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Abstract

The first chapter is about market efficiency. Broadly, the primary objective of antitrust policy

is to promote efficiency. However, economists do not measure efficiency directly. Rather,

they use a less precise concept, market power, because it is thought that market power is

more easily measured and correlated with efficiency. The Herfindahl and Lerner indexes are

standard measures of market power. This paper explores the circumstances in which these

two indexes are and are not reliable indicators of efficiency. In most models, both indexes

are often not good proxies of efficiency. In addition, I show how to compute efficiency

directly by using firm level output and market price. I conclude that it is not easier to

measure market power than efficiency. The second chapter focuses on the dynamic properties

of an oligopolistic market structure with stochastic successful probability of creating or

maintaining investments for a firm. In each period of a game, a representative firm decides

whether to have positioning (creating or maintaining) investments. All established firms

compete either in the Bertrand or Cournot framework. By adopting symmetric Market

perfect Nash equilibrium, firms choose strategies to maximize the discounted present value

of cash flow. We obtain the steady state of the system and the expected duration for each

state of the system in different market competitions. We also discover the efficiency level is

higher in the Cournot rather than the Bertrand competition with different numbers of active

firms in the market. The third chapter develops a theoretical model for the electricity sector

in the presence of imperfect competition in a Cournot framework. By allowing market size,

industry concentration, and technology to differ, the model incorporates transmission costs

and transmission capacity. We identify the condition under which trade benefits a single

country or increases global welfare by changing these asymmetric factors for each country.

We discover that the expansion of transmission capacity between two countries is not always

beneficial for a single country or for global welfare.
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Chapter 1

Market Power VS. Market Efficiency: Towards a

Direct Measurement of Market Efficiency

1.1 Introduction

Measurement is a core activity in any social science. Economists deal with complex empirical

issues related to various measurements such as price indexes, and productivity. At a microe-

conomic level, economists and policy makers are interested in knowing the extent to which

resources are optimally allocated by markets. Market efficiency is defined as ratio of the

realized social surplus to maximum possible social surplus. However, instead of measuring

efficiency directly, economists often use a less precise concept - market power - because it is

believed that market power is highly correlated with efficiency, so that high market power

indicates low market efficiency and vice versa. In the existing literature, the Herfindahl and

Lerner indexes are the standard measures of market power. The Herfindahl index is calcu-

lated by summing the square of market share of each firm and the Lerner index is the ratio

of the markup to market price. One purpose of this paper is to explore the circumstances in

which the Herfindahl and Lerner indexes are and are not reliable indicators of efficiency.

Policy makers are concerned with market efficiency. However, in oligopolistic markets

such as airlines, railways, electricity, gas, and cement, market efficiency is not always easily

attained. Moreover, a slightly loss of efficiency in these industries causes harmful conse-

quences. For example in a 300 (Terawatt hour)/year electricity market, such as Britain, the

wholesale market value is 10 billion euros per year. Therefore, each 1% loss of efficiency

equals 100 million euros per year.1 Therefore, I would anticipate that the government would

1See: www.ofgem.gov.uk/electricity/wholesale-market/electricity-security-supply
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be interested in measures that provide accurate information regarding market efficiency.

Economists often use the Herfindahl index to detect market power instead of measur-

ing efficiency directly. Since 1984, the U.S. Department of Justice (USDOJ) has used the

Herfindahl index as a concentration measure for merger reviews. This practice has since been

followed by several other regulatory bodies in the U.S., such as the Federal Reserve Board

(banking), the Federal Energy Regulatory Commission (electricity), and the Department of

Transport (aviation). These governmental bodies use concentration measures as a screening

tool. If a market concentration falls into a “safe” level, often no further analysis is pursued.

The Herfindahl index number ranges from close to zero to a maximum of 1. A value of 1

indicating a single firm controls 100% of the market. According to the guidelines set forth by

the USDOJ an industry with a Herfindahl index lower than 0.1 is considered unconcentrated,

and mergers need not be analyzed. An industry with a Herfindahl index between 0.1 and 0.18

is considered moderately concentrated and mergers that create an increase in the Herfindahl

index of 0.01 points or more raise competitive concerns and need to be approved. Finally, an

industry with a Herfindahl index greater than 0.18 is considered highly concentrated, and

mergers causing an increase of greater than 0.005 points raise competitive concerns.2

The Herfindahl index is also used as a concentration measure to detect market power

in academic research. Researchers misleadingly assume the market power is monotonically

related with efficiency. Based on their studies, they conclude that higher concentrated market

always experiences lower efficiency.3 Similarly, the Lerner index has been applied to many

industries. For example, the Lerner index has been widely used in the banking and electricity

sectors as an indicator of degree of market power. In either sector, these authors argue

that market with higher Lerner indexes have lower efficiency.4 In addition, more studies

2For more details refer the U.S. Department of Justice, Horizontal Mergers Guideline,
http://www.justice.gov/atr/public/guidelines/hmg-2010.html.

3For example, some studies adopt the Herfindahl index to detect market power for the aviation and
electricity markets. (e.g.,Hurdle et al. (1989), Borenstein (1990, 1991, 1992), Kim and Singal (1993), Morrison
and Winston (1990), Abramowitz and Brown (1993), Joesch and Zick (1994), Schmalensee and Golub (1984),
and Cardell et al. (1997).)

4Some of the most important studies have been done for Canadian banks, Italian banks, and for samples
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corresponding with the Herfindahl and Lerner indexes have been conducted to measure

market power.5 They conclude there is a relationship between market concentration and

efficiency. However, I demonstrate by stimulation that there is no strong correlation between

them. Moreover, there is no existing literature showing a direct measurement of efficiency

highly correlated with concentration.

Even though there are extensive applications and research studies concerning the Herfind-

ahl and Lerner indexes, there have also been many criticisms of these two indexes. The

Herfindahl index is mainly criticized for two aspects, first regarding robustness with respect

to the definition of the market, and second with respect to the relationship between mar-

ket power and concentration. The definition of the market has several dimensions, such

as geographic dimensions, product characteristic dimensions, and the level of aggregation.6

Therefore, the concept of “market” can be difficult to define. Even when the market is clearly

defined, my paper demonstrates theoretically the Herfindahl index is not a good proxy for ef-

ficiency. This is because the economists believe the Herfindahl index is monotonically related

with efficiency, but it is not true in reality. The second critique, pointed out by Tirole (1988),

is that concentration measures generally ignore many important factors determining market

power, such as asymmetries in firms or demand, and costs of entry. Boone and Weigand

(2000), Sheffrin (2001), and Blumsack et al. (2002) for example, provided empirical sup-

port for Tirole’s contribution that the index of market concentration is not a good indicator

for efficiency: a lower concentration market may experience lower competition rather than

higher competition. However, both theatrical and empirical studies misleadingly considered

the profit of firms as a proxy of market inefficiency.

One criticism of the Lerner index is that it requires the use of marginal costs. These,

of countries in the European Union. (e.g.,Shaffer (1993),Angelini and Cetorelli (2003), Fernandez de Guevara
et al. (2005). Maudos and Fernandez de Guevara (2004), and De Guevara and Maudos (2004)) Moreover,
von der Fehr and Harbord (1993) derived Lerner indexes from 1990 - 1991 for the two large conventional
electricity companies in the England and Wales pool.

5Summaries can be found in Weiss (1971, 1974, 1989), Bresnahan (1989), Schmalensee (1989), Scherer
and Ross (1990), Martin (1993), Waldman and Jensen (2001), Newmark (2004), White (2006).

6The papers are as follows: Hannan (1997), Kwoka Jr (1998), Cesari (2000), Nevo (2000), Lijesen (2004).
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however, may be difficult to measure either because data maybe confidential or because a

substantial portion of costs may be opportunity costs. Therefore, many studies use price

level change, rather than the Lerner index to detect market power. They argue that the

market would experience higher market power if the market price increases more and the

market would be less efficient. These studies have been conducted in various industries

such as, railroads, airlines, electricity, banking, and livestock procurement.7 Increases in

market prices, however, do not necessarily indicate efficiency loss. For example, an increase

in market price caused increases in input prices indicates higher costs, but not necessarily a

decrease in market efficiency.8 My paper complements previous literature by showing that

it is not necessary to calculate these two indexes if the primary reason to detect market

power is to discover market efficiency. In the context of a Cournot framework, I adopt a

linear demand function and explore several models of oligopolistic market structures for a

homogenous good. A particular market structure is completely described by a number of

randomly determined parameters having to do with costs, demand and the number of firms.

Then, for each of a large number of market structures within the stochastic model under

consideration, I directly calculate market efficiency and the Herfindahl and Lerner indexes.

In these calculations, firms have either constant or increasing marginal costs. I then use

the data generated by this simulation to assess the reliability of the Herfindahl and Lerner

indexes as indicators of efficiency. For most of the models I examine, neither index is a

universally reliable indicator of efficiency, and often neither index could be described as a

satisfactory indicator of efficiency. The Herfindahl index tends to be better than Lerner index

with constant marginal costs, while the Lerner index tends to be better than the Herfindahl

index with increasing marginal costs. Most importantly, I compute market efficiency directly

by using firm level output and market price, both of which are easy to observe. Therefore,

this suggests that researchers ought to concentrate on estimating efficiency directly instead

7For more detailed papers refer to Weiss (1989), Audretsch et al. (1992), Baker (1999), Dalkir and
Warren-Boulton (2004), Busse and Rysman (2005), Ashenfelter et al. (2006).

8Details refer to Stoft (2002)

4



of rely on the Herfindahl and Lerner indexes which are imperfect indicators of efficiency.

Furthermore, by varying the settings as illustrated above, the stochastic models can be

examined under different competitions (e.g. Bentrand), differential market goods, non-linear

demand function, or more general cost functions. Obviously, in each of these model settings,

neither the Herfindahl index nor the Lerner index can be a perfect proxy for efficiency as

well.

The paper proceeds as follows: In Section 2, I explore several stochastic models in the

context of constant marginal costs and increasing marginal costs. Section 3 shows how

market efficiency can be directly calculated in the context of constant marginal costs and

increasing marginal costs with n number of firms. To conclude, Section 4 underscores some

of the key contributions of this work.

1.2 Herfindahl, Lerner, Efficiency

In this section, I theoretically demonstrate that neither the Herfindahl index of market

concentration, H, nor the Lerner index of market power, L, are universally reliable indicators

of market efficiency in an oligopolistic market and investigate the degree of reliability of

H and L as indicators of efficiency. In addition, I also discover circumstances in which

technological progress in terms of reduction of marginal costs worse efficiency.

1.2.1 Methodology

First, let me introduce the methodology that I will apply. I explore a number of stochastic

models of oligopolistic market structure for a homogenous good. In all these models, price

is a linear function of total quantity as follows:

P = A−Q, A ≥ 0
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where P is price and Q is the total demand per period of time, which equals
n∑
i=1

Qi. Also,

each firm follows Cournot competition. Therefore, I obtain a number of different models. In

some, each firm has constant marginal costs so that

TC(Qi) = ciQi

where ci is constant marginal costs. In others

TC(Qi) =
1

2
βiQ

2
i

where βi is slope of increasing marginal costs. I assume ci ≥ 0 and βi ≥ 0 which indicate

non-negative marginal costs. In some models, the market marginal costs are identical, while

in others they are asymmetric. In some models, the number of firms is a constant, while

in others it is a random variable. Then, I can calculate for any randomly generated market

structure, equilibrium quantity, equilibrium price, total surplus in the equilibrium, and the

maximum possible surplus for each given market structure. Using this information, for any

randomly generated market structure s, I derive Hs (the Herfindahl index), Ls (the Lerner

index), and Es (efficiency, equal to the ratio of equilibrium total surplus to maximum possible

total surplus).

When comparing Hs for two markets, say markets 1 and 2, the standard interpretation

is that when H1 < H2, market 1 has a higher market efficiency than market 2, or when

H1 = H2, both markets have equal efficiency. Similarly, when comparing L for two markets,

the standard interpretation is that when L1 < L2, market 1 has a higher efficiency than

market 2, or when when L1 = L2, the market 1 has the same efficiency as market 2. Notice

that the standard interpretation of H and L may or may not accurate. In each stochastic

model, I will calculate probability that the standard interpretation of the Herfindahl index is

accurate for two random generated market structures as well as calculating the probability

of the standard interpretation of the Lerner index is accurate. Naturally, the probability
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must be greater than 0.5 for consideration as an useful indicator of market efficiency. The

closer it is to 1, the more reliable it is; however, as we will see, in some models, probabilities

are very close to 0.5 which indicate that the Herfindahl index or the Lerner index has no

practical use.

1.2.2 Equilibrium Calculations

In this section, there are two sets of equilibrium calculations. The first set contains all firms

with constant marginal costs, and the second set has all firms with increasing marginal costs.

Constant Marginal Costs

Suppose there are n firms in the market and each firm has constant marginal costs, ci.

Each firm competes with quantity and solves the following maximization problem:

Max
Qi

PQi − ciQi

I introduce tilde “∼” which indicates the equilibrium value of all firms with constant marginal

costs. Then, the equilibrium quantity of firm i, Q̃i, and equilibrium price P̃ are as follows:

Q̃i(A, n,c1, c2, ..., cn) =

A− nci +
n∑
i=1

ci

n+ 1

P̃ (A, n,c1, c2, ..., cn) =

A+
n∑
i=1

ci

n+ 1

To obtain non-negative equilibrium quantities, I have to impose the following restriction:

A− nci +
n∑
j 6=i

cj

n+ 1
≥ 0

In equilibrium, profits of the two firms and consumer surplus can be written as functions of

A, n, and ci as expressed below:
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π̃i(A, n,c1, c2, ..., cn) =

A− (n+ 1)ci +
n∑
i=1

ci

n+ 1


2

C̃S(A, n,c1, c2, ..., cn) =
1

2

nA−
n∑
i=1

ci

n+ 1


2

By adding π̃i and C̃S, I can obtain the aggregate social welfare (W̃ ) as follows:

W̃ (A, n,c1, c2, ..., cn)=
n∑
i=1

π̃i + C̃S

The market efficiency is examined under the index value of equilibrium efficiency Ẽ which

can be derived as stated below:

Ẽ(A, n,c1, c2, ..., cn)=
W̃ (A, n,c1, c2, ..., cn)

T̃PS(A, n,c1, c2, ..., cn)
(1.1)

Where T̃PS(A, n,c1, c2, ..., cn) = Max{ (A−c1)2

2
, (A−c2)2

2
, ..., (A−cn)2

2
} (see Appendix 1.5.1). It

is achieved by choosing quantities until market price equals to the lowest marginal costs.

Then, the equilibrium efficiency is derived from equilibrium total surplus divided by the

total possible social welfare in this market. The Herfindahl index and the Lerner index

are two of the most popular measures used to estimate market power. In equilibrium, the

Herfindahl index is defined as cited below:

H̃(A, n,c1, c2, ..., cn) =
n∑
i=1

S̃2
i =

n∑
i=1

A− (n+ 1)ci +
n∑
i=1

ci

nA−
n∑
i=1

ci


2

(1.2)

where S̃i is the market share of each firm in equilibrium. In equilibrium the Lerner index is

defined as written below:
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L̃(A, n,c1, c2, ..., cn) =

P̃ −
n∑
i=1

S̃iMCi

P̃
=
H̃

ε̃

=

 n∑
i=1

A− (n+ 1)ci +
n∑
i=1

ci

nA−
n∑
i=1

ci


2
nA−

n∑
i=1

ci

A+
n∑
i=1

ci

 (1.3)

Here, ε̃ represents the elasticity of demand (see Appendix 1.5.1).

Increasing Marginal Costs

In analogous fashion, suppose n firms with marginal costs increase linearly with quantity.

Each firm follows Cournot competition and solves the following maximization problem:

Max
Qi

PQi −
1

2
βiQ

2
i

The symbol hat “∧” indicates the equilibrium value of increasing marginal costs firms. Then,

the equilibrium quantity of firm i, Q̂i, and equilibrium price P̂ are as follows:

Q̂i =
A

(1 + βi)(1 +
n∑
i=1

1
1+βi

)

P̂ =
A

(1 +
n∑
i=1

1
1+βi

)

Since I have assumed A ≥ 0 and βi ≥ 0, the equilibrium quantities and price always have

valid value. In the equilibrium market, I derive the total welfare, the Lerner index, and the

Herfindahl index when both firms have increasing marginal costs as expressed below:

Ŵ (A, n, β1, β2, ..., βn) =
n∑
i=1

π̂i + ĈS

=
n∑
i=1

(1 +
1

2
βi)

 A

(1 + βi)(1 +
n∑
i=1

1
1+βi

)


2

+
1

2

 A(
n∑
i=1

1
1+βi

)

(1 +
n∑
i=1

1
1+βi

)


2
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Ĥ(A, n, β1, β2, ..., βn) =
n∑
i=1

Ŝ2
i =

n∑
i=1

 1

(1 + βi)(
n∑
i=1

1
1+βi

)


2

(1.4)

L̂(A, n, β1, β2, ..., βn) =
Ĥ

ε̂
=

 n∑
i=1

 1

(1 + βi)(
n∑
i=1

1
1+βi

)


2
(

n∑
i=1

1

1 + βi

)
(1.5)

The level of market efficiency can be examined as the index as noted below:

Ê(A, n, β1, β2, ..., βn)=
Ŵ (A, n, β1, β2, ..., βn)

T̂PS(A, n, β1, β2, ..., βn)
(1.6)

where T̂PS(A, n, β1, β2, ..., βn) =
A2

(
n∑
i=1

1
βi

)
2

(
1+

n∑
i=1

1
βi

)(see Appendix 1.5.1). The total possible surplus

is derived when each firm chooses to produce level of its output as long as MC1(Q1) =

MC2(Q2) = ... = MCn(Qn) = P (
n∑
i=1

Qi) holds. Obviously, the higher the level of increasing

marginal costs in the market, the higher the market price will be and the total possible

surplus will decrease.

1.2.3 Market Structures, Constant Marginal Costs

In the context of constant marginal costs, the stochastic models vary in different ways: (1)

whether firms have same constant marginal costs, or (2) whether the number of firms is

stochastic.

Same Constant Marginal Costs

First, let me consider that all firms have same constant marginal costs, c = c1 = c2 =

... = cn, the stochastic model depends on parameters: A, n, and c. A is size of the market

with uniformly distributed in range [0, 2]; constant marginal cost, c, is uniformly distributed

in range [0, A]; and number of firms, n, is discrete uniformly distributed in range [1, 5].

Then, I derive Ẽ, H̃, and L̃ in A, n, and c parameter space:
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Ẽ(A, n,c)=
W̃ (A, n,c)

T̃PS(A, n,c)
=

2n+ n2

(n+ 1)2
(1.7)

H̃(A, n,c) =
n∑
i=1

S̃2
i =

1

n
(1.8)

L̃(A, n,c) =
H̃

ε̃
=

n(A− c)
n(A+ nc)

(1.9)

Even a cursory examination of (2.7) and (2.8) reveal that efficiency and the Herfindahl index

only depend on the number of firms; one with positive relation and the other with negative.

Therefore, I conclude that the standard interpretation of H̃ is always accurate.

Proposition 1. The Herfindahl index is a reliable indicator for market efficiency when we

have same constant marginal costs firms in the market.

Equation (2.9) shows that the Lerner index relies not just on the number of firms, but

also the market size and the levels of marginal costs. For this reason, it can not always

give qualitatively accurate predictions of efficiency. Moreover, I can also quantify the degree

of reliability of the Lerner index as indicator of efficiency. By stimulating 10000 stochastic

market structure pairs with these three parameters, I obtain a set of market efficiency indexes

and the Herfindahl indexes. When I pick a market efficiency Ẽ1 higher than Ẽ2 or Ẽ1

equal to Ẽ2 and the probability of L̃1 lower than L̃2 or L̃1 equal to L̃2 is 0.55 which is

not reliable. If I hold marginal costs level constant, the market efficiency increases and the

Lerner index decreases with more competition. Thus, the Lerner index gives qualitatively

accurate predictions of market efficiency when c is fixed.

Proposition 2. With all firms have same constant marginal costs, the Lerner index does

not give good prediction for market efficiency and the probability of accuracy is only 0.55.

If the levels of constant marginal costs hold, the Lerner index is a good indicator for market

efficiency.
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Non-stochastic Number of Firms

In this section, I will explore several models in the constant marginal costs framework

as well. In each model, the number of firms are identical in each market and n, is discrete

uniformly distributed in range [1, 4]. So I can develop four different models depend on the

discrete number of firms. Meanwhile, A is random and uniformly distributed in range [0, 2],

and ci is uniformly distributed in range [0, A]. First, I will construct two firms with asym-

metric constant marginal costs model. This gives an explicitly theoretical demonstration in

which circumstances the Herfindahl or Lerner are reliable for efficiency and provides insight-

ful intuitions in the two parameters space. I can calculate the equilibrium quantity, price,

total surplus as well as maximum possible surplus for this given market structure. In order

to obtain non-negative equilibrium quantities, I have to impose the following restriction:

A− 2ci + cj
3

≥ 0, i 6= j and i, j ∈ {1, 2} (1.10)

Figure 1.1: The Permissable Parameter Space with Two Constant Marginal Cost Firms

0  Ac1

  A
c2

Therefore, the valid region in the parameters A, c1 and c2 space is the shaded areas in
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Figure 1.2: The Herfindahl and Efficiency Indexes with Two Constant Marginal Cost Firms
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Figure 1.1.

The Herfindahl, Lerner and efficiency can be written as function of A, c1 and c2 within

the permissable parameter space. With constant market size, I examine how Ẽ, H̃, and L̃

change when levels of constant marginal costs vary.

In Figure 1.2, I propose an example which plots the diagram in the c1 and c2 space. I plot

three isoefficiency rays: Ẽ(c1, c2) = 8
11
, Ẽ(c1, c2) = 3

4
and Ẽ(c1, c2) = 8

9
. The isoefficiency ray

Ẽ(c1, c2) = 8
11

is the minimum value ray; Ẽ(c1, c2) = 3
4

is the boundary ray and Ẽ(c1, c2) = 8
9

is maximum value ray. All the rays are passing through point X and have constant value of

equilibrium efficiency along each ray. Ẽ(c1, c2) = 8
11

and Ẽ(c1, c2) = 3
4

are symmetric around

the 45 degree line, which has Ẽ(c1, c2) = 8
9
. Ẽ(c1, c2) = 3

4
has four segment rays passing

through point X. Two rays are boundaries of valid region of parameter space and the

other two are located inside the valid region. The minimum value of equilibrium efficiency
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Ẽ(c1, c2) = 8
11

is associated with two segment rays passing through point X which is located

between the boundary ray Ẽ(c1, c2) = 3
4
, and the inside region ray Ẽ(c1, c2) = 3

4
. Therefore,

as the isoefficiency rays deviate farther from 45 degree line, Ẽ decreases to its minimum value

8
11

, then increases. In addition, we also plot four different isoHerfindahl rays: H̃(c1, c2) = 1
2
,

H̃(c1, c2) = 13
18
, H̃(c1, c2) = 0.57 and H̃(c1, c2) = 1. Each ray has two segment rays passing

through point X, except the curve overlapping the 45 degree line, which has H̃(c1, c2) = 1
2
.

H̃(c1, c2) = 1 plots the same ray as the boundary ray Ẽ(c1, c2) = 3
4
, H̃(c1, c2) = 0.57 plots

the same ray as the inside region ray Ẽ(c1, c2) = 3
4

and H̃(c1, c2) = 13
18

plots the same

ray representing the minimum value of market efficiency Ẽ(c1, c2) = 8
11

. In addition, I can

always find the same ray of isoHerfindahl correspondence to the isoefficiency ray. Considering

points along each ray, I can conclude that the Herfindahl index gives a qualitatively accurate

prediction of market efficiency.

Let me do one further investigation with Figure 1.2. By holding c2 constant and assuming

c1 ≥ c2, I examine how H̃ and Ẽ change as c1 is increased. In this figure, we refer how H̃

and Ẽ change alone the horizontal dashed ATB line. This line links points A and B, and is

cross to the ray Ẽ(c1, c2) = 8
11

at point T . In this situation, we have a constant c2, and the

firm 1’s technology level declines as we move from point A to B. I find the Herfindahl index

increases from A to B. However, the market efficiency decreases from point A to its minimum

value T , and then increases afterwards. This is because the decrease in the marginal cost of

firm 1 has two effects on market efficiency when firm 2’s marginal cost is less or equal than

firm 1 and stays constant. First, it has a positive effect on firm 2’s profit; however, it has a

negative effect on the consumer surplus and its own profit. When c1 is relatively low, a small

increase in firm 1’s marginal cost results in a small increase in firm 2’s profit; however, it

causes a large decrease of consumer surplus and firm 1’s profit. The reason is that when firm

1 is sufficiently efficient, firm 2 does not produce large enough. As c1 continues to increase,

the negative effect on consumer surplus and its own profits dominates the effect on firm
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2’s profits for some time, but is eventually overwhelmed. When c1 is sufficiently large, the

increase in profit of firm 2 resulting from the displacement of production from firm 1 becomes

larger than the reduction in consumer surplus and firm 1’s profit, because firm 1 does not

produce much if their marginal cost is sufficiently high. Therefore, the market becomes more

efficient after its minimum point T . In this figure, I find that the market has its maximum

efficiency when c1 = c2 and has its minimum efficiency when c1 = 7
11
c2 + 4

11
. Therefore, I can

conclude that transferring more advanced technology for firm 1 which decreases its marginal

cost is not always benefit for the market efficiency. If c1 <
7
11
c2 + 4

11
, the decrease of firm

1’s marginal cost benefits the market efficiency. Otherwise, it would be worse off. And the

market has its optimal efficiency level if all the firms have same constant marginal costs.

Now, let me pick a reference ray R in four different locations: (1) between the boundary

ray Ẽ(c1, c2) = 3
4

and the minimum value of equilibrium efficiency Ẽ(c1, c2) = 8
11

(2) between

the inside region ray Ẽ(c1, c2) = 3
4

and the maximum value ray Ẽ(c1, c2) = 8
9

(3) between

the inside region ray Ẽ(c1, c2) = 3
4

and the minimum value ray Ẽ(c1, c2) = 8
11

and (4) at the

minimum value ray Ẽ(c1, c2) = 8
11

. Based on the reference point R, I identify all the points

in the parameter space that (1) have both a smaller H̃ and a larger Ẽ than R, (2) have a

larger H̃ and a smaller Ẽ than R, or (3) have an identical H̃ and Ẽ to R. All of these points

are located in the shaded region of the figure. If we compare H̃ for any point in the shaded

areas with the H̃ for point R, the standard interpretation of H̃ is accurate. Conversely, I

can also identify all the points that (1) have both a smaller H̃ and a smaller Ẽ than R, or

(2) that have a larger H̃ and a larger Ẽ than R. These belong to the non-shaded areas. If

I compare H̃ for any point in the non-shaded areas with the H̃ for point R, the standard

interpretation of H̃ is misleading. With variance locations of reference rays R, I plot four

figures which give distinct size of shade areas.

Figure 1.3 (a) gives an example of reference ray R in case 1 where the ray is located

between the boundary ray Ẽ(c1, c2) = 3
4

and the minimum value of equilibrium efficiency

15



Ẽ(c1, c2) = 8
11

. The shaded area has its minimum region compare to the other cases which

indicates the Herfindahl index gives worst predictions of market efficiency in this case. Figure

1.3 (b) provides an example of reference ray R in case 2 where the ray is located between

the inside region ray Ẽ(c1, c2) = 3
4

and the maximum value ray Ẽ(c1, c2) = 8
9
. Then, the

shaded area would be the entire permissable parameters space. Therefore, I can conclude

the Herfindahl index gives best prediction of market efficiency in this case. Moreover, I also

provide Figure 1.8 (a) and (b) to illustrate the rest two cases.

Proposition 3. By holding firm 2’s marginal costs constant, the Herfindahl index does not

always provide qualitatively accurate prediction of market efficiency with decrease in marginal

costs of firm 1.
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Figure 1.3: Two Constant Marginal Cost Firms: Probability of the Herfindahl Index as
indicator of Efficiency with Different Reference Points
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Similarly, the Lerner index, L̃(c1, c2) and market efficiency, Ẽ(c1, c2) can also be expressed

as functions of c1 and c2. Therefore, I can identify the area where the Lerner index gives

qualitatively correct predictions of market efficiency in the c1 and c2 space. Figure 1.4

presents and example with three isoLerner curves: L̃(c1, c2) = 0.2, L̃(c1, c2) = 0.4, and

L̃(c1, c2) = 0.6. All three curves are convex to origin and symmetric around the 45 degree

line. The isoLerner curves for smaller Lerner index values are farther away from the origin. I

also plot the three isoefficiency rays from the previous example: Ẽ(c1, c2) = 8
11

, Ẽ(c1, c2) = 3
4
,

and Ẽ(c1, c2) = 8
9
. All the rays are passing through point X and have constant value of

equilibrium efficiency along each ray.

Figure 1.4: The Lerner and Efficiency Indexes with Two Constant Marginal Cost Firms
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In Figure 1.4, I investigate how L̃ and Ẽ change alone the horizontal dashed ACTB

line. When I hold c2 constant, the firm 1’s technology level declines as the point moves from

A to B. I discover that the Lerner index decreases to its minimum point C which is the
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tangent point to its isoLerner curve L̃(c1, c2) = 0.4; however, the market efficiency reaches its

minimum point T . Since higher value of the Lerner index indicates lower market efficiency,

it is a good proxy of market efficiency only between points C and T . Therefore, I can say

with constant marginal costs of firm 2 the Lerner index does not always give a qualitatively

accurate prediction of market efficiency as c1 increases.

Next step of the process involves selecting different reference rays intersecting with isoL-

erner curve L̃(c1, c2) = 0.4. Then, I find reference point R in four different locations: (1) the

intersection of the minimum value ray Ẽ(c1, c2) = 8
11

and the isoLerner curve L̃(c1, c2) = 0.4;

(2) the intersection of the maximum value ray Ẽ(c1, c2) = 8
9

and L̃(c1, c2) = 0.4; (3) the inter-

section of the ray between the inside region ray Ẽ(c1, c2) = 3
4

and boundary ray Ẽ(c1, c2) = 3
4

and the isoLerner curve L̃(c1, c2) = 0.4; (4) the intersection of the ray between the inside

region ray Ẽ(c1, c2) = 3
4

and maximum value ray Ẽ(c1, c2) = 8
9

and the isoLerner curve

L̃(c1, c2) = 0.4. Relative to a reference point R, one can readily identify the portion of the

parameter space that (1) have both a smaller L̃ and a larger Ẽ than R; (2) have a larger L̃

and a smaller Ẽ than R; or (3) have the same L̃ and Ẽ as R. I find all these points are in the

shaded areas. If I compare L̃ at R with L̃ of any points in the shaded areas, the change in L̃

is qualitatively accurate indicator of the change in Ẽ. Conversely, L̃ is qualitatively incorrect

indicator of market efficiency in the non-shaded areas which composes all the points that (1)

have both a smaller L̃ and a smaller Ẽ than R; or (2) have a larger L̃ and a larger Ẽ than

R. Then, the standard interpretation of L̃ is misleading.

Figure 1.5 (a) presents the situation of case 1 where the reference point R is located at

the intersection of minimum value ray Ẽ(c1, c2) = 8
11

and the isoLerner curve L̃(c1, c2) =

0.4. Then, I could identify the shaded region is above the isoLerner curve L̃(c1, c2) = 0.4

except the minimum value ray Ẽ(c1, c2) = 8
11

and the non-shaded region is below the curve

L̃(c1, c2) = 0.4. Figure 1.5 (b) shows the situation of case 2 where the reference point R

is located at the intersection of maximum value ray Ẽ(c1, c2) = 8
9

and the isoLerner curve
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L̃(c1, c2) = 0.4. The shaded region and non-shaded region are opposite compare to the case

1. Here, the shaded region is area below the isoLerner curve L̃(c1, c2) = 0.4 except the

minimum value ray Ẽ(c1, c2) = 8
11

and non-shaded region is above this curve. The rest two

cases are attached in Figure 1.9.

Proposition 4. By holding firm 2’s marginal costs constant, the Lernner index does not al-

ways provide qualitatively accurate prediction of market efficiency with decreases in marginal

costs of firm 1 as well.

Now, I will use a different angle to illustrate that the Herfindahl index and the Lerner

index are often not effective for predicting market efficiency in duopolistic market. Notice

that Ẽ, H̃ and L̃ can be written as function of A, c1 and c2. A is uncertain so it is uniformly

distributed in range [0, 2]. c1 and c2 are uniformly distributed in range [0, A] as well as

hold all the quantities positive which is shown in figure 1.1. By simulating 10000 market

structures pairs, I would have a set of market efficiency indexes and the Herfindahl indexes.

Then, I can deliver the accurate probability of the standard interpretation of the Herfindahl

index is 0.84. Similarly way, I calculate the probability of the Lerner index as an indicator

of market efficiency is only 0.52 which almost equal to randomness.

Like the method described above, I can also calculate the degree of reliability of Herfind-

ahl and Lerner of efficiency for monopolistic, triopolistic, or quadopolistic market. For a

monopolistic market, the Herfindahl equals to 1 and efficiency equals to 3
4
; then, the Herfind-

ahl index always gives qualitatively accurate predictions of market efficiency. However, the

Lerner index is a stochastic number after stimulation; the probability of the standard inter-

pretation of the Lerner index is 0. For the triopolistic and the quadopolistic market cases,

the probability of the Herfindahl index qualitatively accurate predictions of market efficiency

is 0.79 and 0.74, respectively, and the Lerner index is 0.50 and 0.47 as shown in Table 1.1. I

conclude that the Herfindahl index provides better predictions of efficiency than the Lerner

index in the context of constant marginal costs and the accuracy of predictions decreases
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Figure 1.5: Two Constant Marginal Cost Firms: Probability of the Lerner Index as indicator
of Efficiency with Different Reference Points

E
� Hc1, c2L =

3

4

L
� Hc1, c2L= 0.23

X

E
� Hc1, c2L =

8

11

E
� Hc1, c2L =

3

4

E
� Hc1, c2L =

3

4

E
� Hc1, c2L =

3

4

L
� Hc1, c2L= 0.61

L
� Hc1, c2L= 0.41

E
� Hc1, c2L =

8

11

R

0.0 0.2 0.4 0.6 0.8 1.0
c10.0

0.2

0.4

0.6

0.8

1.0

c2

(a)

E
� Hc1, c2L =

3

4

L
� Hc1, c2L = 0.23

E
� Hc1, c2L =

3

4

L
� Hc1, c2L = 0.41

E
� Hc1, c2L =

3

4

L
� Hc1, c2L = 0.61

X

R

E
� Hc1, c2L =

3

4

E
� Hc1, c2L =

8

9

0.0 0.2 0.4 0.6 0.8 1.0
c10.0

0.2

0.4

0.6

0.8

1.0

c2

(b)

21



from duopolistic to quadopolistic market for both Herfindahl and Lerner index.

Proposition 5. The probability of the Herfindahl index as a indicator of efficiency decreases

from duopolistic to quadopolistic market. The Lerner index also decreases across these same

market structures. The Herfindahl index is a better indicator for efficiency than the Lerner

index. The details refer to Table 1.1.

Table 1.1: The Degree of Reliability of the Herfindahl and Lerner indexes as Indicators of
Efficiency in Different Market Structures: Constant Marginal Costs

(A, c1) (A, c1, c2) (A, c1, c2, c3) (A, c1, c2, c3, c4)
Herfindahl 1 0.84 0.79 0.74

Lerner 0 0.52 0.50 0.47

Stochastic Number of Firms

With number of firms in each market structure is stochastic, I want to discover the

degree of reliability of the Herfindahl index and the Lerner index. Suppose there is equal

possibility that the market is monopoly, duopoly, triopoly, or quadopoly. The market size

A is uncertain and uniformly distributed in range [0, 2], and ci is uniformly distributed in

range [0, A]. Also, the market output should be valid which is positive. The probability of

the Herfindahl index as indicator of efficiency is 0.49 and the probability of the Lerner index

is 0.48. Both of these probabilities are close to randomness and not reliable.

Proposition 6. With random number of firms in each market structure, the probabilities of

the Herfindahl index and the Lerner index are 0.49 and 0.48, respectively. Both indexes are

misleading indicators for efficiency.

1.2.4 Market Structure, Increasing Marginal Costs

In the context of increasing marginal costs, the stochastic models vary same manners as in

constant marginal costs framework such as: whether marginal costs is asymmetric; whether

the number of firms is stochastic.
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Same Increasing Marginal costs

First, suppose all firms have same increasing marginal costs, β = β1 = β2 = ... = βn,

then I develop a model which depends on parameter A, β, and n. A is uncertain so it is

uniformly distributed in range [0, 2]; n is discrete uniformly distributed in range [1, 5]; and

β is uniformly distributed in range [0, 10]. The equilibrium value of efficiency, Herfindahl

and Lerner can be written as function of A, β, and n as listed below:

Ê(A, n,β)=
Ŵ (A, n,β)

T̂PS(A, n,β)
=
n( 1

n+1+β
)2(1 + 1

2
β) + 1

2
( n
n+1+β

)2

(nβn−1)
2(nβn−1+βn)

(1.11)

Ĥ(A, n,β) =
n∑
i=1

Ŝ2
i =

1

n
(1.12)

L̂(A, n,β) =
Ĥ

ε̂
=

1

1+β
(1.13)

By comparing (2.11),(2.12) and (2.13), I discover that the Herfindahl index only depends

on number of firms, the Lerner index is determined by slope of marginal costs, and market

efficiency relies on both. Clearly, Ĥ and L̂ are not always provide qualitatively accurate

predictions of market efficiency. To illustrate more explicitly, I plot two figures that show

how Ê, Ĥ, and L̂ change with the levels of n and β. Then, I can find out the areas where

the Herfindahl index and Lerner index give effective predictions of market efficiency.

In Figure 1.6 (a), I have three isoefficiency curves: Ê(n,β) = 0.97, Ê(n,β) = 0.98,

and Ê(n,β) = 0.99. And these curves increases as more firms enter into the market and

higher levels of increasing marginal costs. And I also plot 5 isoHerfindahl rays: Ĥ(n,β) =

1, Ĥ(n,β) = 1
2
, Ĥ(n,β) = 1

3
, Ĥ(n,β) = 1

4
, and Ĥ(n,β) = 1

5
, which are constant with

different levels of increasing marginal costs and raise with less numbers of firms. If β is

held constant, we find the Herfindahl index predicts the market efficiency correctly when

the market becomes more competitive; however, the Herfindahl index becomes a misleading

indicator of efficiency when marginal cost decreases. Based on the reference point R, I

23



can identify all the points in the parameter space that the standard interpretation of Ĥ is

accurate. They are belong to the shaded areas. Conversely, I can also identify all the points

that the standard interpretation of Ĥ is misleading which are located in non-shaded areas.

Similarly, Figure 1.6 (b) shows how market efficiency and the Lerner change with the

levels of β and n. I plot three isoLerner curves: L̂(n,β) = 1
3
, L̂(n,β) = 1

6
, and L̂(n,β) = 1

9

instead of 5 isoHerfindahl rays in Figure 1.6 (a). These curves are constant with more firms

and raise with lower levels of increasing marginal costs. By holding β constant, the market

efficiency increases and Lerner index stays constant with the entry of more firms. This is

because the additional firm depresses the price level, as well as the production level for each

firm. Therefore, the Lerner index becomes irrelevant with a changing number of firms due to

the particular increasing marginal cost function MCi = βi∗Qi. This implies the Lerner index

is not an effective index for market efficiency when there is more competition in the market.

By holding the number of firms constant, market efficiency increases and the Lerner index

decreases with increasing marginal costs. This indicates that the Lerner index is a good

proxy for market efficiency when increasing marginal costs decrease. With reference point

R, we find the Lerner index yields qualitatively accurate predictions of market efficiency in

the shaded areas and the standard interpretation of L̂ is misleading in non-shaded areas.

The degree of reliability of the Herfindahl index as indicator of efficiency is 0.80 after

simulating 10000 market structure pairs with parameter A, β, and n. The probability of the

standard interpretation of the Lerner index is 0.92 which is better indicator than Herfindahl.

Proposition 7. When we hold levels of marginal costs constant, the Herfindahl index predicts

market efficiency qualitatively correct with more firms in this market; however, the Lerner

index does not. When there is no firm entry or exit in this market, the Lerner index is a good

indicator for market efficiency with decreases in technology levels but the Herfindahl index is

not. The accurate probabilities of the Herfindahl and Lerner indexes for efficiency are 0.80

and 0.92.
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Figure 1.6: The Probability of the Herfindahl and Lerner as indicators of Efficiency in (n,β)
space
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(b) Lerner and Efficiency in (n,β) space
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Non-stochastic Number of Firms

Similar to the context of constant marginal costs, I develop several models with all firms

have increasing marginal costs. In each model, the two random generated market structures

have identical number of firms as well with n discrete uniformly distributed in range [1,

4], A uniformly distributed in range [0, 2], and βi is uniformly distributed in range [0, 10].

Then, I can have four stochastic models with different number of firms in each randomly

generated market structure. To illustrate explicitly the circumstances in which the standard

interpretation of Ĥ and L̂ are and are not accurate, I explore the model with two firms. The

market efficiency, the Herfindahl index, and the Lerner index can be written as functions of

A, β1, and β2.

For simplicity, I assume A = 1 and both β1 and β2 are in the range of [0, 10]. Figure 1.7

(a) shows the case where both firms have their marginal costs increasing with the slopes β1

and β2, respectively, instead of having constant marginal costs. I plot the diagram that shows

how market efficiency, Ê(β1, β2), and the Herfindahl index, Ĥ(β1, β2), change with the levels

of β1 and β2 in order to discover the region where the Herdindahl index gives qualitatively

consistent predictions of market efficiency. For example, we plot three isoefficiency curves:

Ê(β1, β2) = 0.93, Ê(β1, β2) = 0.97 and Ê(β1, β2) = 0.99. All three curves are convex to origin

and symmetric around the 45 degree line. The isoefficiency curves for larger market efficiency

are farther away from the origin. Besides, I also plot three different isoHerfindahl curves:

Ĥ(β1, β2) = 0.5, Ĥ(β1, β2) = 0.6, and Ĥ(β1, β2) = 0.7. Ĥ(β1, β2) = 0.6 and Ĥ(β1, β2) = 0.7

have two segment rays symmetric around 45 degree line which has Ĥ(β1, β2) = 0.5. As

the isoHerfindahl curves deviate farther from the 45 degree line, Ĥ increases. Based on the

reference point R, we identify the Herfindahl index gives qualitatively correct predictions of

market efficiency in the region that (1) have both a smaller Ĥ and a larger Ê than R, or

(2) have a larger Ĥ and a smaller Ê than R. And it does not have correct predictions of

market efficiency in the region that (1) have both a larger Ĥ and a larger Ê than R, or (2)
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have a smaller Ĥ and a smaller Ê than R. Therefore, the Herfindahl index is not always

an effective index for predicting market efficiency. The shaded region is where predictions

are qualitatively correct, and the non-shaded region is misleading. In addition, when the

reference point R is at β1 = β2 = 10, the Herfindahl index has its best prediction for

market efficiency and its worst prediction for market efficiency at β1 = β2 = 0. Notice

that the efficiency is worse off when technological progress in term of increasing marginal

costs decrease. This is because the technological progress causes the reduction of market

price benefiting both total welfare and total possible surplus; however, the gain of total

possible surplus dominates the gain of total welfare. Therefore, technological progress even

loses efficiency. Figure 1.7 (b) uses the same β1 and β2 space. It shows the area in which

the Lerner index gives qualitatively correct predictions of market efficiency. For instance,

relative to the reference point R, the Lerner index gives qualitatively correct predictions of

efficiency in the shaded area that (1) have both a smaller L̂ and a larger Ê than R, (2) have

a larger L̂ and a smaller Ê than R, or (3) have an equal L̂ and an equal Ê to R. And it

gives misleading predictions in the non-shaded area (1) have both a larger L̂ and a larger Ê

than R, or (2) have a smaller L̂ and a smaller Ê than R. Therefore, the Lerner index is not

a good proxy for market efficiency as well.

Proposition 8. The Herfindahl index and the Lerner index do not always have qualitatively

correct prediction of market efficiency in β1 and β2 space. The higher levels of increasing

marginal costs in the market, the higher efficiency will be.

As reported in Table 1.2, I calculate the probability of the standard interpretation of the

Herfindahl index and the Lerner index as indicators of efficiency. For a monopolistic market,

the Herfindahl index is always 1 but efficiency is stochastic and is positively related with

slope of the marginal costs. Also, the Lerner index is stochastic and has negative relation

with slope of the marginal costs. Hence, the probability of the accuracy in monopolistic

market for the Herfindahl index and the Lerner index is 0 and 1, respectively. Similarly, I
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Figure 1.7: The Probability of the Herfindahl and Lerner indexes as indicators of Efficiency
with Two Increasing Marginal Cost Firms
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can calculate a number of sets of efficiency indexes, the Herfindahl indexes, and the Lerner

indexes for the duopolistic, triopolistic, and quadopolistic market after stimulation. The

probability of the standard interpretation of the Herfindahl index is 0.80, 0.76, and 0.60 and

the probability of the Lerner index is 0.92, 0.90, and 0.64. Thus, the Lerner index works

better for predicting efficiency in the context of increasing marginal costs.

Proposition 9. The probability of the Herfindahl and Lerner indexes as a indicator of

efficiency decreases from duopolistic to quadopolistic market. The Lerner index is a better

indicator for efficiency than the Herfindahl index. The details refer to Table 1.2.

Table 1.2: The Degree of Reliability of the Herfindahl and Lerner indexes as Indicators of
Efficiency in Different Market Structures: Increasing Marginal Costs

(A, β1) (A, β1, β2) (A, β1, β2, β3) (A, β1, β2, β3, β4)
Herfindahl 0 0.80 0.76 0.60

Lerner 1 0.92 0.90 0.64

Stochastic Number of Firms

I examine the degree of reliability of the Herfindahl and Lerner indexes as indicators of

efficiency when number of firms in each market are stochastic. For example , there are four

types of market structure: monopoly, duopoly, triopoly, and quadopoly, each of each has

equal probability. The market size A is uncertain and uniformly distributed in range [0, 2],

and βi is uniformly distributed in range [0, 10]. After simulating the parameters, I calculate

a set of efficiency, Herfindahl and Lerner indexes. The probability of the Herfindahl index

as indicator of efficiency is 0.53 and the probability of the Lerner index is 0.51. Neither of

them is a good proxy for efficiency.

Proposition 10. The probabilities of the Herfindahl index and the Lerner index are 0.53

and 0.51, respectively in the context of stochastic number of firms in each market. Both

indexes are misleading indicators for efficiency.
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1.3 Calculability

The exogenous variables of market size and magical costs can not be observed directly in the

industry level data and I will discover the market efficiency as function of observable variables:

the firm level output and market price. By comparing to the Herfindahl index and the Lerner

index, the market efficiency index is as easy as calculated. Therefore, if the primary concern

of market power is to detect market efficiency, I can measure market efficiency directly

without calculating the Herfindahl index or the Lerner index. The calculability formulas of

market efficiency for constant and increasing marginal costs are written as follows:

1.3.1 Constant Marginal Costs

Suppose there are n firms in the market all firms have constant marginal costs, the market

efficiency is as written below:

Ẽ(Qi, Q)=
W̃ (Qi, Q)

T̃PS(Qi, Q)
(1.14)

W̃ (Qi, Q)=
n∑
i=1

π̃i + C̃S =
n∑
i=1

Q̃2
i +

1

2
Q̃2 (1.15)

T̃PS(Qi, Q)=Max{(A− ci)2

2
} = Max{(2Q̃− Q̃i)

2

2
}, i = 1, 2, ..., n (1.16)

The profit the market can be expressed as summation of each firm output square its and

consumer surplus is derived by half of the market output share. In addition, the total

possible market surplus is written as Max{ (2Q̃−Q̃i)2

2
} which just simply transfer unobservable

variables to observable variables: market shares and market output. With this formula, the

market efficiency can be calculated directly by using observable variables with constant

marginal costs case and I can avoid using other methods to measure market power as proxy

of efficiency.
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1.3.2 Increasing Marginal Costs

With increasing marginal costs case, the market efficiency can be calculated as follows:

Ê(Qi, Q)=
Ŵ (Qi, Q)

T̂PS(Qi, Q)
(1.17)

Ŵ (Qi, Q)=
n∑
i=1

π̂i + ĈS =
n∑
i=1

Q̂2
i +

n∑
i=1

1

2
βiQ̂

2
i +

1

2
Q̂2, βi =

P̂ − Q̂i

Q̂i

(1.18)

T̂PS(Qi, Q)=
A2

2

 1
n∑
i=1

1
βi

+ 1

 , βi =
P̂ − Q̂i

Q̂i

(1.19)

The market profit composes two parts, the first part is the summation of each firm output

square and the second part is the summation of each firm output square times its slope

of marginal costs. Also, the consumer surplus is half of market output square. Here, the

slope of marginal costs for each firm can be expressed by market price and each firm output.

Therefore, the market efficiency is easy to calculate when firm level output and market price

are available.

1.4 Conclusion

In this paper, I adopt a linear demand function in a Cournot framework and assume the

marginal cost for a firm can be either constant or increasing return to scale. Then, I construct

a number of stochastic market structure. Each market structure can be written as function

of costs, numbers of firms, and demand. Therefore, I would be able to calculate efficiency

and the Herfindahl and Lerner index directly by using these parameters.

I argue that neither the Herfindahl index or Lerner index has a monotonic relationship

with efficiency. Moreover, the paper theoretically demonstrates the circumstances in which
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the Herfindahl and Lerner indexes are and are not reliable indicators of efficiency in a number

of stochastic oliopolistic market structures. I also quantify the degree of reliability of each

of these indexes for efficiency. The results shows that in most models, neither index could

be describe as a satisfactory indicator of efficiency. Besides, the Herfindahl index is better

than the Lerner index with constant marginal costs, and the Lerner index is better than the

Herfindahl index with increasing marginal costs. In addition, efficiency may not benefit with

the decrease in levels of constant marginal costs and efficiency becomes even worse with the

decrease in levels of increasing marginal costs. Moreover, I derive market efficiency directly

by using firm level output and market price, both of which are easy to observe. Therefore,

there is no need to rely on the Herfindahl and Lerner indexes which are imperfect indicators

of efficiency.

1.5 Appendices

1.5.1 Appendix A: Equilibrium Solution

Derivation of TPS with Constant Marginal Costs

I derive the total possible surplus (TPS) for both firms have constant marginal cost case.

Each firm solves the following maximization problem:

Max
Qi

AQ−1

2
Q2 −

n∑
i=1

ciQi, i = 1, 2, ..., n

The total possible surplus, T̃PS(A, n,c1, c2, ..., cn) = Max{ (A−c1)2

2
, (A−c2)2

2
, ..., (A−cn)2

2
}.

Derivation of Lerner, Herfindahl, and Efficiency with Constant Marginal Con-

stant

First, I will discover the relationship between the Herfindahl index and the Lerner index.
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The profit function for each firm is as below:

πi(Qi,Qj) = PQi − TCi

∂πi(Qi,Qj)

∂Qi

=
∂P

∂Q
Qi + P −MCi

At a maximum, the derivative must be zero:

∂P

∂Q
Qi + P −MCi = 0

P −MCi
P

=
Si
ε

Therefore, I can derive the Lerner index for n firms as below:

L =
H

ε

where ε = −∂Q
∂P

P
Q

and ∂Q
∂P

= −1. Next, I will derive the Herfindahl, Lerner and efficiency

index in the function of parameter space. The maximization of profit function is as expressed

below:

Max
Qi

PQi − ciQi, i = 1, 2, ..., n

The derivative must be zero in equilibrium:

P −Qi − ci = 0

A−Q−Qi − ci = 0

nA− nQ−Q−
n∑
i=1

ci = 0

33



The equilibrium value of price, firm level output, and market output are as follows:

Q̃(A, n,c1, c2, ..., cn) =

nA−
n∑
i=1

ci

n+ 1

P̃ (A, n,c1, c2, ..., cn) =

A+
n∑
i=1

ci

n+ 1

Q̃i(A, n,c1, c2, ..., cn) =

A− (n+ 1)ci +
n∑
i=1

ci

n+ 1

Finally, the equilibrium value of the Herfindahl, Lerner, and Efficiency can be derived as

stated below:

H̃(A, n,c1, c2, ..., cn) =
n∑
i=1

A− (n+ 1)ci +
n∑
i=1

ci

nA−
n∑
i=1

ci


2

L̃(A, n,c1, c2, ..., cn) =

 n∑
i=1

A− (n+ 1)ci +
n∑
i=1

ci

nA−
n∑
i=1

ci


2
nA−

n∑
i=1

ci

A+
n∑
i=1

ci


Ẽ(A, n,c1, c2, ..., cn) =

W̃ (A, n,c1, c2, ..., cn)

T̃PS(A, n,c1, c2, ..., cn)

where W̃=
n∑
i=1

π̃i + C̃S and T̃PS = Max{ (A−c1)2

2
, (A−c2)2

2
, ..., (A−cn)2

2
}. The firm level profit

and consumer surplus are expressed as below:

π̃i(A, n,c1, c2, ..., cn) =

A− (n+ 1)ci +
n∑
i=1

ci

n+ 1


2

ĈS(A, n,c1, c2, ..., cn) =
1

2

 A
1

n∑
i=1

1
βi

+ n+1
n


2

Derivation of Lerner, Herfindahl, and Efficiency with Increasing Marginal Con-

stant
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Each firm maximizes its own profit as below:

Max
Qi

PQi −
1

2
βiQ

2
i , i = 1, 2, ..., n

At a maximum, the derivative must be zero:

A−Q−Qi − βiQi = 0

nA− nQ−
n∑
i=1

(1 + βi)Qi = 0

The equilibrium value of price, firm level output, and market output are as noted below:

Q̂(A, n, β1, β2, ..., βn) =

A(
n∑
i=1

1
1+βi

)

(1 +
n∑
i=1

1
1+βi

)

P̂ (A, n, β1, β2, ..., βn) =
A

(1 +
n∑
i=1

1
1+βi

)

Q̂i(A, n, β1, β2, ..., βn) =
A

(1 + βi)(1 +
n∑
i=1

1
1+βi

)

In the context of increasing marginal costs, the equilibrium value of the Herfindahl, Lerner,

and Efficiency can be derived as stated below:

Ĥ(A, n, β1, β2, ..., βn) =
n∑
i=1

 1

(1 + βi)(
n∑
i=1

1
1+βi

)


2

L̂(A, n, β1, β2, ..., βn) =

 n∑
i=1

 1

(1 + βi)(
n∑
i=1

1
1+βi

)


2
(

n∑
i=1

1

1 + βi

)

Ê(A, n, β1, β2, ..., βn) =
Ŵ (A, n, β1, β2, ..., βn)

T̂PS(A, n, β1, β2, ..., βn)

where Ŵ =
n∑
i=1

π̂i + ĈS. The firm level output and consumer surplus are as follows:
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π̂i(A, n, β1, β2, ..., βn) =
n∑
i=1

(1 +
1

2
βi)

 A

(1 + βi)(1 +
n∑
i=1

1
1+βi

)


2

C̃S(A, n, β1, β2, ..., βn) =
1

2

 A(
n∑
i=1

1
1+βi

)

(1 +
n∑
i=1

1
1+βi

)


2

With increasing marginal cost case, each firm solves the following maximization problem:

Max
Qi

AQ−1

2
Q2 − 1

2

n∑
i=1

βiQ
2
i , i = 1, 2, ..., n

By choosing quantity level for each firm, I derive T̂PS:

T̂PS(A, n, β1, β2, ..., βn) =

A2

(
n∑
i=1

1
βi

)
2

(
1 +

n∑
i=1

1
βi

)
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Figure 1.8: Two Constant Marginal Cost Firms: Probability of the Herfindahl Index as
indicator of Efficiency with Different Reference Points
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Figure 1.9: Two Constant Marginal Cost Firms: Probability of the Lerner Index as indicator
of Efficiency with Different Reference Points
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Chapter 2

A Dynamic Model of an Oligopolistic Market

Structure with Positioning Costs and Different Types

of Market Demand

2.1 Introduction

This paper emphasizes the dynamic properties of a modified model, which is based on Bloch

et al. (2014). In the paper, we present two major modifications to the model developed

by Bloch et al. (2014). The first is that we assume the number of active firms is fixed, or

exogenous. The second is that we propose two types of demand in a market, high or low.

Bloch et al. (2014) focused on the stochastic of positional investment and market structure.

However, they ignored the dynamic properties of their model, which we will emphasize.

In a niche market, the active firms can be established or unestablished. Established

firms compete either in the Bertrand or Cournot framework in any period of a game. For

welfare comparisons, we introduce as a reference, a third competition - a welfare maximizing

alternative. There are various types of positional investments. For example, firms spend

money on a new plant, research and development for new products, advertising for products.

Unestablished firms decide whether or not to enter into a market with investment costs.

These investments are not always successful. For example, in the pharmaceutical, electronic,

and automobile industries, firms spend millions of dollars to develop new products, but these

may fail in the end. Meanwhile, established firms also need to spend money to maintain

their position in the market such as advertising, updating products, and so on. However,

this is also not always successful. In addition, the economy is cyclical. So market demand

experiences peak in some periods and low in others. However, this is always hard to predict.
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With these observations in mind, we built a model which has the probability of success

with its positional investments and the two types of market demands, specifically, high and

low. In this paper, we focus on the dynamic properties of the model.

Over the last four decades, there have been a number of significant contributors to the in-

dustrial organization literature related to our paper including Caves and Porter (1977), Dixit

(1979, 1980a), Eaton and Lipsey (1977, 1978a), Schmalensee (1978a), Spence (1977, 1979),

Schmalensee (1978b), Eaton and Lipsey (1978b, 1979, 1980), Salop (1979), Dixit (1980b),

West (1981), Gilbert and Harris (1984), Sutton (1991), and Bhattacharya and Bloch (2000).

In the studies, a range of firm commitment strategies were explored, including percentage

of total sunk costs, outlay on the upkeep of sunk assets, research and development invest-

ment, advertising, and so on. However, in most of these studies, the firms were considered

asymmetric, while in our study, there is no such asymmetry. Moreover, our model adopts

the dynamic setting from Tirole and Maskin (1988) instead of a static setting, and employs

a symmetric Markov perfect Nash equilibrium (SMPNE) approach. Symmetry requires that

we model decisions with respect to positional investment as mixed strategies. We develop

an algorithm which allows us to find the market equilibrium.

In this study, we provide some results as follows: First, we present some realizations

of market structure when firms use their SMPNE strategies. We discover the patterns of

the realization differ significantly in different market competitions. Second, we examine the

probabilities of being in a particular state, in times t > 0 conditional on being in a particular

state at time t = 0, when firms use their SMPNE strategies. Third, we show the steady

state distribution and calculate the expected duration for each state of the system with

different market competitions. We find the value of the expected duration to stay in the

state with only one firm and high demand is higher in the Bertrand than Cournot. Fourth, we

calculate the steady state of efficiency with various numbers of active firms in the Bertrand

and Cournot framework. Moreover, the variation of steady state of the system, efficiency,
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and the maximum and minimum speed of convergence are also presented when we process

8 different experiments compared to our baseline model. Finally, we show bias estimations

of the blind efficiency (this calculation of efficiency ignores stochastic and dynamic features)

by comparing with the real efficiency (this calculation of efficiency considers stochastic and

dynamic properties). We find the value of real efficiency in the Cournot competition is always

higher than in the Bertrands and the blind efficiency has an over estimation in the state of

one firm with high demand.

The paper is laid out as follows: In Section 2, we construct a dynamic model of a niche

market. To be more specific, for simplicity sake, the consumer demand is linear for differential

goods and cost of production is zero. Moreover, the positional investment and type of

market demand are also included in the model. Both positional investment and market

demand have stochastic property. In the dynamic model, a firm decides whether to have a

positioning investment in each period of the game. The Bertrand or Cournot competition is

adopted if the firm is established. Besides, the model follows the SMPNE. Based on these

assumptions, we obtain the market equilibrium by using an algorithm. In Section 3, we

provide some results with analysis and discussion. First, we show the dynamic process with

different initial states of the system in different competitions and then calculate efficiency

and expected duration. Second, we demonstrate the variations of the steady state of the

system, efficiency, and speed of convergence with 8 experiments (the different combination

of parameter values) and baseline parameters. Finally, we compare the blind efficiency and

real efficiency and identify the bias in each different model. In Section 4, we conclude with

the significant contributions of this paper.

2.2 The Model

In a niche market, there are a number of active firms (A) which are able to produce and design

goods. Some of the active participants are established firms, while others are unestablished
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in a given period. The number of established firms is N ≤ A. A and N are integers;

A is exogenous, N is endogenous. The position of firm, g, is either established, E, or

unestablished, U , so g ∈ {E,U}. Market demand, d, is either high, H, or low, L, in each

period. Therefore, d ∈ {H,L}. Established firms play either a Cournot, Bertrand, or welfare

maximized game within that period, while firms with no established position do not play

any oligopoly game. In every period, there is an opportunity for unestablished firms to make

an investment in order to establish positions in the market and for established firms to make

an investment to maintain their positions in the market.

In each period, a representative firm will be in one of states defined with respect to its

own position, the positions of the other active firms and the state of demand. A firm’s

positional investment, necessary to establish or maintain its position, determines whether it

will have an established position or not in the next period, but has no affect on the oligopoly

outcome within the current period. Positioning investments of all firms in the current period

will determine their positions and the state of oligopoly in the next period. Here, a Markov

process is in a space with 4A states. We focus on the SMPNE in which firms choose strategies

to maximize the discounted present value of cash flow. We look at two versions of this , one

where firms choose price in static oligopoly game; and the other where firms choose qualities.

In addition, there is a third model in which the objective of firms is to maximize welfare of

their market niche.

2.2.1 Positioning Investments

In any period, an unestablished firm can make an investment I > 0 to establish a position

in the next period with probability P . If it does not choose to invest, it will remain an

unestablished firm in the next period. If a firm already has an established position, it can

invest J > 0 to main that position. Making this investment results in a probability Q of

maintaining its established position in the next period; however, failing to spend J leads

to a loss of the established position in the next period with probability 1. We assume that
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0 < P < 1 and 0 < Q < 1. Notice that the positioning technology involves four parameters:

I, J , P , and Q.

There are a number of explanations for the parameters I and J . I could be considered

as product development, special purpose capital goods (including product specific human

capital) needed to produce the good, and/or an image advertising campaign to launch the

good. Similarly, J could be associated with product improvement, maintenance of product

specific capital goods, and/or maintenance of the good’s image.

In addition, there are two types of market demand in this model. The parameter H

associates with probability of high market demand and L associates with probability of low

market demand.

There are A active firms in each market niche, each firm has either established or un-

established position and faces either high or low demand, therefore, there are 4A states of

the dynamic model. We assume A ∈ {1, 2, 3}. An active firm in any period can be de-

scribed as (g, nE, d), where g ∈ {E,U} means the representative firm’s current position,

nE ∈ {0, 1, ..., A} is the the number of the other firms which are currently established, and

d ∈ {H,L} is the demand of this market. For instance, state of a representative firm (U, 2, H)

means that the state in which the representative firm is unestablished, two of the other active

firms are established and the state of the demand is high. In addition, the number of the

state of the system is 4A− 2(A− 1). The state of system can be presented as (m, d), where

m is the number of established firms and d is the demand state. For instance, (2, L) means

two established firms with low market demand. For one, two and three active firms’ cases,

we list the state of a representative firm and the system as follows:
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Table 2.1: States of a Representative Firm and the System with One Active Firm

States of a Representative Firm States of the System
(U, 0, H) (0, H)
(U, 0, L) (1, H)
(E, 0, H) (0, L)
(E, 0, L) (1, L)

Table 2.2: States of a Representative Firm and the System with Two Active Firms

States of a Representative Firm States of the System
(U, 0, H) (0, H)
(U, 1, H) (1, H)
(U, 0, L) (2, H)
(U, 1, L) (0, L)
(E, 0, H) (1, L)
(E, 1, H) (2, L)
(E, 0, L)
(E, 1, L)

Table 2.3: States of a Representative Firm and the System with Three Active Firms

States of a Representative Firm States of the System
(U, 0, H) (0, H)
(U, 1, H) (1, H)
(U, 2, H) (2, H)
(U, 0, L) (3, H)
(U, 1, L) (0, L)
(U, 2, L) (1, L)
(E, 0, H) (2, L)
(E, 1, H) (3, L)
(E, 2, H)
(E, 0, L)
(E, 1, L)
(E, 2, L)
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Table 2.47 illustrates the convenient notation convention of states. First, we enumerate

g = U and d = H of A states, and the number of state (U, nE, H) is nE + 1. Next, we

enumerate g = U and d = L of A states, and the number of state (U, nE, L) is A + nE + 1,

then, we enumerate g = E and d = H of A states, and the number of state (e, nE, H) is

2A + nE + 1. Finally, we enumerate g = E and d = L of A states, and the number of state

(e, nE, L) is 3A+ ne + 1.

The firm’s strategy of the game consists two components. The first component is the

positioning action for every decision node in an infinite game and the second component

is the price or quantity action for every decision node with established firm. Any decision

node of the firm will be in one of 4A states, therefore, we can reduce the strategy space

by only focusing on the Markovian strategy which has the advantage of the positioning and

price (quantity) actions of a firm at any decision node depend only on the firm’s state at

that decision node. In the dynamic game, the positioning and price (quantity) actions have

different role. The positioning actions of firms drive a Markov process that determines their

states in the next period, while the price (quantity) actions of established firms determine

their profits in that period. Therefore, we use a two step procedure to formulate the value

function under the SMPNE: first find equilibrium price and quality of the static oligopoly

game and second use the associated equilibrium profit or total surplus to formulate the

dynamic game.

2.2.2 The Static Oligopoly Game

Suppose the established firms produce goods that are either undifferentiated or symmetrically

differentiated in a symmetric equilibrium. The representative consumer with utility function

is as below:

U(y, q1, q2, ..., qN) = y + αd
∑
i=1,N

qi −
β

2

∑
i=1,N

q2
i − γ

∑
qiqj

i=1,N,j 6=i

d = H or L (2.1)
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Where y is expenditure on a composite good and qi is the quantity of the goods produced

by the ith established firm. We require that αd > 0 and β ≥ γ > 0. Here, we assume H for

a high demand state and L for a low demand state, αH > αL. Given this assumption, the

inverse demand functions of the representative consumer for the N differentiated goods are

pi = αd − βqi − γ
∑
j 6=i

qj, i = 1, N, j = 1, N, d = h or l (2.2)

We assume there are three models in this paper. First, firms choose quantities to maximize

their profit; second, firms choose prices to maximize their profit; third, firms choose prices to

maximize total surplus in their market niche as reference points. In this equilibrium, all prices

are equal to marginal costs. In addition, we assume that all firms have the same constant

marginal cost. For convenience, we set marginal cost equals to zero. The detailed solutions

of price and quantity equilibria are provided in the appendix I. If a firm competes under

the Cournot framework, the equilibrium quantity, q∗C(N, d), depends on number of firms, N,

and state of demand, d. If a firm competes under the Bertrand framework, the equilibrium

quantity, p∗B(N, d), depends on number of firms, N , state of demand, d. Meanwhile, each

established firm in that period gain profit, Rx(N, d), where x ∈ {B,C}. In addition, if a

firm chooses price in order to maximize total surplus of its market niche, the equilibrium

output, q∗W (N, d), depends on the number of firms and the state of demand as well. The total

surplus for market niche TS(N, d) equals to the consumer surplus of this market CS(N, d)

since there is no profit for each firm in this circumstance.

Suppose the state of a firm k ∈ {2A+1, ..., 3A}, then g = E (it is established), d = H and

nE = k−2A. Consequently, the equilibrium price in any state k ∈ {2A+1, ..., 3A} is p∗B(k−

2A,H) in the Bertrand framework, equilibrium quantity is q∗C(k − 2A,H) in the Cournot

framework, equilibrium quantity is q∗W (k − 2A,H) in the welfare maximized framework.

Meanwhile, suppose the state of a firm k ∈ {3A + 1, ..., 4A}, then g = E (it is established),

d = L and nE = k − 3A. The equilibrium price in any state k ∈ {3A + 1, ..., 4A} is

p∗B(k − 3A,L) in the Bertrand framework, equilibrium quantity is q∗C(k − 3A,L) in the
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Cournot framework, and equilibrium quantity is q∗W (k − 3A,L) in the welfare maximized

framework. The profit and maximized total surplus in any state k ∈ {2A + 1, ..., 3A} are

Rx(k − 2A,H) and TS(k − 2A,H). Meanwhile, the profit and maximized total surplus in

any state k ∈ {3A+ 1, ..., 4A} are Rx(k − 3A,L) and TS(k − 3A,L).

2.2.3 Value Functions and Transition Probabilities

By given a common strategy for all the other active firms, we only focus on the payoff

maximizing decisions of a representative firm. The probability of the representative firm

skR, 0 ≤ skR ≤ 1, make the relevant positioning investment whenever it is in state k; the

relevant investment is I when k ∈ {1, 2A} since its position is U , and it is J when k ∈ {2A+

1, 4A} since its position is E. The representative firm’s positioning strategy is then SR =

(s1
R, s

2
R, ..., s

4A
R ) and positioning strategy of the other active firm is SO = (s1

O, s
2
O, ..., s

4A
O ). The

transition matrix Tkl(sR, sO) denotes the representative firm’s probability of transition from

state k in any period to state l in the next period and T(sR, sO) denotes the entire 4A by 4A

transition matrix. The transition matrix not only depends on the strategy of representative

firm and other active firms but also probability of high or low market demand. To illustrate

more explicitly, we provide an example that transition matrix is T24(sR, sO) and A = 3. First

notice that when the representative firm is in state 2 (U, 1, H), one of the other two firms is

also in state 2 (U, 1, H), and the other one is in state 7 (E, 0, H). The representative firm will

be in state 4 (U, 0, L) in the next period if four independent events occur: the representative

firm’s position remains U , the position of the other firm that is currently in state 2 remains

U , the position of the other firm that is currently in state 7 remains U and the market

demand shift from high to low. The first of these events will occur with probability 1− s2
RP ,

the second with probability 1− s2
OP , the third with probability 1− s7

OQ, and the last with

probability 1−H so

T24(SR, SO) = (1− s2
RP )(1− s2

OP )(1− s7
OQ)(1−H) (2.3)
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We denote the representative firm’s operating profit when it is in state i asRx(k−2A, d).In

states 1 through 2A, the profit of the firm is zero because the representative firm has a non-

established position in these states. Rx(k − 2A, d) > 0 because the representative firm has

an established position and plays the oligopoly game in states 2A + 1 to 4A. πkx is the

representative firm’s cash flow when it is in state k. We subtract from Rx(k − 2A, d) the

expected costs associated with its positioning investment.

πkx = 0− skRI if k ∈ {1, ..., 2A}, x ∈ {B,C} (2.4)

πkx = Rx(k − 2A, d)− skRJ if k ∈ {2A+ 1, ..., 4A}, x ∈ {B,C} (2.5)

V k((ŜR, SR), SO) is the present value of the representative firm’s profit over an infinite time

horizon, when it is in state i. Here, ŜR = (ŝ1
R, ŝ

2
R, ..., ŝ

4A
R ) means the representative firm

in the current period, SR means the representative firm in all subsequent periods, and SO

means other firms in current and subsequent periods. The value function can be calculate

in the following expression:

V k((ŜR, SR), SO) = πkx +D
∑
j=1,12

T kjR V
j((ŜR, SR), SO), k = 1, 4A (2.6)

where D, 0 < D < 1, is a discount factor. Similarly, we can subtract from TS(k− 2A, d) the

expected costs associated with its positioning investment.

SSk = 0− skRI if k ∈ {1, ..., 2A} (2.7)

SSk = TS(k − 2A, d)− skRJ if k ∈ {2A+ 1, ..., 4A} (2.8)

Then, we can write the present value of maximized total surplus over an infinite time

horizon as follows:

V k((ŜR, SR), SO) = SSk +D
∑
j=1,12

T kjR V
j((ŜR, SR), SO), k = 1, 4A (2.9)
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Here, we denote the maximized total surplus for each market niche when it is in state k as

TS(k − 2A, d). TS(k − 2A, d) > 0 only when k ∈ {2A+ 1, 4A}.

2.2.4 Characterizing the SMPNE

In order to have valid symmetric Markov perfect Nash equilibrium strategy, S∗, There are

two equations below to be hold:

V k((S∗, S∗), S∗) ≥ V k(((sk, S∗−k), S
∗), S∗)∀sk ∈ [0, 1], ∀k ∈ {1, 2, ..., 2A}. (2.10)

Suppose there are some k, 0 < sk
∗
< 1, then

V k((S∗, S∗), S∗) = V k(((sk, S∗−k), S
∗), S∗)∀sk ∈ [0, 1] (2.11)

sk
∗

is the firm’s current intertemporal maximization problem and (sk, S∗−k) is the strategy

when we replace sk
∗

by sk . Suppose 0 < sk
∗
< 1, then, the firms’s current maximization

problem is solved for any sk ∈ [0, 1].

Then, we will be able to calculate the symmetric Markov perfect Nash equilibrium strat-

egy, S∗ = (s1∗ , s2∗ , ..., s4A∗) by using an algorithm in Appendix II.

2.3 Results

In the model, there are 11 exogenous variables: six parameters that control demand of

the representative consumer (αH , αL, β, γ, h, l), four parameters that govern positioning

technology (I, J , P , Q), and a discount factor (D). The model of competition in within

period of competition is either Cournot or Bertrand. Besides, we derive maximized total

surplus when firms choose prices to maximize consumer surplus in their market niche. Then

we will be able to calculate efficiency in Cournot or Bertrand competition with different

parameters value as well as different active firms in the market. Our exposition is structured

around what we called the baseline parameters for three different competitions. First, we
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present a variety of results for the baseline parameters in these three different frameworks.

Then, we compare results for the different value of parameters.

2.3.1 The Baseline Parameterization

We set the demand parameters to be αH = 60 for the high demand market and αL = 60√
2

for the low demand market. Besides, we assume β = 1, γ = 0.95, h = 0.7, and l = 0.7. In

addition, the positioning technology parameters are I = 700, J = 200, P = 0.8 and Q = 0.95.

Table 2.4 shows the high and low demand of equilibrium the profit per each firm, consumer

surplus, and total surplus in the Bertrand or Cournot competition for one, two, and three

active firms’ cases. Moreover, it also presents the equilibrium profit, consumer surplus, and

total surplus when firms maximize consumer surplus for their market niche with high or low

demand for the one, two, and three active firms’ cases. In the welfare maximum framework,

the profit always equals to zero with various firm numbers and market demand and the

profit decreases much slower with number of firms increase in the Cournot competition than

Bertrand. We discover the total surplus obtained from different competitions goes up with

the number of firms increase. This implies the gains from variety in this market exceed the

losses from extra fixed costs.
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Table 2.4: Payoffs in the Bertrand, Cournot, and Welfarel Maximum Frameworks

States of Demand Number of Active Firms Payoffs Bertrand Cournot Welfare Maximum

High

One

Profit Per Firm 900 900 0

Consumer Surplus 450 450 1800

Total Surplus 1350 1350 1800

Two

Profit Per Firm 84 414 0

Consumer Surplus 1674 806 1846

Total Surplus 1842 1634 1846

Three

Profit Per Firm 30 237 0

Consumer Surplus 1770 1030 1862

Total Surplus 1860 1740 1862

Low

One

Profit Per Firm 450 450 0

Consumer Surplus 225 225 900

Total Surplus 675 675 900

Two

Profit Per Firm 42 207 0

Consumer Surplus 837 403 923

Total Surplus 921 817 923

Three

Profit Per Firm 15 118 0

Consumer Surplus 885 515 931

Total Surplus 930 870 931

2.3.2 A Realization of the Process

From table 2.10 to 2.22, we provide an example of the two active firms’ case with a realization

of the process under the Bertrand, Cournot, or welfare maximum competition in the dynamic

world by using baseline parameter values. We impose one of the initial states of the system

for each table under each of these 3 competitions. Suppose there are 20 periods in each

competition, the patterns of realization differ significantly with different competitions and

different initial state of the system. In each period of time, the number of established firms

can be the same or different from the previous period. A similar thing happens to the states

of the market demand. We discover that two established firms in the market is socially

superior in the Cournot competition than Bertrand. This is because the profit per each

firm is much lower to have two established firms in the Bertrand competition than Cournot.

Therefore, it is more risky for a firm to enter into the market if there is an existing firm in this
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market for Bertrand than Cournot. Meanwhile, we find one established firm in the market

is socially superior in the Bertrand competition than Cournot. In addition, we observe more

two established firms in the period of time under the welfare maximum competition than

the other two competitions. From the patterns of realization, it is hard to get a firm grip

on what is happening. Because of this difficulty, we focus on the dynamic properties of the

model.
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2.3.3 Conditional Probabilities

Next, we will give examples for the two active firms’ case in the Cournot, Bertrand, or welfare

maximum frameworks. The number of states of the system is 6. We present conditional

probabilities with different initial states. From the tables in section 2.3.2, it should be clear

that the system can go from a particular state to a number of different states, including the

state that it is currently in when it is in 1 period, in 2 periods, and so on. This raises an

obvious question: what is the probability of going from one state to another in 1 period, in

2 periods, and so forth. We will give an answer to this question below. Here, the probability

for a particular state, in times t > 0 conditional on being in a particular state at time

t = 0, is generated when firms use their SMPNE strategies. The firm’s expected probability

distribution over states in the t periods is calculated as follows:

Et = E[T ∗]t (2.12)

E is the initial probability distribution over states which has a 1 for one state and 0s for the

others. T ∗ is the equilibrium transition matrix.

First, we want to present the probability distribution of going from any of the 6 states

to any of the same 6 states in one period in the Bertrand, Cournot, and welfare maximum

frameworks. In table 2.23, we discover the probability to stay in the initial state of the

system in time t = 1 conditional on being in this particular state at time t = 0 is not lower

in Bertrand than Cournot only except the initial state of the system is (2, L). Here, the

state of the system depends two factors: the number of established firms and the state of

the market demand. The steady state can be obtained when the power of the equilibrium

transition matrix approaches infinity and the probability distribution becomes constant.
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Table 2.23: Conditional Probabilities in the Bertrand, Cournot, and Welfare Maximum Frame-
works

Conditional Probability
States of the System Bertrand Cournot Welfare Maximum

(0, H) 0.050 0.028 0.028
(1, H) 0.665 0.161 0.161
(2, H) 0.632 0.632 0.632
(0, L) 0.062 0.028 0.028
(1, L) 0.665 0.665 0.161
(2, L) 0.622 0.632 0.632

From table 2.24 to 2.28, we impose different initial states of the system in period 0. By

comparing column 9 and column 10 in table 2.26, 2.27, 2.28, and 2.29, we find that the

probability distributions are almost identical with different initial states of the system. This

looks like some sort of steady state. In other words, the state of the system 10 periods from

now has almost nothing to do with the state of the system today.
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2.3.4 The Steady State of the System

First, we obtain the steady state of the system by transferring from the steady state of

a representative firm. The steady state of a representative firm depends on the state of

the representative firm, the number of other established firms, and the state of the market

demand. However, the state of the system only focuses on the number of established firms

and the state of the demand. Here, each state’s steady state presents an estimation of

the firm’s probability distribution in the far future. This distribution is used to predict

the current period if we have no information about the history of the dynamic model. In

table 2.30, we discover that the Bertrand has a highest possibility to have zero and one

established firm in either high or low demand of the market; welfare maximum model has

highest possibility to have two established firms in either high or low demand. Moreover,

there is more likely to have two established firms in the Cournot than Bertrand competition.

This is because with more firms in the market the payoff for Bertrand is much lower than

Cournot.

Table 2.30: Steady State of Two Active Firms

States of the System Bertrand Cournot Welfare Maximum

(0, H) 0.021 0.004 0.002

(1, H) 0.376 0.090 0.055

(2, H) 0.103 0.406 0.443

(0, L) 0.021 0.006 0.001

(1, L) 0.377 0.130 0.055

(2, L) 0.102 0.364 0.443

Similarly, we will also provide the steady state probability for the one and three active

firms’ cases. The Bertrand and Cournot have the same steady probability in the one active

firm’ case because in the monopoly market there is no difference to compete in the Bertrand

or Cournot. For the three active firms’ case, the Bertrand has a highest probability to

establish zero and one firm, the Cournot has a highest probability to establish two firms,

and the welfare maximum has a highest probability to establish three firms.
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Table 2.31: Steady State of One Active Firm

States of the System Bertrand Cournot Welfare Maximum

(0, H) 0.029 0.029 0.029

(1, H) 0.471 0.471 0.471

(0, L) 0.029 0.029 0.029

(1, L) 0.471 0.471 0.471

Table 2.32: Steady State of Three Active Firms

States of the System Bertrand Cournot Welfare Maximum

(0, H) 0.023 0.006 0.000
(1, H) 0.380 0.124 0.009
(2, H) 0.093 0.341 0.116
(3, H) 0.004 0.029 0.375
(0, L) 0.023 0.007 0.000
(1, L) 0.381 0.143 0.007
(2, L) 0.092 0.324 0.096
(3, L) 0.004 0.026 0.397

Then, we also can compute the expected duration of each state of the system in the

Bertrand, Cournot, and welfare maximum frameworks. Here, we give an example for the

two active firms’ case. The formula to calculate expected duration is as follows:

EDi =
1

1− CPi
(2.13)

Here, CPi is the conditional probability for each state of a representative firm and EDi

is the expected duration for each state of a representative firm. By transferring the state of

a representative firm to the state of the system, we obtain the expected duration for each

state of the system in these different frameworks. In table 2.33, the first column shows the

initial states of a representative firm and the initial states of the system. Based on these

initial states, we present the conditional probabilities to stay in these initial states with three

different competitions. The conditional probabilities in the states of a representative firm are

not lower in Bertrand than Cournot except in the state (E, 1, L). Similarly, the conditional
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probabilities in the states of the system are not lower in Bertrand than Cournot except in

the state (2, L). Therefore, we derive the expected duration in the states of a representative

firm. Only in the state (E, 1, L) the value of expected duration is lower in Bertrand than

Cournot. Meanwhile, the value of expected duration in the states of the system is lower

in Bertrand than Cournot only in the state (2, L). In the state of the system, (1, H), the

expected duration in the Bertrand framework is maximum (2.985) which is more than twice

value in the other two frameworks. In the state of the system, (1, L), the expected durations

in the Bertrand and Cournot framework are identical (2.985) and more than twice value in

the welfare maximum framework.
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2.3.5 The Speed of Convergence to the Steady State

Based on the previous tables in section 2.3.3 and 2.3.4, we calculate the speed of convergence

to the steady state of the system for 10 periods. Here, we are measuring and comparing the

speed of convergence which is obtained from an initial state by initial state basis. In figure

2.1 to 2.3, the D0 to D10 are calculated from the sum of absolute value of the probability

for each state by the power of transition matrix from period 0 to period 10 minus the steady

state probability for each state, respectively. Here, the horizontal axis indicates the initial

states of the system, which have the minimum or maximum converging speed to the steady

states of the system from period 0 to 10. The vertical axis means values for the minimum

or maximum of converging speed to the steady states of the system during these 11 periods.

Figure 2.1 (a) and (b) show the maximum and minimum speed of convergence to the steady

state of the system for the one active firm’s case in the Bertrand framework. We discover

that the speed of convergence is maximum when the initial states of the system is (1, H) or

(1, L) for the first three periods, then has indifference speed of converge with different initial

states. In Contrast, the initial states (0, H) or (0, L) has the minimum speed of convergence

for the first three periods. We present the minimum and maximum speed of convergence for

two active firms’ case in figure 2.1 (c) and (d). We discover the initial state of the system

(2, H) has the minimum speed of convergence after first period and the initial state (1, H)

has the maximum speed of convergence after first two periods. Figure 2.1 (e) and (f) show

the maximum and minimum speed of convergence for the three active firms’ case. The initial

state of the system (2, H) has the minimum speed of convergence after first period and the

initial state (1, H) has the maximum speed of convergence after first two periods. If we set the

convergence criteria is 0.01, we conclude there is no convergence for the first ten periods under

the Bertrand competition with the two or three active firms’ cases. Similarly, we present the

minimum and maximum speed of convergence for the one, two and three active firms’ case

under the Cournot competition in figure 2.2 and under the welfare maximum in figure 2.3.
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With the convergence criteria 0.01, the one and two active firms’ cases are converged with

their maximum speed of convergence in the Cournot framework. In the welfare maximum

framework, the one, two, and three active firms’ cases are all converged with their maximum

speed of convergence. In figure 2.4, we show the speed of convergence in the Bertrand,

Cournot and welfare maximum framework. The maximum speed of convergence is almost

identical for the two and three active firms’ case and only converged for one active firm’

case in the Bertrand framework. The maximum speed of convergence is quite similar for the

one and two active firms’ cases in the Cournot framework and converged for both cases. In

the welfare maximum framework, the maximum speed of convergence are almost identical

for the one, two and three active firms’ cases. Therefore, we can list the order of the speed

of convergence in term of competition framework as follows: Welfare maximum > Cournot

> Bertrand. This indicates firms converge faster to the steady state of the system in the

welfare maximum framework than the other two frameworks.
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Figure 2.1: The Speed of Convergence in the Bertrand Framework
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Figure 2.2: The Speed of Convergence in the Cournot Framework
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Figure 2.3: The Speed of Convergence in the Welfare Maximum Framework
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Figure 2.4: The Speed of Convergence in the Bertrand, Cournot and Welfare Maximum
Frameworks
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2.3.6 Efficiency

With the steady state probability for each state in each competition, we can calculate the

expected total surplus and efficiency as below:

ESPJ =
S∑
i=1

PrJi ∗ TSJi J = Bertrand, Cournot, or welfare maximum (2.14)

Here, ETSJ means the expected total surplus in the Bertrand, Cournot, or welfare maximum

framework. PrJi and TSJi are the probability and total surplus for each state in each

competition. Therefore, we can calculate the efficiency for Bertrand and Cournot competition

as follows:

EEB =
ETSB

ETSW (max)

(2.15)

EEC =
ETSC

ETSW (max)

(2.16)

We consider ETSW (max) is the expected welfare maximum surplus for the one, two, and

three active firms’ cases. ETSB and ETSC are considered the expected total surplus in the

Bertrand and Cournot framework for one, two, or three active firms’ case, respectively. In

table 2.34, the one active firm expected total surplus for Bertrand and Cournot are 953. The

expected welfare maximum surplus is 1392 in the three active firms’ case. Therefore, the one

active firm efficiency for Bertrand and Cournot both are 0.68. The two active firm expected

total surplus is 1046 for Bertrand and 1170 for Cournot. The two active firms’ efficiency is

0.75 for Bertrand and 0.84 for Cournot. 1037 and 1158 are the three active firms expected

total surplus for Bertrand and Cournot. The efficiency is 0.74 for Bertrand and 0.83 for

Cournot. Here, we introduce Oaxaca decomposition which allows holding either probability

distributions in the steady state of the system constant or the total surplus for each state

of the system constant. By using this decomposition, we find the probability difference
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between Bertrand and welfare maximum is 347 and between Cournot and welfare maximum

is 123. Meanwhile, the total surplus difference between Bertrand and welfare maximum

is 7 and between Cournot and welfare maximum is 110. Therefore, we can conclude that

the main loss of efficiency for Bertrand is because of probability difference and main loss of

efficiency for Cournot is due the difference for the each state total surplus. This indicates the

probability distributions in the steady state of the system are more similar in the Cournot

and welfare maximum frameworks than in the Bertrand and welfare maximum frameworks.

Meanwhile, we also find that the difference between the total surplus for each state of the

system in the Bertrand and welfare maximum frameworks is smaller than the difference

between the total surplus for each state of the system in the Cournot and welfare maximum

frameworks. In addition, we discover that the two active firms’ case has highest efficiency

levels for both Bertrand and Cournot with the baseline parameters.

Table 2.34: Expected total surplus and Efficiency with Baseline Parameters

Number of Active Firms Expected Total Surplus Efficiency
Bertrand Cournot Welfare Maximium Bertrand Cournot

1 953 953 1271 0.68 0.68
2 1046 1170 1375 0.75 0.84
3 1037 1158 1392 0.74 0.83

2.3.7 Variation of the Parameter Values

In this section, we present 8 different experiments with various parameter values. We want

to discover how the steady state of the system, efficiency, and the speed of convergence to

the steady state vary with different combination of parameter values. The detail of the 8

experiments are as follows:

First, we want to discover the how is the steady state of the system affected by the

variation of parameter values. The following tables represent the change of the steady state

of the system by applying these 8 experiments. Table 2.36 and 2.37 reports that with lower
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Table 2.35: Values of Parameters for the Basline Model and Eight Experiments

I J P Q h l
Baseline Model 700 200 0.8 0.95 0.7 0.7
Experiment 1 2000 200 0.8 0.95 0.7 0.7
Experiment 2 250 200 0.8 0.95 0.7 0.7
Experiment 3 700 500 0.8 0.95 0.7 0.7
Experiment 4 700 50 0.8 0.95 0.7 0.7
Experiment 5 700 200 0.7 0.95 0.7 0.7
Experiment 6 700 200 0.8 0.85 0.7 0.7
Experiment 7 700 200 0.8 0.95 0.9 0.7
Experiment 8 700 200 0.8 0.95 0.7 0.9

the investment costs or maintenance costs, there is more likely to establishing additional

firms in the two and three active firms’ cases. Table 2.38 shows with the lower probability

of successful investment or maintenance of firms, there is more likely for firms to exit the

market. Therefore, the probability with no firms in the market increases in the one, two, and

three active firms’ cases. In table 2.39, we present the experiments of increase the probability

of high demand and increase the probability of low demand. With the higher probability of

high demand, the probability of steady state is higher with high demand state of the system.

With the higher probability of low demand, the probability of steady state is lower with high

demand state of the system.
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In table 2.40, we hold all the baseline parameters constant and only change the value

of investment I. In the Bertrand and Cournot competitions, both efficiency values increase

with lower values of investment costs for two and three active firms’ cases. With highest

investment cost in experiment 1, one active firm case is optimal in terms of efficiency in

both competitions compared to the other two cases. When the investment cost decreases to

700, the two active firms’ case has highest efficiency value. In addition, when the investment

cost decreases to 250, the three active firms’ case becomes to the optimal for both Bertrand

and Cournot. Therefore, we conclude that the lower investment costs, the higher number of

active firms become optimal in terms of efficiency.

Table 2.40: Increase or Decrease Parameter Value I

Number of Active Firms Efficiency (Experiment 1) Efficiency (Baseline) Efficiency (Experiment 2)

Bertrand Cournot Bertrand Cournot Bertrand Cournot
1 0.68 0.68 0.68 0.68 0.68 0.68
2 0.64 0.67 0.75 0.84 0.76 0.86
3 0.61 0.65 0.74 0.83 0.77 0.88

Similarly, we change the investment levels of J by holding all the other parameters

constant; we obtain the same patterns as we change of the investment level of I. In table

2.41, we find the efficiency is highest for both Bertrand and Cournot in the one active firm’

case with J = 500 and the efficiency is highest in three active firms’ case with J = 50.

Table 2.41: Increase or Decrease Parameter Value J

Number of Active Firms Efficiency (Experiment 3) Efficiency (Baseline) Efficiency (Experiment 4)

Bertrand Cournot Bertrand Cournot Bertrand Cournot
1 0.68 0.68 0.68 0.68 0.68 0.68
2 0.64 0.66 0.75 0.84 0.81 0.86
3 0.62 0.64 0.74 0.83 0.84 0.91

If we decrease the probability of establishing a firm in the market P from 0.8 to 0.7, the

Bertrand and Cournot efficiency for the one, two, and three active firms’ cases all decrease.
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Similar results can be obtained if we decrease probability of maintenance of a firm in the

market Q from 0.95 to 0.85.

Table 2.42: Decrease Successful Probability of Creating and Maintaining Investment P and
Q

Number of Active Firms Efficiency (Baseline) Efficiency (Experiment 5) Efficiency (Experiment 6)

Bertrand Cournot Bertrand Cournot Bertrand Cournot
1 0.68 0.68 0.67 0.67 0.62 0.62
2 0.75 0.84 0.74 0.82 0.68 0.75
3 0.74 0.83 0.73 0.81 0.66 0.73

In table 2.43, we show that the increase probability of high demand from 0.7 to 0.9. The

efficiency levels for the two, and three active firms’ cases increase. In contrast,the efficiency

levels for these cases decrease if the probability of low demand increases from 0.7 to 0.9.

Table 2.43: Increase Probability of High h and Low l Market Demand

Number of Active Firms Efficiency (Baseline) Efficiency (Experiment 7) Efficiency (Experiment 8)

Bertrand Cournot Bertrand Cournot Bertrand Cournot
1 0.68 0.68 0.68 0.68 0.68 0.68
2 0.75 0.84 0.76 0.85 0.73 0.78
3 0.74 0.83 0.75 0.86 0.72 0.77

Finally, we discuss the effects of parameter variations on the minimum and maximum

speed of convergence to the steady state of the system with the one, two, and three firms’ case

in the Bertrand, Cournot, and welfare maximum frameworks. Table 2.5 to 2.8 compare the 8

experiments mentioned above to the baseline parameter value in the Bertrand competition.

In table 2.5, we find the higher value of the investment costs, I, the lower minimum speed

of convergence for the two and three firms’ cases. In contrast, the higher value of I has a

higher maximum speed of convergence for the two and three firms’ cases. By changing the

value of maintenance costs, J , the maximum and minimum speed of convergence both have

a faster speed with higher J . In table 2.7, we find that the variation of the successful value

of probability investment, P , does not effect the convergence speed; however, the decrease
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of the successful value of probability maintenance, Q, has a faster minimum and maximum

speed of convergence in both two and three firms’ cases. Moreover, the change of market

demand type has an almost identical impact on minimum speed of convergence for the two

and three firms’ cases. Table 2.9 and 2.10 show how the minimum and maximum speed of

convergence vary with the change of I and J in the Cournot competition. We find that the

minimum speed of convergence increases with lower costs and decreases with higher costs in

the two and three firms’ cases. However, the variation in costs does not have a significant

impact on the maximum speed of convergence. In table 2.11, we present that the minimum

speed of convergence increases with lower probability Q in the two and three firms’ cases.

The maximum speed of convergence does not affect by the variation of Q and P . Meanwhile,

the variation of h and l does not change the minimum and maximum speed of convergence

much for the one, two, and three firms’ cases. In table 2.13 and 2.14, we discover that

the minimum and maximum speed of convergence decrease with higher costs in the three

firms’ case and the costs do not affected by the convergence speed for the one and two firms’

cases in the welfare maximum framework. With the variation of successful probability of

investment and probability of market demand type, the minimum and maximum speed of

convergence only sightly change. To see more details, we provide figures in the Appendix.

2.3.8 Real Efficiency VS. Blind Efficiency

In this section, we want to answer the question that what sort of errors are made if regulatory

authorities do not see the dynamic properties of the real model. The blind and real efficiency

are calculated as below:

BEix =
TSix − rI − J
TSiW − rI − J

x = Bertrand, Cournot (2.17)
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REix =
RTSix
RTSiW

=

S∑
i=1

Prit ∗ TSix ∗Dt −
N∑
i=1

Prit ∗ I ∗Dt −
S∑

i=N

PrNt ∗ J ∗Dt

S∑
i=1

Prit ∗ TSiW ∗Dt −
N∑
i=1

Prit ∗ I ∗Dt −
S∑

i=N

PrNt ∗ J ∗Dt

(2.18)

TSix is the expected discounted total surplus in each state of the system for Bertrand or

Cournot and TSiW is welfare maximum surplus for each state. BEx represents the blind

efficiency for Bertrand or Cournot in each state. Meanwhile, REix is the real efficiency for

either Bertrand or Cournot in each state. RTSix is the real total surplus in the Bertrand

or Cournot competition for each state and RTSiW is the welfare maximum surplus for each

state. For state i to N, firms are unestablished. For state N to S, all firms are established.

In table 2.44, 2.45, and 2.46, we list the real and blind efficiency for the one, two, and three

firms’ cases. For the one active firm’s case, the blind efficiency has a lower estimation of real

efficiency in state (1, L) and a higher estimation in state (1, H) in the Bertrand and Cournot

framework. For the two active firms’ case, the blind efficiency has a lower estimation of real

efficiency in state (1, L) for Bertrand and Cournot and a higher estimation of real efficiency

in state (2, H) and (2, L) for Bertrand and Cournot. Similarly, the blind efficiency has a

lower estimation of real efficiency in state (1, L) and a higher estimation of real efficiency

in state (2, H), (3, H), (2, L) and (3, L) for Bertrand and Cournot in the three active firms’

case. Therefore, the blind regulatory authority always provides bias estimations of efficiency

because the authority ignores the stochastic properties of positional investments and dynamic

properties of the model.
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2.4 Conclusion

This paper extends the model developed in Bloch et al. (2014) with two significant mod-

ifications. First, we assume there are two types of demand a niche market. Second, we

consider the number of active firms is exogenous; and the numbers are one, two, or three

active firms in a market, respectively. In each market niche, firms compete in the Bertrand

or Cournot framework, as well as a welfare maximum alternative as a reference within a

period. Therefore, the equilibrium price, quantity, profits, and consumer surplus in this pe-

riod can be obtained. Second, firms decide whether to make positioning investments when

they face uncertain market demand. The positioning investments are stochastic therefore;

they involve the costs to establish a firm and its probability to success, and the costs to

maintenance a firm and its probability to success. Then, we link these two sorts of decisions

by the firm through static operating profit of established firms. By employing (SMPNE),

we obtain a serial of results with dynamic properties.

First, we present a firm profit, consumer surplus, and total surplus in the Bertrand,

Cournot, or welfare maximum framework with different number active firms and types of

demand. We find the Bertrand competition has lower profit for a firm in the two or three

active firms case and has higher total surplus than Cournot in these two cases.

Second, we show the transition probabilities in the different competitions with different

initial states of the system. We discover that the transition probabilities become static in

the welfare maximum framework for the first ten periods; however, they keep changing in

the Bertrand and Cournot frameworks for the first ten periods.

Third, we find the steady state of the system in the Bertrand, Cournot, and welfare

maximum frameworks with different number of active firms. We observe the number of

firms is larger in a niche market under the Cournot competition than in Bertrand. This is

because the profit for a firm is much higher in Cournot than Bertrand. Therefore, it is more

risky for a firm to enter into the market under the Bertrand competition. Moreover, we also
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calculate the expected duration of the state of the system. In the Bertrand framework, the

value of expected duration to stay in state (1, H) is higher than in the Cournot and welfare

maximum frameworks for the two active firms case. The value of expected duration is lower

in the state (1, L) under the welfare maximum framework than Bertrand and Cournot.

Fourth, we show the speed of convergence in the Bertrand, Cournot, and welfare maxi-

mum frameworks. The maximum and minimum speed of convergence is a function of initial

states of the system and period of time. We conclude that the maximum speed of conver-

gence meets the convergence criteria (0.01) only in the welfare maximum framework within

the first ten periods for one, two, or three active firms case, respectively.

Fifth, we calculate the expected total surplus for Bertrand, Cournot, and welfare maxi-

mum. Thus, we can have value of efficiency for Bertrand and Cournot because we set total

surplus in the welfare maximum framework as a reference. The efficiency level in Cournot

is higher than Bertrand. This is because there is a significant probability difference in the

state of the system between Bertrand and welfare maximum based on the analysis of Oaxaca

decomposition.

Sixth, we developed 8 different experiments and compare the results of the steady state

of the system, efficiency, and the speed of convergence to the steady state to the baseline

model. We discover that the higher investment costs reduce numbers of firms into the mar-

ket. Similarly, the lower probabilities of successful investment also have the same result.

Moreover, the efficiency level in the two and three active firms cases increases with lower

investment and higher probability of successful investment, as well as higher probability of

high demand. In addition, we also present that the variation in I, J , P , and Q have dra-

matic different effect on the minimum and maximum speed of convergence in the Bertrand,

Cournot, and welfare maximum frameworks.

Finally, we illustrate that the important features of the dynamic and stochastic. Suppose

the regulate authorities ignore these properties, we have blind efficiency which is biased
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estimation of efficiency in the one, two, and three active firms cases. The value of real

efficiency in the Cournot competition is always higher than in the Bertrands and the blind

efficiency has an over estimation in the state of one firm with high demand.

2.5 Appendices

I. Within Period Oligopoly

If firms choose quantities as in Cournot’s model, using the inverse demand function from

equation 2.2, the profit that a representative firm, firm 1 for simplicity, can be written as

πC = q1(αd − βq1 − γ(q2 + ...+ qN))

where N is the number of established firms. The first order profit maximizing condition is

αd − 2βq1 − γ(q2 + ...+ qN) = 0

Of course, in equilibrium, all the qs are the same, so the equilibrium quantity sold by firm

1 to a representative consumer is α/(2β + (N − 1)γ), and the total quantity sold by a

representative firm in the Cournot equilibrium, denoted by q∗(N) is

q∗C(N) =
αd

2β + (N − 1)γ

For the Cournot case the function R(N) that is as the oligopoly profit of a representative

firm in equilibrium, is

RC(N) = β(
αd

2β + (N − 1)γ
)2

Now let us turn to the case where firms choose prices, as in Bertrand’s model. Inverting

the inverse demand functions in equation (2), we get the following demand functions:

qi = AN −BNpi + CN
∑
j 6=i

pj, i = 1, N

where AN , BN and CN are parameters that are defined in the following table:
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N AN BN CN

1 αd
β

1
β

2 αd(β−γ)
β2−γ2

β
β2−γ2

γ
β2−γ2

3 αd(β−γ)
β2+βγ−2γ2

β+γ
β2+βγ−2γ2

γ
β2+βγ−2γ2

Profit of a representative firm, again firm 1 for simplicity, is

πB = p1(AN −BNp1 + CN
∑
j 6=1

pj)

The first order profit maximizing condition is

AN −BNp1 + CN
∑
j 6=1

pj = 0

It is straight forward to find the equilibrium price, denoted by p∗B(N), and the oligopoly

profit of a representative firm in equilibrium, RB(N). They are recorded in the following

table.

N p∗B(N) RB(N)

1 αd
2

α2
d

4β

2 αd(β−γ)
2β−γ

α2
dβ(β−γ)

(β+γ)(2β−γ)2

3 αd(β−γ)
2β

α2
d(β+γ)(β−γ)

(β+2γ)(2β)2

Suppose firm 1 chooses price to maximize consumer surplus in its niche market.

CS1 = (p1 −mc)q1 +
1

2
(

AN + CN
∑
j 6=1

pj

BN

− p1)q1
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The first order consumer surplus maximizing condition is

−BN(
1

2
p1 −mc+

AN + CN
∑
j 6=1

pj

2BN

) +
1

2
q1 = 0

It is easy to obtain the equilibrium quantity, denoted by q∗W (N), and the total surplus for

each market niche, TS(N) equals to consumer surplus because equilibrium price equals to

marginal cost in this case. We report equilibrium quantity and total surplus as follows:

N q∗W (N) TSi(N)

1 αd
β

α2
d

2β

2 αd
β+γ

α2
d

2(β+γ)

3 αd
β+2γ

α2
d

2(β+2γ)

II Algorithm

In order to obtain symmetric Markov perfect Nash equilibrium strategy, we use the

following three step producers.

First, we provide the initial value of Markovian strategy S = (s1 , s2 , ..., s4A) as well as

the parameter value of exogenous variables A, I, J , P , Q, H, L, D, R(N, d), SP (N, d).

Second, suppose we set ŜR = S, SR = S and SO = S in the system 4A value functions

2.6 and 2.9, we will be able to obtain V k((S, S), S), k = 1, 4A. Then, we use these values to

calculate sk and nsk in the following three criteria:

(1) If V k(((1, S−k), S), S) > V k(((0, S−k), S), S),

then nsk = min(1, sk + ε(V k(((1, S−k), S), S)− V k(((0, S−k), S), S))).

(2) If V k(((1, S−k), S), S) < V k(((0, S−k), S), S),

then nsk = max(0, sk − ε(V k(((0, S−k), S), S)− V k(((1, S−k), S), S))).

(3) If V k(((1, S−k), S), S) = V k(((0, S−k), S), S),

then nsk = sk. We assume ε = .000005 for this exercise.
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Third, let us check the condition of convergence as below:

∆ =
4A∑
1

∣∣sk − nsk∣∣
The algorithm is converged to an equilibrium only if ∆ ≤ δ. Here, we assume δ =

.0000000001 in practice. Otherwise, we propose S, (s1 , s2 , ..., s2A) = (ns1 , ns2 , ..., ns2A), and

back to second step until ∆ ≤ δ holds.
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Figure 2.5: The Speed of Convergence with Different I in Bertrand

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 1)

Minimum Speed of
Convergence
(Experiment 2)

(a) Minimum Speed of Convergence (One Active Firm)

 

0

0.2

0.4

0.6

0.8

1

1.2

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 1)

Maximum Speed of
Convergence
(Experiment 2)

(b) Maximum Speed of Convergence (One Active Firm)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 1)

Minimum Speed of
Convergence
(Experiment 2)

(c) Minimum Speed of Convergence (Two Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 1)

Maximum Speed of
Convergence
(Experiment 2)

(d) Maximum Speed of Convergence (Two Active Firms)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 1)

Minimum Speed of
Convergence
(Experiment 2)

(e) Minimum Speed of Convergence (Three Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 1)

Maximum Speed of
Convergence
(Experiment 2)

(f) Maximum Speed of Convergence (Three Active Firms)

108



Figure 2.6: The Speed of Convergence with Different J in Bertrand
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Figure 2.7: The Speed of Convergence with Different P and Q in Bertrand
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Figure 2.8: The Speed of Convergence with Different h and l in Bertrand
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Figure 2.9: The Speed of Convergence with Different I in Cournot

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 1)

Minimum Speed of
Convergence
(Experiment 2)

(a) Minimum Speed of Convergence (One Active Firm)

 

0

0.2

0.4

0.6

0.8

1

1.2

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 1)

Maximum Speed of
Convergence
(Experiment 2)

(b) Maximum Speed of Convergence (One Active Firm)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 1)

Minimum Speed of
Convergence
(Experiment 2)

(c) Minimum Speed of Convergence (Two Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 1)

Maximum Speed of
Convergence
(Experiment 2)

(d) Maximum Speed of Convergence (Two Active Firms)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 1)

Minimum Speed of
Convergence
(Experiment 2)

(e) Minimum Speed of Convergence (Three Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 1)

Maximum Speed of
Convergence
(Experiment 2)

(f) Maximum Speed of Convergence (Three Active Firms)

112



Figure 2.10: The Speed of Convergence with Different J in Cournot

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 3)

Minimum Speed of
Convergence
(Experiment 4)

(a) Minimum Speed of Convergence (One Active Firm)

 

0

0.2

0.4

0.6

0.8

1

1.2

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 3)

Maximum Speed of
Convergence
(Experiment 4)

(b) Maximum Speed of Convergence (One Active Firm)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 3)

Minimum Speed of
Convergence
(Experiment 4)

(c) Minimum Speed of Convergence (Two Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 3)

Maximum Speed of
Convergence
(Experiment 4)

(d) Maximum Speed of Convergence (Two Active Firms)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 3)

Minimum Speed of
Convergence
(Experiment 4)

(e) Minimum Speed of Convergence (Three Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 3)

Maximum Speed of
Convergence
(Experiment 4)

(f) Maximum Speed of Convergence (Three Active Firms)

113



Figure 2.11: The Speed of Convergence with Different P and Q in Cournot
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Figure 2.12: The Speed of Convergence with Different h and l in Cournot
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Figure 2.13: The Speed of Convergence with Different I in Welfare Maximum
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Figure 2.14: The Speed of Convergence with Different J in Welfare Maximum
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Figure 2.15: The Speed of Convergence with Different P and Q in Welfare Maximum
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Figure 2.16: The Speed of Convergence with Different h and l in Welfare Maximum

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 7)

Minimum Speed of
Convergence
(Experiment 8)

(a) Minimum Speed of Convergence (One Active Firm)

 

0

0.2

0.4

0.6

0.8

1

1.2

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 7)

Maximum Speed of
Convergence
(Experiment 8)

(b) Maximum Speed of Convergence (One Active Firm)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 7)

Minimum Speed of
Convergence
(Experiment 8)

(c) Minimum Speed of Convergence (Two Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 7)

Maximum Speed of
Convergence
(Experiment 8)

(d) Maximum Speed of Convergence (Two Active Firms)

 

0

0.5

1

1.5

2

2.5

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Minimum Speed of
Convergence
(Baseline)

Minimum Speed of
Convergence
(Experiment 7)

Minimum Speed of
Convergence
(Experiment 8)

(e) Minimum Speed of Convergence (Three Active Firms)

 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10

Maximum Speed of
Convergence
(Baseline)

Maximum Speed of
Convergence
(Experiment 7)

Maximum Speed of
Convergence
(Experiment 8)

(f) Maximum Speed of Convergence (Three Active Firms)

119



T
ab

le
2.

47
:

N
u
m

b
er

in
g

C
on

ve
n
ti

on
fo

r
S
ta

te
s

S
ta

te
(u
,h
,0

;A
)
··
·

(u
,h
,A
−

1;
A

)
(u
,l
,0

;A
)
··
·

(u
,l
,A
−

1
;A

)
(e
,h
,0

;A
)
··
·

(e
,h
,A
−

1
;A

)
(e
,l
,0

;A
)
··
·

(e
,l
,A
−

1
;A

)

N
u
m
b
e
r

1
··
·

A
A

+
1

··
·

2
A

2A
+

1
··
·

3A
3
A

+
1

··
·

4
A



Chapter 3

Transmission Capacity and the Welfare Effects of

Electricity Market Interaction

3.1 Introduction

The use of energy is the distinguishing characteristic of modern economies, and in most appli-

cations this energy comes in the form of electricity. The trade of electricity between countries

or provinces may improve the security of electricity supply, economic efficiency as well as the

quality of the environment (Turvey (2006)). Government policy in the electricity sector is

a major determinant of both social welfare and the state of the natural environment. With

these effects in mind, my research project addresses a series of innovative questions including:

Would an increase in competition in the electricity market be beneficial for social welfare?

Would the expansion of electricity transmission capacity between countries/provinces benefit

welfare?

In this paper, we develop a theoretical trade model which represents the electricity sector.

The model discards the assumption of symmetry, and examines the effects of trade when

marginal costs, market concentration and country size are all allowed to be heterogeneous.

Furthermore, it also incorporates transmission costs and transmission capacity since these

are two important factors in the electricity sector. Variation in both may affect the social

welfare and environmental quality. Under the theory of comparative advantage, the global

welfare gains from trade. This is because each country will export under free trade that com-

modity which has the lower relative price under autarky. However, firms in the electricity

sector have market power, so our analysis depends on imperfect competition. Price will de-

viate from marginal cost of electricity production under conditions of imperfect competition.
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Therefore, in some cases electricity may be imported whose marginal cost of production is

lower than the delivered cost (marginal cost plus transmission cost) of other countries. This

may lead to a net global decrease in welfare.

By considering the effects of imperfect competition in the electricity sectors, our model

relates four stylized facts regarding trade between these two countries/ provinces. First, both

are asymmetric in a variety of ways. Secondly, the electricity market is not perfectly com-

petitive. Also, the Heckscher-Ohlin theorem predicts a much lower volume of intra-industry

trade than actually takes place. In reality, a large proportion of trade occurs even with sim-

ilar levels of factor abundance, while the H-O theorem predicts that trade would only result

with very different levels of factor abundance. Linder (1961), Helpman and Krugman (1985)

used two different models to explain this stylized fact. However, both of these explanations

fail to explain why we observe a considerable volume of intra-industry trade even when the

product categories are very finely defined. We adopt the model of Brander and Krugman

(1983) to explain this fact. In this model, it is assumed that products are homogeneous

and there will be cross-hauling even with transportation costs because oligopolistic markets

imply that price will be above marginal cost. All these assumptions fit the reality of elec-

tricity industry in both provinces. We argue that a province is likely to export a commodity

produced by an industry that is relatively less concentrated. This contradicts the assump-

tions of the H-O theorem, which considers identical concentration across industries; with

different degrees of concentration, H-O underestimates the volume of intra-industry trade

between provinces. Fourth, Helpman (1987) uses a theory of product diversity to explain

that countries benefit more from trade with other countries of a larger size (a central result

of the gravity model). Hummels and Levinsohn (1985) note that ”relative unanimity of

our results suggests that there is something other than monopolistic competition that may

be responsible for the empirical success of the gravity model”. By modeling asymmetry in

market size as well as other parameters, our model produces results that are consistent with
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the actual empirical relation between trade volume and country size.

Several papers have been written on the economics of electricity transmission. Sertelis

and Dormaar (2007) empirically examine whether electricity exports and imports cause price

fluctuation in Alberta market. Genc et al. (2011) investigate whether trade has any effect on

the price formation process in the Ontario market, and identify interconnected markets that

have higher impacts on prices in that market. Focusing on the electricity market, Borenstein

et al. (2000) demonstrate that limited transmission capacity can give a firm an incentive to

restrict its output in order to congest transmission into its area of dominance; as a result,

relatively small investments in transmission may yield surprisingly large payoffs in terms of

increased competition. Stoft (1999), Joskow and Tirole (2000), and Gibert et al. (2004) show

that, depending upon various circumstances, the ex ante allocation of financial transmission

rights in a congested network might either enhance or mitigate market power. Consequently,

the greater interconnection creates a larger market and should therefore increase competi-

tion. However, the achievement of increased market efficiency predicted by economic theory

appears to depend upon the features of a particular market and mechanism. With this

perspective in mind, our theoretical paper investigates whether free trade with transmission

cost of electricity benefit both markets, and whether the expansion of transmission capacity

would increase the global social welfare.

This model can be successfully applied to the electricity markets of Alberta (AB) and

British Columbia (BC). The main structural features of the markets are as follows: Aggre-

gate production of electricity in these two provinces is similar (10.4% and 10.1% of total

Canadian output, respectively), but there is a significant difference in demand that reflects

differences in population size 12. The AB electricity market is oligopolistic with five firms

supplying 80% of provincial generation capacity, while the BC market is monopolistic since

1Statistics Canada 2009, pp. 20-21
2”Canada’s population estimates: Table 2 Quarterly demographic estimates”. Statcan.gc.ca. 2010-06-28.

http://www.statcan.gc.ca/daily-quotidien/100628/t100628a2-eng.htm. Retrieved 2010-07-26.
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BC Hydro totally dominates the BC industry 3 . Interprovincial trade in electricity is con-

strained by transmission capacity. Electricity produced in AB involves significant emissions

of CO2 because it is dominated by coal power (72% of total utility-generated power), while

production in BC involves far less CO2 emissions because it uses mainly hydro power (90%

of total utility-generated power) 4. AB firms have lower fixed costs which permit relatively

easy entry into the market, but much higher marginal costs of production. At the same

time, BC has a carbon tax (since July 1, 2008), while AB has no such tax. In this context,

several policy questions deserve attention: Would more competition in BC improve welfare

and the natural environment in BC and/or AB? Would it be desirable to expand electricity

transmission capacity across the provincial border? Would imposing a pollution tax in AB

be beneficial for welfare and the natural environment?

Furthermore, by focusing on the effect of welfare after trade given asymmetries in market

size, concentration and marginal costs, this model allows us to identify which parameters

yield the highest welfare to a country/province. While other studies have considered trade

with transmission costs, transmission constraints and trade in the presence of asymmetries,

no paper has combined all three factors. Our model captures three important aspects of

real-life electricity markets by incorporating trade with transmission costs, trade with lim-

ited capacity, and trade with three different asymmetries between countries/provinces, all at

the same time.

Lahiri and Ono (1988) show under oligopoly with uneven technology, elimination of minor

firms improves average efficiency of production which benefits welfare, though at the same

time it leads to a more oligopolistic market structure in a nation. With this issue in mind,

our comprehensive model could make suggestion of the policy question of whether the gov-

ernment should subsidize the cost-efficient industry instead of cost-inefficient one within two

interlinked markets. This could happen if relatively similar marginal costs of firms within

3Statistics Canada 2009, pp. 20-21
4Statistics Canada 2009, pp. 20-21
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two countries/ provinces lead subsidized inefficient firms to take the market of efficient firms,

and expand to the international market, causing more total pollution and lower total welfare

for the two provinces.

3.2 The Model

In this model, we assume there are two countries: large and small. They are denoted by

subscripts i = L, S. In the small country, electricity demand is qS = γ(a − bpS), where

0 ≤ γ ≤ 1. We assume that a, b > 0. Note that qi indicates the total output in each country.

We assume there are n symmetric electricity firms in the small country, each of which has

a constant marginal cost cS. The large country has m symmetric electricity firms, each of

which has a constant marginal cost cL. The demand function is qL = a − bpL, where pL is

the price charged in country L. Firms compete under Cournot conjectures, and the social

welfare for each country is a simple sum of the total profits made by symmetric firms, and

consumer surplus. We assume the number of firms in each country is exogenously fixed in

order to focus on the effects of interest. We also assume that S and L are the only two

countries in the world.

3.2.1 Autarky Outcomes

The motivation for finding the autarky outcomes is to compare the results with free trade and

limited trade, both of which have transmission costs. Therefore, we will be able to determine

whether trade leads to improved welfare, and under which conditions. Let us initially assume

that there is no trade between large and small countries. We record equilibrium values for

total output of electricity (qi), price (pi), and social welfare (Wi) in the following table for

each country. The symbol ∨ indicates equilibrium values in autarky. qL > 0 requires that

a > bcL, and qS > 0 requires that a > bcS. Subject to these constraints, we have price,

quantity and welfare for each province.
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Large

q̌L = m
m+1

(a− bcL)

p̌L = a+mbcL
b(m+1)

W̌L = m
b

(a−bcL
m+1

)2(1 + m
2

)

Small

q̌S = γn
n+1

(a− bcS)

p̌S = a+nbcS
b(n+1)

W̌S = γn
b

(a−bcS
n+1

)2(1 + n
2
)

Given the autarky outcomes above, we are now able to make comparisons with cases

of free trade with transmission cost, and trade with both transmission cost and limited

transmission capacity to see how market concentration, marginal costs and market size affect

welfare in each case, and whether trade leads to superior outcomes in terms of social welfare.

3.2.2 Outcomes for Free Trade with Transmission Costs

In reality, electricity trade is permitted between these two countries. We assume a trans-

mission cost of θ ∈ [0, 1] per unit of electricity. The total output produced in each country,

q̂i, which includes two components: output consumed within the country q̂ii and output

exported to the other country q̂ji . Therefore, the total output of the small country can be

written as q̂S = q̂SS + q̂LS . The price for each country is p̂i. The symbol ∧ indicates equilibrium

values in free trade without transmission limits. Each country’s welfare Ŵi is now the sum

of total profits from electricity consumed within the country π̂ii, total profits from export to

the other country π̂ji , and consumer surplus. The firms in each country will only operate if

their marginal costs with transmission costs are below the autarky price in the other country;

that is, q̂SS > 0 and q̂LS > 0 require that (1 + θ)cS ≤ a+mbcL
b(m+1)

, and q̂LL > 0 and q̂SL > 0 require

that (1 + θ)cL ≤ a+nbcS
b(n+1)

. Subject to these constraints, output, price and welfare are given as

follows:
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Large

q̂LL = m{a+nb(1+θ)cS−(n+1)bcL}
m+n+1

q̂SL = m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

p̂L = a+n(1+θ)bcS+mbcL
b(m+n+1)

π̂SL = mγ{a+nbcS−(1+n)b(1+θ)cL}2
b(1+m+n)2

π̂LL = m{a+nb(1+θ)cS−(n+1)bcL}2
b(m+n+1)2

ĈSL = {a(m+n)−n(1+θ)bcS−mbcL}2
2b(m+n+1)2

Small

q̂SS = n{aγ+mγb(1+θ)cL−(1+m)γbcS}
1+m+n

q̂LS = n{a+mbcL−(1+θ)(m+1)bcS}
m+n+1

p̂S = a+nbcS+mb(1+θ)cL
b(1+m+n)

π̂SS = nγ{a+mb(1+θ)cL−(1+m)bcS}2
b(1+m+n)2

π̂LS = n{a+mbcL−(1+θ)(m+1)bcS}2
b(m+n+1)2

ĈSS = γ{a(m+n)−nbcL−(1+θ)mbcS}2
2b(1+m+n)2

The net trade balance for the large country is NTBL = q̂SL − q̂LS . The world welfare is

simply the sum of both country;s welfare: Ŵ = ŴL + ŴS. We will first consider the welfare

of the large country ( small country’s welfare is symmetric), and then global welfare.

Market Size and Large Country’s Welfare

The following derivative shows how the welfare of the large country changes with the

market size of the small country:

∂ŴL

∂γ
=
m{a+ nbcS − (1 + n)b(1 + θ)cL}2

b(1 +m+ n)2
> 0 (3.1)

Lemma 1. The welfare of the large country always increases with γ, the market size of the

small country.

The intuition for this lemma is obvious: the larger is the market size of the small country,

the higher is the export profit for the large country; therefore, an increase in the market size

of the small country benefits large country’s welfare.

Market Concentration and Large Country Welfare

The number of firms in the large country has an ambiguous impact on its own welfare.

Large country firms’ profits earned from inside country and from exports to the small country
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are maximized in m at the peak m = n+ 1, however, consumer surplus increases with m.

∂ŴL

∂m
=

∂π̂SL
∂m

+
∂π̂LL
∂m

+
∂ĈSL
∂m

(3.2)

=
γ{a+ nbcS − (1 + n)b(1 + θ)cL}2(n+ 1−m)

b(1 +m+ n)3

+
{a+ nb(1 + θ)cS − (n+ 1)bcL}2(n+ 1−m)

b(m+ n+ 1)3

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{a+ nb(1 + θ)cS − (n+ 1)bcL}

b(m+ n+ 1)3

Lemma 2. ŴL has a single peak at m∗ > n + 1. The optimal number of firms in the large

country equals m∗ (see appendix 3.4.1)

Large country’s welfare first rises, then decreases with number of firms because there

are two different effects in action. First, consumer surplus increases with the number of

firms, but at a decreasing rate. Secondly, the increase in the number of firms m initially

increases the profits of large country’s firms from both in-country consumption and export

because of some displacement of production from small to large country’s firms. However,

as m increases further, the negative effect on profit from additional competition dominates

the effect of increased sales. Furthermore, this negative effect also dominates the gain in

consumer surplus if m is sufficiently large.

A similar relationship holds between ŴL and n :

∂ŴL

∂n
=

∂π̂SL
∂n

+
∂π̂LL
∂n

+
∂ĈSL
∂n

(3.3)

=
2mγ{a+ nbcS − (1 + n)b(1 + θ)cL}{(1 +m)bcS −m(1 + θ)bcL − a}

b(1 +m+ n)3

+
2m{a+ nb(1 + θ)cS − (n+ 1)bcL}{(m+ 1)b(1 + θ)cS −mbcL − a}

b(m+ n+ 1)3

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{a− (m+ 1)(1 + θ)bcS +mbcL}

b(m+ n+ 1)3

Lemma 3. If small country’s marginal cost is very high (i.e. if (n −m)a + (2n + 1)bcL <

n(1 + θ)(1 + 2m)bcS), ŴL always decreases when n increases. However, if small country’s

marginal cost is similar to that of the large country, then ŴL will be U-shaped in n, and the
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lowest welfare will be reached when the number of firms in the small country equals n* (see

appendix 3.4.2). If small country firms’ marginal cost is very low, ŴL always increases as n

decreases.

Why does a higher number of small country firms always increase ŴL when small country

firms’ marginal cost is sufficiently low? This is because large country firms produce little

when small country firms are sufficiently efficient, so an increase in the number of small

country firms only decreases the electricity price in the large country’s market, which benefits

its consumers. If small country’s firms are sufficiently inefficient, the benefit from higher

consumer surplus is dominated by the loss of profits from in-country consumption with

number of small country firms, therefore, ŴL always decreases when n increases. However,

if firms in both countries have similar marginal costs, ŴL will be U-shaped in n. There

are two effects in this case. First, the increase of n decreases the profits of large country’s

firms from both in-country consumption and export to the small country because of more

competition. However, the increase of n also increases consumer surplus in the large country’s

market. The first negative effect dominates when n is small, until the level n∗ where ŴL is

minimized; then, ŴL gradually increases with n as the positive effect dominates.

Marginal Costs and Large Country Welfare

We can demonstrate that large country’s welfare always increases when large country

firms’ marginal costs decrease:

∂ŴL

∂cL
=

∂π̂SL
∂cB

+
∂π̂LL
∂cB

+
∂ĈSL
∂cB

(3.4)

=
2mγ{a+ nbcS − (1 + n)b(1 + θ)cL}{−(1 + n)b(1 + θ))}

b(1 +m+ n)2

+
2m{a+ nb(1 + θ)cS − (n+ 1)bcL}{−(n+ 1)b}

b(m+ n+ 1)2

+
2{a(m+ n)− n(1 + θ)bcS −mbcL}(−mb)

b(m+ n+ 1)2

< 0
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where −(1 + n)b(1 + θ) < 0,−(n+ 1)b < 0,and −mb < 0. Therefore,
∂WT

L

∂cL
< 0

Lemma 4. The total welfare of the large country always increases when large country firms’

marginal cost cL decreases.

The relationship between large country welfare and small country firms’ marginal cost is

ambiguous, as shown here:

∂ŴL

∂cS
=

∂π̂SL
∂cS

+
∂π̂LL
∂cS

+
∂ĈSL
∂cS

(3.5)

=
2mγ{a+ nbcS − (1 + n)b(1 + θ)cL}(nb)

b(1 +m+ n)2

+
2m{a+ nb(1 + θ)cS − (n+ 1)bcL}{nb(1 + θ)}

b(m+ n+ 1)2

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{−n(1 + θ)bc}

b(m+ n+ 1)2

Lemma 5. ŴL is a U-shaped function in cS; it reaches its minimum when small country

firms’ marginal costs equals c∗S. If cS > c∗S, ŴL increases when cS increases.

Here, c∗S = bmcL(1+2γ+2n(1+γ))(1+θ)+a(n+nθ−m(1+2γ+θ))
bn((1+θ)2+2m(γ+(1+θ)2))

The marginal cost of small country firms has two effect on ŴL. First, it has a positive

effect on large country firms’ profits from in-country consumption and export to the small

country; however, it has a negative effect on consumer surplus in large country since it

increases the electricity price in large country’s market. When cS is very low, a small

increase in small country firms’ marginal cost results in a small increase in large country

firms’ profits however, it has large decrease of consumer surplus in the large country. The

reason is that when small country firms are sufficiently efficient, large country firms produce

little. A small increase of cS has a small effect on profits in large country but has large effect

on consumer surplus. As cS continue to increase, the effect on consumer surplus dominates

the effect on profits for some time, but is eventually overwhelmed. When cS is sufficiently

large, the increase in profits from the displacement of production from small country firms

is larger than the reduction in consumer surplus in the large country market, because small
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country firms do not produce much if their marginal costs are sufficiently high. Therefore,

ŴL increases with cS if cS > c∗S.

Transmission Cost and Large Country Welfare

∂ŴL

∂θ
=

∂π̂SL
∂θ

+
∂π̂LL
∂θ

+
∂ĈSL
∂θ

(3.6)

=
2mγ{a+ nbcS − (1 + n)b(1 + θ)cL}{−(1 + n)bcL}

b(1 +m+ n)2

+
2m{a+ nb(1 + θ)cS − (n+ 1)bcL}{nbcS}

b(m+ n+ 1)2

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{−nbcS}

b(m+ n+ 1)2

Lemma 6. When cL is sufficiently high (n{a+mbcL−(1+θ)(m+1)bcS} > m{a+nb(1+θ)cS−

(n+ 1)bcL}, and a higher θ decreases ŴL. When cL is sufficiently low, ŴL always increases

with θ. ŴL is a U-shaped function in θ when the marginal costs of firms in both countries

are similar. The welfare of the large country reaches its minimum when transmission costs

equal θ∗(see appendix 3.4.3).

To understand this relationship, θ has different effects on large country firms’ profits from

in-country consumption and exports, and also an impact on the consumer surplus. θ has

a positive effect on profits earned inside the country by making it costly for small country

firms to compete in the large country’s market. However, θ has a negative effect on export

profits by the same reasoning. In addition, θ has a negative effect on consumer surplus

since it increases the price in the large country’s market. When cL is sufficiently high, a

small increase in θ produces a large loss in consumer surplus, which dominates the positive

effect on profits earned inside the large country. When cL is sufficiently low, the increase in

in-country profits starts to dominate the negative effects on consumer surplus and export

profits from the small country as θ increases, so that ŴL increases as θ increases.

The analysis above indicates that free trade with transmission costs benefits the large

country most if its marginal cost is either much higher or much lower than that of the
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small country. Minimum welfare will be reached if the marginal costs of both countries are

relatively similar. In addition, the welfare of the large country is positively correlated with

the market size of the small country. The degree to which they benefit from trade will be a

function of market concentration in both large and small countries electricity industries, as

well as transmission costs.

Corollary 1. The net trade balance for the large country is positively related to small coun-

try’s market size and marginal costs, and also to number of large country’s firms, and nega-

tively related to the marginal cost of large country’s firms and the number of small country’s

firms.

The corollary above indicates that if the government of the large country preferred a

larger net trade balance with the small country, it could subsidize electricity firms in order

to lower their marginal cost, or increase the number of firms within the country.

Market Size and Global Welfare

There are two effects here. The first stems from the size of the world. Total welfare

always increases when the world market grows. The other is a composition effect, which we

can observe by controlling the size of the world, γ + 1. Here Ŵ
γ+1

indicates total welfare per

capita each country’s industry is able to generate.

∂ Ŵ
γ+1

∂γ
=

1

(1 + γ)2
{ π̂

S
L

γ
+
π̂SS
γ

+
ĈSS
γ
− π̂LL − π̂LS − ĈSL} (3.7)

Lemma 7. If the adjusted benefit from the small country’s market 1
γ

(
π̂SL + π̂SS + ĈSS

)
is

greater than the benefit from the large country’s market (π̂LL + π̂LS + ĈSL), an increase in the

market size of the small country will increase global welfare.

The implication of this lemma is that if the sum of adjusted profit earned within the

small country market and the consumer surplus of small country is greater than that of the

large country, increasing small country’s market size will benefit the global welfare.
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Market Concentration and Global Welfare

This section explains how an increase in the number of relatively efficient firms affects

global welfare.

Lemma 8. If the sum of marginal cost and transmission cost is lower for the large country

than for the small country, we can achieve a higher global welfare by increasing the number

of firms in the large country.

Proof. Suppose large country’s firms have a lower delivered cost (marginal cost plus trans-

mission cost) compared to the small country’s firms, i.e. (1 + θ)cL ≤ cS

Then we have the following results:

∂Ŵ

∂m
=

γϑ2 + ϑ(n2 +mn+ n){γbcS − γ(1 + θ)bcL}
b(1 +m+ n)3

(3.8)

+
µ2 + µ(n2 +mn+ n){(1 + θ)bcS − bcL}

b(1 +m+ n)3

> 0

Here ϑ = a+ nbcS − (1 + θ)(1 + n)bcL > 0, µ = a+ nb(1 + θ)cS − (n+ 1)bcL > 0

Lemma 9. If large country firms have a higher marginal cost than small country’s firms,

the global welfare may increase or decrease with the number of large country’s firms. The

welfare reaches a minimum level m∗(see appendix 3.4.4).

If the large country is relatively inefficient compared to the small country, the global

welfare will be U-shaped in m. This is caused by the action of two opposite effects. The

positive effect on welfare stems from an increase in total output resulting from an increase in

the number of large country firms. On the negative side, inefficient firms will displace some

efficient firms from the market, leading to an increase in the average marginal cost. The

negative effect on welfare dominates when m is relatively small; welfare starts to increase

again once number of large country firms exceeds m∗.

133



Marginal Costs and Global Welfare

The effect is similar to that of a change in concentration, because an increase in firm

efficiency benefits social welfare.

Lemma 10. A decrease in the marginal cost of the large country firms will increase welfare

if the delivered costs of the large country are lower than the marginal costs of the small

country’s firms.

Proof. (see appendix 3.4.5)

Lemma 11. Global welfare will be U-shaped if the delivered costs of the large country are

greater than the small country’s marginal cost.

Proof. If (1 + θ)cL > cS, the global welfare will be a U-shaped function of cL, which reaches

its minimum when c∗L = bcSn(3+2m+2n)(1+γ)(1+θ)+a(2+m+n)(1+γ+γθ)
b(m+2mn+2(1+n)2)(1+γ(1+θ)2)

. The case is symmetric when

(1 + θ)cS > cL.

One implication of this lemma is that a small increase of cL when (1+θ)cL > cS decreases

global welfare as we expected; however, with continued growth in cL, welfare will start

increasing because production of inefficient firms will be replaced by that of efficient firms

in small country. Therefore, a decrease in cL is not always beneficial for global welfare. If

cL > c∗L, a decrease in the marginal costs in the large country decreases the global welfare.

Transmission Costs and Global Welfare

∂Ŵ

∂θ
=
∂ŴL

∂θ
+
∂ŴS

∂θ
(3.9)

The transmission costs have a U-shaped relationship with global welfare: the reason is

similar to lemma 6. Global welfare reaches its minimum at θ∗(see appendix 3.4.6).
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3.2.3 When is free trade with transmission costs better than autarky?

We have examined the relationship between welfare and market size, marginal costs, and

market concentration. In the next section, we will conduct a comparative analysis of autarky

and free trade in order to uncover the effect of free trade on welfare. Here we assume the

number of firms is constant from autarky to free trade. Venables (1985) considered there

is a reduction of number of firms and expansion of their output after trade. However, in a

short time period, we need not to expect electricity firms to exit from production since they

have invested large sunk costs.

Large Country Welfare Differential

The change in large country’s welfare caused by the introduction of free trade is defined

as ∆WL = ŴL − W̌L.

Large Country Welfare Differential and Market Size

Consider how the change in the market size affects large country welfare’s differential:

∂∆WL

∂γ
=

∂ŴL

∂γ
(3.10)

=
m{a+ nbcS − (1 + n)b(1 + θ)cL}2

b(1 +m+ n)2
> 0

Lemma 12. The welfare differential for the large country always increases with the market

size of small country.

This lemma is generalization of a result obtained by Markusen (1981) who found that

assuming m = n = 1 and cL = cS, the trade will always increase total world real income, but

the large country may experience a welfare loss. In the presence of differences in market size,

industry concentration and marginal costs, we can draw important conclusion: a country

always prefers to have free trade with another country of a larger market size. The larger

the market of the trade partner, the more welfare can be gained from trade.

Large Country Welfare Differential and Market Concentration
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First, we will show how the number of firms in the large country’s market affects its own

welfare differential:

∂∆WL

∂m
=

∂ŴL

∂m
− ∂W̌L

∂m
(3.11)

=
γ{a+ nbcS − (1 + n)b(1 + θ)cL}2(n+ 1−m)

b(1 +m+ n)3

+
{a+ nb(1 + θ)cS − (n+ 1)bcL}2(n+ 1−m)

b(m+ n+ 1)3

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{a+ nb(1 + θ)cS − (n+ 1)bcL}

b(m+ n+ 1)3

−(a− bcL)2

b(m+ 1)3

Lemma 13. In free trade with transmission costs, large country’s welfare increases while

m increases in autarky, and reaches its maximum at m∗. Therefore, large country’s welfare

differential peaks at m̂ < m∗.

The implication of this lemma is that the welfare differential peaks when the number of

firms in the large country is m̂. The reason is that a sufficient number of firms decreases

profits in the case of free trade with transmission costs. The optimal number of firms in the

welfare differential case is less than the optimal number of firms in the case of free trade

with transmission costs, since welfare increases with the number of firms in autarky.

The effect of the number of firms in small country’s market on large country’s welfare

differential is the same as the effect of the number of small country firms on large country

welfare under free trade with transmission costs, because the number of firms in the small

country does not affect large country’s welfare under autarky.

∂∆WL

∂n
=

∂ŴL

∂n
(3.12)

=
2mγ{a+ nbcS − (1 + n)b(1 + θ)cL}{(1 +m)bcS −m(1 + θ)bcL − a}

b(1 +m+ n)3

+
2m{a+ nb(1 + θ)cS − (n+ 1)bcL}{(m+ 1)b(1 + θ)cS −mbcL − a}

b(m+ n+ 1)3

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{a− (m+ 1)(1 + θ)bcS +mbcL}

b(m+ n+ 1)3
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The welfare differential of the large country will be a U-shaped function of the number

of small country’s firms. The reason is the same as in lemma 3.

Large Country Welfare Differential and Marginal Costs

We now show how large country’s marginal cost affects its own welfare differential:

∂∆WL

∂cL
=

∂ŴL

∂cL
− ∂W̌L

∂cL
(3.13)

=
2mγ{a+ nbcS − (1 + n)b(1 + θ)cL}{−(1 + n)b(1 + θ))}

b(1 +m+ n)2

+
2m{a+ nb(1 + θ)cS − (n+ 1)bcL}{−(n+ 1)b}

b(m+ n+ 1)2

+
2{a(m+ n)− n(1 + θ)bcS −mbcL}(−mb)

b(m+ n+ 1)2

+
(a− bcS)(m2 +m)

(m+ 1)2

The welfare differential of the large country is U-shaped in marginal costs of its own

firms. It reaches a minimum at ĉL (see appendix 3.4.7)

Therefore, if cL > ĉL, a higher in cL increases large country’s welfare differential. If ĉL < 0,

the increase of cL always has a beneficial effect on large country’s welfare differential. The

marginal cost of the small country has the same effect on large country’s welfare differential

as on the welfare of the large country under free trade with transmission costs.

∂∆WL

∂cS
=
∂ŴL

∂cS
(3.14)

Therefore, large country’s welfare differential is U-shaped in cS, for the same reason as

in lemma 4.

Welfare Differential and Transmission Costs for the Large Country

Electricity transmission cost of has the same effect on large country’s welfare differential

and on its own welfare under free trade with transmission costs, because transmission costs

do not play any role in the autarky scenario. Therefore,
∂∆WL

∂θ
=

∂ŴL

∂θ
and the implication is

the same as in Lemma 6.
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3.2.4 Global Welfare Differential

We now investigate the change in global welfare as the world moves from autarky to free trade

with transmission costs. The global welfare differential is defined as ∆W = ∆WL + ∆WS.

Global Welfare Differential and Market Size

∂∆W
γ+1

∂γ
=

1

(1 + γ)2
{ π̂

S
L

γ
+
π̂SS
γ

+
ĈSS
γ

+W̌L−π̂LL−π̂LS−ĈSL−
W̌S

γ
} (3.15)

If the sum of the adjusted benefit obtained from small country’s market under free trade

with transmission costs and the welfare of the large country under autarky is greater than

the sum of the benefit obtained from the large country’s market under free trade with

transmission costs and the adjusted welfare of the small country under autarky, the increase

in γ increases global per capita welfare differential. Therefore, if profit earned within the

small country’s market plus consumer surplus of the small country is greater than that of the

large country’s under free trade, and large country’s welfare is higher than adjusted small

country’s welfare under autarky, it is better for the world to have trade with an increase in

the small country’s market size.

Global Welfare Differential and Market Concentration

First, we will show how the number of firms in large country affects the global welfare

differential:
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∂∆W

∂m
=

∂∆WL

∂m
+
∂∆WS

∂m
(3.16)

=
γ{a+ nbcS − (1 + n)b(1 + θ)cL}2(n+ 1−m)

b(1 +m+ n)3

+
{a+ nb(1 + θ)cS − (n+ 1)bcL}2(n+ 1−m)

b(m+ n+ 1)3

+
{a(m+ n)− n(1 + θ)bcS −mbcL}{a+ nb(1 + θ)cS − (n+ 1)bcL}

b(m+ n+ 1)3

−(a− bcL)2

b(m+ 1)3

+
2nγ{a+mb(1 + θ)cL − (1 +m)bcS}{(1 + n)b(1 + θ)cL − nbcS − a}

b(1 +m+ n)3

+
2n{a+mbcL − (1 +m)(1 + θ)bcS}{(1 + n)bcL − nb(1 + θ)cS − a}

b(1 +m+ n)3

+
γ{a(m+ n)− nbcS − (1 + θ)mbcL}{a+ nbcS − (n+ 1)(1 + θ)bcL}

b(m+ n+ 1)3

The global welfare differential is U-shaped in the number of firms from the large country.

It reaches its minimum at some intermediate number of large country firms, then grows

gradually. The minimum of ∆W can be positive or negative, depending on the values of

variables involved.

Global Welfare Differential and Marginal Costs

The effect of marginal costs of the large country on the global welfare differential is

similar:

∂∆W

∂cL
=
∂∆WL

∂cL
+
∂∆WS

∂cL
(3.17)

∆W is a U-shaped function of cL. It reaches its minimum at c̃L (see appendix 8)

For small intermediate value of cL, ∆W can be very small or even negative.

Global Welfare Differential and Transmission Costs

The effect of transmission costs on the global welfare differential:

∂∆W

∂θ
=
∂∆WL

∂θ
+
∂∆WS

∂θ
(3.18)
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∆W is a U-shaped function of θ. It reached its minimum at θ̃ (see appendix 9) If θ > θ̃,

∆W always increases when transmission costs rise. ∆W could be positive or negative when

θ is at some intermediate level.

3.2.5 Free Trade with Transmission Costs and Capacity

If the net trade balance of the small country, NTBS = qLS−qSL > 0,we derive n{a+mbcL−(1+θ)(m+1)bcS}
m+n+1

−
m{aγ+nγbcS−(1+θ)(1+n)γbcL}

1+m+n
> 0. Under this condition, we can say that the small country is a

net exporter of electricity. In addition, if we assume there is a fixed transmission capacity

Q̄ between two countries and q̂LS − q̂SL > Q̄, then the net trade balance of the small country

becomes NTBS = q̂LS − q̂SL = Q̄. Under the case of free trade with transmission costs and

limited capacity, the total output for each country q̄i is simply sum of total output consumed

within the country q̄ii, and output exported to the other country q̄ji . The total output for

the small country can be written as q̄S = q̄SS + q̄LS . The price here can be written as p̄i.

Here, the symbol − indicates equilibrium values in free trade with transmission costs and

limit transmission capacity. The welfare in each country W̄i is the sum of total profits from

electricity consumed within the country π̄ii, total profits from export to the other country

π̄ji , and consumer surplus C̄Si.
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Large

q̄LL = m{a−Q̄−bcL}
(m+1)

− m2{aγ+nγbcS−(1+θ)(1+n)γbcL}
(m+n+1)(m+1)

q̄SL = m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

p̄L =
a−{m{a−Q̄−bcL}

(m+1)
−m

2{aγ+nγbcS−(1+θ)(1+n)γbcL}
(m+n+1)(m+1)

+
m{aγ+nγbcS−(1+θ)(1+n)γbcL}

1+m+n
+Q̄}

b

π̄SL = mγ{a+nbcS−(1+n)b(1+θ)cL}2
b(1+m+n)2

π̄LL = {
a−{m{a−Q̄−bcL}

(m+1)
−m

2{aγ+nγbcS−(1+θ)(1+n)γbcL}
(m+n+1)(m+1)

+
m{aγ+nγbcS−(1+θ)(1+n)γbcL}

1+m+n
+Q̄}

b
− cL}∗

{m{a−Q̄−bcL}
(m+1)

− m2{aγ+nγbcS−(1+θ)(1+n)γbcL}
(m+n+1)(m+1)

}

C̄SL = 1
2
{a
b
−

a−{m{a−Q̄−bcL}
(m+1)

−m
2{aγ+nγbcS−(1+θ)(1+n)γbcL}

(m+n+1)(m+1)
+
m{aγ+nγbcS−(1+θ)(1+n)γbcL}

1+m+n
+Q̄}

b
}∗

{m{a−Q̄−bcL}
(m+1)

− m2{aγ+nγbcS−(1+θ)(1+n)γbcL}
(m+n+1)(m+1)

+ m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

+ Q̄}

Small

q̄SS = n{aγ+mγb(1+θ)cL−(1+m)γbcS}
1+m+n

q̄LS = m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

+ Q̄

p̄S = a+nbcS+mb(1+θ)cL
b(1+m+n)

π̄SS = nγ{a+mb(1+θ)cL−(1+m)bcS}2
b(1+m+n)2

π̄LS = {
a−{m{a−Q̄−bcL}

(m+1)
−m

2{aγ+nγbcS−(1+θ)(1+n)γbcL}
(m+n+1)(m+1)

+
m{aγ+nγbcS−(1+θ)(1+n)γbcL}

1+m+n
+Q̄}

b
− (1 + θ)cS}∗

{m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

+ Q̄}

C̄SS = γ{a(m+n)−nbcS−(1+θ)mbcL}2
2b(1+m+n)2

Small Country’s Welfare and Transmission Capacity

∂W̄S

∂Q
=

∂π̄LS
∂Q

(3.19)

=
{a(m+ n+ 1)−maγ −mnγbcS − `}

b(m+ n+ 1)(m+ 1)

+
−mγ{a+ nbcS − (n+ 1)(1 + θ)bcL}

b(m+ n+ 1)(m+ 1)

where, ` = {(1 + θ)b(m + n + 1)(m + 1)cS + m(m + n + 1)bcL + m(1 + θ)(n + 1)γbcL −
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Q̄(m+ n+ 1)} The optimal capacity is Q̄∗ (See appendix 10).

Lemma 14. If Q̄∗+m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

< q̂LS , then a(m+1)−maγ+m(m+1)bcL+m(1+

θ)(n+1)γbcL < mnγbcS+(1+θ)b(m+1)(m+1)cS. The welfare of the small country increases

as capacity increases until Q̄∗, then decreases until the point Q̄+ m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

=

q̂LS , after which the welfare stays constant even as transmission capacity increases.

Small country’s welfare increases, as the capacity of transmission increases when capacity

is small. This is because the positive effect on output dominates the negative effect on

price when capacity is small. Therefore, small country’s export profit increases. When we

further increase capacity after Q̄∗, welfare decreases with higher capacity. This is because

the increase in capacity does not produce large increases in output for export from the small

country, since its marginal cost is relatively higher than in the large country. Therefore,

additional output takes over only a small part of the large country’s market as transmission

capacity increases. On the other hand, the increase in capacity decreases the small country’s

electricity price. Therefore, the export profit of the small country decreases with a sufficiently

large increase in capacity. Further increase in capacity when Q̄+ m{aγ+nγbcS−(1+θ)(1+n)γbcL}
1+m+n

>

q̂LS does not affect small country welfare since no matter what level of capacity, small country’s

firms always choose their optimal level of export output at q̂LS .

Large Country’s Welfare and Transmission Capacity

∂W̄L

∂Q
=

∂π̄LL
∂Q

+
∂C̄SL
∂Q

(3.20)

=
−mQ̄{a(m+ n+ 1)−maγ −mnγbcS + Υ}

b(m+ n+ 1)(m+ 1)2

+
−Q̄{am(m+ n+ 1)−m2aγ −m2nγbcS + Λ}

b(m+ n+ 1)(m+ 1)2

+
Q̄{a(m+ n+ 1)(m+ 1)− a(m+ n+ 1) + Ψ}

b(m+ n+ 1)(m+ 1)2

+
Q̄{am(m+ n+ 1) +maγ + Ω}

b(m+ n+ 1)(m+ 1)2
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where,Υ = m(1+θ)(n+1)γbcL−(m+n+1)bcL−(m+n+1)Q̄,Λ = m2(1+θ)(n+1)γbcL−

m(m+n+1)bcL−m(m+n+1)Q̄,Ψ = maγ+mnγbcS−m(1+θ)(n+1)γbcL−(m+n+1)bcL+

(m+n+ 1)Q̄, and Ω = mnγbcS −m(1 + θ)(n+ 1)γbcL− (m+n+ 1)bcL + (m+n+ 1)Q̄ The

large country welfare reached its minimum when capacity is Q̄∗ = maγ−m(1+θ)(n+1)γbcL+nmγbcS
(m+n+1)

Lemma 15. If q̄L∗L < q̂LL, then m2nbcL + 2m2(1 + θ)(n + 1)γbcL + mna − 2m2aγ < (m +

n+ 1)mnb(1 + θ)cS + 2m2nγbcS. The welfare of the large country is constant when capacity

increases until a point where q̄L1
L = q̂LL, when welfare starts decreasing with higher capacity

until it reaches Q̄∗, after this point, the welfare of the large country increases with capacity.

The reason is that when capacity is very small, large country’s firms always produce

q̂LL as it under unlimited capacity case, because small transmission capacity does not affect

in-country consumption of electricity produced in large country. When we further increase

capacity, the welfare of the large country decreases since the loss of π̄LL is higher than C̄SL

when marginal cost of large country’s firms is relatively lower than the cost of small country’s

firms. If we increase capacity beyond Q̄∗, the benefit to consumer surplus in the large country

dominates the loss of profit from in-country consumption. This is because sufficiently high

capacity brings higher marginal benefits to consumer surplus than marginal losses of profits.

3.3 Conclusion

This paper combines asymmetries in market size, degree of competition and technology of

two regions with transmission costs and capacity constraints in the electricity market. In

this framework, we are able to identify the conditions under which trade benefits a single

country or increases global welfare when one of these factors changes for each country.

The paper finds that the welfare of a country can be improved if it trades electricity

with a larger country. Empirical evidence supports the finding that a large country has little

incentive to open trade with smaller country; at the same time, however, it may benefit from

a multilateral trade agreement with several small countries.
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The paper also argues that a government subsidy to inefficient firms in its own country

might decrease the global welfare. Countries sometimes set a tariff to protect their inefficient

firms to allow them to grow and become competitive in world market. However, as we showed,

this might harm the global welfare since inefficient firms take over the market of efficient

firms, leading to an increase in the global average market cost. In contrast, subsidizing

relatively efficient firms can help them take over the production of inefficient firms, increasing

the global welfare.

In addition, we also discover that the expansion of transmission capacity between two

countries is not always beneficial to a single country or to global welfare. Sometimes, the

expansion of capacity may make a country worse off since the benefit from its consumer

surplus is dominated by the loss of profit. At some range of transmission capacity, its

expansion does not affect a country’s welfare because the firms are not constrained by the

capacity in their choice of optimal output level, producing the same amount as they would

with free trade. The resulting welfare effects have important policy implications for two

countries in negotiating their expense contributions for expansion of transmission capacity

between them.

3.4 Appendices

3.4.1

m∗ =
ν+b2(−cScLn(1+n)(1+2n+2(1+n)γ)(1+θ)+c2L(1+n)3(1+r(1+θ)2)+c2Sn

2(γ+n(γ+(1+θ)2)))
a2γ+ab(cSn(1+2γ+θ)−cL(n+2γ+2nγ+2(1+n)rθ))+η

where ν = a2(1 +γ+n(2 + r)) +ab(−cL(1 +n)(2 + 3n+ 2γ+ 2nγ+ 2(1 +n)γθ) + cSn(1 +

2γ + θ + n(3 + 2γ + 3θ))),

η = b2 (−cScLn(1 + 2γ + 2n(1 + γ))(1 + θ) + c2
An

2 (γ + (1 + θ)2) + %) , and % = c2
L(1 +

n) (γ(1 + θ)2 + n (1 + γ(1 + θ)2))
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3.4.2

n∗ =
m(a2(1+2γ)+ab(−cS(1+m)(1+2γ+θ)+cL(−1+m)(1+2γ(1+θ)))+b2cL(cS(1+m)(1+2γ)(1+θ)−cLm(1+2γ(1+θ)2)))

a2−ab(cS(2+3m+2mγ+2θ+3mθ)−cLm(3+2r(1+θ)))+λ

Where λ = b2 (−cScLm(3 + 2γ + 4m(1 + γ))(1 + θ) + ε) and ε = 2c2
Lm

2 (1 + γ(1 + θ)2)+

c2
S(1 +m) ((1 + θ)2 + 2m (γ + (1 + θ)2))

3.4.3

θ∗ = ncS(a(−m+n)+b(−cs(1+2m)n+cL(m+2mn)))+2cLm(1+n)(a−b(cL−cSn+cLn))γ

bc2S(1+2m)n2+2bc2Lm(1+n)2γ

3.4.4

m*= −a2(1+r)+ab{−cSn(3+n)(1+r+θ)+cL(1+n)(2+n)(1+r+rθ)}
bn{a(cs(1+r+θ)−cL(1+r+rθ))+b−cScL(1+2n)(1+r)(1+θ)+c2Sn(r+(1+θ)2)+c2L(1+n)(1+r(1+θ)2)} +

−b2{−cScLn(1+n)(3+2n)(1+r)(1+θ)+c2Sn
2(2+n)(r+(1+θ)2)+c2L(1+n)31+r(1+θ)2}

bn{a(cS(1+r+θ)−cL(1+r+rθ))+b−cScL(1+2n)(1+r)(1+θ)+c2Sn(r+(1+θ)2)+c2L(1+n)(1+r(1+θ)2)}

3.4.5

If we assume (1 + θ)cL < cS, then we could find the following:

∂Ŵ
∂cL

= −2m(1+θ)γ(1+n+m)a+2mn(1+θ)γ(1+n+m)bcS−2m(1+n)2(1+θ)2γbcL−2nm2(1+θ)2γbcL−2m2(1+θ)2γbcL
(1+m+n)2

−2m(1+n+m)a+2mn(1+n+m)(1+θ)bcS−2m(1+n)2bcL−2nm2bcL−2m2bcL
(1+m+n)2

< −2m(1+θ)γ(1+n+m)a+2mn(1+θ)γ(1+n+m)bcS−2m(1+n)2(1+θ)γbcS−2nm2(1+θ)γbcS−2m2(1+θ)γbcS
(1+m+n)2

−2m(1+n+m)a+2mn(1+n+m)bcS−2m(1+n)2bcS−2nm2bcS−2m2bcS
(1+m+n)2

= −2m(1+θ)γ(a−bcS)
(1+m+n)

− 2m(a−b(1+θ)cS)
(1+m+n)

< 0

3.4.6

θ∗ = −2mrabcL−2nabcS−a(m+n)nbcS−a(m+n)mbcL−
−2n2(1+m)b2c2S−m2(1−2nγ)b2c2L−2mγ(1+n2)b2c2L+2n(1+m2)b2c2S

− 1

where,  = {2mn(1 + n)(1 + γ)b2cScL − 2mn(1 +m)(1 + γ)b2cScL − 2mn(1 + γ)b2cScL}
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3.4.7

ĉL =
− 2a(1+m

2 )m
(1+m)2

+
2am(1+n)

(1+m+n)2
+
am(m+n)

(1+m+n)2
− bcSmn(1+θ)

(1+m+n)2
+

2bcSmn(1+n)(1+θ)

(1+m+n)2
+

2am(1+n)γ(1+θ)

(1+m+n)2
+

2bcSmn(1+n)γ(1+θ)

(1+m+n)2

− 2b(1+m
2 )m

(1+m)2
+ bm2

(1+m+n)2
+

2bm(1+n)2

(1+m+n)2
+

2bm(1+n)2γ(1+θ)2

(1+m+n)2

3.4.8

c̃L =
ξ+

2bcSmn(1+n)(1+θ)

(1+m+n)2
− 2amnγ(1+θ)

(1+m+n)2
− bcSmnγ(1+θ)

(1+m+n)2
+

2bcSm(1+m)nγ(1+θ)

(1+m+n)2
+

2am(1+n)r(1+θ)

(1+m+n)2
+

2bcSmn(1+n)γ(1+θ)

(1+m+n)2

− 2b(1+m
2 )m

(1+m)2
+ bm2

(1+m+n)2
+ 2bm2n

(1+m+n)2
+

2bm(1+n)2

(1+m+n)2
− 2b(1+n

2 )nγ
(1+n)2

+
bm2r(1+θ)2

(1+m+n)2
+

2bm2nr(1+θ)2

(1+m+n)2
+

2bm(1+n)2γ(1+θ)2

(1+m+n)2

where, ξ = −2a(1+m
2 )m

(1+m)2 − 2amn
(1+m+n)2 + 2am(1+n)

(1+m+n)2 + am(m+n)
(1+m+n)2 −

2a(1+n
2 )nγ

(1+n)2 − bcSmn(1+θ)
(1+m+n)2 +

2bcSm(1+m)n(1+θ)
(1+m+n)2

3.4.9

θ̃ =
κ− bcScLmnγ

(1+m+n)2
− 2bc2Lm

2nγ

(1+m+n)2
+

2bcScLm(1+m)nγ

(1+m+n)2
+

2acLm(1+n)γ

(1+m+n)2
+

2bcScLmn(1+n)γ

(1+m+n)2
− 2bc2Lm(1+n)2γ

(1+m+n)2
+
acLm(m+n)γ

(1+m+n)2

2bc2
S

(1+m)2n

(1+m+n)2
+

bc2
S
n2

(1+m+n)2
+

2bc2
S
mn2

(1+m+n)2
+

bc2
L
m2γ

(1+m+n)2
+

2bc2
L
m2nγ

(1+m+n)2
+

2bc2
L
m(1+n)2γ

(1+m+n)2

where

κ = − 2acSmn
(1+m+n)2 − bcScLmn

(1+m+n)2 + 2acS(1+m)n
(1+m+n)2 + 2bcScLm(1+m)n

(1+m+n)2 − 2bc2S(1+m)2n

(1+m+n)2 −
bc2Sn

2

(1+m+n)2 −
2bc2Smn

2

(1+m+n)2 +

2bcScLmn(1+n)
(1+m+n)2 + acSn(m+n)

(1+m+n)2 −
bc2Lm

2γ

(1+m+n)2 − 2acLmnγ
(1+m+n)2 .

3.4.10

Q̄∗ = a(m+n+1)−2maγ−2mnγbcS−(1+θ)b(m+n+1)(m+1)cS+m(m+n+1)bcL+2m(1+θ)(n+1)γbcL
(m+n+1)
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