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ABSTRACT 

A new multidimensional (MD) digital filtering technique is described in this 

thesis. The continuous-discrete frequency domain (CD.FiD) filtering technique employs 

continuous-frequency (e.g. infinite impulse response) filtering in N of the M 

dimensions (N < M) and discrete-frequency (e.g. discrete Fourier transform) filtering in 

the remaining M-N dimensions. Notation is developed to describe CDFD filtering 

concisely. The advantages of MD CDFD filters over MD continuous-frequency and 

MD discrete-frequency filters are demonstrated in various signal processing examples 

and applications. 

Some topics for further research are proposed, especially in the use of CDF.L) 

filters in three dimensions and in real-time MD filtering applications. 
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CHAFFER 1 

SOME BASIC CONCEPTS IN MULTIDIMENSIONAL 

DIGITAL FILTERING 

1.1. Introduction 

Due to recent advances in high-speed computers and dedicated signal 

processing hardware, multidimensional (MD) digital filtering is being used in a 

wide variety of applications. ML) digital filters are predominantly used to solve 2D 

and 3D signal processing problems. 

Two-dimensional digital filters are used extensively in image processing 

applications such as biomedical image analysis and seismic signal processing. 

Typical biomedical image processing applications include the enhancement of CAT 

(Computer-Aided Tomography) scan and X-ray images [1]. In the field of seismic 

image processing, two-dimensional digital fan filtering techniques are used to 

selectively enhance and reject signals on the basis of their velocity, such as the 

removal of low velocity ground roll interference from seismic images [2]. 

Applications in three-dimensional signal processing are to be found in areas 

such as 3D seismic image processing and situations involving two dimensional 

time-varying images; for example, sonar, radar and television [3]. Three-

dimensional frequency planar filters are used to track objects in time-varying radar 

or sonar images [4]. 
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An exciting potential application of three-dimensional digital filtering is in the 

rapidly developing field of videophone technology. This involves transmitting and 

receiving video signals over currently-existing telephone networks which are 

subject to heavy interference. 

There are two widely followed and, so far, distinct approaches to MD digital 

filtering. Firstly, discrete frequency methods, such as the MD discrete Fourier 

transform (MD DFT), have been employed using techniques that are essentially, 

extensions of the 1D case [3]. Secondly, MD continuous frequency methods, such 

as finite impulse response (FIR) and infinite impulse response (HR) techniques, 

have been employed [3]. 

Both these techniques have certain advantages and disadvantages [3]. The 

Continuous-Discrete Frequency Domain (CDFD) filtering technique presented in 

this thesis combines both continuous and discrete frequency filtering into a novel 

filtering technique that possesses some of the advantages of both continuous and 

discrete frequency filtering. 

Some important fundamental concepts in MID digital filtering are presented in 

the next section. 

1.2. MD Signals and Systems 

This section covers some fundamental concepts in MD digital filtering. In 

addition to covering some basic theory on MD signals and systems, this section 

also defines the MID DFT and the MD IDFT (inverse discrete Fourier transform) - 
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two widely used transforms in MD digital filtering. 

1.2.1. MD Signals 

A signal is simply a means of conveying information; for example, a 

television picture, music or a sequence of numbers in the memory of a computer. 

Filters extract useful information and reject undesirable information from input 

signals to produce filtered output signals. For example, filters in a stereo system 

may be designed to remove unwanted high-frequency noise from music or remove 

D.C. or low-frequency signals to avoid damage to speaker systems. 

A 1D signal (Fig. 1.1) is a function of one independent variable. For 

example, the sine wave x (t) in Fig. 1.1 is a function of the independent variable t. 

The 2D sine wave x (t1, t2) = sin (CO 1t1 + o)2t2) in Fig. 1.2 is a function of two 

independent variables t and t2. Similarly, an MD signal x (t1, t2, . , tM) is a 

function of the M independent variables t1, t2, , tM. Thus, a 

multidimensional signal is any signal that can be expressed as a function of M 

independent variables (M ≥ 2). 

There are three types of MD signals - continuous, discrete and mixed 

continuous and discrete. A continuous MD signal can be expressed as a function 

of M independent variables where each variable is defined over a continuum of 

values; for example, the intensity I (x, y) of a black and white photograph. The 

2D sinusoidal signal x (t1, t2) in Fig. 1.2 is also a continuous 2D signal. 
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A discrete MD signal is expressed as a function that is defined only on a set 

of points; for example, the intensity I (k 1, k2) of a digitized image. The 2D signal 

x (k1, k2) in Fig. 1.3 is a discrete 2D signal. Discrete signals are often obtained 

from continuous signals by rectangular sampling. In the case of a digitized image, 

for example, I (kr, k 2 is obtained from I (x, y) by periodic rectangular sampling. 

That is, 

I(k 1,k2) = I(x,y) 
ix = k1T 

y = k 2 T  

where T and T2 are the sampling periods in the x and y directions respectively. 

A mixed continuous-discrete M]) signal is expressed as a function of both 

discrete variables and continuous variables; for example, a seismic image where a 

fixed number of geophones at discrete locations measure waveforms that are 

continuous functions of time. The 2D signal x(k 1, t2) in Fig. 1.4 is continuous in 

and discrete in k1. 

A finite-extent MD sequence is one which takes the value zero outside a finite 

region of support. The region of support can have any shape although typically it 

is rectangular. Thus, for a 2D finite-extent signal, the region of support is usually 

a rectangle (Fig. 1.5). 

This thesis deals primarily with finite-extent MD discrete signals of the form 

x (k 1,k2, , kM), that have a region of support defined by 0 ≤ Ic1 < L1 



1.57 3.14 
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t 

4.71 6.28 

Fig. 1.1. A one-dimensional continuous signal x (t) = sin(t) 

ti 

Fig. 1.2. A two-dimensional continuous signal x (t1, t2)= sin(0)1t1 + 

x(k1,k2) 

0 

Fig. 1.3. Graphical representation of a 2D discrete signal x (k1, k2). 

k2 

k1 
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x(k1,t2) 

k1 

Fig. 1.4. Graphical representation of a 2D mixed continuous-discrete 
signal x(k 1, t2 ). 

L1 k1 

Fig. 1.5. A rectangular region of support (shaded area) for a 
2D discrete signal (represented by dots) which is zero 
outside the region of support, (0 ≤ k1 < L1, 0:5 k2 < L2). 
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L integer, 1 <L1 < oo and i = 1, 2, , M. Henceforth, unless otherwise 

specified, all MD finite-extent signals will be assumed to have a region of support 

as described above. 

1.2.2. Multidimensional Discrete Fourier Transform and Inverse Discrete 

Fourier Transform 

It is often convenient to represent and analyze temporal and spatial domain 

MD discrete finite-extent signals x (k1, k2, , ku ), henceforth referred to as 

MD spatial domain signals, in terms of their MD discrete frequency components. 

The MD Discrete Fourier Transform (MD DFT) transforms any MD spatial domain 

signal x(k 1, k2, . , kM) into a frequency domain MDdiscrete finite-extent 

signal x 2' henceforth referred to as an MD frequency domain 

signal, where are the discrete frequency variables 

corresponding to the variables k1, k2, . .. , kM, and 0 < 92 < L i . 

The MI) Discrete Fourier Transform X (92 i of an MD spatial 

domain signal x(k 1, k2, , kM) is defined as 

L1-1L2-1 LM -1 

X( 1,≤22, ..., x(k1,k2, , kM) 

k1=0 k2=0 kM=O 

(1.2) 

Ikc 1 k2L2 + kMM11 
exP[_i2[ L1 L2 M jj 
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where 0 ≤ k ≤ L - 1, 0 ≤ 92 ≤ L - 1 and 1 <L1 < co for i = 1,2,  - , M. 

For example, the 2D DFT of a 2D spatial domain signal x (k1, k2) is given by 

j2irk 1c1 j2itk2 92 2 

L1-1L2-1 - L1 (1.3) 
X(≤ 1, 2) x(k,k2)e e 

k1=O k2 =0 

Just as the MD DFT transforms an MD spatial domain signal into an MD 

frequency domain signal, the multidimensional Inverse Discrete Fourier Transform 

(MD IDFT) transforms an MD frequency domain signal into an MD spatial domain 

signal. The MD JDFT is defined by 

x(k 1,k2, • - ,kM) 

L1-1L2-1 LM -1 

LL E X(≤ 1,≤22, 
1 2 M Q 1020 

I I 
exPLi2 kL L1 + k22 + + 

kM≤2M 

LM 

In the 2D case given by ( 1.3), this becomes 

j2rck11 

L1-1L2-1 L  
A  1 1 X( 1,≤ 2)e 

x(k1,k2) = L1L2  92 1° 92 2 
e 

(1.4) 

j 2irk2≤2 

L2 (1.5) 

An important application of the MD DFT is in deriving the frequency responses of 

MD linear shift invariant digital filters which are described in the following 
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section. 

1.2.3. MD Linear Shift Invariant Filters 

Linear shift invariant (LSI) filters are the most widely used digital filters 

because they are comparatively easy to design and analyze, and sufficiently 

powerful to solve a variety of digital filtering problems. 

1.2.3.1. Definition of an MD LSI Filter 

Consider an MD discrete-domain filtering operator P [ J that maps a set of 

MD discrete input signals {x (k1, k2, into a set of MD discrete output 

signals {y1(k 1, k2, ,kM)}. This operation can be written as 

P[{x(k1,k2, . . {y1(k,k, . . ,kM)} 

The filtering operator P [] is linear if and only if 

,kM)}] = . . ,k)} (1.7) 

for any input x (k1, k2, , k) and any scalar constant c. 

P II I is said to be shift invariant if and only if 

P[{x(k 1—K 1,k2 —K2, , kM—KM)}] = {y(k 1—K 1, 

k2— K2, , kM_KM)} 

(1.8) 
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where K1, K2, , KM are any constants. 

The linearity condition implies that the response to a sum of scaled inputs is 

simply the sum of the scaled responses due to the inputs applied separately, while 

the shift invariance condition implies that a shift in the input produces a 

corresponding shift in the output. A filter satisfying both the linearity and shift 

invariance conditions is said to be a linear shift invariant (LSI) filter. 

1.2.3.2. Impulse Response of an MD LSI Filter 

The impulse response of a LSI filter, characterized by the filtering operator 

P[], is defined as 

,kM) P[(k 1,k2, 

where 8(k 1, k2, , kM) is the discrete unit impulse defined to be 

(k1,k2, * ,JCM) =.11 ' k1=k2= ,= kM=O 

otherwise 

(1.9) 

(1.10) 

The output y (k1, k2, . . , kM) of a MD LSI filter is calculated from the 

input x(k 1, k2, , kM) and the impulse response h (k1, k2, , kM) using 

the MD convolution summation defined as 
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y(k 1,k2, • ,kM) 

L1-1L2—1 LM -1 

4 •••, ,kM)x(kl — jl,k2_j2, k 

M 0 

where each ji i = 1, 2, ,M, is an integer. 

1.2.3.3. BIBO Stability of an MD LSI Filter 

A MD LSI filter is BIBO (Bounded Input Bounded Output) stable if and only 

if, for any bounded input sequence, the output sequence remains bounded. A 

necessary and sufficient condition for an MD LSI filter to be BIBO stable is that its 

impulse response h(k 1, k2, . . . , kM) be absolutely summable. That is 

L1-1 L2—1 LM -1 

h(k,k2, ... k) S1<oo 
k1=O k2=O kM =O 

(1.12) 

In general, it is considerably more difficult to test for MD stability than for 

1D stability [3]. 

1.2.3.4. Frequency Response of an MD LSI Filter 

The steady state frequency response H(≤21, K221 M of an MD LSI 

filter is the ratio of the response 5 (k 1, k2, . , k) to the input 

(k 1, k2, . . . , kM) when the input is an exponential of the form 
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[M k1211 
(k 1, k2, , kM) = exP[f 2 I 

L1  
and , L1 are integer for all i. The "" above the x and y implies that these 

signals are periodically extended in all M dimensions with period L in the ith 

dimension [3]. 

The frequency response of an MD LSI filter can be obtained by applying the 

MD DFT to the impulse response of the filter and is given by 

L1-1L2-1 LM -1 

H(≤ 1,Q2, M ., h(k,k, , k) 

k1=O k2=O kM=O 

exp[j21t[ k 1 1 + kc 2 kMQ 
- M ll 

Ll L2 ++ LM J] 

The MD DFTs of the input and output sequences, X( 1, 92 2, M) and 

Y(C1, 0 2, QM ), respectively, are related through the frequency response 

H 1' 2' as follows 

Y(c21, 2' ' M = H(21, 112, ' M X(≤21, 2' ' M (1.14) 

1.2.3.5. Z-transform Transfer Function of an MD LSI Filter 

The z-transform transfer function T (z1, z2, , zM) of an MD LSI filter is 

shown as a block diagram in Fig. 1.6. T(z 1, z2, , zM) relates the MD z-

transforms of the input and output signals, X(z 1, z2, , zM) and 

Y(z 1, z2, , zM), respectively, in accordance with 
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• • ,Zff) 

,z) X(z ,l z21  ,z) 
(1.15) 

where the z-transforms of the input and output signals are obtained using the 

definition of the MD z-transform: 

X(z1,z2, , ZM) 

00 00 00 —k —k —k  
4 x(k 1,k, . . . ,kM)zl 1z2 2 ,ZM 

k 1_oo k2—oo kMoo 

For LSI filters, (1.15) can also be represented as a ratio of polynomials so that 

T(z 1, z2, • ZM) 4 
N(z 1,z2, • ,ZM) 

D(z 1,z2, • • • ,ZM) 

nz 1 m2 MM 1 

Z ,jM)zl z2 

l° '2  

i m 

ZM 

n n n • 

12 M j j•2 j 
, lIj2I ,jM )21 z2 zAi 

(1.17) 

X(z1, z2, ... z 
T(z1,z2, ... ZM) 

... ZM) Zllz2 

Fig. 1.6. Block diagram of z-transform transfer function, 

ZM), of an MD LSI filter. 
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O). 
where j e 1 and mi ≤ n for i= 1,2,  --- , M. Each co in (1.17) is a 

continuous-frequency variable and the complex variable z, is the unit advance 

operator in the jth direction. 

JO). 
The substitution = e in (1.17) can be used to express 

T(z 1, z2, 

(01, 0)2, 

z M  ) as a function of the continuous-frequency variables 

That is, 

T(0)1, 0)2, °M = T(z 1, z2, ,ZM) 
JO)1 

z=e 

i=1,2, 

When the transfer function of a LSI filter can be expressed as a function of 

continuous-frequency variables, it is said to be a continuous-frequency domain 

filter. 

Continuous and discrete frequency filtering are discussed in the next two 

sections. 

1.3. MD Discrete-Frequency Filtering 

An MD discrete-frequency filter has a frequency response that is a function of 

M discrete frequency variables 21 • For example, consider the 2D 

discrete-frequency response H(≤21, shown in Fig. 1.7 which is defined by 
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= 1 ; 1 2— 

[0 ; elsewhere 

(1.18) 

H takes the value 1 at all discrete frequency points (L21, on or inside 

the shaded region on the 0 12 plane, and it takes the values 0 at all other discrete 

frequency points. 

A MD discrete-frequency filter, such as the one shown in Fig. 1.7, can be 

implemented using MD DFT filtering which is a three step filtering process. 

The first step in MD DF[' filtering is to apply the MD DFT to a MD spatial 

domain signal x(k1, k2, kM) to obtain the MD frequency domain input 

signal X (L2 1, 2' That is 

Fig. 1.7. Frequency response of a 2D DFT circularly symmetric lowpass filter. 



f  k2f2 kM )M ll 

L L 2 LM jj 
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L1-1L2--1 LM -1 

X(1, 2' ' M = X(k p k2, , k) 
k1=0 k2=0 kM =O 

(1.19) 

exp -j 2it I -- +  - + + 

The MD frequency domain output signal Y(≤1, 2' M) is now 

obtained by multiplying X(≤1 1, 2, by the MD frequency response of 

the filter H(1, 2' so that 92 

'M = H(921, f221 ' M X(≤1,≤2, ' M (1.20) 

This constitutes the second step in the filtering process. The sequence 

X(≤1, 2' is usually complex while (92  2' is usually 

real. Therefore, the real and imaginary parts of X (≥i 2' M) are 

separately multiplied by H(1, 2' and t 92 hen combined to form 

Y(fl1, 2' The third and final step in MD DFT filtering consists of 

applying the MD IDFT to Y(≤≥1, 2' ≤¼1) to obtain the required spatial 

domain output signal 5' (k 1 k2, , kM) which is periodically extended in M 

dimensions [3]. Thus, 
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1 L1-1 L2-1 LM -1 

Y(≤ 1,≤ 2, 
L1L2 "M 

I Ik 1 92 1 k202 kMcMll 
exP[27r[ L1 + + • • ' L  

(1.21) 

The required signal y(k 1, k2, , k) is simply the part of 

)i (k1, k2, , k) having support in RN = {k: 0:5 ki < L1; 

k1, L integer, Ll < oo i = 1, 2, , M}. 

For example, consider a 2D signal x (k1, k2) as the input to the filter whose 

frequency response is shown in Fig. 1.7. The 2D DFT filtering process carried out 

on x(k 1, k2) can be represented by the following sequence of equations: 

Step 1: 

Step 2: 

L1-1 L2-1 

X(≤≥1, = E x(k, k 2 ) e 
k1=0 k2=O 

j2tk11 j2itk22 

L 1 e L2 (1.22) 

Y( 1, = H( 1, 2)X(11, 02) 

where H( 1, is defined in (1.18) 

(1.23) 
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Step 3: 

j2itk 

L1-1L2-1 L 

j(k 1,k2) = Y(11,.Q2)e 1 e 

l=O 2 ° 

j 2itk2 92 2  

(1.24) 

One of the advantages of MD discrete-frequency filtering techniques, such as 

MD DFT filtering, is their simplicity. The design of MD DFT filters is 

straightforward and any required passband shape can be implemented. 

However, a significant disadvantage of these methods is that they are 

computationally intensive and require large amounts of memory for data storage. 

In general, for an MD input signal of size L x L x x LM, where 

L1, L2, , LM   are all powers of 2, the number of floating-point operations 

required for MD DFT filtering is given by 2(L 1L2 ,L) 

[1og2(L 1L2 ,L) + 1]. For example, for a 256 x 256 x 256 point 3D input 

signal (L1 = L2 = L3 = 256), over 800 million floating-point operations will be 

required for 3D DFT filtering. Based solely on these computation requirements, 

such a filtering operation will take at least 25 seconds if the 3D DFT filter is 

implemented on a single Texas Instruments TMS-320C30 [5], one of the fastest 

signal processing chips currently available (speeds of up to 33 MFLOPS are 

possible). As a result, real-time video filtering cannot be achieved for a 

256 x 256 x 256 point image using a 3D DFT' filter implemented on a single 

TMS-320C30. 

Block filtering techniques [3], where large "blocks" of input data are 

processed simultaneously using parallel processing, are sometimes used to decrease 
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the time required for the filtering operation. However, since such blocks of data do 

not occur naturally in most real-time applications, these methods are typically used 

in off-line filtering applications where the data can conveniently be maintained and 

manipulated in computer memory. 

DFT filtering techniques generally require significant amounts of memory for 

data storage. Typically, for a L x L2 x x LM MD input signal, assuming 

the MD DFT filter has a purely real frequency response, 2(L 1L2 ,L) words 

of data must be stored in addition to the original input signal. For example, for a 

3D 256 x 256 x 256 image with a (relatively low) data wordlength of 16 bits, over 

64 megabytes of memory are required. This is a considerable requirement, even on 

the most powerful of computer systems currently available. 

The finite sequence length of the DFT and the periodic extension of the 

output signal produces undesirable "edge effects" in MD DFT filtering. In the case 

of 2D images for example, edge-effects produce "ringing" artifacts in the filtered 

output image. Ringing artifacts are also produced by Gibbs phenomena [6]. To 

reduce edge-effects the input signal is usually multiplied by a windowing function, 

such as Hamming [6], raised cosine [6], etc. Naturally, this increases the 

computational overhead for the MD DFT filtering process. 

In spite of these disadvantages, MD DFT filtering is still widely used (for 

M ≤ 2) because MD DFT filters are relatively easy to design and are inherently 

stable. MD continuous-frequency filtering techniques, described in the next 
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section, lend themselves to faster and much more compact filter algorithms than 

MD DFT filtering techniques, but the design process is much more complicated, as 

it is often very difficult to produce stable filters. 

1.4. MD Continuous-Frequency Filtering 

A MD continuous-frequency filter has a frequency response that is a function 

of M continuous frequency variables These filters are 

typically implemented using finite-order linear difference equations (LDE) 

henceforth referred to as simply Lt)Es. Transfer functions of the filters can be 

derived from these LDEs and it can be shown that they are functions of 

continuous-frequency variables. 

Consider, for example, the 2D filtering operation represented by the first order 

2D LDE that relates the input x (k1, k2) to the output y (k1, k2) as follows: 

y(k 1k2)= x(k 1,k2)+2x(k 1 -1,k2 -1)+3x(k 1,k2 —l)+ 

(1.25) 

x(k 1 - 1, k2) 

In order to derive the z-domain transfer function T (z1, z 2' of the filter represented 

by (1.25), the 2D z-transform is applied to both sides of (1.25) resulting in 

Y(z 1,z2) = X(z 1,z2)(1+2zj 1z 1 + 3z 1 + zj 1) 

From the definition of the z-domain transfer function in (1.15), 

(1.26) 
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Y(z 1, z2) = 1+ 2z  + 3z 2 1  + z T(z 1,z 2) - X(z 1,z2) (1.27) 

The frequency response H(o 1, a2) of the filter can be derived from (1.27) 

using the relationship in (1.18). That is, 

= T(z 1,z2) 

(1.28) 

where 01, CO2 are continuous frequency variables and T1 and T2 have been chosen 

as unity for simplicity. 

H( 1, can now be written 

H(01, CO 2) = 1 + 2zr'z' + 3z 2 1  +z 1 1 

e 

z2=e 

(1,29) 

H ° i' °2 = 1 +2e + 1 + 3e 2 + e JC0i (1.30) 

Using 1e Moivre's theorem to express the complex exponentials as a sum of 

sinusoids in ( 1.30) gives 

H(o1, = 1 + 2cos(o1 + 0)2) - j2sin(01 + + 3cos 2 

- j3sino 2 + cosW1 - jsino)1 

Collecting real and imaginary terms, 

(1.31) 
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H(o1, 2 = [1 + 2cos(0 1 + 0) 2)  + 3coso)2 + cosCo1] 

(1.32) 

- j [2sin(O + CO  + 3sin0)2 + sino)1] 

Clearly, from (1.32), the 2D frequency response H (oh, ()2) corresponding to 

the first-order 2D LDE in (1.25) is a function of two continuous frequency 

variables, o1 and coT 

In general, MD continuous-frequency filtering can be performed via MD 

LDEs of the form: 

,kM) 

P 1-1P2-1 

P 1=Op2=O 

Q1-1Q 2-1 

q1=0 q2=O 

where q1,q2, ••• 

Pi, Q<L1;i=1,2, 

a(p,p, ,pMl 2l,l2P2, . ,kM_pM) 

q)y(k1—q1k2—q2, ... ,k—q) 

(1.33) 

cannot simultaneously equal zero and 

Since the output MD spatial domain signal is calculated directly from the 

input MD spatial domain signal, only one stage of filtering is required. 

Continuous-frequency techniques are more suitable for real-time filtering because 

y (k1, k2, , kM) is calculated immediately after x (k1, k2, , kM) is 
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known, for all k1, k2, , k. The edge effects inherent in discrete-frequency 

techniques can be eliminated if appropriate initial conditions are imposed at the 

boundaries of the input x(k 1, k2, , ku). 

There are two types of continuous-frequency filters, namely, Infinite Impulse 

Response (UK) filters, often referred to as recursive filters, and Finite Impulse 

Response (FIR) filters, often called non-recursive filters. These two filtering 

techniques are described in the next two sections. 

1.4.1. MD Non-Recursive (FIR) Filtering 

An MD non-recursive filter can be implemented by a LDE that is a special 

case of (1.33), that is, when b(q 1, q2, , q) = 0 for all q 1, q2, , q. 

Since b (q1, q2, , q) = 0 for all q1, q2, q, each output sample 

y (k1, k2, , k) is a function of the previous and current input samples only. 

Previously calculated output samples are not used to calculate the next output 

sample - hence the term non-recursive filter. Such a filter may be implemented 

using an LDE of the form 

y(k 1,k2, .. . I  

P1 1 P2 (1.34) 

= ... h(pl,p2,,pM)x(kl —pl,k2 -_p2, " ,kM_pM) 

l°'2° 'M° 

where P, < L1 ; i = 1, 2, , M. 



24 

A comparison of (1.34) and (1.11) shows that h (p 1,p 2, p) is the 

impulse response of the non-recursive filter represented by (1.34). Since F < L1 

for i = 1, 2, , M, the impulse response h (p1, p2, p) has a 

finite number of non-zero samples. Hence MD non-recursive filters are also called 

finite impulse response (FIR) filters. 

A long impulse response is usually required to achieve high selectivity (i.e. 

sharp transitions from passband to stopband) in the frequency domain. Due to the 

necessarily finite extent of the impulse response, non-recursive filters satisfying 

given filter specifications often require a much higher order than recursive filters. 

A convolution of the impulse response h (p 1,p 2, • . PM) with the MD 

input spatial domain signal x (k1, k2, , k) produces the MD output spatial 

domain signal y (k1, k2, . , kM) according to Equation (1.34). Thus, a higher 

order non-recursive filter requires a substantial number of computations and, if the 

filter order is sufficiently high, MD DFT filtering provides better computational 

efficiency. MD non-recursive filters are not used in this thesis. 

One of the advantages of MD non-recursive filters is that they are always 

BIBO stable, since a finite length impulse response is always absolutely summable, 

according to (1.2). Consequently, FIR filter design algorithms are free to 

manipulate the filter coefficients to approximate a given specification without 

having to impose stability constraints. 
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Finally, non-recursive filters can be designed to have a purely real frequency 

response which implies that the frequency response possesses linear phase 

characteristics (zero phase). This eliminates distortion of lines and edges caused 

by non-zero phase frequency responses. 

1.4.2. MD Recursive (JIR) Filtering 

An MD recursive filter can be implemented by an LDE of the form (1.33) 

where b (q1, q2, , q) # 0 for any q1, q2, • , q. Since each output 

value of y (k1, k2, , k) is a function of previously calculated output values, 

the term recursive filtering is used to describe this type of filtering operation. A 

recursive filter has an impulse response that has an infinite number of non-zero 

samples; therefore it is often called an infinite impulse response (UR) filter. The 

long impulse responses that are a characteristic of recursive filters can produce a 

high degree of selectivity in the frequency domain. 

Thus, for a given filter order, a recursive filter generally provides a higher 

degree of selectivity than a non-recursive filter. Alternatively, for a given filter 

specification, the required recursive filter usually has a much lower order than the 

corresponding non-recursive filter. This implies that fewer computations are 

required for a recursive filter than for the corresponding non-recursive filter. The 

computational efficiency of a recursive filter is a significant advantage and makes it 

more desirable than a non-recursive filter in real-time applications. 
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There are several methods for realizing MD recursive filters, the most 

common being the direct form method used in this thesis. As its name implies, the 

direct form method is a direct implementation of the recursive equation - the LDE 

for the recursive filter. The coefficients a (p 1' p2, are used to form an 

MD "input mask" of size P1 XP 2  x ' x M  points, where each point 

corresponds to one of the coefficients a (p1, p2, pa ). Similarly, the 

coefficients b (q1, q2, , q) are used to form a MD Q1 x x X QM 

point "output mask". 

Each input point overlapped by a point, or coefficient, on the mask is 

multiplied by that coefficient. All the weighted inputs are then added to form the 

input sum. Similarly, an output sum is created from the output mask and past 

outputs. The output sum is then subtracted from the input sum in accordance with 

the recursive equation to produce the next output point. 

For example, for the 2D recursive filter shown in Fig. 1.8, the solid lines in 

Fig. l.8a denote the boundary of the input mask and the solid lines in Fig. l.8b 

represent the boundary of the output mask. Each point within the input mask 

corresponds to a coefficient a (p1, p2), which multiplies the input value that it 

overlaps. These input values are added to form the input sum which is the first 

summation on the RHS of (1.33). Similarly, each point in the output mask 

corresponds to a coefficient b (q1, q2), which multiplies the past output value that 

it overlaps. These weighted past output values are now added to form the output 
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current input 
value 

a(0,0) 

+ + + + + 

input mask 

• - previous input values 
x - future input values 
+ - initial conditions 

(a) input mask 

k2 

t 

x x 

x x 

x x 

x 

x 

0 output mask 
L1-1 

• - past output values 
x - future output values 
0 - next output values 

(b) output mask 

Fig. 1.8. Input and output masks for a 2D recursive filter. 

sum - the second summation on the R.H.S. of (1.33). The next output value is 

now calculated by subtracting the output sum from the input sum in accordance 

with (1.33). The masks are then moved by one point to the next row or column, 

depending on the direction of recursion, and the process is repeated for the next 

output value. 

From Fig. 1.8, it is clear that some initial conditions have to be set for the 

input mask. These are chosen to be zero to ensure stability. 
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There are some disadvantages associated with MD recursive filters. The 

determination of the coefficients a(p 1,p 2, and b(q , q2, , q) is 

a complicated problem that is the subject of continuing research [3]. The stability 

of MD recursive filters is non-trivial and not well understood at present. 

Approximation methods that are used to derive MD recursive filter coefficients 

often require sophisticated, computationally intensive, algebraic or numerical 

techniques in order to avoid instability [3]. MD recursive filter designs that 

guarantee stable MD filters are now available but complicated design procedures 

still limit their widespread use [3]. 

Another problem is that recursive filters are not zero-phase, that is, they have 

a non-linear phase response which can distort finely-detailed features in an image. 

This problem is usually overcome by resorting to "two-pass" filtering. This 

involves cascading two recursive filters having z-domain transfer functions 

H (z1, z2, , ZM) and H(z j1, z', , z 1) which produces the real non-

negative frequency response IH (C)I, ()2 

The next section briefly describes the proposed CDFD filtering technique that 

combines some of the advantages of continuous-frequency filtering and discrete-

frequency filtering while circumventing some of the disadvantages inherent in each 

of these methods. 
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1.5. MD CDFD Filtering 

The method of CDFD filtering applies discrete-frequency filtering to an MD 

input spatial domain signal x (k1, k2, , ku ), over less than all of the M 

dimensions and then applies continuous-frequency filtering over the remaining 

dimensions. Hence, if discrete-frequency filtering is first applied over (M-N) of the 

M dimensions (N < M), then continuous frequency filtering will be applied over 

the remaining N dimensions. 

MD CDFD filtering is a three-step process. First, the (M-N)D DFT is applied 

to an input MD spatial domain signal x (k1, k2, , k) over the M-N variables 

kN+ l, kN+2, kM, resulting in a partially DFT transformed complex signal 

X (k1, k2, . , kb,, N+1' N+2' M)• This first step can be written as 

,kN ,c2N+2, • ' M 

LN+ l_l LN+2—1 LM—1 

= ..., x(k,k, ,kN ,kN+l,kN+2, . 

kN+l=O kN+2=O kM=O (1.35) 

1kN+1N+1 + kN+2N+2 + . kMM 
exp [-j 2 [ +  

LN+l LN•2 LM I] 
The second step in MD CDFD filtering consists of applying a continuous-

frequency filtering operator, such as an ND recursive (ILk) filter, to the complex 

signal X (k1, k2, . . . , kN, N+1' N+2' over the N variables 

k1, k2, , kN, to obtain the partially DFT transformed complex output signal 
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Y(k 1, k2, , k, N+1' N+2' ' M Since X(k 1,k2, 

N+l' N+2' is a complex valued signal, the ND recursive filter must 

operate separately on the real and imaginary parts of this signal. That is, a complex 

filtering operation is required. The filtered real and imaginary output signals are 

then combined to form the partially DFT transformed complex output signal 

Y(k 1, k2, , k, N+l' N+2' The second step can be written 

Y(k 1, k2, , k, N+I, N+2' 

: N+l N +2 ... , M 1P2 •• 'N 
p1=Op 2=0 PN =0 

X(k1—p1,k2—p2, ., kN_pN,QN+l,c≥N+2, ' M (1.36) 

Q1-1Q 2-1 

- E •••)• 
q1=O 12 0 

Y(k 1 —q 1,k2 —q2, 

where q1, q2, , qN   cannot be zero simultaneously and P, Qj < Li for 

i = 1, 2, , N. For each value of the discrete (M-N) tuple N+1' 

N+2 M' the appropriate ND recursive filter has a different set of 

coefficients (p i,p 2, ' N and 

bçç2 M (q1, q2, , Thus a total of 

LN+1LN+2•• ,LM (L1 x x " N)-Point ND recursive filtering 
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operations are performed. 

The third and final step in MD CDFD filtering is to apply the (M-N)D IDFT, 

over the M-N variables N+,' N+2' IIM ,to Y(k 1, k2, , k, 

N+1' N+2' M)• This produces the MD spatial domain output signal 

That is 

LN+l—1 LN+2_l LM—1 

(k 1, k2, k) = LN+ 1LN+2 : M N+1 N+2=0 

Y(k 1, k2, , k, N+l' N+2' 

I IN+1kN+1 + N+2kN+2 + MkM 
.,+   explj2itl L [ L N+l LN+2 LM 

(1.37) 

where 5 (k1, k2, , kM) is periodically extended in the dimensions over which 

the (M-N)D DFT is applied. 

For example, a 3D cone filter might have a magnitude passband frequency 

response IHD (.V 0 922' 3) I of unity at the discrete points shown in Fig. 1.9a 

where the K2 axis has been enlarged for clarification. Consider the design of the 

3D CDFD filter corresponding to the cone filter in Fig. 1.9a, using continuous-

frequency filtering in one dimension (N = 1) and discrete frequency filtering in the 
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remaining two dimensions. 

For a given input 3D signal x (k1, k2, k3) (M = 3, N = 1) the conventional 

two-dimensional DFT (M-N = 2) is applied to x (k1, k2, k3) over the dimensions 

k2 and k3, leading to a partially DFT transformed complex signal X (k1, K221 3) 

defined over a cubic grid. This step can be written as 

L2—1 L3-1 

X(k 1,c22, 3) = x(k 1,k2,k3)e 

k2=O k3=O 

j2itk3c23 

L2 e L3 (1.38) 

This completes the first step in the CDFD filtering process. 

Now, for each value of the discrete couple 0 2' a 31 the real and imaginary 

components of the corresponding complex sequence X (k1, 92 2' ≥3) are separately 

filtered by means of identical continuous-frequency filters (such as 1D recursive 

filters), leading to a filtered, complex output signal Y(k1, rl2' ≤3). Each of the 

required L2 x L3 filtering operations can be written 

P1—1 

Y(k 1, 92 2' 92 3) = a(p 1)X(k 1 • l' K221 3) - 

p1=o 

b(q 1)Y(k 1 - q1, 2' 3) 
q1=1 

where P1, Q1 <L 1. 

(1.39) 
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i 

Fig. 1.9 (a) Frequency response HD (≥) of a 3D cone filter 
(dots represent passband gain of unity). 

(b) CDFI) filter approximation of the frequency response in 
(a) (parallel lines represent passband gain of 

approximately unity). 
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The corresponding frequency response function H(w1, Q 2 C23) is continuous 

in the frequency variable co, and discrete in the frequency variables L22and 923, 

The corresponding passband magnitude frequency response H (w1, 92 2' 3) 

shown in Fig. l.9b, is simply a set of parallel straight lines, in the direction of the 

Co axis, along which 1H (co 1, 922, c23)I= 1. These lines pass through any plane 

= CO 1 at the points ' i 3) where CO is a constant. 
0 0 0 

Each passband line in the CDFD cone filter in 'Fig. 1.9b corresponds to the 

passband of a separate 1D continuous-frequency bandpass filter, having upper and 

lower cutoff frequencies chosen to achieve the required cone shape by 

appropriately choosing the values of the coefficients aç. 23 and b L2 
23 (q i) 

In this thesis, applications of CDFD filtering are described, where recursive 

(IIR) filtering is employed in one frequency dimension and DFT filtering is 

employed in the remaining frequency dimensions. It is shown that such filters 

have some inherent practical advantages over MD filters that are either entirely 

discrete or entirely continuous in the frequency domain. 

1.6. Scope and Objective of Thesis 

The objective of this thesis is to introduce and employ MD CDFD filtering in 

a variety of signal processing problems and to identify promising potential 

applications for MD CDFD filters. 
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Some of the basic concepts and notation which are used to describe the MD 

CDFD filtering technique are discussed in Chapter 2. Two key concepts, namely 

alternate array representations of M-variate functions and the partial DFT, are also 

introduced in Chapter 2. 

The CDFD filtering technique is described in Chapter 3. The frequency 

response of an MD CDFD filter is derived. Numerous design examples are 

provided to illustrate the CDFD filtering technique and the wide range of 

applications for MD CDFD filters. A comparison of a 2D CDFD fanstop filter 

with its UR and 2D DFT counterparts is used to demonstrate the advantages of 

CDFD filtering over conventional filtering techniques. 

A 2D image processing system using 2D CDFD filters is described in Chapter 

4. Hardware schemes for hardware implementation of MD CDFD filters are also 

proposed. 

Finally, conclusions and recommendations for further work are given in 

Chapter 5. 



CHAPTER 2 

NOTATION FOR CDFD FILTERING 

2.1. Introduction 

The equations describing the CDFD filtering technique in Section 1.5, are 

cumbersome. It is therefore desirable- to express them in a more compact form as 

since equations of this type are used extensively in this thesis to describe CDFD 

filtering. To this end, notation that allows a more compact representation of MD 

functions is developed in this chapter. A more compact notation for the MD DFT 

and partial MD DFT is also presented. 

In the next section, vector representation of MD frequency domain and spatial 

domain variables ,in MI) signals is introduced. 

2.2. Vector Representation of Frequency and Spatial Variables in MD Signals 

Consider the real MI) spatial domain signal x(k 1, k2, , k) e R which 

is a scalar real valued function (having region of support R) of the M spatial 

domain variables k1, k2, , k. The set of M spatial domain variables 

k1, k2, . , k' can be represented by a component column vector having 

elements that are discrete spatial variables. Thus, 

k {k1, k2, . , kM}' e RM (2.1) 



37 

where 0 ≤ k1 < Li; with k. L being positive integers for i = 1, 2, ', M. The 

prime in (2.1) denotes transposition. The MD spatial domain signal 

x(k 1, k2, , k) can now be written as a function of k in the form 

x(k 1, k2, , k) x(k) E R (2.2) 

Similarly, a complex MD frequency domain signal Y(1, 021 

e C (the C indicates that Y(≤ 1, Q 2' is a scalar complex valued 

function) can be written as a function of the MD column vector 0 having elements 

that are discrete-frequency variables, as follows 

1'2' '"' M' ERM 

where 0 ≤ Q < L with fl, L1 being positive integers for i = 1, 2, 

Thus, Y(≤ 1, 92 2'  M) can now be written as a function of 

Y(1, 2' ' M Y() C 

(2,3) 

,M. 

(2.4) 

The vector representation of a set of M variables can also be applied to 

continuous variables such as the set of M continuous-frequency variables 

CO (02, These variables can be expressed in terms of the MD column 

vector 0, having elements that are continuous-frequency variables, as follows : 

10)1CO2 0)M} eRM (2.5) 

Thus, a function x r CO 2' E R, of the continuous frequency variables 
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COP (02, can be written as a function of the MD column vector co, that 

is 

x (CO 1, , x(co) E R 21 (2.6) 

The representation of purely discrete or purely continuous signals as functions 

of MD column vectors (Equations (2.4) and (2.6), respectively) can be extended to 

mixed continuous-discrete signals. For example, consider the mixed continuous-

discrete frequency response of an MD CDID filter, H(1, (02, • 

N+l' N+2' E C. The N continuous frequency variables 

°i' 2' °N' can be expressed as an ND column vector (on, where 

{co, 02, , CON  a RN (2.7) 

The subscript c on co denotes that coc is a column vector associated with 

continuous frequency variables. 

Similarly, the M-N discrete frequency variables N+1' N+2' 

can be written as a (M-N)D column vector L, so that 

N+l' M+2' ' M E RM.N (2.8) 

where 0 ≤ 92i <L1 with 92i, L1 being positive integer for i = N + 1, N + 2, 

M. The subscript ci on Q signifies that 0 d is a column vector associated with 

discrete frequency variables. Henceforth, in this thesis, unless otherwise specified, 

the subscripts c and d will be used to denote vectors associated with continuous 
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and discrete frequency variables, respectively. 

Thus, the MD mixed continuous-discrete frequency response H (oh, 0)2, 

°N' N+1' N+2' M) can be written in terms of wC and 

That is 

H(0)1, 0)2, '1'N' N+l' N+2' ' M H(o), E C (2.9) 

where the R.H.S. is clearly a more compact expression than the L.H.S. 

MD signals that are a function of some frequency variables and some spatial 

variables, such as the partially DFT'ed MI) signal X (kr, k2, , kN , 

N+1' N+2' E C (Equation (1.35)), can also be expressed as 

functions of vectors. For the signal X (k1, k2, , kN, N+1' N+2' 

two vectors k C and Q are defined so that 

kc = {k1, k2, , kN} E RN (2.10) 

where k C is an ND column vector associated with continuous frequency variables 

and a is the (M-N)D column vector defined in (2.8). This leads directly to a 

more compact expression for X(k 1, k2, . , kN, N+l' N+2' 

that is 

X(k 1,k2, . ,kN ,c2N+1,≤2N+2, M X(kc, ad) EC (2.11) 

The vector representation of frequency and spatial variables described in this 

section is used throughout this thesis. In the next section, a system of notation that 
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represents MD signals using arrays is introduced. As a result, the CDFD filtering 

process can be described in a much more compact and convenient manner. 

2.3. Alternate Array Representations of Scalar Functions in 

M variables 

In section 2.2, a system of notation that represented sets of M variables as 

vectors was used to write M-variate functions (i.e. functions of M variables) in a 

more compact form. This notation was then extended to represent functions of two 

types of variables, such as spatial and frequency variables, as functions of two 

types of vectors (Equation (2.11)). In this section, the system of notation 

introduced in section 2.2 is further extended so that M-variate functions can be 

represented by arrays. 

Consider the MD complex signal A (k) e C, which is a scalar M-variate 

function and k is the vector defined in (2.1). In the 3D case, for example, k 

{k 1, k2, k3}' and A (k) A (k1, k2, k3). Now, if k is divided into the vector k 

and k such that kc is defined by (2.10) and 

/ 

d N+1' N+2' 

then A (k) can be written as follows: 

A(k) A(kc,kd) EC 

(2.12) 

(2.13) 

In the 3D example described above, let k = {k1} and k  = {k2, k3} so that 

A(k , kd) A(k 1, k2, k 3 ) as before. 



41 

Alternatively, A (kg, kd) can be written as an (M-N)D array Ad(kC) having 

elements that are scalar complex functions of the N variables k, that is 

A (kg, kd) Ad(kc) {A (k)} e CN+1N+2 xL (2.14) 

In Equation (2.14) above, the brackets { } enclose the term describing each 

element of the array Ad(kc). The subscript k d on the expression for an element 

Ad (ku) implies that the array Ad(kC) has an element for each value of the 
kd 

vector kd. Thus, the array Ad(kc) is of size LN+l x x x LM and 

each element Ad (kg) is a scalar complex function of the N variables k. 
kd 

The expression representing the array Ad is written in bold type to distinguish 

it from the expression for an element of the array Ad . The expression for an 

kd 

element of the array also contains an additional subscript vector (such as k  in 

Ad ) to distinguish it from the expression representing the array Ad. This 

kd 

notation will be used throughout this thesis to represent (M-N)D arrays of N-

variate scalar functions which may be either real or complex. 

For the 3D example described above, Equation (2.14) can be written as 

follows 
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A(kc,kd) = A(k 1,k2,k3)—A A(k 1) {A (k1)} 
k2,k3 

- Ad (k1) Ad (k1) 
0,0 0,1 

Ad (k1) Ad (Ic1) 
1,0 1,1 

Ad (Id) Ad (Ic 1) 
- L2—1,O L2—1,l 

Ad (k1) 
0,L 3—1 

Ad (k1) 
1,L3-1 

2-1,U13 1 - 

(k 1) 

(2.15) 

where the 2D array (or matrix) in (2.15) is clearly of size L2 x L3. 

A scalar M-variate function such as A (k) A (k, kd) r= C, can also be 

written as an ND array Ac(kd) having elements that are scalar complex functions 

of the M-N variables kd, that is 

LxLxxL 
A (k kd) AC(kd) {AC (kd)} c 1 2 N (2.16) 

The array AC has one element for each value of the vector k C and is of size L x 

x x LN. In the 3D case described in this section, equation (2.16) can 

now be written 
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A(kc,kd) = A(k 1,k2,k3) A(k,k) {A (k2,k3)} 

A (k2, k ) - 

A(k2, k3) 

L 
EC 1 

A (k2, k3) 
L1--1 

(2.17) 

where the 1D array (or vector) in (2.17) has L1 elements, each of which are 

complex scalar functions of the variables k2, k3. 

Thus, any of the following functional equivalences may be used to represent 

the scalar M-variate function A (kg, kd) A (k): 

Ac(kd) {Ac (kd)} A (' kd) Akc d(kc) {Ad kd (kc)} (2.18) 

which, in the 3D case described above, may be written as 
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ACO  (k21 k ) 

A(k2,k3) 

(k2,k3) 
L1-1 

A A(k 1,k2,k3) A 

- Ad (k1) Ad (k1) Ad (k1) 
0,0 0,1 O,L3-1 

Ad1Ø(kl) Ad11 (/Cl) Ad (k1) 
1,L3-1 

Ad (k1) Ad (k1) Ad 
L2— l,0 L2-1,1 L2-1,L3-1 

(2.19) 

It follows from (2.18) above that any scalar complex M-variate function X (k) 

can be expressed as an MD array of complex elements as follows 

LxLx"xL 
X(k)AXd{Xd}EC1 2 M 

For example, a 2D real scalar function x (k1, k2) can be written as 

(2.20) 
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x(k1,k2) Xd td k I, k2l 

Xd Xd Xd 
0,0 0,1 0,L2-1 

Xd Xd Xd 
1,0 1,1 1,L2-1 

Xd Xd Xd 
L1—1,0 L1-1,1 L1-1,L2-1 

(2.21) 

LxL 
1 2 

where the value of each real element xd is simply the value of the function 
k1, k2 

x (k1, k2) evaluated with the appropriate values of k1 and k2. 

In the next section, some element-wise array operations that facilitate the 

manipulation of MD arrays used to describe CDFD filtering are defined. 

2.4. Element-Wise Array Operations 

Three element-wise array operators are described in this section. They 

operate on MD arrays and are useful in describing both CDPD and MD DFT 

filtering. First, let A = JA }, B {Bk} and C = {Ck} be MI) real arrays of size 

L1 x L x x LM so that A, B, C E R 1><L 2X" xLM 
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Multiplication and Division 

The M-dimensional element-wise array multiplication operator M  is defined 

such that 

C=AMB 

implies that 

C {C k} = {AkBk} 

and also that 

(2.22) 

(2.23) 

C = {BkAk} = B A (2,24) 

For example, for two 2D arrays of size 3 x3, X = {Xk k and H {Hk JA 
21 1'2 

where 0 ≤ k1, k2 < 3, the 2D element-wise array multiplication operator '2 can be 

used to derive a third array Y = tk 1 k } such that 
' 2 

Y=H 2 X 

This can be written in full as 

(2.25) 
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Yo,o Yo,i YO,2 

Y1,o Yi,i Yi,2 

'2,O 2,1 2,2 

H00 H01 H02 

H10 H 11 H 12 

H20 H21 H22 

2 

xoo xoi x02 

x10 x11 x12 

x20 x21 x22 

H00X00 H01X01 H02X02 

H l,j l,o H 11X11 H12X12 

H20X20 H21X21 H22X22 

(2.26) 

Thus, each element of Y is the product of the corresponding elements in H and X. 

From (2.26), it is clear that all three arrays must have the same size and dimension. 

Similarly, the M-dimensional element-wise array division operator 'M  is 

defined for B 0 0, such that 

implies that 

C = A/MB 

C = {Ak/Bk} 

In the 2D example described above, this becomes 

(2.27) 

(2.28) 
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H=Y/2 X 

which can be written in full as 

H00 H01 H02 

H {Hk 1k2} H H 11  H121,0 

H20 H21 H22 

Yo,o Yo,i 'O,2 

Y1,o Yi,i ' 1,2 

'2,O 2,1y 2,2 

'2 

xoo xoi x02 

x10 x11 x12 

X20 X21 X22 

Y001X00 Y01/X01 'o,2'Xo,2 

Y10Ix 10 Y11/x 11 ' 1,2'x 1,2 

'2,O"2,0 2l2l Y22/X22 

(2.29) 

(2.30) 

provided X # 0. 

The two operators M  and 'M  defined above provide a useful relationship as 

follows 

Given 

then if B # 0 

C=AMB 

A=C/MB 

(2.31) 

(2.32) 
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Convolution 

Now assume that A  and B   are scalar functions of N variables. The M-

dimensional element-wise array convolution operator is defined such that 

implies that 

C = A*B 

C = {Ak * Bk} 

where * is the N-dimensional circular convolution operator. 

(2.33) 

(2.34) 

For example, for two 2D arrays of size 3 x 3, x (xk k (n and 
1'2 

h = {hk 1' 2 k (n)j where 0 ≤ k, k2 < 3, a third array y fykl,k2 (n can be 

defined such that 

Y = h x 

implies that 

(2.35) 
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y00(n 1) y01(n 1) y02(n 1) 

y y1,0(n 1) y11(n 1) y12(n 1) 

y2,0(n 1) y21(n 1) y22(n 1) 

h00(n 1) h01(n 1) h02(n 1) 

h.10(n 1) h11 (n 1) h12(n 1) 

h20(n 1) h21 (n 1) h22(n 1) 

x00(n 1) x01(n 1) x02(n 1) 

* x 0(n 1) x11 (n 1) x12(n 1) 

x20(n 1) x21(n1) X2,2 (n 

h00(n1) * x00(n 1) h01(n1) * x01(n 1) h02(n1) * x02(n1) 

h10(n1) * x10(n 1) h11(n1) * x11(n 1) h12(n1) * x12(n1) 

h20(n1) * x20(n 1) h21(n1) * x21 (n 1) h22(n1) * x22(n1) 

(2.36) 

where * is the 1D circular convolution operator [4]. In (2.36) above, each element 

of y is the result of a 1D circular convolution of the corresponding elements of h 

and x. 

In the next section, the MD DFT operator F'' [] is defined. The equations 

for MD DFT filtering are then rewritten using the notation described thus far in 

this chapter. 

2.5. The MD DFT Operator FM [] 

The MD operator FM [ ] operates on an MD spatial domain signal 

x (k) M x (k1, k2, ,kM) and transforms it into an MD frequency domain .signal 

X () X p 1' 2' as follows: 
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and 

X() F[x(k)] 

L1-1 L2-1 LM-1 

FM[x(k)] •.., x(k) 

k1=0 k2=0 kM=O 

k11 
exp j 27 -  

(2.37) 

(2.38) 

k22 kM 2M 

L r h 
' 

LM 

In Equation (2.38) above, even though x (k) has been written in the notation 

developed in this chapter, the multiple-summation and exponential terms on the 

R.H.S. are still cumbersome. In order to express the exponential term in a more 

compact form, the diagonal matrix L is defined such that 

L1 0 0 

o L2 0 

00•• 0 

L 

00 

(2.39) 

where L is the finite sequence length in the th dimension. The multiple-

summation in (2.38) will be written, for brevity, as follows: 

L1-1 L2-1 LM -1 L—1 

: 



52 

Thus, Equation (2.38) can now be written 

L-1 
F 2W [X (Ic)] x (k)exp[—j(2itL 1)k] 

k=O 
(2.41) 

where 1 and k are defined by (2.3) and (2.1) respectively. The superscript M on 

Fj", denotes that an MI) sequence is being transformed while the subscript 1,2W 

indicates that the transformation is applied over all M variables k1, k2 , k. 

The significance of the subscript 1,2W becomes apparent when the DFT 

operation is not performed on all M variables, such as during a partial DFT 

operation. For example, the partial DFT operation in Equation (1.35) in Chapter 1 

can be represented by the operator Fff+1,2W, since the DFT is applied only to the 

variables kN+ l, kN+2, . , k. It will be shown in the next section that the 

notation that allows the MD DFT operation to be written compactly (Equation 

(2.41)), can also be applied to the partial DFT. 

An operator F j {] representing the MD IDFT is defined as follows: 

x(k) F j[X()] A L-1 1 X() expU(2itL 1 
det(L) )kJ (2.42) 

where the negative sign on the superscript of F j% signifies that the inverse 

transform is applied. As an example of the notation described in this chapter, the 

MD DFT filtering process, represented by equations (1.19), ( 1.20) and (1.21) in 
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Chapter 1, is now described using this new notation. 

Equation (1.19) can be written as follows: 

X () = F'i'[x (k)] L-1 x (k) exp[—j (2tL 1)k] 

k=0 
(2.43) 

Equation (1.20) can be written as 

= H()X(≤2') (2.44) 

If Y (a), H  () and X () are expressed as MI) arrays having real or complex 

elements as in (2.20), then (2.44) can also be written as 

Y() {Y} = Hd M  Xd {HdXd} (2.45) 

The MD frequency response of the filter can be derived from (2.45) using (2.31) 

and (2.32), so that 

H(≤)H {H} = P'dç / Xd Q 1 (2,46) 

The final step in the MD DFT filtering process, represented by (1.21) can be 

written as follows 

1 L-1 
5 (k) = F {Y()] = det(L) Y(QUQ) exp(2irL 1)k] (2.47) 

In the next section, the partial Ml) DFT is described using the notation developed 

thus far in this chapter. 
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2.6. The Partial MD DFT 

The partial MD DFT operation on an MD signal x (k); k 

{k 1, k2, , k} 11 , consists of applying the DFT to not all of the M variables k. 

Let k be partitioned as follows: 

where 

k a {kc,kd} € RM 

{k 1, k2, , k}' E RN 

lcd CkN+l, kN+2, .. . , k}' €RM 

and N < M. Define the diagonal matrix 

Ld 

LN+l 0 0 

0 0 

0 0 LM 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

where L are the sequence lengths in the 1th dimension for 

i=N+1,N+2, ,M. 

The partial MD DFT of x (k), denoted by the operator FM [] is defined 
N+l,M 

by 
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LN+l_l LN+2_l LM —' 

F#+i,M [x(k)] x(k, kd) 

kN+1=O kN+2=O kM= 0 

exp 1-i≤≥(27rL1)kd] EC 
(2.52) 

where Q is given by (2.8). The multiple-summation in (2.52) will be written, for 

brevity, as follows: 

LN+l—1 LN+2—1 LM—1 Ld—1 

: 
kN+l=O kN+2=O kMO kdO 

(2.53) 

using the notation introduced in (2.40). 

The above summations are over the variables k  and do not include the 

variables k. It is therefore more convenient to write the scalar function x (k) kd) 

as an array xc(kd) r= RL 1xL 2x XL N, having elements that are scalar functions 

of the M-N variables kd. This is done using the functional equivalences in (2.18), 

so that Equation (2.52) now becomes 

Fj 1,j [x (k)) A xc(kd)exp[_Jd(21tLcj'kdI 

kd=O 

(2.54) 

The expression on the RHS of (2.54) is evaluated by applying the (M-N)D DFT to 

each element x (k d)of the ND array xc(kd), over the M-N variables kd. The 
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resulting ND array of (M-N)D DFT'ed sequences X can be written 
Ckc 

Xc(d) {xC (Qd)} = {F+lM [XC(kd)]} 
L1xL,.,x xL 

EC' '- N 

Combining Equations (2.54) and (2.55) leads directly to 

Ld—1 

F f+lM [x(k)] xc(kd) exp[—id(27tLj 1)kd1 X() 
YO 

= {Fff+1M [xc(kd)] 
L1xL,x xL 

N 

(2.55) 

(2.56) 

The partial MD DFT Xc(≤d) has the same dimensions as xc(kd). Therefore, X is 

an array in C L1xT2x• XL having complex elements and of size 

L1xL2x 

The partial MD IDFT denoted by F,M[] can be written as 
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FgçM[X(kC ed)] 

Ld—1 

1 Xc(≤d) exp[/L (27Ld1)kd] 
det(Ld) d° 

'N+1,M [xC(d)] f = x(k) x (k) 

(2.57) 

In (2.57), X (kg, is a partially MD DFT'ed signal that can be expressed as the 

ND array Xc(d) having elements that are scalar complex functions of ≤ d. The 

application of the partial MI) IDFT Fg [1 to Xc(Qd) results in the ND array 

xc(kd) having elements that are scalar complex functions of kd. xc(kd) can then 

be expressed as a scalar complex function x (k) using the functional equivalences in 

(2.18). 

As an example, consider the 3D scalar real function x (k1, k2, k3); 0 ≤ k <3 

for i = 1, 2,3 (i.e. k = (k1, k2, k3}). Let k C = {k1, k2} and k  = {k3}. The 

function x (k1, k2, k3) x (ku, kd) can be expressed as a 2D array (or matrix) 

xc(kd) using the functional equivalences in (2.18). That is, 

x(k) x(k , kd) = x(k 1, k2, k3) x(k3) (k3)1? 
tck J'k 2  j 

This can be written in full as 

(2.58) 
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x(k) x(k 1,k2,k3) x(k3) E 

x 00(k3) x 01 (k3) x 02(k3) 

x C 1 0 (k 3)x (k 3)x 2 (k3) c1  

xc 20 (k 3)x 1 c2(k 3)x (k3) c22 

(2.59) 

Now, the partial MI) DFT, which in this case is simply the 1D DFT in the 

variable k3, is applied to each element of x(k3) so that 

Fff+1M[x(k)1 = F 3 [x(k 1, k2, k3)] X(3) 

F3 [x00(k3xI F3 [x 01 (k3)1 F3 [xC 0,2 (k3)I 

F3 [x10(k3)] F ,3 [x 11 (k3)1 F3 [x (k1,2 3)] 

F3 [x (k3)J F 3 3 3 [XC (/C3)] F3 [x (k3)] 
2,0 ' 2,1 ' 2,2 

(2.60) 

where F 3 [1 is simply a 1D DFT on the variable k3. Thus, for the top left hand 

element of the matrix in (2.60), 

2 —j22t 
F3 {x (Ic3)] x (Ic3 C00 3) ) e = X( (2.61) 
3,3 C00 k3=0 0,0 

k3≤3 

Similar operations are performed on the other elements of X(≤T3) leading directly 

to 
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X(3) 

X (D 3) 
0,0 

Xc () 
1,0 

X (0 3) 
2,0 

= F 3 [x(k 1,k2,k3)] 

XC ( 3) 
0,2 

Xc ( 3) 
1,2 

X 
2,2 

(2.62) 

which is the partial 3D DFT of x (k1, k2, k3) performed on the variable k3. Using 

the functional equivalences in (2.18), X(Q3) can also be written as 

VfC\A va. 1, 7 
'2' 3 (2.63) 

where X(k 1, k2, 3) is a scalar complex function of the spatial variables k1, k2 

and the frequency variable 

In the next chapter, the CDFD filtering process is described using the notation 

developed in this chapter. 



CHAPTER 3 

CDFD FILTERING AND APPLICATIONS 

3.1. Introduction 

The notation developed in Chapter 2 is used to provide a detailed description 

of MD CDFD filtering in this chapter. The procedure used to calculate the output 

sequence y (k) for an MD CDFD filter is described in Section 32. The frequency 

response of MD CDFD filters is derived in Section 3.3 and compared with the 

frequency response of MD DFT filters. The design of CDFD filters is described in 

Section 3.4. Various design considerations are examined and discussed. Finally, 

the advantages and disadvantages of CDFD filtering compared to conventional 

filtering techniques are discussed in Section 3.5. 

3.2. Calculation of the Output Sequence y (k) for CDFD filters 

The first step in MD CDFD filtering is to obtain the partial MD DFT of the 

MD input signal x (k), as given by (2.56). The expression Xc(Ld) in (2.56) is the 

partial MD DFT of x (k) where the DFT is applied over the (M-N) variables kd 

{kN+l, kN+2, . . , k }'. Using the functional equivalences in (2.18), Xc(d), 

which is an ND array of (M-N)-variate complex sequences X can be 

written as an (M-N)D array Xd(kc) of N-variate complex sequences Xd (ks ), as 
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follows 

Xc(d) {x C (d)} X (k, Qd Xd(kc) {xd(kC)} 

(3.1) 

= Fjf+l,M[x(k)] 

The signals Xc(d), Xd(kc) and X (kg, ≥) in (3.1) are all periodically 

extended in the (M-N) dimensions Q because the partial MD DFT is applied over 

these dimensions. In the general MD DFT case, periodic extension is present in all 

M dimensions and gives rise to "edge effects" in the filtered output MD signal [3]. 

The second step in MD CDFD filtering is to apply an array filtering operator 

to the partial MD DFT transformed array Xd(kc). This array filtering operator (I 

consists of a set of LSI continuous-frequency ND filter operators 4 d, so that 

•Qdj f, N+1 N+2 'M} 
(3,2) 

In (3.2), the array operator 1 must be of dimension (M-N), the same as Xd(kc). 

The elemental LSI filter operators are applied to each sequence in the N 
ci 

variables k , Xd (k1,k2, . .. , kN ), over k. Typically, 

N+1N+2 

4j2 corresponds to an hR or FIR filter having a corresponding ND impulse 
d 

response h a ci (k1, k2, • . , kN ) d h (kg). The corresponding output of such 
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a filter is given by 

1'd (k)=h (k)*X 61 (k) 

d d 
(3.3) 

where * implies N-dimensional convolution over the N variables k. In general, 

Xd (k C)is complex, implying that the real and imaginary parts are filtered 

separately to obtain the complex filtered output sequence Yd (kg). The 

complete (M-N)-dimensional array Yu(k) d (k)} is therefore given by 

Yd(kc) = {hQ(kc) * Xd(kC)} 
(3.4) 

which, for brevity, can be written in terms of the element-wise array convolution 

operator as 

where 

Yd(kc) = hd(kc) * f N Xd(kc) 

hd(kc) fh a (k)} 

(3.5) 

This describes the (M-N)-dimensional set of ND convolution operations, where 

LN+lxLN+2x LN+1XLN+2X* 
dE d' cI 

h  are all periodically extended in the (M-N) variables d• Following the 
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notation in (2.18), Yd(kc) can be written in alternate array representations as 

Yd(kc) ' d' k) Yc(K d) C k C (a  d)J (3.6) 

where Y is a complex M-variate scalar function and yc € C L 1xL,2x > N is 

an N-dimensional array having elements that are scalar complex 

functions of the (M-N) variables 

The third and final step of MD CDFL) filtering is to obtain the inverse partial 

DFT of 'cd over the frequencies 0 d' given by 

F (a d)] N+1,M IYC 

Ld—1 LxLxxLN 
IL I exp[j ≤d(21 Ld )kdl C 1 2 

(3.7) 

F-M [YckC(≤)If 

LxLxxL 
= {YC kd} c 1 2 N 

[This operation corresponds to the conventional M dimensional inverse DFT for 

N=O.] Thus, using the notation in (2.18), the final output sequence is defined as 
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5 (k) = F'lM IYC d)] (3.8) 

The three steps for CDFD filtering, as described in equations (3.1), (3.5) and (3.7) 

may be combined to give 

(k) yc(kd) = FM [h(k) *jJ_N [Fff+1M [ (k)]]] 
which is the CDFD input/output equation, and can be written in full as 

j(k) yc(cd) 

1 Ld-1 

Y-
d 

k h" 
' c' M—N 

Ld—1 

x (k, kd)exp[—J d(21tLj')kd11 

kd=O 

exp[j d(2tLd)kd] 

(3.9) 

(3.10) 

The sequence 5 (k) is the MD periodically extended output signal of the CDFD 

filter. It is important to note that 5' (k) is periodically extended only in the 

dimensions kN+ l, kN+2, ,kM over which the DFT is applied. The final 

output sequence y (k) is that part of 55(k) having support in 1? M  where 

RM = {k : 0:5 k ≤ L - 1, i = 1, 2, , M ; L1 integer, L i <oo 

(3.11) 

for i = N + 1, N + 2, , M} 

RM is similar to the region of support RM for the conventional DPT case. 
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However, for CDFD filtering, the region of support RM does not require that L 

be integer for i ≤ N because the partial (M-N)D DFT is not evaluated over the 

dimensions ki for i ≤ N. This more relaxed region of support RM eliminates 

troublesome "edge effects" in the N dimensions k unlike the conventional DFT 

case where edge effects are present in all M dimensions. 

An interesting special case occurs for N 0, that is, for discrete-frequency 

filtering of all M variables. In this case, each element of the array h(k) in (3.10) 

corresponds to h (k) in (3.3) and is equal to constants p where p is a 
d d d 

real number. Then, from (3,3) 

Y (10 (k)=p K, X (k) 

Therefore, with p {p } L1xL2x ,LM R and kc = 0, it follows that 
d 

'd PMXd. 

(3.12) 

(3.13) 

From Equations (2.32) and (2.33) it is easily shown that (3.13) is the same as 

Equation (2.44), implying that CDFD filtering is equivalent to conventional MD 

DFT filtering for the special case when N = 0. 

3.2.1. Example: The 3D Case with N = 1 

The 2D partial DPi' is applied to the input signal x (k) = x (k1, k2, k3) with 

k = {k1} and kd={k2, k3}, so that the output of the DFT process is given by 
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X (kc$d) = X(k1, 2' 3) 

= F 3 [x(k 1, k2, k3)] 

L2-1L 3-1 [ Ik k3c3 

= x(k 1,k2,k3)exp j2[ L + L ]] 
k2 0 k3__02 3 

(3.14) 

where 12 d = fK221 23}. This is represented by the first of the three blocks in Fig. 

3.1. The signal X (kg, ≤u) = X (k1, 0 2,03) may be thought of as a set of one-

dimensional (N = 1 ) complex sequences where each sequence corresponds to a 

particular discrete pair 92 21.Q 3' Thus, there are L2L3 such complex sequences 

having support in R . X (kg) can be expressed 

representations, according to (3.1), as follows 

in its alternate array 

rX X(1)2192 3) 2192 A Xk 1, 2' ≤≥3) A Xd(kl) d 1 23 j (3.15) 
92 

The second step in the filtering process is to apply a two-dimensional (M-N = 

2) array filtering operator cI[] J4 Q 2 3 []} to the 2D partial DFT array Xd(kl). 

Each element [] of 'I[] is an LSI continuous-frequency one-dimensional 
23 

(N = 1) filter operator which, in this example, is a 1D 111( filter operation on the 

variable k1 of each elemental sequence Xd (k 1 of Xd(k i• The second step 

23 

can therefore be written in terms of the filtering operator [] as follows 
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2D DFT N2 1D fiR filters Inverse 2D DFT 

k1 

input sequence 

X (k1, 01, 3) 

k1 

Fig. 3.1. Block diagram of a 3D CDFD filter. 
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Yu(ki) (k [Xd (k1)l 
92 292  i)} = D[Xd(k L ≥ 3 (3.16) 

Each elemental filtering operation, denoted by the 0. [X (k term of 

2 23 

(3.16), can be written as a linear difference equation (LDE) of the form 

P—i 
Yd (k1) = a Xd (k, - P) 

L2292  =0 PQ 20 23 

(3.17) 

Q-1 
— Zb - q) 

q=1 92 23 92 23  

The coefficients a and b are functions of 0 2' 3• The frequency 
Pç2ç 3 92 203 

response corresponding to (3.17) is given by 

P—i pfl1il 

P° 2 92 3 [ 2[ L1 jj  exp—j 

Hd = (3.18) 
92 33 Q-1 92 1  Z ll 

1+b exp •_ 
q=1 23 L 2[ L1  

having a corresponding unit impulse response hd 92 92 (k). Equation (3.17) may 

23 

therefore be written in the alternate form 

Yd a 92 (k i = Xd K2 Q (k i * lid (k 

23 23 23 
(3.19) 

where * represents 1D convolution in the variable k1. Equation (3.19) represents 
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an elemental convolution that can be written in the array notation of (2.33) so that 

Yd(k) {Yd 2 3 J(k1)] = Xd(kl) * 1 h(k1) 

fxd (k ) * lid (k 
23 92 2 92 3 5 

(3.20) 

where * is the 1D convolution operator in k . The second step is represented by 

the second block and the inset in Fig. 3.1. 

Using the functional equivalences in (3.1), Yd(kl) can be written as 

{Yd 23 (k i)1 c2' 3) 2' 3)} 

5 
(3.21) 

Y(k, Q2' 3) 

The third and final step is to obtain the partial 3D IDET of c2' ≤≥3) with 

respect to the variables ≤ 2, 03 and is represented by the third block in Fig. 3.1. 

The output of this operation is given by 

5? (k , kd) = 5(k 1,k2, k3) 

= F {Y (k1, 2' 3)1 

L2-1 L3-1 k2Q k323ll 
= L2 Y(k1, 2' 3P[2[ L2 + L3 jj 

3 2 0 3_0 

(3.22) 
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This signal is periodically extended in the dimensions k and k3, with periods L2 

and L3, respectively. The output y (k) = y (k1, k2, k3) is that part of 9 (k1, k2, 

k 3 ) having support in 

1R 3 = {k 0:5 k ≤ L - 1 , i = 1, 2, 3 ; L integer for i = 2,3} 

3.3. Steady-State Frequency Response of CDFD Filters 

In order to derive an expression for the steady-state frequency response of a 

CDFD filter, it is useful to express MD signals that are functions of both frequency 

and spatial variables as M-variate functions (e.g. x (k) where N of the M 

variables are spatial variables (kg) and the rest of the variables are frequency 

variables (0 d)' Thus, the alternate array representation of MD signals will not be 

used in this section. 

The calculation of the overall steady-state input-output frequency response of 

MD CDFD filters requires that the input signal x (k) be bounded in only those 

dimensions kN+l, kN+2, , kM   over which the partial MD DFT and MD 

IDFT are applied. (A similar assumption must be made for all M dimensions to 

calculate the frequency response for conventional MD DFT filters). However, x (k) 

may be spatially unbounded for the dimensions k1, k2, ,kN over which 

continuous-frequency filtering occurs. 

The impulse response of an MD CDFD filter is expressed as an (M-N)D array 

of N-variate functions in Equation (3.5). Using the functional equivalences in 
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(3. 1), hu(k) can also be expressed as an M-variate function h (k , of N 

spatial variables k C and (M-N) frequency variables ≤ d. Thus, 

hd(kc) E  {hd( C)} h (kc,d) 
(3.23) 

The steady-state frequency response of an MD CDFD filter H(i2 ≤d), can be 

obtained by applying the partial MD DFT to the impulse response of the filter 

h (kg, ad' on the variables Ice, as follows: 

H = F [h 

L1-1 L2-1 LN-1 

= , h d)exp -j 27t 
It 1=0 12=0 

where 1C = {l1, 12, 1N1 is used instead of kc for convenience. 

(3.24) 

The steady state frequency response H (≤, is the ratio of the reponse 

5 (k) to the input Jk (k), where the input is an exponential of the form 

I IM k 1 .a 1  11 II 
(k) it explj 21 1 

L.II L ti=i 'ii 
(3.25) 

and 0 is an integer for all i and L is an integer for i = N + 1, N + 2, , M. 

The above constraints on Li are required to ensure that x (k), which is defined as 

the part of 2(k) in IRM, has no discontinuities at the boundaries of JRM, thereby 

ensuring (as in the conventional MD DFT case) that X (kg, , Y (kg, and 
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j(k) are periodic. If Li, I = N + 1, N + 2, ,,M are permitted to be non-

integers, then spectral leakage effects will occur in X (kg, a d' Y (lc , and 5 (k) 

due to discontinuities in x (k) at the boundaries of RM, exactly as for the 

conventional MD DFT case. 

After the first step in the MD CDFD filtering technique, the input to the IIR 

filter is the partial MD DFT of x (Ic) given by 

X (kg, = FfSf+lM[x(k)J = 6(d— d0)hh4dIexp j2 (3.26) 

which is an unbounded N-dimensional complex exponential sequence. The (M-

N)D delta function 5(&2d— d ) indicates 
0 

is present at the point 0 d = 12  d E RM. 
0 

follows: 

that the energy of the transformed signal 

The (M-N)t) delta function is defined as 

N+lN+l0' N+2N+20' . ' MM0 (3.27) 

The second step in the filtering process is to filter each X (kg, ) using an 

N-dimensional I[R filter. The output of each IIR filter Y(k, can be expressed 

as the N dimensional convolution of the input sequence X (kg, with the unit 

impulse response of the IIR filter h (Ice, as follows 
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Y (kg, = X (k , * h (kg, 

L1-1 L2-1 LN_l (3.28) 

= Z I •.., X (k - 

11=0 12 0 

where * represents ND convolution over the variables 

ic • 'N 

and 

,kN 1N 

Substituting (3.26) in (3.28) gives 

L1-1 L2-1 LN—1 N k -11 
Y (kg, = I F, ..., ö(Qd— d) ILd Iexp j 2t I 

11=0 120lN =0 L L=' L1  

I IN1 1 
expl—j2irl   h(Ic 

L ti=i 

[ IN k1111l 
= 6(Qd_ad0)11 d L 1expIJ2I :   I 

L [i=i i ii 

L1-1L 2-1 LN—1 [ I 
•, h(1, —j2lrl 

11 0 12 0 Li1 Jj 

Substituting (3.24) and (3.26) in (3.29) gives 

(3.29) 
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Y (kg, = X (kg, d)FI (3.30) 

The third and final step in the filtering process is to obtain the partial MD 

IDFT of (3.30) which leads directly to 

LN+l_l LN+2—1 LM -1 N k 

(k) = ..., 27c L 
N+1 ° N+2 M =0 L [ =1 I 

(3.31) 

H(≤ j2tI  C"do , d)exP[ M k ≤ 

Li=N+1 L1  
Rearranging terms in (3.31) and substituting (3.25) gives 

(k) = H (, ad 0 ) ('i) 

Thus, for any given value of ! d e IRM, Equation (3.32) can be written as 

5(k) = 

(3.32) 

(3.33) 

Rearranging terms in (3.33) leads directly to the following expression for the 

steady-state frequency response of an MD CDFD filter. That is, with (k) as given 

in Equation (3.25), 

H( C , a d (k) = j(k) (3.34) 

Consequently, the frequency responses of the set of hR filters uniquely determine 

the overall input-output frequency response of the CDFD filter. 
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The above frequency response H (, is periodically extended only in the 

dimensions Q because the DFTs are applied over these dimensions. It should be 

noted that the troublesome "edge effects" that can occur at the boundaries of RM 

(due to discontinuities of (k)) do not occur in the dimensions k1, k2, , k 

over which continuous-frequency filtering is applied. 

The periodic extension of the frequency response of DFT and CDFD filters is 

illustrated in Fig. 3,2. The periodic extension of the frequency response of a 3D 

DFT cone filter is shown in Fig 3.2a. The ≤23 axis has been enlarged for 

clarification and the dots describe the region in which the gain of the ideal cone 

filter is unity. The frequency response is repeated in, all three directions 

92 3 with periods L1, L2, L3 respectively, because the DFT is applied in all three 

dimensions 2' 3' 

The corresponding 3D CDFD cone filter, employing continuous-frequency 

(HR) filtering in the co dimension and discrete-frequency (DFT) filtering in the 

and 0 dimensions, is shown in Fig. 3.2b. No periodic extension is present in co 1 

direction because continuous frequency (e.g. IIR) filtering is applied in this 

dimension. The parallel lines represent a passband gain of approximately unity. In 

this case, the continuous-discrete frequency response is repeated only in the 02 

and 92  dimensions, with periods L2 and L3 respectively, because DFT filtering is 

applied only over these two dimensions. The absence of periodic extension in the 
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(a) 3D DET cone filter ' 

frequency response 

(b) 3DCDFD cone filter 
frequency response 

Fig. 3.2. Periodic extension of frequency response 
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CO 1 dimension eliminates "edge effects" in this dimension. This constitutes one of 

the advantages inherent in CD?]) filtering. 

3.4. Design of CDFD Filters 

The design of CD?]) filters from a given set of specifications is described 

here with the aid of illustrative examples. The design procedure and the examples 

are based on CDFD filters that employ continuous-frequency filtering in one 

dimension and discrete-frequency filtering in the remaining dimensions. This type 

of CDFD filter can be designed easily because the one-dimensional HR filters 

employed are easy to design and stability issues are well understood. It is shown 

that this approach has the added advantage that any passband shape, limited by the 

frequency responses of the 1D ItR filter sections, can be implemented. 

3.4.1. Design Considerations 

The design of CDFD filters involves finding a suitable approximation to a 

specified "ideal" frequency response. This approach is somewhat similar to the 

design of MD UR filters because the one-dimensional continuous-frequency filters 

used in the CD?]) technique are 1D HR filters; 

The required filter order for the ID HR filters is a function of the specified 

passband shape and the transition region from the passband to stopband. In 

general, MD CDFD filters employ lower filter orders than their MD hR 

counterparts, which results in computational savings. When choosing the filter 
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order and the passband and stopband widths, it is important to ensure that desired 

signal frequencies lie well within the passband of the 1D IIR filters. If the desired 

signal frequencies lie in the transition region of the 1D IIR filters, then the output 

of the CDFD filter will have a large imaginary component because the maximum 

phase shift occurs in the transition region of an I[R filter. This is undesirable 

because the output of the CDFD filter has an imaginary component that must be 

eliminated by techniques, such as two-pass filtering, which result in high 

computational overheads. An appropriate choice of filter order and passband width 

for the 1D hR filters allows the imaginary component of the output of the CDFD 

filter to be neglected. 

For example, one quadrant of the frequency response of a 2D CDFD 

circularly symmetric lowpass filter is shown in Fig. 3.3. Discrete-frequency 

filtering (DFT) is applied in the Q1 dimension and continuous-frequency filtering is 

applied in the (02 dimension. This implies that a set of 1D IIR filters, one for each 

value of 2i, is used to approximate the 2D frequency response. From 

straightforward geometric considerations, it is clear that these 1D IIR filters must 

be lowpass filters. 

The difference between a good design (Fig. 3.3a) and a poor design (Fig. 

3.3b) is illustrated in Fig. 3.3. The dots represent a desired set of frequencies. In 

Fig. 3.3a, the desired signal lies well within the passband of 2D CDFD filter and 

hence, in the passband of the 1D IIR filter used to implement it (inset). In Fig. 
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(02 

desired signal frequency 

0 
desired signal 

(a) Good design 

transition region 

EM passband 

desired signal 

(b) Poor design 

0)2 

desired signal frequency 

Fig. 3.3. One quadrant of the frequency response of a circularly 
symmetric lowpass 2D CDFD filter with continuous 

frequency (HR) filtering in the 02 dimension. The 

insets show the 1D. IIR lowpass filter frequency response 
at the cross-section. 

3.3b, the desired signal lies in the transition region of the CDFD filter giving rise 

to undesirable phase shifts and, consequently, a large undesirable imaginary 

component at the output of the CDFD filter. 
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It is generally desirable to use the same filter order for the set of 1D hR 

filters because this simplifies hardware implementation of the resulting CDFD 

filters. An advantage of the CDFD technique that makes it suitable for hardware 

implementation is the fact that in some cases the same 1D 1W filter may be used 

more than once to implement the CDFD filter. Furthermore, for some values of 

the discrete-frequency variables, no 1D 1W filter need be implemented when the 

gain of the filter is required to be zero, resulting in computational savings and 

reduced hardware complexity. 

These design considerations are demonstrated in Fig. 3.4 which shows the 

circularly symmetric 2D CDFD lowpass filter in 2D frequency space. It is clear 

from symmetry, that the set of 1D hR filters used at 921 ≤ 92 are the same filters 
0 

required at 0 ≥ (L1 - - 1). 
0 

It is also clear that for 0 1 < 92 < (L 1 -  Ql  - 1), no 1D I[R filters are 
0 0 

required due to the zero passband specified for these frequencies. In the next 

section, a summary of the design procedure is described for MD CDFD filters 

employing continuous-frequency HR filtering in one signal dimension and discrete-

frequency filtering in the remaining signal dimensions. 

3.4.2. Design Procedure for MD CDFD Filters 

The design procedure for MD CDFD filters is listed below. It is assumed that 

continuous-frequency filtering is employed in only one dimension and discrete-
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2 

(0, 2ir) 

4 
2it 

(21; 2iu) 

passband 

(0,0) 

L1 

(21; 0) 

10 27c(L14 1 -1) 

L1 

L1 

Fig. 3.4. Symmetry in passband of circularly symmetric 2D CDFD 
lowpass filter. 

frequency filtering is employed in the remaining (M-1) dimensions. 

1. The specified MD frequency response is examined for symmetry. By choosing 

the proper dimension for continuous-frequency HR filtering, utilising the 

symmetry of the MD frequency response, the overall hardware requirements 

for the hR filters can be reduced to a minimum. 
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2. After dimension co for HR filtering has been chosen, the specified MD 

frequency response is projected on to this dimension for each value of the 

discrete-frequency variables 0 2 Q 3, M• This results in a set of filter 

specifications for a total of L x L3 x x LM 1D hR filters. 

3. The required L2 x L3 x x LM 1D hR filters are designed based on the 

specifications obtained in (2). 

a) It is desirable to use the same filter order for all 1D hR filters. 

b) 1D hR filters may not be required for all values of 22, Q 31 QM . At 

some values an "all go" function may be required while at other values an "all 

stop" function may be required. The set of filters may therefore be 

completely bypassed (all go) or the output for a given value of 92 2' Q 31 

may simply be 0 ("all stop"). 

c) The frequency response of the MD CDFD filter will then be completely 

determined by the frequency responses of the 1D HR filters. 

d) Upon completion of these steps, there will be up to L x L3 x x LM 

LDEs to be implemented. 

e) The filtering process can now be carried out according to the procedure 

outlined in Section 3.2. 



83 

3.4.3. Design Examples of CDFD Filters 

3.4.3.1. CDFD Approximation of a 3D Cone-Stop Filter - A Design Example 

The following example illustrates how the CDFD filtering technique can be 

used to approximate and implement a 3D digital filter having a cone-stop 

magnitude frequency response, as shown in Fig. 3.5a. The filter has an input x (k) 

and output y (k) where k = {k1, k2, k3}'. The shaded region represents the 

stopband of the filter in which the value of the magnitude frequency response is 

ideally 0 at all discrete-frequency points Q = {≤ i, l2, a 3}. The ideal magnitude 

frequency response IH () I is unity outside the shaded cone region. 

In this example, the magnitude frequency response IH (Q) I in Fig. 3.5a is 

approximated using a 3D CDFD filter having HR filtering in one signal dimension 

and DFT filtering in the remaining two signal dimensions Q 2 ≤ 3• 

In the case of conventional discrete-frequency filtering, IH () I is defined on a 

3D rectangular grid, as indicated in the Q = 0 section shown in Fig. 3.5b. 

However, for CDFD filtering, the corresponding frequency-response is continuous 

in the co dimension due to continuous frequency filtering along k . IH (co 1, 

2' 3) I is defined as the vertical lines shown for Q = 0 in Fig. 3.5c. The full 

set of vertical lines over the ≤ 2, Q 3 plane defines the passbands of the required set 

of lowpass filters which, from simple geometry, must have bandwidths B 2' 92 3) 

that are proportional to the distance + of the lines from the origin in the 
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= 0 plane. Thus, 

B( 2, 3) = B0\J ± 02 

where B is a constant that determines the width of the cone. 

The impulse response of the ideal lowpass filter, having the frequency 

response shown in Fig, 3.5d, is given by 

lid 92 (k1) = Fj [H(c 1,c 2,Q3)] 

23 

(3.35) 

(3.36) 

which is the impulse response of the required 3D cone-stop filter at specific values 

of Q2 and ≤23. 

Let the sequence lengths of x (k1, k2, k3) in the k2 and k3 directions be 64 

and an unspecified length in that is, L2 = L3 = 64 and L  = diag{L2, L3}. 

Using the expression for the partial MI) ]DFT from Equation (2.57) in Equation 

(3.36) gives 

L—1 

lid (k i = - H ( P 92  2' 92 3)exp 
2 92 3 L1 

L1 

(3.37) 92 1 

If the sequence length L1 in is sufficiently large and k1 4Z L i"2, then Equation 

(3.37) can be written as 
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IH (o1,c)Ii 3=0 

(c) 

IH 2) 1 I3 =O 
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/ 
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(b) 

1H C203(COO I 

1.0 

—4 (02, 03) 

(d) 

Ok 

a (:≥, L13) 

Fig. 3.5. Design of 3D CDFD cone-stop filter. 
(a) Ideal magnitude frequency response of a 3D cone-stop filter. 

(b) Section through 923 = 0 plane of frequency response in (a). 

Dots represent passband gain of unity. 

(c) Frequency response of CDFD filter approximation to (a) at = 0 plane. 

Vertical lines represent passband gain of approximately unity. 
(d) Lowpass filter frequency response in o required to produce 

the frequency response in (a). 
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which is the required impulse response for the CDFD filter to approximate the 

ideal cone-stop filter for given values of C22 and The impulse response hd(k 

of the CDFD filter for all values of (k1, K221 3) can therefore be written in matrix 

form 

h00(k 1) h01 (k 1) 

h10(k 1) h11 (k 1) h 3(k) 

hd(kl) = 

h630(k 1) h631 (k 1) 

(3.39) 

where each element of the impulse response matrix hd(k i {h (k is 

23 

given by Equation (3.38). Clearly, this design example requires 64 x 64 (= 4096) 

different lowpass filtering operations, in addition to two 2D-DFT operations on 

64 x 64 data points for each value of k 

3.4.3.2. CDFD Approximation of a 2D Circularly Symmetric Lowpass Filter - 

A Design Example 

The magnitude frequency response of an ideal circularly symmetric 2D 

lowpass filter is shown in Fig. 3.6a. The shaded region represents the passband of 

the filter where the magnitude frequency response IH (≤, I is ideally unity, 
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IH( 1, K2 2)1 is assumed to be ideally 0 in the stopband of the filter (unshaded 

region). The filter has input x (k) and output y (k) where k {k1, k2}. 

In the case of conventional discrete-frequency filtering, H 92 2) is defined 

on a grid of discrete-frequency points, as shown in the a =1 cross section in 
0 

Fig. 3.6b. A set of lowpass filters, such as the one in Fig. 3.6b, will approximate 

the frequency response in Fig. 3.6a. From simple geometry, the bandwidth of 

these filters at each value of L2 is given by 

B( 1) = R2_?,_R :5 I:5 

(3.40) 

= O,I≥1I>R 

The discrete-frequency response in Fig. 3.6b can be approximated by a 

continuous-frequency 1D hR lowpass filter in (02 having the frequency response 

H 1 ' 2 in Fig. 3.6c. 

For this example, a 3rd order 1D hR lowpass Butterworth filter in 0)2 has 

been used to implement Hd The filter has a cutoff frequency B 

where B () is given by Equation (3.40). Thus, the frequency response 

Hd of each filter (one for each value of is given by 
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(a) 

(c) 

1.0 

/ 0 
-B( 1) 

(b) 

2 

Pig. 3.6. Design of 2D CDPD lowpass filter. 
(a) Ideal frequency response of a 2D lowpass filter. 
(b) Section through Q = line of the frequency response in (a). 

(c) Lowpass filter frequency response in °2 required to approximate 

the frequency response in (b). 
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Hd(02) =  +( L B(1) l )6 

1 

(3.41) 

It is important to note that the 1D hR filter used for 92 1 = I is the same as the 
0 

filter required for 92 = - Q 1 . Therefore for —R ≤ 92 ≤ R, the number of filters 
0 

required is half the total number of discrete-frequency points Q in this range. 

This represents a substantial saving in hardware. Furthermore, from (3.40), 

B () = 0 when 1011 > R, implying that an all stop filtering operation is required 

for this range of values of 92 11 In other words, no 1D hR filtering operations are 

required for 192  I > R. This results in a further significant decrease in 

computation and hardware because after obtaining the L 1-point row-DFTs 

(sequence lengths L1 and L2 are assumed for 92, and ≤22, respectively), only 2R 

1D hR lowpass filtering operations are required. Finally, by taking the symmetry 

of the required frequency response into account, a total of only R distinct 1D hR 

filters are required. 

The overall input/output frequency response Hd(02) of the 2D CDFD lowpass 

filter can be written as a lD array as follows 
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Hd 
0 

Hd 1 (co 2) 

Hd( 02) 

Hd 

= dK2l('02)j 
(3.42) 

where each Hd is calculated from Equation (3.41) for a given value of 

The reduction of "edge-effects" in at least one dimension in CDFD filtering is 

illustrated in Fig. 3.7. The input signal is shown in Fig. 3.7a. The input signal has 

a sharp discontinuity at the rear edge in the k2 direction, swinging from a 

magnitude of 1 to zero. This edge discontinuity will give rise to "edge-effects" in 

the k2 direction if 2D DFT filtering is applied to the input image. The transitions 

of magnitude from 1 to 0 in the input image in the k1 direction occur away from 

the edges of the image. This reduces the "edge-effects" in the k direction and 

allows the edge-effects in the k2 direction to be observed more easily. 

The output of a 2D DFT lowpass filter, having the frequency response in Fig. 

3.6a, is shown in Fig. 3.7b. The 2D DFT filter has a 3rd order lowpass 

Butterworth cross-section in the Q direction with the cutoff frequencies varying as 
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k2 

/ I 

(a) Input signal 

ki 

\ 

(c) 2D CDFD filtered output (b) 2D DFT filtered output 

Fig. 3.7. Reduction of edge effects using CDFD filtering. 
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a function of Q 1, as given by Equation (3.40). Fig. 3.7b clearly shows the edge-

effects due to DFT filtering in the k2 direction. A spurious edge is present at the 

front of the signal and "ringing" artifacts can be observed. In contrast, the output 

of the 2D CDFD filter described in this section shows no edge-effects in the k2 

direction because hR filtering was applied in this direction. This demonstrates one 

of the advantages inherent in CDFD filtering, namely, that edge-effects are 

eliminated in the signal dimensions in which continuous-frequency filtering is 

applied. However, ringing are present in the direction k1 in which DFT filtering is 

applied. 

3.4.3.3. An Application of CDFD Filters in Seismic Image Processing - 

A Design Example 

A 2D fanstop filter, having the ideal magnitude frequency response 

IH shown in Fig. 3.8(a) can be used to eliminate low-velocity ground 

roll interference from 2D seismic images M. This fanstop filter has a total angular 

stopband width of 85 = 10° and may be implemented using the CDFD filtering 

technique. A cross-section of the frequency response in Fig. 3.8(a), along the 

922 = 2 0 line is shown in Fig. 3.8(b). The frequency response 

IH (≥) 2 - 2 is clearly a discrete-frequency lowpass filter frequency response 

in 92 . This has been approximated using a 3rd order lD hR lowpass Butterworth 

filter as shown in Fig. 3.8c. From simple geometry, the cutoff frequency B 
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passbancl 

(a) 

=≤ 
2 

921 

(c) 

1.0 

0 

(b) 

B(≤ 2) 

0 

Fig. 3.8. Design of fanstop filter required for seismic image processing. 
(a) Magnitude frequency response IH (, '22)1 of a fanstop filter required 

for ground-roll removal from seismic images. 

(b) Section through 2 = 20 plane of frequency response in (a). 

(c) Frequency response of 1D ER filter used to approximate (b). 
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for the 1D IliR lowpass filter at a given value of L22 is given by 

B(.12) = 

tan   

(3.43) 

Therefore, the frequency response 11d 92  (0i) of each 1D hR filter is given by 

H,, 92 2 (col) 

= l + (  tan( ))6 
L22 2 

(3.44) 

The frequency response of the 2D CDFD fanstop filter can be written as a 1D 

array (or vector) of functions of l. as follows: 

11d°1 fHd n2 (CO 1) =  

Hd 63 (col) 

(3.45) 

where the sequence length L2 in 0 is 64 and each element kid (a1) is given 

by Equation (3.44). 

The input to the CDFD filter is a 1024 x 64 (k1, k 2 ) 2D seismic image 

consisting of 64 traces (L2 = 64) having 1024 temporal samples per trace 
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(L 1 = 1024). The first step in the CDFD filtering process is to perform 1024 64-

point FFTs on the input image according to Equation (2.56). The required fanstop 

filtering operation is then approximated using 64 1D ]IR filter operators, one for 

each value of ≤ 2. Due to the symmetry of the fanstop filter, only 32 different 

filters are required, since the filter for 02 = 2 is the same as the filter for 
0 

= Each filter operates on the real and imaginary components of a 
0 

1024-point trace (row) of the partial discrete Fourier transformed input image 

according to Equation (3.4). Third-order lowpass Butterworth filters whose 

passband widths vary linearly with trace number 0 2 (as given by Equation (3.43)), 

have been employed. The recursive (JIR) filtering has been performed in the co 

dimension because the larger sequence length (L1 = 1024) allows the startup 

transients of the 1D hR filters to decay to zero, resulting in less distortion in the 

output image. In addition, applying 1024 64-point F11's to the input image 

requires 60 percent of the complex multiplications required for 64 1024-point 

FFTs. Finally, 1024 64-point inverse FFTs are performed on the complex outputs 

of the IR filtering operations to produce the complex output of the combined 

CDFD filter, according to Equation (3.7). 

For this application, the magnitude of the imaginary component of y (k) of the 

CDFD filter is found to be less than 3 percent of the magnitude of the real 

component. Therefore, the imaginary component of the output of the CDFD filter 

is neglected for this application. 
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The input image x (k) and the real and imaginary components of the output 

y (k) of the CDFD filter are shown in Figs. 3.9a, b and c, respectively. The ground 

roll, which corresponds to the angular 'ripples' in Fig. 3.9a, has clearly been 

reduced by the CDFD filter, as required. A comparison of Figs. 3.9b and 3.9c 

confirms that the magnitude of the imaginary component of the CDFD filter output 

is negligible compared to the magnitude of the real component of the output. 

The corresponding output of a 2 x 5 IIR 10 degree 2D fanstop filter, designed 

by Bruton, Bartley and Stein [2], is shown for comparative purposes in Fig. 3.9d. 

A comparison of Figs. 3.9b and 3.9d shows that the input/output performance of 

the CDFD filter is similar to that of the 2 x 5 hR filter. 

3.5. Comparison of CDFD Filters with hR and DVF Filters in Seismic Signal 

Processing Applications 

Some simple calculations have been performed to compare the complexity of 

the CDFD fanstop filter with its hR [2] and 2D DFT counterparts, for the 

application described in Section 3.4.3.3. The criteria chosen for this comparison 

are the approximate number of multiplications NMULT, the approximate number 

of additions ND, and the approximate amount of memory storage required for AD 

each of the three filtering methods for a 64 x 1024 seismic image. The results of 

this comparison [Appendix A], for the seismic filtering application, are shown in 

Table 3.1. 
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(a) Input seismic image 
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tt 

'4 

(b) CDFD-filtered output (real) 

/0 
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St4 

(c) CDFD-ffltered output (imaginary) 

s4 

(d) UR-filtered output 

Fig. 3.9. Low velocity ground roll removal from seismic images using 
a 2D CDFD fanstop filter. The output of a 2D hR filter is 

shown in (d) for comparison. 

6.4 

4. 
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Types of Filters NMULT ND 

Bytes of 
Memory 

(8 bit data) 

CDFD 4.06 x 106 2.36 x 106 1.62 x io 

hR 4.59 x 106 4.46 x 106 6.55 x io 

8.52 x 106 4.19 x 106 1.97 x 10 2D-DFT 

Table 3.1. Comparison of computational efficiency and memory usage 

for CDFD, hR and 2D DFT filtering of seismic images. 

The CDFD filter requires fewer additions and multiplications than the hR and 

2D DFT methods. As expected, the 2D DFT method is computationally least 

efficient and is the most memory intensive. The flR method requires the smallest 

amount of memory. However, the CDFD method requires fewer computations than 

the Ilk method. 

The approximate number of additions and multiplications required for each of 

the three methods, for varying image sizes, has been calculated [Appendix A]. 

Calculations have been performed for a constant number of spatial seismic traces 

(64) with the number of temporal samples per trace L1 varying from 2 to 512. 

The graphs in Figs. 3.10 and 3.11 show the number of additions and 

multiplications, respectively, for all three methods. From these data it is clear that 

the CDFD method requires fewer additions and multiplications than the other two 

methods, for the range of image sizes considered here. 
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Fig. 3.10. Number of additions necessary for removing ground roll from a 
64 x L1 seismic image using 2DDF1', hR and CDFD fan stop filters. 

L 1 represents the number of temporal samples per seismic trace. 
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Fig. 3.11. Number of multiplications necessary for removing ground roll 
from a 64 x L1 seismic image using 2DDFF, hR and CDFD fan stop 
filters. L1 represents the number of temporal samples per seismic trace. 



101 

Another set of calculations has been performed, for a constant number of 

temporal samples (64) per seismic trace, with the number of traces L2 varying 

from 2 to 512. The number of additions and multiplications, respectively, for all 

three methods is shown in Figs. 3.12 and 3.13. It is evident from Fig. 3.13 that if 

the image size exceeds 128 traces, the IIR method requires fewer multiplications 

than the CDFD method. For an image containing fewer than 128 spatial seismic 

traces, 64 in this case, the CDFD method requires fewer multiplications than the 

hR method. These results agree with the results in Table 3.1 and demonstrate that 

for the application described in this section, CDFD filtering requires fewer 

computations than both HR and 2D DIT filtering. 

CDFD filtering has two other significant advantages. Firstly, edge effects are 

eliminated in the dimensions in which continuous-frequency filtering in applied, 

unlike MD DFT filters. Secondly, MI) filter passbands of arbitrary shape can be 

designed easily unlike MD hR filters. This is demonstrated for the 2D case in 

Chapter 4 which describes a software image processing system based on CDFD 

filters. Some important considerations in implementing this system in hardware are 

also discussed. 
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CHAPTER 4 

AN IMAGE PROCESSOR USING CDFD FILTERS 

4.1. Introduction 

In many image processing applications, such as biomedical and seismic image 

processing, it is desirable to have an image processing system that, allows the user 

to interactively filter images. For example, in order to enhance an X-ray image, a 

radiologist may require selective filtering of certain features of the image. An 

interactive image processing system, designed for this type of application, is 

described in this chapter. The system, based on a software implementation of 2D 

CDFD filters, is described in Section 4.2. Some hardware schemes, which may be 

üec1 to implement this system, are described in Section 4.3. 

4.2. Software Image Processing System 

The interactive software image processing system described in this section 

runs on a SUN-3 computer. The program used to implement the image processing 

system is written in 'Cl. An FFf program and some display routines written by 

N.R. Bartley are included in the package. Apart from some sections of the FYI' 

program that are written in assembly language, all other programs are in 'C'. The 

image processing program requires input from the terminal and a mouse (used for 

drawing filter passbands on the display terminal). 
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The image processing program has been written primarily to demonstrate the 

advantages of CDFD filters in fast, interactive image processing. The image 

processing system will first be described from the user's perspective. The images 

processed by the system are 128 x 128 pixels in size and are stored in binary files. 

A sample run of the program on a file called "testfile" will be used to demonstrate 

the user interface. 

The image in 'testfile' is shown in Fig. 4.la. It consists of the superposition 

of a very low frequency 2D sinusoidal waveform parallel to the edges of the image 

and a high frequency 2D sinusoidal waveform at 450 to the edges of the image. It 

is required to remove this high frequency waveform from the image. The display 

in Fig. 4.la, that is the operation of viewing an image file, is obtained by the 

keyboard command "dspl testfile". Since the 2D CDFD filter required to remove 

the high frequency component from the test image has to be designed in the 

frequency domain, a 2D FFT operation is applied to the test image. This is 

accomplished by the command "fft testfile". The output of the 2D FFT operation 

is written into a file called "fft_out". This file is now displayed using the "dspl" 

command and is shown in Fig. 4.lb. By inspection of the Fourier transformed 

image, the user must determine which areas of the 2D frequency space constitute 

the required signal. This requires a background in 2D frequency domain filtering 

and the user must be properly trained to make use of the system. 

The required passband (or stopband) of the 2D CDFD filter is drawn on the 

Fourier transformed image. This involves using the mouse to outline the region 
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(b) (a) 

(c) (d) 

Fig. 4.1. Output of software interactive image processing system. 
a) input test image 
b) 2D Wf of test image 
c) stopband of required CDFD filter (encircled) 
d) 2D CDFD filter output 

containing the required signal frequencies. Alternatively, the region containing 

undesirable frequencies may be outlined as the stopband if convenient. It should 
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be noted that the frequency domain signal is displayed from (0,0) to (2ir, 22t) in 

normalized 2D frequency space instead of (- it, -it) to (it, it). The higher 

frequencies lie at the center of the Fourier transformed image instead of at the 

edges and this must be taken into account when drawing the CDFD filter passband. 

The actual procedure of drawing the passband or stopband shape using the 

mouse is straightforward. The drawing procedure is invoked by the command 

"mouse". This configures the right button of the mouse as "draw", the center 

button as "redraw" and the left button as "quit". Pressing and holding down the 

draw button causes a dotted line, starting at the bottom left corner (0,0), to be 

drawn on the Fourier transformed image. This line is used to encircle the required 

region for the passband (or stopband) of the CDFD filter. A closed contour is 

required for the passband (or stopband). This is shown in Fig. 4.lc. If an error is 

made while drawing, the "redraw" (middle) button on the mouse will clear the 

dotted line and a new contour can be drawn using the "draw" button. Once a 

satisfactory, contour has been drawn, the "quit" (left) button is used to exit the 

drawing procedure. 

If the top or bottom edge of the Fourier transformed image is part of the 

contour, then a lowpass or highpass 2D CDFD filter is required. Otherwise a 2D 

bandpass or bandstop filtering operation is necessary. The user must choose any 

one of four types of filtering operation by using one of the commands: "lowpass", 

"highpass", "bandpass" and "bandstop". Upon invoking one of these commands, 

the input image is filtered using the required type of 1D filters in the CDFD 
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method. This normally takes between 8 to 18 CPU seconds on a SUN-3 computer 

for image sizes of 128 x 128 pixels. The filtered image is written into a file called 

"output" which can be displayed using the "dspl" command. The output file 

usually contains only the real part of the output image. However, the program can 

easily be modified to display the imaginary part of the output image. It is evident 

from the filtered image in Fig. 4.ld that the high frequency sinusoidal waveform 

has been almost removed as required. 

The lowpass, highpass, bandpass and bandstop 1D UR filters used in the 

system are all derived from 3rd order Butterworth filters. The selectivity obtained 

using these filters was found to be satisfactory for the test images used. Higher 

order filters may be used if required. During the CDFD filtering process, a set of 

128, 128-point row FFTs is applied to the input image. A 1D HR filtering 

operation is then performed along every column of the partially Fourier 

transformed image (if necessary). For columns which lie in the 2D CDFD filter 

stopband, no filtering is performed and a column of zeros is written into the real 

and imaginary parts of the 1W filter output. If an entire column lies in the 2D 

CDFD filter passband, once again no 1W filtering is performed and the real and 

imaginary parts of the column are simply copied into the corresponding columns of 

the hR filter output. This results in substantial savings in computation and 

processing time. The required bandwidths and cutoff frequencies for the 11K filters 

are generated by the "mouse" program based on the filter passband drawn on the 

screen. 
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It is also possible to view the magnitude frequency response of a CDFD filter 

designed using this system. This is achieved by using a unit impulse (a Kronecker 

delta function) at the origin as the input image. The filter passband is drawn as 

before on the Fourier transformed input image. The Fourier transform (2D FFT) of 

the output is obtained using the "fft" command. The output of this 2D FFT is the 

frequency response of the 2D CDFD filter. Two such frequency responses are 

shown in Fig. 4.2, demonstrating the flexibility of CDFD filtering in designing 

filter passbands of arbitrary shape. 

The software image processing system allows the user to easily design 2D 

CDFD image processing filters of arbitrary passband shape. However, some 

knowledge of 2D filtering is required before the user can efficiently use the system. 

The system can be made more user friendly so that all technical decisions (e.g. the 

type of filtering required) can be presented to the user in layman's terms. An 

alternative approach is to incorporate the image processing system in an expert 

system so that user decisions are reduced to a minimum. A threshold level can be 

set to determine the desirable portion of the image and the system can then design 

the necessary filters. A more sophisticated approach might involve pattern 

recognition in the Fourier transformed image to determine desirable and 

undesirable signal frequencies and patterns. 

This type of system can be used in medical image processing because, with 

proper training, the user can selectively enhance features in the image. The next 

section outlines some ideas for implementing this system in hardware. 
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(a) "W" shaped passband 

(b) Fan shaped passband 

Fig. 4.2. Arbitrary passband shapes of 2D CDFE) filters obtained using 
the image processing system. 
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4.3. Proposed Scheme for Hardware Implementation of the Image Processing 

System 

The image processing system described in Section 4.2 can be implemented in 

hardware to increase the processing speed, possibly to real-time. A brief 

description of the hardware that can be used for this purpose is given in this 

section based on the TMS32OC3O signal processor, one of the fastest digital signal 

processors available [5]. The current cost of this chip is approximately $300 and 

therefore, in order to keep the cost of the proposed system to a minimum, it is 

assumed that a single TMS32OC3O used. It is possible to use a number of 

TMS320C30s in parallel to increase processing speeds but this can be very 

expensive. 

The hardware scheme outlined here utilizes some of the special features 

inherent to CDFD filters and therefore can be applied to general MD CDFD filters. 

It is assumed that the 11) hR filters required for the signal processor will be 

programmed in direct form in the TMS32OC3O software. A control program 

resides in the TMS32OC3O ROM and performs some special functions aside from 

the usual control functions such as input/output (I/O), timing etc. The input data 

(size L1 x L2) is read in row by row. The next section describes some of the 

special functions of the control program. 
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4.3.1. Control Program 

Aside from the usual control functions such as timing operations, I/O and 

control of arithmetic operations that are required in conventional digital signal 

processors, the control program has certain functions that are unique to CDFD 

filtering. The control program checks bandwidths and cutoff frequencies of the 

filters required for successive columns of the partially DFTed images to see if 

different 1D hR filters are required for successive columns. If not, then the 

coefficients used for the previous filter are simply copied and used for the next 

filter. 

The control program also checks for special cases, such as columns where " all 

go" or "all stop" functions are required. In the former case, the input signal to the 

bank of filters is simply copied into the appropriate memory locations for the 

output of the filters. For an "all stop" operation, that is, when the entire column 

lies in the stopband of the 2D CDFD filter, the output memory locations for the 

column are cleared to zero. 

The control program also controls the input and output of data row by row. 

A row FFI is performed on each row and each of the L1 samples is channeled 

into the input of the appropriate 1D HR filter. Two filtering operations must be 

performed for each input point because the input to the filters is usually complex. 

The previous m rows (m being the order of the hR filters) are stored in memory 

and updated by the program after calculation of each row of output. The control 

program also initiates the calculation of appropriate filter coefficients based on 
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bandwidths and cutoff frequencies obtained from the user-specified frequency 

response. Alternatively, a "lookup table" approach can be used to obtain the 

coefficients and this is discussed in Section 4.3.2 which describes some features of 

the memory storage used. 

4.3.2. Memory 

A schematic memory diagram is shown in Fig. 4.3. The top of the diagram 

shows the ROM for storing the coefficients required for the FT operations in the 

form of a lookup table. This technique speeds up the FFT operation because the 

coefficients need not be calculated every time the FFT is applied. 

In order to minimize computation, a lookup table approach can be used to 

determine filter coefficients for the 1D ]IR filters. This implies that a finite number 

of bandwidths and cutoff frequencies can be achieved for any type of 1D ER filter 

(i.e. lowpass, highpass, bandpass and bandstop). For example, if the sequence 

length for each column is L2 (filtering performed along k2), then the following 

cutoff frequencies for lowpass filters are allowed: 0 < ≤2c, <L2/2, ≤T2CO  being an 

integer. This constraint is not very restrictive because specifications for the 1D fiR 

filters provided by the user are only accurate to the smallest increment of k2 which 

is 1. A schematic lookup table for bandpass filter coefficients is shown in Fig. 4.4. 

Each set of upper and lower cutoff frequencies (≤ CO and 9 ) produces an 
U L 

address ADDR 92 92 

COL, CO U 

of the memory location containing the coefficients for 
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Fig. 4.3. Memory diagram. 

the 1D ]OR bandpass filter. Lookup tables can be implemented for all four types of 

filters as shown in Fig. 4.3 (LP, HP, BP, BS). The lookup tables are situated in 

ROM. Different filter orders may be implemented by changing the coefficient 

values which are stored in RAM. 
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L2-1 

1 2 

ADDR1,1 ADDR1,2 .. . . 

ADDR2,1 ADDR22 . . . 

• 

• • 

. 

• 

. 

• 

. 

• • 

• . . U • • 

Fig. 4.4. Lookup table for coefficients of the required 1D IIR bandpass 
filters. Each combination QCO 31 BW produces the address 

(ADDR) in memory where the required coefficients are stored. 
92 is the lower cutoff frequency and 

L 
CO is the upper cutoff frequency. 
U 

The RAM also contains input and output buffer space for the FFf and inverse 

JF1 operation. If the size of the image is L x L2, (L1 columns and L2 rows) 

then an L 1-point FFT is required on each row. Since the output of the FFT is 

complex, 2L 1 data points must be stored. The input row x (k1, k2) is read into the 
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buffer and a 1D FFT is applied. The output of the FFT X (≤2, k2) is written into 

the buffer, overwriting x (k1, k2). X(921, k2) can be written in its alternate array 

representation as Xd(k2) {Xd (k2)}. Each complex sequence Xd (k2) is 

92  

used as the input to the 1D hR filter for the appropriate value of L2 . The last m 

values, where m is the order of the 1D hR filters, of Xd (k2) and 17d 92  (k2) are 

92  

stored in memory (RAM) and refreshed as each new value of these sequences 

becomes available. These values are accessed directly by the 1D HR filters. The 

filter output for an entire row is written into the output buffer and the inverse FFT 

is applied to this complex signal. The contents of the buffer make up one row of 

the CDFD filter output. The advantage of the lookup table approach to obtaining 

the filter coefficients lies in the fact that the pipelining available in the 

TMS32OC3O can be used to advantage. The TMS32OC3O has a 4-level deep 

pipeline [5] so that as one arithmetic operation is being carried out using one 

coefficient the next three coefficients are already in the pipelines, instead of having 

to be calculated. This results in improved speed. The next section briefly 

discusses the speeds obtainable using the scheme outlined in this section. 

4.3.3. Processing Speed 

Some estimates of the processing speed of the hardware signal processor, 

described in the previous sections, are given in this section. These estimates do 

not take into account the fact that the TMS32OC3O must also be programmed to 
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handle the I/O and user interface. They are simply an estimate of the maximum 

speed at which the 2D CDFD filtering can be carried out on a single TMS32OC3O 

signal processor. 

Due to the extensive pipelining available in the TMS32OC3O [5], a "multiply 

add and store" instruction is executed in 100 ns. Calculations have been performed 

for an input image of size 1024 x 1024 pixels. Each row of 1024 pixels will 

require 4L 1'092L1 (L1 =1024) "multiply add and store" operations for a 1024-

point row FFT. This first step in CDFD filtering requires a processing time of 

approximately 4.10 ms (per row). The second stage in CDFD filtering consists of 

applying L 1(1024) 1D IlIR filtering operations for both the real and imaginary parts 

of the row DFT performed in the first step. Assuming approximately 10 "multiply 

add and store" operations for each output point for the ID hR filtering operation, 

approximately 10 L x 2 (because real and imaginary points are filtered separately) 

"multiply add and store" operations are required. Assuming an execution time of 

100 ns, this requires approximately 2.05 ms. Finally, the inverse row DFT on the 

output from the filters requires another 4.1 ms. The total processing time for a 

1024-point row is therefore approximately 10.25 ms. For real-time video 

applications based on a frame update rate of 30 Hz, the maximum allowable time 

for processing a row is 0.032 ms. Clearly, the processing speed obtained does not 

meet this criterion. 
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Some techniques for improving the processing speed are proposed in the next 

chapter. In addition, some areas for further research are presented. 



CHAPTER 5 

AREAS FOR FURTHER RESEARCH 

5.1. Introduction 

The hardware signal processor, based on the TMS32OC3O signal processor, 

described in Chapter 4 does not achieve real-time video filtering speeds. However, 

it is important to note that this signal processor filters an input image row by row. 

This filtering scheme can be readily adapted to real-time filtering. Factors that 

should be taken into account in order to achieve real-time speeds are discussed 

briefly in the next section. The extension of real-time CDFD filtering to 3D is also 

described. A CDFD filtering technique using the Discrete Hartley Transform 

(DHT) instead of the DFT is described in section 5.3. Finally, some concluding 

remarks are given in Section 5.4. 

5.2. Factors Affecting Real-Time CDFD Filters in Two and Three 

Dimensions 

The signal processor described in Section 4.3 is ideally suited to real-time 

processing because it processes an input image row by row. The input image is 

often available in this row format, such as in a raster display. The ability to 

process such an image, without requiring one entire frame of the image to be read 

and stored by the system, represents a substantial saving in processing time. The 
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two major factors affecting the processing time are the time taken to perform a 

L 1-point row FFT on the input row (of L1 pixels) of the image and the time taken 

by the L 1D hR filters to generate the next row of output samples. 

One approach to these problems is a hardware intensive solution. Dedicated 

FFT hardware can be constructed for very fast row FFT operations based on bit-

slice designs or a custom VLSI design. The hR filtering operations can also be 

made faster by using L1 parallel 1D hR filters instead of the L consecutive 111( 

filtering operations described in Section 4.3. This approach will prove to be very 

expensive especially when extended to 3D CDFD filtering. 

The "row by row" approach to 2D CDFD real-time filtering can be extended 

to 3D CDFD filtering in real-time. One of the most common applications of 3D 

CDFD real-time filters would be in the processing of video signals. This usually 

involves processing a two-dimensional time-varying image. One approach to real-

time 3D CDFD filtering is to perform a 2D FFT operation on each frame (size 

L1 >< L2) of the input signal and then apply L1 x L hR filtering operations in the 

remaining dimension, time. Finally, the output frame from the L x L2 ILk 

filtering operations, one per pixel, is inverse 1'FT transformed to produce the output 

image. This method has the advantage that a time-varying image of specified size 

(L 1 x L 2 but having an unspecified number of frames can be filtered as the input 

becomes available, frame by frame. 
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However, the above method clearly requires even more computations per 

output pixel than the "row by row" scheme for 2D real-time CDFD filters. An 

alternative approach to both 2D and 3D CDFD filtering is based on the fact that 

the input signal often has no imaginary component. In such cases, it is desirable to 

use the discrete Hartley transform (DHT), which transforms a real sequence into 

another real sequence, rather than the DFT which transforms a real sequence into a 

complex one. The next section outlines some of the advantages of using the DHT 

in CDFD filtering. 

5.3. CDFD Filtering Using the Discrete Hartley Transform (DHT) 

5.3.1. The Discrete Hartley Transform (DHT) 

The MD discrete Hartley transform (DHT) H M [] of a MD signal x (k) is IN 

defined as follows 

HM [x (k)] = 

L-1 
x (k)cas [27ck'L—1 ] 

k=O 

where L = diag {L1, L2, , LM 11 
L-1 L1-1 L2-1 LM -1 

: and 

k=O k1=O k2 =0 kM=O 

(5.1) 

cas (x) cos(x) + sin(x). The "real-to-real" nature of the DHT is evident from 

equation (5.1). The MD inverse discrete Hartley transform (IDUT) is defined as 
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Hjj5j [XH ()] = x(k) 

1 L-1 
X ()cas [27k'L_1 ] 

The partial MD DHT Hff+lM and IDHT H/'l,M are defined as follows: 

and 

Hff+lM [ (k)] = XH  (k, 

Ld—1 

x (kg, kd) cas 2itkdL1Id 

kd=O 

HI,M [XH (kC,Qd)] = x(k) 

L-1 XH (kg, cas [2n. k d L 1 ≤ 
d 

(5.2) 

(5.3a) 

(5.3b) 

5.3.2. MD CDFD Filtering Using the DHT Instead of the DFT on Real Signals 

The procedure for MD CDFD filtering, using DHT filtering in (WI-N) 

dimensions and HR filtering in the remaining N dimensions, is very similar to the 

CDFD filtering process described in Chapter 3. In fact, the partial Ml) DHT and 

MD IDHT are substituted for the partial MD DFT and IDFT in the filtering 

process. Thus, the following three step process is used: 
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1. Partial MD DHT is applied to input signal x (k) resulting in the real signal 

XH(kc, 

2. ND recursive (ilk) filtering operations are performed on XH (kg, over the 

N variables kc resulting in the MD real output YH (kg, 

3. Partial ME) IDFT is applied to H (kg, resulting in the real periodically 

extended (in the (M-N) dimensions output sequence 5' (k). The output of 

the CDFD filter y (k) is the part of j (k) having support in JR M. 

The Dl-1T and JDBT can be computed using fast Hartley transform (Fl-IT) 

algorithms [7]. These algorithms require approximately the same amount of 

computation and memory as real-valued FFT algorithms [7]. This, in itself, does 

not represent a significant advantage over using the DFT. However, major 

computational savings are obtained because, unlike the DFT case, complex filtering 

is not required since the DIII' transforms a real sequence into another real 

sequence. Thus, the required number of filtering operations is halved. 

Furthermore, unlike the DFT case where the imaginary output of the CDFD 

filter is often ignored, no such approximation is necessary for the DIII'. In real-

time applications in 2D and 3D CDFD filtering, the DHT can significantly reduce 

the amount of computation required if the input signal is real. 
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5.4. Conclusion 

A new hybrid MD filtering technique is described in this thesis. Continuous-

frequency filtering is performed in less than all M dimensions of an MD signal 

while discrete-frequency filtering is performed over the remaining dimensions. 

This results in a powerful and flexible filtering technique - continuous-discrete 

frequency domain (CDFD) filtering. 

A system of notation that allows the equations and symbols for CDFD 

filtering to be written concisely, is introduced. Some examples and applications of 

CDFD filters in 2D and 3D are described. Some important factors affecting the 

implementation of real-time CDFD filters in hardware are discussed. 

Further work is required in this area and in the utilization of CDFD filters in 

3D and higher dimensions. The flexibility and computational advantage of CDFD 

filters make them well suited to multidimensional digital filtering. 
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APPENDIX A 

COMPUTATION AND MEMORY REQUIREMENTS FOR 2D CDFD, IIR 

AND DFT FILTERS 

I) Memory Requirements (M) 

Assume for simplicity each data value is stored in 1 byte of memory. Let the 

image size (signal size) be L x L data points. Assume mask sizes for recursive 

filtering are small compared to image size. The following approximate values for 

memory required by each of the three methods are obtained: 

hR METHOD 

Input-image size = L 1L2 bytes. Output imaged can be overlapped over input 

image if filter mask is small. Therefore 

MJIR = L1L2 bytes. 

2D DFT METHOD 

Input-image/output-image size = L 1 L 2 bytes. Real and Imaginary DFT 

transformed images require 2L 1L2 bytes. Real windowing function requires L 1L2 

bytes. Therefore, 

MDET z 4L 1L2 bytes. 
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CDFD METHOD 

Input-image/output-image size = L 1L2 bytes. Real and Imaginary DFT 

transformed images require 2L 1 L 2 bytes. Assume recursive filter mask is small 

and output can be overlapped over input. Then 

MCDFD z 3L 1L2 bytes. 

II) Number of Additions Required (ND) 

A row PET of sequence length L requires 2L 1092  additions [2]. The input 

image is assumed to be of size L1 x L 21 where the PET is applied to the columns 

(L2 points) during CDFD filtering. 

HR METHOD 

Assume filter mask is of size m0 no. Then 

ND = 2[(2m0 no - 1)] L IL 2 

(4m0n0 — 2)L 1L2 

assuming two-pass filtering. 

2D DFT METHOD 

AD ND = 2(2L 1L2 log 2L2) + 2(2L 2L 11og2L 

= 4L 1L 2(log2L1 + log2L 2 
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because of forward and inverse DFT. 

CDFD METHOD 

Assume filter mask is of size n0. Then, 

ND = 2(2L 1L2log2L2) + 2(2n0 - 1)L 1L2 

= 2L 1L 2[2log2L2 + (2n0 - 1)] 

because the real and imaginary parts of the partially DFT transformed image are 

filtered separately, each requiring (2n0 - 1) additions per data point. 

Ill) Number of Multiplications Required (NMULT) 

A row FFT of sequence length L requires 4L 1092  multiplications [2J. 

During CDFD filtering, the 1D FFT is applied to each column (length L2) of the 

input image. 

HR METHOD 

Assume filter mask is of size m0 no and two-pass filtering is performed. Then 

NMULT = 2(2m0 n0 - 1)L 1L2 

2D DFT METHOD 

NMULT = 2(4L 1L21og2L 2 + 2(4L 2L 1log2L l + 2L 

= 2L 1L 2(4log2L 1 + 4log2L2 + 1) 
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because of forward and inverse DFTs and the multiplication of the real and 

imaginary parts of the 2D DFTed image by a real window function. 

CDFD METHOD 

Assume filter mask is of size % and real and imaginary parts of partially 

DFT transformed image are filtered separately, each requiring (2n0 - 1) 

multiplications per data point. Then, if column FF1s are applied, 

NMULT = 2(4L 1L21og2L2) + 2(2n0 - 1)L 1L2 

= 2L 1L2[4log2L2 + (2n0 - 1)] 


