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Abstract

The Sensor Web is a growing phenomenon where an increasing number of sensors are col-

lecting data in the physical world, to be made available over the Internet. Open standards

have been proposed and are being implemented to eliminate the problem of semantic in-

teroperability, the goal being to allow systems to share data automatically. Spatial Data

Infrastructures (SDIs) are tools that have been developed to manage geospatial data from

many different sources. However, there are still problems with interoperability associated

with a lack of standardized naming, even with data collected using the same open standard.

The objective of this thesis is to automatically group similar sensor data layers. We propose

a methodology to automatically group similar sensor data layers based on the phenomenon

they measure. Our methodology is based on a unique bottom up approach that uses text

processing, approximate string matching, and semantic string matching of data layers. Text

processing includes normalization and tokenization to standardize syntactic differences in the

naming. Approximate string matching techniques include Levenshtein Distance, a Length

Adjusted Levenshtein Dissimilarity, Jaro Dissimilarity, JaroWinkler Dissimilarity, Jaccard

Dissimilarity, and Cosine Dissimilarity. For semantic string matching, we use WordNet as a

lexical database to compute word pair similarities and derive a set-based dissimilarity func-

tion using those similarity scores. These string matching algorithms are used to produce

dissimilarity values between data layers, which are in turn used to provide data layer to

data layer mappings, similar data layer clusters, and mapping between a set of class names

and data layers. For clustering, we tested three different clustering algorithms, K-Medoids,

Density-Based Spatial Clustering of Applications with Noise (DBSCAN), and Hierarchical

Agglomerative Clustering (HAC). We evaluate and discuss the results of our methodology,

and introduce a proof of concept Virtual SOS service to show the utility of such research.
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Chapter 1

Introduction

The World Wide Web (WWW) has had a profound impact on almost all aspects of life.

Over the past 20 years it came up from obscurity into the general public’s consciences, and

rightly so. The WWW has revolutionized communication. Although the Internet had been

around for decades, the web was realized in the early 1990s. Tim Berners-Lee developed

Hyper Text Markup Language (HTML), which allowed text documents to be shared via

hyperlinks. As well, he developed protocols for sharing HTML, namely Hyper Text Transfer

Protocol (HTTP). These technologies were the basis for the WWW, and with the availability

of a user friendly browser, the WWW exploded in 1993. In a similar way, another looming

technological paradigm is approaching, and its impact will be the next generation’s WWW.

This is known as the Sensor Web.

The term Sensor Web was first used by NASA [1], which was described as “the Sensor Web

consists of a system of wireless, intra-communicating, spatially distributed sensor pods that

can be easily deployed to monitor and explore new environments.” [2] extended the definition

of the Sensor Web to include a wide variety of applications and sensors. They discuss the wide

variety of possible sensors, such as wireless sensor networks, flood gauges, weather towers,

air pollution monitors, stress gauges on bridges, mobile bio-sensors, webcams, and satellite-

borne earth imaging devices. As well, they argue that the Sensor Web can be thought of as

a ‘global sensor’ that connects to all sensors and their observations. This extended definition

of the Sensor Web is used throughout the rest of this thesis.

This Sensor Web will have an impact on all of our lives. “The next revolution of the

Internet is not going to be built on manual input of information by 500 million or a billion

users. Rather, there is much greater potential in connecting computers to sensors so that
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valuable new information can be created automatically without human data entry.” [3]. The

scale of such a Sensor Web is on the order of not millions, nor billions, but trillions. HP is

covering the earth with over 1 trillion advanced sensor nodes and interconnecting them into

an immense environmental network [4]. With the cost of embedded computers becoming

cheaper, it is possible for people to start deploying their own sensors around their house.

To allow machines to communicate over the Sensor Web, a common language is needed.

Just as the WWW has been successful due to the adaptation of HTML and HTTP, the

Sensor Web will have a set of commonly used standards. The Open Geospatial Consortium

(OGC), a standards organization, has been involved in developing these open standards for

many years. They have developed the Sensor Web Enablement (SWE) standards. These

standards define information models and communication protocols to enable various pieces

of software on the Internet to share and interact with sensor data and sensors. Of particular

importance is the Sensor Observation Service (SOS) standard. It is a service to communicate

sensor data, and a core standard for sharing sensor data. In this thesis, the discussion of

sensor data layers refers to data extracted from SOSs. For a more detailed examination of

sensor data layers and the SOS standard, refer to chapter 3.

The nature of the Sensor Web is highly spatial-temporal. All physical sensors have some

physical location, which makes all sensor data highly dependent on the proper modelling and

understanding of location. As well, readings of events occur typically as instantaneous volt-

age readings, giving all sensor observations a timestamp. Observations and Measurements

(O&M) is a OGC SWE standard for encoding sensor data [5], and the O&M model reinforces

this spatial-temporal view of sensor data. The OM Observation element has multiple time

attributes such as resultTime, validTime, and phenomenonTime. The OM Observation class

does not explicitly contain location information. However, location information is provided

by the feature of interest or by the observation procedure, according to the specific scenario

[5].
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In reaction to the huge amount of data to be generated from the Sensor Web, many

research groups from all around the world are designing and researching systems to handle

and process this new data. Geographic Information System (GIS) is the term commonly

used to refer to software packages that are capable of integrating spatial and non-spatial

data to yield the spatial information that is used for decision making [6]. The cooperation

of multiple independent GISs is often referred to as a Spatial Data Infrastructure (SDI)

[6]. [7] argue that the main components of a SDI include data providers, databases and

metadata, data networks, technologies, institutional arrangements, policies and standards,

and end-users. The concept of a SDI encompasses the technologies needed to harness the

power of the Sensor Web.

There are many software components of the Sensor Web. One critical software component

is a system which allows for the browsing of sensor data. This is important because the

sheer volume of sensor data will make it difficult for end users to understand what data is

available quickly. A general understanding of available data is necessary before data analysis

can begin.

1.1 Problems

There are some problems that arise when SDIs try to connect to multiple data sources.

Although the use of open standards eliminates many of the problems associated with inter-

operability, there are still real world access problems associated with data retrieval.

The rising number of data sources is making human interpretation impossible. Although

a system can download and view all data according to the title, there may be too many

titles, and too many different ways of encoding titles to make manual selection possible. For

example, if a scientist is interested in collecting wind speed data, they have to manually

parse many different titles of data, offered by the standard.

A major problem in the high number of unique data sources is the wide variety in the
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way data layers are named. Using open standards, the phenomenon the sensor is measuring

can always be read in. However, the way phenomenon are named will vary, and basic string

matching is insufficient to group them together.

For example, this research group has described the variety of assigned names to the ob-

served properties in sensor data layers, using the SOS standard [8]. Table 1.1 shows the

various observed properties, which all correspond to the same concept of wind speed. How-

ever, different data providers will label their data differently. This becomes a monumental

issue when manually parsing thousands of unique layers.

Table 1.1: Various Observed Properties of the Concept Wind Speed

1 urn:x-ogc:def:property:OGC::WindSpeed
2 urn:ogc:def:property:universityofsaskatchewan:ip3:windspeed
3 urn:ogc:def:phenomenon:OGC:1.0.30:windspeed
4 urn:ogc:def:phenomenon:OGC:1.0.30:WindSpeeds
5 urn:ogc:def:phenomenon:OGC:windspeed
6 urn:ogc:def:property:geocens:geocensv01:windspeed
7 urn:ogc:def:property:noaa:ndbc:Wind Speed
8 urn:ogc:def:property:OGC::WindSpeed
9 urn:ogc:def:property:ucberkeley:odm:Wind Speed Avg MS
10 urn:ogc:def:property:ucberkeley:odm:Wind Speed Max MS
11 http://marinemetadata.org/cf#wind speed
12 http://mmisw.org/ont/cf/parameter/winds

This problem becomes more difficult when trying to identify semantic relationships be-

tween data layers. “... relying on those URNs to perform string based search for sensor

observables has serious drawbacks when it comes to realizing advanced sensor discovery

tools as the meaning of the observables is ignored” [9]. One such example would be the

relationship between ‘precipitation’ and ‘rainfall’. Rainfall is a type of precipitation, and

any search for precipitation should include all children concepts, such as ‘rainfall’, ‘snow-

fall’, ‘hail’, etc. Using a computer to define these relationships is very difficult, because

although these concepts are intuitively related to any human, to any computer these are
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simply different sequences of characters.

1.2 Previous Solutions

One proposed method for finding and grouping similar sensor data layers is using a Sensor

Observable Registry (SOR) and semantic annotations [9]. The SOR comprises of a dictionary

of URNs identifying observed properties, as well as definitions of the observed properties and

references to concepts for those observed properties in an ontology. This is a practical way

to manage sensor data layers, but requires a certain level of manual work. New observed

properties must be manually linked to some agreed upon ontology. As well, if multiple

ontologies are used, then some method of matching different ontologies must be implemented.

This solution fits into the work described in [10]. They describe a Sensor Plug and Play

infrastructure, including a description on semantically-enabled matchmaking. Although they

discuss the use of syntactic metrics for matching, their emphasis is on a large scale Sensor

Web architecture. The focus is on grouping data layers from SOSs today, and with minimal

help from the data provider. This is based on the assumption that many real world data

providers will not be likely to register or annotate their sensors, and simply upload the data

to SOS specifications.

A folksonomy-based recommendation system has been proposed to handle large volumes

of sensor data [11]. Although these systems are very effective, these systems often suffer

from cold-start problems. There is a potential benefit in building hybrid systems that utilize

both external knowledge sources and user defined annotations, but that work is outside the

scope of this thesis.

It is simply impossible to parse and scan what isn’t available. A key assumption is

made that all data providers are not willing to create or define an ontology, or that their

naming convention does not follow a reference ontology. Instead of relying on data providers

to provide semantic cues, the proposed methodology will consume text information directly
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from the open standards and use that data, along with some general-purpose lexical database,

to infer semantics between data layers.

Another key assumption of the methodology is the ‘title’ of the sensor data layer is a

concise word or phrase to describe the data. This assumption is justified because the use of

open standards ensures consistency with the title, even if the data provider doesn’t use or

know about a naming registry.

1.3 Challenges

Grouping similar data layers is not an easy task. There are two fundamental differences

between similar labels, syntactic differences and semantic differences. Syntactic refers to

various ways to encode and represent the same concept. For example, the three strings

‘windspeed’,‘WIND SPEED’,‘ogc:urn:ucalgary:geomatics/Ontology.owl#Wind**Speed’ are

all ways to encode the concept of wind speed. By using open standards many of the syn-

tactic issues can be removed, such as character encoding. However, there is still the issue of

whitespace, links, and other ways to represent the same concept.

There is also the notion of semantic differences, which is more subtle. A well known

example is how one word ‘bank’ can represent a money lending institution or a part of a river.

The more important problem is how to establish semantic relationships. Two concepts, ‘rain’

and ‘precipitation’ are very much related, although represented by two distinct concepts. The

key to properly grouping layers is to be able to identify these relationships.

1.4 Contributions

This thesis contributes a great deal to the SDI community. The first and foremost contribu-

tion is the evaluation of various syntactic and semantic string functions for the purpose of

grouping similar sensor data layers. This provides the community with some initial work on

using a solid bottom up string matching approach for data interoperability. String processing
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and string matching can be more generally applied to other aspects of data interoperability

in SDIs, and the evaluation shows how these techniques performed for the data set.

Another important contribution of this work is that it highlights the current progress

of OGC’s SWE, namely the SOS. This thesis discusses the SOS in detail, includes example

data from currently deployed SOS data providers. This work focuses on the current problem

in SOS regarding inconsistent naming, and serves as a record of the current progress of the

OGC standard. This could possibly benefit those wishing to design and implement other

open standards, both within and outside the GIS community.

A major contribution of this work is the unique data set used for both clustering and

classification. As far as we know, there is no other research that has attempted to cluster

or classify data layers. This is similar to some of the work done in clustering tags, except

that this data set is fundamentally different from tags. This provides a unique case to those

interested in Information Retrieval or data mining, on how techniques may vary from data

set to data set.

I have researched, implemented, tested, and evaluated the methodology presented in this

thesis. My research group, the GeoSensorweb Lab, has provided me a Java based SOS

API for collecting data, and a list of SOS services to connect to. I have written software

to process the SOS data, convert it into Property Layers (PLs), implemented dissimilarity

functions between the PLs, and wrote the code to cluster and classify PLs into groups, as

well as the code to evaluate it and produce figures. I used Java code for most of the work,

with PostgreSQL database to store data, and R to generate figures. In Chapter 5, a Ph.D

student wrote the Translation Engine part of VirtualSOS. The word pair similarity scores

are generated using a Perl script from the original researchers. The clustering algorithms

and dissimilarity functions were re-implemented in Java by me. Everything else in this thesis

is work that I have written and researched.

The research in this thesis is currently being submitted as a journal paper to International
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Journal of Geo-Information, “A Bottom-Up Approach for Automatically Grouping Sensor

Data Layers by their Observed Property”. It currently undergoing revisions.
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Chapter 2

Related Work

The process of grouping similar data layers in a SDI has not been described extensively in

literature. The algorithms which our research group uses for grouping have been well defined

in various other research fields. The Related Work chapter is divided as follows. First, we

will look at a branch of computer science known as Information Retrieval (IR), because this

field is well known and has been used to group together many other kinds of data, such as

documents and web pages. This provides the framework for many of the other related works

discussed.

Next, several research areas in which string matching algorithms are used to identify

similar entities in data are discussed. This includes Record Linkage, which is the task of

finding and linking records in a set of data. Schema matching is also a research area that

utilizes string matching algorithms and structural components of data for integrating two

heterogeneous data sets. Ontological alignment is another body of work which is also relevant

for string matching and text processing..

Related works about clustering are discussed next. Clustering is used in the methodology

to group similar data layers together. Both document and tag clustering are referenced, as

they are the most related data type to sensor data layers.

Next, the notion of semantic similarity is introduced. WordNet is introduced, and fol-

lowed by how WordNet can be related to semantic similarity.

Finally, it is important to understand ontologies, the Semantic Web, and Linked Data.

These concepts are very relevant to task of inferring relationships between data. Although

these approaches are not used in this thesis, a great deal of research in the GIS community

involves the use of ontologies. Afterwards, ontologies are directly compared to the bottom-up
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methodology in this thesis.

2.1 Information Retrieval

Information retrieval (IR) is finding material (usually documents) of an unstructured nature

(usually text) that satisfies an information need from within large collections (usually stored

on computers) [12]. A well known example of IR is a search engine, where web pages are

indexed and compared to user searches. The text of the web pages is compared to text of the

query, and as such this string to string comparison is a useful body of work to study. In IR,

documents consist of text documents, web pages, or other sources of text, hereon referred to

as documents.

In IR, there are four major steps involved [12].

1. Collect documents to be indexed

2. Tokenize the text

3. Do linguistic preprocessing on tokens

4. Index the documents by building an inverted index

For example, lets say we are given all of Shakespeare’s works, with each play as a doc-

ument, and we want to perform some search on them. Linear searching on each document

for every query is inefficient, so we need to construct an index structure, such as an inverted

index. The documents are collected, and all the text is broken up into individual words,

called tokens. All the tokens are counted for each document, as shown in 2.1. The term

frequency is used in this index, which is simply the number of tokens that appear in each

document. Using an inverted index, queries about the documents can easily be answered.

For example, a search query may contain the term ‘Juliet’, and we can easily find books

where the token Juliet appears more frequently.

There are some specific areas of IR that will be emphasized based on how they relate to

our methodology.
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Table 2.1: Example of an Inverted Index

Term/Document Book 1 Book 2 Book 3
hello 4 5 0
light 2 8 0
Juliet 1 0 17

2.1.1 Tokenization and Normalization

In our methodology, it is necessary to compute some score to represent the relationship

between two data layers. All the information about what the sensor data is measuring is

stored as text data. All text based similarity or distance functions fall under two broad

categories, set based or edit based [13]. Set based algorithms look at the number, position,

and importance of common tokens. Edit based algorithms use strings of text as input. Before

using these algorithms, the text data often needs to be processed, to make sure the computed

score is truly meaningful. Text processing is discussed in the context of tokenization and

normalization.

Tokenization is the process of converting text into distinct tokens, and normalization

is the process of canonicalizing strings such that superficial differences between strings are

removed. Together, they are used to break up very large chunks of text into distinct, nor-

malized tokens.

The text data is simply a string, where a string is defined as a sequence of characters.

Two strings are identical if and only if they have the same number of characters in the same

order. Tokens are strings, except a token is meant to represent some distinct and meaningful

piece of information. In IR, a token can be either a sentence, a word, a phrase, etc. For this

work, a token is intended to refer to some English word.

Tokenization consists of breaking up long strings into tokens, such as splitting up some

document into distinct words. A very simple approach would simply be to find delimiting

characters, such as whitespace characters or periods, and use all the strings between them as
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tokens. Some problems with this approach are very obvious, such as how to deal with special

characters, or with special patterns associated with some concepts. Compound nouns, for

example, are nouns separated by whitespace, and those nouns by themselves do not mean

the same thing. Table 2.2 shows some interesting examples for any tokenizer.

Table 2.2: Some Examples of Words with Distinct Patterns

Example Token Meaning
C++ Programming Language

john.smith@ucalgary.ca E-mail address
M*A*S*H TV Show

http://ucalgary.ca Website URL
m/sˆ2 Units

Mr. Smith Last Name
San Francisco City

Stop words are words that do not contribute to the meaning of the document, and often

cause problems for IR. These are tokens such as ’a’, ’or’, ’and’, ’the’, and so forth. In building

an index, a flat list of stop words is collected, and they are simply thrown away as potential

token candidates.

Token normalization is performed to ensure that there are no redundant tokens in an

index. For example, the two tokens ’usa’ and ’U.S.A’ may refer to the same concept. Alter-

natively, there may be value in making a distinction between two concepts such as ’cat’, a

house hold pet, and ’CAT’, a company that constructs industrial machinery. Case-folding

is a type of normalization, which takes all tokens and converts all uppercase characters into

lowercase characters. Stemming is another method of normalization. Root words differ in

context, ie. organize, organizes, organizing. The goal is to reduce inflectional forms and

sometimes try to relate to some base form of the word.
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2.1.2 tf-idf and the Vector Space Model

An important part of IR is how scoring works in IR such that queries are compared to an

inverted index for the purpose of finding a notion of related documents given a query.

As noted earlier, the term frequency is a measure of the number of times a particular

token appears in a document, tft,d. Here, tf refers to term frequency while t refers to the

term, or token, and d refers to the document.

Some terms appear more frequently in text than other terms, and it is important to

lower the impact of these very common words. The document frequency, dft, is the number

of times term t occurs in all documents. The inverse document frequency, idft, is

idft = log
N

dft
(2.1)

Here, N refers to the total number of documents. The inverse document frequency limits

the impact of terms that appears frequently across many documents. In other words, rare

words have higher scores because they only appear in a few documents. Finally, the two

measures can be combined to the commonly used tf-idf weighting, which is

tfidft,d = tft,d ∗ idft (2.2)

The tf-idf score is a commonly used value given to each term-document pair.

The Vector Space Model is intuitive. Here, we imagine that every document is a vector.

Every vector is M-dimensional, where M is the number of words across all documents. The

value of each dimension depends on the model that we use. For example, we could use word

frequency to define these vectors. Using word frequency, from 2.1, we define the Book 1

vector as (4, 2, 1), where the dimensions are the words hello, light, and Juliet, respectively.

However, the Vector Space Model is commonly used with tf-idf weights. The advantage of

the Vector Space Model is that it is very easy to compute the dot product between different

documents for a similarity measure, or even between documents and queries, if a query is
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represented as a vector of words.

In our methodology, we use a simplified boolean model of a token either existing or not,

because repeated words do not exist. However, the idea of treating data layers as vectors

will be used for calculating similarity and dissimilarity scores.

2.2 Record Linkage

Record linkage is the means of combining information from a variety of computerized files

[14]. Basic methods include comparing the name across pairs of files to determine those pairs

of records that are associated with the same entity. Entities could be people, businesses, or

some other type of unit. An important section of record linkage is using string comparators,

because in many matching situations, it is not possible to compare two strings exactly because

of typographical errors.

The paper [15] is a comparison of string distance metrics for name-matching tasks. The

authors evaluated three categories of distance metrics: edit-distance like functions, token-

based distance functions, and hybrid functions. Edit-distance functions include Levenshtein

distance, Monger-Elkan distance function, Jaro metric and JaroWinkler metric. For token-

based functions, they consider Jaccard similarity, cosine (tf-idf) similarity, Jensen-Shannon

distance, as well as a method proposed by Fellegi and Sunter. Overall, they found the

best performance from a hybrid scheme combining tf-idf weights with Jaro-Winkler string

distance scheme.

In this methodology, the Levenshtein distance, Jaro metric, and JaroWinkler method are

used. These metrics have been chosen so that several edit-distance metrics can be compared

to one another.
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2.3 Schema Matching

Schema matching is an interesting field of work. It involves creating a mapping between

elements of two schemas, for various applications. The methodology of schema matching is

similar to that of matching data layers. There are some linguistic approaches used in schema

matching that is used in this methodology, described next.

The authors of [16] talk about various techniques for schema matching. The elements

of two schemas are compared and then matches between elements are made, effectively pro-

ducing a mapping between elements. They discuss using linguistic strategies, such as name

matching. Name matching is accomplished in many different ways, such as equality of names,

canonical name representation, equality of synonyms, equality of hypernyms, similarity of

names, or user provided matches.

2.4 Ontological Alignment

Ontological alignment is the process of finding correspondences or mappings between se-

mantically related entities. The system AgreementMaker has been developed by [17] to find

these relationships. This system has a solid methodology that can be applied to the au-

tomatic grouping of sensor data layers. Classes from one ontology are compared to classes

of another ontology, in order to find matching classes between the two. For the Parametric

String-based Matcher (PSM), they take various parts of the ontology (localname, label, com-

ments, etc), normalize them, apply some string metrics to develop similarity values, which

are then weighted in a final similarity measure. The string matchers include edit-distance,

JaroWinkler, and a substring-based measure devised by them. They also use a Vector-based

Multi-word Matcher (VMM), which tokenizes ontological classes, builds tf-idf vectors and

applies a cosine similarity.

This methodology is used as a general framework for the methodology in this thesis,

except instead of ontological classes, sensor data layers and classes are used.
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2.5 Clustering

Clustering analysis divides data into groups that are meaningful, useful, or both [18]. The

clustering of data layers, to the best of our knowledge, is novel work. However, there are

many other domains where clustering is used, include psychology, biology, statistics, pattern

recognition, information retrieval, machine learning, and data mining [18]. We perform

clustering to identify groups of related data layers, based on information extracted from the

service provider. The focus of the clustering literature will be centered around document

and tag clustering.

2.5.1 Document Clustering

Document clustering is a mature research field to study as it has been the subject of exten-

sive research. Document clustering is often used in information retrieval and often includes

indexing words in documents and using tf-idf weights for comparisons [12]. As well, literature

from document clustering and text clustering is useful as it provides a solid methodological

framework. For example, [19] provides a useful framework, including text preprocessing,

concept-based analysis, concept-based document similarity, and clustering techniques. Ele-

ments of the text processing used in this paper is used in this methodology.

2.5.2 Tag Clustering

Tag clustering is a similar body of work in which tags are clustered together to form groups

of tags. In this context, tags are keywords or terms associated to a piece of information, and

they appear frequently in blogs and in social media. The authors of [20] use clustering to

aggregate similar tags. They overcome syntactic and semantic variability in the tags. This

is accomplished by using the normalized Levenshtein distance and cosine similarity based on

tag co-occurrences [20].

The authors of [21] use tag clustering to reduce redundant or idiosyncratic tags. They
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use a modified hierarchical clustering algorithm based on cosine similarity between tags.

2.6 Semantic Similarity

An important aspect of this research is semantic similarity. The best example is that we may

have two semantically similar types of data, ‘precipitation’ and ‘rainfall’. They are different

words, but their meaning is very much related. Of course, it is important to find a way to

establish a relationship between them. The idea of semantic interoperability was defined in

[22] as the goal of interoperating GISs. Semantic interoperability is described as “... is to

provide seamless communication between remote GISs without having prior knowledge of

the underlying semantics.” They go on to note that semantic heterogeneity is when a real

world fact may have more than one underlying description.

Kuhn mentions the idea of a semantic reference system [23], and describes semantic

interoperability as the capacity of information systems or services to work together without

the need for human intervention.

The idea semantic similarity is introduced to help test whether or not terms and de-

scriptions from one data source to another are related. This measure would overcome the

semantic interoperability issues associated with heterogeneous naming sensor data layers.

Semantic similarity is a measure of how related two concepts or words are, and we base

semantic similarity on the work done in [24]. They use WordNet [12] to define semantic

relationships between words and concepts. WordNet is a lexical network of English words,

and several measures of semantic similarity can be used to define measures between concepts

and words.

By utilizing semantic similarity naming issues can be overcome to better group together

related sensor data layers. However, there has been a lot of research into ontologies as

a solution to semantic interoperability in SDIs. Although we do not utilize ontologies in

our methodology, we must describe what they are, how they have been used in the GIS
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community, and why our approach does not use them.

2.7 Ontologies and Knowledge Representation

As mentioned in Chapter 1, ontologies have not been integrated into open standards. As

a result, ontologies are not available to scan and parse in the real world. However, there

has been a great deal of research into ontologies and knowledge representation, and many

have suggested this is the solution to semantic interoperability. WordNet is utilized as a

knowledge source to build similarity scores between words. This information allows us to

identify semantic relationships between data layers. However, we do not use any other

ontological sources, or map between data layers and ontologies. Ontologies, the Semantic

Web, Linked Data, and why we limit our methodology to word similarity scores, are discussed

in detail.

2.7.1 Ontologies

The world we live in is perceived and understood by human observers. From this percep-

tion the notion of a conceptualization is introduced. A conceptualization is a set of ideas,

theories and beliefs we have regarding some section of the world, be it abstract, physical,

or both. Using this definition, an ontology is defined as, “... an explicit specification of a

conceptualization” [25]. The term explicit specification denotes some kind of symbolization

or encoding, which makes an ontology a tangible entity. This often takes the form of a com-

mon vocabulary to represent knowledge. Often, an ontology is more than just a common

vocabulary, it consists of defining objects, their properties or attributes, how objects relate

to one another, and more [26]. One proposed way of describing an ontology is that it consists

of concepts (also known as classes), relations (properties), instances and axioms and hence

a more succinct definition of an ontology as a 4-tuple
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〈C,R, I, A〉 (2.3)

where C is a set of concepts, R a set of relations, I a set of instances and A a set of

axioms [27].

In computer science the term ontology has garnered much interest, and as such as been

used in a somewhat vague way [28], and sometimes considered a buzzword [29]. For this

work, the purpose of an ontology is that (1) it represents knowledge about some domain and

(2) it is explicit. As mentioned in [26], it is not the vocabulary of the ontology that matters,

but the conceptualizations that the vocabulary attempts to capture.

The study of ontologies comes originally from epistemology, a branch of philosophy.

Epistemology is the theory of knowledge, and is concerned with a variety of questions about

knowledge and related topics [30]. The discussion will focus on ontology and knowledge in

the context of computer science and Artificial Intelligence (AI).

Ontologies fit into the realm of Knowledge Representation (KR) and Knowledge Manage-

ment (KM), which are branches of AI. Knowledge is more than a collection of facts because

it contains information and also the ability to apply reasoning. The reasoning or ability to

perform reasoning is the intelligence we strive for in KR. “Description Logics (DLs) are a

family of knowledge representation languages that can be used to represent knowledge of

an application domain in a structured and formally well-understood way” [27]. DLs de-

scribe content with descriptions, which are logical expressions built from atomic concepts

and atomic roles. A Knowledge Base (KB) is sometimes used to refer to a dataset with some

formal semantics. Although they store data along with axioms, definitions, rules, they differ

from ontologies in that they do not attempt to represent a conceptualization. The semantics

of data refer to the meaning of data.

Metadata is different from these topics as metadata does not necessarily contain knowl-

edge. As an example, metadata may describe the year the data was created, but provides
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no uniform or intelligent way of expressing that information to some intelligent agent. It is

only useful when humans interpret metadata to discern its semantics.

The relation between ontologies and data modeling must be discussed. One could argue

that a database schema is some form of ontology. Considering the process of modeling data,

the authors of [31] state “The key distinction between ontology and data modeling is that the

former aims to develop general taxonomies of what exists, while the latter aims to develop

classifications within a particular application domain”.

Ontologies are sometimes categorized as an upper ontology or top-level ontology. These

ontologies are special because they attempt to describe knowledge at high levels of generality.

An upper ontology is often used as a general purpose framework for describing relationships

and properties, general to various domains of knowledge. It is often combined with a domain

specific ontology; the general categories of properties and relationships found in an upper

ontology are separated to promote reuse [32].

Some ontologies are referred to as lightweight ontologies. While these ontologies still fit

the definition of an ontology, they focus on minimal terminological structure. Such ontologies

are taxonomies, which consist of a set of concepts and hierarchical relationships among the

concepts [33]. They are easier and faster to create and deploy, and can be modified much

more easily, however they sometimes do not have the same power as other ontologies for the

purpose of data interoperability.

The term vocabulary has already been mentioned, in that an ontology provides a vocabu-

lary for the domain of knowledge or conceptualization. The difference between a vocabulary

and ontology must be stressed. A vocabulary provides a finite list of terms with an unam-

biguous interpretation of those terms [34]. Ontologies are different because they also specify

rules for combining terms and their relations. An ontology specifies terms with semantics

independent of reader and context, which extends a vocabulary with some semantic mean-

ing between the terms. A related term is taxonomy, which is a hierarchical categorization
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of entities within a domain [34]. It could be argued that a vocabulary or taxonomy is an

ontology, as it captures and encodes some ideas about a conceptualization. However, the

term ontology, in this context, will be reserved for a specification with more information,

particularly between objects, than a vocabulary.

The explicit specification aspect of the definition of an ontology implies the requirement

of some method of encoding an ontology. There are a number of ontology specification

languages available. Among them are KIF, Ontolingua, LOOM, FLogic, SHOE, XOL, RDF,

OIL, DAML+OIL, and OWL [34] [35]. Some of the early examples of ontology representation

languages, such as KIF, Ontologingua, and LOOM, were popular in the early 1990s and pre-

dated Extensible Markup Language (XML). Most of the modern ontology representation

languages leverage XML encoding, notably RDF and OWL. These are the standards that

make up the much popularized linked data. Today, due to the popularity of the Semantic

Web, discussed in the next section, most modern ontologies are encoded with RDFS and

OWL.

There are some projects available that some ontologies and projects are now based on.

WordNet [12] is a large lexical database of English. It includes nouns, verbs, adjectives,

and these words are linked through conceptual relationships. WordNet itself is not strictly

speaking an ontology, but the content and its relationships can be used as one. However, the

knowledge contained in WordNet is often used to help construct or build ontologies, such as

in [36].

2.7.2 The Semantic Web and Linked Data

The Semantic Web is a term introduced by Tim-Berners Lee [37]. The idea is to structure

data so that it can be processed by machines automatically. This differs from much of

the current information on the World Wide Web, which consists of HTML pages that are

manually navigated and interpreted by people. For intelligent machines to ‘understand’ data,

information about the data must be provided, in an encoding understood by machines. The
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Semantic Web is about making links [38] so information can be linked together, creating a

web that machines can traverse. This is the notion of linked data. The four main points of

linked data [38] are:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards

(RDF, SPARQL).

4. Include links to other URIs, so that they can discover more things.

Uniform Resource Identifiers (URIs) can be used to represent an object, not just the

location of a web site. This makes it possible to use HTTP to resolve a given object or thing

on the Semantic Web. This makes it easy to link to related data sets, by simply providing

URIs for related data. The third point is very important, as some standard way of defining

information must be used. The standards of the Semantic Web include Resource Description

Format (RDF), RDF Schema (RDFS), and Ontology Web Language (OWL). Because of the

popularity of these technologies, they are discussed in detail.

Resource Description Framework

The Resource Description Framework (RDF) is the W3C recommendation for semantic an-

notations on the Semantic Web. It is a language for representing information about resources

in the World Wide Web [39], although RDF can be used to describe generic things. In RDF,

information is encoded in triples, called statements,

(subject)(predicate)(object)

The subject refers to the thing the statement is about, expressed as a URI. The predi-

cate expresses information about the property or characteristic of the subject. The object

identifies the value of that property [39]. For example, a valid RDF statement would be

http://sweet.jpl.nasa.gov/2.2/matrPlant.owl#Flora,
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http://www.w3.org/2000/01/rdf-schema#subClassOf,

http://sweet.jpl.nasa.gov/2.2/matrPlant.owl#Plant

This would be interpreted as the subject Flora is a sub class of Plant.

Note that RDF can be encoded with XML, which is sometimes still referred to as RDF,

or as RDF/XML.

RDF Schema

RDF Schema (RDFS) is a RDF vocabulary description language. According to [40], RDFS

is the first try for expressing simply ontologies with RDF syntax. RDFS expresses predefined

entities such as Class, Resource, and Property to define classes and relationships. Among

other definitions, RDFS defines rdfs:domain, rdfs:range, rdfs:Literal [39].

Web Ontology Language

The Web Ontology Language (OWL) is an extension to RDFS and is used to define an

ontology. Note that OWL refers to version 1, and W3C has released version 2, which will be

referred to as OWL2.

Some of the limitations of RDFS are (1) Local scope of properties, (2) Disjointness

of classes, (3) Boolean cominbations of classes, (4) Cardinality restrictions, and (5) Special

characteristics of properties [41]. To make RDFS more expressive, OWL has been developed.

OWL consists of three different standards, OWL Lite, OWL DL, and OWL Full. Ontologies

built with OWL still use RDFS and RDF expressions, but are encoded as XML.

The Simple Protocol and RDF Query Language

The Simple Protocol and RDF Query Language (SPARQL) is a SQL-inspired language for

performing queries on the Semantic Web [42]. Linked data available on the web is often

accessed through a SPARQL endpoint. It is an official W3C Recommendation, and is part

of the standards defined for the Semantic Web.
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There are several upper level ontologies in existence. A Descriptive Ontology for Lin-

guistic and Cognitive Engineering (DOLCE) [43] and Suggested Upper Merged Ontology

(SUMO) [44] are examples of upper level ontologies. Basic Formal Ontology (BFO) is an-

other upper level ontology that overlaps in its efforts with DOLCE and SUMO [45]. The

PROTON (PROTo ONtology) ontology is a lightweight upper-level ontology [46].

2.7.3 How our Methodology Utilizes Ontologies

The true pursuit of semantic interoperability is outside the scope of our work. The preceding

section is to help the reader understand how the methodology in this thesis differs from an

ontological approach. A lexical database is used as a knowledge source for defining similarity

between words. Using measures of word relatedness, algorithms are defined to compare two

strings to generate a measure of how much those two strings are related, both on syntactic

and semantic similarities.

The authors of [47] designed a system to add intelligence to sensor data. They semanti-

cally enable SOS by adding semantic annotations to sensor data and using ontology models

to reason over observations. Their system architecture has a SOS front end connected to a

SPARQL Query Engine, linked to their knowledge base. To make this system as usable and

practical as possible, a bottom up approach is the emphasis that doesn’t necessitate large,

complex ontologies from domain experts. Only word semantics are used to provide groups

of related data layers.

The authors of [48] discuss similarity based information retrieval in a SDI. They discuss

the various ways of utilizing an ontology, primarily based on subsumption relationships, to

answer query results. The entire methodology relies on some well controlled ontology, as well

as the user needing to know how information is organized in the ontology, for some searches.

The authors of [49] talk about overcoming semantic heterogeneity in SDIs. Their system

is based on a hybrid ontology approach, where each information system has its own appli-

cation ontology, and each of these ontologies are based on a shared vocabulary, an upper
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level ontology. To connect the data sources to the application level ontologies, registration

mappings is used. The application ontologies and the registration mappings are not easy to

generate, and certainly not provided by all, if any, data providers. Although a solid frame-

work, until service providers integrate the use of ontologies, this system is isolated from

many of the real data sources we want to connect to.

Sensor Plug and Play is a proposed infrastructure for connecting sensors to the Sensor

Web with minimal human intervention [10]. Their scope is much broader than ours, but

they do include a section on semantic matchmaking. Their approach is based on building a

semantically-enabled matchmaking and mediation framework for the Sensor Web. They dis-

cuss the utility of syntactic metrics for matching, such as the Levenshtein distance. However,

their proposed Sensor Plug and Play requires data providers to publish metadata about the

sensors. The largest difference between their work and ours is that we based our methodology

on data available from data providers today, and focused strictly on a bottom-up approach,

while they introduced a mediator for semantic matchmaking.

No other high level ontology is used in this methodology. A strong bottom up approach

is emphasized by only using word pair similarities, and as a result this approach is extremely

flexible and can be reapplied in a variety of SDI contexts. By subscribing to one ontology,

many different translations would need to be created and maintained to all external data

sources, which is a difficult problem to solve with a fully automatic solution.
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Chapter 3

Methodology

This section covers the entire methodology for automatically grouping similar sensor data

layers. For this research, similar sensor layers are defined to have the same or related observed

properties. In other words, the sensors measure the same general phenomenon.

An overview of the methodology is shown in Figure 3.1. First, data is extracted from

multiple SOS services, and converted into sensor data layers known as Property Layers

(PLs). Next, text processing is applied to the text data in the PLs. After text processing,

the normalized PLs are used in three different grouping strategies.

First, Property Layer Mapping is performed. A dissimilarity function and a threshold

are chosen, and maps are created between PLs based on the value of the function and the

value of the threshold. Here, a map between two PLs denotes that the two data layers are

similar, in that their observed properties are related in a meaningful way.

In the second scenario, clustering is performed to produce PL clusters. The clustering

requires a clustering algorithm, a dissimilarity function, and a threshold. The corresponding

PL clusters are evaluated to see if they form logical groupings based on the meaning of the

data layers.

Lastly, classification on PLs is performed. Using classes generated from a pre-defined

dictionary, maps are defined between the PLs and the classes. This allows us to associate

zero to many PLs to a class. This is part of the system design implemented in our previous

work [8], except the grouping will be performed automatically.

This chapter is as follows. First, the SOS standard and the corresponding data layers,

PLs, are discussed in detail. Next, text processing is introduced, and followed by a discussion

of why it is necessary to have dissimilarity functions. WordNet as a semantic resource is then
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Figure 3.1: General Overview of the Methodology Used to Automatically Group Similar
Sensor Data Layers
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explained. The notion of dissimilarity functions is explained, and dissimilarity functions are

defined. A discussion of the semantic dissimilarity function follows. After that, PL mapping,

clustering, and classification are used to automatically group sensor data layers.

3.1 Data

For this thesis, similar data layers are grouped together. A data layer is defined as a group

of sensor data readings from a single data provider, measuring a distinct real world phe-

nomenon, live or historical. For this project, data layers will be limited to those available

via the Sensor Observation Service (SOS). To understand how exactly data layers are defined,

a technical introduction of the SOS standard is necessary.

3.1.1 SOS Overview

SOS is an official OGC standard, and is part of the Sensor Web Enablement (SWE) initiative.

It defines how sensor data providers and sensor data consumers communicate to properly

encode and send sensor data [50]. SOS runs over HTTP via a client-server architecture.

Content is negotiated via XML documents. In this thesis, SOS refers to the SOS standard

version 1.0. From hereon, any mention of SOS is an abbreviated form of SOS version 1.0.

In this thesis, a reference to ‘SOS’ will either refer to the open standards defined by OGC,

or in some cases, to a data service that provides sensor data via the SOS standard. In some

cases, the phrase ‘SOS standard’ is used to make it clear we are referring to the standard

itself. If SOS refers to a data service, it will always be used with the indefinite article.

Some important terminology from the SOS standard will be used throughout this thesis,

and are defined here.

• Observation Offering – A logical grouping of data sources

• Phenomenon – Some naturally occurring event in the real world that can be

measured, (ie. wind speed, air temperature)
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• Observed Property – Another term for phenomenon

• Procedure – A procedure is another term for sensor, except that procedure

is more general to include any process that generates an observational value

• Feature of Interest (FOI) – An object associated with an observation, such

as a lake where a temperature measurement was taken

The SOS standard primarily defines operations, which are requests and corresponding

responses of a particular nature. Therefore, when discussing SOS, the operations it provides

must be introduced. A SOS must provide three core operations, and there are six other

optional operations. For this thesis, these other operations will not be discussed, as they do

not contribute any other useful information. The core operations are discussed in detail to

understand how data layers are represented in the SOS standard. They are

1. GetCapabilities

2. DescribeSensor

3. GetObservation

GetCapabilities

The GetCapabilities operation is general to all OGC standards. Other OGC standard ser-

vices also use a GetCapabilities operation to convey all relevant information about that

service to a client. The GetCapabilities returns a XML document, which will be referred

to as the GetCapabilities file. This GetCapabilities file can be divided into five main XML

elements,

1. ows:ServiceIdentification

2. ows:ServiceProvider

3. ows:OperationsMetadata

4. sos:Filter Capabilities

5. sos:Contents
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The elements ows:ServiceIdentification and ows:ServiceProvider provide high level details

about the service, such as the service provider’s name or the service provider’s website.

The ows:OperationsMetadata and sos:Filter Capabilities elements are important to tech-

nical issues of data transfer. For example, they contain the operations and request parameters

that are supported by the service.

The element sos:Contents contains a high level overview of the data provided from this

service. This is very useful for determining exactly what data is provided by the SOS. The

sos:Contents element contains the sos:ObservationOfferingList element. This contains a one

to many list of sos:ObservationOffering elements. An observation offering is a ”collection of

related sensor system observations” [50]. This definition is quite vague, and different SOS

implementations utilize observation offerings quite differently. An observation offering may

contain only one observed property and one sensor, or it may also contain many different

observed properties, sensors, and FOIs.

Table 3.1 shows the information available in a sos:ObservationOffering element. Since

sos:ObservationOffering inherits from the Geography Markup Language (GML) abstract

feature type, some of the required contents are from GML.
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Table 3.1: Details of Element sos:ObservationOffering

Element Cardinality Description
sos:time 1 The temporal extent of the

data
sos:procedure 0..* The list of procedures (sen-

sors)
sos:observedProperty 1..* The list of observed prop-

erties. These are used to
define unique data layers
(PLs)

sos:featureOfInterest 1..* The list of features of inter-
est

sos:responseFormat 1..* MIME type of the data that
will be returned

sos:resultModel 0..1 Indicates the XML names-
pace of the response element

sos:respondMode 0..1 Indicates what modes of re-
sponse are supported

sos:intendedApplication 0..1 The intended category of
use for this observation of-
fering

gml:boundedBy 1 The spatial extent of the
data

gml:id 1 The id of this observation
offering

gml:name 1 The name of this observa-
tion offering

gml:srsName 1 The name of the Spatial
Reference System

31



For this research, the focus will be on the sos:observedProperty element. This piece

of information is directly relevant to the contents of the data layer. In most cases this

symbolizes the name of the data layer.

gml:id/gml:name is the name of the observation offering. This information could be

beneficial because sometimes the observation offering name is related to meaning of the data

layer. However, it is very inconsistent. The observation offering name may refer to the

data provider, the observed property, or even a code or pattern only meaningful to the data

provider. In Table 3.2, it is shown how the observation offering may be used to represent

different pieces of information. As a result, this information cannot be reliably used in our

system.

Table 3.2: Details of Element sos:ObservationOffering

Observation Offering Observed Property
Setup bureau Bart urn:ogc:def:phenomenon:OGC:1.0.30:temperature
YSI Multi Water Parameter Sensor
6600ADV University Antwerp

urn:ogc:def:phenomenon:OGC:1.0.30:watertemperature

Temperature urn:ogc:def:property:ucberkeley:odm:Water Temp C
HT Weather Stations urn:ogc:def:phenomenon:OGC:airtemperature
ATMOSPHERIC TEMPERATURE urn:ogc:def:property:OGC::Temperature
st denis evaporation urn:ogc:def:property:GeoCENS:st denis evaporation:

AirTemperature

There are also multiple sos:procedure and sos:featureOfInterest elements, creating a list

of FOIs and a list of procedures. However, these lists correspond to the observation offering,

not necessarily the observed property. Only in the case where an observation offering contains

a single observed property can that association be made directly. As with the observation

offering, the FOI or procedure name doesn’t necessarily describe the feature or the sensor.

The name may be a URL, an arbitrary sensor number, or any other string of text that simply

can’t be used reliably to help identify the observed property. Therefore, the names of the

FOIs or procedures are not used to identify relationships between sensor data layers.
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Figure 3.2: SOS Structure Overview

For clarity, the structure of this information is shown in Figure 3.2. Each observed

property may have sibling observed properties, with corresponding sibling procedures and

FOIs. It is noted that if an observation offering has three observed properties, then it would

be logical to assume that those three observed properties are similar in one way or another.

However, the SOS standard has been widely interpreted by data providers, as noted in

[8]. As such, the sibling relationship between observed properties is not a reliable piece of

information to use.

3.1.2 DescribeSensor

The DescribeSensor operation is used to query for more information about a given proce-

dure. Procedure lists are parsed from the observed property. Sensor metadata is encoded

in standard known as SensorML [51]. However, many SOS data providers did not return

SensorML files based on sensors, and the inconsistency of the SOSs made it impossible to

use this information.
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3.1.3 GetObservation

The GetObservation operation can be used to collect more information about a PL. ”The

response to a GetObservation request is an O&M Observation, an element in the Observation

substitution group, or an ObservationCollection” [50].

Of these requests, it is particularly commonly to be able to extract is the Unit of Measure

(UoM). The UoM is a good indicator of the observations collected, and can be used as an

indicator of the meaning of the data layer.

3.1.4 Property Layer

A SOS has the capability to provide a variety of different data about sensors and observations.

As a result, our research group has further defined a Property Layer (PL). A PL is a unique

data layer, defined by a SOS service URL, an observation offering, and an observed property.

Since a SOS, or even a single observation offering within a SOS, may offer a variety of data

sources, a PL is the single most atomic data layer available from a SOS.

One to many PLs can be extracted from each SOS. As well, the information relevant

to determining the similarity between PLs must be defined. The similarity between PLs is

based on how related their observed property is to one another. Therefore, the observed

property URI is the single most important piece of information, as it can be considered the

’title’ of the data layer. As well, the UoM of the PL will be considered, as it contributes

information about the observation collected, based on the observed property.

Although there is a great deal of information available, the inconsistencies of each data

provider make it difficult to properly use other pieces of information. A good example

of this is the inconsistencies of how observation offerings are used. Table 3.2 shows how

the observation offering sometimes refers to the observed property category, which would

make that an ideal choice for helping determining how related two PLs are. However, the

observation offering label is also used in other ways, and it is outside the scope of this research
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in differentiating between usable and unusable data names. The observed property URI is

the most important and most consistent information that can be used to group similar PLs.

3.1.5 Data Used for this Thesis

For this thesis, data has been extracted from 27 different SOSs. The SOS services were

discovered using a Peer-to-Peer (P2P) resource discovery system [52]. There are 212 PLs

in our data set. A small example of the dataset is shown in Table 3.3. It must be noted

that many of the existing SOS services are in the testing phase, simply due to the gradual

development and deployment of the SOS standard. As well, many of the current SOS services

online are run by the GeoSensorweb Lab, our own research group. This may cause a bias in

the data source, which may influence the evaluation. However, the presented methodology

is not influenced by this, and it remains perfectly valid for data collected by future SOS

services.

Table 3.3: Example Property Layers

Observed Property URI UoM
urn:ogc:def:property:geocens:
rocky view groundwater:groundwater

metres

urn:ogc:def:property:noaa:ndbc:Wind Direc-
tion

degree

urn:ogc:def:property:noaa:ndbc:Wind Speed knot
urn:ogc:def:property:noaa:ndbc:Wind Gust knot
urn:ogc:def:property:ucberkeley: odm:Solar
Radiation Total kW/mˆ2

kilowatts per
square meter

urn:ogc:def:phenomenon:OGC:1.0.30: wa-
tertemperature

degC

urn:ogc:def:phenomenon:OGC:waterlevel m
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3.2 Text Processing

As discussed in the previous chapter, text processing is an essential aspect of information

retrieval. Two types of text processing are considered, normalization and tokenization. For

edit-based string functions, varying degrees of normalization are investigated to see what

effect it has on the results. For set-based string functions, the tokenization and normalization

methodology is explained.

3.2.1 Normalization for Edit-Based Functions

A summary of the normalization steps is shown in Table 3.4.

Table 3.4: Example of the Steps of Normalization

Normalization Step Acronym Description
Link Stripping LS Removes URI prefix
Case Folding CF Converts all text to lowercase

Whitespace Removal WR Removes all whitespace characters

Link stripping (LS) is the processing of removing the prefix from a URI. The observed

property is represented with a URI, in some cases, a reference to an external dictionary.

However, the URI prefix often contains little to no semantic information. To isolate the text

relevant to the data layer, link stripping is a vital component of text processing. For example,

consider the observed property URN, ‘urn:ogc:def:property:geocens: rocky view groundwater

:groundwater’. The entire URI prefix would be identified and removed, leaving the result as

‘groundwater’.

Case normalization (CN) is simply covering all uppercase characters to lowercase char-

acters.

Whitespace removal (WR) is the process of removing whitespaces or other characters

used for delineating words, such as underscores or commas.

There are some other text processing steps that are worth mentioning, even if they are
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not used in our methodology. They are mentioned here, as well as a justification for not

using them.

Stop words are very common words that do not contribute to the meaning of the text.

For example, ’and’, ’or’, ’if’ are words that have caused problems for IR systems. A common

text processing task is the removal of these words. However, the text that is processed exists

as metadata labels, not free form text, so this step is not necessary for this system.

Stemming is the process of resolving a single word to its root, and isolating its various

forms. For example, ’speed’, ’speeds’, and ’speeding’ all refer to the same concept, and

stemming involves resolving all three instances to the concept ’speed’. Stemming is not

necessary for this project because the text exists as metadata labels, not free form text,

although it may be possible to explore stemming as a text processing step in future work.

3.2.2 Tokenization and Normalization for Set-Based Functions

The tokenization and normalization process is explained for set-based functions. Note that

a set-based function is simply a function that takes in sets of strings as input. For example,

an edit-based function would have two inputs, string one, and string two. For a set-based

function, it takes in two lists of strings, where each list would contain one to many strings.

Each string in the list is a distinct word, and the differentiation is that a set-based function

takes in a series of tokens. For this research, each token is defined as a word, so instead of

‘windspeed’, the input would be [‘wind’, ‘speed’].

First, link stripping is performed to remove all possible URI prefixes.

Next, the string into split into tokens based on whitespace and underscore characters. If

this step doesn’t tokenize the string, the string is tokenized based on case.

Each token is then further tokenized using the lexical database WordNet. An algorithm

is run to attempt to split up a single token into multiple tokens. For example, if the token

is ‘windspeed’, it is split into two tokens, ‘wind’ and ‘speed’. Algorithm 1 is shown for

completeness.
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Algorithm 1 Word Splitting Algorithm

1: INPUT: A string, s, of length N
2: Define index i, j, minimum word size m← 2
3: Define list of words, W
4: if N ≤ m then
5: Add s to W
6: Return W
7: end if
8: i← 0
9: j ← N
10: while i < j −m+ 1 AND i < N −m+ 1 do
11: w ← substring(s, i, j)
12: if isword(w) then
13: Add w to W
14: i← j
15: j ← N
16: else
17: j ← j − 1
18: end if
19: end while
20: if i 6= n then
21: Clear W
22: Add s to W
23: end if
24: Return W
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Finally, all the tokens are matched to one another. If two side by side tokens form

a word, then that word becomes a token. For example, if the resulting list of tokens is

[‘battery’, ‘volt’, ‘age’], then first ‘batteryvolt’ is checked as a word. This is not a word, so

next ‘voltage’ is checked as a word. Since voltage is a valid English word, the new word

list becomes [‘battery’,‘voltage’]. This process is performed iteratively so that the minimum

number of valid words are used.

1. Link Stripping is performed, to remove all URI prefixes

2. A string is split up into tokens, based on whitespace, underscore characters

and case

3. Each token is split up into smaller tokens using the lexical database WordNet

4. Any two sequential tokens that form a word, according to WordNet, are joined

together

3.3 WordNet as a Semantic Resource

In order to define dissimilarity functions that take advantage of the meaning of words,

WordNet must first be introduced as a semantic resource. This methodology is similar to

the work presented in [53] and [24] where several different approaches are used to generate

similarities between words using WordNet. Once similarity values for word pairs exist, then

dissimilarity functions can be defined for establishing how similar two PLs are. The following

section discusses how WordNet can be used to generate similarity values for word pairs.

WordNet is a lexical network of English words [54]. Nouns, verbs, adjectives, and adverbs

are organized into sets of synonyms, or synsets. WordNet is commonly used for its extensive

structure of nouns, and as such this will be the focus. The backbone of the noun network is

the subsumption hierarchy, consisting of parent-child relationships. The top of the hierarchy

contains 11 abstract concepts. Synsets are connected by various relationships, including

hyponymy (is-a), its inverse hypernymy, six meroymic (part-of) relations, and antonymy
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(complement-of). To use WordNet, a global root element is defined such that all the synsets

are contained within a graph.

The advantage of WordNet is that it is extremely flexible and not limited to a subset of

words, like in an ontology. This ensures that all tokens that are valid English words can be

looked up. In this way, the semantic meaning will come from WordNet. The similarity is

defined as a value from 0, being not related, to 1, being identical, between two words. The

word pair similarity values are generated using various algorithms that run over WordNet.

WordNet has been successfully used in ontology matching [55], in developing more robust

algorithms for finding matching classes. As well, these similarity measures have been used

to enrich an ontology, as shown in [56].

Several commonly used functions to help describe some of the WordNet based algorithms

for generating word pair similarities are defined.

The length between two synsets is denoted len (c1, c2), which is the shortest path between

nodes, viewing WordNet as a graph.

The depth of a node is the length of that synset to the global root, denoted depth (c1, c2).

The lowest super-ordinate is the lowest node in the hierarchy that is a parent to both c1

and c2. This is denoted lso (c1, c2). For example, lso(Dime,Credit) = MediumOfExchange,

in the same hierarchy shown in Figure 3.3.

It is also important to note that although synsets are the nodes in WordNet, the relation-

ships we are interested in are between words, or tokens. Because of this, if there are multiple

‘paths’ between two words because the words belong to multiple synsets, the maximum

similarity of all the paths is used.

Many of the word similarity approaches do not have formal names, and so we adapt the

naming convention from [24]. Table 3.5 is a summary of the abbreviations and approaches

used in this thesis. The authors of [24] provide a free tool to calculate word similarities,

which is to compute all word pair similarities. As well, we introduce our own basic word
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pair similarity algorithm, named ben. All these approaches are discussed separately based

on their general approach.

Table 3.5: Summary of Approaches to Defining Word Relatedness Using WordNet

Approach Authors Year Acronym

Information Content Approach
Resnik [57] 1995 res

Lin [58] 1998 lin
Jiang and Conrath [59] 1997 jcn

Path Length Approach
Leacock and Chodorow [53] 1998 lch

Wu and Palmer [53] 1994 wup

Word Relatedness Measures
Hirst and St-Onge [60] 1998 hso

Banerjee and Pedersen [61] 2003 lesk
Patwardhan 2003 vector

Proposed Knoechel 2012 ben

3.3.1 Information Content Approach

There are three approaches based on information content, res, lin, and jcn. These use a

corpus-based measure of the specificity of a concept.

Resnik [57] defines the probability of encountering an instance of a concept, p (c). The

information content is thus defined as IC (c) = − log p (c). The basic idea is that as you

move upwards through a taxonomy, the probability of encountering a concept increases.

The information content of general, high-level concepts is therefore quite low, because they

are related to many other concepts. In the case of a unique top concept, its probability of

encountering an instance is one, and its information content is zero. The similarity between

a pair of concepts is thus

simres = − log p (lso (c1, c2))) (3.1)

Which is the information content of the lowest common parent, or lso. Concept proba-

bilities were computed by calculating word frequencies using the Brown Corpus of American

English. Given the frequency of a concept, the probability is calculated as
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Figure 3.3: Example Hierarchy of WordNet
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p(c) =
freq(c)

N
(3.2)

The similarity measure proposed by Lin [58] uses the same ideas of information content

and probability, however, the measure is different. Lin’s focus was that two concepts are

similar if they share a close common parent, and not similar if there are many differences

between them. The similarity measure is defined as

simlin (c1, c2) =
2 log p (lso (c1, c2))

log p (c1) + log p (c2)
(3.3)

Here, it is apparent that the similarity measure is the ratio between the information

content of the lowest common parent and the information content of the concepts themselves.

Jiang and Conrath, or jcn [59], use an approach very similar to Lin, except the informa-

tion content is differenced between the lowest common parent and the two concepts. The

equation, as a distance, is

distjcn (c1, c2) = 2 log p (lso (c1, c2))− (log p (c1) + log p (c2)) (3.4)

The inverse must be taking to convert this distance function to a similarity function.

3.3.2 Path Length Approach

There are two approaches based on path lengths between concepts, lch and wup.

Leacock and Chodorow’s proposed measure [53], lch, makes use of the path length. How-

ever, the path length is normalized by the maximum depth of the WordNet hierarchy.

simlch (c1, c2) = − log
len (c1, c2)

2 maxcεWordNet (depth (c))
(3.5)

Wu and Palmer’s proposed conceptual similarity [53], wup, between a pair of concepts is

simwup (c1, c2) =
2 ∗ depth (lso (c1, c2))

len (c1, lso (c1, c2)) + len (c2, lso (c1, c2)) + 2 ∗ depth (lso (c1, c2))
(3.6)
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3.3.3 Relatedness Measures

There are three approaches based on word relatedness measures, hso, lesk, and vector.

Hirst and St-Onge’s approach, or hso [60], classifies relationships in WordNet as having

direction. For example, is-a relations are upwards, and has-part relations are horizontal. The

shortest path two synsets is computed that is neither too long and doesn’t change direction

often. hso may be summarized by the following equation

simhso = C − len (c1, c2)− k ∗ turns (c1, c2) (3.7)

Where C and k are constants, and turns is a number of times the path between c1 and

c2 changes direction.

The lesk is a semantic relatedness measure that is based on the number of shared words

in their definitions [61]. A gloss is defined here as an alternative word for the description or

definition of a word. An overlap is defined as the longest sequence of one or more consecutive

words that appear in both descriptions. The sizes of the overlaps found are squared and

added together to arrive at the score for a given pair of descriptions, defined as a score.

Using this defined as score(), relatedness is calculated between two synsets A and B as

simlesk =
∑

score(R1(A), R2(B)) (3.8)

Where R1 and R2 are relations in WordNet, such as hypernym. In this way, scores are

summed between the two concepts, as well as scores between directly related concepts of A

and B. For example, a score between the parent of A and the concept B is calculated using

R1 = hypernym,R2 = description.

The vector measure creates a co-occurrence matrix from a corpus made up of the WordNet

glosses, defining each concept as a gloss vector. The relatedness between concepts is found

by computing the cosine between a pair of gloss vectors.

44



3.3.4 Basic Subsumption

The basic subsumption algorithm is proposed by our research group, named ben. This is

a very simple approach based on only direct relationships between words, and is included

here as a reference for evaluating all other measures. In this algorithm, we simply see if

two words are related via a parent-child relationship. Many of the previously mentioned

algorithms traverse WordNet as a graph to find some measure of relatedness. Our approach

differs as we are only interested in direct subsumption relationships between tokens. Words

that are directly related via a parent-child relationship are given a similarity of 1.0. All

other word pairs are given a similarity of 0.0. This measure captures important relationships

between words and ignores all others.

3.4 Dissimilarity Functions

It is important to review the concepts of distance, similarity, and dissimilarity for this work.

The similarity between two objects is a numerical measure of the degree to which the two

objects are alike [18]. Similarity is often bound from zero (no similarity) to one (complete

similarity).The notion of dissimilarity is introduced, which is a numerical measure of the

degree to which the two objects are different. Dissimilarity is often in the same range as

similarity, but it is also common for dissimilarity values to range from 0 to ∞.

Using these definitions, idea of distance can be introduced as a specific kind of dissimilar-

ity, with well known properties. Distance functions are defined as any dissimilarity function

that satisfies the following axioms:

1. d(x, y) = 0 iff x = y

2. d(x, y) ≥ 0

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

The term dissimilarity will be used over distance, as many of the string functions do not

45



satisfy the triangle inequality (4). Dissimilarity is simply a metric used to determine how

different two data objects are. For all dissimilarity functions in this report, zero is an exact

match, and any value greater than that indicates the two strings are not similar. Many of

the dissimilarity functions are normalized from [0,1].

For edit-based dissimilarity functions, the Levenshtein Distance, Length Adjusted Leven-

shtein Dissimilarity, Jaro dissimilarity, and JaroWinkler dissimilarity are used. For set-based

dissimilarity functions, the Jaccard Dissimilarity and Cosine Dissimilarity are used. Seman-

tic dissimilarity metrics are discussed in the next section.

Table 3.6: Summary of Dissimilarity Functions

Edit-Based Set-Based
Levenshtein Distance Jaccard Dissimilarity

Length Adjusted Levenshtein Dissimilarity (LALD) Cosine Dissimilarity
Jaro Dissimilarity Semantic Dissimilarity

JaroWinkler Dissimilarity

The Levenshtein Distance (LD) is a function used to calculate a distance between two

strings. This distance function counts the number of additions, subtractions, and substitu-

tions required to traverse from one string to another.

As a basic example, consider the two strings ’cat’ and ’late’. One string can be traversed

to another by substituting ’c’ with ’l’, and with an addition of ’e’ to the end. Therefore,

those two operations make the distance between these two strings 2. The algorithm is easiest

to understand by the construction of a table between the two strings. 3.7 shows the two

strings. Each number is the number of operations it takes to traverse from one sub string to

another. For example, to go from ’la’ to ’ca’ is only 1 operation. The matrix is constructed

by building the first row and first column, and then by adding in numbers by each row, left

to right. If the two letters match, then take the minimum number as seen from above, to

the left, and the upper left. If the two letters do not match, then take that minimum and

add one.
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Table 3.7: Example of the Calculation of the Levenshtein Distance between late and cat

l a t e
0 1 2 3 4

c 1 1 2 3 4
a 2 2 1 2 3
t 3 3 2 1 2

The LD metric is a distance, but it will still be referred to as a dissimilarity function, as

most of the other functions discussed here are not distance functions.

3.4.1 Length Adjusted Levenshtein Dissimilarity

The Length Adjusted Levenshtein Dissimilarity (LALD) is a modification of the LD to

reduce the impact of string length on the dissimilarity between strings. This modification is

introduced because of problems with the LD with variable string lengths. Consider the two

string pairs shown in Table 3.8.

Table 3.8: An Example Showing the Advantages of the Length Adjusted Levenshtein Dis-
tance

String 1 String 2 LD LALD
opticaloxygensaturation disolvedoxygenclassic 17 0.74

pH CO 2 1.0

The first two terms may be related, as they both contain the subsequence oxygen. How-

ever, their edit distance is 17. Compare that with next string pair, two different observed

properties yet the edit distance is only 2.

The LALD is used to prevent the bias of small edit distances between short strings. This

modification divides the edit-distance by the length of the longest string.

dLALD =
dLD

max (|s1| , |s2|)
(3.9)
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The dissimilarity is now 1.0 for the short but unrelated strings, and 0.74 for the longer

but somewhat related strings.

Note that due to this modification, the term distance can no longer be used. This is

because the LALD does not satisfy the triangle inequality axiom. Consider the following

three strings:

[‘airtemperature’,‘soilmoisture’,‘soiltemperature’]

And the LALD between them:

airtemperature,soilmoisture = 0.64

airtemperature,soiltemperature = 0.20

soilmoisture,soiltemperature = 0.40

It is apparent that that the direct distance between airtemperature and soilmoisture is

larger than the distance traversed using soiltemperature as an intermediate step.

It is noted though that this modification normalizes the output of the function between

[0,1].

The Jaro distance metric is a similarity measure between two strings. Literature often

refers to this as a distance, however, it is defined here as a dissimilarity function, as it does

not satisfy the triangle inequality axiom. Given two strings, s1 and s2, first the number of

matching characters is counted, m. Matching characters means both strings have the same

characters at the same offset. For example, consider the two strings ‘john’ and ‘jon’. The

second character of each string is ‘o’, so that would be a matching character. Again, consider

the two strings ‘john’ and ‘jon’. The third character of each string is ‘h’ and ‘n’, respectively,

even though the ‘n’ in the first string looks like it should match with the ‘n’ in the second

string. To account for this, characters from s1 and s2 are considered matching only if they

are not farther than max(|s1|,|s2|)
2

− 1. For these two strings, the maximum matching distance

is now max(4,3)
2
− 1 = 1. Since the ‘n’ in ‘john’ is at offset 4, and the ‘n’ in ‘jon’ is at offset 3,

so a total of 3 matching characters would be counted between these strings.
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Next, the number of transpositions, t, is counted. A transposition is when two letters,

side by side, switch positions in one string to produce a matching substring in the second

string. For example, consider the two strings ‘receive’ and ‘recieve’. There would be 2

transpositions in total, as the ‘i’ and the ‘e’ in the second string are swapped to produce the

first string.

Using both m, t, the number of matching characters and the number of transpositions,

respectively, the Jaro dissimilarity is defined as

djaro = 1− 1

3

(
m

s1
+
m

s2
+
m− 0.5 ∗ t

m

)
(3.10)

This function is modified from being a similarity measure to a dissimilarity measure, by

differencing the Jaro similarity from one.

The JaroWinkler dissimilarity is an extension of the Jaro dissimilarity function [15]. This

modification uses a prefix scale which gives higher weightings to strings that match from the

beginning for a set prefix length. The function is modified such that zero is a match and 1

is no similarity.

djw = djaro − l ∗ p ∗ djaro (3.11)

Where l is the number of common prefix characters between the strings. In other words,

l is the longest substring common to both strings, starting at the first character. p is a

constant, a value between 0 and 1. Here, the commonly accepted value of p is 0.10, and l is

often limited to a maximum value of 4 [15].

3.4.2 Jaccard Dissimilarity

The Jaccard coefficient is a measure of similarity between two data objects. Given two

objects, the Jaccard coefficient is the number of shared binary attributes divided by the

total number of binary attributes of both data objects. Therefore, this function requires
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the input of an array of tokens, where each token is a string. To use this as a dissimilarity

function, the value used is simply the difference between one and the Jaccard coefficient.

djaccard = 1− m11

m11 +m10 +m01

(3.12)

In the context of this work, m11 is the number of words that exists in both strings, m10

is the number of words that exist only in string 1, and m01 is the number of words that exist

only in string 2. For example, consider two observed property URI strings, after tokenization:

1: [‘air’,‘temperature’]

2: [‘water’,‘temperature’]

The total number of words would be [‘air’,‘water’,‘temperature’], and m11 = 1, m10 = 1,

and m01 = 1. Therefore, djaccard = 1− 1
1+1+1

= 2
3
.

3.4.3 Cosine Dissimilarity

The cosine similarity is a very commonly used similarity metric, also known as the dot

product. The cosine dissimilarity function is defined as

dcosine = 1− A ·B
|A| |B|

(3.13)

Where A and B are vectors of tokens for each input. For example,

1: [‘air’,‘temperature’]

2: [‘water’,‘temperature’]

The length of each vector would be [‘air’,‘water’,‘temperature’]. So consider vector A,

where the length would be calculated as |A| =
√

(1)2 + (0)2 + (1)2 =
√

2, because it has a

value of 1 for every token it contains, and zero for every other token. Similarly, |B| =
√

2.

The dot product would be computed as A · B = (1 ∗ 0) + (0 ∗ 1) + (1 ∗ 1) = 1 Therefore,

dcosine = 1− 1√
2
√
2

= 0.5.
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3.4.4 Semantic Dissimilarity Functions

One main issue with the dissimilarity functions described thusfar is that they do not iden-

tify semantic relationships between strings or tokens. In the following section, a semantic

dissimilarity function is introduced so that semantic relationships between tokens can be

established.

This semantic dissimilarity function will be applied between tokens, using the set-based

dissimilarity approach. The reason is that arbitrary strings don’t necessarily belong to

the lexicon of the English language. For example, in edit-based functions, a sample in-

put could be ‘windspeed’. The input should be viewed as a string of characters, or the

list [‘w’,‘i’,‘n’,‘d’,‘s’,‘p’,‘e’,‘e’,‘d’]. This entire sequence of characters is not a valid English

word, and the only way to evaluate the meaning of the words within the text is to perform

tokenization. Obviously, the set-based approach is necessary.

The word pair similarities generated from WordNet, described in the previous section,

are used in this dissimilarity function. The dissimilarity function here is very similar to the

jaccard dissimilarity measure, which is presented here again as

djaccard = 1− m11

m11 +m10 +m01

(3.14)

The denominator contains the total number of distinct tokens in both token lists. For

example, consider two arrays of tokens

A: [‘X’, ‘Y’, ‘Z’]

B: [‘X’, ‘W’, ‘V’]

There are 5 distinct tokens, and a single matching token, so that the dissimilarity would

be djaccard = 1 − 1
5

= 0.8. Assume that word pair similarities are defined between these

tokens. This information is used to combine tokens into similar token pairs. To continue

with the example for the semantic dissimilarity, it is apparent that ‘X’ from A is the same

token as ‘X’ from B. Now there are four distinct tokens left, ‘Y’, ‘Z’, ‘W’, and ‘V’. A matrix
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is created of the word pair similarities, and ranked from most similar to least similar.

Table 3.9: Word Pair Similarity Scores for Semantic Dissimilarity Function Example

Token A Token B Similarity
Y W 0.8
Y V 0.2
Z W 0.1
Z V 0.1

It is shown that Y and W have the highest similarity. It is assumed that these two tokens

are related, and these two tokens will form a single token pair, ‘YW’. The other two tokens,

‘Z’ and ‘V’ are also assumed to be related, and form a token pair, ‘ZV’. The total number

of distinct tokens is now 3, and they are

[‘X’, ‘YW’, ‘ZV’]

However, A does not contain ‘YW’, it only contains ‘Y’, which is only 0.8 of the pair

‘YW’. The dissimilarity function is modified to be

dsemantic = 1− m11

|A|+ |B| −m11

(3.15)

Wherem11 is the total sum of the token pair similarities. This works out to bem11 = 1.0+

0.8+0.1 = 0.9. Therefore, the overall semantic dissimilarity is dsemantic = 1− 1.9
3+3−1.9 = 0.54.

3.5 Property Layer Mapping

The first of the three major scenarios for this methodology is to define maps between PLs.

A map is a symbolic link between two PLs, and the existence of a map between two PLs

indicates that those PLs are similar. Two data layers are similar if their observed properties

have a direct relationship. Ultimately, PLs must be grouped together in a way that scientists

would consider the groups to be intuitively useful for searching sensor data.
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A set of maps is collectively referred to as mapping. Therefore, it is important to define

mapping between PLs. A PL cannot map to itself. A map is bidirectional. It has no value,

it either exists or it does not.

The methodology to define Property Layer Mapping requires two things, a dissimilarity

function and a threshold. The process is very straightforward. Every PL is compared to

every other PL that is not itself. If the value of the dissimilarity function is less than the value

of the threshold, then a map is defined between the two PLs, otherwise nothing happens.

For clarity, this is shown in Algorithm 2.

Algorithm 2 Property Layer Mapping

1: INPUT: All Property Layers P , threshold θ
2: Define mapping M
3: for all pi in P do
4: for all pj in PLL do

t = dissim (pi, pj)
5: if t ≤ θ then
6: create map m = pi, pj
7: add m to M
8: end if
9: end for
10: end for

3.6 Clustering

Clustering is performed to automatically group PLs into discrete, non overlapping clusters.

The input for clustering is a clustering algorithm, a dissimilarity function, and a threshold.

Each clustering algorithm uses the threshold and the dissimilarity function, albeit in different

ways. Therefore, the actual clustering methodology depends on the clustering algorithm.

For this methodology, three different clustering algorithms were implemented, K-medoids,

DBSCAN, and HAC. K-medoids is a well known variation of the K-means clustering algo-

rithm. DBSCAN is a density based clustering algorithm, which is fundamentally a different

kind of clustering algorithm. Lastly, HAC is considered a standard document clustering tech-
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nique [19]. These three different clustering techniques are evaluated to see which algorithm

works the best with this data set. Each clustering algorithm creates distinct, non-overlapping

clusters. Fuzzy clustering techniques may be more suitable for this application, as a PL is

likely to belong to multiple groups. However, the emphasis of this methodology is on dis-

similarity functions, and there are several ways to use those dissimilarity functions to group

PLs. The focus remains on straightforward grouping techniques, such as the aforementioned

clustering algorithms. Each clustering algorithm is discussed in detail in this section.

3.6.1 K-medoids

K-medoids, also known as Partitioning Around Medoids (PAM), is a similar clustering al-

gorithm to K-means [62]. K-means is a commonly used clustering algorithm. It involves

the selection of starting points as seeds, and associating every data point or object to each

seed, forming clusters. The centroids of each cluster are calculated, and each data object

is re-assigned to a cluster based on the new centroids. This is done recursively until the

clusters no longer change, or the change is negligible, between iterations.

However, with string-based representations of data objects, it is impossible to compute

centroids of clusters. This is easily possible with numeric data, but with nominal data it’s

impossible. It is possible to use K-means with tokenized inputs, but for the edit-based

dissimilarity functions this would not work. Instead, we use the concept of a medoid. A

medoid is simply a data object within a cluster that is close to the centroid, and is used in

place of a centroid.

K-means must be modified, so that instead of calculating a centroid, a medoid must be

calculated. This can be done by choosing the data object that has the lowest cost. In this

sense, the cost is the sum of the distances from the data object to all others in the cluster.

If a data object p, is one element in a cluster Ck, then the cost is
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cost (pi) =
∑

pjεCk,i 6=j

d (pi, pj) (3.16)

Similar to K-means, the K-medoids algorithm is very sensitive to the initial selection of

classes. To ensure an automatic clustering algorithm, this is a top-down implementation,

designed to automatically split clusters that contain outliers. After each iteration, when

medoids are no longer changing, the cluster with the largest outlier is selected. If this outlier

is greater than a split-threshold, then the outlier is selected as a medoid for a new cluster,

and the entire process is repeated.

It is important to understand that this implementation simply iterates a set number of

times, θ, and the assumption is that the clusters will not change in a meaningful way after

any more iterations. Although this could be improved in future work, the convergence rate

is extremely high for the clustering and for this implementation is acceptable.

The algorithm for the K-medoids algorithm is shown in Algorithm 3.

The computational complexity of the K-medoids algorithm is O (n3). This is very high,

but considering the low number of samples this is certainly acceptable. The K-medoids

algorithm can be optimized for future work.

3.6.2 DBSCAN

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density based

clustering algorithm [63]. DBSCAN is fundamentally different from K-medoids because it

can capture irregular or unusual geometric clusters. The two input parameters are minimum

number of points and a value that defines a radius. DBSCAN works by going through all

data objects, and if a given data object has at least the minimum number of points ‘close

by’ then those points form a cluster. That cluster is expanded by joining points based on

the input parameters, the minimum number of points and the radius. This algorithm treats

all data points that don’t fit into a cluster as noise. However, it is assumed that there is no
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Algorithm 3 K-Medoids Clustering

1: INPUT: All Property Layers PLL, threshold t, split threshold θ
2: outlier = t
3: Define set of clusters Clusters
4: Create a single cluster C
5: Set first pl in PLL as medoid for C
6: Add C to Clusters
7: while outlier ≥ t do
8: for i← 1 to θ do
9: Clear all pl in Clusters
10: for all pl in PLL do
11: find cluster Ck with minimum distance to medoid
12: Add pl to Ck
13: end for
14: for all C in Clusters do
15: calculate cost of current medoid, cost (m)
16: for all pl in C such that pl 6= m do
17: calculate cost of candidate, cost (pl)
18: if cost (pl) ≤ cost (m) then
19: Set pl as new medoid, m
20: end if
21: end for
22: end for
23: end for
24: outlier ← find maximum outlier, search all clusters
25: if outlier ≥ t then
26: Create new cluster
27: Assign outlier to medoid of new cluster
28: end if
29: end while
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noise, because each data object represents a unique data layer, which is perfectly valid. As

such, we set the minimum number of points to one. Therefore, data points by themselves

simply form singular clusters. The algorithm is shown in Algorithm 4.

Algorithm 4 DBSCAN Clustering

1: INPUT: All Property Layers PLL, radius r, minimum Points, mPs
2: Create list C of length |PLL|, set elements to 0 to indicate not visited
3: Set c← 1, the current cluster index
4: for all p in PLL do
5: if C (p) = 0 then . See if point has been visited yet
6: C (p)← −1 . Set point to -1 to indicate it has been visited, but no cluster

assigned
7: q ε PLL, q 6= p
8: n← array of points around p, such that d (p, q) ≤ r
9: if |n| ≥ mPs then
10: add new cluster, c← c+ 1
11: for all p′ in n do

. If point not visited yet
12: if C (p′) = 0 then
13: q ε PLL, q 6= p′

14: m← array of points around p′, such that d (p′, q) ≤ r
15: if |m| ≥ mPs then
16: add all new points of m to n
17: end if
18: C (p′)← c

. If point visited but no cluster assigned
19: else if C (p′) = −1 then
20: C (p′)← c
21: end if
22: end for
23: end if
24: end if
25: end for

DBSCAN is by its definition automatic, although the proper selection of the two input

parameters can be difficult. As stated, the minimum number of points will always be set to

one, and vary the radius r to see the impact on the clustering.
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3.6.3 Hierarchical Agglomerative Clustering

Hierarchical Agglomerative Clustering (HAC) is a clustering algorithm [18] which works by

either iteratively splitting one large cluster or combining individual clusters, starting with

each data object as a cluster. The latter, a bottom-up approach, was implemented. This

means a cluster is created for every data object, and clusters are merged one at a time. To

determine which two clusters should be merged, an intra-cluster distance metric is needed.

For this project, we used the notion of complete linkage.

The complete linkage of two clusters is defined as the maximum distance of all the possible

object distances from one the objects in one cluster to all the objects in the other cluster.

linkage = (max (distance(pi, qj)) | piεC1, qjεC2) (3.17)

The lowest complete linkage of two clusters is calculated for all cluster pairs. If the complete

linkage value is less than some threshold value between two clusters, then the two clusters

are merged and the process is repeated.

This is a very computationally complex algorithm, O (n3).

3.7 Classification

Classification is the task of assigning objects to one of several predefined categories. This

methodology implements classification by the creation of maps between PLs and classes.

These maps are exactly the same as they have been defined in the previous section, although

instead of forming relationships between PLs, relationships are formed between PLs and

classes. It must be noted that the classification is done without training data. Generally,

classification is performed by using patterns in attributes to isolate and identify classes. This

is usually done with a training data set and closely matched with machine learning. Some

common algorithms include decision trees, Bayesian classifiers, Artificial Neural Networks,

Support Vector Machines, and so forth.
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Algorithm 5 Hierarchical Agglomerative Clustering

1: INPUT: All Property Layers PLL, threshold t
2: Create set of clusters, C
3: for all pl in PLL do
4: Create cluster c, add pl to c
5: Add c to C
6: end for
7: m← t
8: Declare two closest clusters, cm1, cm2

9: while m ≤t do
10: for all ci in C do
11: for all cj in C, cj 6= ci do
12: t← linkage (ci, cj)
13: if tlem then
14: cm1 ← ci
15: cm2 ← cj
16: m← t
17: end if
18: end for
19: end for
20: if m ≤ t then
21: merge (cm1, cm2)
22: end if
23: end while

59



The important distinction to make is that training data is not abundant or necessarily

useful for classification. As such, this methodology is more reflective of the work done in

ontological alignment [17].

For classification, class generation is discussed first. Next, the process of matching is

discussed.

3.7.1 Class Generation

Before classification can be performed, a set of classes must be created. A class is a data

object used to represent of a type of sensor data. For example, we could create a class to

represent all sensor data layers that measure temperature. We could then label this class

‘temperature’.

For this methodology, the concept of a dictionary is introduced to represent the class set.

A dictionary is simply a set of class names and corresponding descriptions. This is useful

because it does not require us to carefully design or build relationships between classes, we

simply focus on individual classes.

We implemented the dictionary as a set of unique observed properties. Each dictionary

entry will be referred to as a dictionary term, which consists of a well-defined name as a URN,

and a dictionary term description. Each class name represents some real world phenomena.

For this project, the dictionary was manually created. A data processing team went through

several different data sets and created dictionary terms based on the observed properties

they encountered. Every dictionary term represents a unique phenomenon, such that no two

dictionary terms represent exactly the same observed properties. However, it must be noted

that dictionary terms are not mutually exclusive; dictionary terms may be closely related or

overlap. For example, ’Precipitation’ and ’Rainfall’ are two possible dictionary terms defined

with a ’is-a’ relationship.

This dictionary consists of 79 unique observed properties.
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3.7.2 Matching

Matching is the process of establishing maps between classes and PLs. These maps make

it possible to associate a single class with zero to many PLs. To perform matching, a

dissimilarity function and a threshold is required. As well, the inputs are the list of PLs and

the list of classes.

The methodology is as such. For every class term and PL, the dissimilarity will be

calculated between them. If that value is less than the threshold, then a map will be made

for that class and PL. This process will create a many-to-many relationship between the

class list and the PL list. This matching is different from the clustering, as a PL is not

exclusively contained within a single class. Since there is not guarantee that classes will be

mutually exclusive, this kind of robust mapping is necessary.

The class name URN goes through the same text processing as the PL observed proper-

ties. The dissimilarity function computes a value for two inputs, the class name URN of the

class and the observed property URI of the PL. The match algorithm is shown in Algorithm

6.

Algorithm 6 Property Layer to Class Mapping

1: INPUT: All Property Layers PLL, dictionary terms D, threshold θ
2: Define mapping M
3: for all d in D do
4: for all p in PLL do

t← dissim (d, p)
5: if t ≤ θ then
6: create map m = d, p
7: add m to M
8: end if
9: end for
10: end for

61



Chapter 4

Evaluation and Results

This chapter evaluates the various methods discussed in the methodology for automatically

grouping Property Layers (PLs). First, the evaluation metrics used for the evaluation are

introduced. Next, the notion of testing data is introduced, as well as how it was collected.

The last three sections of this chapter are the evaluation of dissimilarity functions, clustering,

and matching, respectively.

4.1 Evaluation Metrics

The evaluation measures used throughout this evaluation section are discussed. The following

evaluation metric definitions are taken from [18]. For the evaluation, there are two different

groupings of data. The first set of data is referred to as ’ground truth’ or simply similar

classes. This is whether or not two objects are actually similar to one another. It is impossible

to truly know if two data objects are similar, and the concept of similarity is subjective. As

such, this truth is approximated by using humans to label whether or not two data objects

are similar.

Secondly, the methodology of this thesis is used to determine whether or not two data

objects are classified as similar. The machine classified data is referred to as ‘classified as

similar’, as it is unknown if they are actually similar or not.

We now introduce the notion of a confusion matrix in Table 4.1 with four possible cate-

gories for every data object pair.

• f++: True Positive (TP), corresponds to the number of similar PL pairs clas-

sified as similar

• f−+: False Positive (FP), corresponds to the number of non-similar PL pairs
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Table 4.1: Confusion Matrix

Predicted Class
+ -

Actual + f++ f+−
Class - f−+ f−−

classified as similar

• f+−: False Negative (FN), corresponds to the number of similar PL pairs

classified as non-similar

• f−−: True Negative (TN), corresponds to the number of non-similar PL pairs

classified as non-similar

Two widely used metrics for evaluation are introduced, precision and recall.

Precision is the ratio of true positives to all classified objects. In other words, precision

is high (good) when we do not incorrectly classify false objects.

p =
TP

TP + FP
(4.1)

Recall is the ratio of true positives to all truly similar objects. In other words, recall is

high (good) when we capture all the true relationships.

r =
TP

TP + FN
(4.2)

The F-measure is formally known as the F1 measure, which is the balance between

precision and recall

F =
2pr

p+ r
(4.3)

Here, a high F-measure ensures the best balance between false positives and false nega-

tives, assuming they are equally bad.

The F2 measure is based on the Fβ measure, which is
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Fβ =
(1 + β2)TP

(1 + β2)TP + β2FN + FP
(4.4)

Where β is a non-negative real value. The F2 measure weights recall higher than preci-

sion, meaning the identification of true relationships is important and this measure is more

forgiving of identifying false relationships. The equation is

F2 =
5TP

5TP + 4FN + FP
=

5pr

4p+ r
(4.5)

These metrics are used throughout the evaluation. The actual PL groups will be used in

a recommendation system or a helpful feature in a SDI for easily finding related data. In this

context, the true usefulness of the groups will be based on how they impact the usability of

a SDI. This is outside the scope of this thesis, so the evaluation will be limited to optimizing

the F-Measure.

4.2 Testing Data

To test how well PL pairs are scored, testing data is required. The most effective way to

evaluate the automatic system is to compare the results against human scores of how similar

PL pairs are. This human generated data will be referred to as the testing data, and will be

used as an approximation to whether or not data objects are similar.

All testing data will be generated by a human operator. I have assumed the role of the

human operator in generating this testing data. The main purpose of having testing data

is to compare how this methodology groups data layers to how people group data layers.

Although different people may group data layers differently, it is assumed these differences

are negligible. The main focus is to see if this methodology establishes simple and direct

relationships (ie. between precipitation and rainfall) and ignores obviously false relationships

(ie. between air temperature and tide gauges). Therefore, the actual person who collects
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data is irrelevant so long as they make reasonable assumptions about the nature of the data

layers.

4.2.1 Property Layer Pair Testing Data

A human operator was chosen to rank PLs against all other PLs, giving them a score of how

similar they are to one another. There are 212 PLs in this data set, so for every single PL

there will be 211 PL pairs that can be generated.

For this testing data set, one user scored 8 PLs to all other PLs. The 8 PLs are shown

in Table 4.2.

Table 4.2: Ground Truth Property Layers for Testing

Observed Property URI
urn:ogc:def:property:noaa:ndbc:Dew Point

urn:ogc:def:property:ucberkeley:odm:Rainfall mm
urn:ogc:def:property:GeoCENS:kenaston soil mesonet:SoilMoisture

urn:ogc:def:property:ucberkeley:odm:Solar Radiation Total kW/m∧2
urn:ogc:def:property:geocens:rocky view groundwater:groundwater
urn:ogc:def:property:universityofsaskatchewan:ip3:airtemperature

urn:ogc:def:property:noaa:ndbc:Wind Direction
urn:ogc:def:phenomenon:OGC:atomsphericpressure

Each PL pair is rated by the human operator with one of the following categories, (1)

not related, (2) weakly related, (3) strongly related, or (4) exactly related. Exactly related

PLs refer to data streams measuring the same phenomenon. A strongly related score means

that a PL pair have observed properties that are directly related to or are related via a

child-parent relationship. A weakly related PL pair is two data layers that may be implicitly

related or one phenomenon type may impact the other, such as the relationship between

rain and soil moisture. The not related score is assigned when two PLs are not related in

a meaningful way. The human operator used the observed property URIs and UoM of the

PLs to generate these scores.
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It must be noted that the human operator used is not a domain expert. Some of the

complicated relationships between environmental sensors may be missed due to this.

4.2.2 Class to Property Layer Testing Data

To evaluate the class to property layer mapping, a different testing data set is required.

Information about how classes are related to PLs is needed. This data was collected just

as described in the previous section, except class names were selected, and all the PLs are

ranked according to that class. For this testing data, all PL relationships were collected for

six classes. This is shown in Table 4.3, and accounts for a total of 1272 distinct relationships.

Table 4.3: Ground Truth Class to Property Layers for Testing

Class Name
Soil Moisture

Precipitation Amount
Air Temperature

Relative Humidity
Wind Direction

Atmospheric Pressure

4.3 Property Layer Mapping Evaluation

First, the effectiveness of various dissimilarity functions used to generated PL to PL maps

are discussed. The evaluation is performed as follows. All PL pairs that, according to the

testing data, are not related or weakly related, are considered dissimilar. All PL pairs that

are either strongly related or exactly related are considered similar. To differentiate whether

or not two PLs are classified as similar or dissimilar, we require a dissimilarity function and

a threshold value. A dissimilarity function produces a value for two PLs, and if that value

is less than the threshold, the two PLs are classified as similar. If the function value is equal

to or greater than the threshold, the two PLs are classified as dissimilar.

66



The threshold is a completely arbitrary number, and depends entirely on the dissimilarity

function used. As such,the PL-PL maps are evaluated for a variety of threshold values, and

look for high F-measures for a given dissimilarity function. It does not necessarily matter at

which threshold a dissimilarity function accurately classifies PLs, but rather the maximum

F-measure that a dissimilarity function produces.

4.3.1 Dissimilarity Function Evaluation

First, we look at precision, recall, F-Measure, and F2-Measure as a function of the threshold.

Figure 4.1 shows how the Levenshtein distance performs at different threshold values. For

each distinct threshold value, there exists an entire set of PL-PL mappings. Precision is very

high with a low threshold, because the ‘thematic filter’ is very strict, and only exactly match-

ing character sequences are classified. Therefore, every that is classified by the methodology

is correct. However, this also causes a very low recall, because many meaningful relationships

are not captured. As the threshold increases, the recall starts to increase, and the precision

starts to decrease. As this happens, there is an optimal F-Measure where there are many

correctly classified PLs and few true relationships not classified. But once the threshold

increases too much, the F-Measure and precision drop sharply, as PLs that are not related

are being matched to one another. Many of the other figures follow this pattern, and so for

evaluating the effectiveness of a dissimilarity function, the one with the maximum F-Measure

is best. This is because that for some threshold the dissimilarity function correctly groups

PLs together.

The edit-based dissimilarity functions are compared in Figure 4.2. Note that for this

figure we normalized the threshold for the Levenshtein distance to [0,1], hence NormLeven-

shtein. It is interesting to note that the Jaro dissimilarity performs the best, and the basic

Levenshtein distance doing the worst. For this figure, normalization of the text included

LS,CN, and WR. The set-based dissimilarity functions are compared in Figure 4.3, and

these dissimilarity functions outperform all edit-based functions, with the exception of the
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Figure 4.1: Levenshtein Distance Performance

Jaro dissimilarity.

4.3.2 Normalization Evaluation

The impact of normalization is shown in Figure 4.4. Here, we see that the case of the strings

doesn’t contribute to the semantic meaning of the observed property. In many cases, the

whitespace doesn’t contribute either, so rigorous normalization is appropriate for the best

results with edit-based dissimilarity functions. If we refer to Table 4.4, we see that overall

more normalization is better and leads to higher maximum F values.

Table 4.4: Summary of Highest F-Measures of Edit-Based Dissimilarity Functions with Vary-
ing Normalization

Tokenization Levenshtein LALD Jaro JaroWinkler
LS 0.62 0.66 0.70 0.64

LS+CN 0.63 0.67 0.75 0.67
LS+CN+WR 0.61 0.68 0.77 0.68
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Figure 4.2: Comparison of Edit-Based Dissimilarity Functions
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Figure 4.3: Comparison of Set-Based Dissimilarity Functions
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Figure 4.4: Impact of Normalization on the F-Measure for the Jaro Dissimilarity

4.3.3 Observed Property and UoM Evaluation

Next, the evaluate focuses on using the combination of the UoM and the observed property

for determining similar PL pairs. To do this, the LALD dissimilarity between observed

properties, using LS+CN+WR for normalization. If unit information is missing from one

or both PLs, the LALD dissimilarity value is returned. If both PLs have unit information,

the unit strings are normalized (LS+CN+WR) and the LALD is used to get a dissimilarity

value between the UoMs. The final dissimilarity is equal to

d = a ∗ dobservedproperty + (1− a) ∗ dUoMs (4.6)

Where dobservedproperty is the LALD dissimilarity between the observed properties, dUoMs

is the LALD dissimilarity between UoMs, and a is a constant. We make sure that a+ b = 1,

and it is apparent that a is used for simple linear weighting. The results are shown in Figure

4.5.

The UoM does not contribute any useful information, and the performance degrades if
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Figure 4.5: Combining the Observed Property URI and the Units of Measure (UoM) in
Dissimilarity Evaluation

it is used. This may be because not all PLs had unit information. As well, the UoM shows

a high degree of syntax variation. Here basic string similarities simply does not help, as the

four strings ‘C’, ‘celcius’, ‘degree celcius’, and ‘Cel’ all refer to the same UoM.

4.3.4 Semantic Dissimilarity Functions Evaluation

Next, semantic dissimilarity functions are evaluated. We only use one semantic dissimilarity

function, describe in Chapter 3. We use various word pair similarity values, and compare

the effectiveness of those. Since the Jaccard and the Cosine dissimilarity metrics perform at

the same level, we will use the Jaccard dissimilarity function for the syntactic only baseline.

We refer to Figures 4.6, 4.7, 4.8, 4.9. The many different WordNet measures are imple-

mented. Figure 4.6 are word similarity measures based on information content. They simply

do not perform as well as the baseline Jaccard measure. Figure 4.7 are path lengths between

WordNet words, and as well do not perform very well. Figure 4.8 uses three relatedness

measures, and these perform very close to the baseline. The lesk measure is the only one

71



that performs as well as the baseline. Finally, Figure 4.9 shows a very basic subsumption

identification, which slightly but consistently outperforms the baseline.

72



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

Threshold

F
−

M
ea

su
re

Jaccard
res
lin
jcn

Figure 4.6: Semantic Dissimilarity Evaluation using Word Similarities Derived From Word-
Net, based on a Information Content Approach
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Figure 4.7: Semantic Dissimilarity Evaluation using Word Similarities Derived From Word-
Net, based on a Path Length Approach
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Figure 4.8: Semantic Dissimilarity Evaluation using Word Similarities Derived From Word-
Net, based on Word Relatedness Measures
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Figure 4.9: Semantic Dissimilarity Evaluation using Word Similarities Derived From Word-
Net, using the Proposed Approach
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This evaluation shows that the semantic dissimilarity function performs consistently be-

hind the basic Jaccard dissimilarity function.
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4.3.5 Error Classification

To further understand the PL mapping accuracy, all the false positives and false negatives

are classified in a table for a dissimilarity function. This error classification table shows how

errors are generated, and where various dissimilarity functions do not perform very well.

Error classification is performed for the Jaro dissimilarity function, and presented in Table

4.5. Error classification is performed for the Jaccard dissimilarity function, shown in Table

4.6. Finally, the error classification is presented for the semantic dissimilarity function for

res word pair similarity scores in Table 4.7.

Table 4.5: Error Classification for Jaro with LS+CN+WR Normalization

Type Error Number of Cases Description
No Error TP 42

Semantic Meaning Missing FN 20 There was no semantic
meaning to link the two
PLs, for example, dew point
and relative humidity

Word Association FP 5 There was a common word
between PLs that gave a
false relationship, for ex-
ample, ‘groundwater’ and
‘groundheatflux’
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Table 4.6: Error Classification for Jaccard

Type Error Number of Cases Description
No Error TP 37

Semantic Meaning Missing FN 19 There was no semantic
meaning to link the two
PLs, for example, rainfall
and precipitation

Word Association FP 12 There was a common word
between PLs that gave a
false relationship, for ex-
ample, ‘water temperature’
and ‘ground water’

Abbreviation FN 3 Common abbreviations
were not understood by
this system, for example,
‘Temp’ as an abbreviation
for ‘Temperature’

Incorrect Tokenization FN 2 One of the PL observed
properties was incorrectly
tokenized and as a result,
the appropriate tokens were
not matched
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Table 4.7: Error Classification for Semantic Dissimilarity Using res

Type Error Number of Cases Description
No Error TP 34

Semantic Meaning Missing FN 22 The semantic meaning be-
tween PLs was not estab-
lished, or it existed between
compound nouns and was
not captured by single word
similarity scores. For exam-
ple, dew point and relative
humidity

Additional Words FN 11 There were many truly sim-
ilar PLs that were missed
because of extra words that
did not contribute to the se-
mantic meaning, for exam-
ple, ‘rainfall mm’ and ‘rain-
fall rate’, the additional to-
kens increased the dissimi-
larity value too high

Not Strictly Related FP 10 Some PLs are related, but
the human operator deter-
mined that they were not
sufficiently related, for ex-
ample, ‘rainfall’ and ‘hail’

Abbreviation FN 3 Common abbreviations
were not understood by
this system, for example,
‘Temp’ as an abbreviation
for ‘Temperature’
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4.4 Clustering Evaluation

The clustering is evaluated using the property layer pair testing data. PL pairs are classified

as similar if they exist within the same cluster. Because a PL will only appear in a single

cluster, all PL pairs can be classified as similar by being the same cluster, or classified as

dissimilar because they exist in separate clusters. The F-measure is used as a metric to

determine the best clustering algorithm. As in the property layer mapping evaluation, two

PLs are similar if they have a human assigned score of 2 (strongly related) or 3 (exactly

related). If a PL pair has a human assigned score of 0 (not related) or 1 (weakly related),

then the two PLs are not related.

The evaluation requires a dissimilarity function, a threshold, and a clustering algorithm.

Each clustering algorithm uses the threshold value in a different way, as describe in Chapter

3. The three clustering algorithms, K-Medoids, DBSCAN, and HAC are compared with

three different dissimilarity functions. First, clustering with LALD is shown in Figure 4.10.

Clustering with the Jaro dissimilarity is shown in Figure 4.11, and Figure 4.12 shows cluster-

ing using the set based Jaccard dissimilarity. The three clustering algorithms are compared

together for each dissimilarity function.

Although DBSCAN has the best F-Measure, it fundamentally is a poor choice as a

clustering algorithm. Density based clusters have the potential to have very high intra-

cluster ranges, which is often problematic. It is clear that at a critical point increasing the

threshold completely reduces the effectiveness of the clustering.

HAC and K-medoids are both more appropriate. Since HAC uses complete linkage, we

see that as the threshold increases, the F-Measure doesn’t sharply decrease like in DBSCAN

or K-Medoids.

We use the lesk word similarity scores in the semantic dissimilarity function for clustering

evaluation, shown in Figure 4.13. The semantic dissimilarity function out performs the

Jaccard dissimilarity function, although the best is the LALD. However, we can see that the
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Figure 4.10: Clustering Results Using Length Adjusted Levenshtein Dissimilarity
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Figure 4.11: Clustering Results Using Jaro Dissimilarity
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Figure 4.12: Clustering Results Using Jaccard Dissimilarity

most consistent performance comes from the semantic dissimilarity.

Table 4.8: Highest F-Measures for Clustering

Dissimilarity Function Best F-Measure
LALD 0.75
Jaro 0.74

Jaccard 0.70
lesk 0.74

4.5 Class to Property Layer Mapping Evaluation

The mapping of classes to PLs is evaluated in this section. For this evaluation, the observed

property of the PL is compared directly to the class names. The class to property layer

mapping evaluation is very similar to the property layer mapping evaluation. The class to

property layer testing data contains a score from 1 - 4 for all class-PL relationships. A class-

PL pair is similar if the score is a 3 (strongly related) or a 4 (exactly related). A class-PL is
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Figure 4.13: Clustering Results Using Semantic Dissimilarity, using lesk Word Similarity

dissimilar if the score is 0 (not related) or 1 (weakly related).

For classification, mapping between classes and PLs must be defined. A class-PL is

classified as similar if a map is created between both the class and the PL. A class-PL is

classified as dissimilar if no map exists between them. To create the mapping, we need to

define a dissimilarity function and a threshold. As described in the previous Chapter, a map

is created if the value of the dissimilarity function is equal to or below the threshold.

Figure 4.14 shows that the edit dissimilarity functions perform quite well. The JaroWin-

kler dissimilarity function performs the best, and greatly outperforms the Jaro dissimilarity

function.

Figure 4.15 shows that both the Jaccard and Cosine dissimilarity perform at the same

level, albeit at different thresholds.

Figure 4.16 shows all the various semantic dissimilarity functions. As before, the dissim-

ilarity functions have lower F-Measures than the baseline, in almost all cases.
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Figure 4.14: Matching Results of Edit Based Dissimilarity Functions
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Figure 4.15: Matching Results of Set Based Dissimilarity Functions
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Figure 4.16: Matching Results of Semantic Dissimilarity Functions

84



4.6 Discussion

The semantic dissimilarity functions were expected to perform much better than the purely

syntax based string dissimilarity measures. However, in this evaluation, we see that the

semantic dissimilarity function performs quite poorly. It is important to understand exactly

why these measures are not performing as well as a basic syntactic measure.

In Tables 4.9, 4.10, and 4.11, we look at three different PL pairs. The word pair similarity

scores, generated from WordNet, are shown between all the words of the observed properties.

As well, the resulting semantic dissimilarity scores are shown.

Table 4.9: Word Pair Similarity Scores and Semantic Dissimilarity Values Between ground
water and wind speed

PL 1 ground water
PL 2 wind speed

word1 word2 res lin jcn lch wup hso lesk vector ben
ground wind 0.29 0.32 0.08 0.53 0.74 0.40 0.03 0.21 0.00
ground speed 0.29 0.42 0.11 0.53 0.62 0.40 0.02 0.06 0.00
water wind 0.27 0.24 0.08 0.47 0.67 0.40 0.05 0.04 0.00
water speed 0.42 0.43 0.12 0.53 0.63 0.40 0.03 0.03 0.00
Dissimilarity 0.78 0.77 0.95 0.64 0.48 0.75 0.98 0.94 1.00

Jaccard Dissimilarity 1.00

Table 4.10: Word Pair Similarity Scores and Semantic Dissimilarity Values Between ground
water and soil moisture

PL 1 ground water
PL 2 soil moisture

word1 word2 res lin jcn lch wup hso lesk vector ben
ground soil 0.70 1.00 1.00 1.00 1.00 1.00 0.53 0.78 0.00
ground moisture 0.07 0.09 0.07 0.40 0.43 0.00 0.00 0.01 0.00
water soil 0.38 0.63 0.19 0.56 0.71 0.40 0.07 0.07 0.00
water moisture 0.07 0.09 0.07 0.38 0.38 0.00 0.01 0.02 0.00

Dissimilarity 0.76 0.62 0.64 0.48 0.48 0.67 0.84 0.75 1.00
Jaccard Dissimilarity 1.00
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Table 4.11: Word Pair Similarity Scores and Semantic Dissimilarity Values Between rainfall
mm and cumulative hail mm

PL 1 rainfall mm
PL 2 cumulative hail mm

word1 word2 res lin jcn lch wup hso lesk vector ben
rainfall mm 0.00 0.00 0.06 0.23 0.20 0.00 0.01 0.01 0.00
rainfall cumulative 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
rainfall hail 0.66 0.83 0.30 0.70 0.91 0.50 0.08 0.27 0.00

mm cumulative 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
mm hail 0.07 0.00 0.05 0.35 0.35 0.00 0.01 0.01 0.00

Dissimilarity 0.50 0.43 0.65 0.48 0.38 0.57 0.73 0.66 0.75
Jaccard Dissimilarity 0.75

It must be noted that in these tables, the biggest problem the semantic dissimilarity

functions have is that they always have lower dissimilarity values than the baseline. It

makes sense that some words are related, for example, rainfall and hail. However, some

words are closely related, and it doesn’t always seem important, such as water and soil.

One way to show how these functions perform is to list all PL pairs, using a single PL as a

reference. Using the PL defined by the observed property, ‘wind direction’, all matching PLs

are listed using a syntactic measure, Jaccard, and a semantic measure, using word similarities

defined by res. This is shown in Table 4.12. It is shown that the semantic measure matches

wind direction to dew point, mean wave direction, and other observed properties that are

not directly related.

This table shows how a semantic similarity measure can give quite low dissimilarities

for seemingly unrelated PLs. The reason other semantic similarity measures perform better

than others is that they assign lower similarities between words, which results in less false

negatives.

We can conclude that due to the expansive nature of words in general, semantic sim-

ilarities exist between words that give unintended relationships and meaning where there

shouldn’t be any. However, it is still important to use these functions as there is no way to
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Table 4.12: Similar PLs to the PL Defined by Observed Property wind direction, Comparing
Jaccard and Semantic Dissimilarity Functions

Jaccard res
WindDirection 0 WindDirection 0
winddirection 0 winddirection 0
winddirection 0 winddirection 0

Wind Direction Degrees 0.33 Wind Direction Degrees 0.33
direction 0.5 direction 0.5

Wind Gust 0.67 windrun 0.53
Wind Speed 0.67 WindSpeed 0.54
WindSpeed 0.67 windspeed 0.54
windspeed 0.67 windspeed 0.54
windspeed 0.67 Wind Speed 0.54
windrun 0.67 windspeed 0.54

windspeed 0.67 windspeed 0.54
windspeed 0.67 Mean Wave Direction 0.54

Mean Wave Direction 0.75 Dew Point 0.55
Wind Speed Avg MS 0.8 dewpoint 0.55
Wind Speed Max MS 0.8 dewpoint 0.55

dewpoint 0.55
Wind Gust 0.64

Pressure Tendency 0.65
snow depth 0.66
frost depth 0.66
snow depth 0.66
snow depth 0.66
snow depth 0.66
thaw depth 0.66

bridge concepts like precipitation and rainfall without some use of a knowledge source.
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Chapter 5

VirtualSOS

In the previous chapters, a methodology has been presented for automatically grouping

sensor data layers, which we call Property Layers (PLs). In this chapter, a system called

VirtualSOS is presented. VirtualSOS uses the methodology described in Chapter 3 for

grouping similar sensor data layers, and integrates it into a web service. Note that Virtual-

SOS is not a SOS service, nor does it adhere to the SOS standard. VirtualSOS is an online

platform that showcases the concept of grouping data layers by their observed properties to

facilitate data browsing, connecting to active SOS services. The purpose of this application

is to allow the user to select a single, unique ‘virtual’ layer, which is built up of one to many

real, physical data layers. In this chapter, VirtualSOS is introduced and discussed as a proof

of concept software component that provides a similar data layer grouping service to support

SDIs.

To understand VirtualSOS, the logical construction is first discussed. Next, a more

structural description is provided, along with screenshots of the front end.

The VirtualSOS applications consists of the following logical components. Their rela-

tionships are shown in Figure 5.1.

1. A list of PLs, extracted from SOS services

2. A dictionary, which is a unique list of observed properties

3. A list of mappings from dictionary terms to PLs

4. A set of taxonomies used for organizing dictionary terms

The Property Layers (PLs) are extracted from a pre-generated SOS list, as described in

Chapter 3. These PLs will consists of the physical data layers.

The dictionary is a list of unique observed properties. Each dictionary entry will be
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Figure 5.1: VirtualSOS, a Web Based Application of Grouping Similar Sensor Data Layers
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referred to as a dictionary term, which consists of a well-defined name as a URN, and a

dictionary term description. For VirtualSOS, the dictionary was manually created. A data

processing team went through several different data sets and created dictionary terms based

on the observed properties they encountered. Every dictionary term represents a unique

observed property, such that no two dictionary terms represent that same observed property.

However, it must be noted that dictionary terms are not mutually exclusive; dictionary

terms may be closely related or overlap. For example, ’Precipitation’ and ’Rainfall’ are two

dictionary terms defined with a ’is-a’ relationship. The relationships between dictionary

terms are represented implicitly in taxonomies (discussed below). However, this is strictly

for human interpretation, and is not used in any way by the system. This dictionary is used

as a virtual layer list, so the terms ‘dictionary term’ and ‘virtual layer’ refer to the same

entities.

Every dictionary term has a ranked list of corresponding PLs. This is generated using

the classification methodology described in this thesis, treating dictionary terms as classes.

However, it is slightly different from the mapping defined earlier. For VirtualSOS, a map is

a dissimilarity value from zero to one, denoting the relevancy of the class-PL relationship.

In Chapter 3 and 4, we have defined a map as a boolean relationship between a class and a

PL. The creation of valued maps utilizes the exact same methodology as described earlier,

except the value of the dissimilarity function between a class and a PL is simply the value of

the map. The reason valued maps were chosen for VirtualSOS is that users will be allowed to

select their own threshold, and automatically select all PLs that were below that threshold.

Taxonomies are used to organize the dictionary terms to facilitate data browsing. Every

dictionary term is the leaf term in the taxonomy, and all non-leaf nodes are any concept

represented by text. For example, a non-leaf node could be ‘Atmosphere’, and could contain

PLs that are measuring phenomenon in the atmosphere. In addition, the system is designed

to support multiple taxonomies. This is useful because many different users from different
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Figure 5.2: VirtualSOS Architectural Diagram

domains will likely have different ideas on how to organize data layers. Support for multiple

taxonomies allows various domain-specific taxonomies to exist, and the user may select the

taxonomy that is useful to them. As well, the system could easily be extended to support

user defined taxonomies, which would greatly increase the usability of the service.

The implementation of VirtualSOS is described to give the reader an idea of the various

software components involved.

The implementation of VirtualSOS is based on three major components, (1) a database,

(2) a REST-ful API, and (3) a web based front end. We use PostgreSQL as a database and

it contains all the data for VirtualSOS, including the PL list, the mapping, the taxonomy,

and the dictionary. The REST-ful API was written in Java, on top of the Restlets 1 stack,

and communicates with the database to respond to requests via a basic JSON exchange

over HTTP. The web based front end was written in HTML, PHP, and Javascript. It

communicates with the REST-ful API to retrieve and display data that the user selects,

using a BingMaps interface. The front end is also responsible for loading data, however, it

communicates with another software component, called the Translation Engine, to do this

[8]. The front end is shown in Figure 5.3.

1Restlets is a RESTful web framework for Java, http://www.restlet.org/
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Figure 5.3: VirtualSOS, a Web Based Application of Grouping Similar Sensor Data Layers
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Chapter 6

Conclusions

We start this thesis by comparing the rise of the World Wide Web (WWW) in the early

1990s to today’s rising Sensor Web. The Sensor Web runs on top of the Internet through the

use of open standards, but even with the use of open standards for sharing information, there

are still interoperability issues that arise. Many SDIs rely on accessing data from multiple

sources and integrating them seamlessly into a single, logical presentation for the user. Our

focus is on the task of grouping semantically similar sensor data layers. This will increase

the usability of SDIs by saving users the time of manually sorting through data layers.

However, there are many problems associated with this task. The sheer number of unique

sensors will necessitate an automatic approach, as manual categorization will not be feasible

with the rising number of sensors. As well, the heterogeneous naming of sensor data layers

makes it difficult to perform exact string matching. One well researched solution to this

problem has been the semantic catalogue. These catalogues automatically groups together

heterogeneous data sources. However, this approach requires the creation and maintenance

of ontologies, which is a very time intensive process. As well, real world data providers often

do not provide ontologies with their data, which makes it extremely difficult to use that data

in a semantic catalogue.

The automatic grouping of sensor data layers presents two primary challenges in the

form of differences between names. These are syntactic and semantic differences. Syntactic

differences are resolved to some extent by open standards, but the same name can be rep-

resented using different characters. The best example of syntactic differences is the use of

uppercase and lowercase to represent the same name. Semantic differences are more difficult

to resolve, and refer to two different names to represent the same real world concept. Our
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thesis contributes a great deal to the GIS community. We present here an evaluation of syn-

tactic and semantic string matching algorithms for the purposes of automatically grouping

similar sensor data layers. We investigate the SOS standard in detail, and apply clustering

and classification to a novel data set, GIS data layers.

Our methodology is a solid bottom-up approach. First data is collected from different

OGC SOS services. Then it is divided into atomic data layers known as Property Layers

(PLs). The text from PLs that convey information about the phenomenon the PLs measure

is processed via normalization and tokenization. Next, WordNet is introduced as a lexical

database to create word pair similarity scores. Many dissimilarity functions are introduced,

based on approximate string matching. Using these dissimilarity functions, we perform PL-

PL mapping, PL clustering, and class-PL mapping.

We present an evaluation of how these dissimilarity functions performed in grouping

similar sensor data layers. Overall, we see comparable results using edit-based and set-based

dissimilarity functions. The semantic dissimilarity function did not perform as expected,

and often did not perform very well. The best semantic dissimilarity function was one that

only considered very direct and simple relationships between tokens.

6.0.1 Future Work

The research presented here can be extended so more meaningful groups of data layers

can be created. One important aspect will be to apply this methodological framework to

another data set. Much of this research is designed specifically for the SOS standard, but

the methodology is fundamental enough that it could be applied to other geospatial data

standards.

It is important to investigate optimization techniques, particularly for clustering data

layers. As sensor data layers increase, it may not be possible to cluster extremely large data

sets.

Perhaps the most important future work would be to include data providers’ ontolgoical
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data in this methodology. Some data providers do provide ontologies or use ontologies

to manage their information, and it would be beneficial to include their ontologies when

available. This can be done by using the provided ontologies to assist in defining word pair

similarity scores, or even more robust measures of semantic information. This is necessary

because WordNet cannot capture contextual information that is relevant to every data source.
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Appendix A

Sample GetCapabilities File

<s o s : C a p a b i l i t i e s xmlns : sos=” ht tp : //www. openg i s . net / so s /1 .0 ”

xmlns:gml=” ht tp : //www. openg i s . net /gml”

xmlns :x l ink=” ht tp : //www. w3 . org /1999/ x l i nk ”

xmlns:ows=” ht tp : //www. openg i s . net /ows /1 .1 ”

xmlns:swe=” ht tp : //www. openg i s . net /swe / 1 . 0 . 1 ”

xmlns:om=” ht tp : //www. openg i s . net /om/1 .0 ”

xmlns :x s i=” ht tp : //www. w3 . org /2001/XMLSchema−i n s t ance ”

version=” 1 . 0 . 0 ”

xs i : s chemaLocat ion=” ht tp : //www. openg i s . net / sos /1 .0

h t tp : // schemas . openg i s . net / sos / 1 . 0 . 0 / s o s A l l . xsd”>

<o w s : S e r v i c e I d e n t i f i c a t i o n>

<ows:ServiceType>OGC:SOS</ ows:ServiceType>

<ows:Serv iceTypeVers ion>1 . 0 . 0</ ows:Serv iceTypeVers ion>

<o ws :T i t l e>Buoy Data from NDBC</ ow s : T i t l e>

</ o w s : S e r v i c e I d e n t i f i c a t i o n>

<ows :Se rv i c eProv ide r>

<ows:ProviderName>NDBC</ows:ProviderName>

<ows :Prov ide rS i t e x l i n k : h r e f=” ht tp : // geocens . ca”/>

<ows :Serv iceContact>

<ows:IndividualName>GSW</ ows:IndividualName>

<ows:PositionName>lab admin</ ows:PositionName>

<ows :ContactIn fo>
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<ows:Phone>

<ows:Voice>403−220−8038</ ows:Voice>

</ows:Phone>

<ows:Address>

<ows :De l ive ryPo int>Calgary</ ows :De l ive ryPo int>

<ows:City>Calgary</ ows:City>

<ows:Administrat iveArea>NW</ ows:Administrat iveArea>

<ows:PostalCode>T2N 1N4</ ows:PostalCode>

<ows:Country>Canada</ows:Country>

<ows :E lec t ron icMai lAddres s>gsw@ucalgary . ca

</ ows :E lec t ron icMai lAddres s>

</ ows:Address>

</ ows :ContactIn fo>

<ows:Role>SOS Developer</ ows:Role>

</ ows :Serv iceContact>

</ ows :Se rv i c eProv ide r>

<ows:OperationsMetadata>

<ows:Operat ion name=” GetCapab i l i t i e s ”>

<ows:DCP>

<ows:HTTP>

<ows:Get x l i n k : h r e f=” ht tp : //136 .159 .121 .217 :8171 / sos ?”/>

<ows:Post x l i n k : h r e f=” ht tp : //136 .159 .121 .217 :8171 / sos ”/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name=” AcceptVers ions ”>

<ows:AllowedValues>

104



<ows:Value>1 . 0 . 0</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

</ ows:Operat ion>

<ows:Operat ion name=” GetObservation ”>

<ows:DCP>

<ows:HTTP>

<ows:Post x l i n k : h r e f=” ht tp : //136 .159 .121 .217 :8171 / sos ”/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name=” ve r s i on ”>

<ows:AllowedValues>

<ows:Value>1 . 0 . 0</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” s e r v i c e ”>

<ows:AllowedValues>

<ows:Value>SOS</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=”srsName”>

<ows:AllowedValues>

<ows:Value>EPSG4326</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” o f f e r i n g ”>
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<ows:AllowedValues>

<ows:Value>Wind</ ows:Value>

<ows:Value>Temperature</ ows:Value>

<ows:Value>Pressure</ ows:Value>

<ows:Value>Wave</ ows:Value>

<ows:Value>V i s i b i l i t y</ ows:Value>

<ows:Value>Tide</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=”eventTime”/>

<ows:Parameter name=” observedProperty ”>

<ows:AllowedValues>

<ows:Value>Wind Di r e c t i on</ ows:Value>

<ows:Value>Water Temperature</ ows:Value>

<ows:Value>Dew Point</ ows:Value>

<ows:Value>Air Temperature</ ows:Value>

<ows:Value>Atmospheric Pres sure</ ows:Value>

<ows:Value>Wind Speed</ ows:Value>

<ows:Value>S i g n i f i c a n t Wave Height</ ows:Value>

<ows:Value>Mean Wave Di r e c t i on</ ows:Value>

<ows:Value>Dominant Wave Period</ ows:Value>

<ows:Value>Pressure Tendency</ ows:Value>

<ows:Value>Wind Gust</ ows:Value>

<ows:Value>V i s i b i l i t y</ ows:Value>

<ows:Value>Tide</ ows:Value>

<ows:Value>Average Wave Period</ ows:Value>
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</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” procedure ”>

<ows:AllowedValues>

<ows:Value>ht tp : //136 .159 .121 .217 :8171 / sos / procedures</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” f e a t u r e O f I n t e r e s t ”>

<ows:AllowedValues>

<ows:Value>ht tp : //136 .159 .121 .217 :8171 / sos / f o i s</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” resu l tMode l ”>

<ows:AllowedValues>

<ows:Value>om:Observation</ ows:Value>

<ows:Value>om:Measurement</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” responseFormat ”>

<ows:AllowedValues>

<ows:Value>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

</ ows:Operat ion>

<ows:Operat ion name=” Descr ibeSensor ”>

<ows:DCP>
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<ows:HTTP>

<ows:Post x l i n k : h r e f=” ht tp : //136 .159 .121 .217 :8171 / sos ”/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name=” ve r s i on ”>

<ows:AllowedValues>

<ows:Value>1 . 0 . 0</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=”outputFormat”>

<ows:AllowedValues>

<ows:Value>t ex t /xml ; subtype=”sensorML / 1 . 0 . 1 ”</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

<ows:Parameter name=” procedure ”>

<ows:AllowedValues>

<ows:Value>ht tp : //136 .159 .121 .217 :8171 / sos / procedures</ ows:Value>

</ ows:AllowedValues>

</ ows:Parameter>

</ ows:Operat ion>

</ ows:OperationsMetadata>

<so s :Content s>

<s o s : O b s e r v a t i o n O f f e r i n g L i s t>

<s o s : O b s e r v a t i o n O f f e r i n g gml : id=”Wind”>

<gml:name>Wind</gml:name>

<gml:srsName>u r n : o g c : c r s : e p s g : 4 3 2 6</gml:srsName>
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<gml:boundedBy>

<gml:Envelope srsName=” u r n : o g c : c r s : e p s g : 4 3 2 6 ”>

<gml: lowerCorner>−19.713 −177.75</ gml: lowerCorner>

<gml:upperCorner>70 .4 175 .27</ gml:upperCorner>

</ gml:Envelope>

</gml:boundedBy>

<s o s : t i m e>

<gml:TimePeriod>

<gml :beg inPos i t i on>2011−08−23T18:00:00Z</ gml :beg inPos i t i on>

<gml : endPos i t i on>2012−02−24T23:59:59Z</ gml : endPos i t ion>

</ gml:TimePeriod>

</ s o s : t i m e>

<s o s : p r o c e d u r e x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Wind/ procedures ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” urn :ogc :de f :p rope r ty :noaa :ndbc :Wind Di r e c t i on ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” urn :ogc :de f :p rope r ty :noaa :ndbc :Wind Speed”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” urn :ogc :de f :p rope r ty :noaa :ndbc :Wind Gust”/>

<s o s : f e a t u r e O f I n t e r e s t x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Wind/ f o i s ”/>

<sos : re sponseFormat>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”

</ sos : re sponseFormat>

<s o s : r e s u l t M o d e l>Measurement</ s o s : r e s u l t M o d e l>

<s o s : r e s u l t M o d e l>Observation</ s o s : r e s u l t M o d e l>
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</ s o s : O b s e r v a t i o n O f f e r i n g>

<s o s : O b s e r v a t i o n O f f e r i n g gml : id=”Temperature”>

<gml:name>Temperature</gml:name>

<gml:srsName>u r n : o g c : c r s : e p s g : 4 3 2 6</gml:srsName>

<gml:boundedBy>

<gml:Envelope srsName=” u r n : o g c : c r s : e p s g : 4 3 2 6 ”>

<gml: lowerCorner>−19.713 −178.343</ gml: lowerCorner>

<gml:upperCorner>70 .4 175 .27</ gml:upperCorner>

</ gml:Envelope>

</gml:boundedBy>

<s o s : t i m e>

<gml:TimePeriod>

<gml :beg inPos i t i on>2011−08−24T00:00:00Z</ gml :beg inPos i t i on>

<gml : endPos i t i on>2012−02−24T23:59:59Z</ gml : endPos i t ion>

</ gml:TimePeriod>

</ s o s : t i m e>

<s o s : p r o c e d u r e x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Temperature/ procedures ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” urn : ogc :de f : p rope r ty :noaa :ndbc :Wate r Temperature”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” urn :ogc :de f : p rope r ty :noaa :ndbc :Dew Point ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” u r n : o g c : d e f : p r o p e r t y : n o a a : n d b c : A i r Temperature”/>

<s o s : f e a t u r e O f I n t e r e s t x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Temperature/ f o i s ”/>
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<sos : re sponseFormat>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”

</ sos : re sponseFormat>

<s o s : r e s u l t M o d e l>Measurement</ s o s : r e s u l t M o d e l>

<s o s : r e s u l t M o d e l>Observation</ s o s : r e s u l t M o d e l>

</ s o s : O b s e r v a t i o n O f f e r i n g>

<s o s : O b s e r v a t i o n O f f e r i n g gml : id=” Pressure ”>

<gml:name>Pressure</gml:name>

<gml:srsName>u r n : o g c : c r s : e p s g : 4 3 2 6</gml:srsName>

<gml:boundedBy>

<gml:Envelope srsName=” u r n : o g c : c r s : e p s g : 4 3 2 6 ”>

<gml: lowerCorner>−19.713 −177.75</ gml: lowerCorner>

<gml:upperCorner>70 .4 175 .27</ gml:upperCorner>

</ gml:Envelope>

</gml:boundedBy>

<s o s : t i m e>

<gml:TimePeriod>

<gml :beg inPos i t i on>2011−08−24T00:00:00Z</ gml :beg inPos i t i on>

<gml : endPos i t i on>2012−02−24T23:59:59Z</ gml : endPos i t ion>

</ gml:TimePeriod>

</ s o s : t i m e>

<s o s : p r o c e d u r e x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s / Pres sure / procedures ”/>

<so s : obse rvedPrope r ty x l i n k : h r e f=

” urn : ogc :de f : p rope r ty :noaa :ndbc :Atmosphe r i c Pressure ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” u r n : o g c : d e f : p r o p e r t y : n o a a : n d b c : P r e s s u r e Tendency”/>
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<s o s : f e a t u r e O f I n t e r e s t x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s / Pres sure / f o i s ”/>

<sos : re sponseFormat>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”

</ sos : re sponseFormat>

<s o s : r e s u l t M o d e l>Measurement</ s o s : r e s u l t M o d e l>

<s o s : r e s u l t M o d e l>Observation</ s o s : r e s u l t M o d e l>

</ s o s : O b s e r v a t i o n O f f e r i n g>

<s o s : O b s e r v a t i o n O f f e r i n g gml : id=”Wave”>

<gml:name>Wave</gml:name>

<gml:srsName>u r n : o g c : c r s : e p s g : 4 3 2 6</gml:srsName>

<gml:boundedBy>

<gml:Envelope srsName=” u r n : o g c : c r s : e p s g : 4 3 2 6 ”>

<gml: lowerCorner>−19.691 −177.75</ gml: lowerCorner>

<gml:upperCorner>65 .698 175 .27</ gml:upperCorner>

</ gml:Envelope>

</gml:boundedBy>

<s o s : t i m e>

<gml:TimePeriod>

<gml :beg inPos i t i on>2011−08−24T00:00:00Z</ gml :beg inPos i t i on>

<gml : endPos i t i on>2012−02−24T23:59:59Z</ gml : endPos i t ion>

</ gml:TimePeriod>

</ s o s : t i m e>

<s o s : p r o c e d u r e x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Wave/ procedures ”/>

<so s : obse rvedPrope r ty x l i n k : h r e f=

” u r n : o g c : d e f : p r o p e r t y : n o a a : n d b c : S i g n i f i c a n t Wave Height ”/>
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<so s : obse rvedProper ty x l i n k : h r e f=

” urn :ogc :de f :p rope r ty :noaa :ndbc :Mean Wave Di r e c t i on ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” urn :ogc :de f :p rope r ty :noaa :ndbc :Dominant Wave Period ”/>

<s o s : f e a t u r e O f I n t e r e s t x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Wave/ f o i s ”/>

<sos : re sponseFormat>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”

</ sos : re sponseFormat>

<s o s : r e s u l t M o d e l>Measurement</ s o s : r e s u l t M o d e l>

<s o s : r e s u l t M o d e l>Observation</ s o s : r e s u l t M o d e l>

</ s o s : O b s e r v a t i o n O f f e r i n g>

<s o s : O b s e r v a t i o n O f f e r i n g gml : id=” V i s i b i l i t y ”>

<gml:name>V i s i b i l i t y</gml:name>

<gml:srsName>u r n : o g c : c r s : e p s g : 4 3 2 6</gml:srsName>

<gml:boundedBy>

<gml:Envelope srsName=” u r n : o g c : c r s : e p s g : 4 3 2 6 ”>

<gml: lowerCorner>28 .867 −92.061</ gml: lowerCorner>

<gml:upperCorner>61 .4 2 .8</ gml:upperCorner>

</ gml:Envelope>

</gml:boundedBy>

<s o s : t i m e>

<gml:TimePeriod>

<gml :beg inPos i t i on>2011−08−24T00:00:00Z</ gml :beg inPos i t i on>

<gml : endPos i t i on>2012−02−24T23:59:59Z</ gml : endPos i t ion>

</ gml:TimePeriod>

</ s o s : t i m e>
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<s o s : p r o c e d u r e x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s / V i s i b i l i t y / procedures ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” u r n : o g c : d e f : p r o p e r t y : n o a a : n d b c : V i s i b i l i t y ”/>

<s o s : f e a t u r e O f I n t e r e s t x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s / V i s i b i l i t y / f o i s ”/>

<sos : re sponseFormat>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”

</ sos : re sponseFormat>

<s o s : r e s u l t M o d e l>Measurement</ s o s : r e s u l t M o d e l>

<s o s : r e s u l t M o d e l>Observation</ s o s : r e s u l t M o d e l>

</ s o s : O b s e r v a t i o n O f f e r i n g>

<s o s : O b s e r v a t i o n O f f e r i n g gml : id=”Tide”>

<gml:name>Tide</gml:name>

<gml:srsName>u r n : o g c : c r s : e p s g : 4 3 2 6</gml:srsName>

<gml:boundedBy>

<gml:Envelope srsName=” u r n : o g c : c r s : e p s g : 4 3 2 6 ”>

<gml: lowerCorner>24 .627 −97.05</ gml: lowerCorner>

<gml:upperCorner>30 .06 −80.433</ gml:upperCorner>

</ gml:Envelope>

</gml:boundedBy>

<s o s : t i m e>

<gml:TimePeriod>

<gml :beg inPos i t i on>2011−08−24T00:00:00Z</ gml :beg inPos i t i on>

<gml : endPos i t i on>2012−02−24T23:59:59Z</ gml : endPos i t ion>

</ gml:TimePeriod>

</ s o s : t i m e>
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<s o s : p r o c e d u r e x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Tide/ procedures ”/>

<so s : obse rvedProper ty x l i n k : h r e f=

” u r n : o g c : d e f : p r o p e r t y : n o a a : n d b c : T i d e ”/>

<s o s : f e a t u r e O f I n t e r e s t x l i n k : h r e f=

” ht tp : //136 .159 .121 .217 :8171 / sos / o f f e r i n g s /Tide/ f o i s ”/>

<sos : re sponseFormat>t ex t /xml ; subtype=”om/ 1 . 0 . 0 ”

</ sos : re sponseFormat>

<s o s : r e s u l t M o d e l>Measurement</ s o s : r e s u l t M o d e l>

<s o s : r e s u l t M o d e l>Observation</ s o s : r e s u l t M o d e l>

</ s o s : O b s e r v a t i o n O f f e r i n g>

</ s o s : O b s e r v a t i o n O f f e r i n g L i s t>

</ sos :Content s>

</ s o s : C a p a b i l i t i e s>
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