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ABSTRACT 

Concrete structures are ubiquitous.  Serviceability analysis of structures has become 

critical.  Engineers need simple tools that follow structural codes and facilitate 

manipulation of design parameters.   

Literature is available for structural response, including cracking and time-dependent 

effects, of segmentally constructed straight elements.  This thesis takes that work and 

extends it to include biaxial bending and torsion.  Using existing curved element 

formulation, a model is developed for uniaxial elements with varying cross section, 

prestressing, and external loading.   

Verification against existing problems in two and three dimensions is performed.  

Demonstration of the model’s capability is included, showing problems from the 

literature and a real world highway bridge in Calgary, Alberta.  A parametric study to 

examine the effects of changing the prestressing to meet design code criteria for fatigue 

analysis is included.  Real design code loading requirements are used, and the designer 

can see how the structure responds to changing parameters. 
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Chapter One: INTRODUCTION 

1.1 General 

It is arguable that no single material is more prevalent in modern structural engineering 

than concrete.  Portland cement structures form the backbone of our civil infrastructure, 

particularly post WWII.  Whether in the bridges we drive on, the buildings we work in, or 

the reservoirs that contain our drinking water, concrete has proven to be an efficient, 

economic, and versatile material.  The last 50 years of research and experience in the 

concrete industry have led to important developments.  Prestressed concrete construction 

is at the forefront of these advancements, especially when considering the modern 

highway bridge system. 

Concrete is not without its inherent problems.  Over time and under sustained stress, 

concrete creeps.  This magnifies the initial elastic deformation by a substantial factor 

ranging from 2 to 4.  Concrete exposed to a dry environment or a very humid one will, 

respectively, lose or gain moisture and deform accordingly.  The effects of these 

processes, known respectively as shrinkage or swelling, can be very significant in some 

climates.  In addition to these problems, prestressing steel subjected to very high stress 

will relax, resulting in loss of compression on the concrete.  All of these time-dependent 

phenomena can dramatically change the state of stress and strain in concrete over time.  

Failure to consider these phenomena in the design phase can lead to problems later in the 

structure’s life with cracking of concrete, corrosion of steel, and excessive deflection.  

These problems can significantly reduce the service lifespan of the structure, resulting in 
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excessive cost to governments in the form of repairs and rehabilitation.  As the majority 

of concrete structures in North America are still relatively young, the accumulation of 

maintenance costs in government budgets will soon begin to restrict new construction if 

design for serviceability and durability as well as strength does not become 

commonplace. 

Analysis of the serviceability of concrete structures often requires an approach that is 

different from ultimate state analysis.  While design for strength allows a margin for 

conservatism, the overestimation of serviceability parameters can lead to problems with 

camber, deflection, and formwork adjustment.  Accuracy is important. 

Another factor complicating the design and analysis of prestressed concrete structures is 

the construction process.  Modern construction demands short aggressive schedules.  

Concrete is often mixed to develop rapid strength gain and early stripping of formwork.  

As a result, the load and support mechanisms for a structure can change over time as 

members and components are added and removed.  Since the properties of concrete 

change over time as well, it is likely that the stresses at some point during erection will 

exceed those the structure will experience in service.  It is for these reasons that a 

complete and proper time-dependent analysis is an essential tool in the design and 

analysis of prestressed concrete structures. 

1.2 Objectives and Scope 

For quite some time, computational methods have been used in structural analysis.  Over 

the past several decades, modeling of concrete bridges has changed from assemblies of 
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simple straight elements to complex finite element methods that account for the nonlinear 

behaviour of the materials used in construction.  These advanced models can accurately 

predict the response of structures near connections, and can determine displacements and 

stresses as structures undergo significant deformation. 

Most structural design in practice, however, does not require or warrant such advanced 

methods of analysis.  Practicing structural engineers frequently require a capable tool that 

can rapidly determine the effect of changing parameters.  How does the reinforcing ratio 

in a span affect the midspan displacement?  How effective will the reinforcement be in 

controlling cracks and limiting their width?  What happens if the prestressing force is 

decreased or increased by a certain percentage?  The complexity of most finite element 

software makes it difficult for the average user to see the path from input to output 

clearly.  What is needed is a tool for the analysis of real world concrete structures that 

takes into account the most significant facets of the analysis, but that remains simple and 

straightforward enough that the results can be understood and interpreted by the user.  

Integration with existing design codes is also important. 

To fulfill these criteria, a one-dimensional space frame element provides a good 

approach.  The fundamentals of basic beam theory are familiar to practicing structural 

engineers. 

The most fundamental element for space frame analysis was suggested by Timoshenko 

and Gere (1961).  Significant improvements were introduced by several authors including 

Surana (1979), culminating in Jirousek and Bouberguig (1979), who introduced an 
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isoparametric element suitable for representing macro elements in bridges.  Maher (1985) 

used the Jirousek element to develop a method to optimise the prestressing profile and 

magnitude in bridges to minimize stresses from torsion and bending. 

Debaiky (1997) improved on Maher’s work by including time dependent effects from 

creep and shrinkage in the analysis, and including non-prestressed steel. The method of 

calculation of creep and shrinkage has been studied at length.  The basis of the analysis 

remained the isoparametric Jirousek element.  Debaiky’s element remains a good element 

for elastic calculations.  

Time dependent effects in concrete have long been a subject of study.  Trost and Marsh 

(1967) showed that superposition was a valid solution approach.  Bazant and Wu (1972) 

demonstrated how a simplified aging coefficient could be used to account for gradually 

developing stress.  Further research, such as Khalil (1979), was focused on numerical 

efficiency of creep calculations.  In the late 1990’s, major design codes were published 

with a full suite of calculations for predicting time dependent effects.   

Ultimately, however, analysis of concrete structures must account for concrete cracking.  

The non-linearity introduced by concrete cracking complicates the analysis significantly.  

Several approaches have been used, including Ketchum (1985), who modeled the cross 

section as “pixels”.  Work by El-Badry (1988) includes a thorough procedure for 

analysing cracking in plane frames, including the effects of non-prestressed steel, 

prestressing, and time-dependent effects.  The equations and degrees of freedom 

presented by El-Badry (1988) are simplified due to the planar nature of the analysis. 
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The objective of the work presented in this thesis is to develop a model that incorporates 

the detailed analysis at the section level presented by El-Badry (1988), which 

comprehensively includes all elements required in structural design codes, and to expand 

it into the third dimension where biaxial bending and torsion can be included as Maher 

(1985) and Debaiky (1997) have done.  Multi-stage construction techniques of concrete 

bridges must be accounted for.  The input should be simple enough that parameters can 

be easily adjusted to examine their effect. 

The basic calculations underlying time-dependent analysis are not particularly 

complicated.  The most difficult phases require solution of a system of equations.  

However, when structures have complex construction stages, or many members to be 

assembled or constructed, the quantity of computations becomes large enough to 

necessitate the use of a computer to sort the data and keep track of the results.  Twenty 

years ago, this sort of analysis required large, powerful computers and very careful and 

efficient programming; today, the power and storage available in personal computers are 

more than sufficient to handle the task. 

The model developed in this work handles non-prismatic, arbitrarily curved, cracked 

space frame elements that can be built up of several different materials and constructed in 

stages.  The method can analyze structures for both instantaneous and time-dependent 

effects. 
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1.3 Organization of Thesis 

It is best to consider the model under discussion in terms of the layers that it works on.  

The analysis is performed at 4 different levels, with each one requiring transitions to the 

one above and below it.  At each level, there are displacements and forces which can be 

related using stiffness. 

The primary level is that of the individual fibres in the material.  The stress and strain 

interactions at this level are governed by the properties of the material.  Chapter 2 covers 

how they are related and how they are calculated, where the phenomena governing 

serviceability of concrete structures are discussed. 

The second level of the model is the cross-section of the element.  A section is formed by 

the intersection of the element with a plane whose normal lies along the tangent of the 

element’s longitudinal axis.  Geometry governs the interactions at this level; the relevant 

properties, for example, are the second moment of area and the area of the section.  The 

displacements are the strain and the curvatures, and the forces are the internal forces or 

stress resultants.  Chapter 3 deals with the analysis of a section under instantaneous and 

time-dependent effects. 

Multiple sections define an element.  The beam elements in the model are single axis 

members that connect two points in space.  The displacements in question are those at the 

ends of the element; the forces are the member-end forces.  Analysis of elements is 

covered in detail in Chapter 4, including the calculation of stiffness and fixed-end forces.  
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There is much attention paid to the manner in which the member’s orientation is 

calculated and how these calculations affect the results. 

The final level in the model is the analysis at the structure level.  The structure is simply 

an assemblage of elements, but also takes into account the boundary conditions and the 

construction stages.  The displacements are the global values at each individual node, and 

the forces are the reactions that keep the structure as a whole in equilibrium.  Chapter 5 

deals with the analysis of the structure. 

Chapter 6 contains examples that use either closed-form solutions or existing computer 

programs to verify the validity and accuracy of the model.  It also includes demonstration 

of the model’s capabilities on new problems. 

It should be noted here that much of the implementation of the algorithms and procedures 

outlined herein require a fairly good background in numerical methods.  While the usage 

of these techniques is presented here, the theory and reasoning behind their development 

is published elsewhere. 

Chapter 7 presents a summary of the research, the conclusions drawn, and 

recommendations for future work. 
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Chapter Two: BEHAVIOUR OF MATERIALS 

2.1 General 

Modern bridges are complex heterogeneous structures, made of several different 

materials.  For the sake of simplicity, and for the purposes of this work, only concrete, 

prestressed, and non-prestressed steel are considered.  In order to calculate the response 

of a cross section, the response of each of the materials must first be taken into account. 

2.2 Concrete 

Studies into the behaviour of concrete are numerous.  Neville (1997) is a very thorough 

and comprehensive reference for all properties of concrete, including compressive and 

tensile strength. 

Given the segmental nature of the structures under consideration here, the analysis must 

account for concrete that is loaded very early after curing as well as that which has been 

in place for some time.  Different materials may be used for the deck and girder of a 

bridge, for example.  We must differentiate between precast and cast-in-place material as 

well. 

2.2.1 Stress and Strain 

Concrete behaves in a non-linear fashion.  This is caused by two factors: the first and 

most obvious is that concrete’s weak tensile strength causes it to crack, and the second is 
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that as the stress exceeds roughly 0.5fc’, the stiffness decreases significantly and more 

strain is experienced.  This is shown in Figure 2.1 below. 

 

Figure 2.1: Stress-Strain Relationship for Concrete 

 

As the figure shows, the stress-strain relationship is approximately linear in the range of 0 

to 0.5fc’.  The effect of tension in the concrete is discussed later.  

2.2.2 Creep 

Suppose that at some time t0, a concrete specimen is subjected to initial stress .  

Assuming that the response of the specimen is in the elastic range, instantaneous strain 

will develop: 

  (2.1) 

fc’

fct

0.5fc’

cu





Tension

Compression

 0c t

   
 

0
0

0

c
c

c

t
t

E t


 



 10

If the stress c(t0) is sustained to a later time t, strain due to creep of concrete will 

develop.  The amount of creep that will develop is influenced primarily by the following 

factors (Neville, 1997): 

1. The age of concrete at loading – the earlier the load is applied, the higher the 

creep that is experienced over the same duration of loading. 

2. Duration of loading – intuitively, the longer the load acts, the more creep 

develops. 

3. Stress Intensity – more stress gives more creep.  This relationship is linear up to 

stress equal to 0.4 to 0.6 fc’. 

4. Compressive Strength – An increase in concrete strength provides a decrease in 

creep. 

5. Aggregate Content – Increasing aggregate volume decreases cement content by 

volume and results in lower creep. 

6. Notional Thickness – The more surface area exposed for a given volume, the 

higher creep will be. 

7. Relative Humidity – Lower humidity means higher moisture loss and higher 

creep. 

8. Ambient Temperature – Creep generally increases proportional to temperature in 

the range of 10°C – 60°C. 
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Based on these factors and experimental data, several researchers have developed models 

to predict creep.  As early as 1965, England and Illston presented creep functions which 

included elastic, delayed recoverable, and irrecoverable components.  Work by Selna 

(1969) and Scanlon and Murray (1974) improved their work to provide simple equations 

that only required storage of the previous 2 intervals.  Bazant and Wu (1973) and Kabir 

(1976) improved these equations to require only the previous interval to be stored.  Khalil 

(1979) includes a good summary of this approach, which employs a Dirichlet series and 

least-squares curve fitting to determine the salient coefficients.  This approach is 

presented and discussed later in this chapter. 

The change in strain due to creep, denoted , can be calculated by 

  (2.2)  

where (t,t0) denotes the factor of increase of strain that would occur, if free to do so, 

between t0 and t for a stress applied at t0.  Note that this is only the increase in strain 

between t0 and t; it does not include the instantaneous effects.  The total strain, c(t), 

instantaneous plus creep, at time t will be given as: 

  (2.3) 
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Creep essentially has two components: an irrecoverable component, and delayed elastic 

strain, which can be recovered once the stress is removed (Neville, 1997).  The former 

has no limit, and is dependent on age at loading and duration of load; the latter has a limit 

which is reached very quickly and is only dependent on load duration (and not age at 

loading). 

2.2.2.1 Aging Coefficient 

All stress applied to concrete has creep associated with it.  This problem is iterative; the 

restraint of creep (by nonprestressed steel, for example) causes stress to develop, which 

in turn causes creep.  The problem this presents is that these creep-restraint stresses are 

not applied instantaneously; they develop gradually over time.  There is no single time of 

loading associated with them.  As such, their effect at a later time is less than if the full 

increment were applied instantaneously.  Figure 2.2 shows the effect of a stress increment 

applied in one instant compared to one developed gradually.   
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Figure 2.2: Strain due to Instantaneous vs. Gradually Developed Stress 

 

The total strain at time t due to instantaneously applied and gradually developing stress 

can be calculated as: 

  (2.4) 
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stress and time to find the overall effect.  In any case, the amount of strain which will 

occur from a gradually introduced stress is less than that which would develop if it were 

applied all at once.  It is possible to introduce a coefficient, (t,t0), such that 

  (2.5) 

This coefficient is called the “aging coefficient” and was introduced by Trost and Marsh 

(1967) and later improved by Bazant (1972).  It typically has values in the range of 0.7-

0.9.  Using the aging coefficient, a new modulus can be calculated that takes into account 

the gradual development of creep: 

  (2.6) 
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  (2.8) 

where the term is nil for the summation when j=i. 

2.2.2.2 Stress History 

The biggest problem with the method presented above is that it requires the entire stress 

history to be stored in order to calculate the free strain.  This is not desirable as the 

storage requirement can become large.  While current microcomputer technology has 

advanced to the point where memory storage is not generally a concern, efficiency in 

computing is always desirable. 

A Dirichlet series can be used to model the creep curves.  The properties of the series are 

used to simplify the integrations involved in the calculations and come up with a 

formulation that does not require storage of stress history. 

The creep function proposed by Khalil (1979) is of the form 

  (2.9) 

where f is the ultimate creep flow, and d is the ultimate delayed elastic strain.  The 

functions F and D implement the Dirichlet series: 
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  (2.11) 

The summations in (2.10) and (2.11) must be carried out over a predefined number of 

terms; Khalil (1979) suggests that 4 are sufficient.  The terms ai, bi, i, and i are 

constants that determine the shape of the curve; their calculation is presented below. 

The CEB-FIP 1978 code that Khalil used to derive his creep formulation was changed in 

1990.  The new code does not differentiate between creep flow and delayed elastic strain.  

As a result, the model will only use the creep flow formulation as it includes terms for 

both the age at loading and the duration of the load. 

Without replicating his work here, Khalil (1979) uses the properties of the Dirichlet series 

to derive an expression for the free strain that occurs in the jth interval because of creep: 

  (2.12) 
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  (2.15) 

Rather than carrying forward the stress history, only the A values need be stored (one per 

interval per Dirichlet series term).  It is worth noting that full stress history storage is not 

overly intensive unless many time stages and elements are necessary in the analysis. 

 

2.2.2.3 Determination of Coefficients 

Selna’s Dirichlet series method for creep coefficients requires calculation of several 

parameters; namely, ai, bi, i, and i.  Khalil (1979) suggests that the CEB code be used 

for generating the curves as it is the only code which recognizes the two distinct 

components of strain.  For each age at loading, i, the following matrix equation can be 

written: 

 (2.16) 

where n is the number of Dirichlet series terms (to reiterate, Khalil (1979) suggests that 4 

is sufficient), m is the number of observation times, and aji is the coefficient for the jth 
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System (2.16) is overdetermined; there are more equations than there are unknowns.  The 

non-linearity that results from the i’s makes the solution difficult; repeating the 

procedure for sets of and choosing those that result in the best least squares fit is the 

right approach.  For this model, Khalil (1979) has suggested values for the coefficients. 

To find the ai’s, a least squares approach is used.   

  (2.17) 
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Adding all of the errors from each age at loading gives a value for the total error which 

can be used to compare different sets of i’s.  Optimal values for the normal temperature 

range are shown in Table 2.1. 

Table 2.1: Values for lambda in Dirichlet Series 
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Given the relatively low cost of computer storage and memory, storing the entire strain 

and stress history are not problematic.  The user is given the option of either method. 

2.2.3 Shrinkage 

Concrete placed in a dry environment will lose moisture over time, causing shrinkage.  

Likewise, concrete submerged in water will absorb moisture over time and swell.  In 

either case, the phenomenon is independent of the state of stress of the material (unlike 

creep).  The analysis for shrinkage and swelling is the same; the material, if unrestrained, 

will undergo a free strain.  It is assumed in the model that this effect is uniform 

throughout the section (see 3.9.1).  This free strain that will occur in an unrestrained 

specimen between some time t0 and a later time t is denoted cs(t,t0).  Its value is positive 

if the concrete swells and negative if it shrinks. 

The shrinkage that develops over time gradually increases towards an ultimate value.  

The shrinkage function can be expressed as  

  (2.19) 

where is the ultimate shrinkage, which is a function of the relative humidity and the 

notional thickness, and is the time function.  ts is the time that the specimen is 

subjected to the humidity gradient.  

In a fashion similar to creep, the shrinkage that takes place between ti and ti+1 can be 

calculated by subtraction: 
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  (2.20) 

2.2.4 Total Free Strain due to Creep and Shrinkage 

To calculate the stress required to restrain creep amd shrinkage over time, the total free 

strain that would occur in the interval must be calculated.   

  (2.21) 
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((ti+1, t0)).  Since this works only for loads applied at t0, a summation must be done for 

all previous loading steps.  Mathematically, 

  (2.22) 
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t0 due to the stress developed between t0 and t.  The modulus of elasticity of the concrete 

is Ec(t0).   

  (2.23) 

Dealing with shrinkage is a much simpler proposition since it is independent of stress.  

The six-element strain vector will have all elements zero except for the first. 

The final equation for free strain due to creep and shrinkage is 

  (2.24) 

Note that the  term in the above equation is zero for (ti+1, ti).  Alternatively, equation 

(2.13) can be used as it does not require storage of the stress history for the section. 

Once the free strain is known, it is possible to calculate the forces which, when applied to 

the concrete, would prevent that strain from occurring.  Since the forces in question 

develop gradually between ti and ti+1, the age-adjusted modulus of elasticity is required. 

  (2.25) 
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Shrinkage, and Temperature Effects, and the Comité Euro-International du Beton – 

Federation Internationale de la Precontrainte (CEB-FIP) Model Code for Concrete 

Structures (MC-90).  Ghali, Favre, and El-Badry (2011) contains a summary of the 

equations and touches on two European codes as well.   

Other codes, such as CSA A23.3-04 (2004), provide greatly simplified expressions for 

the calculation of time dependent effects in concrete.  These equations, while quick and 

simple, do not account for the complex nature of segmental construction or staged 

prestressing effects.  Furthermore, these simplified codes allow for more thorough 

analysis in lieu of their use. 

In practice, the CEB-FIP and ACI codes should generally be used as they are recognized 

as the standard for analysis and design.  The program developed by the author to support 

this work allows the user to select either code or input values themselves. 

2.3 Relaxation of Prestressing Steel 

Suppose that a steel cable is stretched between two fixed points in such a way that the 

stress is high.  Over time, the stress will decrease as the tendon relaxes.  This drop in 

stress is called “intrinsic relaxation”, and can be calculated by (Ghali, Favre, and El-

Badry, 2011) 

  (2.26) 
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where fpy is the yield stress of the tendon, which is the stress at a strain of 0.01.  t and t0 

are measured in hours. 

If that same cable is embedded in a concrete specimen, the situation changes.  The stress 

exerted on the concrete by the cable will cause creep, and shrinkage will occur as well.  

Both of these phenomena serve to decrease the level of stress in the cable and therefore 

the rate of prestress loss.  The value for loss used in prestressed concrete should be less 

than the full value obtained from a constant length test.  This is accounted for by using a 

coefficient less than 1, such that 

  (2.27) 

where is the reduced relaxation, which accounts for creep and shrinkage.  It is this 

value that should be used in the analysis of prestress loss. 

The coefficient r is tabulated in the literature; Ghali, Favre, and El-Badry (2011) express 

it as a function of two quantities: the value λ, which is the ratio of the initial stress in the 

tendon to the tensile strength of the prestressing steel, and the value , the ratio of the 

difference between the total losses from all effects and the intrinsic loss to the initial 

stress.  If the total prestress loss is only the intrinsic value, the value of  is 0.0.  

Mathematically, 
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Obviously, the value of the total loss is not known before the value of r is calculated.  

Iteration must be used to find the value.  An initial value can be estimated, then the 

analysis will indicate a new value.  This can be repeated until the change in the value 

from the previously obtained result is small.  Table 2.2 gives reduced relaxation 

coefficients for different values of  and  (Ghali et al., 2011) 

Table 2.2: Reduced Relaxation Coefficient 




0.55 0.60 0.65 0.70 0.75 0.80 

0.0 1.000 1.000 1.000 1.000 1.000 1.000 

0.1 0.6492 0.6978 0.7282 0.7490 0.7642 0.7757 

0.2 0.4168 0.4820 0.5259 0.5573 0.5806 0.5987 

0.3 0.2824 0.3393 0.3832 0.4166 0.4425 0.4630 

0.4 0.2118 0.2546 0.2897 0.3188 0.3429 0.3627 

0.5 0.1694 0.2037 0.2318 0.2551 0.2748 0.2917 

 

2.4 Summary 

Equations have been developed to predict the stress and strain in the components of a 

structure at the fibre level, using both engineering principles and existing design codes.  

Considerations have been made for numerical efficiency. 

The next step is to consider the resultant of these effects, or the displacements and forces 

at the section level under both external loading and time dependent effects.  
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Chapter Three: ANALYSIS OF A SECTION 

Analysis of stress and strain is pivotal to serviceability analysis of concrete structures.  

Since deformations of a structure are a direct result of strain, the analysis of stress and 

strain in a cross-section is at the foundation of serviceability.  Serviceability analysis is 

complicated by several factors.  Over time, creep and shrinkage of concrete and 

relaxation of prestressing tendons causes redistribution of stress within the section.  Since 

the structures considered here are built in stages, the addition of concrete parts over time 

can also have a dramatic effect on the development and distribution of time-dependent 

stresses.  Once the stress at any point in the concrete exceeds the tensile capacity, 

cracking occurs.  This causes changes in the properties of a section and can lead to large 

increases in strains.  In statically determinate systems, the displacements will increase.  In 

statically indeterminate structures, the change in stiffness resulting from cracking can 

cause redistribution of stress and change in the member end forces.  These changes cause 

variation in the status of cracking, leading to a system which requires non-linear analysis 

to solve. 

The calculation of stress is essential because structural codes limit service stress levels in 

concrete.  If fatigue loading is a concern, the range of stress in the structure is an 

important factor in the design.  When cracking takes place, the increase in steel strain can 

be used to calculate an estimate of the crack width.  This can be compared to code 

requirements for serviceability.  Most importantly, strains can be used to calculate the 
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displacements and flexibility of a member, which allows for a full displacement method 

analysis of a structure. 

This chapter is focused on the calculation of stress and strain in a cross section, due to 

both instantaneous and time-dependent effects.  The displacement method is used. 

3.1 Section Definition 

For the purpose of this analysis, a cross section is composed of any number of precast or 

cast-in-place concrete parts, with any number of prestressed or non-prestressed steel bars.  

Prestressing can be pre- or post-tensioned; for post-tensioning, both bonded and 

unbonded tendons can be considered.  Tendons can be added as unbonded and then 

bonded at a later time.  Since curved 3-dimensional beam elements are modeled, sections 

need not be symmetric about any axis, though the calculation of certain parameters 

(namely the shear centre location and the torsion constant) are substantially more difficult 

for irregular section shapes.  This is explored in greater detail below. 

3.2 Assumptions 

Before the analysis procedure is presented, it is essential to review the assumptions that 

are introduced. 

1. Concrete exhibits an elastic stress-strain relationship as long as the stress is below 

roughly 0.4-0.5fc’ (Ghali, Favre, and El-Badry, 2011).  It is assumed here that 

service stress levels are in this range.  In addition, it is assumed that the strains in 

the steel layers are below yielding.  Given these conditions, it is possible to 
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superimpose strains and stresses from different intervals.  This superposition must 

be modified to account for nonlinearity due to cracking; see section 3.8. 

2. Plane sections remain plane, and no warping occurs.  As Maher (1985) and 

Debaiky (1997) point out, this has been established to be acceptable for the type 

of sections and span to length ratios generally used in bridge design. 

3. The strains in the steel (both prestressed and nonprestressed) and concrete are 

compatible – no slippage of the bond occurs.  The tension stiffening effect that 

results from bond damage is accounted for by mean strain interpolation; see 3.10 

for details.  This means that the calculation of stresses and strains between a crack 

and the distance required to regain full bond are incorrectly predicted, but this is 

acceptable for the purposes set out here. 

4. The shearing strain (twisting/shearing) and normal strain (axial/bending) 

equations are independent. 

5. For unbonded tendons, no strain compatibility exists between the concrete and the 

steel.  Bonded tendons have full strain compatibility.  Friction loss and anchor slip 

are accounted for in the analysis. 

Given these assumptions, a planar stress distribution will result from the application of 

internal forces.   
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3.3 Coordinate System 

Elements in the model are simple beam-type elements with a single arbitrarily curved 

axis.  Sections are provided at any point on the axis.  The plane of the cross section is 

assumed to be perpendicular to the axis of the element.  The local coordinate system for 

the section consists of three orthogonal axes: the x-axis is directly out of the section, 

while the y- and z- axes are contained in the plane.  The system is easily defined by three 

unit vectors (x
*, y

*, z
*) whose components are measured in the global coordinate 

system.   

 

Figure 3.1: Local Coordinate System 

 

This is the same system used by Jirousek and Bouberguig (1979) and Maher (1985). 

x*

y*

z*

z

yx
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3.4 Strains 

With the coordinate system in place, the strains can be defined.  It warrants explanation 

first that since the model accounts for shear deformations, it is necessary to define the 

rotation of the section as a separate displacement field.  For a beam where shear 

deformations are ignored,   

 

*
*

*

*
*

*

y

z

dw

dx

dv

dx





 


 (3.1) 

However, if shear deformations are included, the total slope of the beam is the sum of the 

rotation and the shearing strain: 
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 

 

 

 
 (3.2) 

This is the distinguishing property of the beam element proposed by Timoshenko (1961) 

and will be used in this analysis.  With this in mind, the strains used in the model can be 

defined: 
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 (3.3) 

3.5 Applied Forces 

There are six stress resultants in three dimensions – three forces and three moments.  

They can be defined as follows: 
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Note that the model only uses three stresses – the normal stress σx and the two in-plane 

shearing stresses τyz and τzy. 

3.6 Section Properties 

Conventional analysis equations for a cross-section generally use properties calculated 

about the centroid.  Centroidal properties allow for simple calculation of strains based on 

internal forces. 
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 (3.5) 

In matrix form, this becomes 
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where the normal strains are about the centroid and the shearing strains are about the 

shear centre, and the axes y and z are principal axes for the section.  The shear modulus, 

G, can be calculated using poisson’s ratio. 

The problem that this presents in the current procedure is that the centroid is not static; 

the addition of parts with time (eg: a cast-in-place deck on a precast girder), cracking of 

concrete, and time-dependent effects all cause a change in the location of the centroid.  

Furthermore, the shear centre is often not coincident with the centroid.  To avoid these 

problems, Ghali, Favre, and El-Badry (2011) selected a general reference point in the 

cross section and calculated the properties about that point.  While this does complicate 

the analysis somewhat in that the axial force and bending moment equations are no 

longer independent, it allows superposition of strains and stresses from intervals where 

the centroid is not located in the same place.  The interdependence of the axial force and 

bending moment can be handled by the addition of two new properties: B, the first 

moment of area about the reference point, and Iyz, the product of inertia.  The new 

equations are presented below in matrix form: 
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where ys and zs are the shear centre’s location. Combining these two systems into one 

yields the elasticity relationship for the current model: 

  (3.8) 

where elements not shown are equal to zero.  Note the independence of the twisting/shear 

and axial/bending equations.  In finite element terminology, this forms the familiar 

relationship 

  (3.9) 

The path forward is clear – given the geometric arrangement of the cross section, the 

following properties must be determined: 

 A, the cross sectional area 

 By, Bz, the first moments of area 

 Iyy, Izz, the second moments of area 

 Iyz, the product of moment of area 

 Ary, Arz, the reduced (shear) areas 
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 J, the torsional constant 

 ys, zs, the location of the shear centre 

The following sections detail the determination of these properties for concrete, steel, and 

non-prestressed steel components.  The discussion of the shear-related properties (Ar, J) 

is delegated to 3.6.3. 

3.6.1 Concrete Parts 

Several approaches have been used to model the effects of forces on a cross section.  

When nonlinear analysis due to cracking is considered, the traditional methods for 

property calculation are not always suitable. 

Ketchum (1985) represented the cross section as a grid of square elements and developed 

equations for the properties and resultants assuming constant stress and strain in each 

one.  This approach lends itself well to doing calculations at ultimate limit state, because 

the stress-strain relationship can be completely non-linear and not affect the complexity 

of the calculation.  For serviceability analysis, every fibre is either behaving in a linear 

fashion, or has cracked and does not contribute to the stiffness.  Properties can be 

calculated in the traditional fashion by ignoring all concrete in the tension zone once 

cracking has occurred. 

El-Badry (1988) adopted this approach, and defined sections as a series of trapezoids by 

their thickness and width and the top and bottom.  This works very well for planar 
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analysis because the neutral axis or tension zone boundary is always horizontal.  The 

calculation of properties is simply a summation of the values for each trapezoid. 

Given the arbitrary nature of the section definition, and the consideration of biaxial 

bending in the analysis, a procedure is required to calculate cross section properties of an 

arbitrary polygon. 

Kawakami and Ghali (1996) showed how a concrete cross section of arbitrary geometry 

could be represented by a closed series of planar points, the outline of which defines the 

shape of the part.  The polygons need not be regular, and can be concave.  They are used 

to define concrete parts.  Three examples are shown in Figure 3.2: 
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a) Simple T-Section 

b) Complex Box Section 

 

c) Elemental Trapezoid 

Figure 3.2: Definition of Cross Section for Calculation of Properties 
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Figure 3.2a shows a simple T-beam cross section, defined by 8 points.  As Kawakami and 

Ghali (1996) pointed out, a void like in Figure 3.2b can be accounted for by replicating 

some of the points.  The void is actually outside of the polygon.   

Kawakami and Ghali (1996) present a numerical method for the calculation of the 

integral  for any integers m and n.   

The method is straightforward.  As shown in Figure 3.2c above, any 2 points represent a 

trapezoidal shape.  The integration dA can be expressed as the sum of the integrations 

carried out over each trapezoid. 

   

By integrating, simplifying, and using a binomial expansion for the appropriate terms, the 

final result becomes  
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3.6.2 Steel Parts 

Since biaxial bending is present in this analysis, it is not sufficient to show where a layer 

of bars is located.  Each bar must be separately specified with its own x and y coordinates 

in the cross section, along with an area of steel.  In practice, large amounts of reinforcing 

steel are used, and specifying the location of every bar would be very onerous.  

Alternatively, the modeller can simply specify the ratio of steel area to concrete area in 

the shape.  Specifying the reinforcement ratio implies that the steel is distributed 

uniformly in the concrete.  The geometric properties for the steel are simply equal to the 

reinforcement ratio multiplied by the properties for the concrete.  The approach to use 

will vary depending on the problem to be considered. 

For prestressing tendons, the tendons must be specified by location.  The duct area can 

also be specified. 

3.6.3 Superposition and Properties Related to Shear Stress 

One major assumption necessary in the analysis is that the section property matrices can 

be superimposed, ie:  

    i
ref i refi i

ref

E
EI EI E I E nI

E
      (3.11) 

where ni is the modular ratio or transformation factor for concrete or steel part i. 
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This works very well and is accurate for the normal strain properties because they are 

simple integrals dA, eg: yzI yz dA  .  However, the shearing matrix properties are not 

simple integrals.  The reduced area is a rational function of two integrals, and the torsion 

constant requires a pre-assumed stress distribution or membrane analogy for calculation.  

In the case of thin-walled sections where the stress distribution through the wall can be 

assumed constant, simple closed-form equations are available.  It is also possible to 

calculate the properties for standard solid sections such as rectangles or circles.  It is 

possible to find the torsional constant for sections using numerical methods and either St. 

Venant’s or Prandtl’s approach, both of which involve the solution of a second-order 

partial differential equation.   

For the torsional constant, J, there is a much simpler and perfectly acceptable 

approximation for the torsional constant using the second moments of area and the area 

(Oden and Ripperger, 1980): 
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The reduced area, Ar, is a term that accounts for the non-uniform distribution of shear 

stress in the cross section.  It can be calculated using the following (Ghali, Neville, and 

Brown, 2009): 
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It is possible to express the reduced area as the normal area divided by a constant: 

 

   

For simple rectangular shapes, the constant  = 1.2.  In order to simplify the analysis and 

handle changing cross-section geometry, the model assumes that the ratio Ar/A is constant 

for each section.  It is possible to specify different values for Arx/A and Ary/A. 

In the case of a composite section, superposition is assumed: 

 i
i

GJ GJ  (3.14) 

This underestimates the torsional stiffness of composite sections. 

It is critical to note that calculation of J using the method outlined in 3.8 for closed 

sections will not accurately calculate torsional stiffness.  Using the membrane analogy, 

the height of the membrane along the enclosed surface is constant.  The method above 

forces the height to be zero. 

3.7 Cracking 

Concrete is weak in tension.  Under low tensile stress (often less than 10% of the 

compressive capacity), rupture occurs.  While this may begin at the extreme fibre, the 

crack will propagate towards the neutral axis.  At the same time as this occurs, the neutral 

axis shifts.  In a completely unreinforced concrete section, this corresponds to failure of 

/ 1rA A   
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the member as there is no part of the section which can take up the tension.  When steel is 

present in the section, it will take the tension lost by the concrete and the section will go 

into a second state of equilibrium where the crack extends right to the point where the 

stress no longer exceeds fct.  In practice, the tension zone’s contribution is ignored and 

cracking is assumed to extend to the neutral axis.  Therefore, to define the extent of 

cracking in the section, it is sufficient to find the new neutral axis orientation.  For simple 

sections subjected to only an axial force and/or bending moment, it is possible to derive 

equations for the location and orientation of the neutral axis.  When both an axial force 

and bending moment are present on a rectangular or T-section, a cubic equation can be 

found whose roots represent the cracked section depth (Ghali, Favre, and El-Badry, 

2011).  However, with arbitrary polygonal geometry and biaxial moments with normal 

force, this would be very complicated.  Instead of deriving a closed-form solution to find 

the cracking depth, the current model uses an iterative algorithm described below.  The 

following discussion will be carried out assuming uniaxial behaviour for illustration 

purpose.   

It is worthwhile beforehand to discuss the effects of the internal forces on the cracked 

section properties.  Again, the two equations to be satisfied are 

  (3.15) 

At any given load (N and M), there are two solutions to the system – one for the 

uncracked section, and one with all concrete in tension ignored. 
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The simplest case to analyze is the one where only axial force acts on a symmetric 

section with the reference point at the centroid (My=0, By=0).  The above equations can 

be simplified to only include axial strain at the reference point and the area (EA = N).  In 

this case, the area A is made up of the concrete and steel: A = Ac + nAs, where Ac and As 

are the areas of concrete and steel respectively and n is a transformation factor equal to 

the ratio of the modulus of elasticity of steel to concrete.  If cracking occurs in this case, 

all of the concrete will be removed, and the new area will simply be nAs.  As such, the N-

 diagram will be trilinear (see Figure 3.3). 

 

Figure 3.3: Normal Force vs. Axial Strain for RC Section 
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Slightly more complicated but essentially the same is the case of bending moment 

without axial force.  Cracking will produce strain at the reference point now, because B 

becomes non-zero once cracking occurs.  The moment-curvature relationship is simple, 

however: My = E(y Iy).  Again, a bilinear relationship is produced.  Even though M 

continues to increase, the neutral axis remains in the same position.  To see why this is 

the case, examine the equations above in matrix form. 

  (3.16)  

The location of the neutral axis relative to the reference point is simply .  The 

cracked section properties will only change if this ratio changes.  If both N and M are 

magnified by the same factor, then both 0 and  will be as well, and the neutral axis will 

not move.   

In bridge analysis, this is unlikely to be the case.  Typically, the normal force comes from 

prestressing, while the bending moments come from imposed loads.  This independence 

between N and M means that as load is applied to the section, the neutral axis moves and 

the section properties change.  The moment-curvature relationship is no longer bilinear, 

even though the materials are elastic.  For this reason, the calculation of crack depth for 

prestressed sections is handled using a parameter e = M / N (Ghali, Favre, and El-Badry, 

2011).   
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Biaxial bending further complicates matters, as the neutral axis can no longer be defined 

as simply a position relative to the reference point.  The location and orientation are 

required.  While this could be accomplished with an eccentricity in two directions, a 

direct computational approach is more suitable and is explained below. 

3.8 Instantaneous Stress and Strain 

At a given time t, a new set of forces are applied on the section.  At the same time, new 

parts can be added or subtracted and prestressing can be applied.  A step-by-step 

procedure is presented to calculate the instantaneous stress and strain that develops, 

taking into account the possibility of cracking in the section. 

The state of internal forces on the section will control the geometric properties of the 

cracked section.  For this reason, it is often necessary to take into account the pre-existing 

state of stress in the concrete when finding the properties. 

El-Badry (1988) explains the process of decompression, where the new force to be 

applied on the section is partitioned into two parts: one which will bring the stress in the 

concrete to zero, and the part which remains from the original load.  This method is 

advantageous because it can be used on sections which are precracked and those which 

are uncracked.  Essentially, the section is unloaded, and the reverse of the effect required 

to do so is added to the applied force.  Strains in the unloading stage use the current 

section properties, and the adjusted force is applied on the new cross section. 

The forces which will remove all stress from the concrete can be found by 
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where [d] is the 6x6 transformed matrix for the entire section (not just the concrete part), 

and {}c is the strain in the concrete part where cracking will occur.  Ec is the modulus of 

elasticity of the concrete part being decompressed.  Note that σ / E is not equal to the 

strain because of time-dependent effects. 

El-Badry’s analysis was undertaken on horizontally symmetric sections under uniaxial 

bending, and as a result, there are only three possibilities for any concrete part: uncracked 

(all points in compression or tension below fct), partially cracked (some points below fct, 

some above), or fully cracked (all points in tension above fct).  Put differently, the neutral 

axis is completely contained in one concrete layer.  As a result, each part in tension either 

contains the neutral axis or does not contribute to the stiffness.  This allows for a simple 

algorithm to decompress a section under the effect of new loads: 

1. Apply the load on the section and find the strain and stress distributions.  If no 

cracking has occurred (maximum stress below fct), these are the final values. 

2. Start by assuming the neutral axis is in the bottom layer (or the top layer, if the 

bending moment is negative). 

3. Starting with the uncracked section stiffness, decompress each part below the 

neutral axis part using (3.17).  Record the strain and stress changes that result.  

The stress in the current layer is now nil.  Remove this layer’s stiffness from [d], 
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as it will be completely cracked.  Finally, decompress the part containing the 

neutral axis. 

4. Partition the load to be applied into {F}1 and {F}2.  Calculate the cracked section 

properties under the effect of {F}2.  Check the location of the neutral axis; if the 

assumption was correct, the analysis is complete.  If not, select the part currently 

containing the neutral axis and return to (3). 

To reiterate, this approach is possible because only one part in the section can be partially 

cracked.  A composite section under biaxial bending, however, can easily have a neutral 

axis that intersects more than one cracked part.  Consider a cast-in-place deck sitting on a 

precast beam, subjected to moments Mx = My.  It is possible that both the deck and the 

beam will crack (see Figure 3.4).   
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Figure 3.4: Composite Section with Two Cracked Parts 

 

 

The analysis of cases such as this is not handled in the current model for two reasons: it is 

beyond the scope of this work to redesign the decompression algorithm, and such cases 

indicate a poor design.  With this in mind, an algorithm can be developed for 

decompression of sections in the model. 

Decompression is required for two separate purposes: the application of load on a section 

causing new cracking, and the application of load on a precracked section. 

Cast-in-place Deck

(Part 2)

Precast Beam 

(Part 1)
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The first case can be handled simply enough, since the section does not have any pre-

existing cracking.  To find the new cracked section properties and the total strain which 

results from applying load on a section, the following steps are employed: 

1. If the section has cracked parts: 

a. Decompress the first part and add the force to the applied force.  The 

decompression strain is {}1. 

b. Verify that no part is in tension exceeding fct. If so, terminate. 

c. Remove the stiffness of the part from the decompression section stiffness 

matrix. 

2. Start with {}2 = 0.  

3. Using the section stiffness matrix, calculate the resultant forces on the section and 

the out of balance forces: 

        0 1r i ii
F F d 


   (3.18) 

4. Based on the strain and stress, calculate the geometry and the section properties. 

a. Remove all points where the stress exceeds fct, and add new ones where 

required (see below). 

b. Calculate the new properties for the section. 
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c. Assemble the section’s stiffness matrix for this iteration [d]i by adding the 

stiffness matrix for each part.  Include: 

i. Concrete existing before this interval or precast 

ii. Prestressing steel bonded to the section at the beginning of this 

interval. 

5. Calculate the change in strain from the out of balance forces: 

      1

ri ii
d F    (3.19) 

6. Update the strain and the forces on the section: 

      1i i i
  


    (3.20) 

7. Check for convergence: 

        0 0

T T

res resF F F F  (3.21) 

a. If convergence is not satisfied, go to 2. 

8. Verify that no additional parts have cracked.  If there are new  cracked parts, 

a. Decompress and add the force to {F}0. 

b. Verify that the stress in all parts is below fct.  Terminate if not satisfied. 

c. Remove this section from the decompression section stiffness matrix. 
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Essentially, the initial assumption is that only the first section to crack will remain 

cracked with the full load applied.  If this proves to be false, the next section to crack is 

used as well, and so forth until equilibrium is satisfied.  The check in 8b ensures that if 

more than one partially cracked part is found, the analysis is halted.  This is waived if the 

decompression of the first part also decompresses the second (consider a double tee 

section for example).  This should not be a significant restriction, and cases where this 

takes place generally indicate poor design.  If new load is applied on a precracked 

section, it is only necessary to decompress the part which contains the neutral axis (since 

all other cracked parts are completely cracked and as a result have no stress to 

decompress). 

It should be carefully noted here that the geometry of the cracked section is not 

determined separately from the strains.  Instead, the instantaneous strain is found at the 

same time as the cracked section properties are determined. 

Step 2 in the above procedure considers cracking, and as such, it warrants a detailed 

explanation here.  The method presented by Kawakami and Ghali (1996) for calculation 

of properties for polygons takes as input a series of (x,y) points.  To change the polygon 

for cracking, the goal is to remove all of the points which are in tension.  New points 

must also be placed wherever one of the boundary lines intersects the neutral axis.  The 

most efficient way to accomplish this is to examine each pair of points in succession.  

Three cases must be considered: 

1. Both points are in tension.  Remove them both. 
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2. Both points are in compression.  Leave them both. 

3. One point is in tension, the other in compression.  Find the zero stress point along 

the line, remove the point in tension, and add this new point to the new section. 

It would also be possible to find the equation for the neutral axis as a line, and test each 

point to see on which side of the line it lays.  However, doing this requires many special 

case considerations (such as when there is no curvature).  

3.8.1 Cracking and Shear Properties 

As was explained at the beginning of the chapter, no closed-form solutions are available 

for determining the shear properties (J, Ary, Arz) of an arbitrary solid section.  A method 

must be found to adjust the initial values to account for a reduction in stiffness from 

cracking. 

The torsional constant, J, can be found using St. Venant’s approximation: 

  (3.12) 

For the reduced areas, the assumption will be made that the reduction is of the same 

magnitude as that experienced by the area, ie: 

  (3.22) 

where A’ and Ar’ are the quantities after cracking. 
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Note that the above assumptions do not account for the difference between closed and 

open type sections and as a result will give poor results in many cases. 

If an initial value for the torsion constant is available, it is also possible to assume that the 

ratio between the torsion constant and the polar second moment of area remains constant 

despite the cracking.  Mathematically, 

 

1 2

1 1 2 2

2 2
2 1

1 1

yy zz yy zz

yy zz
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J J

I I I I

I I
J J

I I


 






 (3.23) 

It should be noted, however, that the determination of the cracked torsion and shear 

properties is the most error-prone part of the model.  The largest problem is that cracking 

can open a closed section, which can cause a sudden decrease of several orders of 

magnitude in the torsional stiffness.  The best way to alleviate this problem is to use FEM 

or BEM solutions to the internal force-stress distribution relationship.  The methods are 

discussed by Surana (1979).  Additionally, Shangchow (1984) showed how the partial 

boundary element approach could be applied to specific cracked cross sections to 

determine their torsional resistance.  Such implementations are outside of the scope of 

this analysis.   

3.9 Time-Dependent Stress and Strain 

Over time, concrete and prestressing steel undergo changes in stress and strain – even 

under static load.  These changes can lead to substantial increases in deflection, and can 
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radically redistribute the stresses in the cross section.  In order to calculate the changes in 

deflections, member-end forces, and stresses, it is necessary to account for three 

phenomena: creep and shrinkage of concrete, and relaxation of prestressing steel. 

The displacement method is used here.  The method requires calculation of the forces 

required to restrain displacements.  The displacements in question are six strains, and the 

forces are all six stress resultants. 

3.9.1 Creep and Shrinkage of Concrete 

The calculation of the free strain in concrete which would occur if it were free to do so 

was presented in Chapter 2.  Recall Eq.(2.24): 

 

The concrete section’s stiffness matrix must also be adjusted for time dependent analysis: 

    
       1

1
1

, 1
,

,
c i i

i i i ic cc
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E t t t





            (3.24) 

The forces which will restrain creep and shrinkage between ti and ti+1 are: 

        1 1 1, , ,i i i i i ir fc
F t t d t t t t        (3.25) 

where [d]c is the section stiffness matrix for the concrete part in question only.  Note that 

the free shear strains are simply those caused by creep. 
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3.9.2 Prestress Loss 

As discussed in 2.3, the relaxation of prestressed steel can be calculated given some 

simple parameters and the initial stress. 

Calculating the drop in force is a simple matter: 

    1 1, ,i i pr i i psP t t t t A     (3.26) 

Note that the reduced relaxation of the strand, , is a negative quantity. 

Given the change in the tendon force, the approach shown in section 4.5.2 can be used to 

find equivalent distributed loads.  

3.9.3 Calculation of Stress 

To calculate the stresses and strains which occur in the interval, the displacement method 

is used.  Once the restraining forces are known for each section component, they can be 

reversed and applied on the whole section to find the actual strain that occurs in the 

interval: 

  (3.27) 

 

 is the age-adjusted section stiffness matrix, where all properties are transformed 

relative to  as opposed to Ec.  The stresses can be calculated, using A = Ar + AuD. 

prΔσ
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For concrete: 

  (3.28) 

 

For steel: 

  (3.29) 

Non-prestressed steel is the same as prestressed, but with zero intrinsic loss.  Note that 

for unbonded tendons, the change in stress is simply equal to the loss as no strain in the 

concrete is transferred to the tendon. 

3.9.4  Cracking Due to Time-Dependent Effects 

It is entirely possible that the change in stress from creep, shrinkage, and prestress loss 

could cause or exacerbate cracking.  A restrained concrete slab undergoing shrinkage in a 

dry environment with a high modulus could experience 1MPa of tensile stress. 

The problem this presents is that the section geometry and cracked section properties are 

changing continually as time-dependent stress develops.  The forces which determine the 

geometry, however, result from the geometry.  Iteration is required, and two separate 

cases must be considered: the section initially cracked at the beginning of the interval, 

and the case where cracking is initiated by the time-dependent effects.  El-Badry (1988) 

suggests the following procedures: 

        1 1 1 1, , , ,c i i c i i i i f i it t E t t t t t t         

   1 1, , prps i i ps i it t E t t       
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Suppose that the section is initially cracked.  To begin, use [d]i and calculate the strain 

that develops.  Application of the forces on the decompressed section will give new 

section geometry and hence a new [d]i+1.  Repeat the calculation, using [d]i for creep and 

[d]i+1 for everything else. 

For sections that are not initially cracked, the proper approach is to find an intermediate 

time  where cracking occurs.  By assuming a linear stress-time relationship, this time 

can be found: 

1. Apply the full time-dependent force on the section, assuming cracking does not 

take place.  The stress at the extreme fibre exceeds fct.  Find the stress at this fibre 

at ti, c(ti), and the change in stress at that fibre between ti and ti+1, c(ti+1,ti). 

2. Calculate the portion  of ti+1-ti for which cracking has not occurred. 

  (3.30) 

3. Reanalyze the uncracked section, using  for the free strain and 

for the reduced relaxation.  The final stress at the extreme point will 

be equal to fct – if not, iteration is required. 

4. Calculate the decompression forces for the section, and the changes in stress and 

strain in the decompression stage. 
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5. Reverse and apply the decompression forces on a fully cracked section.  Find the 

cracked section geometry and the changes in stress and strain. 

6. The total stress and strain that occur up to cracking are the sum of those 

calculated in 3-5, and are equal to  and . 

7. To simplify the analysis further, assume that this increment of stress 

occurs at ti.  This eliminates the need for additional creep coefficients.  The final 

free strain for the second part of the interval is 

  (3.31) 

The (1-) in the first term follows the assumption that , 

which infers that the development of creep is linear between ti and ti+1.  In the 

second term it accounts for the free strain which was not used in step 3. 

This analysis can be greatly simplified if the section properties are assumed to be static 

between ti and ti+1.  For sections that are already cracked, the error that this introduces is 

not significant (Ghali, Favre, and El-Badry, 2011).  Cracking caused by time-dependent 

effects is indicative of poor design and should be avoided.  For these reasons, the current 

model neglects the change in section geometry under time-dependent effects.  The 

consequence of this assumption is that nonlinear analysis is not required for time-

dependent analysis.  Cracking is assumed to happen at ti+1. 
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3.10 Tension Stiffening and Mean Strain 

Suppose that a simply supported reinforced concrete member is subjected to a centre 

point load which is increased until the extreme fibre stress reaches fct.  Cracking will 

occur at the centre of the beam.  As the load increases to the point just before the second 

crack occurs, the moment just to the left or right of the first crack exceeds Mcr - but no 

cracks develop.  This is because the cracking at the midpoint causes slip of the bond 

between the bar and the concrete, and the extreme fibre stress just to the left or right of 

the crack is below fct.  As the distance from the crack increases, the bond slips less, and at 

some point the strain becomes compatible again.  At this distance, however, the stress at 

the extreme fibre will only reach fct with an increase in the load.  Once it does, the next 

crack forms, and the process continues.  The net result is that the extreme fibre stress is 

not linear along the beam – even though the bending moment is.  Figure 3.5a shows the 

variation in extreme fibre stress for a cracked member when the first crack forms, and 

Figure 3.5b shows the distribution when the next cracks develop. 
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a) immediately after formation of first crack 

 

b) cracking becoming extensive 

Figure 3.5: Extreme Fibre Stress Variation for a Cracked Member 

 

The ability of sections near cracks to remain uncracked increases the stiffness of the 

member.  This phenomenon is known as “tension stiffening”.  If the curvature at the 

cracked section was used to calculate deflections assuming full strain compatibility, they 

would be overestimated by a large amount because the tension stiffening would be 

ignored.  Tension stiffening also changes the stiffness of a reinforced concrete member.  

If ignored, it will affect the fixed-end forces as well. 
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Obviously, the tension stiffening effect is more pronounced when the stress barely 

exceeds fct.  As the load on the beam mentioned above is increased to a large value, 

cracking is extensive and the tension stiffening effect becomes small.   

Bond quality is also essential to the calculation.  A poor bond between the concrete and 

steel will increase the length over which no strain compatibility exists, and therefore the 

crack spacing; a better bond will reduce the tension stiffening effect. 

Research by several authors, including Favre et al. (1985) was adopted by CEB-FIP in 

their code and suggests using a coefficient to interpolate between cracked and uncracked 

states: 

  (3.32) 

where sr is the steel stress in the cracked section immediately after cracking has 

occurred and s2 is the steel stress in the actual cracked section.  Ghali, Favre, and El-

Badry (2011) modify this to be in terms of concrete stress: 

  (3.33) 

where fct is the rupture stress in the concrete and max is the highest stress on an 

uncracked concrete section.  1 is a coefficient that takes into account the strength of the 

bond between the bars and the concrete.  For normal bars, 1 = 0.5; for high-bond bars, 
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1.0.  2 is a coefficient that accounts for the type of loading on the structure.  If the load is 

applied in a sustained fashion or on virgin material, 2 = 1.0; for cyclic loads, 2 = 0.5.  

The product2 will be referred to below as simply , and can be taken practically as 

0.5. 

This approach was analysed by Espion and Halleux (1988) and a slightly more complex 

approach was taken.  They found that while their method more accurately matched 

observed experimental behaviour, the simplified interpolation approach provided 

generally acceptable results (within a few percent). 

Once the interpolation coefficient is calculated, a “mean strain” can be calculated which 

accounts for tension stiffening. 

  (3.34) 

where 1 and 2 are the strains in uncracked and cracked states, respectively.  Obviously, 

a larger value for the interpolation coefficient means that tension stiffening has a lesser 

effect; this will occur when the stress becomes larger, or the bond is better. 

Equation (3.34) can also be used for curvatures.  Figure 3.6 below shows the resulting 

moment-curvature relationship (Ghali, Favre, and El-Badry, 2011). 

It is important to realize that nonlinear analysis will be required to solve for the 

displacements in the structure when cracking is involved.  While the procedure is 

  1 21m     
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discussed in detail in 5.4, there are some important facets to mean strain calculation that 

warrant consideration here. 

When a member cracks, the stiffness reduces.  This can change the fixed-end forces in 

the member, and will almost certainly change the final member-end forces in statically 

indeterminate structures.  Both of these effects will change the force that acts on any 

given section (which in turn will change the extent of cracking).  There is a small 

horizontal line BC in Figure 3.6, which indicates that a sudden large jump in strain occurs 

right at cracking.  Even if max slightly exceeds fct, the interpolation coefficient becomes 

1-  Since  is typically taken as 0.5, it is not possible to have a value of  below 0.5.  

This sudden jump can lead to problems where the change in strain is large for small 

changes in internal force.  The strains oscillate heavily and do not converge to an 

acceptable solution (see 5.4.3 for a discussion about nonlinear convergence). 

To avoid this problem, Ghali, Favre, and El-Badry (2011) suggest adopting mean strain 

calculations when the stress at the extreme fibre exceeds 1 2 ctf   .  This corresponds to 

following the curve AED in Figure 3.6 instead of ABCD. 

One essential note: the mean strain is only used for calculation of displacements.  The 

actual stress and strain at a cracked section are those from state 2. 

It will become evident that the analysis will require repeated calculation of strain from 

stress.  As a result, it becomes numerically efficient to calculate a “mean” section 

stiffness matrix.  Recall that 
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where 

         11 1

1 2
1

m
d d d 

     (3.36) 

It is more numerically efficient to store the inverse of the mean section stiffness matrix. 

The 1 term in (3.34) is the strain that develops if the section were to never have cracked.  

All calculations, including the time dependent forces and strains, must be completed in 

parallel for a cracked and uncracked section. 
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Figure 3.6: Moment-Curvature Relationship Using Interpolation Coefficient 

 

3.11 Summary 

This chapter has explored the effects of the resultants of stress and strain on a cross 

section for the curved beam element in use.  Detailed analysis of instantaneous and time 

dependent phenomena was presented along with matrix formulations for the calculations 

for arbitrary cross sections constructed in stages. 

A detailed look at cracking in cross sections where tensile stress exceeds the capacity of 

the concrete was undertaken.  Simplified equations were presented to account for 

cracking in the calculation of effective strains.   

M
om

en
t, 

M

Curvature, 

crM

  1 21m     

2
2

M

EI
 

1
1

M

EI
 

A

E

B

C

D

1  

1.0 

2

1 crM

M
      

 

 = 0



 65

The next chapter extends this analysis over the element and ties the effects at the nodes 

into the required calculations at the element level. 
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Chapter Four: ANALYSIS OF A MEMBER 

The new formulation’s one and only element is a curved beam with an axis defined by an 

arbitrary curve in 3-dimensional space.  At each node or knot, a location and section is 

given.  A sample element is shown in Figure 4.1 below. 

 

Figure 4.1: Element Layout 

 

4.1 Member Definition 

Each beam element axis has two ends: the O1 end and the O2 end.  The coordinate system 

for the member is composed entirely of a normal coordinate, , which varies from a value 

of 0 at the O1 end to 1 at the O2 end.  The x, y, and z coordinates are modeled as separate 

functions of the normal coordinate: 

   (4.1) 

Members can be specified by simply providing a series of (, x, y, z) points (sometimes 

referred to as nodes in the following discussion).  The functions listed above are 

generated using standard Lagrange interpolation.  Sections need not have even spacing 

Member Axis
O1 end

 = 0

O2 end

 = 1

     x x y y z z    



 67

along the member, and where abrupt changes in section occur, two sections can be 

specified at zero distance from each other.  Most of the numerical methods presented in 

section 5.5.1 will simplify greatly if even spacing is used, however. 

Note that the formulation used here does not impose any restrictions on the shape of the 

element.  It can model any shape that would be used in practical construction. 

4.2 Assumptions 

The following assumptions are made for modeling of members in the current model: 

1. Plane sections remain plane after deformation.  Warping is ignored, and the strain 

profile is assumed planar.  This can be a significant restriction for certain cross-

sections if large twisting moments exist.  This assumption definitely governs the 

possible element configurations for the model.  While this was also mentioned in 

the assumptions for section analysis, it warrants reiteration here.  

2. The stress profile is also planar.  This means that the curvature of the element 

needs to be small enough that radial stresses do not become significant.  The 

length of the inside of the curve must not be significantly different than the 

outside; this requires that the dimensions of the cross section be of smaller order 

than the element’s radius of curvature. 

3. In order to have the math work out correctly, it is necessary that the normal to the 

plane of the section through the reference point is collinear with the tangent to the 
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curve at all points along the element.  In other words, the cross sections are not 

skewed to the element axis. 

4. The x, y, and z functions behave appropriately for Lagrange interpolation (see 

below).   

4.3 Parametric Curves 

There are many possible ways to define a curve in 3-dimensional space.  The y- and z-

coordinates can be functions of the x-coordinate, for example.  A better system, however, 

is to have all three coordinates as separate independent functions of a fourth parameter, t.   

There are two types of interpolation functions used in this model.  They are discussed 

below. 

4.3.1 Lagrange Polynomials 

Lagrange polynomials are the simplest to use and are the keystone in isoparametric finite 

element calculations.  Lagrange polynomials use a set of basis functions to interpolate: 

    
1

n

i i
i

y x N x y


   (4.2) 

 

where Ni(x) is the Lagrange polynomial and is equal to 1 at xi and 0 everywhere else.  

Using this definition, it is relatively simple to derive 
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N x
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 
    
  (4.3) 

For calculation using the computer, it is cleaner to realize that the Lagrange interpolating 

polynomial for n points is of at most degree n-1.  In general,  
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In matrix form, 

     N A x  (4.5) 

Where [A] is the Vandermonde matrix and is non-singular as long as all x’s are distinct.  

From (4.2), 
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[A] will satisfy 
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Notice that the vector of basis functions [A]{x} is independent of the y values.  It will 

frequently be required in the analysis to calculate the derivative of the interpolating 

function, which can be found by differentiating (4.4): 
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In matrix form this becomes 
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where 

 
 , 1'

' 0

ij i j

in

a ja j n

a

 


 (4.10) 

Equation (4.10) can be repeated using a’ in place of a to calculate a’’.  Any point in space 

can be calculated by direct interpolation:  
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Likewise, 
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4.3.2 Spline Functions 

While Lagrange polynomials are elegant and simple to use, they can create problems with 

oscillation depending on the location of selected nodes.  Runge’s phenomenon 

demonstrated that the more points that are selected for interpolation, the more significant 

the oscillation can become.  This is because the degree of the interpolating polynomial is 

one less than the number of selected points.  This can cause particular concern in the 

current study because continuous prestressing tendons can run through several different 

members.  As a result, a prestress tendon may have 15 or more nodes on it.   

To illustrate the problem, consider a segmentally constructed bridge with a span 

illustrated in Figure 4.2.  The tendon is composed of parabolic sections in each end with a 

straight section in the middle.  Since each span has 3 section nodes, and there are eight 

members, there are a total of 17 interpolation points required for the calculation.  To 

simplify matters, the midpoints in the straight pieces are ignored for 11 points. 
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Figure 4.2: Continuity Prestressing Example 

 

The most pronounced effect of this discrepancy is in the calculation of the distributed 

load produced by the prestressing.  The simplified approach to prestressing used by 

Ghali, Neville, and Brown (2009) shows that the equivalent force is roughly equal to the 

second derivative of the profile, and that the anchor force is directed along the tangent at 

the ends.  As Figure 4.3 shows below, the second derivative of the continuous polynomial 

produced by interpolation oscillates heavily through the span and would no doubt 

produce unacceptable results. 

A more suitable approach is to define the function in a piecewise fashion using splines.  

Spline functions use a lower degree of polynomial to model the tendon’s profile, but do 

so in a segmental fashion.  As a result, they do not suffer from the same effects that the 

interpolating polynomials of high degree do. 

The most commonly used spline functions are cubic splines, where each segment of the 

curve is defined by a different polynomial of order 3.  For a function with n segments, 

this yields 4n unknowns: 

P

P

members constructed 
segmentally at different times

continuous tendon
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However, the values of the function are known at the endpoint of each segment (2n 

conditions): 

 
 

 1 1

i i i

i i i

S x y

S x y 




 (4.14) 

Additionally, the slope and the curvature should be continuous through the central points 

on the curve: 
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Since there are only n-1 central points, this only yields 2n-2 conditions.  This leaves 2 

“free” unknowns, which can be set in any suitable fashion depending on the requirements 

of the interpolation.  The most common condition is zero curvature at the ends, which 

produces a natural cubic spline: 

    1 0" " 0n nS x S x   (4.16) 

While NCS are suitable for the majority of analysis, they should not be used to model 

prestressing tendons with parabolic segments.  Parabolic segments have constant 

curvature, so restricting them to zero values at the ends creates a problem. 
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A better approach, and the one used in most analysis presented here, is to provide the 

value of the tangent at each end of the curve: 
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
 (4.17) 

Derivation of the coefficients of each of the spline function segments is standard fare in 

numerical methods texts; one good example is Cheney and Kincaid (1999).  The standard 

method can be easily adjusted for the end tangent. 

A comparison of the interpolation for the spline and Lagrange polynomials is shown 

below: 
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Figure 4.3: Comparison of Spline and Lagrange Functions 

 

To compare the spline modeling to the Lagrange interpolation for the example given 

above, a simple error function can be used.  The results are tabulated below. 

   1 2

0
( )E S y    (4.18) 

Table 4.1: Error for Spline and Lagrange Functions 

 Spline Lagrange 

y 2.19 6.94 

y’’ 22500 32100 

 

Lagrange
Spline

Actual data

0

250

500
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The other significant advantage with splines is that the error will go down as more points 

are added – the exact opposite of what happens with polynomial fitting.  If, instead of 11 

points, the midpoint of each member is considered and 17 points are used, the results 

become: 

Table 4.2: Adjusted Interpolation Error 

 Spline Lagrange 

y 0.9 64.1 

y’’ 21600 475000 

 

With the functions to interpolate for each of the x, y, and z coordinates of the beam 

element’s axis defined, the next step is some differential geometry. 

4.3.3 Tangent and Principal Normal 

It is necessary in the analysis to define a local coordinate system.  At any point on the 

curve, the tangent can be calculated as 
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The plane perpendicular to t has infinitely many vectors in it that all satisfy 

 0 u t  (4.20) 
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The “principal normal” is selected as the vector contained in the plane with the largest 

positive projection on S’’.  It can be calculated by subtracting the projection of S’’ onto 

S’: 

 2

1
'' ''

  
        

t t
n S S

t t t
 (4.21) 

The 1/t2 term at the end of the expression corrects the differentiation between dS and d.  

4.4 Coordinate System/Unit Vectors 

In traditional finite-element analysis, there is a difference between the local coordinate 

system for an element and the global system that the structure exists in.  This allows for 

simple linear transformations to aggregate and combine elements into a structure, which 

is advantageous because of the amount of repetition typically used in structures.  In the 

current model, however, this is not the case.  The stiffness matrix and fixed-end forces for 

the members are directly calculated in the global coordinate system. 

There must be a conversion made, however, between the global coordinate system and 

the system for a section.  Each section along the member may have a completely different 

coordinate system.  The system can be defined by three unit vectors λx*, λy*, and λz*, 

shown in Figure 3.1.  The x* axis lies normal to the section, along the axis of the 

member, while the y* and z* axes are in the plane of the section.  The origin is the 

reference point of the section.  Notice that the section normal is not sufficient to define 
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the system.  The angle φ is introduced as the angle between the local y* axis and the 

global x-y plane. 

 

Figure 4.4: Unit Vectors and Direction Cosines 
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a) Local x*-axis not parallel to global z-axis (Case 1) 

 

b) Local x*-axis parallel to global z-axis (Case 2) 

Figure 4.5: Definition of Angle φ 

 

This transformation was presented by Jirousek (1979) and is repeated here for 

completeness.  It begins with calculating λx*, which is simply the tangent vector 

normalized: 
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 *x 
t

λ
t

 (4.22) 

Case 1: tx and ty not simultaneously zero : 

This case, shown in Figure 4.5a, is applicable whenever the section normal is not parallel 

to the global z axis. 
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Case 2: tx = ty = 0: 

In this case, the angle between the local y* axis and the xy plane cannot uniquely define 

the orientation because the y* axis is in the xy plane (see Figure 4.5b).  This means that 

the local x* axis is parallel to the global z axis and has no projection on the global xy 

plane.  In this case, φ is defined as the angle between the global x axis and the local y 

axis, measured positive about the global z axis in the right hand sense. 
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4.4.1 Coordinate Transformations 

With the unit vectors defined, it is possible to define the transformation between forces or 

displacements in the global system and the local section system: 

  

    
     

*

*

`

T

D t D

D t D




 

    
     

*

*

`

T

F t F

F t F




 (4.23)

  

where the matrix [t] is an orthogonal transformation matrix: 
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Eqs (4.23) must be applied to both the translational and rotational degrees of freedom, 

which is done by replacing t with T where 

    
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 (4.25) 

4.4.2 Line Integrals and Length Calculation 

Many of the calculations require calculation of the length of a segment or all of a 

parametric curve.  From calculus, 
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  (4.26) 

where dS is an elemental length along the axis of the member and C is the curve.  To 

carry out the line integral, transform dS into an elemental normal coordinate, d. 
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  
1

0
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L dS d    t  (4.28)  

where   t 
 
is again the tangent vector to the curve and  t  is its magnitude.  Since all 

of the integration in the model is done numerically, the values need only be determined at 

the integration points.  Most of the integration required is carried out dS, which is directly 

dependent on the functions x(), y(), and z().   

4.4.3 Internal Forces 

Suppose a force is applied at a point on the member, and the internal section force is 

required.  From simple statics, 
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where r is a vector from point 2 to point 1.  In matrix form,  
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 (4.30) 

Generally, however, the requirement is to calculate the force required at O2 to maintain 

equilibrium with an applied force at point 1.  This can be expressed as 

     2 2 1 1( , )F R F   (4.31) 

where [R] is the negative of the matrix in (4.30). 

For these purposes, the internal forces will be considered positive if they align with the 

local coordinate system on the O1 side of the section. 

4.5 Prestressing Tendons 

Prestressing tendons must be modeled in space in the same fashion that the member is.  

Calculation of losses and forces on sections require information about the angle and 

length of the tendon, which is not available in any other fashion. 

4.5.1 Profile Definition 

The definition of the tendon is done at each section where the tendon lies.  It is defined 

by the local y* and z* distances from the reference point.  By adding these vectors to the 
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location of the reference point (xi, yi, zi), the point where the tendon intersects the plane of 

the section can be found.   

   *

*

0p o

p o p
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x x
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 (4.32) 

This can be done at each node where the tendon exists to define a new set of points.  

Parametric curves can be used to define the layout of the prestressing tendon; see 4.3.2 

for details. 

The formulation for prestressing here is similar to that used by Maher (1985) in that only 

ends of members can be used to anchor tendons.  A tendon can go through more than one 

member. 
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a) Tendon Running Through Member 

 

b) Tendon in Typical Cross Section (O1 Side of Section) 

Figure 4.6: Prestressing Tendon Spline Modeling 

 

 

4.5.2 Prestressing Forces 

Prestressing forces are calculated in the same manner as Maher (1985).  In summary, 

both the anchorage forces at the ends as well as the cable forces in the member must be 

accounted for. 

In both cases, it is necessary to calculate the force at the reference point from the tendon 

force: 

Member Axis (solid line)

Prestressing Tendon (broken line)

z*

y*

tendon: area Aps, at yps, zps
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  0{ } ps t
F R F     (4.33) 

where {F}0 is the force at the reference point (6x1), {F}t is the force at the tendon (3x1), 

and 
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 (4.34) 

The anchorage forces are directed along the tendon at the tendon ends. 

  { } tP P   (4.35) 

The sign above is reversed at the O2 end. 

A cable running through a member produces a distributed load in two directions: one 

from the change in magnitude of the force, and one from the change in direction of the 

force.  Differentiating (4.35) and applying the product rule, 
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where {n} is the principal normal to the tendon.  Eq (4.33) is applied afterwards to find 

the distributed load at the reference point. 

Consider a member curved in the x-y plane similar to that in verification example 6.1.1.  

The tendon’s small curvature in the x*-z plane causes a small upward distributed force, 
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but the tendon’s large curvature in the x-y plane causes a larger radial force directed to 

the centre of the member’s curve.  Since this force acts well below the shear centre of the 

beam, it causes torsion on the member.  

4.5.3 Instantaneous Losses 

There are two types of instantaneous losses that occur from prestressing: friction and 

anchor set. 

Friction losses occur because of resistance at the interface between the tendon and the 

duct.  When the duct is curved, a great deal of the prestressing force pushes against it.  

This allows friction forces to develop, which gradually reduce the effective prestress 

through the tendon as the distance from the jacking end grows.   

Friction losses can be calculated by 

  (4.37) 

where s is the distance along the tendon from the jacking end and  is the cumulative 

change in angle from the jacking end.  Mathematically, 

  (4.38) 

The integral for the length is simple and straightforward, but the integration for the 

change in angle can be difficult.  Instead, to calculate the change in angle, sum up all of 
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the changes in the previous segments.  The change in angle between two nodes on the 

tendon can be found using the dot product of the two tangents: 

  1
*, *,cos x i x j     (4.39) 

This assumes that there is no change in curvature of the tendon between the segments.  

This will never be a problem practically, but if an inflection point exists on a tendon a 

section node can be added there. 

It should be noted that if the jacking end is the right end, the same formulae are used – 

except the limits of integration will go from i to 1.  If both ends are jacked, the situation 

is more complicated and is discussed after the single end case. 

Anchor set loss takes place due to the small amount of tendon which slips back inside the 

member at release.  It is dependent on the type of anchor, and is characterized by the 

length of slip, .  Anchor set analysis is complicated, however, because the same friction 

losses that affect the jacking also affect the slip.  The anchor slip loss is highest at the 

anchor, and decreases along the tendon at the same rate that the friction losses take place.  

It is possible that at some distance Ls along the tendon, the anchor set loss has no more 

effect as the friction loss has completely isolated it.  If friction loss is low, however, the 

anchor set can affect the entire tendon.  This distance along the tendon where anchor set 

has influence is denoted Ls, and its value is the cornerstone of the analysis.  Anchor set 

loss in a prestressing tendon is shown in Figure 4.7. 
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Figure 4.7: Anchor Set Loss in Prestressing Tendon 

 

The total slip in the tendon will be equal to the integral of the change in strain over Ls: 

  (4.40) 

Eps and Aps are constant over the tendon, therefore 

  (4.41) 

Since the slope of the P-s curve is the same as for friction loss, but inverted, it is a simple 

matter to calculate the change in prestressing force due to anchor set loss: 

  (4.42) 

where PLs is the value of the prestressing force at Ls.  The only unknown in the 

expression is the value Ls.  Rather than deriving a closed form expression for it, an 
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iterative procedure is presented which follows El-Badry (1988).  The goal is to find the 

two section nodes which bracket Ls. 

1. Start by choosing the section next to the jacking end. 

2. For the chosen section, calculate the integral .  Gaussian quadrature is 

the most suitable method for this purpose. 

3. If the integral is larger than ApsEps, then the true value for Ls lies somewhere 

between the last section and the current one.  Bisection can be used to determine 

the value of Ls. 

4. If the drop over the entire tendon is still insufficient, the anchor set loss affects the 

entire member.  A certain drop in prestress, P0, will affect the entire member 

including the opposite anchor.  This drop in force can be calculated by removing 

the amount of shortening that would occur if Ls=Ltendon: 

  (4.43) 

The final prestressing force at any section can be calculated: 

  (4.44) 

The case when Ls>L is illustrated in Figure 4.8. 
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Figure 4.8: Anchor Set Loss Affecting Entire Tendon 

 

What if both ends are jacked?  Consider no anchor set losses first.  Since jacking from the 

second end overcomes the friction losses from the first end, the larger of the two 

prestressing forces at any section is taken as shown in Figure 4.9.   
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a) Anchor Set Losses with One End Jacked 

 

b) Net Prestress Force with Both Ends Jacked 

Figure 4.9: Anchor Set Loss From Each End Independent 

 

However, if Ls is large, the anchor set losses from the first end will overcome the jacking 

force from the second end as shown in Figure 4.10b.  In this case, the smaller of the two 

forces should be taken.  The decision can be made based on Ls.  First, calculate the final 

prestressing force at every section for each jacking end separately.  This will result in two 

values for Ls: Ls1, for when the tendon is jacked from the O1 end, and Ls2, for jacking 

from the O2 end.  If the location indicated by Ls2 on the tendon is closer to the O1 end 

than Ls1, the minimum of the two forces should be taken (since the losses are the greater 

Ls s

Pj

s

Take greater force

Pj



 93

of the two cases).  In this case, Ls1 > Ltendon – Ls2.  Otherwise, the larger of the two forces 

is taken (smaller losses).  Note that while the figures shown here indicate symmetric 

tendons, this may not be the case in practice. 

 

a) Anchor Set Losses with One End Jacked 

 

b) Net Prestress Force with Both Ends Jacked 

Figure 4.10: Anchor Set Loss From Each End Overlapping 

 

It is this final force, after all instantaneous losses, which should be used for calculating 

the fixed-end forces for the member (see 4.8). 
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4.6 Force Method and Deflection Calculation 

As will be shown below, all of the computations involving members centre around the 

calculation of deflections for given loads on a member.  For any node in 3-dimensions, 

there are 6 deflections that can take place: 3 translations (wx, wy, and wz) and 3 rotations 

(x, y, and z).  The calculations at the basic level for members in the model involve 

extensive use of the force method.  It is worthwhile at this point to review the force 

method as used by Ghali, Neville, and Brown (2009).  It has five steps, which are 

explained below with reference to the current model. 

1. Introduce releases to render the system statically determinate, and define the 

actions which are the unknowns to be found.  In the current model, this means 

completely freeing the O1 end while the O2 end remains fixed.  The actions are the 

internal forces {F*} at every section in the section coordinate system, which are 

required for calculations of stress and strain.  The actions should also include the 

O2 forces (the O1 forces will be solved in step 4). 

2. Due to the loadings on the released structure, calculate the displacements {D} that 

would be caused by the loading if they were free to occur.   

    T

x y z x y zD w w w     (4.45) 

The displacements are calculated using virtual work, which is explained in detail 

below. 
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3. Apply unit values of the redundants on the structure one by one and calculate the 

flexibility matrix [f] and the unit values of the actions.  Each column of the 

flexibility matrix is equal to the deflections at the released end due to a unit 

redundant.  The Au matrix will give the O1 reactions and internal forces at each 

section for each unit redundant. 

4. Solve the geometry equation [f]{F}+{D}={0} for the redundant forces {F}.   

5. Calculate the values of the actions by superposition: {A}={As}+[Au]{F}.  These 

actions are the restrained actions for the overall displacement method, since step 4 

enforces zero displacement at the nodes. 

The bulk of the computations in the force method come from steps 2 and 3.  Since 

flexibility is a matrix of displacements for unit loadings, the problem boils down to a 

simple one: given internal forces at every section in the member, calculate the free 

displacement of the O1 end assuming that the O2 end is fixed.  Note that the calculation of 

the internal forces for external loading is not handled here, but is discussed in 4.8.1. 

Virtual work is the most suitable method for this undertaking.  The principle is fairly 

straightforward.   In a structure with internal strain {}, a system of displacements {D} is 

desired.  If virtual forces {F} are applied to the system causing stress {}, the work done 

by the virtual forces {F} moving through the displacements {D} is equivalent to the 

strain energy stored by the virtual stress {} moving through the strains {}.  

Mathematically (Ghali, Neville, and Brown, 2009), 
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  (4.46) 

The strain energy in the beam element is the sum of contributions from six sources: axial 

strain, two bending strains, two shear strains, and a twisting strain.  By making the virtual 

forces unit values, equation (4.46) becomes 

  (4.47) 

where Nu, etc. are the internal forces due to the virtual load, and , , etc. are the strains 

due to the real loads.  The i,jth element of the flexibility matrix, by definition, is equal to 

the displacement at the ith coordinate due to a unit load acting at the jth coordinate.  In this 

case, the “real” load is the one acting at the jth coordinate, while the “virtual” load is the 

one placed at the ith coordinate to calculate the displacement there. 

The line integrations are carried out over the whole curve.  Recall from section 4.4.2 that 

the differential dS can be transformed into a normal coordinate d to simplify the 

integration. 

Note, however, that information about internal forces and strains is only available at the 

section nodes.  El-Badry (1988) and Ghali, Favre, and El-Badry (2011) both use elastic 

weights for calculating deflections.  This method works well because the shape of both 

the internal force and strain diagram is often linear or parabolic (though cracking and use 

of mean strain obviously alters the shape substantially).  Furthermore, the differential dS 

   
1

or

Virtual work = Virtual strain energy

n
T

i i v
i

F D dv 


 

u xu x yu y xu x yu y uD N dS M dS M dS V dS V dS T dS               
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is simply equal to dx for a straight plane frame element.  In the current model, however, 

the curvature of the beam element distorts the common parabolic shape of the bending 

moment diagram.  Numerical methods can be used to calculate the integrals. 

4.6.1 Numerical Integration Schemes 

The most efficient form of numerical integration is quadrature.  In general, 

    
1

nb

i ia
i

f x dx w f x


  (4.48) 

where wi are the quadrature weights and xi are the integration points or knots. 

Maher (1985) and Debaiky (1997) both employ Gaussian quadrature extensively in their 

analysis.  Gaussian quadrature selects the knots and weights so as to minimize the error in 

the integration.  In general, Gaussian quadrature with n points is exact for polynomials of 

order 2n-1.  This assumes a smooth curve that behaves in a polynomial-like fashion.  

Additionally, to employ Gaussian quadrature, the integrand must be computable at many 

different arbitrary points.   

By introducing cracking into the equation, this no longer applies.  The model gives the 

strains and stresses at the knots only, and as such, it is advantageous to use these values 

in computing the integral.  A more suitable integration scheme for this is Simpson’s rule, 

which can be adapted from its usual textbook form into one that allows uneven spacing of 

the knots.  Simpson’s rule can be expressed in quadrature form as  
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where  
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 (4.50) 

Equations (4.49) and (4.50) need to be repeated and summed for i=0 to n-2.  Note that the 

number of sections must be odd to use Simpson’s rule. 

In general, the integrals in (4.47) can be calculated as  

      
1 1

0 0 0
1

nL

u u u i u i i i
i

dS
M dS M d M t d w M t

d
        

 

      (4.51) 

It is worth noting here that in practice, many members will not have smooth continuous 

internal force and strain diagrams.  A good illustration is a member where bars are 

suddenly cut off.  Whenever there is an abrupt change in section properties, two sections 

should be added with zero distance between them.  The integrations above can be split 

and carried out on both sides. 
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4.7 Stiffness Matrix 

At the core of structural and finite-element analysis is the stiffness matrix.  It represents 

the effect of deflections on member end forces.  Simply put, the (i,j)th element of the 

stiffness matrix represents the force required at the ith coordinate when the displacement 

is unity at the jth coordinate and all other displacements are nil. 

It is essential to note that calculations for element stiffness are usually done in the 

element’s local coordinate system.  As discussed in 4.3.2, however, there is no difference 

between the element and the structure coordinate systems.  The numerical nature of the 

model allows all of the calculations that follow to be done in a fashion that requires no 

transformation at the end. 

Each row or column of the 12x12 stiffness matrix for the element represents a system of 

forces in equilibrium.  Partition the matrix: 

   11 12

21 22

S S
S

S S

 
  
 

 (4.52)  

where S is the 12x12 element stiffness matrix, and each submatrix is 6x6.  Ghali, Favre, 

and El-Badry (2011) show the stiffness matrix as 

       
      

11 11

11 11

T

T

S S R
S

R S R S R

 
 
  

 (4.53)  
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where [R] = [R(1,0)] from equation (4.31).  El-Badry (1988) completed the stiffness 

matrix using a single matrix transformation: 

 

    

 

*
11

1 1

1 1

1 1

T
S H S H

H L

   
 

   
  

 (4.54) 

 

By examining (4.53) and (4.54), it becomes clear that 

      (1,0)
T

H I R     (4.55) 

S11 is calculated by inversion of the flexibility matrix.  Once the problem is isolated at O1, 

the beam becomes a simple cantilever, fixed at O2 and free at O1.  The flexibility is the 

inverse of stiffness; the i,jth element is equal to the displacement that occurs at the ith 

coordinate when a force of unity acts at the jth coordinate.  To generate each column of 

the flexibility matrix for the member, unit loads are applied at each coordinate in turn and 

the deflection at all others is measured. 

The deflection can be calculated using equation (4.47), modified slightly: 

 (4.56) 

where the unit strains are those resulting from the application of the unit load at j, and the 

unit internal forces are from the unit load at i. 
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Calculating the internal force on each section is a simple matter of combining equations 

(4.31) and (4.23): 

        * T

u ii ii
F T R F  (4.57) 

Since the vector {Fu}i is simply the ith column of I6, it is more efficient to use 

    * T

i i
F T R     (4.58) 

where each column of [F*] represents the internal forces at the section due to the 

corresponding unit force.  Recalling eq. (3.36), the strains can be calculated easily: 

     1 *

m m
d F       (4.59) 

Again, [ε]m is a 6x6 matrix whose i,jth element is the ith component of strain caused by a 

unit load applied at the jth coordinate.  Combining eqs. (4.56) through (4.59) yields a 

convenient equation for the flexibility: 
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 (4.60) 

Note that the first two matrices in the integrand are simply the transpose of the product of 

the transformation matrix and the equilibrating matrix.  This works because it will 

multiply each element in the column of the “virtual” force matrix with each element in 
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the “real” strain matrix.  The mean section stiffness matrix can be replaced with the age-

adjusted matrix for time-dependent analysis. 

At this stage, the Au matrix must also be calculated.  It can be expressed as 

  
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 (4.61) 

In summary, once the flexibility matrix is generated, 

        1

11

T
S H f H

  (4.62) 

4.8 Instantaneous Analysis 

4.8.1 Instantaneous Fixed-End Forces 

The other information necessary in the analysis is the coordinate forces that are 

equivalent to or restrain the applied loads on the structure.  Using the methods outlined in 

4.6, it is only necessary to calculate the internal forces at every section due to the applied 

load with the O1 end free. 

For a point load P applied at L, there is no internal force at a section if it lies on the O1 

side.   
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 (4.63) 
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The effects of a distributed load q can be calculated using Gaussian quadrature.  In 

general, 

            0*
0 0 00

,
T

F T R q t d


               (4.64) 

Note that equation (4.64) allows the load q to vary as a function of position along the 

beam.  This is required for non-uniform beams under self-weight, for example. 

Once the forces are known in the global coordinate system, it is a simple matter of 

applying eq. (4.23) to find them locally.  If the loads are projected on one of the axes (eg: 

wind load), the integrations should be done using dx, dy, or dz instead of dS as required.  

The t d in the above equations would be replaced with x’ d, y’ d, or z’ d. 

Self-weight is handled tidily with the equations above.  The load is a negative z-direction 

force with intensity at each section equal to ΣγA, where γ is the unit weight of the part and 

A is the cross-sectional area (uncracked area for concrete parts). 

Equation (4.64) applies for a distributed load applied over the full length of the member.  

It is a simple matter of changing the integration limits if only a portion of the member is 

loaded. 

Once all of the section forces are known, the deflections can be calculated using the 

methods outlined in 4.6.  More directly, 
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The {As} vector is simply the static values of {F*}i from (4.65).  The [Au] matrix can be 

expressed as  

  

 
 

 

     
1

2 ,0

u

Tu
u u i ii i

u n

A

A
A A T R

A

 

 
 
          
 
  


 (4.66) 

The final values of the actions represent the internal force in every section in the 

restrained condition. 

4.8.2 Effect of Displacements 

Once the fixed-end forces for all of the members are calculated, they are amalgamated at 

the structure level and the equilibrium equation is solved to yield displacements at each 

node.  It is now necessary to calculate the member-end forces that result, along with the 

internal forces at the sections (so that the stresses and strains may be calculated). 

The member-end forces can be calculated easily (Ghali, Neville, and Brown, 2009): 

  (4.67) 

where [S] is the element’s stiffness matrix.  Again, there is no difference between the 

local and global stiffness.  The restrained member-end forces are equal to the restraining 

      rA A S D 
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forces calculated in 4.8.1.  Since non-linear analysis is often required to calculate the 

final effects, it is beneficial to calculate the changes in the member-end and section forces 

instead.  Start with the actions in the restrained state and adjust them as the displacements 

change.  The increment in member-end forces from the first iteration is equal to [S]{D}; 

the effect at each section is simply the statical equivalent of the O1 partition of the force 

at the section node. 

For time-dependent analysis, the procedure is exactly same except that  is used 

instead of [S].  In both cases, the final values obtained in the analysis are the change in 

member-end and section internal forces for the current timestep. 

4.8.3 Nonlinearity Caused by Cracking 

Once the displacements are calculated and the internal forces determined, it is possible 

that the stress in the concrete will exceed fct.  The cracking of the section does not just 

change the stress - it also changes the stiffness.  As a result, there may be a redistribution 

of the internal forces as the structure cracks. 

A detailed discussion of nonlinear analysis and the techniques applicable to the model is 

left to 5.4. 

4.9 Time-Dependent Fixed-End Forces 

Section 4.8 deals with the calculation of restraining forces resulting from applied external 

loads on an element.  It is also necessary to calculate the forces which are required at the 

S  
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ends of the element to prevent the displacements that would occur because of creep and 

shrinkage of concrete and relaxation of prestressing steel. 

After the first part of the analysis, the instantaneous strain at each section is calculated.  

Following the steps of the force method, it is necessary to calculate the O1 displacements 

that would occur if free to do so.  The “free strains” mentioned here should not be 

confused with the free strain of concrete; they are the final strains that result from the 

application of the restraining forces on each section (see 3.9 for details).  Once the free 

strains are known, the corresponding O1 displacements are 

 
           

        

1

1 10

1
0

, ,0 ,

,0 ,

T

f i i f i i

n T

j j j f i i j
j

D t t R T t t t d

w R T t t t

    

   

 




        

       




 (4.68) 

Once the O1 displacements are calculated, the fixed-end forces that develop between ti 

and ti+1 can be calculated using the force method: 

        11 1 1 1, , ,i i i i f i if t t F t t D t t  
        (4.69) 

where  11 1,i if t t
    

is the age-adjusted flexibility matrix, calculated using the method 

outlined in 4.7.  To reiterate, 

 
           

           

11

11 0

1

0

,0 ,0

,0 ,0

T T

n
T T

j
j

f R T d T R t d

w R T d T R t

      

     







                     

                 




 (4.70) 



 107

 where d    is the age-adjusted mean section stiffness matrix for the specified interval. 

Prestress relaxation is represented by distributed loads (see 4.5.2).  Since the loss is 

assumed to be uniform along the tendon, dP/dS = 0, and only qn is required in (4.36). 

  ps n psq q R P n       (4.71) 

For the force method stage of the analysis, 

       r s uA A A F      (4.72) 

where {As} is zero and [Au] is defined in (4.66). 

Once the nodal displacements are calculated, the change in member end and internal 

forces can be calculated following the method of 4.8.2, but using instead of S.   

4.10 Intermediate Displacements 

The method outlined above provides the stress and strain throughout the member given 

the displacements at the nodes.  While the calculation of nodal displacements is discussed 

in Chapter 5, an important requirement of the calculation is to determine the intermediate 

displacements in the member. 

Ghali, Neville, and Brown (2009) show that when using virtual work to calculate the 

displacements in a structure, the unit load can be applied on any statically determinate 

structure and the forces calculated.  El-Badry (1988) releases the moments at the ends 

S
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and considers the element as a simple beam, then uses the method of elastic weights to 

calculate intermediate displacements.  A similar approach is adopted here.  To keep the 

math consistent with the force vector and stiffness matrix calculations, the released 

structure will consider the O1 end free.  The member becomes a cantilever, and the goal is 

to calculate the displacement of and section of the member.  Unit loads are applied at the 

section in question and the familiar integration is carried out.  The formulation is very 

similar to (4.68), except instead of the displacement at  = 0, intermediate section values 

are used, and instead of the free strain, the final cumulative mean strain is used. 

The matrix of internal forces at any section j from a unit load applied at i is 

      * ,
T

j j j i
u

F T R                (4.73) 

The displacement equation becomes  

 

           

        

1
,

,

i

T

i i m

n T

j j i j m j j
j i

D R T t d

w R T t


       

     


       

       




  (4.74) 

 Note the integration limits – only the part of the element between and including the 

section in question and the support need to be included.  

What exactly are the displacements that have been calculated above?  Obviously, if the 

O2 end ( = 1) is evaluated, the result is zero.  These displacements are relative to the 

displacements of the O2 end, assuming no rotation at the end.  More directly, eq (4.74) 
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provides the displacements tangent to the member O2 end.  To calculate the total 

displacements in the global coordinate system, these displacements need to be added to 

the position the section would be in if there were no strain in the member.  This can be 

calculated using eq (4.23).  The final equation for the displacement of any section in the 

member in the global coordinate system is 

                 21, ,
n TT

i i j j i j m j j
j i

D R D O w R T t       


             (4.75) 

4.11 Summary 

A contrast was presented between the conventional method of parametric curve 

representation using Lagrange polynomials and a better approach for certain functions 

using splines.  Spline functions become particularly useful when the number of 

interpolation points becomes large, such as in continuity prestressing. 

A robust formulation for curved members was developed, based on points in space and 

the orientation of each section’s local axes.  Simple matrix equations can be used along 

with numerical integration techniques to determine stiffness and forces throughout the 

element based on displacements at its ends, external loads, prestressing, and time 

dependent effects.  These equations support the commonly used displacement method of 

analysis. 
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With the methods presented in Chapter 3, the element’s framework is now complete.  The 

next chapter investigates some nuances of the basic analysis that need to be considered in 

the modeling of real world structures. 
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Chapter Five: ANALYSIS OF A STRUCTURE 

The preceding chapters have all dealt with the analysis of different components of the 

model.  The highest level of analysis is that of the structure, where all of the elements are 

connected and their interactions are calculated.   

The structure is essentially a group of elements.  It is also necessary to consider the 

boundary conditions which govern the structure’s response, and the external nodal forces 

which are applied on it.  The first step is to assemble the stiffness matrix for the entire 

structure.  These equations are modified to account for the boundary conditions, and then 

they are solved for displacements and the reaction components which maintain 

equilibrium. 

Many structural boundary conditions are not simple supports; sometimes a support can be 

restrained to move along a line or even a plane.  If the line or plane is inclined, it is called 

a skew support.  Skew supports require manipulation of the stiffness matrix which is 

covered in 5.2.1. 

While the essence of the displacement method is simple, there are a few aspects of 

segmental construction which impact the analysis.  A section of this chapter is devoted to 

the consideration of the sequence of construction. 

The last part of this chapter presents the model as a numerical procedure and discusses its 

implementation in a computer program. 
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5.1 Stiffness Matrix Assembly 

The first step in the analysis is to generate the stiffness matrix for each of the structure’s 

elements.  This was covered in 4.7.  Once all of the matrices have been generated, they 

must be aggregated to form the structure’s stiffness. 

The stiffness matrix can be partitioned into submatrices as follows: 

  (5.1) 

where n is the number of nodes, and the i,jth partition is a 6x6 submatrix which represents 

the forces that develop at the ith node as a result of displacements at the jth node.   

Recall that the element stiffness matrix is partitioned as well: 

  (5.2) 

The structure’s i,jth partition can be calculated as 

  (5.3) 
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where n1 and n2 are the node numbers of the element in question and the summation is 

carried out over all elements in the structure.  The force vector can be assembled in a 

similar manner. 

The effects of construction schedule on the stiffness are important.  It is possible to have 

large portions of the structure which do not exist at a timestep, and as such, they will 

have zero stiffness.  A row or column of zeros in the stiffness matrix will make it singular 

and will not allow solution of the system.  For this reason, the matrix should be scanned 

for such problems.  If the force vector is also zero, it is acceptable to replace the ith 

equation with Di = 0; this involves simply replacing the zeroed diagonal in the stiffness 

matrix with a 1.  If, however, the ith element in the force vector is non-zero, there is no 

solution to the system.  This would indicate that force is being applied on part of the 

structure with no capacity to resist it. 

5.2 Boundary Conditions and Reaction Components 

The stiffness matrix generated by equation (5.3) is not quite sufficient to analyse the 

structure as a whole.  The elemental stiffness matrix for any valid element is singular; 

that is, it has a determinant of zero.  The assemblage of the elemental matrices is no 

different; these indicate that the fundamental force-displacement relation, SD=-F, has no 

solution other than the trivial one.  In the real-world sense, there are no actions to resist 

the applied loads on the structure.  The boundary or support conditions for the structure 

must be accounted for in the equations to complete the analysis. 
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The unadjusted stiffness matrix and force vector represent a system with n known forces 

and n unknown displacements.  The boundary conditions change the situation at the ith 

coordinate into a known displacement (ci) but unknown force (reaction) problem.  Ghali, 

Neville, and Brown (2009) show that the simplest way to change this is to directly change 

the equations so that the ith equation becomes 

  (5.4) 

If this approach is taken, the force vector must be modified as well to reflect the effect of 

this displacement.  The forcing of the displacement to c at coordinate i will apply a force 

at every other coordinate j equal to Sjici (by definition).  The restraint of this force will be 

equal to –Sjici.  The system of equations becomes  

  (5.5) 

This method is especially effective because it preserves the banded nature of the 

equations.  It is problematic, however, because it requires manipulation of the stiffness 

matrix and force vector, and the original values are lost.  The matrices must be 

reconstructed to find the reactions (but this can be accomplished instead by assembling 

the fixed end forces and subtracting the force vector; see equation (5.8)). 
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Another very effective method for boundary conditions is to add equations to the system.  

Bathe (2003) details this approach, which can be used to add any arbitrary restraint 

condition (not just setting a certain displacement to a prescribed value).  In this approach, 

the system becomes 

  (5.6) 

where {D}0 is a mx1 vector of the m prescribed displacements, and [S’] is an mxn matrix 

with all elements zero except for Sij
’=1 where i is the ith prescribed displacement at the jth 

node.  For example, if a 9 degree-of-freedom problem requires prescribed displacements 

at the 2nd, 5th, and 6th coordinates, the matrix would be 

  (5.7) 

The vector {R} will contain the forces which are required to maintain equilibrium at the 

displaced nodes. 

This second method is desirable because it preserves the original stiffness matrix, and it 

directly calculates the reaction forces.  It can also be used to add equations that relate 

displacements at more than one coordinate (eg: D2+D5=1).  It has a very significant 

drawback, however, in that the banded nature of the system is lost.  For smaller systems 

where banded storage is not a necessity, it is not a significant penalty and is superior.  
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However, if space is limited or the problem is large, the inefficient storage can make it 

impractical. 

Once the nodal displacements are calculated, the member end forces can be computed 

using the procedures outlined in 4.8.2.  To calculate the reaction components, the basic 

displacement method relationship is used: 

  (5.8) 

{Fr} is the force vector from the analysis, and [S] is the stiffness matrix for the structure 

before the boundary conditions are taken into account.  The [S]{D} term can also be 

found by assembling the member-end forces for all of the elements in the structure.  The 

final {F} vector will be zero everywhere except at the nodes where displacements have 

been prescribed. 

It is important to note that when multiple stages are considered, the prescribed 

displacements must be set to zero for every stage after the initial displacement.  This 

ensures that the cumulative displacement for all stages is equal to the imposed value.  If 

the condition is removed at some later time, the cumulative reaction must be applied in 

the reverse direction on the structure (see 5.3.3). 

5.2.1 Skew Supports 

Many structures have boundary conditions that are not expressed in the nodal coordinate 

directions.  A roller on a bridge support may allow motion at some angle  to the 

      rF F S D 
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coordinate axes.  It is essential that modeling of skew supports be included in bridge 

analysis software.  Figure 5.1 shows an example of a skew support. 

 

Figure 5.1: Skew Support Example 

 

Support A is confined to move along a 30º angle – or, put differently, 

  (5.9) 

While this does not prescribe a displacement per se, it adds a single piece of information 

to the system of equations, which increases the determinacy by one if the system is 

already determinate (and will increase the rank of stiffness matrix by 1 if it is not).  Ghali, 

Neville, and Brown (2009), present a procedure to relate the displacements at coordinate i 

and coordinate j by some constant 

  (5.10) 
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  (5.11) 

Note that the jth equation has been replaced with a dummy equation: Dj = 0, which will 

obviously yield the same in the final displacements.  The actual value for Dj can be 

calculated from (5.10).  The skewed boundary condition does not have any effect on the 

calculation of internal or member-end forces. 

To handle supports constrained to a plane instead of a line, the model must handle 

constraints of the form 

  (5.12) 

If the support’s plane contains one of the principal axes, then one of the ’s is zero.  If it 

is orthogonal to one of them, they are both zero, and the constraint takes the familiar form 

Dj = 0. 

To handle constraints like (5.12), the equations above are repeated with k for the kth row 

and column before the jth equation is replaced with the dummy one. 
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5.3 Segmental Construction 

The sequence of construction for complex structures can have a substantial impact on the 

intermediate and final stresses in a structure.  Furthermore, because concrete develops 

strength with time, it is probable that the stress at some point during construction will 

exceed that which the structure experiences once it is complete.  Most complex structures 

experience their highest utilization factor during construction. 

This section will consider how the analysis must handle the addition of future members, 

the use of temporary supports or shoring, and how continuity prestressing can be handled.  

5.3.1 Incremental Analysis 

It is worthwhile to briefly recap the displacement method of analysis.  The restraining 

forces at the coordinates are calculated, the stiffness matrix is composed, and the 

displacements are calculated by solving the resulting system.  The restrained actions are 

added to those caused by the displacements to find the final effects.  These equations are 

shown below: 

  (5.13) 

This needs to be adjusted slightly for a structure built in stages.  Instead, the forces and 

restrained actions are assembled for each timestep due only to the loading introduced at 

the stage in question.  Next, the stiffness matrix is assembled for parts existing at the 
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current time.  The solution of the system results in the increment of displacement at the 

current timestep.  The modified equations become 

  (5.14) 

The final values of the displacements and the actions can be obtained by summation. 

5.3.2 Member Sequencing 

Consider the simple two span bridge shown in Figure 5.2. 

 

Figure 5.2: Segmentally Constructed Two-span Bridge 

 

This simple structure contains four nodes.  The stiffness matrix of the structure at time t1 

is 
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  (5.15) 

where Sij represents a 3x3 submatrix. 

This presents a problem.  Node 5 does not have a member attached to it, and as such is 

unstable.  Two of its three degrees of freedom (horizontal translation and rotation) have 

no restraint.  The final assembled stiffness matrix in this case will be singular; it cannot 

be inverted. 

The most obvious answer to alleviate this problem is to introduce an imaginary restraint 

at the coordinate in question.  In this case, it would be analogous to replacing the roller at 

coordinate 5 with a fixed support.  While this seems like an easy solution, it creates a 

problem: what if a user has accidentally applied a force at this coordinate?  Such an error 

would normally be detected because the matrix is singular, but the imaginary restraint 

imposed above would prevent this from occurring. 

The answer becomes evident when one examines the system of equations corresponding 

to the system instead of just the stiffness matrix: 

  (5.16) 
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The fifth system will be 0 * D5 = F5.  The only way for this to be enforceable is if F5 = 0.  

Clearly, there must be no force applied in the DOFs that are unsupported for the process 

to work.  An imaginary constraint of D5 = 0 can be applied, but no reaction components 

should develop.  If they do, the analysis should be halted. 

5.3.3 Removal of Supports 

In many construction sequences, it is possible to have an intermediate system that may be 

unstable.  There may also be cases where temporary support may be necessary to reduce 

the span in order to protect young concrete.  Consider the segmentally built structure 

shown in Figure 5.3. 
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a) balanced launching 

 

b) using temporary supports 

Figure 5.3: Segmentally Constructed Bridge 

 

The bridge in Figure 5.3a is built in four stages and is launched outward from the centre 

support.  The problem with this method is that the negative bending moment over the 

support becomes very large in the third stage and may in fact cause cracking over the 
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support.  It would be difficult (though not impossible) to apply prestressing in the top of 

the section to counteract this, but a better solution to the problem is presented in b).  By 

introducing temporary supports, the negative moment over the support decreases.  

Furthermore, the structure is more efficient as there is less difference between the 

maximum moment in the span and the negative moment at the support.  Once the final 

supports at the ends of the span are in place, the temporary supports can be removed. 

How does the addition and removal of temporary supports affect the analysis?  The 

addition of the supports simply implies boundary conditions (covered in 5.2).  The 

removal of supports is slightly more complicated.  Consider stage 4 in Figure 5.3b.  The 

reactions from the temporary supports are exerting a vertical upward force on the bridge.  

The removal of these supports is equivalent to first removing the boundary conditions 

from the system, then applying a force equal but opposite to the reaction components 

exerted by the supports.  The new structural system is used for the analysis from this time 

point on, and the support removal does not affect the displacements or actions from the 

previous timesteps. 

5.3.4 Prestressing Considerations 

Perhaps the largest growth in the concrete industry in the past few years has been in the 

precast section.  Many bridge girders are now precast offsite, shipped to the field, and 

installed in place.  This requires much less formwork in place and allows tighter quality 

control for the concrete. 
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It is often desirable, however, to set a series of precast girders and then use prestressing 

cables to make them behave in a continuous manner.  This creates a problem because a 

member can no longer contain a tendon uniquely.  To enable continuity prestressing, a 

tendon must be able to pass through members.  This can be accomplished by defining a 

tendon externally to the member, then indicating where the tendon intersects each 

section.  The profile can then be constructed and the losses calculated.  Once the internal 

force exerted by the cable at each section is known, the actual profile of the cable is no 

longer relevant to the analysis. 

Debaiky (1997) used prestressing tendons as independent members linked at the nodes.  

This works well because the Jirousek element analysis yields displacements at every 

node.  The method presented here only yields the member end displacements, so the 

techniques in section 4.5 are used instead. 

5.4 Nonlinear Analysis 

The basic assumption that underlies the use of displacement or force method is that the 

displacements that occur at the coordinates are directly proportional to the forces that 

develop as a result.  This applies both at the section and member level.  This is obviously 

not the case; the moment-curvature diagram is not linear but instead follows the mean 

strain relationship described in section 3.10.   

Nonlinearity also develops geometrically; the equilibrium condition may be satisfied in 

the pre-displacement condition, but in many cases (such as cable-stayed bridges) it is 
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necessary to consider equilibrium after the nodes have displaced.  Geometric nonlinearity 

is not considered in the current model. 

5.4.1 General Solution Techniques 

There are several well-documented methods available for solving nonlinear equations.  

The goal is simple: given a function f(x), find the value x0 such that f(x0) = y0 for a given 

value y0.   

As explained by El-Badry (1988), the solution techniques can be divided into two 

categories: incremental and direct iterative.  Incremental techniques involve splitting the 

desired value y0 into slices and solving for each one, then adding up all incremental 

solutions. 

Direct iterative techniques operate with a current approximation for the solution, and 

recursive formulae are applied to close in on the solution.  More iterations generally give 

more accurate results, though this is not always the case (see section 5.4.3 on 

convergence). 

In the case of structural analysis, the equations relate displacements (the xi’s) and forces 

(the yi’s).  By definition, 

  (5.17) 

The Jacobian for the system is simply the stiffness matrix.   

i
ij

j

F
S

D




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The actual approach used in the model to solve nonlinear problems is a straight-up 

Newton-Rapshon technique.  See the procedures in section 5.6 for how this is 

implemented.  A modified NR approach is often not effective because of the large 

changes in the stiffness that result from cracking.  Incremental techniques are not suitable 

because of their propensity to accumulate error. 

5.4.2 Residual Forces 

At the end of each iteration, there is a difference between the force at the current 

displacement and the desired full force level.  This difference represents a force which is 

out of balance and should be applied on the structure in the next iteration. 

This “residual” force results because the displacements at the ends of the member are not 

compatible with the strains at all of the sections.  This will occur if cracking takes place.  

The goal, then, is to calculate the displacement which would occur at the end of the 

member if the O1 end were free, and compare it to the actual displacement that occurred 

in the real structure.  The stiffness matrix can be used to convert these out of balance 

displacements into residual forces.  It is at this juncture that the stiffness matrix is 

(optionally) recalculated, taking into account the change in section stiffness due to 

cracking.  The procedure for calculating the residual forces for a member is as follows 

(Ghali, Favre, and El-Badry, 2011): 

1. Calculate the total mean strain at each section from the stresses.  Take cracking 

into account.  Apply equation (3.34), where 1 and 2 are the total cumulative 

strain ignoring and considering cracking, respectively. 
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2. Integrate the strains to find the corresponding O1 displacement {D}s.  This is a 

6x1 vector: 
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
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 (5.18) 

3. The residual displacement can be found using the following equation: 

       error s
D H D D   (5.19) 

{D}error is a 6x1 vector representing the out-of-balance displacement at O1, and 

{D} is a 12x1 vector representing the displacements at the O1 and O2 ends in the 

real structure.   

4. Regenerate the stiffness matrix, using the new section properties calculated in step 

1.  Note that this is an optional step; it is possible, if using the modified Newton-

Raphson method, to use the same stiffness throughout the calculations. 

5. The residual forces can be calculated using 

     11{ }
T

r error
F H S D  (5.20) 

Since the change in cross-section geometry due to time-dependent effects is neglected in 

the analysis, no iteration is necessary in that section of the analysis.   
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5.4.3 Convergence 

The conditions at which the analysis is deemed complete for the current timestep are 

essential to the model.  It is sufficient to stop iteration when the magnitude of the residual 

force drops below some fraction of the originally applied force vector: 

  (5.21) 

Some analysis will have zero applied force but nonzero reactions (prescribed 

displacements, for example).  In these cases, the reactions can be used as a convergence 

benchmark: 

          1/ 2 1/ 2T T

i i
F F R R    (5.22) 

Notice that the units of {F} are not consistent through the vector.  The first through the 

third have units of force, while the fourth through sixth have units of force-length.  This 

leads to distortion of the convergence calculation.  To avoid this problem, the fourth 

through sixth elements of the force vector should be divided by some arbitrary length.  

Ghali, Favre, and El-Badry (2011) suggest the longest dimension of the frame.  This 

approach is adopted here. 

As discussed in section 3.10, adopting the “smooth cracking” approach greatly improves 

the convergence of the model.  However, there are still problems where the 

resdistribution of forces from the change in stiffness causes sections to crack.  When the 

stiffness is calculated again using the new properties and the residual forces are applied, 

         1/ 2 1/ 2

0 0

T T

i i
F F F F  
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the force on these sections decreases and cracking no longer occurs.  It is possible to 

reach a lockstep where the iterations continue and convergence is not achieved.  A 

numerical example of this is investigated in section 6.1.3. 

In these cases, a simple approach to break the lock is to only apply a portion of the 

residual force for one iteration: 

     11{ }
T

r error
F H S D  (5.23) 

If the problem is oscillating symmetrically about the solution, using = 0.5 is an 

acceptable strategy that typically results in convergence.  Generally speaking however, 

using the smooth line on Figure 3.6 provides better results. 

It should be carefully noted that in large structures convergence may be reached for the 

structure though an individual element may still have considerable residual force.  For 

this reason it is prudent to carry forward any remaining residual force to the next 

iteration.  This approach allows for slightly higher error tolerance.  It also picks up any 

difference in cracking caused by time dependent effects. 

5.5 Algorithm 

The algorithm for analysis is summarized below: 

5.5.1 Instantaneous Effects 

1. Generate member stiffnesses 

a. Generate [f11] with O1 end free and invert to get [S11] 
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b. [S*] = [H]T[S11][H] 

2. Generate loads from prestressing added at this time 

3. Generate fixed end forces 

a. Apply loads on member with O1 end free 

i. Calculate force at each section 

ii. Calculate strain at each section 

iii. Integrate strains to get displacement {D*
s} at O1 

b. {Ar}O1 = -[S11]{D*
s} 

c. {Fs} = static effect of load at O2 

d. {Ar}O2 = [R]{Ar}O1 – {Fs} 

4. Assemble stiffness matrix 

5. Account for boundary conditions 

6. Assemble fixed end forces 

7. Solve system [S]{D}=-{F} 

8. Solve actions in each member {A}={Ar}+[S*]{D*} 

9. Update {D} and {A} 

10. Find internal forces at each section from {A} 

a. Calculate stresses 

11. Calculate strain at each section 

a. Check for cracking and update properties accordingly 

12. Integrate strains to get free end displacement {D*
s} 

13. Calculate displacement error {D*}err = [H]{D*}-{D*
s} 

14. Recalculate stiffness based on new strains 

15. Calculate residual force {A}res = [H]T[S11]{D*}err 
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16. Assemble {A}res to get {F}res 

17. Check for convergence ({F}T{F})1/2 < α({F0}
T{F0}), stop or goto 4 

 

5.5.2 Time-Dependent Analysis 

1. Generate member stiffnesses 

2. Generate distributed loads from prestress loss 

3. Generate fixed-end forces 

a. Calculate internal force at every section with O1 end free 

b. Calculate free strain at each section and integrate to get {D*
s} at O1 

a. {Ar}O1 = -[ 11S ]{D*
s} 

b. {Fs} = static effect of load at O2 

c. {Ar}O2 = [R]{Ar}O1 – {Fs} 

4. Assemble stiffness matrix 

5. Account for boundary conditions 

6. Assemble fixed end forces 

7. Solve system [S]{D}=-{F} 

8. Solve actions in each member {A}={Ar}+[S*]{D*} 

9. Update {D} and {A} 

10. Find internal forces at each section from {A} 

d. Calculate stresses 

11. Calculate strain at each section, and subtract free strain 

c. Calculate stresses 
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5.6 Numerical Procedure and Computer Program 

With all of the pieces in place, the framework for a computer program can be presented.  

The flowchart for the developed model is shown in Figure 5.4.  The member loops for 

stiffness and fixed end force generation are Loop A and C.  The member loop for the 

calculation of stress and strain at each section are Loop B.  Flowcharts for each loop are 

shown in Figure 5.5. 
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Figure 5.4: Program Flowchart  



 135

Figure 5.5: Program Flowchart for Loops 

 

MEMBER LOOP A
For each member

Calculate Fixed-End Forces
Find internal force at each section from loads (O1 end free)
Integrate to get free end displacement
Multiply by [S]i to get {ΔF}i

Record {Ar}i

Generate Stiffness Matrix
Apply unit loads at O1 end
Find internal forces and strains
Integrate to get displacements and [f]6x6

Invert [f]6x6 to get [S]6x6

Use equilibrium to get [S]12x12

End member loop A

MEMBER LOOP B
For each member

Calculate New Forces
Find new Member End Forces {ΔA}i

Find internal force at each section
Find stresses

Cracked sections?

Calculate Mean Strain
Find interpolation coefficient, 
Find decompression forces and strain
Iterate to find cracked section geometry
Find strain in cracked state

m = (1- ) 1 + 2

Calculate Residual Forces
Integrate new strains to find actual 
displacements
Regenerate stiffness matrix (optional)
Calculate residual displacement
Multiply by [S] to find {F}res

End member loop B

Currently in TD 
Analysis?

Yes

No

Yes

MEMBER LOOP C
For each member

Generate Age-Adjusted Stiffness Matrix
Same procedure as [S], but using age-
adjusted properties

Calculate TD Fixed-End Forces
Calculate free strain at each section
Integrate to get end displacement
Multiply by [S] to get {F}
Record {Ar}

End member loop C

No
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5.7 Program Input and Output 

To demonstrate the simplicity of the model, a summary of the required inputs is included 

below.  Additionally, a summary of the output is provided. 

5.7.1 Input Data Requirements 

The required input data for the program is summarized below. 

1. PROGRAM DEFINITIONS 

 Number of intervals for analysis 

 Tolerance for convergence during non-linear analysis 

 Maximum number of iterations during non-linear analysis 

 Interpolation coefficient  

 Flag to use “smooth” cracking (fct) 

 Flag to print the stress at every point in the cross section or only min/max 

 Direction vector for self weight calculations 

 Flag to calculate properties using code equations or to use provided values 

 If code equations are used: 
o Time in days of each timestep 
o Relative humidity 

2. MATERIAL PROPERTIES 

 Concrete properties, one set for each type being used 
o Timestep of introduction 

o Poisson’s ratio,  

o Unit density for self-weight calculations 
o For code calculation: 

 Age at first loading (in days) 
 Characteristic strength (in MPa) 
 Notional thickness (in mm) 

o For user-defined values: 

 E, fct, xi, cs, and  for each timestep or interval 

 Non-prestressed steel properties 
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o Ens 

 Prestressed steel properties 
o Time of introduction 
o Eps 

o , k, d 

o For code calculation: 
 Total intrinsic loss 

o For user-defined values: 
 Reduced relaxation in each interval 

3. SECTION DATA 

 For each section, number of concrete parts, and for each concrete part: 
o Material type from material data 
o List of points (y,z) defining cross section geometry 

o y, z, reduction factors for shear area 

o (ys, zs), location of shear center 
o J, torsion constant 

 For each section, number of steel parts, and for each steel part: 
o Material type from material data 
o Flag for whether bar or not 
o For bars: 

 (yns, zns), specific location 
 Ans, area of steel 

o For “smeared” or ratio reinforcement: 
 Concrete part for reference 

 ns, reinforcing ratio (Ans/Ac) 

4. STRUCTURAL GEOMETRY 

 Number of nodes, and for each node: 
o Number for reference 
o (x, y, z), location in space of the node 

5. MEMBER DATA 

 Number of members, and for each member: 
o Member number for reference 
o Number of sections 
o For each section: 
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 , parameter value at section 

 Node number for section from structural geometry 
 Value of phi angle for section orientation 
 Section number from section data 

6. TENDON DATA 

 Number of tendons, and for each tendon: 
o Number for reference 
o Material from material data 
o Aps, Aduct  
o Timestep of bonding 
o Number of members tendon passes through 
o List of members tendon passes through 
o Type of parametric curve to use (spline or Lagrange) 
o Number of control points on tendon, and for each point: 

 , parametric variable 

 (yps, zps) location of tendon at that point 
o Number of jacking timesteps, and for each timestep: 

 Time of jacking 
 Jacking force 
 Whether jacked from O1, O2, or both ends 

7. LOADING DATA 

 For each timestep, number of loads, and for each load: 
o Type, whether nodal, point load, or varying distributed load 
o For nodal loads: 

 Node number 
 6 element vector for load 

o For member point loads: 
 Member number 

 , parametric variable where load acts 

 6 element vector for load 
o For distributed loads: 

 Member number 
 Direction of applied load 

 Constant value, or list of  points with value at each 
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8. BOUNDARY CONDITIONS 

 Number of fixed supports, and for each support: 
o Starting timestep 
o Ending timestep, or -1 for permanent support 
o Node number 
o 6 sets of values, either 1 for free, or 0 and another number for prescribed 

displacement 

 Number of skewed supports, and for each skew: 
o Starting timestep 
o Ending timestep, or -1 for permanent support 
o Node number 
o Slave degree of freedom (1-6) 

o , ratio of slave to master displacement, and master degree of freedom 

o , ratio of slave to master displacement, and master degree of freedom 

 

5.7.2 Summary of Program Output 

The following information is produced in two formats: first, a narrative showing salient 

values for each timestep, and second, a tabular format with the changes in and cumulative 

values at the end of each timestep. 

1. Nodal displacements for each connected node  

2. Reaction forces at each supported node  

3. Member end forces for each member  

4. Internal forces at each section in each member 

5. Strains at each section in each member, for cracked, uncracked, and mean 
state 

6. Displacements at each section in each member 

7. Stress at each point in each concrete section part 
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8. Stress in each bar of non-prestressed steel, or stress vector for smeared 
reinforcing 

9. Stress in each prestressing tendon 

 

5.8 Summary 

This chapter has summarized the analysis required at the aggregated structure level.  It 

includes considerations for segmental construction and non-linear analysis techniques.  

Together with the material in the previous chapters, it completes the formulation for a 

method for serviceability analysis of instantaneous and time dependent effects in concrete 

structures.  The next chapter includes a comparison to problems solved with other 

techniques, and some demonstration of the model’s capability. 
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Chapter Six: VERIFICATION AND DEMONSTRATION EXAMPLES 

This chapter contains several numerical problems.  The first section is concerned with the 

verification of element behaviour, and there is quantified discussion about the quality of 

the modeling.  The latter half of the chapter contains a demonstration of the capabilities 

of the model. 

Any new model must be verified before it can be used on full-scale problems.  This 

chapter contains examples for which either simple closed-form solutions or computer 

analysis is available to verify that the model works as it should.  It is also important to 

test problems which the model is known to solve to ensure that the computer 

programming is sound. 

Once the verification is complete, the program is used to demonstrate capabilities on a 

complex multi-stage real world structure under real design code requirements. 

6.1 Verification Examples 

6.1.1 Curved Cantilever 

Maher (1985) developed a method to minimize the internal forces in a structure by 

optimizing the prestressing.  To demonstrate the method, he presented the following 

bridge:   
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a) plan 

 

b) elevation 

 

c) cross-section 

Figure 6.1: Maher’s Curved Cantilever 

 

Due to symmetry, only one span requires analysis. 

The bridge is subjected to its self weight (1.967 kN/m) and prestressing (P = 1.0 MN).  

The torsional stiffness ratio, EI/GJ = 1.595.  Anchor set and friction losses are neglected.  

R = 130 m  = 21.77º

400 mm600 mm
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Maher used two elements each with 6 nodes.  For verification, a single 11 node element 

is used here. 

Maher analysed the prestressing and dead load cases separately and compared the results 

to commercially available software.  The same presentation is used here.  The bending 

and twisting moment diagrams are shown in Figure 6.2.  Numeric results are presented 

for the midspan and support locations in Table 6.1. 

Table 6.1: Internal Forces for Verification Example 1 

 Dead Load Only 
 Bending (My*, kNm) Torsion (Mx*, kNm) 
 Ford Maher Ford Maher 

Support A (=0) -608.1 -610.4 0.94 1.00 

Midspan (=0.5) 297.3 298.4 -9.67 -9.73 

Support B (=1.0) 0.0 0.0 37.66 37.80 

 
 Prestressing Only 
 Bending (My*, kNm) Torsion (Mx*, kNm) 
 Ford Maher Ford Maher 

Support A (=0) 597.1 597.2 -25.32 -25.36 

Midspan (=0.5) -299.2 -299.2 3.14 3.14 

Support B (=1.0) 0.0 0.0 12.75 12.74 

 
 Combined (DL+PS) 
 Bending (My*, kNm) Torsion (Mx*, kNm) 
 Ford Maher Ford Maher 

Support A (=0) -10.95 -13.25 -24.38 -24.36 

Midspan (=0.5) -1.88 -0.81 -6.52 -6.59 

Support B (=1.0) 0.0 0.0 50.40 50.54 

 



 144

 

a) Bending (My*) 

 

b) Torsion (Mx*) 

Figure 6.2: Internal Force Diagrams for Verification Example 1 
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The combined results are also presented to demonstrate a fundamental catch-22 in curved 

prestress design: while the bending moments from prestressing counteract the dead load 

moments, the torsion is magnified in some parts of the beam.  The combined internal 

force diagrams are shown in Figure 6.3. 
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a) Bending (My*) – all moments in kNm 

 

b) Torsion (Mx*) – all moments in kNm 

Figure 6.3: Combined Moment Diagrams for Verification Example 1 
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The above example shows that despite excellent correlation for the individual load cases 

(well under 1% difference), the superposition of the forces results in a nearly 20% 

difference in the bending moment at the support.  While this may initially seem like a 

large difference, the normal force on the section will reduce the difference in axial 

stresses.  In fact, Maher’s larger bending moment gives 5.49MPa, while the result from 

this formulation is 5.45MPa (a difference of less than 1%). 

El-Badry (2008) presented closed form solutions for curved structures, beginning with 

the Maher bridge as a cantilever fixed at end B and free at end C.  Closed form equations 

for the displacements at C under the effect of dead load only are presented.  They are 

tabulated in Table 6.2 against the results from the model analysis. 

Table 6.2: Displacements for Verification Example 1 

 Closed Form Closed Form Ford Error 

Dz (mm) 
4

0.00274
qr

EI
  -293 -291 0.7% 

x*(103 rad) 
3

0.00129
qr

EI
  -1.06 -1.05 0.8% 

y*(103 rad) 
3

0.00944
qr

EI
  -7.78 -7.74 0.5% 

 

The analysis is extended to consider the effect of fixing support C at some later time t1 

and calculating the effects between t1 and some later time t2.   
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El-Badry (2005) shows that for a curved cantilever of with radius r and included angle  

with both ends fixed and loaded with a uniform load q, the internal forces at any angle  
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where {F} is the force that would have developed if end C were totally fixed when the 

load was applied.  A comparison between the forces at C between t1 and t2 is presented in 

below.  
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Table 6.3: Time Dependent Effects for Verification Example 1 

 Closed Form Ford Error 

Qz (kN) 143 143 0.0% 

x* (MNm) -1.20 -1.20 0.0% 

x* (kNm) -1.44 -1.45 0.6% 

 

The results are excellent and demonstrate that for typical elements, the model behaves 

exactly as it should (even with a limited number of nodes). 

6.1.2 Semicircular Beam 

Hassoun and Al-Manaseer (2008) included a section on the design of beams curved in 

plan.  The formulation begins with a semicircular beam fixed at each end under the effect 

of self weight, and includes an additional analysis where a one-way slab spans between 

the beam and another support connecting the fixed ends.  Figure 6.4 shows the 

configuration. 



 150

 

a) Case 1: self weight only 

 

b) Case 2: slab weight only (one-way action) 

Figure 6.4: Semicircular Beam Fixed at Both Ends 

 

For this comparison, a single member was used with 9 nodes.  The authors presented 

closed form equations for the bending moment and torsion at any section. 

Under self weight:  
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Under a distributed area load: 
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A dimensionless comparison between these closed form equations and the numerical 

results from the model run are indicated below: 

Table 6.4: Comparison to Closed Form Equations 

 
Case 1 

Self-weight (w kN/m) 
Case 2 

Slab load (w kN/m2) 

 
Bending  

(M/wr2 x1000) 
Torsion  

(T/wr2 x1000) 
Bending  

(M/wr3 x1000) 
Torsion 

 (T/wr3 x1000) 
s/L CF Ford CF Ford CF Ford CF Ford 

0 -1000 -1000 298 299 -333 -333 110 110 

0.25 -100 -100 -115 -115 -50 -50 -45 -45 

0.5 273 273 0 0 116 116 0 0 

0.75 -100 -100 115 115 -50 -50 45 45 

1 -1000 -1000 -298 -299 -333 -333 -110 -110 

 

The correlation between the results is exceptional for both cases.  Bending and torsion 

moment diagrams for both cases are shown below. 
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a) Bending Moment Diagram 

b) Torsion Moment Diagram 

Figure 6.5: Internal Forces for Semicircular Beam Under Self Weight 
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a) Bending Moment Diagram 

b) Torsion Moment Diagram 

Figure 6.6: Internal Forces for Semicircular Beam Under Slab Weight 
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a) profile 

 

b) section 

Figure 6.7: Ghali’s Propped Cantilever 

 

To ensure adequate coverage during cracking, 2 members with 6 points each are used.  

The results of an elastic analysis of the beam are shown in Figure 6.8.  The elastic 

rotation at end A is 0.938 x 10-3 rad and the midspan displacement is 3.28 mm. 
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Figure 6.8: Elastic Analysis of Propped Cantilever 

 

As indicated in the figure, the load causes cracking at both the midspan of the beam and 

at the support B.  For the given cross section and properties, It = 9.595 x 109 mm4 and Mcr 

= 68.5 kNm.  The table below shows the moment distribution in the beam and the 

relationship to Mcr.   
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Table 6.5: Results from 1st Iteration 

Section 1 2 3 4 5 6 7 8 9 10 11 

= x/L 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

M (kNm) 0 22.5 45 67.5 90 112.5 63 13.5 -36 -85.5 -135 

cb (MPa) 0 0.82 1.64 2.46 3.28 4.10 2.30 0.49 -1.31 -3.12 -4.92

 0.000 0.000 0.000 0.485 0.710 0.814 0.408 0.000 0.000 0.679 0.871

yt (mm) -350.0 -350.0 -350.0 -350.0 -350.0 -350.0 -350.0 -350.0 -350.0 196.4 196.4

yb (mm) 350.0 350.0 350.0 -196.4 -196.4 -196.4 -196.4 350.0 350.0 350.0 350.0

01 () 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1 
(/mm) 

0.00 0.08 0.16 0.23 0.31 0.39 0.22 0.05 -0.13 -0.30 -0.47

02 () 0.0 0.0 0.0 230.4 307.2 384.0 215.0 0.0 0.0 291.8 460.8

2 
(/mm) 

0.00 0.08 0.16 1.10 1.46 1.83 1.02 0.05 -0.13 -1.39 -2.19

0m () 0.0 0.0 0.0 111.6 218.1 312.7 87.8 0.0 0.0 198.1 401.4

m 
(/mm) 

0.00 0.08 0.16 0.65 1.13 1.56 0.55 0.05 -0.13 -1.04 -1.97

 

Note that cracking has occurred in sections 4 through 7 and 10 and 11 as shaded above.  

Notice that the interpolation coefficient, , is being carried for sections 4 and 7 even 

though it is less than 0.5.  This ensures smooth convergence.  However, for the purposes 

of comparison, the integrations below are carried out ignoring cracking at sections 4 and 

7.  The mean strains are integrated and the residual displacement is calculated: 
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Ford Ghali et al. (2011) 
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where the displacements are in mm and the rotation is in 10-3 rad.  The stiffness is 

recalculated and the residual forces to be applied in the next iteration are 

Ford Ghali et al. (2011) 
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where forces are in kN and moments are in kNm.  This process is repeated until the final 

result is achieved and (5.21) is satisfied, which requires roughly 20 iterations.  The final 

value of the moment at B is 131.4 kNm, which is within 3% of the 126.3 kNm that Ghali 

et al. (2011) provide.  The final rotation at A is 2.686 x 10-3 rad, and the final 

displacement at midspan is 11.0 mm.  Slight differences in the results can be attributed to 

a slightly different numeric integration algorithm (Simpson’s rule vs. a “trapezoid 

product” rule). 

As discussed in section 3.10, this problem demonstrates convergence problems unless the 

cracking limit is taken as ctf .  Figure 6.9 shows a comparison of the two methods. 
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Figure 6.9: Convergence Comparison 
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average of the oscillations is 131.3 kNm, which is close to the solution.  Ghali et al. 

(2011) provide 126.3 kNm. 
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support where additional steel is added at the top.  The problem is illustrated in Figure 

6.10. 

 

a) profile 

 

b) section 

Figure 6.10: Prestressed Continuous Beam 

 

The following properties are used in the analysis: 

25 m

CA B

6.25 m

368 mm 850 mm 150 mm
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Aps = 1900 mm2

Aduct = 5700 mm2

Aps = 2600 mm2
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O (368 mm below)

2000 mm
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cover to non-prestressed steel = 75 mm
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Ec = 30 MPa 

fct = 2.5 MPa 

Ens, Eps = 200 GPa 

qDL = 18 kN/m 

Pi = 2.2 MN 

 

The given prestress value includes the effect of time-dependent losses.  The given dead 

load includes the self-weight of the beam. 

For this analysis, Ghali used 22 sections, with the section at 0.75L duplicated because of 

the reinforcing change.  For this model, two members with 9 and 10 sections respectively 

were used (again, with an extra section in the second member because of the step change 

in the reinforcing).  To keep the results comparable, cracking was ignored until fct rather 

than using the smooth cracking limit.  In this case, convergence was achieved without 

this modification, but at a few values of q/qcr convergence issues manifested. 

Table 6.6 shows a comparison of the results of analysis of Ghali et al. (2011) with those 

from the developed model. 
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Table 6.6: Results for Prestressed Beam of Ghali et al. (2011) 

 Ghali Ford 

DzC, DL+PS (mm) 1.10 1.35 

qcr (kN/m) 13.4 13.3 

DzC,cr (mm) 12.80 12.83 

DzC/DzC,cr at 1.5qcr 2.02 2.10 

DzC/DzC,cr at 2.0qcr 3.52 3.53 

 

Figure 6.11: Comparison of Deflections 

 

The results correlate extremely well, as shown in the figure.  It is evident that as the load 

increases, so does the extent of cracking, which leads to a reduction in stiffness.  To 

illustrate this effect, Table 6.7 below shows the value of the interpolation coefficient at 
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each section for increasing values of load.  For this purpose, the cracking was assumed to 

start as soon as 0.5fct was exceeded.  The load at which this stress is exceeded is reached 

at q = 11.2 kN/m, or 84.2% of the load that causes fct. 

Table 6.7: Interpolation Coefficient vs. Live Load 

  = x / L 

q/qr 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 

0 0 0 0 0 0 0 0 0 0 

0.842 0 0 0 0 0 0 0 0 0 

1 0 0 0 0.305 0.278 0 0 0 0.498 

1.2 0 0 0 0.642 0.623 0 0 0 0.757 

1.4 0 0 0.460 0.787 0.777 0 0 0 0.852 

1.6 0 0 0.672 0.858 0.851 0 0 0 0.902 

1.8 0 0 0.779 0.898 0.893 0 0 0 0.930 

2 0 0 0.841 0.924 0.919 0.273 0 0.285 0.948 

 

Note that cracking starts at the support and proceeds into the midspan of the beam.  The 

stiffness reduces further as more sections start to crack. 

6.1.5 Prestressed Continuous Beam- Time Dependent Effects 

El-Badry and Ghali (1990) analysed a similar beam in the demonstration section of the 

manual for Cracked Plane Frames in Concrete (CPF), a program developed to implement 

the formulation shown in El-Badry (1988).  The example included time dependent effects 

and live load causing cracking.   
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The reference point is 400 mm from the top fibre, and the prestressing tendon is on the 

reference point at A again (32 mm lower than in the previous example).  The deck is only 

100 mm thick as opposed to 150 mm.  The additional nonprestressed steel only extends 

5.0 m into the beam instead of 6.25 m. 

The properties follow: 

At t0 From t0 to t At t 

Ec = 25 MPa  = 3.0 Ec = 30 MPa 

fct = 2.5 MPa  = 0.8 fct = 2.5 MPa 

Ens, Eps = 200 GPa cs = -300  qLL = 16 kN/m 

qDL = 14 kN/m pr = -90 MPa   

Pi = 2.9 MN     

 

An elastic analysis is completed for all three stages; the cumulative results are shown in 

Figure 6.12.  The cumulative displacement at the centre of the beam in mm is 5.95 

upwards, 4.35 upwards, and 8.97 downwards for after t0, just before t, and after t 

respectively.  Time dependent effects cause a downward displacement of 1.6 mm, and 

live load would cause 13.3 mm displacement if cracking did not occur. 
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a) Bending Moment Diagram 

 

b) Stress Envelope 

Figure 6.12: Bending Moment and Stresses for Elastic Uncracked Analysis 
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As the figure shows, the tensile stress limit is exceeded at the support and at midspan.  

Cracking occurs.  Convergence is reached in 3 additional iterations. 

Comparisons of results from cracked and uncracked analysis are shown below. 

 

 

As the results in the table indicate, cracking at B forces redistribution of a 27.4 kNm 

bending moment.  The deflection at B increases by 11%.  This effect would be even more 

pronounced if the middle sections of the beam started to crack.  As shown in Figure 

6.12b, the maximum tensile stress near (but not at) midspan is 2.10 MPa before cracking 

occurs.  This increases to 2.29 MPa with the additional redistributed moment, which is 

still not enough to cause cracking there.  Cracking is limited to the support, where  = 

0.705. 

Table 6.9 shows a comparison to the results of CPF. 

Table 6.8: Effect of Cracking 

 Uncracked Cracked 

DzB (mm) 8.97 9.97 

At B (Support) 

M (kNm) -859.0 -804.2 

ct (MPa) 3.54 0.0 

cb (MPa) -10.8 -13.1 

At C (Midspan) 

M (kNm) 348.0 375.4 

ct (MPa) -5.63 -5.78 

cb (MPa) 1.63 1.85 
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Table 6.9: Comparison to CPF Results 

 Ford El-Badry % 

DC(t0) (mm) 5.95 5.86 1.5 

DC(t,t0) (mm) -1.60 -1.54 3.9 

DC(t) (mm) -14.3 -13.7 4.3 

Final values at B (Support) 

M (kNm) -804.2 -776.6 3.6 

ct (MPa) 0.0 0.0 - 

cb (MPa) -13.1 -13.4 2.3 

 0.705 0.719 2.0 

Final values at C (Midspan) 

M (kNm) 375.4 288.0 30.3 

ct (MPa) -5.78 -5.72 1.0 

cb (MPa) 1.85 1.78 3.9 

 

The correlation is fairly good – except for the final value of the moment at the midspan, 

where CPF’s result is 30% less despite good correlation in stress result.  Furthermore, the 

moments at the support should be larger in CPF as the stress shows.   

A simple way to check the moments is to consider the net distributed load that should be 

satisfied.  Recall that the equivalent uniformly distributed load that results from the 

application of prestressing is 
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2

8
eff

Pc
q

L
   (6.7) 

The 90 MPa prestress loss over the 1900 mm2 tendon results in a 171 kN drop in force, 

for a net prestressing force of 2729 kN.  The equivalent load for the net prestressing, 

using c = 0.575 m, is 20.1 kN/m applied in an upward direction.  Balancing against the 

total 30 kN/m load applied on the beam yields a net distributed load of 9.91 kN/m. 

Since the beam must satisfy equilibrium, the difference between the midspan moment 

and half of the support moment should be equal to qL2/8, or 774.6 kNm.  For the 

developed model’s result, (-804.2)/2 – (375.4) = 777.5 kNm, which is very close.  Some 

difference is expected here because the developed model takes into account the angle the 

prestress acts at.  For the CPF reported result, (-776.6)/2 – (288.0) = 676.3 kNm.  This 

moment difference represents an effective load of 8.66 kN/m, or exactly the value that 

would occur if the 90 MPa tendon loss was not included. 

If the moments reported by CPF are adjusted for prestress loss by adding P times e, the 

following results are obtained. 

Table 6.10: Results Corrected for Prestress Loss 

Ford El-Badry % 

Moment at Support -804.2 -819.4 1.9 

Moment at Midspan 375.4 365.0 2.8 
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Not only do these values make more sense, but the fact that the error difference is very 

close to that reported for the stress difference shows that this is simply a reporting issue.   

6.2 Demonstration Examples 

The following examples are shown to demonstrate the capabilities of the model.  First, a 

fictitious bridge is presented and compared with similar analysis; second, a real bridge in 

Calgary, Alberta is examined. 

6.2.1 Complex Curved Bridge 

Van Zyl (1979) developed software to analyse prestressed curved concrete bridges built 

in stages.  He presented a fictitious bridge which was later analysed by Debaiky (1997) 

using Jirousek elements.  The bridge is shown below. 
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a) Plan 

 

b) Profile w/ Member and Node Numbers 

Figure 6.13: Van Zyl’s Bridge 

 

The bridge is made of three spans and 17 segments (not to be confused with members).  

The first span is 140’ (42 m) long and straight, while the second and third spans are 240’ 

(72 m) and 180’ (54 m) on a 500’ (150 m) radius.  The width of the bridge varies linearly 
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over its entire length, while the depth varies throughout.  The cross section information 

and variation across the bridge is shown in the figure below.  The horizontal dimensions 

vary linearly along the bridge while the vertical ones vary to make up the total height 

shown in Figure 6.13. 

Figure 6.14: Cross Sectional Geometry 

 

Van Zyl’s bridge includes temporary supports and removal of prestressing tendons.  

While Debaiky (1997) used concrete piers at nodes 6 and 15, Van Zyl’s actual analysis 

included totally fixed supports at these locations.  The input data for the analysis are 

shown in the table below. 
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Table 6.11: Input Data for Van Zyl Analysis 

# of members 20 

Nodes per member 3 

Self weight of concrete,  25.1 kN/m3 

Code for calculation CEB-FIP (MC90) 

Relative humidity, RH 40% 

Characteristic strength, fck 27.6 MPa 

Poisson’s ratio,  0.18 

Prestressing modulus, Eps  190 MPa 

Wobble coefficient, k  .000656/m 

Friction coefficient,   0.2/rad 

 

Note that both Van Zyl (1979) and Debaiky (1997) ignored the effect of prestress 

relaxation, while friction loss is included in the analysis.  Van Zyl (1979) included the 

effect of variable relative humidity and temperature; the relative humidity was increased 

to 60% at day 100 in the analysis.  He also included the effect of seasons in the 

construction, varying the temperature between 20°C and 40°C.  To simplify the analysis, 

this variance was ignored by Debaiky (1997).  As neither model incorporates the effect of 

cracking, it is ignored in all three analysis models. 

The erection sequence and loading are shown in the figure below. 
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Figure 6.15: Erection Sequence and Loading 

 

The bridge is erected using the balanced cantilever technique.  In practice, segments 

would be shorter than used here; this is done to simplify the analysis.  The left hand side 

of the bridge (segments 2 through 7) are erected in stages 1-3 first; the right hand side 

(segments 9 through 16) are erected next in stages 4-7.  The bridge is finally completed 

by connecting the right side to the support at node 21 in stage 8 with segment 1, then 

connecting the left side to node 2 in stage 9 with segment 17.  Segment 8 is cast in stage 

9, which makes the bridge continuous.  The left side of the bridge is rotated to match the 

vertical displacements of nodes 10 and 11 before the closure span is cast.  The required 

rotation is calculated by separate analysis. 
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A construction load of 10 kip (44.5 kN) is added to the left end of the right side (node 11) 

in stage 6; it is removed in stage 7.  A temporary support is added at node 19 in stage 7 

and removed in stage 8.  A superimposed dead load of 7.2 kN/m2 (0.15 psf) is added to 

the five centre segments (6 though 10) in stage 10. 

The properties of the concrete members are shown in Table 6.12. 
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Table 6.12: Segment Casting History 

Segment Members Cast in Stage
Age at 

Introduction (d)

Self Weight (kN/m)

Start End 

1 101 9 91 81.0 86.0 

2 102 3 35 90.3 95.4 

3 103, 104 2 25 99.9 108.2 

4 105, 201 1 15 117.5 116.8 

5 202 2 15 107.2 103.6 

6 203 2 15 100.3 96.6 

7 204 3 15 91.7 84.1 

8 205 9 61 84.1 85.8 

9 206 6 25 85.8 87.6 

10 207 5 15 93.0 101.7 

11 208 5 15 105.3 114.1 

12 209, 301 4 5 125.2 134.0 

13 302 5 5 122.6 122.3 

14 303 5 5 118.5 118.1 

15 304 6 5 114.3 113.5 

16 305 7 10 109.5 108.6 

17 306 8 10 104.5 103.6 
 

The bridge contains 16 prestressing tendons.  Their geometry and construction sequence 

are shown in Figure 6.16 and Table 6.13. 
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Figure 6.16: Prestressing Tendon Geometry 

 

Table 6.13: Prestressing Geometry Data 

Tendon 
Stage 
Added 

Aps (mm2) Pi (MN) 
zps

* (mm) 
c1 (mm) c2 (mm) 

Inflection 
nodes 

Start End 

1, 2 9 1395 1.34 1076 1119 -698 - - 

3, 4 8 2787 3.11 1076 1119 -960 - - 

5, 6 7* 2787 3.11 1192 1094 768 - - 

7, 8 9 2787 2.67 1192 1094 -314 - - 

9, 10 2 9290 11.1 1158 1094 216 91 5, 7 

11, 12 5 11148 13.4 1158 1094 104 223 14, 16 

13, 14 3 3716 4.45 872 875 183 91 3, 9 

15,16 6 4645 5.56 872 875 91 198 12, 18 
*Tendons 5 and 6 are removed at stage 8. 

Tendons 9 through 16 are located 150 mm below the deck between their inflection points. 

1, 2 13, 14 9, 10 7, 8

7, 8

15, 16 11, 12

3, 4

5, 6
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A summary of the construction sequence is shown in Table 6.14. 

Table 6.14: Construction Sequence Summary 

Stage Time (d) 
Segments 

Added 
Tendons 
Stressed 

Loads 
Boundary 
Conditions 

1 30 4   N6 fixed 

2 35 3,5,6 9,10   

3 40 2,7 13,14   

4 50 12   N15 fixed 

5 55 10,11,13,14 11,12   

6 60 9,15 15,16 44.5 kN at N11  

7 70 16 5,6 -44.5 kN at N11 Vert at N19 

8 75 17 3,4 

 

N21 skew 
.0017 rad at N6
Remove N19 

9 91 1,8 1,2,7,8  N1 skew 

10 150   7.2 kPa on [6,10]  
 

The results from the analysis are compared with both the work of Debaiky (1997) and 

Van Zyl (1979) below.  It is important to note, however, that Debaiky (1997) was not 

able to obtain good correlation with the results of Van Zyl (1979).  Van Zyl (1979) also 

analysed the structure using commercial software (SAP) and did not obtain a good match.  

Still, given the curved nature of the problem, the staged construction, the variety of 

prestressing and the varying cross sectional properties, the analysis is worthwhile. 

The displacements of the bridge are shown below just before closure and after t = 1000 

days. 
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a) Just Prior to Closure (t = 91d, just before Stage 9) 

 

b) at 1000 days 

Figure 6.17: Displacements for Van Zyl’s Bridge 
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Debaiky (1997) noted that the 0.0017 radian rotation Van Zyl (1979) required to align 

nodes 10 and 11 was smaller than actually required.  As the figure shows, Debaiky 

(1997) still had a discrepancy of approximately 100 mm, which would require an 

additional 0.0033 radians to correct.  The projected distance from node 6 to node 10 is 

30.2 m. 

In the current analysis, the calculations were completed up to stage 8 to determine this 

requirement.  This yielded a displacement of -14 mm at N10 and 36 mm at N11 for a 

difference of 50 mm.  The required rotation at node 6 would be 1.69 mrad for alignment, 

which complies with the result of Van Zyl (1979).  The result of Debaiky (1997) may be 

higher because of the relative flexibility of the left pier in his analysis.   

The final deflected shape of the structure at 1000 d is shown in Figure 6.17b for all three 

results.  There is substantial variance between Van Zyl (1979) and Debaiky (1997), 

which is not surprising given the difference in boundary conditions.  The curvature of the 

central span means that twist in the member translates to vertical displacement at the tip; 

since the piers in the analysis by Debaiky (1997) have a finite stiffness, they allow some 

rotation.  Since the out-of-plane offset between nodes 6 and 10 is approximately 3 m, 

each thousandth of a radian twist at node 6 corresponds to a 3 mm vertical displacement 

at node 10. 

As the figure shows, the deflected shape from the current analysis is comparable with 

Van Zyl’s result.  Van Zyl’s displacements will be lower because of the higher relative 

humidity and lower creep.  The result of Debaiky (1997) seems higher than a real bridge 
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would undergo, even given the difference in support conditions.  The maximum 

displacement of 125 mm over a 72 m span is approximately L/600, which is reasonable. 

Next the bending moments are compared.  Van Zyl did not present the cumulative 

bending moment diagrams as he was not able to obtain results that supported basic 

statics.  Instead, a comparison with Debaiky (1997) is shown below. 

The bending moments correlate well considering the difference in boundary conditions.  

The midspan moments are nearly a perfect match, but Debaiky (1997) had lower 

moments at the supports. 

One possible source for this error is the datum that the moments are reported on.  Since 

there are large prestressing forces and the primary moments from the prestressing are 

included, the centroidal moments need to be calculated by subtracting the normal force 

times its eccentricity.  The cross section properties in Debaiky (1997) were different than 

those of Van Zyl (1979) and as a result the internal forces from the prestressing could 

vary significantly.  Debaiky (1997) also ignored the temporary tendons 5 and 6, which 

will also result in some discrepancy.  Further investigation is required to determine the 

correct location of the prestressing anchors, as they are not located exactly at the centroid 

of the section. 

Poor correlation was found for the torsion moment diagrams.  Some of this results from 

the change in boundary conditions but in general more investigation is required into the 

twisting behaviour.  The torsional stiffness in the current analysis was calculated using 
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the simplified method discussed in section 3.8.1.  A more accurate approach using 

membrane analogy would be better. 

The shape of the diagram is similar to that shown in Debaiky (1997) but the ordinates are 

substantially lower. 
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a) Bending Moment Diagram 

b) Torsion Moment Diagrams 

Figure 6.18: Bending and Torsion Moment Diagrams for Van Zyl’s Bridge 
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Lastly, Debaiky (1997) calculated the drop in the force of tendon #9 over time.  The 

results were presented for a section 1.2 m to the right of node 8, which is 31.2 m into the 

36 m member length ( = 0.867) and are shown below. 

 

Figure 6.19: Force in Tendon #9 

 

As the figure shows, the prestress loss in Debaiky (1997) is extremely high – especially 

considering that no intrinsic loss is included in the analysis.  The developed model yields 

a total prestress loss over the first 1000 days as approximately 12%, while Debaiky 

(1997) gives 77%.  This value is very high and indicates problems in the analysis.  It is 

reflected in the high midspan displacements of Debaiky (1997), which are likely 

incorrect.  Some of this difference may be due to the Lagrange model used for the 

prestress tendons in Debaiky’s formulation. 

It is important to note that a fundamental assumption in Van Zyl (1979) and Debaiky 
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experiences tensile stresses in the order of 10 MPa before the end of the analysis  (due to 

the excessive prestress loss).  In practice, this would result in redesign of the prestressing 

of the bridge.  The next example includes consideration of cracking from the application 

of live load. 

6.2.2 Bow River Bridge 

The Bow River Bridge was built in the early 1980s in Calgary, Alberta.  It serves as the 

major thoroughfare into the core of the city from the northeast side and is locally known 

as the “4th Avenue Flyover”.   
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a) plan 

 

b) profile 

Figure 6.20: Bow River Bridge 

 

For demonstration purposes, four of the nine spans were chosen for analysis.  Only 

curved spans were selected.  The elevation was flattened.  The simplified structure is 

shown below: 
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a) plan 

 

b) section 

Figure 6.21: Simplified Bow River Bridge Model 

 

The cross section is composed of a box section and cantilevers.  The box is cast and 

prestressed first, then at a later time the cantilevers are cast and prestressed.   
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The bridge has 50 m spans.  The simplified structure chosen for the model has slightly 

different boundary conditions and slightly different prestressing.  The goal of the analysis 

is to demonstrate the effect of progressive cracking from live load.  To best demonstrate 

this, the span length was reduced to 40 m.  The cross section was kept the same and the 

radius of the bridge was reduced by 20%.  Live load is applied after 50 years to allow all 

time dependent effects to take place. 

Non-prestressed steel was modeled as though it were evenly distributed throughout the 

cantilever and box sections as shown above.  These ratios were determined from the 

construction drawings for the bridge. 

Each span is modeled using 5 members with 3 sections each.  The concrete and non-

prestressed steel are uniform throughout the bridge.  The profile, members, and segments 

are shown below. 
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a) bridge profile 

 

b) typical span 

Figure 6.22: Node, Member, and Segment Numbering 

 

Four different prestressing types are used in the bridge: 

 Main cables, spanning the entire structure (P1, 100 series): 4 sets of 19 cables 

 Cables in the top of the box over the intermediate supports (P2, 200 series): 10 

sets of 3 cables 

 Cables in the bottom of the box in the centre of the spans (P3, 300 series): 2 

overlapping groups of 3 sets of 3 cables 

 Cables in the cantilevers (P4, 400 series) 

The construction sequence in the actual bridge used truss supports for the formwork.  The 

concrete was poured and allowed to harden before the prestressing was applied.  To 
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simplify the analysis, the prestressing is assumed to act at the same time as the member is 

cast.  As a result, fewer intervals are required in the analysis (6 vs 12).  Creep will be 

increased slightly as a result since the load acts over a longer time, but over a 50 year 

analysis this effect will be negligible. 

The simplified construction sequence and tendon layouts are shown below.  Hatched 

segments are cast in that stage.  Note that the 100 series tendons run through the entire 

bridge; they are shown separately in Table 6.16 for clarity. 
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Figure 6.23: Bow River Bridge Prestress Sequence and Layout 

 

A summary of the prestressing tendon properties is shown below: 
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Table 6.15: Prestressing Geometry Data 

Tendon 
Stage 
Added 

Aps 
(mm2) 

Aduct 
(mm2) 

Pi 
(MN) 

zps 
(mm) 

111-114 1 

2660 5027 3.46 
See  

below 
121-124 2 

131-134 3 

141-144 4 

201 1 

4200 12500 5.47 100 
211 1 

221 2 

231 3 

311-312 2 

2940 5890 3.83 2050 
321-322 3 

331-332 4 

341-342 5 

401 3 

9800 19635 12.76 170 
411 3 

421 4 

431 5 
 

The tendon profiles for the 100 series cables are complex and are provided for the sake of 

completeness below. 
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Table 6.16: 100 Series Tendon Profiles 

Tendon 


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

111 370 393 1019 1623 1865 1799 1524 1044 430 374 740 

112 370 743 1305 1706 1867 1799 1524 1044 430 556 1120

113 535 1116 1632 1918 2032 1964 1689 1209 595 840 1500

114 535 1485 1918 2001 2032 1964 1689 1209 595 1049 1880

121 740 1366 1744 1870 1799 1584 1227 727 370 376 740 

122 1120 1536 1786 1870 1799 1584 1227 727 370 649 1120

123 1500 1797 1975 2035 1964 1749 1392 892 535 985 1500

124 1880 1966 2018 2035 1964 1749 1392 892 535 1287 1880

131 740 1366 1744 1870 1799 1584 1227 727 370 386 795 

132 1120 1536 1786 1870 1799 1584 1227 727 370 683 1175

133 1500 1797 1975 2035 1964 1749 1392 892 535 1009 1555

134 1880 1966 2018 2035 1964 1749 1392 892 535 1350 1935

141 795 1218 1538 1751 1855 1859 1771 1595 1333 983 546 

142 1175 1449 1656 1793 1862 1862 1798 1670 1478 1224 905 

143 1555 1744 1887 1982 2029 2028 1978 1877 1727 1526 1275

144 1935 1974 2004 2024 2034 2032 2005 1952 1872 1766 1634
 

A summary of the construction sequence is shown below. 
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Table 6.17: Construction Sequence Summary 

Stage Time (d) 
Segments 
Added* 

Tendons Stressed Loads 
Boundary 
Conditions 

1 45 1B 
111-114 

201 
 

100 fixed 
200 skew 

2 90 2B 
121-124 

221 
311-312 

 300 skew 

3 135 3B, 1C 

131-134 
231 

321-322 
401 & 411 

 400 skew 

4 180 4B, 2C 
141-144 
331-332 

421 
 500 skew 

5 225 3C 
341-342 

431 
  

6 270 4C    

7 18250   Live load  
* B = Box, C = Cantilever 

 

The bending and torsion moment diagrams after the first stage, the fourth stage when the 

last box section is completed, and just before the application of live load are shown 

below. 
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a) Bending 

 

b) Torsion 

Figure 6.24: Bending and Torsion Moment Diagrams 
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a) Bending 

b) Torsion 

Figure 6.25: Effect of Prestressing on Bending Moments 

 

As the figure shows, the net prestressing force is eccentric.  The majority of the 

discontinuities in the diagram come from the centre span lower tendons (300 series).  
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As mentioned above, the bridge is being presented to examine the effects of live load.  

The stress envelopes after 50 years before the application of live load are shown below.  

 

Figure 6.26: Stress Envelope 

 

The maximum tensile stresses occur near the left support and at the outermost edge of the 

last member, just after the anchorage of tendon 331.  They are noted as sections A and B 

and will be referred to as such going forward.  There are high tensile stresses near node 

200 as well, but moments are not expected to grow there as load is added.  The effect of 

the age at casting on the tensile capacity is fairly insignificant once 50 years have passed; 

it is assumed to be 2.7 MPa for all concrete components. 

It is not evident from the diagram, but it should be noted that the majority of tensile 

stresses are occurring in the cantilevers in the negative moment sections.  It would be 
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worthwhile investigating whether additional prestressing in the cantilevers might reduce 

this effect.   

Stress profiles for sections A and B are shown below.  Note that these sections are good 

for study as they are subject to opposite moments. 

 

a) Section A (MPa) 

 

b) Section B (MPa) 

Figure 6.27: Cross Section Stresses After 50 years 

 

With the picture before the application of live load now clear, some exercises can be 

undertaken to demonstrate real world applications.  Modern bridge design codes 

generally require Fatigue Limit State (FLS) analysis in addition to Serviceability Limit 

State (SLS) and Ultimate Limit State (ULS). 
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use of a CL-800 truck.  The 800 kN is distributed in the same way as in the figure shown 

above. 

The CHBDC has two cases for loading: the truck itself, and a lane loading case that 

requires 80% of the loads shown above in addition to a 9 kN/m load distributed to cause 

maximum effect.  According to Clause 3.8.4.1(c), the CL-W truck alone should be 

checked in any given lane for the FLS check.  For SLS checks, the CL-W truck and the 

lane load cases should both be checked.  Note that for this check, the bridge under 

consideration should be checked for 2 and 3 design lanes per Table 3.4 in the CHBDC. 

For illustration purposes here, the FLS will be first examined with the CL-800 load.  The 

stress change in steel and concrete due to live load application will be examined.  The 

CL-800 truck is positioned at 40 different points along the bridge (every 4 m), and 

refined to 1 m once the critical load positions are determined.  For the sake of simplicity, 

the axle loads will be taken at the indicated spacing and assumed to act 3 m from the 

centreline of the bridge towards the outside of the radius.  The CL-800 loading used in 

the analysis is shown below, without the twisting moments shown for clarity. 

 

Figure 6.29: CL-800 Truck Axle Loading 

 

64 kN 160 kN x 2 224 kN 192 kN

3.6 m 1.2 m 6.6 m 6.6 m

18 m
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For section A, the worst case happens when the leading edge of the 64 kN load is 25 m 

from the first support.  For section B, this occurs when the leading edge of the load is 4 m 

from the last support.  The centroidal internal forces at this section before and after the 

application of load (and redistribution of forces due to cracking), along with the change 

in strain and the corresponding increase in steel stress is shown below for each section. 

There are 6 points in the non-prestressed steel to check.  They are numbered and shown 

below. 

 

Figure 6.30: Steel Examination Points 

 

Point 1 (-5375, 75)

Point 6 (-5375, 125)

Point 2 (5375, 75)

Point 3 (5375, 125)

Point 4 (1875, 2125)Point 5 (-1875, 2125)

Coordinates are (y,z) in mm
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Table 6.18: Results at Section A & B 

  Section A Section B 

Before 
CL-800 

N (MNm) -19.1 -10.5 

My (MNm) -11.6 4.0 

Mz (MNm) 0.5 -2.4 

After 
CL-800 

N (MNm) -19.1 -10.5 

My (MNm) -16.3 7.5 

Mz (MNm) 0.4 -2.4 

 0.531 0.623 

Change 

N (MNm) 0 0 

My (MNm) -4.7 3.5 

Mz (MNm) -0.1 0 

0 () 98.2 -97.0 

y (/m) -76.6 420.8 

z (/m) 1.7 -0.4 

ns,max (MPa) 20.3 159.6 

at Point 2 Point 5 

ps,max (MPa) 17.2 134.8 

in tendon # 201 144 

 

Despite the increase in moment being larger at section A, the increment in steel stress at 

section B is significantly higher and in fact exceeds the 125 MPa allowable by design 

code.  To see why this is occurring, examine the cross section at B after cracking: 
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Figure 6.31: Effect of Cracking at Section B 

 

Cracking is extensive.  Once the decompression is complete and the full load is applied 

on the section, nearly 80% of the depth of the box is lost to cracking.  Note, as well, that 

the bottom slab tendons 341 and 342 no longer cover this section; this is why the section 

directly to the left of B does not suffer from these effects.  Due to the segmental nature of 

the construction, the cracking does not affect the cantilevers. 

Given that the bridge in its current design fails the Fatigue Limit State analysis, changes 

should be made to fix it.  The most favourable option is to add prestressing through 

member 405. 

An investigation was done where tendon 342 was simply extended through the member’s 

bottom section, and as expected, the 3.83 MN force it brings tidily fixes the problem.  

However, it does so by reducing the bending moment to the point where cracking no 

longer occurs.  A better question to ask would be how much prestressing needs to be 

added into member 405 to reduce the steel stress fluctuation to less than 125 MPa, even if 

the member still cracks when the load is applied? 

c1 = 403 mm c2 = 384 mm

Cracked zone

ns = 16 0MPa

ps = 135 MPa
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A new tendon, 343, was added into member 405 at the same eccentricity as 341 and 342 

(150 mm below the bottom of the box).  Assuming an initial stressing of 0.7fpu, the area 

and jacking force were increased in increments to determine the effect on the steel stress 

fluctuation.  The results are plotted below, showing the resulting change in steel stress 

and the interpolation coefficient at each increasing prestress value.  

 

Figure 6.32: Effect of Increased Prestressing 

 

To generate the figure above, cracking was assumed to start at 0.5fct.  The cracking 

would truly cease to take place once < 0.5, which takes place at roughly 840 kN.  

However, at 800kN,  = 0.507, and the increment in stress is 124 MPa – just below the 

125 MPa limit imposed by CSA-S6-10 (2010).  To provide 800 kN of prestressing only 
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takes 430mm2 of tendon – 4-15mm Freyssinet strands would do it.  In fact, as the figure 

shows, any value between 785 kN and 840 kN would produce allowable stress 

increments but still allow cracking in the beam.   

It is worth noting that the tendon which undergoes the most increase in stress in the new 

case is in fact the new tendon, which experiences a 113 MPa increase after cracking. 

6.3 Summary 

The examples above showed how the model can be used on real world problems to check 

detailed stress levels at individual sections under varying load conditions.  The ease of 

parameterization allows for fluctuations in positions of load, area and jacking force of 

tendons, reinforcing steel ratios, and almost any other component of the design of a 

structure. 

The model developed and verified here can be applied to very simple and very complex 

problems and provides fairly accurate results for real world structures.  Detailed analysis 

of stress, strain, force, and displacement is possible at any time throughout the lifespan of 

a structure.  Furthermore, direct correlation to requirements and equations in practical 

design codes is possible. 
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Chapter Seven: SUMMARY, CONCLUSION, AND RECOMMENDATIONS 

7.1 Summary 

Reinforced and prestressed concrete forms the backbone of our transportation and 

infrastructure systems.  It is a flexible, adaptable structural system that often proves to be 

the most cost effective solution to problems facing planners and designers. 

While ultimate limit state analysis has always been required, the last 50 years has seen a 

much greater focus on design for serviceability.  This analysis needs to consider the time 

dependent phenomena of creep and shrinkage in concrete and relaxation of prestressed 

steel to be accurate.  The design codes that govern structural concrete design have been 

updated to include for their effects, but the simplified methods they present are not able 

to handle the complexity of real world structures.  Segmental construction makes this 

problem worse. 

Previous work by others has resulted in powerful uniaxial elements that can effectively 

model real world structures using finite element methods.  Other work has taken a close 

look at the behaviour of prestressed, reinforced concrete sections over time, and included 

the effects of cracking in the analysis.  The work presented here combines the two 

methods, and the result is a simple but thorough formulation that considers the curved 

nature of many real world structures, time dependent effects, cracking, and segmental 

construction.  Using non-linear techniques, a structure can be analysed through its 

construction sequence and the result can be used to predict the long term response.  The 

simple formulation provides two significant benefits.  First, the intermediate results of 
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nearly any required stress or strain can be easily obtained.  These include both numerical 

values and the cross section shape after cracking occurs.  Second, the input models for 

time dependent effects can follow the equations recommended in design codes or be 

changed to any other numerical model. 

The developed model is compared to problems in both two and three dimensions, and 

good correlation is found.  Analysis of existing problems that include cracking, 

prestressed and non-prestressed steel, and variations in section properties are shown to 

match well.  The model is extended to demonstrate capabilities by analysing theoretical 

and real world structures.  Parametric variations are undertaken to consider the changing 

effects of reinforcing steel and prestress force on cracking and fatigue from live load 

cycling using modern highway design codes.    

7.2 Conclusion 

Comparison of the developed model’s behaviour to existing studies shows good 

correlation.  This element is suitable for day-to-day use in real structures.  The trade-off 

and balancing required for prestressed concrete design is captured well; the numerical 

nature of the model allows for very quick analysis with variation of parameters, such as 

reinforcing ratio or prestress force.  The effects of cracking are captured in the analysis, 

and results match well with other problems where non-linear analysis is required to 

converge on a solution.  Computation time for the examples presented is under 1 minute 

on a computer with a 1.4GHz processor and 2GB of memory. 
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It is important to note that at some point the use of existing finite-element models will be 

superior to any model of this type.  While they may not accurately model the non-

linearity caused by cracking, even basic FEA packages now include elements with 

extremely comprehensive capabilities.  The developed model makes no attempt to 

emulate their completeness; rather, it provides a capable, effective tool for the analysis of 

serviceability of curved prestressed concrete structures.  Its inclusion of many procedures 

in the structural codes (eg: tension stiffening, creep calculation) makes it a valuable tool 

to the bridge designer.  The ease of understanding the output without having to 

understand the ins and outs of 3D finite element modeling is of real benefit.  

The verification and demonstration problems show two important considerations.  First, 

the construction sequence is critical to intermediate structure response.  Stresses in the 

structure can be at their highest well before the full structure is built.  Balanced 

cantilevering, temporary supports, and imposed displacements are sometimes required to 

offset these effects. 

Second, cracking causes very high changes in the stress levels.  While stresses, strains, 

and deflections may be acceptable, the load cycling effect when cracking occurs often 

exceeds allowable levels for structures where fatigue is a consideration.   

7.3 Recommendations for Future Research 

The best way to analyze deficiencies and areas for potential improvements in the model is 

to examine each layer independently. 
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Since the model is primarily concerned with serviceability analysis, the material 

interactions and properties are very straightforward and quite simple.  As a result, the 

current scheme is an effective and efficient solution. 

The current material models assume a completely linear stress-strain distribution.  For 

serviceability analysis, this is ample.  If, however, ultimate state was to be included, 

material nonlinearity would be required. 

Modelling at the section level would benefit the most from future improvements.  As 

discussed in 3.6.3, the shear and twisting geometric properties are very roughly 

estimated, or must be provided by the user.  It would be a very worthwhile addition to 

include cross-section finite-element analysis; this would also make the calculation of 

shear stresses in the beam possible, which are critical in ultimate state analysis and 

reinforcement design.  The decompression approach could also be improved on in such a 

manner, and the location of the shear centre could be properly considered.  Most 

importantly, warping deformations need to be included – their neglect in the current 

model somewhat limits its applicability for certain sections.  Implementation of such an 

analysis would require a substantial amount of work if done properly, and should include 

material nonlinearity.  Since the member axis can have arbitrary curvature, it might be 

worthwhile to abandon the idea of the reference point and simply use the centroid and the 

principal axes (which, of course, can change throughout the analysis).  This would 

dramatically simplify the calculations at this level, and would allow proper consideration 
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of twisting and shear (and possibly warping).  Taking the analysis through to ultimate 

state would make it more powerful. 

At the member level, external and unbonded prestressing would be useful for several 

situations.  While the model does allow internal tendons to be unbonded, it enforces 

strain compatibility at each section.  There are some problems for which tendon slippage 

needs to be considered.  The inclusion of the formation of plastic hinges in the analysis 

would add value. 

Geometric nonlinearity should be included to allow for the analysis of structures such as 

cable stayed bridges, where deflection affects stiffness.  The stiffness and member force 

calculations would need to be adapted, but the central non-linear analysis component of 

the program is sufficient. 

Detailed investigation into correlation between the developed model’s results and those 

of an actual curved bridge would be beneficial.  Such research should include comparison 

to established finite element models for prestressed concrete.  

Finally, cases where nonlinear convergence is not rapid could potentially be mitigated by 

adapting a different solution approach.  Additional research into why certain 

configurations result in non-convergence would be beneficial. 
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