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ABSTRACT 

Individual customers arrive at a single—channel servicing facility 

demanding service. Explicit derivations of the distribution of the busy period 

of this facility are attained, as well as the distribution for the number of 

customers served during such a period. Different mathematical approaches are 

considered but the main emphasis is on utilizing the idea of generating 

functions and Laplace transforms. The appropriate moments of these two 

distributions are derived particularly when the arbitrary general independent 

distribution is assumed for the arrival or interarrival pattern of this 

single—server queue. 
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CHAPTER I 

INTRODUCTION 

In this chapter I will discuss first the common characteristics, description, 

and application of queueing processes; in particular the busy period distribution 

in the multi server queue. 

The conventional notation that was developed by D.G. Kendall [8] 

simplified the description of every queueing system. This notation is written 

as 

input distribution/service time distribution/number of servers. 

Some of the conventional notation that has been used ever since are, M for 

the Poisson distribution (arrivals) or the negative exponential distribution (for 

interarrival or service times); G for an arbitrary general distribution; D for a 

deterministic service or interarrival time and Ek for the Erlang distribution. 

As an example if the arrivals are Poisson, service times have a negative 

exponential distribution and there are c servers in the system, then this queue 

is denoted by M/M/c. 

As illustrated by this simplified notation, the common characteristics of a 

queueing system are respectively, the input process, the service mechanism, and 

the queue discipline. The input process constitutes the arrivals to the system. 

These arrivals are always random and controlled by factors outside the scope 

of the system. On the other hand, the service 
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mechanism includes the number of customers getting served at a particular 

time epoch, as well as the queue discipline or order in which customers are 

served, and the duration of each customer's service. In certain cases, the 

queue discipline might be revised in order to simplify some mathematical 

results. 

Most queueing systems, in fact, could be viewed as a renewal process 

over time, where the main interest is focused upon counting "occurrences" that 

take place as a function of time. At a renewal point the past history of the 

queue is no longer relevant for predicting its future evolution. In the M/M/c 

queue any point in time is a renewal point. In the M/G/i queue, the end of 

a busy period and end of the busy cycle are renewal points. For the G/G/i 

queue, the end of the busy cycle or beginning of a busy period is the only 

renewal point. 

According to what is mentioned so far, I could define queueing systems 

to be a mathematically descriptive theory that have a wide range of 

applications in the real world. This was best described by Kendall [8], when 

he wrote, "The theory of queues has a special appeal to the mathematician 

interested in stochastic processes ....". He also added that by studying 

queueing systems, one can benefit by gaining more insight into other stochastic 

processes as well. 

Queues occur in any system, when at a given time, the number of 

"arrivals" demanding a certain service exceeds the capacity of the service 

facility. What is required for a stable queue is that the average capacity of 

the service facility should be sufficient to deal with the average rate of 

customer arrivals. The variations in the time intervals between arrivals and 

the variable duration of service times result in waiting lines occurring from 

time to time. The busy period which is defined as the time that a single— 
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server channel remains continuously busy, is the main theme of my thesis. I 

would focus my attention on a set of two random variables, one of them is 

the discrete random variable, K, which represents the number of customers 

served during the busy period. The other random variable is B, which is the 

time during which the single—server is continuously busy. A good example 

describing such a situation is where we have aircraft landing in a small airport 

with a single runway, and we are interested to know how long does the 

landing operation take for all aircraft to land. Another example is where we 

have ships arriving at a port with a single berth and the service being 

performed by the cranes at the berth occupied by the ship. The port is busy 

as long as boats are waiting for the berth. 

The two examples above trigger the question of how long such a single 

channel (runway or berth) is being occupied, or what is the distribution of the 

periods during which this single channel is being utilized, and most important 

is how to determine such a distribution according to the different situations 

assumed. And out of this distribution we will be able to calculate the 

necessary parameters e.g. mean, variance, and covariance of K and B. The 

busy period commences once an arrival or a customer moves into service and 

it is terminated whenever the last customer or unit in the queue has their 

service completed. The durations of the different busy periods are denoted by 

the random variables B1, B2, ..., Br which are independently and identically 

distributed. And since we are interested in the time duration until all 

customers are served, it does not matter if we reconsider the order in which 

customers are being served. However, unless otherwise mentioned, I would 

assume that the order in which customers are served is on the 

first—in—first--out (FIFO) basis. Though the busy period is in fact independent 
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f the order in which arrivals are being served. In most of the situations 

FIFO is the natural order for service, but also there are some cases where 

random selection or priorities exist. 

The idea of the busy period, or more accurately the length of this period 

could be well explained by the stochastic process {Tk(t), t > O}. This 

stochastic process symbolizes the duration or interval of time required to 

empty the system of all customers. In other words, it is the amount of the 

unfinished work at time t. Tk might also be viewed as the remaining time 

before the single server becomes idle, and k stands for the number of 

customers served during that particular time interval. 

1f we let Xk be the service time needed by the kth customer entering the 

system, and tk be the arrival time of that customer. Then graph (1.1) shows 

clearly how the length of the busy period accumulates over time. The first 

customer enters the system at time, t1, and the amount of time required to 

serve him is x1. But before the single—server finishes the work load of the 

first customer, a second arrival may enter the system at time, t2, with a work 

Tk 

ti t2 t3 

B1 Il 

t4 t5 

B2 

Graph (1.1) the stochastic process Tk 
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load that requires x2 of time to be done. Now the first arrival will definitely 

push Tk upwards by x1 from the zero axis, after which Tk starts declining 

towards the zero line again. This decline is the result of the fact that the 

single server starts working on the first customer's work load. However, upon 

the arrival of the second customer, Tk will be pushed up to a new height by 

the presence of both customers in the system. And, as long as the single 

server is handling both customers' work load, Tk decreases again with a slope 

of negative one. Likewise, and as time passes, and before the server finishes 

the available work load, a third customer might step in the system at time t3 

with an extra work load of x3. Ultimately, Tk will jump to a new vertical 

height as shown in graph (1.1). And, if and only if, the server finishes all the 

piled work load of the three customers before the next arrival takes place, 

then this first phase of elapsed time, represented by BI is considered to be the 

first busy period. That means the single server has successfully emptied the 

system of the first group of arrivals, after which he is apt to enjoy his first 

idle period denoted by I. 

Upon an arrival of a new customer to the system (fourth in the 

example), the first idle period will be terminated and the second busy period, 

B2 commences. The new period will consist of a random number of customers 

(two in the example, the fourth and fifth in the system) as being illustrated 

by the graph. However, to conclude the above example, I would say that it 

took the single server a time B1 to clear his desk in the first phase, and he 

remained idle a period of time of length I, which represents the first idle 

period. In the second phase, it took him B2 of time to finish all the compiled 

work load. In other words, the whole time interval under investigation, that 

is, (O,t), goes through alternating cycles of a busy period followed by an idle 
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period, which is in turn followed by another busy period, and so on and so 

forth. It is a series of alternating busy and idle periods. 

Taking into consideration the above illustration of the stochastic process, 

Tk, which is regarded as a continuous state Markov process that contains some 

discontinuities at certain epochs of the whole time period. And, due to the 

fact that we are only concerned with the busy periods, it is worth noting that 

any sub—busy period, B1, is in fact identical with the main one, B, for the 

M/M/c queue which is covered in the third chapter of this thesis. 

The second chapter of the thesis deals with the busy period distribution 

for the M/M/1 queue which is tackled through different mathematical 

approaches. It is derived first by the absorbing Markov chain where state 0, 

is considered to be the absorbing state. Bailey [1] was the first to introduce 

the idea of generating functions and Laplace transforms which facilitate the 

derivation of the p.d.f. of the busy period for almost every queue. In fact I 

will use his methods with some simplifications in inverting the Laplace 

transform. I will also consider the bivariate distribution of B, the length of 

the busy period and K, the number of customers served during this period, 

after setting up the distribution of K by the reflection principle, Feller [7]. 

This principle takes into account the number of transitions in the system, 

where the up—transitions are the result of arrivals and the down—transitions are 

due to services accomplished. 

The third chapter deals with the busy period distribution for the M/M/2 

and the M/M/3 queues. It shows how the busy period gets more and more 

complicated as the number of servers increases not only in derivation of the 

distribution but also in the definition of the busy period as well. The 

argument that was applied to the M/M/2 will be extended partly to cover the 
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general case of M/M/c. The reason behind this is the vital importance of the 

M/M/c queue in practical applications in telephone, computer, and the 

air—traffic industries. 

In the fourth chapter, I will discuss the derivation of the busy period 

distribution for two types of queues, namely the G/M/1 and the M/G/1. 

However, sometimes it is difficult to invert the Laplace transform of this 

distribution, but, it is possible to derive the important moments from the 

transform. In the case of M/G/1, the bivariate distribution of B and K is 

derived, while for the G/M/1, the distribution of B is derived by considering 

the system to contain r arrivals demanding service. 

The last chapter covers the G/G/l queue, where there is an independent 

arbitrary general distribution in the arrival pattern as well as the inter—arrival 

times. The Wiener—Hopf decomposition is used, where the complex plane is 

separated into two halves. 



CHAPTER II 

THE BUSY PERIOD DISTRIBUTION FOR 

THE M/M/1 QUEUE 

Out of all topics in the queueing theory, the probability density function 

of the busy period was subjected to a wide range of theoretical approaches. 

However, explicit derivation for this density function was given by Palm [10], 

Kendall [8], Bailey [1], Prabhu [13], and Champernowne [2]. In fact, such a 

distribution could be derived directly from the difference - differential 

equations utilizing the idea of generating functions and Laplace transforms, 

which were first introduced by Bailey [1]. 

In the M/M/1 queue, customers arrive randomly one at a time according 

to a Poisson distribution with a parameter A as the rate of arrivals. All 

arrivals receive a certain service at a single counter. The service times are 

independent and identically distributed with a negative exponential distribution 

with a rate of service, tt. Let us assume' for the time being that customers 

are served in the order of their arrival, that is FIFO, (first in, first out) 

unless otherwise stated. It is also assumed that service is not interrupted as 

long as there are some customers waiting in the queue. Then, let Nt be the 

number of customers in the system at time t and p(t) P{Nt=n}. More— 

over, if i is the initial number of customers in the system at the opening 

time, t = 0, then, 

i(0) = 5k ,i where 5k ,i = 1 if k i 

=0 if k#i. 

8 
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In order to develop the difference equations for this queue using p(t), we 

have to consider the probability postulates of the different situations of arrivals 

and departures from the system at time, t. For example, the probability that 

one new customer arrives during the time interval (t, t + At) is ) t, hence, 

the probability that no customer arrives during the same period is 1 - 

and the probability that more than one customer arrive is assumed to be 

small and negligible as O(Et). Such that .---4 ø,whenever it - i 0. 

Likewise, the probability that there is only one service being completed during 

the same period of time is pM, and 1 - pM is, therefore, the probability that 

there is no service done during that period. And, as we mentioned earlier, 

service completion is independent of the time at which it started, (Chapter 1). 

Now, we could derive what became to be known as the Chapman— 

Kolmogorov or the difference equations for the M/M/1 queue, as follows, 

and, 

p0(t+M) = p0(t)(1—)M) + p1(t) /,,At, (2.1) 

p(t+t) = p(t)(1—)t)(1—pt) + p 1(t) pEt(1—Azt) 

In the limit as M - 0 one obtains: 

and, 

+ p 1(t) t(1—pzt), n > 1. (2.2) 

dpo(t) - p0(t) + p p1(t) 
dt - 

dp(t)  
dt - (A+p) p(t) + p p +1(t) + A p1(t). 

(2.3) 

(2.4) 
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THE ABSORBING STATE METHOD: 

In order to derive the distribution of the length of the busy period, or 

time that the server is continuously busy, define the state when Nt = 0 as an 

absorbing state. Hence the differential difference equations become: 

p(t) = PjNt = nINe > 0, 0 ≤ S < t} (2.5) 

with the following boundary conditions, 

= 1 and p(0) = 0 for n ≥ 2. (2.6) 

p0(t+It) = p1(t) t (2.7) 

p1(t+t) = p1(t)(1—(A+)t)+p2(t)M (2.8) 

p(t+it) = for n ≥ 2. (2.9) 

Again as At -, 0, we obtain 

= AP 1(t) 

- (A+,a) p1(t) + ip2(t) 

(2.10) 

(2.11) 

dp(t) = - (X+j&) p(t) + Ap 1(t) + jp 1(t), n ≥ 2. (2.12) 

Now the busy period p.d.f. for this absorbing system is: 

fB(t) = /-Lp1(t) 

or from (2.10): 

(2.13) 



(t) - dpo(t) 
- di 

Moreover, define the generating function of p(t) as 

c-1 n 
G(z,t) L z p(t) 

n=1 

and taking the derivative of G(z,t) w.r.t. time t, will give, 

CO 

G(z,t) = z  dp(t) 

Tt- n=1 

(2.15) 

(2.16) 

Now, all we need to do is to substitute all the different possible values of 

dp(t) froxi. (2.11) - (2.12) into the definition of the generating function of 
dt 

(2.16) with some rearrangements of similar terms, we get, 

dG(z,t) - p+) G(zt)+A z G(z,t)+ [G(z,t)—z p1(t)] . (2.17) dt 

At this point I define and denote the Laplace transform of the p.d.f., f(t), as 

-St 

f(t)] = f  e f(t) dt 

0 

Hence, taking the Laplace transform of (2.17), will give the following, 

(2.18) 

.Odt G(z,t)] = - (X+p) O(z,$)+A z O(z,$)+ [O(z,$)—z fli(s)]. (2.19) 
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But, we know that the Laplace transform of a derivative could, in fact, be 

written as (i.e. the L.H.S. of (2.19)), 

.,g'[ G(z,t)] = - G(z,o)+ s O(z,$). (2.20) 

Suppose that the initial number in the system is one customer, then we could 

apply the initial condition, 

G(z,o) = z. (2.21) 

From (2.19), (2.20) and (2.21) we can arrive at the result 

- z + s 6(z)s) = - (A+/h) O(z,$)+A O(z,$)+ [O(z,$)—z (s)]. (2.22) 

When it is rearranged again, it will give 

Az —( s-i-+/i)z+p 
(2.23) 

The objective here is to find a solution for the p.d.f. of the busy period as 

stated in (2.13). 

Rouche's Theorem, Saaty [14], says that if f(s) and g(s) are two analytic 

functions of s inside and on a closed contour C, and also if g(s) < f(s) on C, 

then f(s) and f(s) + g(s) have the same number of zeros inside the contour C. 

Applying this theorem to (2.23) indicates that if the denominator of O(z,$) 

vanishes when O(z,$) is finite, then the numerator must also vanish at the 

same point where the former vanished. Therefore, all we need to do is to 

equate the denominator of G(z,$) to zero and solve it for the right root, at 
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which O(z,$) converges inside and on the unit circle I Z I = 1. This approach 

results in the following two roots for the quadratic equation formed by 

equating the denominator of (2.23) to zero, 

2(s) = (s+A+) d: (s+A+)2 - 4\p 
2A 

at s = 0, both roots are 

t2(0) = (A+j)  u or 1 
2A 

(2.24) 

(2.25) 

but p = < 1, that is the traffic intensity is always less than one, otherwise 

the queue will explode with a heavy backlog. Therefore > 1, and we will 

consider only the root 2(s) with the negative sign which gives the value of 

one when s = 0. Hence, applying Rouche's theorem means that the 

numerator must vanish at the point where z = e2(s). This results in 

/& h(s) = e20)- (2.26) 

Then by considering both results in (2.13) and (2.26), we conclude, 

= e2(s) = (s+A+p) - '( s+A+p)2-4Ap (2.27) 

where we have B(0) = 1, and all that is required at this point is to invert 

the above Laplace transform in order to get an expression for the p.d.f., fB(t). 

That is, 

f(t) = (2.28) 

However, in order to invert the Laplace transform of e2(s), first we need to 

expand its expression after rewriting B() as, 
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= s+/j,  [ -  4Ap 1 (2.29) 

The above (2.29) could be expanded using the binomial series to give the 

following, 

00 
f11(s) = k - 1 k(2k2)t 

(s+A+fL)2k1 k! (k-1)! 

then by using the following Laplace transform, 

2k-2 -(s+X#t 'ft 2k-2 ( 2k-2!  
[t } = e t dt = k -1 

0 

we can invert (2.30) to get, 

k-i k 2k-2 

fB(t) t  e(>'" 

k=1 

And, if we let j = k—i, we can rewrite (2.31) as, 

or 

where, 

00 

11 X 
j j+i t 2j+1 Q t 

fB(t) = e ) 
J!  

j=0 

fB(t) e Q 1t)tj Ii (2tv1 

00 t'At) 2j+1 
(   

j! (j+1)! 

j=0 

(2.30) 

(2.31) 

(2.32) 
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which is known as the modified Bessel function of the first order, and (2.32) is 

the required p.d.f. of the busy period for the M/M/1 queue. 

THE BENCH METHOD: 

The Bench method is used when there are initially i customers in the 

system where each can be considered as generating his own busy period. 

Hence B and K could be partitioned as follows 

B=B1+B2+ ... -FB1 

K=K1+K2 +...+K1. 

All of the i customers are considered to be awaiting on the bench and the 

busy period of the jtli customer includes his service time duration and those 

customers who join the queue until the queue is empty. And in this case, the 

bivariate distribution of B and K 

F1(k,t) = P{K=k, B ≤ t I No = i} 

could be derived directly by partitioning it in terms of the first event which 

could be either an arrival or a departure. For example, at the beginning 

when there is only one customer (the first) in the system, we can move one 

step further to consider the next situation of having two customers in the 

system, one is being served and the other is awaiting service at the bench. 

Or, we can move one step backward to the situation where there is no service 

done but there is one arrival to the system. Hence, 

f1(k,t) = It e _(X+i)t + A e (> 1L)t * f2(k,t). (2.33) 
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where the joint distribution and density are: 

f1(k,t) - dF1(k,t) 
dt 

The first term on the L.H.S. represents the situation of one service being 

completed during which there was no arrival, where by 8k 1' the Kronecker's 

symbol 

1, if k 1 

ok,1={0 if k # 1 

= 
(2.34) 

The second term of (2.33) is the case of an arrival but no service being 

completed. The star (*) stands for the convolution where, 

a(t) * b(t) = 5 a(u)b(t—u) du. 
0 

The convolution in (2.33) takes care of future services of those customers who 

joined the queue during each service time. 

Now taking Laplace transforms of both sides of (2.33), will give 

1(k,$) =   8k 1 + 2(k,$). (2.35) 

And to define the generating function, 

w 

= k (k's) (2.36) 
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then applying (2.36) to (2.35) when there is initially one customer in the 

system, that is, i = 1, gives 

(2.37) 

However, it should be understood that the general generating function for any 

number i is 

41(z,$) = E[zC e/I=i] (2.38) 

where B and K are as partitioned above. Then B1 is the time to serve the 

jth customer plus those who join the queue until the queue is empty and all 

of these customers are denoted by K1. So, Br and Kr, r = 1, ..., i are i.i.d. 

so that (2.38) could be factored as 

Moreover, if we let 

41(z,$) = E[z K B e ] 

= fl  E[z'r er] 

= [E[ZKI et]]1 

= [uZ's)]i. 

= 

then by considering (2.37) and (2.39) together, we have 

(2.39) 



= fLZ + ;\4)2 

which is a quadratic equation in 4) that could be written as 
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(2.40) 

A4)2 - (s+A+p) + pz = 0 (2.41) 

for which the appropriate root is, 

''(Z's (s+A+li) - I(s+A+li)2-4Aiz  
2A 

(2.42) 

And, by applying the binomial expansion, as we did in (2.29), we arrive at 

Hence 

00 k- I k k 
•2k-2)! z 

4)(z,$) =  A !( k-1)! ( s+A+li) 
k=1 

k - lk 
1(k,$) - (2k-2)! A t  

2k-1 
- !( k-1)! (s+A+li) 

Taking the inverse Laplace Transform, one obtains: 

f1(k,t) - A k-I li k t 2k-2 
- k!(k-1)! 

(2.43) 

(2.44) 

(2.45) 

And in order to derive the marginal p.d.f. of B all we have to do is to sum 

over all the possible values of K, that is, 
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aj A k- I k 
'V i  

B t) = Ld lc!(k-1)! 
k=1 

t212 e(>+)t (2.46) 

which is exactly the same result we had already derived in (2.31). Likewise, 

to get the marginal distribution of K, the number of customers served during 

a busy period, we integrate over all t, to get the following, 

P{K—k} =  A k-I k (2k-2)!  
- k! (k-1 t 21-1 

(A+4a) 

for p = , the traffic intensity, the above can be written as, 

k-i 
(2k-2)! P 

P{K=k} = k! (k-1)!  
(l+p) 

(2.47) 

(2.48) 

THE REFLECTION METHOD: 

The above result could also be derived by the use of the Reflection 

principle where we assume that there are i customers initially in the system. 

Here, we look to the system in terms of the number of transitions that had 

occurred. A transition is defined as the occurrence of an arrival or a 

departure in the system. Obviously the busy period terminates the moment 

that we have had sufficient departures to empty the system. Figure (2.1) 

represents the number in the system based upon a hypothetical number of 

transitions. Now, whenever we have a departure from the system, this is 

represented by a "down" transition. In order to serve k (k ≥ i) customers 

during a busy period, there must be k "down" transitions and hence k—i 
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arrivals or tiuPt? transitions. As represented by figure (2.1), there must be a 

total of 2k—i transitions when we reach the zero axis in the system for the 

first time. Let us assume that the system contains a total number of n 

transitions, where r is the number of up transitions that occurred after time, 

t = 0. That makes the total number 

no in (0,i 
tEe system 

(2k—i-1,1) 

0 

transitions (2k—i3O) 

Figure (2.1): The number of paths in the Reflection method 

of up transitions to be i+r, while on the other hand the number of down 

transitions is s. Therefore the number of customers served during the busy 

period should be equal to the number of services performed, which is the total 

number of down transitions. 

k=i+r=s. (2.49) 

Let f(t) be the joint probability density function and the probability 

that an up transition occurs at time t since the last transition. Similarly, 

define f  as the joint probability density and the probability that a down 

transition occurs (but no arrival) at time t. Then, 
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f(t) = A e 

and (2.50) 

L(t) = p e 

with the following Laplace transforms, respectively, 

A  
f+(s) = (s+A+p) 

and, (2.51) 

Hence the probability of an up transition, that is, the probability of one 

arrival and no service is 

Similarly, 

w 

p{up} = f f+(t) dt = , if p --  
0 

(2.52) 

p{down} = f(t) d = . (2.53) 

0 

Let N = the number of configurations, see example in figure (2.1), that lead 

from an initial point (0,i) to the point (2k—i, 0) where the axis is touched for 

the first time at (2k—i, 0). This is equivalently and better stated as the 

number of paths from (0,i) to (2k—i-1, 1) which never touch the axis. Hence, 

the distribution of K, the number served during the busy period could be 

written as 

or, 

r 

P(K=k) = N1 P 1 
i+pj ['] 

k-i 
P(K=kfN0=i) = N[rf•] 1 ] 

tTi 

n-k+i 

(2.54) 
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Furthermore, if we let N1 = the total number of paths from (O,i) to 

(2k—i-1, i). These may touch or go below the axis one or more times. And, 

N2 = the total number of paths from (0, —i) to (2k—i-1, i). Then 

N=N1—N2 

where 

2k—i-1 2k—i-1 
and N2 = 

k—i k 

hence, 

N   

As a result (2.54) becomes 

i (2k—i-i)! [TfJ [T P] 1 k 
P(K=k(I=i) = k. (k-i). pJ k-i  (2.55) 

when there are i customers initially in the system. However, when i = 1, 

(2k-2)! P k-I 
P(K=k) = k! ( k—i)! 2k-i 

(i+p) 
(2.56) 

which is the same result derived earlier. Or, the same result could be derived 

from the joint distribution of B and K. And to derive this distribution, we 

begin by assuming fk(t) be the joint probability that a particular configuration, 
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as represented by figure (2.1) occurs and it is the probability density that it 

touches the axis for the first time. Then we have the convolution of (k—i) 

"ups" and k "downs" of those densities in (2.50). Hence the Laplace 

transform of fk(t), considering (2.51), is 

k-i 
fk(s) = (L(s)) (L(s)) ' 

k-i k 

- 2k-i (2.57) 

In order to find f1(k,t) we need to enumerate all possible configurations 

that allow exactly k customers to be served, and this is where we use . the 

reflection principle as described in Feller [7]. Hence the Laplace transform of 

the joint density is, 

f1(k,$) = N k() 

which by inversion gives 

f(k,t) = N fk(t) 

iA 
k-i k 2k-i-I _  t e  

k! (k-i)! (2.58) 

for an initial, i, number of customers in the system at time t = 0. And by 

integrating over t, or summing over k, we can derive the marginal densities of 

K and B, respectively, as given previously by (2.47) and (2.46). 



24 

THE MODELLING METHOD: 

I have suggested this name because the pattern of arrivals and departures 

from the single—server queue, could, in fact, be modeled in such a way that 

departures from the system can be regarded as arrivals with a rate of A. 

Champernowne [2] suggested a direct approach to find the p.d.f. of the busy 

period for the M/M/1 queue. He set, N, the number of customers in the 

system at time t, to be equal to the number of arrivals to the queue minus 

the number of departures from the system. That is, 

Nt = A - D (2.59) 

where arrivals follow a Poisson distribution with an arrival rate A. Hence, 

and, 

k At 

P(A—k) - (At) e  
- - k! (2.60) 

k -ut 

P(D—k) - / pt) e (2.61) 
- - k! 

Though Champernowne used the above results with a combination of some 

modified Bessel functions to prove his argument, I would rather simplify the 

analysis by considering the 'peak' time or the 'rush' time to be uniformly 

distributed at any point of time as u(0,t). Consequently, if there are i—i 

customers in the queue at time t, where i = 1,2,...; then there must be i 

departures at the other end of the system. In other words, the busy period 

service time must accomodate the service time of the last customer at the 

service desk. 
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Now, the distribution of the busy period could be modeled as 

fB(t) = u(O,t) PIN = A - D}. 

And due to the set up of the pattern of arrivals and departures in the system 

both occur independently of each other, then 

fB(t) = 

00 

u(O,t) PfAt = i-1} P{D=i} 

(0 -Xt I -lit 
1 (At) e  (it) e  

i=1 

= Ji . e(> " 11(2t/) 

I = 1,2..... 

(2.62) 

which is also the same result as of (2.32) obtained earlier. 

To get the average length of the busy period we simply find the negative 

derivative of the Laplace transform of the bivariate density of B and K w.r.t. 

to s, 

E(B) = 

Consequently the variance is 

1  

Var(B) = E(B2) - [E(B)] 2 

(2.63) 

(2.64) 
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On the other hand, the average number of the customers served during 

the busy period could be derived from the Laplace transform of the same 

density with the derivative w.r.t. z, 

and, 

E(K) = 

Var(K) 

(2.65) 

(2.66) 

Another important parameter is the covariance of B and K, which is derived 

as follows, 

then, 

E(BK) = 

Cov(B,K) = E(BK) - E(B)E(K) 
2 
i—p Ii 

(2.67) 

And since p is always positive, that is, 0 < p < 1, then the covariance 

of B and K is always positive as well, due to the fact that as the busy period 

duration increases so does the number of customers served during this period. 

That is, both of them must generally move in the same direction. 



CHAPTER III 

THE M/M/C QUEUE 

If one or more servers are added to the single—server queue of the 

previous chapter, then we need to define carefully what a busy period really 

is. In some instances, statisticians define the busy period for the M/M/2 

queue as the time period during which both servers are busy. They ignore the 

time period when one of the two servers is busy and the other idle. However, 

to me, the real busy period starts when one of the two servers becomes busy 

and terminates the instant both of them become idle. The latter is the 

natural extension of the busy period of the single server queue discussed 

earlier. I will consider the busy period analysis for the M/M/2, M/M/3 

queues and then generalize the argument to cover the M/M/C queue. 

THE M/M/2 QUEUE: 

In this queue, we have two identical servers each with a service rate of 

. Both servers will only be busy when two or more customers are in the 

system. But the busy period terminates the moment the last customer leaves 

and both servers are idle. The system will therefore alternate between none, 

one, or both servers being busy. But since we are interested only in the busy 

period, we consider only the last two cases, that is, when one or both servers 

are busy. Let, 

p10(t) = p.d.f. of the length of a service and 

that no new customer arrives 

hence, 

p10(t) = A e . (3.1) 

27 
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Similarly, 

p12(t) = p.d.f. of time until next arrival and 

that the customer in service has 

not reached completion, 

therefore, 

and, 

p12(t) = A e( ' 

p10(t) + p12(t) = (+) e>)t 

Moreover, let 

where, 

(3.2) 

= p.d.f. of time spent in state 1, where state 1 

represents the situation of having one customer 

in the system. 

P21(t) = 2(t) (3.3) 

1(t) = p.d.f. of the period of time of entry to state 1, 

if we begin initially with i customers in the queue. 

Then we can partition CO in terms of one service and k arrivals as follows, 

where, 

W ( t) e k t 1 
2(t) = 1:  I k! 2-2t * k+1(t) 

k=OL ] 

CO 11, if k ≥1 

[0, if O.W. 

(3.4) 

And it should be noted that the above service is in terms of both servers 

being busy. Now applying Laplace transforms to (3.1) - (3.4) respectively, we 

get, 

a(s) = (3.5) 



29 

Let 

then 

Now (3.8) becomes 

k=0 

A 
P12(s) = s+A+IL 

p21(s) = 

k -Xt 
= (At) k! 2pe e -2t 

Lk=O 

42(e) = 4;i(s) 

k+i() = (4())k• 

00 k -Xt 1 
(At) 2pe e -2ttI 

k! ] 
= e (( 14(S)) 21L)t] 

-  2/.t  

s+A(14(s) )+2/L 

(4( s)) 1C 

With some basic algebra (3.10) gives the following quadratic equation, 

A 2 - (s-i-A-i-2t) 4 + 2 = 0 

with the following appropriate root, 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

P21(S) 
 i(s) = (s+A+2it) - s+A+2i)2-8A,L (3.11) 
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which is the Laplace transform of the p.d.f. of the busy period if it were 

considered to be the total occupation of the two servers. However, with the 

proper definition of the busy period, its p.d.f. could be partioned in the 

following way, 

ç(t) = p10(t) + p12(t) * p21(t) * p10(t) + 

for which the Laplace transform is, 

= (s) [1 + 12() p21(s) + ( i2() p21(s))2 ...] 

- 

- 1—DU(S)p21(S) 

(3.12) 

in which, we substitute the different values ofDOW , DUO), and 21(), 

respectively, from (3.5), (3.6) and (3.11), we get 

= 
2 IL 

s+)+%/(s+A+2j)2-8Ap 
(3.13) 

the Laplace transform of the real busy period as defined previously. However, 

it is difficult to invert such a Laplace transform, but it is worth noting the 

necessary condition for a density function, that is, 

= 1. 

THE M/M/2 BIVARIATE DISTRIBUTION OF B AND K: 

The bivariate density of the busy period, B, and the number served 

during this period, K, may be written in the form of (2.35) of the Bench 
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Method. And its derivation is identical to that of (2.40). However, in this 

case the Bench Method does not apply. Now, applying the generating function 

approach, as we did before, 

2(z,$) = E[z e/I=2] (3.14) 

where K = K1 + K2 and B = B1 + B2. B1 and K1 are defined as the 

length of time and the number served until the moment we have one customer 

in the queue for the first time. While B2 and K2 are the length of the busy 

period and the number of customers served when we begin with one customer. 

Accordingly, B1 and K1 can be interpreted as the length of the busy period 

and the number served in a M/M/1 queue with a service rate of 2p. Hence 

(3.14) becomes 

2(z,$) = (2)(Zs) E(zC2 e 2)  

where (2)(z,$) is defined by (2.42) with p being replaced by 2p. And, by 

definition of B2 and K2, 

E[z'(2 e2] = 51(z,$). (3.16) 

Now recall the result (2.37), which is written as 

)4 (z,$) 
1(z,$) -   

— s+A+p + s+A+p 

Then, by substituting (3.15), and (3.16) into (3.17), we get, 

(3.17) 
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1(z, s) =  2j z  (3.18) 

which is the Laplace transform of the bivariate density of B and K for the 

M/M/2 queue. As a result we would be able to derive the important 

moments of B and K for this queue as 

where 

E(B) = 10 1  
S - f41—p2) 

= < 1 for stationarity 

is the traffic intensity for the M/M/2 queue. Similarly. 

And the variance of B is 

1  
Var(B) - p2(1—p2)3 

The covariance of B and K is 

Cov(B,K) 

(3.19) 

(3.20) 

(3.21) 

THE M/M/3 BWARJATE DISTRIBUTION OF B AND K: 

We will provide the derivation of the bivariate distribution in this case 

as it illustrates the generalization. Here we will begin with the arrival of a 

single customer that makes one of the three servers busy. We vary between 

one, two, and three servers being busy until the busy period terminates when 
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the last customer leaves the system. Let f1(k,t) be the bivariate density of K 

and B when there are i customers initially in the system. Again we can 

partition densities in terms of the first event as, 

f1(k,t)+  A e + 1L)t * f2(k,t) (3.22) = j e 

and 

f2(k,t) = 2 e (>21t)t * f1(k-1,t) + A e(>+21)t * f3(k,t). (3.23) 

Let the Laplace transform of the generating function, 

(z,$) = E[z' eSB/I=i] = f1(k,t)] 

which when applied to (3.22), (3.23) respectively, 

(s+A+j&) 1(z,$) = jz + A 2(z,$) (3.24) 

and, 

(s+A+2i) 2(z,$) = z c1(z,$) + A 3(z,$). (3.25) 

Now, we define, 

43(z,$) = E[Z112 e (B12)/I= 3] (3.26) 

where K1 and B1 are the number served and the length of time until we have 

two customers in the queue for the first time. This is equivalent to the busy 

period in the M/M/1 queue with A being replaced by 3p. Also, we could 

write 

E[e'C2 e 8B2] = 42(z,$). 

Therefore, using (3.27) and (3.26), we have 

(3.27) 
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43(z,$) = 42(z,$) (s+A+3i) - /( s+A+3it)2-12)iz (3.28) 
2A 

Substitution of (3.28) into (3.25) and (3.24) and eliminating 42(z,$) in both 

equations, we will obtain the desired result, 

z 1s+A-i-IL + (s+A+3) 2_12Ap]  (3.29) 

(s+A+) [( s+A+i) + f ( s+A+3) _12Az]-4z)tt 

which is the Laplace transform of the bivariate density of B and K for the 

M/M/3 queue. 

This procedure may be continued for queues of this type with additional 

servers. But as the number of servers gets large, it will be difficult to follow 

the required substitution. Therefore, I will consider another procedure that 

will cover all cases; but only for the r.v. B. 

THE M/MIC QUEUE: 

It is not difficult to extend the concept of the real busy period to the 

multi servers case. In a similar fashion, the busy period begins with an 

arrival to the system that makes at least one of the c servers busy. I would 

use the method of the absorbing Markov chain for the M/M/2 queue and then 

generalize it for the M/M/c case. The difference—differential equations for the 

M/M/2 assuming state 0 is absorbing 

dp(t) 

dt n=0 

dp(t) 
dt = - 7+p) p1(t) + 2 p2(t), n = 1 
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dp (t) 
n  - 

dt - - (A+2) p(t) + x P.-I(t) + 2p p 1(t), n > 2 

and again the terms that contain p0(t) were dropped from the first two 

equations, because zero is the absorbing state. 

In order to solve the above system of equations, we need the following 

generating function, 

00 

G(z,t) = z" p(t) 

for which the derivative w.r.t. t is, 

d OD dp (t) 
G(z,t) = Zn   

n=1 

(3.30) 

Considering dp (t) h from the above system of equations after multiplying the 

second equation by z and the third by zn and summing over all the possible 

values of n. After some algebraic manipulations, this will give us the 

following result, 

dGz,t) = - A G(z,t) - 21t G(z,t) + z p1(t) + 

[G(z,t)—z p1(t)] + A z G(z,t). (3.32) 

Moreover let us assume that the initial number of customers at time t = 0 is 

one, that is, 

G(z,0) = z,. (3.33) 

Using the initial condition (3.33) and taking the Laplace transform of (3.32) 

yields: 
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O(z,$) - - Z2 - z2 p1(s) + 2/2 z  
- A z2 - (s+A+2i) z + 2/2 (3.34) 

Applying Rouche's theorem to (3.34) gives the appropriate root for the 

denominator as 

( . (s+A+2/2) - i/( s+A+2/2)2_8)yt  
- 2A 

And by equating the numerator to zero in (3.34), when z = , the 

appropriate root gives, 

= /2 =  (Xs)  
2 - i(s) 

(3.35) 

which is the Laplace transform of the p.d.f. of the busy period for the M/M/2 

queue, in. (3.13). 

Similarly, the difference—differential equations for the M/M/c queue are 

dp(t)  --Et— --  p1(t) 

dp n (t) 
- dt - - (A+n/2) p(t) + A p 1(t) + (n+1) A p 1(t), 

1≤n<c 

dp (t) 
n - 

dt - - (A+c/2) p(t) + A p 1(t) + CIJ, p1(t), 

for n≥c 

where A p 1(t) is to be excluded whenever n = 1 in the second equation. 

Again, and as we did before in the M/M/2, the first equation constitutes the 

p.d.f. of the busy period. Equation two on the other hand could be rewritten 

as 
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dp (t) n -- dt - +c) p(t) + (c—n) i p(t) + 

A p 1(t) + c p +1(t) - (C—n-1) A p+1(t), 

1 ≤ n < c (3.36) 

which in this form is quite similar to equation three. Now the generating 

function equivalent of this becomes 

G(z,t) = - (A+cji) G(z,t) + A z G(z,t) + 

[G(z,t) - z p1(t)J + A (c—i) z p1(t) 

- IL [ - i] 1 (c—n) zn p(t). 

n=2 

Taking the Laplace transform of both sides of (3.37), gives 

- G(z,O) + s O(z,$) = - (A+cIL) O(z,$) + Az O(z,$) 

+ [6 (Z's) - z D (s)} + p (c—i) z 

— p 

(3.37) 

[ 
I - i (c—n) zn D.(S). (3.38) 

And at the beginning of the busy period if there are i customers in the 

system at time t = 0, then 

G(z,0) = zi. (3.39) 
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While just before the busy period terminates, there should be only one 

customer remaining in the system and that is why 

= P{t ≤ B ≤ t + t} = jtt p1(t) 

and 

en(s) 1 

where e > 0. 

(3.40) 

Using (3.39) and (3.40) into (3.38) and with some rearrangement, we get, 

1+1 
O(z,$) = - z + c/ z1(s - i(c-1) z2 1(s)  

Az - (s+ +c)z + C/h 
(3.41) 

and applying Rouche's theorem will get the appropriate root for the 

denominator as 

(s+A+c/h) -  

ksj - 2A (3.42) 

which is the same Laplace transform of the p.d.f. of the M/M/1 queue busy 

period with p being replaced c. It is the Laplace transform of the busy 

period if it is defined as the total occupation of the c servers available. 

However, equating the numerator of (3.41) to zero, at the point where 

z = 0, we will get 

4i - ct h(s) + /h(c-1) 4 s(s) = 0 (3.43) 

which could be written as 
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(3.44) 

which represents the Laplace transform of the p.d.f. of the busy period for the 

M/M/c queue. It should be noted that when i = 1 and c = 1 then (3.44) 

becomes 

= ii. s(s) = 

where 4) as defined in (3.42) with c = 1, is the Laplace transform of the p.d.f. 

for the M/M/1 queue as obtained previously in (2.42). Similarly for i = 1 

and c = 2, (3.44) gives 

NO = 24)—$ 

which exactly the Laplace transform of the p.d.f. of the busy period of the 

M/M/2 queue in (3.35). 

An important derivation from (3.44) is the average length of the busy 

period, it is now possible to find a general expression for E(B) as follows, 

E(B) = as 
i +c-1 

s=O = c/L—A 
(3.45) 

Hence for the M/M/c queue, if the initial number bf customers is one, i = 1 

then 

and, 

c —  1 — A 
" ) — CL  —A — IL ('—)' Pc — CA 

(3.46) 

Var(B) = c 4)"(0) + 2c(c_1)[4Y(0)]2 — [c4)/(0)] 2. (3.47) 



CHAPTER IV 

THE M/G/1 AND THE G/M/1 QUEUES 

THE M/G/1 QUEUE: 

The features of this queue are that customers arrive randomly according 

to a Poisson process and obtain service from a single server, who follows an 

independent general service time distribution. The pioneer work in this area 

was done by Erlang [6], Pollaczek [11], and Khintchine [9]. Though Takacs 

[17] gave an explicit form of the busy period density function, his opening 

remarks considered a complicated combinatorial analysis technique. However, 

for this type of queue and the G/M/1, the Chapman—Kolomogorov difference - 

differential equations, as illustrated previously, are not possible due to the fact 

of the relaxation of the Poisson and exponential distributions within the arrival 

and service times, respectively. However, for the G/M/1, a modification for 

the equations is done by Cox [5] by using what is known as the 

supplementary variables technique, which is out of the scope of my thesis. 

The direct approach is to model the M/G/1 queue as a Markov chain, 

and needs a complete description of the state of the system at any particular 

moment of time. Therefore, we require information regarding the number of 

customers in the system as well as the remaining or elapsed service time of 

the customer currently being served. To understand the general behavioral 

pattern of this system, one can study it at some discrete points in order to 

simplify the analysis. For example, if the time interval (O,t) is split at the 

points of departure of customers from the system, that is, t1, t2..... 

40 



41 

At these points, the remaining service time of the customer is zero, and 

therefore the queue length could be studied independently. Accordingly, let us 

consider the system exactly at the moment when one particular customer's 

service is completely done (say, the kth customer), and the next service (of the 

(k+1)th customer) is about to commence. For sake of convenience, allow me 

to adopt and define the following notations, 

Nk = number of customers in the queue at the completion of the kth 

service. 

Lk-11 = number of arrivals during the (k+1)th service. 

h(t) = the probability density function of the i.i.d. service times. 

We can now write 

Nk+l = 

Nk + Lk+j - 1, 

Lk+ I 

if Nk>O 

if Nk=O 

So that {Nk} has the properties of a Markov chain, and it is called the 

imbedded Markov chain, Kendall [8]. 

In order to attain the M/G/1 busy period distribution, we will partition 

f1(k,t) in terms of the outcome of the first service. Therefore one can write 

f1(k,t) as 

ai )' ef1(k,t) = [(At r! h(t)j * fr(k1,t) (4.1) 

r=O 

where f0(k-1,t) = 5k1 5(t). Then the Laplace transform of (4.1) is, 

1(k,$) = [(At)r e -Xt h(t)] r(11,5) (4.2) 
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Using the generating function of (2.36), then (4.2) becomes' 

r 1,(z,$) = z f[(xt) e  h(t)] r(Z,5) (4.3) 
r! 

r=O 

From (2.39) applying the Bench method argument we have that 

= (4(z,$))". 

And, substituting (4.4) into (4.3), and performing the sum, one yields, 

or 

1(z,$) = z h(t)] 

(4.4) 

(4.5) 

(z,$) = z li(s + )t( 1-4i(z,$))) (4.6) 

which is the Laplace transform of the bivariate density of the busy period, B, 

and K, the number served during such period; which was obtained by 

identifying sub—busy periods within the main busy period, and all of them 

having the same distribution as the main one. 

In order to derive the moments of B and K, first, let us assume that 

the moments of the arbitrary general service time distribution exist as 

E(Xk) = ()k (k)() 

where the mean is denoted by 

a=E(X)=—h'(0) 

and the traffic intensity is therefore p = Aa. Hence, from (4.6), 
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E(B) = = a(1 + ,\ E(B)) or E(B) = a 
z=1 (4.7) 

s=0 

It should be noted that for the M/M/1 queue, a = for the exponential 

distribution, therefore 

E(B) = 

as obtained earlier in (2.63). In the same way, the average number of 

customers served during the busy period is 

E(K) = 
z=i 
5=0 

= 1 + aA E(K) = . (4.8) 

the same result for the M/M/1 queue as (2.65) with a = . Moreover, the 

variance of B is 

+ p a2 
Var(B) = O•i (1) 3 (4.9) 

where u2 represents the variance of the service time distribution. Similarly 

the variance of K is 

Var(K) = A2 E(X2 + (1—p)(2p-1)  
i— p) 3 (4.10) 

and 

+ A E(X2)  E(BK) = 

which makes the covariance of B and K, 

Cov(B,K) - A E(X2  > 0 as expected. 
(I—p) 

(4.11) 
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Going back to invert the transformed generating function, we can use the 

Lagrange expansion on (4.6). This implies that we have a function c≥Y such 

that 

a + t b(Y) - (4.12) 

then, 

LU 

tn d"1  
(4.13) 

Now, let O(s) = i(s), a = s+A, t = - Az, and #' = s + A(1-41(z,$)). Then 

(4.6) is in the form of (4.12), so that (4.13) will be 

CO 

= s+A - )41(z,$) = s+A +, (-1)'çAz)1' dn11(.(s+A))h1 (4.14) 
n=1 n. d(s+A) -i  

Now, 

(l(s))x1 = ha(s) 

where, 

= h(t)} 

where h(t) is the n—fold convolution of h(t) with itself. So, (4.14) will be 

LU 
'1 

4(z,$) = 
4.4 
n=1 

= 1 

n-i n 
(—A) z  

n! 
0 

An -1 
nT 

n-i e ' -( s+Xt 

d(s+A)" ' 
h(t)dt 

Z" JLU e Is 

+X'' t t n-i 
- h(t)dt . (4.15) 

0 
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From (4.15), one can readily find 11(k,t), namely, 

k-I . Xt 
f1(k,t) - (At) e  

- k! hk(t) (4.16) 

This agrees with the M/Mf 1 result of (2.45) with 

Then, hk(t) is the k—fold convolution of h(t), 

k-i .. it 

hk(t) = e 

The marginal distributions of (4.16) are obtained in the usual way. 

THE G/M/1 QUEUE: 

In this single server queuing system the service times have a negative 

exponential distribution but the i.i.d. arrival times follow an arbitrary 

distribution which has a c.d.f., 

O≤t<w 

with a p.d.f. a(t). Again, we could identify an imbedded Markov chain 

considering the arrival points as the discrete set of points. Then, 

Nk = number of customers in the system ahead of a newly arrived 

customer. 
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Lk+l = number of customers served between the arrival of the kth 

customer and the (k+l)t. 

As the case in M/G/1, then 

Nk+j = Nk + 1 - L1 1 for all Nk. 

This makes {Nk} as a Markov chain with renewal points taken at the 

instances of customers arrival. That is, the G/M/1 is modeled by considering 

the system immediately after an arrival occurs. The busy period distribution 

had been covered extensively through different approaches; an interested reader 

may consult Takacs [18], Kendall [8], Prabhu [13], and Conolly [4]. The p.d.f. 

of the busy period is considered in terms of one arrival and (r-1) services 

being completed or, no arrivals occurred and there are r services being done. 

Therefore, 

r-1 r-i 
(pt) e  A(t) fr(t) [( k -Pt 11t 

-   a(t)]*frk+l(t)l1 (r-1)! - k! 

k=O 

(4.18) 

where A(t) = P(T > t) is the probability of no arrivals during time t, or 

arrivals have occurred after time t. 

Now, taking the Laplace transform of both sides of (4.18), 

Ir-1Oit)k 1 
-t I [  -1 -pt 

k!  A(t)]. (4.19) = , e  a(t)I r k+j(s) + ,g /i Cat) r e 

Lk=O j 
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The Laplace transform of the necessary generating function is 

CO 

(Z's) z r j (4.20) 

and, 

4A(t)] 1 (4.21) 

Hence applying (4.20) and (4.21) to the second term on the R.H.S. of equation 

(4.19) yields 

@Zt)  
e A(t)l = .,' z e .A(t)] 

r=1 

_iz(1 -  

s-(1—) 

The first term of the R.H.S. of (4.19) can be written as follows, 

r-1 
)e  k Lt a(t)] 

r=1 k=0 

M 10 

k=0 r=k+1 

r k tt 

[(fLt)e  a(t)]k.  r-k+i() 

that is after changing the order of the two sums as 

(4.22) 

(4.23) 
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co r-1 CD Go 

ark = ark 

r=1 k=O k=O r=k+1 

then (4.23) can be written as 

m+k [( t)k e a(t)] m+i() 

k=O m=1 

1 
z 

1 a 
(a zt) k  -1 m+1 

e  a(t) I 2. m+i() 

Y[k=O j m=1 

= [4(z,$) - z (s)] a(s-fp (1-z)). (4.24) 

So, if we combine the whole expression from (4.19), (4.22), and (4.24), 

we get 

(z,$) = 9(s-fjt(i-z)) [(z,$) - z ()] + pz(1-â(s-ii(1--z)))  
s(1-z) 

And, suppose we let s' = s + p (1-z) and rearranging (4.25), 

(z,$) = pz2(1-â(s')) - â(s') ti(S) ZS,, 

(z-â(s')) s' 

Again by applying Rouche's theorem, denominator of (4.26) gives 

(4.25) 

(4.26) 

zo = a(s') = â(s + p(1-z0)) (4.27) 
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on the other hand, the numerator yields, 

f (\ -  i(1-zo)  
-f (1-z0) (4.28) 

which is 'the Laplace transform of the p.d.f. of the busy period for the G/M/1 

queue. 

The average length of the busy period is 

E(B) 
1 

sO  

(4.29) 



CHAPTER V 

THE G/G/i QUEUE 

In this queueing system, the interarrival times are independent and 

identically distributed with an arbitrary distribution, A(t). The service times 

are independent and have an identical arbitrary distribution denoted by 11(t). 

There is a single server offering service on a FIFO basis. In order to model 

the G/G/i queue, we need to split the time interval (O,t) at the points of 

customers arrival, t, namely, t0, t1, t2......Also if Yn represents the n 
th 

customer service completion time, and, x, is his service duration time. Then 

A(t) = P(tn - tn_I < t) 

and, 

11(t) = P(y - y1 < t). 

(5.1) 

(5.2) 

THE WIENER-11OPF DECOMPOSITION: 

The probability generating function of K, the number served in a busy 

period is derived via the Wiener-11opf decomposition, where the complex plane 

is divided into two halves 111,and 11,, such that if s = o + ir is a line 

in the complex plane, then 

and, 

ll={s: o<'y} 

11. = {s: ci ≥ 'y}. 

50 



51 

At this point let me introduce a common distribution function, F(x), for 

which the n—fold convolution is F(x). Moreover, let the following transform 

to be defined as follows. 

(s) = esx dF(x) (5.3) 

-m 

where s = a + Fr, o', r are real. The transform of the n—fold convolution, 

therefore, is 

0, 

4"(s) = 5 e dF(x). 

- W 

(5.4) 

If t denotes a fixed complex number, then y which separates the half planes 

and H1, is chosen so that 

4(7) It I < 1, 4(7) < 

If two functions are defined and analytic in H1,and H1, respectively, then 

they are analytic extensions of each other whenever they have the same value 

at each point s with Re(s) = y. Define 

fn(S) = esx dF(x) (5.5) 

which is analytic in H, and 
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CD 

f(s) = 5 esx dF(x) 
0-

(5.6) 

which is analytic in ll. Another two functions corresponding to each one 

above could be defined as 

Co n 

L(t,$) = _ f(s) 

and, 

n 

L(t,$) = , - f(s). 

Similarly for each above, let 

M(t,$) = e_(t,5) 

and, 

M(t,$) = eT 4(t 5). 

Now, at this point we need to state the following theorem. 

Theorem 5.1: 

On the boundary 7, Re(s) = 'y, we have 

(a) (1 - t 4(s)) M(t,$) = M(t,$) 

(b) urn M(t,$) = 1 

(5.7) 

(5.8) 

(5.10) 

(c) M(t,$) and M?(t,$) are uniquely determined by (a) and (b). 
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Proof: 

By definition of the function in (5.4) we have 

w 

c(s) = f ex dF(x) = fn(s) + f(s). 
-w 

Similarly by the definitions in (5.6) - (5.8), we can write 

w 

-. 4"(s) = L(t,$) + L(t,$) = - £n(1 - t 4(s)). (5.12) 

n=1 

Then, 

- L(t,$) = L(t,$) + £n(1 - t 

Taking the exponential function of both sides of (5.13), we get, 

M(t,$) = M(t,$) (1 - t (s)). 

(5.13) 

(5.14) 

which is the proof of the first part of the theorem. For the second part, it is 

clear from (5.5), (5.7), and (5.9) that 

I rn M (t,$) = 1. (5.15) 
U-4 0D 

For part (c), we need to state the following theorem: 
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Theorem 5.2: 

Liouvilles' theorem states that if a(s) is any entire function 

(differentiable everywhere) and I a(s) I is bounded for every s in the complex 

plane then a(s) is a constant. (For proof consult any standard text on 

complex variables). 

One may have to show that M(t,$) and M(t,$) are uniquely defined by 

(5.14). Namely assume M and M relations also hold for A and A+. Then: 

= when £7 = 7. 
M M 

Hence define 

+ 

g(s) - A(s) on s E ly + 
W M (s) 

A(s)  on s E H..1. 
M(s) 

Then g(s) is a bounded entire function. Now g(s) 1 as £7 i w by 

(5.15). Therefore g(s) 1 by Liouvilles' theorem. Hence M and are 

unique. 

QUEUEING APPLICATION OF THE DECOMPOSITION: 

We will use the Wiener—Hopf decomposition to derive the probability 

generating function of K (the number served) in a G/G/1 busy period. If we 

denote the beginning of a busy period as the event e, then F, is a persistent 

recurrent event for a stationary process. 

The first customer arrives at time to = 0 and has his service completed 

at y1 > 0. Similarly the nth customer arrives at t111 and has his service 

completion at Yn where: 
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Tn tn tn.i, t0 0 

Yn = Yn - Yn -v YO = 0. 

Let, 

Xn =Yn Tn 

and, 

Zn = XI = y - t. 

Therefore if K = inf{n: Zn < 0}, then K denotes the number of customers 

served in the G/G/i busy period. And Z is a process of independent 

increments where X = z n_j and z0 = 0. Define 

and, 

where 

Then 

pa(s) = 

0-fp{K=n, z < 0} e Bzn dZ on 

OD SZ + 

q(s) = 5 p{K ≥ n, Zn ≥ O} e dz on 

fnumber served in the busy period 
K= 

Lw, if the busy period never ends 

pa (s) + q(s) = q 1(s) 4(s) if o- = y and n > 1. (5.16) 
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Also define: 

a, 

p(t,$) = pa(s) t" 

n=o 

and 

CO 

q(t,$) = q,(s) t 

n=O 

where 

PO(s) = 0 and q0(s) = 1. 

Then multiplying (5.16) by t" and snimning, one finds: 

p(t,$) + q(t,$) - 1 = t 4(s) q(t,$) 

or 

1 - p(t,$) = (1 - t 4(s)) q(t,$) on 0 = 7. 

Therefore from (5.14), 

1 - p(t,$) --  M + (t,$) q(t,$). 

M (t,$) 

Let us define the entire bounded function: 

and 

g(s) = 1 : p(t,5) on HY 
M (t,$) 

g(s) = q(t,$) on  n. 
M (t,$) 

(5.17) 
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for all s. Hence 

Then by Theorem 5. 1, 

urn g(s) = 1, hence g(s) 1 
0,400 

p(t,$) = I - M(t,$) on HT 

The probability generating function of K is: 

Hence 

Now 

CD 

G(t) = t  P(K=k) = p(t,O). 

G(t) = 1 - M(t,O). (5.18) 

4(s) = E[e Sx u] = E[en T n] 

= l.(s) a(—s). (5.19) 

The sequence of T and Y are i.i.d. random variables with distributions A(t) 

and 11(t) respectively and their corresponding transforms are 

and, 

i(s) = 5 e x d 11(x) 
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Now A(t) and 11(t) with the corresponding densities a(t) and h(t) are zero if 

t < 0. Hence, 

f(t) = 

and 

f t+u) a(u) du 

u=max(—t ,0) 

Rearranging the integral yields: 

or 

= f(t) eSt dt 

0 

St 

=J 
—w 

h(t+u) a(u) du. 

-St 
W s) = f e dt h(v) a(v+t) dv 

0 0 

Co 

A(v) h(v) dv. 

One can therefore write (5.18) as 

Co n 

G(t) = 1 - ex[ - 5 A(v) h(v) dv] 
which represents the generating function of K, the number served during the 

busy period for the G/G/1 queue. 
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Results 
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densities 

fB(t) = e(t)tj I1(2t\7i) 

•2k-2 ! k It  k 

P(K=k) - k(k-i! 2k-i 
(A+i) 

= 2 

- 

k-i - Xi 
f1(k,t)  k I e( t)  hk(t) 

is the bivariate density of 

B and K. 

(s) -   

G(t)=1- ex[ 
n=1 

Jw h(v) A(v) dvi 
0 j 

means 

- t(i- p) 

E(K) = lip 

- 

E(K) = 

E(B) - i-i-c-i 
'- I CL- A 

E(B) 

E(B) = 
1 

Variances 

Var(B) = i2(1p) 3 

Var(K) = 7p 

1  
Var(B) 

Var(B) = c 4t1(0)+2c(c-i) 

[4(o)]2_ [c4(o)]2 

Var(B) = (1-p) 3 

Var(K) -   

- (1-p) 3 

Covariances 

Cov(B,K) - 2p 
- 

Cov(B,K) = 

Cov(B,K) -  E(x2  
- (i-p) 
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