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ABSTRACT 

The objective of this study was to examine the contribution of feeding behaviour to 

differential larval growth rates of two dragonflies, Coenagrion resolutum (Hagen) and 

Lestes disjunctus Selys, at the University of Calgary Research Pond. C. resolutum 

followed a mixed univoltine-semivoltine strategy, with direct egg development, whereas 

L. disjunctus followed an obligatory univoltine life cycle, with an eight month egg 

diapause. The larvae of L disjunctus grew 5 times faster than the larvae of C. 

resolutum, completing their development in approximately 90 days. Under constant 

laboratory conditions L. disjunctus grew 1.4 to 3.3 times faster than C. resolutum, the 

differential increasing with increasing temperature. Functional response experiments 

gave variable results, but small and medium L. disjunctus fed at a greater rate than the 

corresponding sizes of C. resolutum, attack coefficients were greater for L. disjunctus, 

and handling times were generally shorter. 
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1 

CHAPTER 1 

GENERAL INTRODUCTION 

Dragonflies are basically warm adapted insects of tropical origin which have 

evolved various life cycle patterns that have enabled them to colonize temperate 

regions. Pritchard (1982) suggested that temperate-zone odonates might employ any 

of the following four sitategies in order to survive the winter: 1) migration; 2) cold 

tolerance in all stages; 3) cold tolerance in some stage(s) and seasonal adjustment of 

the life cycle; and 4) habitat selection and seasonal adjustuient of the life cycle. Of 

these four strategies the third is the most common in temperate-zone dragonflies. Mid-

to late-instar larvae are usually cold-tolerant and seasonal adjustment occurs through 

the intervention of diapause, usually in the egg or larval stages. 

Based on the positioning of diapause in the life cycle of temperate-zone 

Odonates, Norling (1975) classified odonate life cycles into two groups. His first 

group was an obligatory univoltine life cycle in which the species overwinter in a well-

defined diapausing stage. Commonly the eggs are the overwintering stage in this 

group and larval development is rapid, as exemplified by the genus Lestes (Corbet, 

1956a; Gower and Kormondy, 1963; Sawchyn and Gillott, 1974a & b; Baker and 

Clifford, 1981). (A similar life history pattern is shown by Anaxjunius Drury, where 

migration is substituted for egg diapause as a means of escaping winter conditions. 

Trottier [1966 & 1971] has described migratory populations of A. funius in Montreal 

and southern Ontario, where the adults fly in from the south during early spring and 
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lay eggs. Larval development is completed in approximately three months with adults 

emerging in late summer. These adults then presumably fly south.) 

In Norling's second life cycle type the ability of the species to overwinter in 

a wide range of larval instars, and sometimes in the egg stage, allows for slower larval 

growth and extension of the life cycle over more than one year, if conditions warrant. 

In this type of life cycle, photoperiod is important in seasonal regulation in temperate 

regions (Norling, 1984a). A long-day diapause in various late instars during summer 

prevents untimely emergence in late summer or autumn when the cold-sensitive adults, 

eggs, or early instar larvae could experience cold conditions, and a short-day diapause 

synchronizes adult emergence during the following spring and summer. However, 

emergence in the following year depends on the size or the developmental stage of the 

overwintering larvae. Only those larvae overwinterinj above a certain winter critical 

size (WCS) show growth to emergence during the following season and larvae which 

are below the WCS will be prevented from emerging by the long-day diapause. 

Whether a larva reaches the WCS or not depends primarily on water 

temperature; the higher the temperature within a range of about 10-30'C, the faster the 

growth. Depending on the response of larvae to water temperature in a particular 

habitat, the growth rates of larvae living in those habitats may vary. Thus, Argia 

vivida Hagen took one, two or three years to complete its life cycle in streams with 

annual temperature ranges of 11-31°C, 0-33°C and 5-20°C respectively (Pritchard, 

1989). All three populations showed short-day diapause in their final winter. 

However, larvae in the second population did not reach WCS before their first winter 
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and so went into long-day diapause in the following summer, whereas larvae in the 

third population did not reach WCS before their second winter and so growth was 

delayed in their second summer. Differences in growth rate between individuals of the 

same population may also result from larvae having different responses to temperature 

or living at different temperatures, for example in shallow as opposed to deep water. 

Given variation in growth rates between individuals due to photoperiod and 

temperature, cohort splitting and variation in voltinism can occur even within the same 

population. Norling (1971, 1976, 1984a & b) has given very detailed accounts of 

cohort splitting in Swedish populations of Aeshna viridis Eversm., Coenagrion 

hastulaturn (Charpentier) and Leucorrhinia dubia (Vander Linden). Ingram and Jenner 

(1976) observed a small second (bivoltine) generation of the otherwise univoltine 

Enallagma aspersum if a critical stage (F-3) was reached before 1 August; otherwise 

a long-day diapause slowed development and led to overwintering until the following 

spring. If larvae of Coenagrion resolutum (Hagen) (Baker and Clifford, 1981), 

Coenagrion puella (L.) and Ischnura elegans (Vander Linden) (Parr, 1970) are in F, 

F-i and F-i instars (respectively) before the first winter, then they will complete their 

emergence in the following summer; otherwise they emerge during the next summer, 

extending the life cycle from 1 to 2 years. Pyrrhosoma nymphula (Sulzer) is normally 

semivoltine in western Europe (Macan, 1964 & 1977; Lawton, 1970 & 1971; Corbet 

and Harvey; 1989), but the life cycle may be extended from 2 to 3 years in dense 

populations (Macan, 1977). 

Alternatively, Macan (1977) suggested that differences in diet were possibly 



4 

responsible for cohort splitting in Pyrrhosoma nymphula. In general, dragonfly larvae 

feed on any moving prey below a certain size. Their diet is mainly composed of 

Chironoinidae, Coleoptera, Cladocera, Copepoda and other small aquatic arthropods 

(Pritchard, 1964; Lamoot, 1977; Thompson, 1978a; Baker and Clifford, 1981; Breene 

et al., 1990). The diet reflects the relative abundance of different prey in the 

environment, the size and habits of the prey, the ease with which prey re caught and 

devoured (Pritchard, 1964), predator species, predator age, season of the year (Lamoot, 

1977; Blois, 1985), habitat complexity and prey activity (Folsom and Collins, 1984). 

Although some studies suggest that dragonfly larvae prefer large prey (Fischer, 1972; 

Kime, 1974; Blois, 1982; Chowdhury et al., 1989) and prey with high calorific value 

(Fischer, 1972), most species are general feeders and do not show any preference for 

different prey species in nature, provided that they are of appropriate size. 

Thus, diet might principally affect growth rate within a population through 

feeding rate. Amount of food taken by different larvae may be influenced by 

microhabitat (Macan, 1977) or territorial behaviour (Baker, 1980), although Baker and 

Clifford (1981) and Baker (1981a) showed that neither of these mechanisms appeared 

to operate in the field. Alternatively, individuals may grow at different rates because 

of different abilities to detect, orient to, pursue, capture, consume and digest prey, that 

is through the attack coefficient and handling time components of the functional 

response to prey density (Holling, 1959). 

In this thesis I compared growth rates of two zygopteran species, Lestes 

disjunctus Selys (family Lestidae) and Coenagrion resolutum (Hagen) (family 
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Coenagrionidae), whose life histories belong to different categories of Norling's 

classification, although they coexist in ponds in Alberta (Baker and Clifford, 1981). 

First, I followed the life cycles of the two species in the University of Calgary 

Research Pond to confirm that L. disfunctus does indeed fall into Norling's first life 

history type and that C. resolutum falls into the second category (Chapter 2). Then, 

I reared the two species at fixed temperatures in the laboratory in order to describe the 

relationship between growth rate and temperature (Chapter 3). Finally, to explain the 

faster growth rate of L. disfunctus, I tested the hypothesis that Lestes disfunctus feeds 

at a higher rate than Coenagrion resolutum, due to a higher attack coefficient and a 

shorter handling time (Chapter 4). 
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CHAPTER 2 

LIFE HISTORIES OF COENAGPJON RESOLUTUM AND LESTES DISJUNCTUS 

2.1 INTRODUCTION 

Coenagrion resolutum is one of the most common and widely distributed 

odonates in Canada, ranging further north than any other species except C. 

interrogatum (Hagen) (Walker, 1953), but it has been little studied (Sawchyn and 

Gillott, 1975; Baker and Clifford, 1981). Coenagrion species may follow a univoltine 

(Sawchyn and Gillott, 1975; Waringer and Hunipesch, 1984) or a mixed 

univoltine/semivoltine life history strategy (Parr, 1970; Baker and Clifford, 1981; 

Norling, 1984b). The eggs of C. resolutum hatch soon after they are laid and the 

larvae overwinter in a wide range of instars, taking 1-2 years to complete larval 

development in Canada (Sawchyn and Gillott, 1975; Baker and Clifford, 1981). 

In Canada, Lestes disfunctus occupies a variety of habitats from marshy ponds 

to slow moving weedy streams and is one of the most widely distributed species in the 

genus (Walker, 1953). Its life history has been studied in the prairies by Sawchyn and 

(3i110tt (1974a) and Baker and Clifford (1981). Most lestids living in temperate 

regions appear to be univoltine in nature and undergo successful larval development 

in a variety of aquatic habitats including temporary ponds (Corbet, 1956b; Lutz, 1968a; 

Paulson andJenner, 1971; Sawchyn and Gillott, 1974a & b; Baker and Clifford, 1981). 

Survival in the latter environment is due to the ability of most species to arrest 

development before eclosion. The eggs hatch only after diapause (which normally 
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takes about 6 to 8 months during winter) and when the water temperature is above 

about 100 C. Once the larvae hatch, they complete their development in 2 to 3 months. 

In spite of the Odonata being better known taxonomically than any other group 

of aquatic insects in Canada (Walker, 1953 & 1958, Walker and Corbet, 1975), 

identification of larvae, especially early instar larvae, still presents considerable 

difficulty. At the University of Calgary Pond there are five species of Coenagrionidae 

(Coenagrion resolutum Hagen, Enallagma boreale Selys, E. cyathigerum Charpentier, 

E. ebrium (Hagen), and E. hageni Walsh) and four species of Lestidae (Lestes 

congener Hagen, L disfunctus Selys, L dryas Kirby and L unguiculatus Hagen). 

Larvae of three of the species of Lestes are currently morphologically separable only 

by the dubious characteristic of labial length:width ratio (Walker, 1953; Cannings and 

Stuart, 1977), and Walker (1953) could only suggest that a 6-segmented versus a 7-

segmented antenna might separate larvae of the genera Coenagrion and Enallagma. 

However, this character is not stable enough to work even for last instar larvae and, 

because segments are added during development, certainly does not work for earlier 

instars. Baker and Clifford (1980) encountered similar problems and found characters 

that would separate larvae of the two genera in Alberta. I found that these characters 

worked quite well for medium and large-sized larvae but were inadequate for 

separation of small larvae. Within Enallagma, characters on the caudal lamellae are 

used to separate species, but these are notoriously variable and lamellae are often 

missing or distorted through regeneration. Furthermore, no characters are known that 
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will separate female larvae of Enallagma ebrium and E. hageni (Cannings and Stuart, 

1977). 

I selected electrophoretic means of identification to solve these problems. Over 

the last 20 years, electrophoresis has been applied to many areas of biology 

(Richardson et al., 1986), perhaps most successfully for distinguishing between closely 

related species (Ferguson, 1980). Although, until recently, there were few reports of 

electrophoresis on dragonflies (Anderson et al., 1970; Knopf, 1977; Schott and 

Brusven 1980; Maibach, 1985), Zloty (1992), Zloty, Pritchard and Esquivel (1993), and 

Zloty, Pritchard and Krishnaraj (1993) have now established the technique as a means 

of associating larval and adult dragonflies. I used cellulose acetate gel electrophoresis 

because it has a number of very useful characteristics, not the least of which is its 

sensitivity, which allows analysis of very small quantities of extract (0.5-2 t1), so that 

even 1st-instar larvae can be identified. 

Before addressing the effects of temperature and functional response on growth 

rates, it was necessary to first confirm that the growth rate of Lestes disfunctus larvae 

was indeed faster than that of Coenagrion resolutum larvae in the populations upon 

which I intended to work. Therefore, this chapter is devoted to a description of the 

life histories and growth rates of the two species in the University of Calgary Research 

Pond. 
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2.2 METHODS 

2.2.1 Study area 

The University of Calgary Research Pond is a permanent pond in the western 

part of the University campus (51°5'N, 114°7W), Calgary, Alberta, Canada. The pond 

is about 28 m long, 18 m wide and 2.25 m deep at the centre (Fig. 2.1). The depth 

is maintained during the summer by adding water when necessary from the 

University's irrigation system. The pond freezes over from late October to the end of 

March. Emergent vegetation is represented by a mixed stand of Typha latifolia L. and 

Scirpus acutus Muhl. ex. Bigel. around the northern end of the pond, extending half-

way down the eastern side; the rest of the eastern side and the entire western side is 

covered with Carex rostrata with a sparse growth of Sèirpus acutus and the southern 

end of the pond is devoid of emergent vegetation. Chara sp. and Potamogeton 

richardsonii (Benn) Rybd. grow throughout the open water area of the pond. The 

bank of the pond is surrounded by a dense growth of Eromus inermis Leyss and 

Caragana arborescens Lam. Water temperature was continuously recorded (except 

for September 1993) by a Ryan thermograph, placed at about 50 cm depth in the south 

eastern corner of the pond from 20 April to 8 December 1992 and from 9 April to 27 

October 1993. Water temperature was measured once during the period when the pond 

was frozen over on 26 January 1993. 
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2.2.2 Sample collection 

Sampling of C. resolutum and L disfunctus started on 6 April 1992 and 

subsequent samples were taken at bi-weekly intervals until 24 August 1992, then at 3-

week intervals until 27 October 1992, and again at two-weekly intervals from 9 April 

1993 until mid-September 1993. Larvae were collected from the Carex-Scirpus zone 

and from shallow, open-water areas with a 'D' frame dip net which had an inner bag 

of mesh size 0.8 mm and an outer detachable bag with a mesh size of 0.2 mm. After 

each sampling, the inner net contents were. transferred to a white enamel tray, the 

debris was removed and the sample was transferred to a plastic bucket for transport 

to the laboratory. The outer net bag was also placed in the bucket without removal 

of its contents. 

Upon returning to the laboratory with the larval samples, I transferred the 

contents of the outer fine-mesh net to a beaker containing water, stirred well and let 

stand for about 30 min. Then small amounts of the top layer of the sediment were 

transferred in turn to a petri dish and small larvae were removed under a magnifying 

lens. Whenever Lestes larvae or small coenagrionid larvae were present, about 40 

individuals from each sample from each family randomly were frozen at - 86 °C for 

electrophoretic identification (see section 2.2.3) and the rest were preserved in 70% 

alcohol. The contents of the coarse-mesh net were transferred to large enamel trays 

and coenagrionids and lestids were sorted visually on the basis of the shape of the 

labium. 30-40 individuals from each family, depending on the sample size, were 

frozen for electrophoresis. The remaining larvae were preserved in 70% alcohol. The 
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preserved larvae were then sorted into C. resolutum, Enallagma spp., Lestes congener 

and Lestes spp. with the keys provided by Cannings and Stuart (1977). Head width, 

wing pad length and caudal lamellae lengths were recorded for all larvae from each 

sample using a binocular microscope fitted with a calibrated ocular micrometer. 

2.2.3 Species identification 

In preliminary work Zloty, Pritchard and Krishnaraj (1993) scored 28 loci in 

Enallagma, 29 in C. resolutum, and 23 in Lestes. Coenagrion resolutum was 

genetically well separated from Enallagma (Zloty, 1992) and so could be differentiated 

at most of the 28 loci, but it was necessary to run six loci to get three fixed differences 

between E. cyathigerum and the other two species of Enallagma, and the 28 scored 

loci in total revealed only one fixed difference between E. ebrium and E. hageni 

(Table 2.1). The four species of Lestes were separable on the three-or-more criterion 

by using the five loci shown in Table 2.2. 

To associate larvae with readily identifiable adult damselflies, adults were 

obtained by aerial netting and were taken to the laboratory in envelopes. In the 

laboratory all insects required for electrophoresis were dry-frozen in 1.5 mL 

polypropylene micro-centrifuge tubes (Fisher Scientific Ltd.) and stored individually 

at -86°C in a Revco Ultinia 1090 Chest Freezer. I used known adults of both sexes, 

samples of morphologically unidentifiable larvae, and a range of morphologically 

identifiable larvae to monitor changes in enzyme composition during development. 

The protocol of Hebert and Beaton (1989) was followed with some 
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modifications in the staining procedure described by Packer and Owen (1989) and 

Richardson et al. (1986). To perform the analysis, the frozen sub-samples were 

partially thawed and the thoracic portions of individual larvae with head width >1.5 

mm were excised and placed in 1.5 ml microtubes. Depending on the volume of 

tissue, 5 to 10 p.1 of double distilled water was added. The tissue was ground with a 

glass homogenizer and centrifuged at 10,000 rpm for 60 to 90 s. The supernatant was 

then transferred into sample wells by an Eppendorf digital pipette (0.5-10 jul) for 

transfer to a Cellulose Acetate Gel plate presoaked in CAM buffer (8.4 g citric acid, 

10 ml N-(3-amunopropyl)-morphoJine in 11 of double-distilled H20, pH 6.1) with the 

help of an applicator. Whole larvae with head widths <1.5 mm were ground directly 

in the sample wells with a sharp needle and then applied onto the gel plates. 

Electrophoresis was carried out for 45 to 60 min by applying 250 Volts and 8 

mA/plate of current at room temperature (21°C). At the end of the time, the samples 

were stained for specific enzymes. 

Misidentification could occur if enzyme mobilities changed during 

development, but the statistical aspects of electrophoretic determination compromised 

complete assurance that changes did not occur between unidentifiable and identifiable 

larvae and adults. However, if a large number of specimens were tested and no 

changes in enzyme mobility between adults and morphologically identifiable larvae 

were found and small larvae with electrophoretic profiles matching each of the known 

adult profiles were found, then one could assume that there were no size-associated 

changes in the mobilities of diagnostic loci. Clearly, the more fixed differences 
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between species that were used, the lower was the probability of a mismatch occurring. 

Therefore, I strived to obtain differences between species at three or more loci. In 

fact, no changes in enzyme mobility between adults and morphologically identifiable 

larvae were . found in any species and small larvae with electrophoretic profiles 

matching each of the known adult profiles were found for all species. 

Having characterized the species, I estimated the numbers of each species in 

field samples. First, I determined the proportional representation of each size class of 

C. resolutum and L dijunctus in the sub-samples of larvae that were subjected to 

electrophoresis. Then, I multiplied these values by the total number of unidentifiable 

larvae in each size class in the field samples. Large C. resolutum, which could be 

identified without electrophoresis, were then added. 

2.2.4 Life history analysis 

Examination of the data collected from the field samples suggested the presence 

of two groups of C. resolutum larvae with different growth rates. To separate the two 

groups, the cumulative frequency of head widths from each sample was plotted on 

probability paper (Harding, 1949) and mean head widths of each group read from the 

plots at the 50% point. The mean head widths of L disfunctus were determined by 

dividing the sum of all head widths for this species in each sample by the total number 

of individuals present in the sample. Average growth rates per day were calculated 

for both species from these mean head widths. 
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2.3 RESULTS 

2.3.1 Pond temperature 

Temperatures were read from the thermograph charts at 6-hour intervals and 

used to calculate daily mean temperatures (Figs. 2.2 & 2.3). At the beginning of May 

1992 the water temperature was about 12°C; it fell during May and then rose to a 

maximum of 22°C in mid-June. Temperatures fell again in July and then rose again. 

From mid-August the temperature declined until the pond started to freeze at the end 

of October. Water temperature below the ice varied from 0°C at the surface to 5.2°C 

at the substrate in the centre of the pond. In 1993 the temperature was cooler than in 

1992 but more constant from May through August (Fig. 2.3) At the beginning of 

May, 1993 the temperature was about 9°C and rose to a maximum of 18.6° C during 

mid-June. Temperatures declined after mid-August as in 1992 and the pond froze on 

27 October 1993. 

2.3.2 Life history of Coenagrion resolutum 

I .rvae of C. resolutum occurred in the vegetated zone rather than in open-water 

areas. When sampling started in April 1992, larvae ranged in size from about instar 

F-8 to F (Fig. 2.4). Final-instar larvae were probably semivoltine individuals from the 

1990 cohort; the rest were from eggs that hatched in 1991. By early May 1992, the 

non-final instar larvae (the 1991 cohort) comprised two groups - a semivoltine group 

of smaller-sized individuals growing at a rate of 0.006 mm/mm/day from 19 April to 

29 June and a univoltine group of larger individuals growing at 0.005 mm/mm/day 
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(Fig. 2.5). The semivoltine component would not emerge until 1993, but the 

univoltine group merged with the seniivoltine component of the 1990 cohort, and 

adults emerged in June and July 1992. Mating pairs were seen in the field until the 

third week of August and females oviposited in the stems of Carex sp. and Scirpus sp. 

These eggs started to hatch in about mid-July of 1992 as indicated by the 

appearance of second instar larvae (head widths <0.3 mm) in the sample collected on 

14 July (Fig. 2.4). By October there were signs that this cohort consisted of two 

groups - one consisting of semivoltine individuals from 1992 and one containing 

semivoltine individuals from 1991 plus the 1992 univoltine component. Sampling was 

discontinued during ice cover, but identical size-frequency distributions in the October 

1992 (Fig. 2.4) and April 1993 (Fig. 2.6) samples showed that no growth occurred 

during this period. Growth resumed in spring 1993 (Fig. 2.6) at rates of 0.005 

mm/mm/day between 22 April and 2 July for the semivoltine component and 0.004 

mm/mm/day for the univoltine group (Fig. 2.7), slightly slower than in 1992 Fig. 2.5). 

Estimates of the proportion of the 1992 cohort that was semivoltine ranged from 40-

50% in the samples, which was lower than in 1993 (56-72%). Adults emerged from 

the merged 1992 univoltine and 1991 semivoltine cohorts from the third week of May 

to the beginning of July. Growth during the second half of 1993 was identical to that 

in the same period of 1992. 

2.3.3 Life history of Lestes disfunctus 

Larvae of L disfunctus were collected mainly from shallow, open-water areas 
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of the pond. Larvae were not present in the sample of 6 April 1992 nor in samples 

taken from the second week of August 1992 through 9 April 1993, but 2nd instar 

larvae appeared in the samples from late April in both years (Figs. 2.8 & 2.9). As the 

water temperature rose through May and June, larvae grew rapidly at rates of 0.022 

mm/mm/day during 1992 and 1993 (Figs. 2.5 & 2.7). Growth was quite synchronous 

in both years and there was no cohort splitting. Adult emergence commenced during 

the third week of June and continued until the first week of August. Mature adults 

were seen from the first week of July until the third week of August, and tandem pairs 

were laying eggs in the stems of Carex and Scirpus over this period. 

About half of the larvae collected during late July and early August 1993 were 

parasitized by a mermithid nematode. Because I did not notice these parasitoids until 

this time when many larvae had metamorphosed, the actual rate of parasitism in the 

population was not estimated. 

2.4 DISCUSSION 

The population of Lestes disfunctus in the University of Calgary Research Pond 

followed an invariate univoltine life cycle during the study period, as reported in 

earlier studies in Canada (Sawchyn and Gfflott, 1974a; Baker and Clifford, 1981) and 

for other Lestes species elsewhere (Corbet, 1956b; Gower and Kormondy, 1963; 

Pickup et al., 1984). The first appearance of very small larvae in April samples 

indicated that the eggs laid during summer went into diapause and did not hatch until 

the following spring. The larval development was completed in approximately 90 days 
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and the growth rate was faster than C. resolutum in both years. This short 

developmental period in L disfunctus is an adaptation for life in temporary ponds, the 

usual habitat of species in this genus. 

The number of L disfunctus larvae collected during most of the sampling 

periods at the University Pond were lower (especially in 1993) than those of C. 

resolutum, indicating that the population size of L disfunctus is smaller. Perhaps L 

disfunctus is not able to thrive well in the permanent pond, where daily mean 

temperatures would be lower than in temporary ponds. Another reason could be 

competition for food and habitat and predation by species of Coenagrionidae, which 

do not occur in temporary ponds. A third reason could be nematode parasitism which 

was observed in L. disfunctus and very rarely in species of Enallagma, but not in C. 

resolutum. 

In contrast, a mixed univoltine-semivoltine life cycle was followed by the 

population of C. resolutum and eggs hatched immediately without an egg diapause (see 

also Baker and Clifford, 1981). Whether larvae are semivoltine or univoltine appeared 

to be established in autumn, because the two size groups were quite evident in the 

following spring. The semivoltine cohort could develop from eggs laid by late-flying 

adults in August. Larvae from these eggs would be subjected to much lower 

temperatures than larvae that hatched earlier and their growth would be considerably 

slowed. In addition, the late-hatching larvae would have to compete for food with 

larger larvae. This could be particularly important in this species in which Baker 

(1980) has shown that small larvae were excluded by large larvae from better feeding 
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areas in the laboratory. 

A comparison of growth rates of L disjunctus and C. resolutum during the 

period April to June when they co-occur, showed that L disjunctus did indeed grow 

faster than C. resolutum in the University Research Pond as predicted. Of the factors 

discussed in Chapter 1 that might influence growth rate, distributional differences may. 

be important because L disjunctus tended to occupy shallower, open water with 

potentially higher temperatures. The temperature responses of the two species will be 

examined in Chapter 3. 

Food quality is an unlikely reason for the differences in growth rate. 

Examination of gut contents of larvae collected from 2 June to 2 July 1993, when the 

two species were about the same size, showed no qualitative difference in the prey 

taken by the two species. Chironomids, ostracods, dixids, corixids, ephemeropterans, 

ceratopogonids and acarines were the prey found in both species. Chironomids were 

the commonest prey in both diets. Large C. resolutum ate many newly-hatched Lestes 

larvae in April. Lestes disjunctus guts were always completely filled, whereas those 

of Coenagrion were often small and only partially filled. Hence L disjunctus may 

have a greater rate of food intake than C. resolutum, as discussed in Chapter 4. 



Table 2.1 Electrophoretic identification of four species of Coenagrionidae at six loci. Rf values (relative mobilities in mm 

with Coenagrion resolutum as the standard [100]) are shown in parentheses. 

Species Goti Got2 Idh1 Idh2 Ldh Gpi. 

Coenagrion resolutum A (100) C (100) A(100) A (100) A (100) C (100) 

Enallagina cyathigerum B (105) A (96) B (104) B (101) C (105) B (99) 

E. ebrium B B (98) C (105) B B (103) A (98) 

E.hageni B B C B B B 



Table 2.2 Electrophoretic identification of four species of Lestes at five loci. Rf values (relative mobilities in mm with 

Lestes congener as the standard [100]) are shown in parentheses. 

Species Goti Got2 Idhi Idh2 Gpi 

Lestes congener A (100) B (100) D (100) C (100) A (100) 

L. disjunctus B (103) B B (97) A (93) C (104) 

L. dryas B A (98) A (92) B (94) B (101) 

L. unguiculatus B B C (98) B A 



Figure 2.1 A topographical view of the University of Calgary Research Pond. Contours at 0.5 m intervals are shown. 
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Figure 2.2 Daily mean temperatures recorded from the University Research 

Pond during the sampling period of 1992. 
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Figure 2.3 Daily mean temperatures recorded from the University Research 

Pond during the sampling period of 1993. 
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Figure 2.5 Size dynamics of the semivoltine and univoltine cohorts of 

Coenagrion resolutum and of Lestes disfunctus during the period of 

coexistence in 1992. 
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Figure 2.7 Size dynamics of the semivoltine and univoltine cohorts of 

Coenagrion resolutum and of Lestes disfunctus during the period of 

coexistence in 1993. 
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CHAPTER 3 

GROWTH RATES OF COENAGPJON RESOLUTUM AND LESTES DISJUNCTUS 

3.1 INTRODUCTION 

The growth rates of larval odonates are determined mainly by their responses 

to temperature and photoperiod (Norling, 1984a). The effects of pliotoperiod and 

temperature on growth rates vary depending on the time of the year and the 

developmental stage of the larva. In general, short days (<13 h) and low temperatures 

(<15°C) prolong development, while moderate day lengths (13-18 h) and temperatures 

>15°C promote rapid development in larvae of L.estes eurinu (Lutz, 1968b), 

Tetragoneuria cyanosura (Lutz, 1974), Enallagma hageni and E. aspersum (Ingram 

and Jemier, 1976), Coenagrion hastulaturn (Norling, 1984b) and Argia vivida 

(Pritchard, 1989). Long days (> 18 h) and high temperatures (>200C) delay 

development of young larvae (<F-3 instar) and promote rapid development to 

emergence in older larvae (>F-4) in C. hastulatum (Norling, 1984b). Prolonged 

development can result in cohort splitting (see Chapter 2) or can cause extra moults 

as in E. hageni and E. aspersum (Ingram and Jenner, 1976). 

When the effect of temperature alone is considered (during the period where 

the day length does not seem to affect the growth rate or when the day length is held 

constant) no larvae are reported to grow below 8°C (Pritchard, 1982 and references 

therein). Even though larvae are better survivors of the cold winter conditions of 

temperate regions than are eggs and adults, the minimum temperature threshold for 
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larval growth is relatively high; the low temperature threshold for development of 

Ischnura elegans (Vander Linden) is 8°C (Thompson, 1978a), 11°C for Argia vivida 

(Leggott and Pritchard, 1985) and 12°C for Coenagrion puella (Waringer and 

Humpsech, 1984). Above this threshold, growth rate increases with increasing 

temperature to a maximum, beyond which it decreases with increasing temperature. 

The maximum growth rate of larvae occurs at temperatures between 20-25°C in most 

odonates (Lestes eurinus (Lutz, 1968b), L. sponsa (Fischer, 1972), Coenagrion puella 

(Waringer and Humpsech, 1984), C. puella, Ischnura elegans and L sponsa (Pickup 

and Thompson, 1990)). 

In this chapter I report on growth rates of larvae of Coenagrion resolutum and 

Lestes disfunctus under constant temperatures within the range experienced during the 

period of coexistence in the field. During this period, daylength does not seem to 

affect larval growth. My null hypothesis was that the response of larval growth to 

temperature was the same for both species. 

3.2 METHODS 

3.2.1 Culturing of Daphnia magna Straus. 

I selected Daphnia magna as the prey species in this experiment because 

cladocerans are common prey in the diet of Zygoptera larvae in nature and species of 

Daphnia are the most commonly used prey in experiments involving dragonflies. 

Daphnia magna was cultured in 26 cm x 15 cm x 11.5 cm plastic containers filled 

with artificial pond water. The artificial pond water was prepared by dissolving 12.5 
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g Ca(NO3)2.H20, 12.5 g NaHCO3, 6.0 g Mg2SO4.7H20, and 2.5 g KC1 individually in 

50 ml of distilled water and adding each solution in order to 49.8 lilies of distilled 

water (Agriculture Canada Research Station, Lethbridge, pers. comm.). The D. magna 

cultures were maintained at 23°C and a 16:8 hours light:dark regime. The water was 

constantly aerated and about 50 ml of a dense Chiamydomonas suspension was added 

to each container as food every other day. 

3.2.2 Experimental procedure 

Larvae of L. disfunctus were collected from the University Pond during April 

and May [992 and C. resolutum were collected in September 1992 and September 

1993. Head widths and wing pad lengths were measured and larvae in a range of sizes 

from 1-3 mm head width were used in the experiment. Larvae were housed 

individually in small plastic containers filled with 75 mL of dechlorinated tap water, 

and were placed at seven different temperatures, approximately 2.5°C apart as shown 

in Tables 3.1 & 3.2. Temperature was recorded twice daily. To eliminate 

photoperiodic effects, a single cycle of 16:8 hours light:dark regime was used. About 

50-65 L disfunctus and 40-50 C. resolutum larvae were kept at each temperature. 

The larvae were fed ad libitum with appropriately sized laboratory cultured D. 

magna. Occasionally, when D. magna production was very low or the cultures needed 

restarting, oligochaete worms (Enchytraeus sp.) were substituted as prey. Larvae were 

checked for moulting every day. After the first moult, a larva was removed from the 

container, its head width and wing pad length recorded, and then replaced. These 
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measurements were repeated after the second moult and the larva was preserved. 

Small larvae (less than 1.5 cm in head width) were frozen individually in small plastic 

vials at -86°C for identification by electrophoresis (see Chapter 2). After 

electrophoretic identification, data from species other than L disfunctus and C. 

resolutum were ignored from further analysis. Average temperatures experienced by 

individual Thrvae were calculated from daily temperature recordings. 

3.2.3 Statistical analysis 

Growth rate was calculated from the formula given by Travis (1980): 

G - L11.1-L 

7 (L 1 +L)/2 
(3.1) 

where, 

G. = mean specific growth rate of instar n (mm/mm/day) 

L = head width of instar n (mm) 

L +1 = head width of the next instar (mm) 

T = total days spent in instar n (days) 

%G = G* 100 

To separate the effects of size and temperature on % Growth, a multiple 

regression analysis with size and temperature as independent variables was carried out. 

Linear, logarithmic and power functions were fitted to the regression of % Growth on 

size and temperature to determine the best fit. The parameters of this equation were 
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then compared by size and temperature for the two species with Analysis of 

Covariance (ANCOVA). Differences in growth rates between species at each 

temperature were tested with a pairwise contrast. 

3.3 RESULTS 

3.3.1 Effect of temperature on larval growth rates 

Percentage growth rate (%G) decreased with larval size within temperatures 

(Figs. 3.1 & 3.2) and increased with increasing temperature in both species. The best 

overall fit to the data was given by the equation: 

In% G = a + b1 size + b2 temperature + b3 temperature2 (3.2) 

where ln%G = logarithm to base e of %G 

a = constant 

b1 = partial regression coefficient for size 

b2 = partial regression coefficient for temperature 

13 = partial regression coefficient for square of the temperature. 

The third term (temperature) was necessary to account for the decrease in growth rate 

at high temperatures. The coefficients for both species obtained from the multiple 

regression afe given in Table 3.3. All values are significantly different from zero (P 

<0.001). 

Figure 3.3 shows the predicted mean % growth rates for the two species over 

the temperature range of the laboratory experiments. The pair-wise contrast test 
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showed significantly higher predicted mean growth rates in L. disfunctus at all 

temperatures (P <0.001). Figures 3.4 & 3.5 show the growth rates for individuals of 

the two species, calculated from Equation 3.2, again using the average size, but also 

taking into account the residuals from the multiple regression analysis. Hence, 

individual variation is revealed. 

For C. resolutum, % growth increased with increases in temperature up to 

22.5°C and decreased at 25°C (Fig. 3.3). In contrast, for L disfunctus % Growth 

increased throughout the experimental temperature range (Fig. 3.3). Based on the first-

order differential equation of Equation 3.2 with respect to temperature, . growth was 

maximized at T* = -b2/2b3 = 22.40C for C. resolutum and 28.8"C for L disfunctus. 

Mean % Growth was always higher for L. disfunctus at any given temperature 

compared to C. resolutum. ANCOVA showed no significant interactions for growth 

rate between size and species (F1,312 = 1.18; P >0.25) or between temperature  and 

species (F1,313 = 0.45; P >0.5). Hence, these non-significant terms were removed from 

further analysis. Significant effects were then found for the response of growth rate 

to size (F1,314 = 22.92; P <0.001), temperature (F1,314 = 70.06; P <0.001), interaction 

between temperature and species (F1,14 = 20.62; P <0.001), and temperature2 (F1,314 

= 38.06 P <0.001) for both species (see Table 3.4 for partial regression coefficients). 

The effect of temperature on growth rate was significantly higher for L disjunctus than 

for C. resolutum. 
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3.4 DISCUSSION 

In Chapter 2, I showed that L disfunctus grew faster than C. resolutum in the 

University Pond and I suggested that this may have resulted from L disjunctus larvae 

occupying warmer parts of the pond. In this chapter I have shown that  disfunctus 

larvae grow faster even without a temperature difference in microhabitat. L disfunctus 

grew faster than C. resolutum at all laboratory temperatures, the differential increasing 

with increasing temperature. Furthermore, the predicted temperature for maximum 

growth was more than 6°C higher in L. disfunctus than in C. resolutum, indicating that 

the growth rate of L disfunctus would be very much faster than that of C. resolutum 

at temperatures above 22.5°C. 

The results are consistent with those reported by Pickup and Thompson (1990) 

for the European Lestes sponsa and Coenagrion puella reared at 12, 16, and 20° C. 

The growth rate was higher in instars 6,7 and 8 than in' the penultimate and final 

instars of both species, but the rate of development was consistently faster in L 

sponsa. Thus, the difference in growth rate response to temperature observed in the 

present study is possibly a universal generic difference. 

Thus, in summary, the laboratory experiments support the field observations 

and lead to acceptance of the alternative hypothesis that the response of larval growth 

rate to temperature was different in the two species. Having established the 

relationship between growth rate and temperature, I now proceed to investigate feeding 

rates (functional response) of the two species. 
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Table 3.1 Mean temperatures maintained in the controlled environmental chambers 

during the experimental periods for Coenagrion resolutum. 

Chamber Mean (°C) ± Std.Err 

Fall - 1992 

1 9.9 0.11 

2 12.4 0.07 

3 15.0 0.04 

4 17.7 0.05 

5 20.0 0.06 

6 22.7 0.05 

7 25.3 0.07 

Fall - 1993 

1 9.7 0.24 

2 11.2 0.57 

3 15.2 0.07 

4 17.5 0.07 

5 20.3 0.13 

6 22.3 0.07 
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Table 3.2 Mean temperatures maintained in each controlled environmental chamber 

during the experimental periods for Lestes disfunctus. 

Chamber Mean (° C) ± Std. Err 

1 10.0 0.17 

2 12.8 0.24 

3 14.5 0.24 

4 17.7 0.09 

5 20.1 0.11 

6 22.5 0.10 

7 25.0 0.14 



41 

Table 3.3 Partial regression coefficients (± Std. Err) estimated from the regression 

of % growth on size and temperature for Coenagrion resolutum and Lestes disfunctus 

(P <0.001). 

Effect C. resolutum L. disfunctus 

Intercept 

Size 

Temperature 

Temperature2 

-4.200 ± 0.573 

-0.231 ± 0.074 

0.403 ± 0.061 

-0.009 ± 0.002 

-2.741 ± 0.752 

-0.501 ± 0.114 

0.363 ± 0.074 

-0.006 ± 0.002 
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Table 3.4 Partial regression coefficients for size and temperature from analysis of 

covariance for Coenagrion resolutum (C) and Lestes disfunctus (L) (P <0.001). 

Effect Slope value ± Std. Err 

Size -0.294 0.061 

Temperature - C 0.372. 0.048 

Temperature - L 0.427 0.048 

Temperature2 -0.008 0.001 
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Figure 3.1 The relation between % growth rates and size for larvae of Coenagrion resolutum 

at different temperatures. Least squares linear-regression lines are shown, continued. 
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Figure 3.1 Continued. 
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Figure 3.2 The relation between % growth rates and size for larvae of Lestes disfunctus at 

different temperatures. Least squares regression lines are shown, continued. 
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Figure 3.4 Percentage growth rates, adjusted for size, of Coenagrion resolutum 

at different temperatures. Solid line shows the mean growth rates predicted 

from Equation 3.2. 
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CHAPTER 4 

FUNCTIONAL RESPONSES OF COENAGPJON RESOLUTUM AND 

LESTES DISJUNCTUS 

4.1 INTRODUCTION 

The feeding rate of dragonflies can be measured in terms of their functional 

response to prey density. The functional response is the change in the rate of 

consumption of prey by individual predators in response to changes in prey density, 

and is defined by two parameters - the attack coefficient and the handling time 

(Holing, 1959). Dragonflies show a 'Type II' functional response (feeding rate 

decreases with increased prey density reaching a plateau) to single prey species 

(Lawton et al., 1974; Thompson, 1975 & 1978b; Akre and Johnson, 1979; Cothran and 

Thorp, 1985). Some studies have shown that odonate larvae also have a Type II 

response to a prey species, even when an alternative prey is available in 

complementary densities, implying frequency independent prey selection (Colton, 1987; 

Chowdhury et al., 1989). However, Lawton et al., (1974) in their studies with 

Ischnura elegans, and Akre and Johnson (1979) in their studies with Anomalagrion 

hastulatum (Say), showed frequency-dependent prey selection (prey switching leading 

to a sigmoidal or Type Ill response) when alternative prey were available in 

complementary densities. 

My aim was to determine how the attack coefficient and handling time differ 

between L disjunctus and C. resolutum when they were offered the same type of prey 
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at different densities and whether there were differences that might explain their 

differential growth rates. The null hypothesis was that the attack coefficient (a) and 

handling time (11) were the same for both species. 

4.2 METHODS 

4.2.1 Collection and maintenance of C. resolutum and L disjunctus larvae 

The larvae required for the functional response experiment were collected from 

the University of Calgary Research Pond during summer 1993, and larvae in three size 

classes (1.3-1.4, 2.2-2.3 and 2.7-2.8 mm) were held individually in the laboratory in 

small plastic containers filled with 50 niL of dechlorinated water. Different size 

classes of larvae were collected at different times and the experiments were conducted 

at different periods accordingly. Larvae were housed in a controlled environment 

chamber at 23°C and a photoperiod of 16:8 light:dark condition. The larvae were fed 

with appropriately sized Aedes aegypti (L.) larvae until they moulted. Two to four 

days after the moult, head widths of larvae that were feeding normally were again 

recorded (Table 4.1) and these larvae were used in the experiments which were 

conducted in the same environmental chamber where the larvae were initially housed. 

A larva was used only once during the experiment. 

4.2.2 Prey species 

Because species of Daphnia are the most commonly used prey in functional 

response experiments involving dragonflies, I selected Daphnia magna as the prey 
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species in this experiment (see Chapter 3 for culturing procedure). The D. magna 

cultures were maintained under the same conditions of temperature and photoperiod 

described for the maintenance of the dragonflies. Three size classes of D. magna 

(Table 4.2) were used with each species of dragonfly, D. magna belonging to size 

classes A, B and C being used with small, medium and large size classes of dragonfly, 

respectively. 

4.2.3 Experimental procedure 

The procedure outlined by buck and Strauss (1985) was followed. Prior to 

each experiment, the dragonfly larvae were fed ad libitum with A. aeypti larvae and 

then were starved for 48 h to achieve a standard level of hunger at the beginning of 

the experiment. Pyrex crystl1izing dishes (9.8 cm diameter x 5 cm deep) containing 

250 mL of dechlorinated water were used as experimental arenas. Twelve prey 

densities (1, 3,5,7,9, 11, 13, 15, 17, 19,25 and 35 per 250 ml) were offered to each 

size class of dragonfly (although, in large C. resolutum, only the first 8 densities, with 

3-6 replications, were eventually used). A further container at each density was used 

without a predator as a control for natural D. magna mortality; in fact, no mortality 

of Daphnia was observed during the 15 rain experiments. Prey of the required sizes 

were collected by passing the D. magna culture through appropriate sieves and 

individuals were counted into the arenas using a Pasteur pipette. They were allowed 

to distribute evenly through the arena prior to the experiment and about 1 ml of thick 

Chiamydomonas solution was added to each arena as food for the D. magna. 
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One dragonfly larva was introduced to each arena and was allowed to feed for 

15 mm. Prey were replaced as they were captured. Captures were of two types: prey 

that were more than 50% consumed were considered as eaten; otherwise they were 

considered as 'wasteful killing' (Johnson et al., 1975). The total number of prey in 

each arena was also counted at the end of the experiment to check for natural death 

and for counting error. 

4.2.4 Statistical analysis 

To see whether the size of dragonfly larvae affected the number of D. magna 

eaten at each prey density, I plotted the residuals against size of individual dragonflies 

used in each experiment. Except for the large C. resolutum, all size classes of 

dragonflies showed no relationship between the residuals and size. In the case of large 

C. resolutum, the residuals fell into two groups with different variability. To remove 

this size effect, these larvae were divided into those with head widths of 2.9-3.12 mm 

and those with head widths of 3.12-3.36 mm. As it turned out, larvae in the first 

group had not been tested against the lower prey densities and so had to be eliminated 

from the analysis. To test the data on number of prey eaten at each prey density for 

normality, Hartley's F.. test was performed. The results of the test were non-

significant for all three size classes of each dragonfly species. 

lolling's Type II functional response model 

B-  an  
1 + ahn' 

(4.1) 
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where E = number of prey eaten 

a = attack coefficient 

n = prey density 

T = total time of exposure 

h = handling time 

was fitted to the data by the non-linear regression procedure with SYSTAT (1990) for 

each size class. A two-factor ANOVA was performed to test the effect of species and 

prey density on number of prey eaten. Parameter estimates for each species were 

compared within size classes by Student's t test at cc = 0.05. Comparison of parameter 

values among size classes within species also used Student's t test, but significance was 

based on cc = 0.017, obtained from Sidaks equation for multiplicative inequality (Zar, 

1984). 

4.2.5 Labial length 

Dragonflies capture prey by protrusion of a prehensile labium and a longer 

labium should increase the predator's reactive distance, an important component of the 

attack coefficient. Therefore, I measured the length of the prementum in 60 

individuals, from second to final instar, in each species. 

4.3 RESULTS 

4.3.1 Predation by Coenagrion resolutum 

Coenagrion resolutum killed more Daphnia magna at a decelerating rate as 
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prey density increased in all three size classes. The mean predation rate of small, 

medium and large size classes C. resolutum over 15 nun exposure ranged from 0 to 

2.83, 0.33 to 3.5 and 0.6 to 5.2 D. magna, respectively. Based on non-linear regession 

and examination of the residuals and r2 values, Holing's type If model seems to fit the 

data well for all size classes of C. resolutum (Figs. 4.1, 4.2 & 4.3). 

Comparison of attack coefficients and handling times within the species showed 

no significant differences among the three size classes (Table 4.3; Figs. 4.4 & 4.5). 

4.3.2 Predation by Lestes disfunctus 

Holing's type II functional response model also fits the data for all three size 

classes of L disfunctus. The mean predation rates of small, medium and large L 

disjunctus were higher than those of C. resolutum, ranging from 0.5 to 4.5, 1 to 5.2 

and 0.8 to 6.2 Daphnia/15-min, respectively, and the functional response curves were 

higher for small and medium larvae (Figs. 4.1, 4.2 & 4.3). Comparison of the attack 

coefficients and handling times within the species showed a non-significant relationship 

between the size classes for attack coefficient, but a significant difference was seen 

between the handling times of small and large larvae (Table 4.3; Figs. 4.4 & 4.5). 

4.3.3 Comparison between species 

ANOVA showed a significant difference in the number of prey eaten by small 

(F1120 = 57.78; P <0.001; Fig. 4.1) and medium (F1,120 = 47.25; P <0.001; Fig. 4.2) C. 

resolutum and L disfunctus. However, large C. resolutum and L disfunctus fed at the 
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same (F,,,4 =  1.69; P >0.20). 

Comparison of mean attack coefficients for the same size class between species 

showed that only the small L. disfunctus attacked significantly more D. magna than did 

C. resolutum in the same amount of time. Handling times were significantly longer 

for medium C. resolutum than for L disfunctus, but small and large larvae handled the 

prey in the same time in both species (Table 4.3). 

4.3.4 Labial length 

The equation for the relationship between length of the prementum (LP) and 

head width (HW) in C. resolutum was: 

LPc = 0.0676 + 0.6834HW (4.2) 

and for L disfunctus was: 

LPL = -0.3421 + 1.2927HW (4.3) 

Based on a test of heterogeneous slopes, labial length increased with head width more 

rapidly for L disjunctus than for C. resolutum (F 1.116 = 705.13; P <0.001). Thus, 

except at very small size, the labium of L. disjunctus is longer than that of C. 

resolutum, the difference increasing with increasing larval size. 
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4.3.5 Wasteful Killing 

Total wasteful killing ranged from 7.6 to 16.9% in Coenagrion (Table 4.4) and 

14.4 to 20.6% in L disfunctus (Table 4.5). I assessed the effect of this killing by 

modifying Holling's Disc equation to partition the time involved in handling prey into 

that spent in wasteful killing and that spent handling prey that were killed and eaten 

(see Appendix 1). The equation was: 

H  anTf  - 
(1 + an[fh+ (1-I)w) 

(4.4) 

where E = number of prey killed and eaten 

T = total time of exposure 

f = fraction of prey killed and eaten 

a attack coefficient 

n prey density 

h = handling time for prey killed and eaten 

w = handling time for wasteful killing 

The equation was fitted using the Marquardt method of the SAS (1988) non-linear 

regression program. 

The iteration process would not converge on a solution to the equation for C. 

resolutum. For medium and large L disfunctus the values for w were not different 

from zero, and none of the values for a and h were significantly different from the 

values obtained from Holing's disc equation (Table 4.6; also see Table 4.3). Thus, 
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this particular model does not successfully incorporate wasteful killing. 

4.4 DISCUSSION 

The results of the present study show that both Coenagrion resolutum and 

Lestes disfunctus exhibit a Type II functional response to varying densities of Daphnia 

magna, as also shown by earlier studies on functional response of dragonflies involving 

single prey species (Thompson, 1975 & 1978b; Akre and Johnson, 1979; Cothran and 

Thorp, 1985; Colton, 1987; Chowdhury et al., 1989; Crowley and Martin, 1989). 

Small and medium size classes of L disfunctus feed at a greater rate than the same 

size classes of C. resolutum over the whole range of prey density. However, the attack 

coefficient for L disfunctus was significantly greater only for small larvae and the 

handling time significantly shorter only for medium larvae. Pickup and Thompson 

(1990), in their studies with Coenagrion puella and Lestes sponsa, reported similar 

results, where the functional responses of L sponsa were higher than those obtained 

for C. puella for all instars studied and for all prey densities tested, except for the 

lower prey densities at which the responses were similar. The values for the attack 

coefficient of L sponsa were almost twice those for C. puella. 

Factors contributing to the attack coefficient include: capture success; speed of 

movement of the predator; speed of movement of the prey; and maximum distance at 

which the predator responds to prey (the reactive distance) (Holing, 1963). My 

observations suggest that the higher attack coefficient of small L disfunctus at low 

prey densities (Fig. 4.1) was achieved possibly by three related factors: 1) a greater 
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reactive distance; 2) a longer labial length; 3) a different hunting strategy. During the 

experiments, L disjunctus attacked D. magna from about 3 to 5 mm, whereas 

Coenagrion attacked only when the prey was within 1 to 2 mm. This was possibly 

due in part to the longer labia of L disjunctus (Table 4.1), but does not explain why 

only small larvae should show a significant difference. Both species are primarily sit 

and wait predators and attack their prey from ambush, but L disjunctus was frequently 

observed to follow a swimming mode, especially when the prey density was low. This 

increase in predator movement relative to that of the prey should increase the chance 

of capturing prey. 

There are three components of handling time: time involved in orienting to, 

pursuing and subduing the prey; time involved in eating; and time involved in the 

digestive pause (Holling, 1963). Although none of these components was measured, 

a difference in handling times could be due to faster movement of the predator relative 

to the prey, thereby reducing the time spent orienting towards and pursuing prey. But 

why this should apply only to the medium size-class comparison between C. resolutum 

and L disjunctus is unknown. 

Thompson (1978b) and Pickup and Thompson (1990) observed a significant 

increase in attack coefficients and decrease in handling times with predator size within 

species. The same trend was also shown in my experiments, but because I used 

different sized prey for each predator size, I cannot be sure whether the changes in the 

estimated values are only due to predator efficiency. The estimates could also have 

been influenced by prey size. 
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My attempts to show that the functional response of L disfunctus was higher 

than that of C. resolutum was limited by the fact that the standard errors of the 

estimates were quite large, especially for L disfunctus. However, the trend shown by 

the values certainly indicate that L. disjunctus is capable of feeding at higher rates than 

C. resolutum. 
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Table 4.1 Sizes of Coenagrion resolutum and Lestes disfunctus larvae used in the 

functional response experiment. 

Species Size class Mean Head width Mean Labial length 

± Std.Err' ± Std.En2 

C. resolutum Small 1.783 ± 0.008 1.235 ± 0.018 

Medium 2.546 ± 0.010 1.898 ± 0.020 

Large 3.278 ± 0.009 2.354 ± 0.017 

L disfunctus Small 1.806 ± 0.006 2.024 ± 0.024 

Medium 2.596 ± 0.010 3.285 ± 0.025 

Large 3.066 ± 0.008 3.625 ± 0.019 

= 72 in each size class for each species except for large C. resolutum where n = 

42; 

2 n = 25 individuals in each size class, selected from larvae used in thefunctional 

response experiments. 
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Table 4.2 Size classes of Daphnia magna used in the functional response experiments 

(ii = 50 in each class). 

Size class Mean length (mm) ± Std. Err 

A 

13 

C 

1.097 0.005 

2.070 0.018 

2.897 0.022 
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Table 4.3 Mean (± Std. Err) estimates of attack coefficient (a) and handling times (Ii) 

for Coenagrion resolutum and Lestes disfunctus from non-linear regression of Holling's 

(1959) type II functional response model. 

Species Size class a ± Std.Err h ± Std.Err 

Coenagrion resolutum Small 0.396 ± 0.101** 0.278 ± 0.101 

Medium 0.771 ± 0.221 0.278 ± 0.030* 

Large 1.173 ± 0.350 0.156 ± 0.034 

Lestes disfunctus Small 1.623 ± Ø459** 0.247 ± 0.018 

Medium 1.711 ± 0.465 0.201 ± 0.015* 

Large 1.373 ± 0.320 0.168 ± 0.014 

* values are significantly different at p <0.05; ** values are significantly different at 

p< 0.01. 



Table 4.4 Percentage wasteful killing (WK) by larvae of Coenagrion resolutum at different prey densities. 

Prey density All 

1 3 5 7 9 11 13 15 17 19 25 35 densities 

Small larvae 

No. Killed 0 5 7 12 9 13 13 16 16 24 14 15 

No. eaten 0 5 7 11 8 10 12 15 15 23 13 14 

% WK 0 0 0 8.3 11.1 23.1 7.7 6.2 6.3 4.2 7.1 6.7 7.6 

Medium larvae 

No. Killed 2 6 14 16 20 18 16 20 20 17 21 20 

No. eaten 2 6 11 15 17 17 14 17 17 14 21 17 

% WK 0 0 21.4 6.3 15 5.6 12.6 15.0 15.0 17.6 0.0 15.0 11.6 

Large larvae 

No. Killed 3 16 24 12 32 39 24 21 - - - 

No. eaten 3 12 20 9 27 31 19 21 - - - 

% WK 0 25.0 16.7 25.0 15.6 20.5 20.8 0.0 - - - - 16.9 



Table 4.5 Percentage wasteful killing (WK) by larvae of Lestes disfunctus at different prey densities. 

Prey density All 

1 3 5 7 9 11 13 15 17 19 25 35 Densities 

Small larvae 

No. Killed 3 15 16 27 22 27 31 21 26 17 25 27 

No. eaten 3 13 15 23 18 21 27 17 25 16 21 20 

% WK 0 13.4 6.3 14.8 18.2 22.2 12.9 19.1 3.9 5.9 16.0 25.9 14.4 

Medium larvae 

No. Killed 6 19 18 28 28 23 26 35 30 29 33 31 

No. eaten 6 17 16 23 24 19 24 31 27 25 25 26 

% WK 0 10.5 11.1 17.9 14.3 17.4 7.7 11.4 10.0 13.8 24.2 16.1 14.4 

Large larvae 

No. Killed 5 10 24 25 27 41 45 43 38 29 35 37 

No. eaten 5 10 21 20 20 30 35 36 30 23 27 28 

% WK 0 0 12.5 20.0 25.9 26.8 22.2 16.3 21.1 20.7 22.9 24.2 20.6 
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Table 4.6 Mean (± Std. Err) estimates of attack coefficient (a), handling time (Ii) for 

prey killed and eaten, and handling time for wasteful killing (w), for Lestes disfunctus 

obtained from modified Hailing's Type II functional response model. 

Size class Parameters Mean ± Std. Err. 

Small 

Medium 

Large 

a 2.612 ± 0.638 

h 0.242 ± 0.012 

W 0.088 ± 0.028 

a 1.952 ± 0.481 

h 0.196 ± 0.015 

W 0.021 ± 0.034 

a 1.626 ± 0.333 

h 0.147 ± 0.016 

W 0.064 ± 0.037 
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Figure 4.1 Functional responses of small Coenagrion resolutum (•) and 

Lestes disfunctus (.) to varying densities of Daphnia magna of size class 'A', 

fitted by Holing's disc equation. Means and standard errors of numbers of D. 

magna eaten at each density are shown. 
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Figure 4.2 Functional responses of medium Coenagrion resolutum (.) and 

Lestes disjunctus (.) to varying densities of Daphnia magna of size class 

'B', fitted by Holling's disc equation. Means and standard errors of numbers 

of Daphnia eaten at each density are shown. 
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Figure 4.3 Functional responses of large Coenagrion resolutum (S) and 

Lestes disjunctus () to varying densities of Daphnia magna of size class 

'C, fitted by Holling's disc equation. Means and standard errors of numbers 

of Daphnia eaten at each density are shown. 
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Figure 4.4 Mean (± Std. Err) attack coefficients of Coenagrion resolutum () 

and Lestes disfunctus (o). 
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Figure 4.5 Mean (± Std. Err) handling times of Coenagrion resolutum (.) and 

Lestes disjunctus (ci). 
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CHAFFER 5 

GENERAL CONCLUSIONS 

The present study was conducted with the aim of elucidating some of the 

factors contributing to the different life histories of two commonly occurring 

dragonflies, Coenagrion resolutum and Lestes disjunctus, at the University of Calgary 

Research Pond. L. disjunctus follows an obligatory univoltine life cycle with an eight 

month egg diapause, whereas C. resolutum follows a mixed univoltine and semivoltine 

life cycle without an egg cliapause (Chapter 1). Thus, even though larvae of both 

species coexist in the same habitat, larval growth rates are very different. My specific 

objective was to determine why L. disfunctus larvae grow faster than C. resolutum 

larvae. To fulfil this objective, I followed the life cycles of the two species (Chapter 

2) and determined their growth rates in their natural habitat. The results of the study 

confirmed that L disjunctus indeed grew faster than C. resolutum at the University 

Pond. I then showed that L disjunctus grows faster than C. resolutum in the 

laboratory at all temperatures experienced in the field. 

My second experiment tested the hypothesis that these higher growth rates of 

L. disjunctus resulted from a faster feeding rate embodied in the functional response 

of larvae to prey density (Chapter 4). Higher feeding rates should be translated into 

higher growth rates. Although the experimental results showed an increased functional 

response by the larvae of L disjunctus (in terms of number of prey attacked), 

comparisons of attack coefficients and handling times were generally non-significant 
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because of high sampling errors. However, mean attack coefficients were consistently 

higher for L. disjunctus, that for small larvae significantly so, and, with one exception, 

mean handling times were shorter, significantly so in medium sized larvae. Therefore, 

the data suggest that L. disjunctus' feeding rate contributes to its faster growth rate. 

Future studies focussing on the sub-components of the functional response parameters 

such as reactive volume, capture success, hunting strategy, time spent orienting to, 

pursuing, subduing, and eating prey, and in wasteful killing, would perhaps refine the 

conclusions obtained in this study. Use of visual aids like video-taping experiments 

under both light and dark (red light) conditions would facilitate access to this sort of 

information. Studies on energy assimilation and allocation would also be necessary 

to develop a complete explanation for the contribution of feeding to the faster growth 

rate of L. disjunctus. 

Other factors could contribute to the faster growth of L disjunctus in the field. 

One is the lack of spacing behaviour (Baker, 1981b) which, if present (as in C. 

resolutum in the laboratory), decreases the average feeding rate due to exclusion of 

individuals from prime feeding sites. Another is the tendency of L. disjunctus larvae 

to occupy the shallow, warmer parts of the pond, in which feeding rates would be 

higher as long as prey is not limiting. A detailed survey of the distribution of the two 

species in the field and the temperature regimes in different parts of the pond would 

be necessary to address this question. 

To summarize, in terms of fulfilling my objective I make the following 

conclusions from the study: 
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1) Coenagrion resolutum follows a mixed univoltine and semivoltine life cycle which 

allows it to extend the life cycle from 1 to 2 years under unfavourable conditions. 

Univoltine individuals of C. resolutum grow at a rate of 0.004 mm/mm/day, whereas 

the semivoltine individuals grow at slower rate of 0.005 mm/mm/day. 

2) Lestes disjunctus follows an obligatory univoltine life cycle taking exactly one year. 

to complete the life cycle from egg to adult stage. I qrvae complete their development 

in approximately 90 days at a rate of 0.02 mm/mm/day, 5 times faster than that of the 

univoltine individuals of C. resolutum. 

3) Growth experiments conducted under constant laboratory conditions revealed that 

L. disjunctus grows 1.4 to 3.3 times faster than C. resolutum, the differential increasing 

with increases in temperature (i.e. L disjunctus has a higher temperature coefficient 

for growth). 

4) The functional response experiment showed significant differences between species 

only in the attack coefficients of small larvae and in the handling times of medium 

larvae. 

5) Wasteful killing was found to be a common phenomenon in both species, but the 

model developed to incorporate it into Holling's functional response equation did not 

change the parameter estimations. 

Finally, the characters shown by L disjunctus (such as faster growth rate and 

higher feeding rate compared to C. resolutum) are quite promising for it to be used as 

a biocontrol agent of mosquitoes and prompts a study of their biological control 

potential. 
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APPENDIX I 

To incorporate the time involved in wasteful killing into the total handling time, I 

modified Holing's Type II functional response model. If the total number of prey 

eaten (E) is the product of the total number of prey killed (K) and the fraction of prey 

killed that are eaten (f), then 

E=fK (1) 

Following Holing (1959), the number of prey, killed can be expressed as 

K= aT5n, (2) 

where, a = attack coefficient, which is a constant equal to the rate of searching 

multiplied by the probability of finding a prey 

= time available for searching 

n = prey density 

If an experiment is conducted for a fixed period (2), then T, will vary with the 

handling time per prey (Tb), as handling time decreases the time available for 

searching, so that 

(3) 

Handling time (T) can be partitioned as time spent in handling the prey killed and 

eaten and time spent in wasteful killing: 
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= f Kh + (l-f)KW 

where, h = handling time for each prey killed and eaten and 

w handling time for each prey killed and wasted. 

Substituting equations (3) and (4) in equation (2) yields 

K = a (TfKbKW+fKW)1L 

Simplifying equation (5), gives 

K =  aTn_afKhfl-aKw& fKWn 

Isolating terms with K on the left gives 

K+afKhfl+aK1n_I(1Ph1 = aTn, 

so that the number of prey killed is 

an  
K (1 -- a4fh -4- (l-f)wD 

(4) 

(5) 

(6) 

(7) 

(8) 

The number of prey eaten is found by substituting equation (8) in equation (1), or 

anTf 
E = --• 

(1 + ai4fh + (1f)WD 

(9) 


