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Abstract

In this paper we design fast algorithms for computing on encrypted polynomials. More specifically,
we design efficient algorithms for encrypted FFT, polynomial multiplication, division, and multipoint
evaluation. The encryption scheme we need only has to be additively homomorphic.

The above set of algorithms are useful building blocks for many applications in secure computation.
We explore a few of them in this paper. First, we use the new algorithms to design a protocol for batch
oblivious polynomial evaluation (OPE). Batch OPE can be seen as a generalization of k-out-n oblivious
transfer and batch private keyword search. The computational complexity of our protocol is nearly linear
in the degree of the polynomial and does not grow with the number of points evaluated at the polynomial.
Second, we design two different protocols for the private set intersection problem both of which roughly
require linear computation and communication. One is based on the batch OPE protocol we design, and
the other is an adaptation of the ideas of [Kissner and Song, CRYPTO 2005] using the more efficient
encrypted polynomial multiplication we introduce in this paper.

While we mostly focus on security against semi-honest adversaries, our algorithmic ideas, in essence,
yield nearly linear size arithmetic circuits for the set intersection and the batch OPE problems. Imple-
menting these circuits via the new and efficient compiler of [Damgard and Orlandi, CRYPTO 2010] leads
to protocols with linear complexity for the private set intersection and batch OPE with security against
malicious adversaries based on standard and general assumptions.
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1 Introduction

Polynomials are powerful and elegant objects with numerous applications in computer science and cryptog-
raphy in particular. It is easy to find their trace in a range of cryptographic primitives and constructions.
A common approach is to use polynomials to represent the input data and then to perform the necessary
computation on the new representation. Examples of this approach include well-studied problems such as
private information retrieval [2], and secret sharing [22], as well as more recent applications such as private
set intersection [8], privacy-preserving set operations [17], and private keyword search [9].

In almost all such cases the data is first represented using one or more polynomials and then various
operations such as addition, multiplication, and point evaluation on the polynomials are performed. Fur-
thermore, in many cases due to the security requirements, the polynomials are encrypted (or committed to)
and the computation is performed on the encrypted version. Naturally, faster algorithms for computing on
encrypted polynomials lead to more efficient protocols for such cryptographic applications.

One such application is the private set intersection (PSI) problem. A PSI protocol allows two parties -a
server and a client- to interact on their respective input sets such that one or both of the parties learn the
intersection of the two sets, but nothing else. A wide range of organizations dealing with sensitive data need
to perform such an operation on their data. Examples include healthcare providers, insurance companies,
law enforcement agencies, and aviation security. A large body of work has been studying the design of PSI
protocols [8, 17, 14, 16, 4, 15, 6]. This line of research is mostly focused on designing protocols with low
communication and computation while striving for the strongest security guarantees possible. The problem
has proven fairly challenging, and only recently protocols with security against malicious adversaries and
roughly linear complexity in the standard model were designed [16, 15].

1.1 Our Contribution

In this paper we study the problem of computing on encrypted polynomials, and its applications.

Computing on Encrypted Polynomials. We design efficient algorithms for performing different com-
putational tasks on encrypted polynomials. One immediate observation is that with the recent developments
in designing fully-homomorphic encryption schemes [11], it is possible to run any plaintext algorithm on en-
crypted data without the need for decryption (or interaction) and with efficiency that is asymptotically
similar to the complexity of the original algorithm. However, the existing fully homomorphic schemes are
far from practical, and hence it is desirable to rely on more efficient schemes but with limited homomorphic
properties.

Particularly, given polynomials that are encrypted using an additively homomorphic encryption scheme,
we design algorithms for computing the encrypted Discrete Fourier Transform, polynomial multiplication,
division1, and multipoint evaluation all with computational complexity that is linear in the size of the
polynomials (upto a logarithmic factor). The constat factors in the complexities are fairly small and specified
in the body of the paper. In designing our algorithms we rely heavily on computer algebra techniques
designed for fast symbolic computation.

We demonstrate the usefulness of our encrypted polynomial toolkit by applying it to several cryptographic
problems mentioned above.

Oblivious Polynomial Evaluation. We first look at the oblivious polynomial evaluation problem [20].
In the OPE problem a sender holds a polynomial f of degree n over some ring R. A receiver holding an input

1We consider the variants of polynomial multiplication and division where one polynomial is encrypted and the other is in
plaintext. This variant appears to be sufficient for all the applications we have in mind.
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u ∈ R wants to learn f(u) without learning anything else about the polynomial f and without revealing
to the sender any information about u. OPE can be seen as a generalization of the 1-out-of-n oblivious
transfer, and the private keyword search problem. One can envision other client-server scenarios which can
be reduced to oblivious evaluation of polynomials. In many such applications, the polynomial evaluation
needs to be repeated multiple times for different values. The naive solution of rerunning the protocol for
each instance is costly and the cost grows multiplicatively with the number of points being evaluated.

We show how our techniques help with designing a protocol for batch evaluation of k < n OPE instances
with only O(n) communication and O(n log n+ k(log k)2) computation compared to the O(kn) complexity
of the naive solution.

Private Set Intersection. We then move onto the private set intersection problem. The PSI problem
involves two or more parties each with their own private data sets who want to learn which data items
they share without revealing anything more about their data. We use our algorithmic ideas to design two
different PSI protocols.

Our batch OPE protocol can be used to solve the private set intersection problem with almost linear
computation. In order to find the intersection of two datasets A and B, it is sufficient to represent A via
a polynomial fA (where elements of A are roots of fA), and then obliviously evaluate all elements of B at
fA. Those values evaluated to zero are in the intersection while the rest are not. The resulting PSI protocol
requires O(n) communication and O(n(log n)2) computation.

Kissner and Song [17] designed a simple and elegant protocol for the private set intersection problem.
Given two sets A and B of equal size n, the idea is to represent the sets using polynomials fA and fB.
Then, one can show that roots of the polynomial o = rfA + sfB for random polynomials r and s are either
random or in the intersection of the two sets. This idea can be turned into a PSI protocol, and can easily
be extended to work for the multiparty case. The main drawback of the construction, as pointed out in the
literature, is that it requires computational complexity that is quadratic in the size of the datasets. However,
in light of the new algorithms we designed for encrypted polynomial multiplication, the PSI protocol we
derive has O(n) communication and O(n logn) computation. The constant factors in the complexity are also
small. In particular the computation involved consists of n encryptions, n decryptions, 2n log n homomorphic
additions and n log n homomorphic multiplications.

The asymptotic efficiency of both of the above PSI protocols can be improved further via the application
of the hashing-to-bin technique (e.g. see [8]). This reduces their computational costs to O(n log log log n)
which slightly improves on the complexity of the scheme of Freedman et al. [8].

Security Against Malicious Adversaries. So far the protocols we talked about only provide security
against semihonest adversaries. When considering semi-honest adversaries, the use of an additively ho-
momorphic encryption scheme allows us to keep the amount of interaction low. However, the underlying
algorithmic ideas for batch OPE and PSI are not limited to this form of implementation. More specifically,
the ideas can be interpreted as presenting efficient polynomial-based algorithms for computing intersection
of two sets and batch polynomial evaluation, where the algorithms can be represented as arithmetic circuits
of roughly linear size.

Recently, Damgard and Orlandi [5] designed a protocol for securely computing arithmetic circuits with
security against malicious adversaries. The main components of their scheme are a trapdoor homomorphic
commitment scheme, and a semihonest multiplication protocol. If the number of multiplication gates in the
arithmetic circuit is M and the security parameter is s, the computational complexity of their scheme is
O(M + s). This leads to batch OPE and PSI protocols with security against malicious adversaries (in the
standard model) with computational complexity O(n log n + s). The protocol can be instantiated using a
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wide range of assumptions such as DDH, QR, and DCR assumption (see [5] for more detail).
The only other PSI protocols with security against malicious adversaries in the standard model and with

roughly linear complexity are the works [16] and [15]. However the protocol we get has some advantages over
both. The work of [16] requires the elements in the input sets to be chosen from a small domain since an
exhaustive search over the domain is needed. The work of [15] has an additional factor of m in its complexity
where m is the number of bits needed to represent the set elements. For large domains, this can be costly
since the complexities are counting the number of exponentiations needed. Our protocol does not have these
limitations. Finally, the compiler of [5] divides the computation into an offline and an online phase, where
the offline phase is independent of the inputs, and the online phase is quite fast (small constant factors).
Our protocol inherits the same useful properties.

2 Preliminaries

2.1 Homomorphic Encryption

We use a semantically secure public-key encryption scheme that is also additively homomorphic. In partic-
ular, we call an encryption scheme E additively homomorphic if given two encryptions E(m1) and E(m2),
we can efficiently compute an encryption of m1 +m2. We denote this by E(m1 +m2) = E(m1) +h E(m2).
This implies that given an encryption E(m) and a value c, we can efficiently compute a random encryption
E(cm); we denote this by E(cm) = c×hE(m). For a vector v⃗ we denote by E(v⃗) an entry-wise encryption of
the vector. We define the encryption of a polynomial by the encryption of the vector of its coefficients. We
can add two encrypted vectors (polynomials) by adding each encrypted component individually (we use the
same notation +h for this operation as well). When measuring efficiency of our algorithms, we often count
the number of homomorphic additions and multiplications separately, since homomorphic addition tends to
be significantly faster for all existing encryption schemes.

There are a number of homomorphic encryption schemes each with their own special properties. Our
protocols work with any encryption scheme that is additively homomorphic and where the domain of the
plaintexts is a commutative ring. However, the protocols become simpler and more efficient when we can
guarantee that the underlying ring contains a primitive nth root of unity for an appropriate choice of n that
is a power of two.

In case of the additive variant of the El Gamal encryption scheme (messages are in the exponent), the
plaintext domain is the ring Zp where p is a prime. Based on Lemma A.2 from Appendix A, if we make
sure that p = 2ℓ + 1 for a positive integer ℓ, then Zp has nth root of unity for any n = 2s for which s ≤ ℓ.
Hence, we only need to modify the key generation step in order to sample from the space of primes of the
form 2ℓ + 1. Note that this does not seem to have any security side effects since p is publicly known, and
the structure of p does not seem to help in solving the discrete-log problem.

We did not explore the possiblity of providing similar guarantees of existence of primitive roots of unity
for other additively homomorphic encryption schemes such as the Paillier’s encryption scheme [21] or the
extended Goldwasser-Micali scheme [13]2. But as discussed in more detail in Appendix A.5 using some
additional computer algebra techniques, one can remove the condition of existence of roots of unity at a
small computational cost. For ease of composition however, we describe the protocols for the simpler case
where such roots of unity are available.

2The GM encryption scheme is originally defined for messages over GF(2). But it is possible to extend the scheme to work
on larger plaintext domains (for example see [7]).
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2.2 Security Definitions

The security definitions we use to prove our protocols secure follow the ideal-world/real-world simulation
paradigm. Roughly speaking, in this framework, a protocol is secure if anything that an adversary can do in
the real protocol can be simulated by a simulator in an ideal world where participants send their inputs to
a trusted party who performs the computation on their behalf and sends back their corresponding outputs.
We give a brief description of the security definitions for the two-party case in Appendix B. Please see [12]
for more detail.

3 Algorithms on Encrypted Polynomials

First we show that the FFT algorithm and the interpolation on roots of unity (reviewed in Section A) can
be efficiently extended to work on inputs that are encrypted using an additively homomorphic encryption
scheme. More importantly, performing these computations on encrypted data can be done locally and
without the use of the decryption algorithm. Then, we show how to use these two techniques to perform
polynomial multiplication, division and multipoint evaluation on encrypted data (also non-interactively).
The complexity of all the algorithms are linear (upto a logarithmic factor) in the degree of the polynomials
we work with. This collection of efficient algorithms on encrypted data turns out to be a very useful tool in
designing efficient protocols for private computation.

For simplicity, we assume that the plaintext domain of the encryption scheme is a commutative ring that
contains a primitive nth root of unity, for an appropriate value of n. As briefly discussed in Section A.5, it
is possible to remove this condition at the cost of increasing the complexity by a small factor.

3.1 Computing DFT of Encrypted Polynomials

Let f be a polynomial of degree d with coefficients in a finite Ring R, and let w ∈ R be an nth root of
unity where d < n and n = 2k. Given the encryption of the polynomial f via an additively homomorphic
encryption scheme (and without the knowledge of the decryption key), we want to compute an encryption
of f ’s DFT, namely encryption of the vector ⟨f(w), f(w2), . . . , f(wn−1)⟩.

Using Horner’s rule and the homomorphic properties of an additive encryption scheme, we can compute
an encryption of each f(wi) via d homomorphic multiplications and d homomorphic additions. This leads
to a total of O(dn) homomorphic operations for computing the DFT. But this is not the best we can do.
Using the FFT transform we show how to reduce the total cost to O(n log n) homomorphic operations.

The main observation is that the FFT algorithm lends itself quite nicely to (additive) homomorphic prop-
erties of the encryption scheme, and hence can be computed non-interactively and efficiently on encrypted
data.
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Encrypted FFT Algorithm
EncFFTw,n(Epk(f⃗))

Input: n = 2k ∈ N with k ∈ N; powers of a primitive nth root of unity w ∈ R; the public key pk for
an additively homomorphic encryption scheme E with the plaintext domain R, and the encrypted vector
Epk(f⃗) = ⟨Epk(f0), Epk(f1), . . . , Epk(fn−1)⟩ where f(x) =

∑
0≤i<n fix

i.

Output: Encrypted vector ⟨Epk(f(1)), Epk(f(w)), . . . , Epk(f(w
n−1))⟩

1. If n = 1 then return Epk(f0).

2. For 0 ≤ j < n/2 compute Epk(r0,j) = Epk(fj) +h Epk(fj+n/2).

3. For 0 ≤ j < n/2 compute Epk(r1,j) = Epk(fj)−h Epk(fj+n/2).

4. For 0 ≤ j < n/2 compute Epk(r
∗
1,j) = Epk(r1,j)×h wj .

5. Let r⃗0 = ⟨r0,0, r0,1, . . . , r0,n/2−1⟩ and r⃗∗1 = ⟨r∗1,0, r∗1,1, . . . , r∗1,n/2−1⟩.

6. Compute the two encrypted vectors O⃗ = ⟨o0, . . . , on/2−1⟩ and O′ = ⟨o′0, . . . , o′n/2−1⟩ where O⃗ ←
EncFFTw2,n/2(Epk(r⃗0)) and O⃗′ ← EncFFTw2,n/2(Epk(r⃗∗1)).

7. Return ⟨o0, o′0, o1, o′1, . . . , on−1, o
′
n−1⟩.

Efficiency. It is easy to verify that the above protocol requires n logn homomorphic additions and n/2 log n
homomorphic multiplications by wi. As noted earlier, each homomorphic addition translates to a group
multiplication while each homomorphic multiplication requires an exponentiation. On the other hand, if w
is chosen to be small, some of these exponentiations (which are homomorphic multiplications with powers
of w) become more efficient.

3.2 Encrypted Interpolation on Powers of Roots of Unity

Encrypted Interpolation on Powers of nth Root of Unity
EncInterpolw,n(v⃗)

Input: n = 2k ∈ N with k ∈ N, a primitive nth root of unity w ∈ R, public key pk for an additively
homomorphic encryption scheme E and an encrypted vector Epk(v⃗) = ⟨Epk(v0), · · · , Epk(vn−1)⟩ ∈ Rn.

Output: The encrypted polynomial Epk(f) of degree n where f(wi) = vi for 0 ≤ i < n.

1. Compute w−1, w−2, . . . , w−(n−1).

2. Compute and return 1/n×h EncFFTw−1,n(Epk(v⃗))

The algorithm’s efficiency is almost identical to that of the EncFFT algorithm as the bulk of the compu-
tation is one invocation of that algorithm.

3.3 Multiplying Encrypted Polynomials

Next we show how to use the EncFFT and EncInterpol algorithms described above to efficiently multiply
encrypted polynomials. We are mostly interested in a variant of the problem where one polynomial is
encrypted and the other polynomial is in plaintext.

As we show next, given an additively homomorphic encryption scheme, this variant can be computed non-
interactively and without the need for decrypting any ciphertexts. The algorithm only requires computation
that is linear in the degree of the polynomials.
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Encrypted Polynomial Multiplication Algorithm
EncPolyMultw,n(Epk(f⃗), g)

Input: Encryption of the polynomial f(x) =
∑

0≤i<d1
fix

i, i.e. Epk(f⃗) = ⟨Epk(f0), . . . , Epk(fd1)⟩ and
the plaintext polynomial g =

∑
0≤i<d2

gix
i, and a primitive nth root of unity w where n = 2k and

d1 + d2 < n.
Output: Encryption of the product polynomial h = fg.

1. Compute ⟨Epk(f(1)), . . . , Epk(f(w
n−1))⟩ ← EncFFTw,n(f).

2. Compute ⟨g(1), . . . , g(wn−1)⟩ ← FFTw,n(g).

3. For 0 ≤ i < n, compute Epk(h(i)) = g(i)×h Epk(f(i)).

4. Let v⃗h = ⟨h(1), . . . , h(n− 1)⟩.

5. Compute and return EncInterpolw,n(Epk(v⃗h)).

Efficiency. The algorithm requires 2n log n homomorphic additions and n log n homomorphic multiplica-
tions, since the EncFFT and the EncInterpol are each invoked exactly once.

3.4 Encrypted Polynomial Division

Here, we describe a protocol for performing the division with remainder on encrypted polynomials. We focus
on the version of the division protocol where polynomial a of degree n is encrypted, a monic polynomial b
of degree m < n is in plaintext and we want to compute encryptions of two polynomials q and r such that
a = qb+ r and r is of degree less than m. Next we review simple algebraic tricks that allow us to reduce the
encrypted polynomial division algorithm to the encrypted polynomial multiplication algorithm we described
earlier. We note that similar tricks were used in [18] in the context of secure computation but in a different
setting and with different applications in mind.

We define reversal of a polynomial a as revk(a) = xka(1/x). When k = n, this is the polynomial with
the coefficients of a reversed, that is, if a = anx

n + an−1x
n−1 + · · ·+ a1x+ a0, then

rev(a) = revn(a) = a0x
n + · · ·+ an−1x+ a0

We can now rewrite the division with remainder expression as

revn(a) = revn−m(q)revm(b) + xn−m+1revm−1(r)

an therefore,
revn(a) = revn−m(q)revm(b) mod xn−m+1

Note that since we assume b is a monic polynomial, revm(b) has the constant coefficient 1 and thus is
invertible modulo xn−m+1. Hence we have that

revn−m(q) ≡ revn(a)revm(b)−1 mod xn−m+1,

and can obtain q = revn−m(revn−m(q)) and r = a− qb.
In other words, performing the polynomial division with remainder is reduced to inverting the polynomial

b modulo xn−m+1, two polynomial multiplications and one polynomial subtraction. Since in our variant of
the algorithm b is in plaintext, we can use standard computer algebra algorithms for inverting b which
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requires O(n log n) ring operations. Since in all our applications we are only interested in the remainder
polynomial, we define the output of the protocol to be only r. The algorithm follows.

Encrypted Polynomial Division Algorithm
EncPolyDivw,n′(Epk (⃗a), b)

Input: Encryption of the polynomial a(x) =
∑

0≤i≤n aix
i, i.e. Epk (⃗a) = ⟨Epk(a0), . . . , Epk(an)⟩ and

the plaintext polynomial b(x) =
∑

0≤i≤m bix
i, and a primitive n′th root of unity w where n′ = 2k and

n′ > 2n−m+ 1.

Output: Encryption of the remainder polynomial r of degree less than m where a = qb+ r.

1. Compute w2, . . . , wn−1.

2. Let a′ = revn(a). By reversing the order of coefficients of Epk(a), we arrive at the encrypted

version of a′ denoted by Epk(a⃗′).

3. Compute the polynomial b′ = revn−m(b)−1 mod xn−m+1 using standard computer algebra tech-
niques.

4. Compute Epk(q1) = EncPolyMultw,n′(b′, Epk(a⃗′)).

5. Compute Epk(q2) = Epk(q1) mod xn−m+1 . This is a simple operation that can be performed
non-interactively given the additive homomorphic property of the encryption scheme.

6. Compute Epk(q) = revn−m(Epk(q2)) by reversing the coefficients.

7. Compute Epk(r) = Epk(a)−h EncPolyMultw,n′(Epk(q), b).

8. Output Epk(r).

Efficiency. The protocol invokes the EncPolyMult protocol twice, and requires m and n−m homomorphic
additions in steps 5 and 7, respectively. This leads to a total of 2n′ log n′ homomorphic multiplication and
4n′ logn′ + n′ homomorphic additions.

3.5 Encrypted Multipoint Polynomial Evaluation

Given an encrypted polynomial f of degree n and n points u0, · · · , un−1 ∈ R, our goal is to compute the
encrypted vector ⟨f(u0), f(u1), · · · , f(un−1)⟩.

Through the use of the Horner’s rule and the additive homomorphic properties of the encryption scheme,
it is possible to perform this task with O(n2) homomorphic operations. However, we are interested in a
significantly more efficient algorithm. We have already seen that in the special case when ui = wi where w
is a primitive nth root of unity, the EncFFT algorithm performs the same task with O(n log n) homomorphic
operations. Our goal is to design an efficient algorithm for the general case of the problem.

Let n = 2k and mi = x− ui for 0 ≤ i < n. We first compute the following sequence of polynomials:

Mi,j = mj2imj2i+1 · · ·mj2i+(2i−1) =
∏

0≤ℓ<2i

mj2i+ℓ

for 0 ≤ i ≤ k = log n and 0 ≤ j < 2k−i. In other words, each Mi,j is a subproduct with 2i factors
from Mk,0 =

∏
0≤ℓ<nmℓ. There exist a simple recursive algorithm for computing the polynomials Mi,j for

0 ≤ i ≤ k and 0 ≤ j < 2k−i, with O(n(log n)2) ring operations. Note that since ui’s are in plaintext, the ring
additions and multiplications are significantly cheaper than say encryption or homomorphic multiplication
both of which require exponentiation.
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The algorithm for multipoint evaluation uses these subproducts in a recursive way. The idea is to divide
with remainder the polynomial we want to evaluate by two of these subproduct polynomials and recursively
run the algorithm on the remainder polynomials. Evaluating the remainder polynomials gives the same
result as evaluating the original polynomial itself. We describe the detailed algorithm next:

Encrypted Multipoint Polynomial Evaluation Algorithm
EncMultiEvaln(Epk(f), u⃗)

Input: Encryption of the polynomial f(x) =
∑

0≤i<n fix
i over R, i.e. Epk(f⃗) = ⟨Epk(f0), . . . , Epk(fn)⟩,

and the plaintext vector u⃗ = ⟨u0, u1, · · · , un⟩. Let n = 2k, for k ∈ N, and w the a primitive nth root of
unity.
Output: The encrypted vector ⟨Epk(f(u1)), · · · , Epk(f(u1))⟩.

1. Compute the subproduct polynomials Mi,j for 0 ≤ i ≤ k, and 0 ≤ j < 2k−i, as described above.

2. If n = 1 then return f . f is a constant in this case.

3. Compute Epk(r0) = EncPolyDivw,n(Epk(f),Mk−1,0), and Epk(r1) =
EncPolyDivw,n(Epk(f),Mk−1,1). Note that r0 and r1 are of degree less than n/2.

4. Let u⃗0 = ⟨u0, · · · , un/2−1⟩ and u⃗1 = ⟨un/2, · · · , un⟩. Recursively call the algorithm twice

(a) ⟨Epk(r0(u0)), · · · , Epk(r0(un/2−1))⟩ ← EncMultiEvalw,n/2(Epk(r0), u⃗0)

(b) ⟨Epk(r1(un/2)), · · · , Epk(r1(un))⟩ ← EncMultiEvalw,n/2(Epk(r1), u⃗1)

5. Output Epk(r0(u0)), · · · , Epk(r0(un/2−1)), Epk(r1(un/2)), · · · , Epk(r1(un)).

Efficiency. A careful calculation we omit here (See Chapter 10 of [10]) shows that the above algorithm
requires at most D(n) log n operations where D(n) is the number of operations needed for dividing a poly-
nomial of degree less than 2n by a monic polynomial of degree n. Given the complexity of our division
algorithm, this leads to at most 6n(log n)2 homomorphic multiplications and 12n(log n)2 + 3n log n homo-
morphic additions.

4 Applications

4.1 Batch Oblivious Polynomial Evaluation

In the Oblivious Polynomial Evaluation (OPE) problem a sender holds a polynomial f of degree n over some
ring R. A receiver holding an input u ∈ R wants to learn f(u) without learning anything else about the
polynomial f and without revealing to the sender any information about u. The precise security definitions
are those of secure multiparty computation described in Section 2.2.

OPE was originally studied in [20], and can be seen as a generalization of a number of problems studied
in the literature such as the 1-out-of-n oblivious transfer (e.g. see [19]), and private keyword search [9]. In
case of 1-out-of-n oblivious transfer with a database D = {d1, . . . , dn}, the sender can choose f such that
f(i) = di. In case of private keyword (PKS) search where the database is D = {(w1, d1), . . . , (wn, dn)}, the
sender can choose a polynomial f where f(wi) = di and wi is the keyword associated to di for 1 ≤ i ≤ n. 3

Given an additively homomorphic encryption scheme over the ring R, there exist a simple protocol for
the OPE problem which requires O(n) encryption/homomorphic operations when implemented using the

3A standard assumption made in PKS protocols is that the keywords are unique

9



Horner’s rule. However, in most applications one is interested in evaluating the polynomial on many points.
Given k evaluation points, this can be seen as a generalization of the k-out-of-n oblivious transfer problem.
The naive solution is to repeat the OPE protocol k times. This leads to O(kn) encryption/homomorphic
operations. For large values of k this is rather inefficient. Next, we use the techniques developed in previous
sections to design a protocol for batch OPE that only requires O(n(log n) + k(log k)2) homomorphic opera-
tions. The protocol is a natural composition of the EncPolyDiv algorithm and the EncMultiEval algorithms
we have designed. More specifically, to evaluate the polynomial f at points u1, · · · , uk, we first divide f by
the polynomial (x−u1) · · · (x−uk). Denote the resulting polynomial by r. It is easy to see that r(ui) = f(ui)
for 1 ≤ i ≤ k. Therefore we can use the EncMultiEval protocol to evaluate r at u1, . . . , uk. The protocol
follows:

Batch Oblivious Polynomial Evaluation Protocol
BatchOPE(f, u⃗)

Sender’s Input: A polynomial f of degree n with coefficients in R.
Receiver’s Input: The vector u⃗ = ⟨u1, u2, · · · , uk⟩ in the ring Rn.
Receiver’s Output: ⟨f(u1), . . . , f(uk)⟩

1. Sender generates a key pair (pk, sk) for the public key encryption scheme E, and sends pk to the
receiver.

2. Sender sends Epk(f) to the receiver.

3. Receiver computes the polynomial g = (x− u1)(x− u2) · · · (x− uk).

4. Receiver computes the encrypted polynomial Epk(r)← EncPolyDiv(Epk(f), g) of degree k.

5. Receiver computes Epk(o⃗)← EncMultiEvalk(Epk(r), u⃗).

6. Receiver computes and sends Epk( ⃗o+ or) = Epk(o⃗)+h Epk(o⃗r) for a random vector or ∈ Rk to the
sender.

7. Sender decrypts the encrypted vector and sends o⃗+ o⃗r back to the receiver.

8. Receiver computes and outputs o⃗ = o⃗+ o⃗r − o⃗r.

Efficiency: The protocol executes the EncPolyDiv protocol on a polynomial of degree n and the EncMultiEval
protocol on a polynomial of degree k. This adds to a total of O(n logn+k(log k)2) homomorphic operations.

Claim 4.1 The BatchOPE protocol is secure against semihonest adversaries, if the encryption scheme E is
semantically secure.

Proof sketch: The proof of security of the protocol against semi-honest adversaries follows naturally
from the semantic security of the encryption scheme, and the randomization steps that take place in the
protocol. For completeness we include a sketch of the proof here. This also serves as a good example, since
the proofs for all the other protocols follow the same pattern. We prove the security using the ideal/real
simulation paradigm. In case of semi-honest adversaries, it is sufficient to simulate the view of the corrupted
party given only his input/output. We have the following two cases:

Sender is corrupted. The Sender’s view is only the message he receives in step 6 of the protocol. This
message is an encryption of a uniformly random message vector. This is because the sender does not know
the random vector o⃗r which masks the output vector o⃗. Hence the simulator can simulate the sender’s view
by computing an encryption of a randomly chosen message vector.

Receiver is corrupted. The simulator knows the receiver’s input and randomness and the output vector
o⃗ and wants to simulate the receiver’s view in the real protocol. He first generates a dummy polynomial f ′ of
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appropriate degree (arbitrary coefficients) to use in place of the sender’s input polynomial f . The simulator
encrypts f ′ using the encryption scheme and performs all the computation on the encrypted f ′ instead to get
an encrypted vector Epk(o⃗′). Note that due to the semantic security of the encryption, the view generated
using f ′ is computationally indistinguishable from the one generated using the real polynomial f .

To simulate the only remaining part of receiver’s view (i.e. the message received in step 7), given o⃗r
generated by the receiver, the simulator computes o⃗+ o⃗r. the generated vector is identical to the vector in
receiver’s view.

This completes the proof sketch of security for the above scheme.

4.2 Private Set Intersection via OPE

The set intersection problem involves two or more parties each with their own private data sets who want to
learn which data items they share without revealing anything more about their private data. As mentioned
earlier, several recent works have focused on designing protocols with linear computation and communication
complexity.

Interestingly, our batch oblivious polynomial evaluation protocol can be used to solve the private set
intersection problem with linear complexity. In order to find the intersection of two datasets A and B, it
is sufficient to represent A via a polynomial fA (where elements of A are roots of fA), and then obliviously
evaluate all elements of B at fA. Those values evaluated to zero are in the intersection while the rest are
not. Simple randomization techniques can be added to avoid leaking any information about those elements
that are not in the set. The protocol follows.

Private Set Intersection Protocol (via OPE)

Inputs: Alice holds the dataset A of size na, and Bob holds the dataset B of size nb with elements in
R. Without loss of generality we assume that na > nb.
Output: The intersection of A and B.

1. Alice computes the polynomial fA of degree na by letting the roots of fA be the elements in A.

2. Bob randomly permutes and arranges the elements of B in a vector b⃗ ∈ Rnb .

3. Alice and Bob run the Steps 2 to 5 of the BatchOPE(fA, b⃗) protocol. At this point Bob holds the
encrypted vector Epk(o⃗) which contains the evaluation of elements of B at polynomial fA.

4. Bob generates two random vectors r⃗1, r⃗2 ∈ Rnb . He then computes and sends Epk(o⃗1) =

r⃗1×hEpk(o⃗)+h b⃗ and Epk(o⃗2) = r⃗2×hEpk(o⃗) where the vector multiplications are component-wise
multiplications. Note that o⃗2 is zero in components corresponding to the elements in the intersec-
tion, and random otherwise. For indices corresponding to elements in the intersection, o⃗1 holds
the actual values.

5. Alice decrypts o⃗2 to learn the locations of the elements in the intersection (they are the ones with
0). She marks the indices for those locations, decrypts o⃗1 and outputs the values in the marked
indices as the final output.

The above protocol can be easily modified to compute the size of the intersection set instead. Particularly,
if in the final stage we only compute the vector o2 and count the number of zeros, we have a protocol that
computes the size of the intersection.

Efficiency. The bulk of computation consists of running the BatchOPE protocol once, and hence the
computational complexity of the scheme is O(na log na + nb(log nb)

2) homomorphic operations.
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Claim 4.2 the above protocol is secure against semihonest adversaries if the encryption scheme E is se-
mantically secure.

Similar to proof of Claim 4.1, the security follows from the semantic security of the encryption scheme
in a standard way. Details are deferred to the full version.

4.3 Private Set Intersection Via Polynomial Multiplication

Kissner and Song [17] designed a simple and elegant protocol for the private set intersection problem. Given
two sets A and B of equal size n, the idea is to represent the sets using polynomials fA and fB, respectively.
Let r and s be two uniformly random polynomials of degree greater or equal to n over R. The polynomial
o = rfA + sfB = gcd(fA, fB)u, where the polynomial u has coefficients uniformly distributed in R. Note
that an element a ∈ R is a root of gcd(fA, fB) if and only if a appears in A ∩B. Furthermore, if R is large,
the fact that u is uniformly distributed implies that with overwhelming probability, the roots of u do not
represent any elements in A or B (see [17] for more detail). Hence, one can determine if an element is in
the intersection set by testing whether the element evaluates to zero at polynomial o.

This construction easily extends to work for computing the intersection of many sets (held by many
users). As discussed in the literature, the main drawback of the construction is that it requires computational
complexity that is quadratic in the size of the datasets. However, in light of the algorithms we have designed
for computing on encrypted polynomials, this can be improved.

Private Set Intersection Protocol (via EncPolyMult)

Inputs: Alice holds the dataset A of size na, and Bob holds the dataset B of size nb with elements in
R. Without loss of generality we assume that na > nb.
Output: The intersection of A and B.

1.

2. Bob generates a key pair (pk, sk) for the public key encryption scheme E, and sends pk to Alice.

3. Alice and Bob represent their data sets using polynomials fA and fB of degree na and nb respec-
tively.

4. Bob encrypts his polynomial and sends Epk(fB) to Alice.

5. Alice generates two uniformly random polynomials r and s over R of degree na. She then computes
the encrypted polynomial Epk(o) = EncPolyMult(r, Epk(fB))+hPolyMult(s, fA) and sends it to Bob.

6. Bob decrypts to recover o. He then outputs those elements in his set that evaluate to 0 at polynomial
o.

Efficiency. Note that the protocol requires one invocation of the EncPolyMult algorithm. Hence the
computation consists of nb encryptions, na+nb decryptions, 2na log na homomorphic additions and na log na

homomorphic multiplications.

Claim 4.3 The above private set intersection protocol is secure against semi-honest adversaries if the en-
cryption scheme E is semantically secure.

Further Improvement in Efficiency. It is possible to further improve the efficiency of the above two
protocols for set intersection using the hash-to-bin technique used in [8]. Particularly, before representing
her dataset with a polynomial, Alice first hashes the elements in her database to ℓ bins using a public hash
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function H. Using hashing techniques introduced in [1], it is possible to guarantee that with high probability
the maximum number of items mapped to each bin is M = O(n/ℓ + log log ℓ). By letting ℓ = n/ log log n,
we have M = O(log log n).

For every element y in his dataset, Bob puts y in the bins into which it could be mapped. Alice
and Bob then engage in a series of private set intersection protocols one for each bin. With a little bit
of care, the output of the small PSI protocols can be combined to result in a private set intersection
protocol for the original sets. Given the efficiency of our PSI protocols, running them for each bin requires
O(M logM) = O(log log n log log log n) computation, and since there are a total of n/ log log n bins, this
leads to total of O(n log log log n) computational complexity. While the idea is very similar to the previous
hashing-to-bin protocol of [8], we get a slightly better complexity due to the new algorithms we introduced.
In other words the log logn factor is replaced by a log log logn factor.

4.4 Security Against Malicious Adversaries

So far we have focused on the security of our protocols against semi-honest adversaries. When considering
semi-honest adversaries, the use of an additively homomorphic encryption scheme allows us to keep the
amount of interaction low. However, the underlying algorithmic ideas for batch OPE and private set inter-
section are not limited to this form of implementation. More specifically, the ideas can be interpreted as
presenting efficient polynomial-based algorithms for computing set intersection and batch polynomial evalu-
ation, where the algorithms only require linear computation, and all the computation are ring addition and
multiplications. Hence the designed algorithms can be seen as arithmetic circuits for the set intersection or
the batch OPE.

Recently, Damgard and Orlandi [5] designed a protocol for securely computing arithmetic circuits with
security against malicious adversaries. The main components of there scheme is a trapdoor homomorphic
commitment scheme, and a semi-honest multiplication protocol combined with cut-and-choose techniques.
If the number of multiplication gates in the arithmetic circuit is M and the security parameter is s, the
computational complexity of their scheme is O(t(M + s)) in the t-party case. We do not outline the details
of the protocol since it is a straightforward application of the result of [5] to our algorithms, but summarize
the results via the following two theorems:

Theorem 4.4 Assuming homomorphic trapdoor commitment schemes and a semi-honest multiplication
protocol, there exist a secure two-party protocol for k-Batch OPE, with security against malicious adver-
saries, and with computational complexity O(n log n+k(log k)2+s) where n is the degree of the polynomial
and s is the security parameter.

Theorem 4.5 Assuming homomorphic trapdoor commitment schemes and a semi-honest multiplication
protocol, there exist a secure two-party private intersection protocol with security against malicious adver-
saries with computation complexity O(n log n + s) where n is size of the input sets and s is the security
parameter.

The trapdoor homomorphic commitment can be instantiated based on assumptions such as the discrete
logarithm, RSA, and others. The multiplication protocol requires slightly stronger hardness assumptions
but can be instantiated using homomorphic encryption schemes, OT, and more.
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A Computer Algebra Techniques

A.1 Roots of Unity

Definition A.1 Let R be a ring, n ∈ N, and w ∈ R.

• w is an nth root of unity if wn = 1.

• w is a primitive nth root of unity, if it is an nth root of unity, n ∈ R is a unit in R, and wn/t − 1 is
not a zero divisor for any prime divisor t of n.

Here n has two meanings: in w it is an integer used as a counter to express the n-fold product of w with
itself, and in n ∈ R it stands for the ring element n · 1R ∈ R, the n-fold sum of 1R with itself.

The following is a useful lemma regarding the existence of roots of unity in finite fields. We make use of
the lemma to ensure that the additive variant of the elgamal encryption scheme has the primitive roots of
unity we need (see Section 2.1).

Lemma A.2 For a prime power q and n ∈ N, a finite field Fq contains primitive nth root of unity if and
only if n divides q − 1.

A.2 Computing the Discrete Fourier Transform

Definition A.3 Let f ∈ R[x] be a polynomial of degree d < n. The Discrete Fourier Transform (DFT)
mapping DFTw : Rn → Rn denotes the evaluation of the polynomial f at the powers of w, i.e., DFTw(f) =
⟨f(1), f(w), f(w2), . . . , f(wn−1)⟩.
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The Discrete Fourier Transform can be seen as a special case of multipoint evaluation, at the powers
of nth root of unity w. Next, we introduce the Fast Fourier Transform, or FFT for short, that computes
DFT quickly. The algorithm was (re)discovered by Cooley and Tukey [3], and is one of the most important
algorithms in practice. Let n ∈ N be even, w ∈ R a primitive nth root of unity, and f ∈ R[x] of degree less
than n. To evaluate f at the powers 1, w, w2, . . . , wn−1, we divide f by xn/2−1 and xn/2+1 with remainder:

f = q0(x
n/2 − 1) + r0 = q1(x

n/2 + 1) + r1

for some q0, r0, q1, r1 ∈ R[x] of degree less than n/2. Due to the special form of the divisor polynomials,
the computation of the remainders r0 and r1 can be done by adding the upper n/2 coefficients of f to,
respectively subtracting them from, the lower n/2 coefficients. In other words, if f = F1x

n/2 + F0 with
deg(F0), deg(F1) < n/2, then xn/2 − 1 divides f − F0 − F1, and hence r0 = F0 + F1 and r1 = F0 − F1. If we
plug in a power of w for x we have:

f(w2ℓ) = q0(w
2ℓ)(wnℓ − 1) + r0(w

2ℓ) = r0(w
2ℓ) (1)

f(w2ℓ+1) = q1(w
2ℓ+1)(wnℓwn/2 + 1) + r1(w

2ℓ+1) = r1(w
2ℓ+1) (2)

for all 0 ≤ ℓ < n/2. In the above, we use the facts that wnℓ = 1 and wn/2 = −1, since

0 = wn − 1 = (wn/2 − 1)(wn/2 + 1)

and wn/2 − 1 is not a zero divisor. It remains to evaluate r0 at the even powers of w and r1 at the odd
powers. Now, w2 is a primitive (n/2)th root of unity. It is easy ot see that the evaluation of r0 reduces to a
DFT of order n/2. The evaluation of r1(w

2ℓ+1) = r∗1(w
2ℓ) where r∗1(x) = r1(wx), reduces to the computation

of the coefficients of r∗1 which uses n/2 multiplications by powers of w, and a DFT of order n/2 for r∗1. If
n is a power of 2, we can proceed recursively to evaluate r0 and r∗1 at the power of w2, which leads to the
following FFT algorithm:

Fast Fourier Transform
FFTw,n(f)

Input: n = 2k ∈ N with k ∈ N, f =
∑

0≤j≤n fjx
j ∈ R[x], and the powers w,w2, . . . , wn−1 of a primitive

nth root of unity w ∈ R.

Output: DFTw,n(f) = ⟨f(1), f(w), . . . , f(wn−1)⟩ ∈ Rn

1. If n = 1 then return f0.

2. Compute r0 ←
∑

0≤j<n/2(fj + fj+n/2)x
j , and r∗1 ←

∑
0≤j<n/2(fj − fj+n/2)w

jxj

3. Call the algorithms FFTw2,n/2(r0) and FFTw2,n/2(r
∗
1) to compute r0, r

∗
1 at the powers of w2.

4. Return r0(1), r
∗
1(1), r0(w

2), r∗1(w
2), . . . , r0(w

n−2), r∗1(w
n−2).

Efficiency. The above algorithm computes DFTw,n(f) using n log n additions in R and (n/2) log n multi-
plications by powers of w.

A.3 Interpolation on Roots of Unity

It turns out that interpolation at powers of w is again essentially a Discrete Fourier Transform, and
can be computed efficiently using the above algorithm. In the interpolation problem, given the vector
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⟨f(1), f(w), f(w2), . . . , f(wn−1)⟩, our goal is to compute the coefficients of f . Let Vw be the Vandermonde
matrix:

Vw =



1 1 1 · · · 1

1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...

1 wn−1 w2(n−1) · · · w(n−1)2


Then, we can compute the coefficients of f via the following matrix-vector multiplication:

f0

f1
...

fn

 = (Vw)
−1


f(1)

f(w)
...

f(wn−1)


The following theorem shows how we can compute inverse of Vw via DFT computation.

Theorem A.4 [ [10]] Let R be a ring (commutative, with 1), n ∈ N, and w ∈ R be a primitive nth root of
unity. Then w−1 is a primitive nth root of unity and (Vw)

−1 = 1/nVw−1 .

Based on above theorem we can interpolate on powers of an nth root of unity using the following
algorithm:

Interpolation on powers of nth Root of Unity
Interpolw,n(V⃗ )

Input: n = 2k ∈ N with k ∈ N, a primitive nth root of unity w ∈ R and a vector
V⃗ = ⟨v0, v2, . . . , vn−1⟩ ∈ Rn.

Output: Polynomial f of degree n where f(wi) = vi for 0 ≤ i < n.

1. Compute w−1, w−2, . . . , w−(n−1).

2. Let the components of V⃗ represent the coefficients of a polynomial denoted by v(x). Compute and
return 1/n FFTw−1,n(v).

The efficiency of the algorithm is similar to that of the DFT algorithm. The only additional cost is to
compute powers of w−1. This requires n additional multiplications by w.

A.4 Polynomial Multiplication via FFT

The idea for the polynomial multiplication is to compute the DFT of both polynomials, multiply the compo-
nents of the DFT individually to obtain the DFT of the product polynomial and then interpolate to recover
the product polynomial itself.
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Polynomial Multiplication via FFT
PolyMult(f, g)

Input: n = 2k ∈ N with k ∈ N, f =
∑

0≤j≤df
fjx

j and g =
∑

0≤j≤dg
fjx

j in R[x] where df + dg < n.

The algorithm also takes input powers w,w2, . . . , wn−1 of a primitive nth root of unity w ∈ R.

1. Compute ⟨f(1), . . . , f(wn−1)⟩ ← FFTw,n(f).

2. Compute ⟨g(1), . . . , g(wn−1)⟩ ← FFTw,n(g).

3. For 0 ≤ i < n compute S(i) = f(i)g(i).

4. Let V⃗s = ⟨S(1), . . . , S(n− 1)⟩.

5. Computes S ← Interpolw,n(V⃗s).

A.5 Working over More General Rings

In the above algorithm for polynomial multiplication, we assumed that the underlying ring R contains
certain primitive roots of unity. The described algorithm would not work directly if we instead work over
an arbitrary ring. However, there are computer algebra techniques that extend the above algorithm to work
over more general rings. This generalization is important for us when discussing the encrypted variants of
these algorithms since each of the existing homomorphic encryption schemes work over a different plaintext
domain (ring).

We give a high level description of the techniques here, but refer the reader to [Chapter 8,] for a detailed
discussion.

Let R be a ring such that 2 is a unit in R,4 n = 2k for some k ∈ N, and D = R[x]/⟨xn + 1⟩. Note that
D is generally not a field. Then we have that

xn ≡ −1 mod (xn + 1), x2n = (xn)2 ≡ 1 mod (xn + 1)

This implies that w = x mod (xn + 1) ∈ D is a 2nth root of unity. Moreover, wn − 1− 1 = −2 is a unit
in R and hence w is in fact a primitive 2nth root of unity.

To multiply two polynomials f, g ∈ R[x] with deg(fg) < n = 2k, it is sufficient to compute fg mod (xn+
1). This is called the negative wrapped convolution of f and g. Let m = 2⌊k/2⌋, t = n/m = 2⌈k/2⌉, and
partition the coefficients of f and g into t blocks of size m:

f =
∑

0≤j≤t

fjx
mj , g =

∑
0≤j≤t

gjx
mj

with fj , gj ∈ R[x] of degree less than m for 0 ≤ j ≤ t. With f ′ =
∑

0≤j≤t fjy
j , g′ =

∑
0≤j<t ∈ R[x, y] we have

that f = f ′(x, xm) and g = g′(x, xm). In order to compute fg it turns out that it is sufficient to compute
f ′g′ mod yt. The latter can be seen as polynomial multiplication where the coefficients of the polynomials
are in D[y] where D = R[x]/x2m + 1. The advantage of this is that as we discussed earlier D contains the
primitive roots of unity we need, and hence we can use PolyMult algorithm of the previous section for this
purpose. This leads to O(t log t) operations in D (since f and g are of degree t in y). Each multiplication
operation in D can itself be computed using the same algorithm in a recursive manner.

A careful analysis of the complexity of the recursive algorithm shows that the polynomial multiplication
uses 9/2n log n log logn+O(n log n) operations in R.

4This is the only restriction on the ring and is satisfied by all existing additively homomorphic encryption schemes.
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B Security Definitions

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs to pairs of
outputs (one for each party). We refer to such a process as a functionality and denote it f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗, where f = (f1, f2). That is, for every pair of inputs (x, y), the output-pair is a random
variable (f1(x, y), f2(x, y)) ranging over pairs of strings. The first party (with input x) wishes to obtain
f1(x, y) and the second party (with input y) wishes to obtain f2(x, y).

The security of a protocol is analyzed by comparing what an adversary can do in the protocol to what
it can do in an ideal scenario that is secure by definition. This is formalized by considering an ideal
computation involving an incorruptible trusted third party to whom the parties send their inputs. The
trusted party computes the functionality on the inputs and returns to each party its respective output.
Loosely speaking, a protocol is secure if any adversary interacting in the real protocol (where no trusted
third party exists) can do no more harm than if it was involved in the ideal computation.

Execution in the ideal model. An ideal execution proceeds as follows:
Inputs: Each party obtains an input, denoted w (w = x for Alice, and w = y for Bob).
Send inputs to trusted party: An honest party always sends w to the trusted party. A malicious party
may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to the trusted party.
Trusted party answers first party: In case it has obtained an input pair (x, y), the trusted party first
replies to the first party with f1(x, y). Otherwise (i.e., in case it receives only one valid input), the trusted
party replies to both parties with a special symbol ⊥.
Trusted party answers second party: In case the first party is malicious it may, depending on its input
and the trusted partys answer, decide to stop the trusted party by sending it ⊥ after receiving its output. In
this case the trusted party sends ⊥ to the second party. Otherwise (i.e., if not stopped), the trusted party
sends f2(x, y) to Bob.
Outputs: An honest party always outputs the message it has obtained from the trusted party. A malicious
party may output an arbitrary (probabilistic polynomial-time computable) function of its initial input and
the message obtained from the trusted party.

Execution in the real model: Next consider the real model in which a real (two-party) protocol is
executed (and there exists no trusted third party). In this case, a semihonest party follows the steps of
the real protocol but may output an arbitrary output. A malicious party, on the other hand, may follow
an arbitrary feasible strategy; that is, any strategy implementable by non-uniform probabilistic polynomial-
time machines. In particular, the malicious party may abort the execution at any point in time (and when
this happens prematurely, the other party is left with no output).

Let f be as above and let π be a two-party protocol for computing f . Furthermore, let M = (M1,M2)
be a pair of non-uniform probabilistic polynomial-time machines (representing parties in the real model).
Such a pair is admissible if for at least one i ∈ {1, 2} we have that Mi is honest (i.e., follows the strategy
specified by π). Then, the joint execution of π under M in the real model (on input pair (x, y)), denoted
REALπ,M (x, y), is defined as the output pair of M1 and M2 resulting from the protocol interaction. The

joint execution of f under M in the ideal model (on input pair (x, y)), denoted IDEALf,M (x, y), is defined
as the output pair of M1 and M2 from the above ideal execution.

Definition B.1 [secure two-party computation]: Let f and π be as above. Protocol π is said to securely
compute f (in the malicious model) if for every pair of admissible non-uniform probabilistic polynomial-time
machines A = (A1, A2) for the real model, there exists a pair of admissible nonuniform probabilistic expected
polynomial-time machines B = (B1, B2) for the ideal model, such that
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{IDEALf,B(x, y)}x,ys.t.|x|=|y|
c≡ {REALπ,A(x, y)}x,y s.t. |x|=|y|

Namely, the two distributions are computationally indistinguishable
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