
Abstract
Simulated annealing can be quite effectively used to fit

functions of many parameters to a set of data. This paper dis-
cusses the application of simulated annealing to the fitting of
Moffat functions to crowded field star images. Overlapping
star profiles can be fit simultaneously and missed stars can be
located based on theχ2 value of the fit, and the resulting
functional model yields excellent photometric results. This
method has been integrated into a photometry system which
allows the user to select the accuracy of the results at the ex-
pense of time needed to perform the calculations, and is but
one example of such an application.

1. Introduction
Astronomical researchers are often interested in the

brightness and color of stars, especially when studying star
clusters in general and globular clusters in particular. A
problem is that stars are often too close together to obtain an
accurate measurement of brightness. Moreover, there may be
many thousands of stars in an image, a fact that makes com-
puter assisted analysis very important. Computers have been
applied for some time to crowded field photometry, and
computer programs for this purpose are in common use [2].
Many different approaches may be taken, but measuring the
brightness of a star is equivalent to fitting a function to the
data and integrating that function over the area of the star.
This can be difficult when the frames contain so many stars
that the their images overlap; many stars have to be fitted si-
multaneously.

Optimizing this fit requires of a method able to explore
the parameter space involved and not get caught in local
minima, since the best result is that corresponding to the glo-
bal minimum. It is proposed here to apply the technique of
simulated annealing to the optimization of this fit. Section 2
of this paper describes the use of a annealing in the context
of crowded field stellar photometry. Section 3 describes the
problems encountered in computer assisted photometry of
crowded star fields and shows why this is interesting. Sec-
tion 4 summarizes some of the work and gives some hints
about future efforts.

2. Simulated Annealing
Many methods have been devised to optimize the value

of a function in one of more parameters. These methods usu-
ally employ a figure of merit that determines how good the
optimization is. They then optimize this value by changing

the parameters repeatedly. The most straight forward ap-
proach is to choose new values of the parameters by chang-
ing them in the direction that reduces the value of the figure
of merit. Though this would work fine for functions with a
single minimum, it has the unpleasant problem of trapping
the optimization process in local minima.

Simulated annealing has been used to minimize continu-
ous real functions of many parameters since it tends not to
get trapped in local minima. In order to fit a function to a
sampled surface a measure of goodness of fit is minimized.
The figure of merit employed here to determine the goodness
of the fit is theχ2 value, which gets smaller as the fit im-
proves. An example, introduced by Bohachevsky [1], can be
used to illustrate these how to fit a function using a simulated
annealing process. The function to be minimized is:

This function is an effort to model the sort of convoluted
surface that a fitness function might achieve as a worst case.
As can be seen in Figure 1a this function has many local min-
ima and one well defined global minimum at (0,0). Any
downhill method could get caught in one of these local val-
leys and never reach (0,0). To test the algorithm we start at
(1,1) and let the algorithm proceed. For this specific purpose
we use a very simple implementation. Figure 1b shows the
path followed by the algorithm, where the dark lines indicate
the steps that it followed. This plot illustrates that annealing
can be considered a biased random walk.

For every pixel in the region being fitted it is necessary to
locate all those objects near enough to contribute some over-
lap. This is calledgrouping, and is done from a list of all lo-
cated objects and their positions. One object is selected and
then those which lie close enough are located and removed
from the list. The process is recursively repeated for all these
objects until no other overlapping object can be found. At
this point a new object is selected from the list and the whole
process repeated until no more objects remain in the list.

3. Stellar Photometry
If the image of a star as seen through a telescope were just

a dot of light, one would be tempted to just measure one pixel
in our image and consider that to be the brightness of the star.
Unfortunately, the light has been spread over a region of the
image according to the transfer function of the telescope. In-
stead of just measuring one pixel what should be done is to
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integrate all this light back into one value. This is equivalent
to undoing the spreading of the transfer function. If no other
stars are present a simple way of doing this integration is
simply to select a region of the image and add up the light in
all those pixels. This is known assynthetic aperture photom-
etry [2] because the region simulates how the aperture of a
single detector would have measured the signal.

A second approach to photometry uses the transfer func-
tion of the device. Here we use a function to account for the
fact that the star was a point source that was spread into the
resulting image. Because of this it is common to refer to this
function as the point spread function (PSF). If we can come
up with an analytic expression for the PSF then given the im-
age it should be possible to adjust this expression until the
function best fits the data. We can now compute the bright-
ness of the star by integrating this function. For clear isolated
stars synthetic aperture offers the advantage of being very
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FIGURE  1 (a) Bohachevsky’s function; it is hard to find a
global minimum because of all of the local ones.
(b) The path that simulated annealing takes to
find the minimum.

(b)

fast. Astronomers are however more interested in clusters of
stars, and these result in what are called crowded fields or im-
ages. If two stars are close enough their PSFs may overlap. It
is then impossible to use synthetic aperture reliably. This is
because it is not possible to know how much of the light in
the overlap region corresponds to each star.

When deciding on a function to approximate the PSF of a
telescope the best choice is fairly obvious. Moffat [3] studied
the way in which an image forms in a telescope, and he
showed that a simple function with 2 free parameters was
enough to account for most of the distortions. The function
suggested has come to be known as the Moffat function and
is of the form

where I0 is the intensity of the star, I(r) is the intensity ob-
served at a distancer from the center of the image andρ and
β are shape parameters. If the PSF is space invariant then so
are the shape parameters. For example, given a value for
peak intensity and full width at half maximum, only one pos-
sible shape exists for both the Gaussian and Lorentzian
curves. For the Moffat curve there is an infinite combination
of values ofρ andβ that still give the same full width at half
maximum. It is this flexibility that makes this function a more
suitable choice.

The photometry system was tested in two ways: first on
an extensive suite of simulated images, and then on real im-
ages for which good photometry has been published. Testing
on synthetic images was done to explore the ability of the al-
gorithm to solve the different problems crowded-field pho-
tometry imposes in a controlled environment. Several sets of
test data were created and different types of noise added to
evaluate performance under conditions that went from ideal
to realistic.

In a test image a star is represented by a two dimensional
peak. A pair ofx andy coordinates determine the center of
the star, and a value ofI in its brightness. The PSF of the im-
age is controlled through the shape of the star function. The
algorithm attempts to minimize theχ2 value as measured
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FIGURE  2  Determining the number of stars by using the
residuals of multiple attempts.



against the star image, which is discrete. This means that the
objective function is quite time consuming, requiring the
comparison of the integral of the Moffat function over each
pixel with the pixel value at the same point. For example, the
fit of a Moffat star obtained through a genetic algorithm is
compared with a fit found through simulated annealing as
follows:
Method Beta Rho X Y I χ2 Evals
Genetic 5.006 9.824 8.000 8.000 101.563 0.0040 14000
Annealing 4.658 9.431 8.003 7.999 101.332 0.0039 3366

After extensive testing on images containing a single sim-
ulated star, a series of tests were run using a set of test images
having two test stars each. At first the test images corre-
sponded to pairs of stars of equal intensity. One star is kept
centered on a pixel while the other one is placed at different
pixel offsets. Then experiments were performed using stars
of variable brightness. Another test uses a sequence of two
star images where the two stars are moved progressively
closer to each other. They correspond to a separation of 3,
2.8, 2.5, 2.1, 1.8 and 1.4 pixels between the centers. Even at a
distance of only 1.4 pixels the genetic algorithm does a good
job of estimating both the center coordinates and intensities
of the stars:

Tests were also performed to verify the ability to fit stars
by iterating when a star is missed in a first pass, and later add-
ed to the fitting list. For example, an image was created with
three stars in it. Two were large and separated enough to
make sure they would be detected in the first pass, and a third
smaller star was placed between these two so it would not be
possible to see it in a first pass. The parameters for this image
can be seen in Figure 3, which also shows both the image and
a three dimensional representation of the data. The original
image clearly seems to contain only two stars. When only
two stars are fitted the median filtered residuals look like
those in Figure 3b. Based on this a third star is added and all
three fitted again. The resulting median filtered residuals can
be seen in Figure 3c.

4. Conclusions and Further Work
While synthetic test images provide control situations

were the performance of the algorithm can be tested, the final
test is the application to real data. For this purpose several
CCD images of the globular cluster NGC6397 have been ob-
tained and reduced. In astronomical work the independent
values obtained for each star in the frame are rarely consid-
ered individually. Usually two frames are available for reduc-
tion, one taken with a V filter (meaning visual, a yellowish
color) and another one with a B (blue) filter. Once the stars
are measured in both frames it is possible to establish their
color from the two sets of results. A normal way of describ-
ing the color is by expressing the difference between these
values, for example B-V.

The usefulness of annealing can be established by com-
paring the B-V diagram it generates with one created by stan-
dard techniques. The quality of the result was ascertained by
finding how well the diagram compares with one obtained by
standard methods. This was done for NGC6397[4], and the
comparison of the diagrams can be seen in Figure 4. There is

a linear relationship between the two reduced sets of data de-
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fined by:

where Banneal was obtained by annealing and Bpub by
standard methods.
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FIGURE  4 Relationship between the data reduced using
annealing and data reduced using other
techniques. A linear relationship is apparent.
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