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Abstract: In this paper we consider a periodic review order-up-to-level (or base stock) 

inventory control system under normally distributed demand. For such circumstances an 

expression for the exact fill rate (fraction of demand satisfied without backordering) has 

been available in the literature but has not been widely known, let alone used by 

practitioners. In this paper we redevelop the expression and contrast our derivation with 

the earlier published one. The paper has two purposes. First, we hope that the 

reappearance of the exact result in this journal will lead to its wider adoption. Second, 

showing two contrasting approaches to obtaining the same result may be useful for both 

research and pedagogical purposes. 

 

mailto:diane.bischak@haskayne.ucalgary.ca


1 

 

1. Introduction 

 

Periodic review, base stock systems are widely used in practice. In these systems, every R 

units of time enough stock is ordered to raise the inventory position (on-hand minus backorders 

plus on-order) to an order-up-to-level (or base stock level) S. In addition, such systems are often 

employed under a constraint of satisfying a desired fill rate, the fraction of demand met directly 

from stock (see, for example, Lee and Billington [1]).   

Under assumptions of normally distributed demand and a constant lead time, in this paper 

we develop an exact expression for the fill rate. This is not a new result; what is new is the 

approach to obtaining it.  As the result (and the earlier approach to finding it) is not widely 

known, most practitioners and academics (the authors included) have been using approximate 

expressions for the fill rate.  Historically there were valid reasons—in particular, computational 

simplicity—for using such approximations, but under certain conditions the approximations can 

be appreciably in error.  The associated model is still relatively simple to understand and use, 

which is an important consideration (Ward et al. [2]). 

The first objective of the current paper is to achieve broader awareness and adoption of 

the correct fill rate expression. Second, it is hoped that insights (particularly for research or 

pedagogical purposes) may be achieved by showing two different methods of obtaining the same 

result. An early paper by one of the authors (Silver [3]) served this type of purpose. 

The authors have been able to find the exact result (or how to obtain it) in only a handful 

of publications. The original derivation was probably by Hadley and Whitin [4]. Subsequently, 

de Kok [5] indicated the general approach (but without the result). However, in unpublished 
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material (de Kok [6]) he did derive the end result, which is also shown in a footnote on page 280 

of Silver et al. [7]. Axsäter [8] indicated how the fill rate can be obtained from limiting 

conditions of a different type of control system (which is actually part of the derivation used by 

Hadley and Whitin). The exact result is also used in Chen and Zheng [9].  Sobel [10] has 

developed a somewhat more complicated result, but the added complexity is due to his not 

permitting negative values of the normal distribution. 

Johnson et al. [11] mentioned that the Hadley and Whitin result had been largely 

overlooked in the literature.  They showed it and pointed out that for high enough demand 

variability (coefficients of variation greater than unity) it could be erroneous because of not 

properly taking account of the substantial likelihood of negative demands (i.e. returns). They 

went on to develop a considerably more involved expression that handles high coefficients of 

variation.  In the current paper we restrict attention to situations where the chance of a negative 

demand during a review period is reasonably small.  In particular, the results presented in 

Johnson et al. indicate that use of our formula would produce negligible errors (under 0.4%) in 

the estimated (versus desired) fill rate for coefficients of variation no larger than 0.5 (which for 

the normal implies a probability of just over 2% of a negative demand in R).  Even if the 

coefficient of variation is as high as 1.0 (which implies a more than 15% chance of a negative 

demand in R), the errors in the estimated fill rate would still be under 2%. 

In the next section we present the new derivation. This is followed by an outline of the 

original method and two numerical illustrations comparing the results obtained with the exact 

approach to the results produced with a commonly used approximation. Finally, some brief 

comments are provided in a concluding section. 
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2. Derivations 

2.1 Our approach 

Let R and S denote the review interval (in time units) and the order-up-to-level, 

respectively.  Also let Q represent the order quantity at a particular review. Our approach 

involves developing EUS (Q0), the expected units short conditional on a given value of Q, 

denoted as Q0.  (The approach to this stage parallels that for a continuous-review, order-quantity 

system in Silver [12].)  This is then multiplied by the density function of Q and integrated over 

all possible values of Q0 to obtain the unconditional expected units short, EUS. The fill rate is 

then expressed, as usual, in terms of EUS and other factors. Now we present the details. 

In an (R, S) system with a constant lead time L, the magnitude of any shortage in a 

particular cycle depends on the relationship between S and the total demand during R+L.  (Note 

that we do not require any restriction on the relative sizes of R and L.) Consider a cycle that 

begins at time 0 (see Figure 1).  For a given order size Q0 placed at the end of R, the units short 

at the end of the subsequent L (i.e. just before Q0 arrives), in turn, depend on the relative sizes of 

S – Q0 and the total demand in L. We will denote the latter by y and the units short by US(Q0, y0). 

Then 

 

0 0

0 0 0 0 0 0

0 0

0

( , ) ( )

y S Q

US Q y y S Q S Q y S

Q S y

 

For y0 strictly greater than S a shortage larger than Q0 actually occurs but the portion above Q0 

will not be eliminated by the arrival of the order of size Q0, hence will be counted in the next 
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cycle.  An alternative, intuitive interpretation is that for a batch of Q units, at most Q can arrive 

late.  

[Insert Figure 1 about here] 

Taking the expectation with respect to the variable y, 

 

0

0 0 0 0 0 0 0 0( ) [ ( )] ( ) ( )

S

y y

S Q S

EUS Q y S Q f y dy Q f y dy  

which can be manipulated to obtain 

 

0

0 0 0 0 0 0 0 0( ) [ ( )] ( ) ( ) ( )y y

S Q S

EUS Q y S Q f y dy y S f y dy . (1) 

With normally distributed demand  

 
2
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where L and L  are the mean and standard deviation of the demand in L. 

Substituting (2) into (1) and employing the transformation 

 0
0

L

L

y
z  

so that  z0 is a unit normal variable, leads to 

 0
0( ) L L

L

L L

S Q S
EUS Q G G  (3) 

where 0 0 0( ) ( ) ( )Z

w

G w z w f z dz is the so-called unit normal loss function. 

Next 
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0
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Q

EUS EUS Q f Q dQ  (4) 

Because of the nature of an (R, S) system, Q0 must represent the total demand during the 

preceding R.  Hence, 

 
2
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where R and R  are the mean and standard deviation of the demand in R.  Substituting (3) and 

(5) into (4) and using 

 0
0

R

R

Q
u  

so that 0u is again a unit normal variable, results in  

 0
0 0

( )
( )R L R L

L u

L L

S u S
EUS G f u du G  (6) 

From Silver and Smith [13], 

 2

0 0 0
2
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1

u
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a
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In the integral of (6) we have 
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Thus 
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Denote the mean and standard deviation of demand per unit time by  and .  

Moreover, note that L L , R R , L L  and .R R   Also let CV  

represent the coefficient of variation of the demand in a unit time period.  Finally, in the usual 

fashion let 

 ( )R L R LS k R L k R L  (8) 

where k is the safety factor.  Then (7) simplifies to  

 ( )
R R L

EUS R L G k L G k
LLCV

 (9) 

Finally, the (R, S) system defines a renewal process where each cycle (every R units of time) 

starts with the inventory position at S.  Thus, the fill rate, denoted by P, is given by the expected 

demand met from stock in a cycle divided by the expected demand per cycle (Ross [14]), i.e. 

 
( )

1
( )

E Q EUS EUS
P

E Q R
 (10) 

Substituting (9) in (10) leads to 

 1 ( )
R L L R R L

P CV G k CV G k
R R LL CV

 (11) 
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It is seen that the fill rate depends upon four parameters:  k, CV, R and L.  Note that the 

parameter R could be eliminated by redefining the unit of time to be R. 

 

2.2 The Hadley and Whitin or de Kok approach 

The Hadley and Whitin or de Kok approach clearly leads to the exact fill rate more 

quickly than our approach.  However, it hinges on the following statement, which for some 

readers may not be particularly intuitive or easy to understand.  In a particular cycle (see Figure 

1), the EUS is the average amount backlogged at the end of the cycle (R + L later) minus the 

average amount backlogged after the initial lead time (i.e., L later), that is,  

EUS = (expected amount that demand in R+L exceeds S) 

     – (expected amount that demand in L exceeds S). 

 

 

Denoting the total demand in R+L by x and, as earlier, the demand in L by y, 

 0 0 0 0 0 0( ) ( ) ( ) ( )x y

S S

EUS x S f x dx y S f y dy  (12) 

Now, x has the normal distribution with mean R L  and standard deviation R L . Using the 

associated density function of x, the density function of y (see equation (2)), defining S as in (8), 

and again employing unit normal transformations, (12) simplifies to the same EUS result as in 

(9). Hence, the fill rate expression of (11) follows.  As an aside, note that (12) can be used for 

any (known) distributions of x and y. 

3. Numerical illustrations including the use of a common approximation 
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A commonly used approximation (see, for example, Carlson and Miltenburg [15]) results 

from ignoring the second expression on the right side of (9) or, equivalently, the second integral 

in (12). Instead of (11) one obtains 

 1 ( )
R L

P CV G k
R

 

 
(1 )

or ( )
R P

G k
R L CV

. (13) 

Thus, specified values of P, R, L and CV will imply a value of ( )G k .  A table lookup or rational 

approximation (Brown [16] or Silver et al. [7]) can then be used to find the associated value of k. 

The simplicity (compared with solving (11) for k) was very important historically but is no 

longer a relevant issue. By neglecting the second portion of the right side of (9) the 

approximation overestimates the EUS for any value of k. Thus, it selects a k value (hence an S 

value) higher than the required value (found by using the correct formula of (11)). As a result, 

the actual fill rate achieved using the approximate method will, in general, be higher than the 

target value of P. 

Table 1 shows two numerical illustrations of the use of both the exact approach (equation 

(12)) and the approximation of (13). Moreover, the actual fill rates achieved when (13) is used 

are shown. The second illustration demonstrates that the error (difference between targeted and 

actual fill rates) can be appreciable. In general, this tends to occur when the term /R LCV , in 

the second G function of (9), is relatively small; in particular, when L is much larger than R and 

CV is not too small. 
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4. Conclusion 

In this paper we have presented a new derivation of the exact fill rate in an (R, S) system under 

normally distributed demand and have compared it with a more direct, but perhaps less intuitive, 

derivation that already existed in the literature. We also presented a commonly used approximate 

method for selecting the value of the safety factor and pointed out that use of the approximate 

approach can lead to an achieved service level much higher than the targeted value.  It should be 

mentioned that similar approximate approaches can also be quite inaccurate for other types of 

systems such as a periodic review, order point, order quantity system (Janssen et al. [17]).  It is 

hoped that this paper will help ensure that the exact fill rate expression becomes much more 

widely known, hence used more in practice. Also, the intermediate result (see equation (9)) of an 

exact expression for the expected units short per cycle could be used in a cost minimizing model 

that incorporated a cost per unit short (see Chen and Zheng [9]). 
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Table 1.  Numerical illustrations of the exact and approximate choice of k 

 

Case Target P R L CV Exact 

k 

Approximate 

k 

Actual fill rate  

with approximate k 
        

1 0.9 1 8 0.2 0.598 0.607 0.901 

2 0.8 1 24 0.3 0.545 0.740 0.850 
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