α1ξ2α2 · · · ξlαm) .

(C.1.14)

The second summation is over all distinct sets of ω1, ω2, · · · , ωl which satisfy ωk = ω1 +ω2 +

· · ·+ ωl. K is a numerical factor, defined by

K(ωk;ω1 + ω2 + · · ·+ ωl) = 2o+p−mq, (C.1.15)
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where q is the number of distinct permutations of ω1, ω2, · · · , ωl, m is the order of nonlinearity,

and p are the sets of dc fields (p = 0 if there is no dc field, o = 1 for ωk 6= 0, otherwise

o = 0). Thus, K = 21−mm! is for different ω1, ω2, · · · , ωl values, with none equal to zero. In

vector notation Eq. (C.1.14) are written as

p(m)
ωk

= ε0
∑
l

K(ωk;ω1, ω2, · · · , ωl)χ(m)(ωk;ω1, ω2, · · · , ωl)ξ1ξ2 · · · ξl. (C.1.16)

This equation represent more general case, in which the optical susceptibility becomes com-

plex, relates the complex amplitude of the applied field to complex amplitude of the polar-

ization. This case is used to study dissipative and dispersive material.

C.1.2 Quasi-Monochromatic Applied Field

Another widely used approach describing the optical response is a hybrid of the time and

frequency domain representations, known as the quasi-monochromatic description [2]. It

is an appropriate description when considering quasi-monochromatic applied fields, such as

from a pulsed or modulated laser source.

An applied field consisting of the superposition of a quasi-monochromatic field can also

be defined by Eq. (2.2.5). In its frequency domain, each wave occupies a spectral band

width centered at ωl. The slowly-varying envelope of its amplitude function contains both

amplitude and phase information. In a similar way, the polarization can be defined as

P (m)(z, t) =
∑
l

P
(m)
l (z, t) =

∑
l

p
(m)
l (t)ei(ωlt) +

(
p

(m)
l

)∗
(t)e−i(ωlt)

2
. (C.1.17)

After substituting Eq. (2.2.5) into (C.1.4) and choosing the particular component at ωk,

the mth-order polarization in the time domain becomes

p(m)
ωk

(t) =ε0K(ωk;ω1, ω2, · · · , ωl)
∫ ∞
−∞

dτ1 · · ·
∫ ∞
−∞

dτm χ
(m)(t− τ1, · · · , t− τm)|ξ1(τ1)

· · · ξl(τm)exp

(
i
m∑
l=1

ωlτl

)
. (C.1.18)
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It is convenient to introduce a tensor Φ(m) of rank m+ 1, defined as

Φ(m)
ωk;ω1,··· ,ωm(τ1, · · · , τm) = χ(m)(τ1, · · · , τm)exp

(
i
m∑
l=1

ωlτl

)
, (C.1.19)

and related to the frequency domain optical susceptibility

χ(m)(ωk;ω1, · · · , ωm) =

∫ ∞
−∞

dτ1 · · ·
∫ ∞
−∞

dτmΦ(m)
ωk;ω1,··· ,ωm(τ1, · · · taum). (C.1.20)

Then (C.1.18) can be written as

p(m)
ωk

(t) = ε0K(ωk;ω1, ω2, · · · , ωl)
∫ ∞
−∞

dτ1 · · ·
∫ ∞
−∞

dτm Φ(m)
ωk;ω1,··· ,ωm(t− τ1, · · · , t− τm)|ξ1(τ1)

· · · ξl(τm). (C.1.21)

The adiabatic limit is when the amplitude fluctuations of the applied field are much slower

than the relaxation time for the polarization induced in the medium, and the response

depends only on the instantaneous values of the field envelopes [2]. This can be expressed

as [2]

Φ(m)
ωk

(t− τ1, · · · , t− τm)→ S(m)δ(t− τ1) · δ(t− τm) (C.1.22)

where S(m) is a time-independent tensor of rank m+ 1. Then Eq. (C.1.21) becomes

p(m)
ωk

(t) = ε0K(ωk;ω1, ω2, · · · , ωl)S(m)ξ1(t)ξ2 · · · ξl(t). (C.1.23)

Equation C.1.23 is also valid for continuous waves (time-independent envelopes). Comparing

with (C.1.16), we see that S(m) = χ(m)(ωk;ω1, ω2, · · · , ωl), and we can obtain the adiabatic

limit for (C.1.21)

p(m)
ωk

(t) = ε0K(ωk;ω1, ω2, · · · , ωl)χ(m)(ωk;ω1, ω2, · · · , ωl)ξ1(t)ξ2 · · · ξl(t). (C.1.24)

As with (C.1.16), the optical susceptibility becomes a complex quantity related to the com-

plex amplitudes of applied electric fields and polarization.
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Appendix D

Gaussian-Beam Fundamental Mode In Compact Form

Equations (4.2.12) and (4.2.17) represent the Gaussian-beam fundamental mode equation,

while the first form of equation is intuitive and more descriptive to Gaussian beam, the

second form of equation is compact and easier to handle by theoretical analysis. In this part

we prove that both are equivalent by deriving the Gaussian beam equation introduced by

(4.2.17) from the one given by (4.2.12) as

ξl(r) = ξ0
w0

wl(z)
e
−r2

(
1

w2
l

(z)
+

ikl
2Rl(z)

)
eiΘl(z). (D.1)

The wave radius can be written in term of ς as

w2
l (z) = w2

0

(
1 + ς2

)
= w2

0(1 + iς)(1− iς), (D.2)

with ς is defined in (4.2.18). By substituting (D.2) into (D.1) we get

ξl(r) = ξ0
1√

(1 + iς)(1− iς)
e
−r2

(
1

w2
0(1+iς)(1−iς)

+
ikl

2Rl(z)

)
eiΘl(z). (D.3)

By rearranging the terms we obtain

ξl(r) =
ξ0

1− iς

√
1− iς

1 + iς
e
− r2

w2
0(1−iς)

(
1

(1+iς)
+

iw2
0(1+iς)kl
2Rl(z)

)
eiΘl(z). (D.4)

The Gouy-phase shift in term of ς has the form

Θl(z) = tan−1ς. (D.5)

The trigonometric function, tan−1ς can be written in the logarithmic form as

tan−1ς =
i

2
[ln (1− iς)− ln (1 + iς)] = iln

(√
1− iς

1 + iς

)
. (D.6)

Then

e−iΘl(z) =

√
1 + iς

1− iς
, (D.7)
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and (D.4) becomes

ξl(r) =
ξ0

1− iς
e
− r2

w2
0(1−iς)

(
1

(1+iς)
+

iw2
0(1+iς)kl
2Rl(z)

)
. (D.8)

The radius of the beam curvature in term of ς can be written as

R(z) = z

(
1 +

1

ς2

)
. (D.9)

Now substitute (D.9) with kl = 2π
λl

into (D.8) to obtain

ξl(r) =
ξ0

1− iς
e
− r2

w2
0(1−iς)

(
1

(1+iς)
+

i(ς+iς2)
1+ς2

)
. (D.10)

The term between the large bracket is equal to one, therefore, we reach the Gaussian beam

in compact form as presented in (4.2.17)

ξl(r) =
ξ0

1− iς
e
− r2

w2
0(1−iς) . (D.11)
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