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ABSTRACT

The development of a prototype, multi-station,
multi-pass GPS satellite data reduction program is
presented in this thesis. The prototype program utilizes

simulated observations to perform orbit improvement and

station coordination, either simultaneously or
independantly.
The observation equations for pseudorange,

-oontihuously integrated Doppler and single difference
phase measurements are given.. The adjustment mddel, which
has a weighted 1least squares <c¢ollocation form, is
formulated and the adjustment equations derived. Two
possible tracking network configurations are presented for
orbit improvement over Canada. Results are presented for
simulation tests which show the ability to improve the
accuracy of GPS satellite orbits to an accuracy of 2.5 m .
Results are also presented for the soclution of receiveq
clock‘ errors, and local station coordinates using

broadcast ephemerides and improved orbits.
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ambiguity parameter

broadcast ephemeris

Doppler measurement

Keplerian initial
conditions

mathematical model

NNSS

nuisance parameter

precise ephemeris

pseudorange

range bias

relative positioning

GLOSSARY

the unknown integer number of
wavelengths arising when single
difference observations are
formed

the parameters encoded in the
broadcast satellite message
defining the satellite arc

the observation formed by
counting the beats produced
when differencing a reference
frequency and a frequency
changing due to Doppler shift

the six Keplerian parameters
defining a satellite pass at a
reference epoch

. a function relating unknown

parameters to measured values
Navy Navigation Satellite System

‘an unknown quantity to be solved
that is not of prime interest

an accurate representation of a
satellite pass, generally
produced post-mission

the range measurement possible
from GPS satellites that is
biased due to clock
synchronization error

the unknown range at lock-on
time associated with Doppler
measurements processed in a
continuously integrated manner

the determination of coordinate
differences between stations
rather than coordinate values



» single difference the observation formed by
differencing a satellite signal

received simultaneously at two
stations
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CHAPTER 1

INTRODUCTION

The establishment of relative station positions is a
common geodetic task. Classically, the techniques of
triangulation, trilateration and traversing have been used
to determine re}ative positions. In the early 1970's,
application of the Transit Doppler satellite system (NNSS)
to relative éositioning work proved to be extremely
powerful [Brown,1970]. The main advantages of satellite
based systems are they do not require 1line-of-sight
between étations, and they can be operated under virtually
all weather conditions. The accuracy achievable with
Transit observations is on the order of a few metres for
point posiiioning, and a few decimetres for relative
positioning [Wells et al.,1976]. To achievé these

accuracies, however, a long observation period is required

since Transit satellite coverage is quite limited, and



many passes are required‘to increase geometrical strength
and redundancy. In the late 1970's, the Global
Positioning System (GPS) of satellites entered the phase I
development and testing stage [Milliken and' Zoller,1978].
The fully operational system of 18 GPS satellites will
have three main advantages over the Transit system: 1)
there will be at least four satellites available to users
24 hours a day, virtually everywhere on the earth; 2)
along with Doppler and phaée measurements, the satellite
emitted code allows for pseudorange measurements not
pgssible_with Transit satellites;and 3) the high satellite
altitude provides for longer observing time spans. These
advantages have already proven that GPS can provide better
relative positioning accuracies in a shorter observation

time than the Transit system [Bock et al.,1985].

The positioning results from GPS reported to date
have involved observations. of pseudorange, Doppler, and
various differences of carrier phase to produce single
point coordinates and relative station <coordinate
differences. The computer software used has been
developed by many different groups, however, there are
similarities in their approaches. Generally, the
satellite cooréinates required for computations are

assumed to be known and treated as errorless, or else



biases for each pass are solved for. The coordinate
values are either computed from the broadcast ephemer;s
message, or input from a precise ephemeris file. Also,
the solution is usually performed for a single station or,
in a relative positioning mode, for a single baseline at a
time. More recent and modern software development has
allowed for the processing of multiple baseline;
simultaneously as more receivers are deployed in the field

during the same observing schedule.

The research reported in this thesis 1is on the
development of a prototype GPS adjustment program, which
can handle multiple satellite passes and multiple
observing stations simultaneously. The program utilizes
either pseudorange, Doppler, or single difference phase
observations. The satellite position computations are
based on numericalzintegration of +the equations of mgtion
for the satellite under the adopted forcé model . The
adjustment formulation is a rigorous, weighted
least-squares approach, allowing for adjustment of the
satellite reference initial conditions along with station
coordinate determination and solution of other nuisance
parameters. The formulation also yields complete

covariance matrices . for the satellite and station

solutions through rigorous covariance propagation.



1.1 Precise Relative Positioning

The ability to produce accurate relative positions
quickly and economically with GPS has ‘rapidly made this
system a powerful geodetic tool. It may not be f;r in the
future when geodetic networks are established and
maintained solely with GPS techniques. The current system
is routinely providing 1 to 2 ppm reiative accuracies on
baselines up to 200 km in length [Goad and Remondi, 19814 :
Beck et al., 1984]. This 1level of accuracy is being
achieved using carrier phase " and/or pseudorange

measurements taken over a few hours.

Significant advances in the study of geophysical
processes have been made with recent improvements in Long
Baseline Interferometry (LBI) technology. The accuracy of
LBI solutions 1is on the order of 1 part in 10_8 and
better, allowing for accurafe determinations of polar
motion, earth rotation rate and crustal motion. The use
of GPS for monitoring crustal mo%ion may be possible on a
regional scale, however, the relative accuracies of 0.1
ppm that are required have not been achieved to date. A
0.1 ppm 1level of accuracy would also be beneficial for
precise geodetic work, where eventually a wunified and
accurate worldwide geodetic reference frame could be

established.



1.2 Orbit Improvement

The relative positioning accuracies achievable with
GPS observations are '1imited by many fgctors, such as
satellite and receiver oscillator instabilities, and
atmospheric modeling errors. The most significant factor
limiting present results to approximately 1 ppm 1is,
however, the affect of orbit errors. The existence of
errors in thé broadcast GPS ephemerides causes errors and
discrepancies in the ground coordinate and coordinate
difference solutions, and these discrepancies are apparent
in results published to date [ie. Beutler et al., 1984;
Beck et al., 1984; Goad and Remondi, 19847]. The
uncertainty introduced into a baseline estimate due to
orbital errors can be approximated by

dp

db = b — (1.1)
0 :

where
db is the baseline error,
b is the baseline length,
dp is the orbit error,and
p 1s the topocentric range from station to
satellite. |

This expression is a geometrical approximation and does

not take into account the baseline and satellite pass



orientation, however, it does provide a conservative
estimate [Buffett,in prep.] which is useful for further

discussions.

Based on the approximation given in Equation 1.1 and
results published to date [ie. Bock et al.,1985], the
broadcast ephemeris orbit error would be, on avérage,
about 20 m and could be as high as 50 m . This level of
orbit error is realistic for the broadéast orbit, and 1is
within design specifications of the GPS Master Control
" Segment [Varnum and Chaffee,1982]. Accepting that GPS
broadcast orbits are only accurate to 20 m, and precise
post-mission ephemerides available to qualified users are
accurate to approximately 10 m [Goad,personal
communication,1984], Equation 1.1 s@ows that the
achievable accuracy on a 1000 km baseline is 1 to 2 ppm.
. Equation 1.1 also shows that to achieve 0.1 ppm relative
accuracies on such a baseline, the satellite orbit error
can be - no larger than 2.5 m . The requiremené of
satellite positions to an accuracy of 2.5 m creates the
need for orbit improvement. Further, if the available
satellite ephemerides are further degraded for civilian
use, thg need for orbit improvement will become more

important.



The technique of orbit impro?ement is implemented by
first representing a _satellite pass with six reference
initial conditions, obtainable from either the broadcast
ephemeris or precise ephemeris file. A Keplerian
representation was used for the initial conditions,

however, it should be noted that this choice is not

unique. Observations are required to the satellite pass
from accurately positioned tracking stations. These
observations c¢an then be used in a least squares

adjustment to solve for corrections to the satellite
initial conditions, in effect improving the accuracy of

computed satellite positions.

1.3 Description Of Present Study

The major objective of this research is to develop a

prototype adjustment software package that will
simultaneously process observations from multiple
satellites and stations. The formulation is to

incorporate full a priori estimates and weighting of
statioﬁ coordinates and sétellite ‘initial conditions.
This aspect of the formulation allows for orbit
improvement capabilities along with estimation of ground

station coordinates and nuisance parameters.



The first step in this study, described in Chapter 2,
involves an examination of the observations to be used.
The observations available from GPS satellites that have
been considered are pseudorange, Doppler, and single
difference phase. The 'mathematical model for each
observation type 1is given, with definitions of specific

parameters pertaining to each.

The second phase of the study is the derivation of
the adjustment model. The general form of the models used
are given, then the linearized form of the partitioned
adjustmeﬁt equatians are derived. This derivation, along
with a brief overview on the computér programming of the

adjustment, is given in Chapter 3.

The requirements of a tracking station network for
orbit improvement are addressed in Chapter 4. The network

configurations analyzed are given, and a discussion is

presented on the required accuracy of the station
coordinates. The approach taken ¢to simulate orbit

improvement tests and tracking network design is also

given.

Simulated orbit improvement results are presented in
Chapter 5. The results for each observation type are

given and compared, along with test results for the



separation of timing errors from orbit errors. The
results for two tracking network configurations are also

compared.

In Chapter 6 the results of station coordination are
given. These results show a comparison of results for a
typical broadcast orbit accuracy versus accuracies.

obtained after orbit improvement.

Finally, conclusions are drawn from the results of
this study, and recommendations are made for additional

future analysis.



CHAPTER 2

GPS OBSERVATIONS

2.1 'Description Of Observation Types

The GPS satellite system provides two fundamental
observation types, pseudorange measurements derived from a
code modulated on the carrieﬁ signal, and  phase
measurements obtained from monitoring the incoming cérrier
signal. The pseudorange measurements. are an important
advantage of GPS over previous satellite systems, since
they allow for instantaneous position computations when
four satellites are observed simultaneously. The GPS
satellites broadcast on two L. band frequencies, ‘1575.42
MHz and 1227.6 MHz, called L1 and L2, respectively.
Measurements on these two frequencies allow for the
computation ofla first order ionospheric correction. The
L1 and L2 frequencies -are also called preécision (P) and

coarseracquisition (C/A) codes, and a thorough description

- 10 -



of these signals can be found in Spilker [1978]. The
accuracy of "pseudorange measuremente on L1 and L2 are on
the order of 4 m and 10 m, respectively [Martin,1978].
This- level of observational accurac} is adequate for
certain applications, such as navigation, however, more
precise measurements are required to obtain precise

geodetic results.

Carrier phase measurements have an accuracy of
approximately 0.1 m [Martin,1978], providing the necessary
precision for geodetic work. There are many measurement
types associated with carrier phase observations, however,
the various types basically arise from the method used for
processing or differencing the phases. The results of
Anderle [1982] were obtained treating phase observations
in the conventional intermittently integrated Doppler
approach. In this approach tﬁe instantaneous phases from
oee satellite are differenced with a reference frequency
generated at one station receiver, producing Doppler beats
which are counted over individual time intervals. If
Doppler measurements are made with respect to an initial
lock-on time, they can be processed as range differences.
This method is known as . continuously integrated Doppler
(CID) and was used by Brown [1970]. The geometry of this

observation type is shown pictorially in Figure 2.1a .



The phases at one epoch from a single satellite can be
differenced across two stations, producing the observation
type called single differences (SD) [Remondi, 1984,
Delikaraoglou, 1985], shown in Figure 2.1b . Single
differences that have been made at two stations to two
different satellites at the same epoch in time can then be
differenced, as shown in Figure 2.1c, producing double
differences - (DD). Finally, double differences from the
same pairs of stations and satellites can be differenced
‘in time, forming triple differences (fD), shown in Figure

2.14 .

A detailed description of SD, DD,'and TD observation
types is given in Remondi [1984]. Results using these
three types are given in Goad and Remondi [1984],‘ and in
Remondi [1984]. The next three sections of this chapter
outline the mathematical formulation for pseudorange,
continuously integrated Doppler, and single difference
phase observations. The formulationé include specific
nuisance parameters and systematic corrections pertaining
to each observation typef The double and triple
difference observation types have not been included in
the program. The reason they are not included is that
these differences are formed to cancel systematic effects,

such as receiver and satellite <c¢lock error, and these



effects have Dbeen explicitly modeled in the single
difference observation equation. The further differencing
of SD observations also results in a canceling of common
orbit error, to a large degree. This result makes DD and
TD observations wuseful for station coordination over
relatively short 1lines, possibly up to a few hundfed
kilometres . The canceling effect, however, is undesirable
wheh orbit improvement is carried out, since the
observation Dbecomes less sensitive to the orbit error

that is being solved.



a) b)

c) d)
Figure 2.1: Geometry of Differenced Observations

a) Continuously Integrated Doppler b) Single Difference

c) Double Difference . d) Triple Difference



2.2 Pseudorange Observations

The‘pseudorange observation equation involves one
receiving station i and one satellite position j. The
basic equation, neglecting atmoépheric delays and timing

errors, 1is written as:

where
pij is the topocentric range from receiver to
satellite,

Pj(tj) is the satellite position vector at
satellite time tj, and

Ri is the station position vector.

The satellite and station position vectors are defined in

terms of earth-fixed, geocentric-Cartesian coordinates as:

ro(t) = [xi(ts), yi(t), z5(t.)1" (2.2)
ity AR EAERA RS ERNER RS '
and
R, = [x,,y;,2;1° (2.3).
i ir¥iszgd o _
where

1 Lt ' '

Xj(tj)’yj(tj)’zj(tj) are the satellite coordinates

at satellite time tj’
xi;yi’zi | are the station coordinates, and

[ 1t : indicates the transpose of a

vector or matrix.



Atmospheric refraction has a delaying. effect on
pseudorange (and phase) observations, and must be included
in Equation 2.1 . The Hopfield [1971] model has been useé
extensively in satellite applications to correc; for the
tropospheric refraction error. The correction is computed
using surface measurements of temperature, pressure and

relative humidity as follows:

Kd Kw
*Perop - /sin(E2+6.25)  /sin(E2+2.25) (2. )
and
Ky = (1.552x107%)PT" 1 (148.727-488.3552-h) (2.5)
K, = (7.46512x1072)eT™2(11000~h) — (2.6)

(0.01H)exp(-37.2465+0.213166T-0.000256908T2), (2.7)

where
Gptrop is the tropospheric refraction correction,
T is the temperature in degrees Kelvin,
E is the elevation angle of the satellite ih
degrees,
P is the pressure in mbar,
e is the water vapour pressure in mbar,
H is the relative humidity in percent,and
h is the station orthometric height.
Thié tropospheric model is generally accepted to be

accurate to approximately five percent of tﬁe total

refraction effect, with the principal error source being

- 16 -



in the wet component of the correction. A method used to

account for this effect was adopted by Fell [1980], where

a scaling parameter, C., is treated as a weighted
parameter to be solved for in the adjustment. The use of
water vapour radiometer measurements for precise

tropospheric delay corrections would likely eliminate the

need for C_,
P B

The upper portion of the atmosphere, known as the
ionosphere, also affects pseudorange (and phase)
meaéurements. There ‘are two _alternatives to making
idnospheric corrections, depending upon how the

observapions were made. If measurements were made on one
frequency only, a single frequency correction model can be
usédl The ionospheric corrections for this procedure are
broadcast in the GPS satellite message, however, results
to. date have been worse when uéing this cqrrection as
compared to .neglecting it [Beck et al., 1984; Lachapelle
and Cannon, 1985]. Further research iswbeing carried out
for improving this one frequency model [Van Dierendonck,
19781. The second method for correcting ibnospheric
delays can be used when measurements are made on the two
broadcast frequencies, Lj and L2. Since the ionospheric
delay is invérsély proportional to frequency, a first

order ionospheric correction can be computed as follows:



%Pion = (P1702) —3—5 (2.8)
fe-f :
2 1
where
Gpion is the ionospheric correction to the L1
pseudorange,
Bi i=1,2 are the measured L1 and L2
pseudoranges respectively ,and
. i=1,2 are the LI and L2 frequencies,

respectively. ‘
The studies done by Fell [1980] indicate an upper bound of
approximately 5 mm on the. residual error when using
Equation 2.8 té correct for ionospheric delays. A residual
ionospheric error or scaling parameter was not included

since this modeling error is negligible.

The pseudorange (and phase) measurements are also
affected by timing errors, both in the receiver and
satellite clocks. Figure 2.2 shows the vrelationship
between the various time scales involved. The GPS Master
Control Station (MCS) establishes a master reference time
scale, and the satellite oscillators are offset and
drifting relative to this scale. The clock behaviour is
monitored by the MCS and their states are estimated
concurrently with the satellite ephemerides. The cloék

error is modeled by a second-order polynomial as follows:



2

th = ao+a1(tj_to)+a2(tj"to) b (209)

where

th is the satellite clock error at time tj,
to is the satellite clock reference time,and
ao,a1,a2 are the clock model coefficients,

broadcast in the satellite message.
Applying the correction th to tj brings the satellite
time approximately into alignment with the master
reference time scale. The above clock model was used in
the adjustment formulation, with the broadcast
coefficients a8y, a7 and a, treated as weighted parameters

in order .to improve their values in the adjustment

process.

Satellite clock error

e —
I ,
| €®— GPS master
} : reference time
l I
@ i Satellite time
|
|
-—? { Receiver time
] I
= 8T »>|

Receiver c¢lock error

Figure 2.2: GPS Time Scales



The receiver clock is also offset and drifting
relative to the master time scale, and the error model
used has the same form as Equation 2.9, The formulation
used is
o)

, ;
6T; = Ag+A (T4 =T ) +A5(T;-T )" > (2.10)

where
GTi is the receiver clock error at time Ti’
TO is the receiver clock reference time,and

AO,A1,A2 are the receiver clock model

coefficients.
The receiver <clock <coefficients are also treated as
weighted parameters in the adjustment formulation, so that

a priori estimates may be used properly.

The final pseudorange observation equation, including

atmospheric and timing corrections, is given in Equation

2.11.
Pij = I l"j(tj)‘Ri |+6pion+6ptr‘0p(‘_l+Cr‘)+06tj—06Ti ’ (2-'!;])
where

p.: 1s the observed pseudorange,and

o] is the velocity of 1light.

2.3 Doppler Observations

The Dbppler observation equation involves one

receiving station i and two satellite positions j and k.

_20..



A-detailed derivation of the Doppler equation can be found
in many references, where the specialized forn for
continuously integrated . measurements is also given
[eg. Brown,1970; Wells,1974]. Neglecting atmospheric and

timing effects, the basic equation is writteﬁ as:

_ _ -1
Nijk = (fg fs)ATkj+fs° 'Apijk ’ (2-12)
where
Nijk is the Doppler count,
fg is the receiver generated reference
frequency,
fs is the satellite carrier frequency,
ATkj = Tp=T; is the time interval determined from
the receiver oscillator, and
is the range difference from ground station i1 between
satellite positions j and k. The Doppler equation is

analogous to a measurement of the difference in range at
two epochs in time. The tropospheric delay correction can
therefore be computed as the difference of two pseudorange

corrections, as follows:

- k sy
Aptr’op = SPtrop~%Ptrop (2f?3)

where

Aptrop is the Doppler tropospheric corredtion,and

J

Gptpop :Gptpop are the h range tropospheric

corrections computed using Equation 2.4 .

- 21 -



It should be noted that this correction is in metres and

must be scaled into cycles to be. applied to Equation 2.1?.

The ionospheric delay for Doppler measurements-can be
computed from observations on the two carrier frequencies.
The correction, given in Equation 2.14, was developed
using the same procedure found in Krakiﬁsky and Wells
[1971] for Transit Doppler observations, except the GPS L1

and L2 frequencies were used. In equation form,

36 77
AN, = ~— N~ - N , (2.14)
? 23.29 | 60 2 t ] .

where
AN1 is the L1 ionospheric correction,and
Ni i=1,2 are the observed L1 and L2 Doppler

counts, respectively.

The time interval ATkj in Equation 2t?2 is determined
by the receiver oscillatof, and therefore errors in the
receiver frequency will affect the observations. The time
offset AO in Equation '2.?0 will cancél since it is
constant over the interval. The remaining errors of time
drift A1 and ageing rate A, are equivalent to a frequency
offset and frequency drift respectively [Davidson et

al.,1983], as shown below



Ay = — : Ay = —= (2.15)

A1,A2 are the time drift and ageing coefficients
. defined in Equation 2510,
Afo,f are the frequency offset and drift
respectively,and

fg is the nominal oscillator frequency.

The correction for the receiver oscillator can now be
computed in terms of frequency as follows

Afk

Afo+fATkj

+2A2ngTkj s (ZfT6)

1]

A1fg

where
Afk is the frequency offset at time T, ,and
ATkj = Tk_Tj
It should be noted that this offset is in Hertz, and nmust

is the receiver time interval.

be scaled by the time interval ATI;j to be applied to
Equation 2.12 . The final -equation for conﬁinuously
integrated Doppler measurements is . given below. The

satellite position subscript j has been replaced by

subscript o, indicating the measurement Nijk and
corresponding time interval ATkj are with respect to the
initial 1lock=-on time T,. This formulation makes it

necessary to solve for an additional unknown parameter L

the range bias at lock-on time, namely

_2_3_



N - _ -1
NiOk = (fg f1)ATkO+ATkO(A1fg+2A2ngTko)+f1c Apiok (2t17),
and
} -1 , ]
where ' :

Niok is the observed Doppler count; on the L1
frequency, at time T, since reference time

To’

ATko = Ty-T, is the receiver time interval since
lpck-on time To,and

bo is the range bias at lock-on time.

The above Doppler formulation is given in terms of f1, the

L1 satellite frequency, since the ionospheric correction

has been developed to give the correct value 'for L1

observations. However, observations are required on both

the L1 and L2 frequencies so that this correction c¢an be

computed.

2.4 Single Difference Phase Observations

Phase observations, denoted by ¢, are produced by
determining the difference between the phase of a
sateliite generated signal ¢s and the phase of a receiver
génerated reference signal ¢R' foh‘an arbitrary epoch i,
the satellite signal is transmitted at satellite time ti

and received at receiver time Ti’ The instantaneous phase



¢j, involving one satellite position and one ground

station j, is defined as follows:

-
i

]

where

pj is the receiver to satellite slant range.

Note that in Equation 2.19 the effect of atmospheric
delays ana timing errors have been neglected, and that the
satellite phase ¢4 is defined in terms of the receipt time
Ti minus the propagation time pjc_1} Goad and Remondi
[1984] have indicated that, since the oscillators involved
are quite stable over short periods of t;me, the first
term in Equation 2.19 canrbe adequately approximated by a
linear Taylor series expansion of the form

¢(T+AT) = ¢(T)+fSAT , (2.20)

where fs is the oscillator_frequency.

Substituting (2.20) into (2.19) yields
. -1_,

where Nj is an unknown ambiguity parameter.

The parameter Nj compensates for the fact that the
first term in Equation 2.21 is less than one cycle, and

the second term contains many cycles.



The single difference phase observable used in this
research involves a single satellite position and two
ground stations j and k. The observation is forméd by
simply differencing the measurements, represented by
Equation 2121, taken at two stations. The resulting
equation has the following form:

by = fsc_T(pj"Pk)‘(¢Rk-¢R.)+(Nk—Nj) ,  (2.22)
where the first term is the differeﬂci of slant ranges
betwegn oﬁe satellite position and the two receiving
stations J and k; the second term is the phase difference
between the two station clocks; and the third term is the
difference of two station/satellite_ dependant unknown

ambiguiﬁy parameters.

The tropospheric and ionospheric delay corrections
are applied to single difference phase observations in thé
same manner as for Doppler ‘measurements, given in
Equations 2.13 and 2.14 respectively. The phase
difference between the two station clocks is corrected for
oscillator instabilities in a similar manner to Equation
2.10 for pseudorange measurements, except the correction
involves the difference of two different station clock
corrections. The final single difference phase

observation equation is given as follows:

AP = -1 -z , - | '
3k 1o (pymp) *A05on*80tpop A0y ine* NNy & (2.23)
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and

36 7 |
A®ion = — 9%, ~Ag} (2.
ion 23.29 I 60 Jk Jjk l
Ao = r,0 (608 ~5p) )(1+C.,) (2
trop T~ 1€ - trop” °Ptrop r

2

8¢y ime = Fq(BAG=AAJAT=-AALATT) (2

pk—pj = | ri(ti)—Rk I", r'i(ti)—Rj l ’ (2
where '

A@;k i=1,2 are the observed phase differences,
on L1 and L2 frequencies respectively,
between stations j and k and a single
satellite position,

A¢.on 1is the ionospheric correction for L1

observations,

'A¢trop is the tropgspheric correction,

Gp%rop’ Gpirop are the individual tropospheric
corrections computed using Equation 2.4
based on ranges to stations j and. k

respectively,

A¢time is the correction between receiver clocks ,

A, = A?-Ag i=0,2 are the _differeﬁces in clock
model coefficients AO, Ay, and A, for
stations j and k, and

AT = T,-T, is the receiver observation time T;

minus the receiver clock model reference

time T .
o -

24)

.25)
.26)

-27)



The single difference phase measurement defined in
Equation 2.23 is for observations on the L1 frequency, as
denoted by the superscript 1 in the term A@jk, The reason

this 1is specified 1is so the ionospheric correction termn

A¢ion has the correct value. However, it should be noted

that meaéurements are necessary on both the L1 and L2

frequencies in order for this correction to be computed.

In the adjustment formulation, the unknown ambiguity
parameters are not treated in the usual manner, where each
baseline has a parameter associated with it for each
satellite pass. Since a multi-station approach is used,
this method would produce dependant ambiguity parameters
when observations from three or more stations are
processed simultaneously. The method used establishes a
‘master station within the network of observing stations.
There will then be an ambiguity parameter for every other
station in the network, relative to the master station,

for each satellite pass observed.



CHAPTER 3

ADJUSTMENT FORMULATION

The three observation equations given in Chapter 2
relate the observations to particular constants, such as
the velocity of light, and to the unknowﬁ parameters to be
solved for. The measurement of more observations than
unknowns results in a redundant set of equations, which
increases the accuracy of the soclution and yields the
ability‘to do sgatistical testing. The following sections
of this chapter give the mathematical models used to solve
this set of redundant equations using the method of 1least
squares., The method involves linearizing the model using
a Taylor series expansion, then deriving the adjustment
equations via the Lagrange method and matrix partitioning
techniques [see Vanicek and Krakiwsky, 1982]. The 1last
section in this chapter gives a brief overview on the

computer coding of the adjustment equations.



3.1 Estimation Model

The vector of observations used in the adjustment is
denoted by 2. Thé three observation types are processed
independantly in the prototype program, with an option
available for combining solutions wusing a summation of
normal equations technique. The unknown parameters have
been partitioned into three sets:

1) The first set contains all tracking station Cartesian

coordinates [x,,y,,z;], and is.denoted by x.

2) The second set is comprised of six Keplerian
reference initial conditions [ao’eo’wo’io’go’Mo] for

each satellite pass, and is denoted by z ,

0
3) The last set contains the following nuisance
parameters defined in Chapter 2:
i) scale parameter C. to resolve unaccounted for
tropospheric refraction;
ii) corrections to satelliée clock polynomial
coefficients (aO’a{’aZ);
iii) receiver clock ﬁodel coefficients (AO,A1,A2);

iv) a range bias at 1lock-on time for each station/
satellite combination (ro, for Doppler only);
v) an ambiguity parameter for each station/satellite
combination relative to a master station (Ni, for

single difference phase only); and



vi) an unknown scale factor to account for solar

radiation pressure in the force model.

The third set of unknown parameters is included in
vector Xx in the current prototype adjustment program. A
future version may have this set explicitly partitioned,
and possibly divided into pass dependant and station

dependant parameters.

Information on the accuracy of observations is input

into the estimation model via <covariance matrix Cg,
Options allow for a priori estimates of x and Zo to be

input, along with their associated covariance matrices Cx

and C
z

o -
The estimation model wused is comprised of two

functions, £, and f,, given below:

£,0x, x', ) =0 , Cg, Cy l (3f?)
fé( X'+s, z, ) = 0 » Cq» czo : (3.2)
where
X' 1is the vector of satellite cartesian
coordinates, and
s Vis the signal componentf

The first function, £, corresponds to a  pure geometric
mode of satellite bositioning [Scnwarz, 1969], relating

ground station and satellite Cartesian coordinates to the



vector of observations. The second function defines the
relationship between the satellite initial conditions and
the satellitg Cartesian coordinates at an arbitrary epoch.
This relationship involves a solution of the equations of
motion for the satellite in terms of the 1initial

conditions.

‘The superiority of a short-arc state vector approach
" for solving corrections to satellite initial conditions
over an orbit bias approach 1is shown conceptually in
Figure 3.1 . In the orbit bias approach, generally three
Hiases in the along-track, radial, and out-of-plane
directions are solved fof. This method affords some
improvehent in the satellite positions, however, the
estimaéed orbit will not accurately follow the 'true'
orbit since the biases cannot vary in time. rUsing the
short—érc state vector approach, the shape of the orbit
should be accurately defined by the force model and
perturbation equations used. The solution provides
corrections to the initial conditions which, when added to
the nominal values, yield an accurate estimated orbit that

closely follows the 'true' orbit.
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ESTIMATED
1 ' .
TRUE ORBIT ORBIT

NOMINAL ORBIT
(BROADCAST)

a) Three Orbit Biases Approach

ESTIMATED

"TRUE ORBIT' -<<//1///OBBI?

NOMINAL
ORBIT

C aO’eO’wO'IO’QO’MO ]

b) Short-arc State Vector Approach

‘Figure 3.1: Approaches to Orbit Imﬁrovement
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Note that in Equation 3f2’ the provision to treat f2
as. imperfect has been incorporated, and the imperfection
has been treated as a signal s. To utilize this aspect of
the formulation an a priori signal covariance matrii CS is
required. This signal covariance matrix may be determined
by analyzing the higher order perturbations truncated from

the force model used. Another possible source for

obtaining C_ may be from an analysis of the observation

residuals after an orbit improvement solution.

The solution of the equations of motion for GPS
satellites was analyzed and programmed by Bruce Buffett
[Buffett, in prep.]. Some comments on certain aspects of

this solution will be given in section 3.3 .

Thé linearized form of f1 is

A Sx+A, y8x'+W = 1 : (3f3)
where

of

A
oxX
af

P
ax!

w' = f»](xosx'o,f(:)

and 8x, 6x' and r are corrections to the approximate




values of the unknowns x° and x'°, and the observations &,

respectively.

The linearized form of the second function, f2, is
6% = BSZ -s (3.4)
where B = B152

3% ' (t) dz(t)

= (3.5)
9z (t) azo

Equation 3.4 relates corrections to the satellite initial

conditions, 8z,, to corrections to satellite Cartesian
coordinates §x', at an arbitrary epoch t.
The covariance matrix of the signal, Cs’ can be

defined as follows: .

£
Cs = BqCgyBy (3.6)

where Caz is the a priori signal covariance matrix for the

Keplerian orbital elements.

The combined estimation model is formed by explicitly
substituting Equation 3.4 into Equation 3.3, yielding

Agex+A,, ( Bsz -8 )+w =r (3f7)

or equivalently,

A Sx+A Bz ~A  8+W = T 7 (378)

with a priori covariance matrices Cx’ C, » C
o]

model of Equation 3.8 is in the category of least squares

s and Cﬁf The

collocation [Schwarz 1976 ; Moritz 1972], and the

- 35_
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~

formulation can be transformed into hypermatrix notation
as shown below. Equation 3.8 can be rewritten as
[ AX AX'B ] §x + [ —AX' ] S + W =71 t (3{9)
Gzo

The hypermatrices are then defined as follows:

x!

AT = [ A, A, B 1, (3i?0)
x' = [ &x EN 1t (3.11)
B = [ -a 1. : (3.12)

The above equations can then be rewritten in collocation
form as

A*x* + B*s + W o=r , (3.13)

with corresponding covariance matrices

C_% = C 0 » Cgr Cgu (3.14)

3.2 Least Squares Solution

The least squares solution to the'above mathematical
extrgmum problem can be found'using the Lagrangé method.
In this method, the problem 1is defined in terms of a
.variation function, ¢, wWhere a vector of Lagrange

multipliers k are introduced as follows:
t _a _ )
_r+x* Cx*x*+stcs1s+2kt(A*x*+B*s+w-r) . (3.15)

R /
¢ = r CZ

. e o L ST SRR RIS L



The desired least squares solution is found by
minimizing the variation function of Equation 3.15 . This
is accomplished by taking the partial derivatives of ¢
with respect to the unknowns’r, x*, s and k , then setting
these derivatives equal to zero and solving the resulting
set of equations, given in Equations 3.16 to 3.19 .

0¢

=c'r -k =0 , (3.16)
ar :

5

ax*

(3.17)

]
Q
*x

»
o+
=
~

]
o

3¢ ) ‘
— =C s+ B k =20 , (3.18)
9s )

3¢

ok

i

2¥%* + B¥s v+ w -pr =0 . (3.19)

The solution of this set of equations is a mihimum if the
second derivatives are positive or zero. This 1is
confirmed , since the second derivatives of Equations 3.16

-1 -k -1
to 3f18 are equal to Cz,, Cx* and Cs.

respectively, and
covariance matrices are positive definite by definition,
and the second derivative of equation 3.19 is equal to
Zero. :

The most expanded form of the 1least squares normal

equations pertaining to Equations 3.16 to 3.19 is
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(c;'-1 o o | [r ] ol [o]
-1 o a¥ ¥ k W 0
. A*t c;i Py * + . = | . . (3f20)
o 5% o c;! s 0 0

This system of equations is reduced by first eliminating
the vectors r and k using a special elimination technique
[e.g. Thomson 1969 ; Wells and Krékiwsky 1971]. Applying

the technique to Equation 3.20 twice yields

' c;§+A*tc;_A* A*tCE_B* x*
B*tCQ_A* | c;?+B*tc;_B* s |
A*tC£1w 0
B*tci?w = . . (3.21)

Row and column interchanges are now used in order ¢to

eliminate s, resulting in

Lt £ _ DR
(Cc%+n" CQ?A*—A* CQ.B*(CS?+B* CLTB*) 1p* CQ?A*}x* +

£ £ £ £ ;
(¥ cylw-a% c;_B*(c;?+B* c;’85) 718  cilwy -0 . (3.22)

The hypermatrix definitions given in Equations 3:10, 3;11,
3.12 and 3.14% can now be substituted into Equation 3.22,
and the resulting system further partitioned to yield

solutions for 66X and Gzo as shown below.

1

- -1 -1
Gy TNy g Ny gm (N pmNgy) (Cy #NppNyy) - (Npq-Nyg)dex

x
(U3 =U3= (g p=Ngy) (€5 +lipp=Nyy) ™! (U=t = 0 (3.23)

(0]
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-1 ,
{Cz6+N22‘N4u‘(N21“Nu3)(Cx

(U= (g -ty 3) (0]

where

a1
N11 = AXCSL A ’

tA—1
N12 = AXCSL‘AX'B ’

1 -1 \
+N11_N33) -(N12'N3u)}ozo

+N11"N33)—?(U14U3)} =0

Nay = Nip = BUAZ.CRIAL

Ny, = BUAL,CpAL B,

N33 = AXCQ1A D—?AivC£1AX ’

Ngy ='A§C£?AX,D—?A§,C£1AX,B ,
Nyg = Ny = B%aS,cila 07l et
Ny, = BtAi,g£1Ax,D"TA§,c£?AX,B .
D - Cs1+A§'C;1Ax'

u, = alcylw,

u, - stat 021 ’

Us = AxC£1A D—?Ai,cg?w , and
U, = BtAg,Cz1A et cylw

-+

(3.24)
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The signal component of the formulation is not

incorporated in thé present version of the prototype
adjustment package. The corresponding equations are

obtained by deleting all terms involving C the a priori

S,
signal covariance matrix. The resulting equations,
without the signal component, are

1 1

_1 —_
{c -+N11‘N12(Cz6+N22)

X Nojpléx o+

[U1—N12(C;g+N22)_1U2} = 0 (3t25)

and

-1 -1 -1
{CZO+N22—N21<CX'+N11) .N1?}6Zo +

(Uy-nyy Cogl+iy D lugy =0 (3.26)

The estimated station Cartesian coordinates and

nuisance parameters are computed as follows:

~

X = x%+8x (3.27)

with covariance matrix

- -1 -1 -1 -1
Ox = 0g *Nyqmlyp(Cy #Npp) Mg} o (3.28)
The estimated satellite initial conditions are-given by
~ _ ° ,
ZO = Zo+620 (3t29)

with covariance matrix

Z

. -1 -1 -1 -1
c o = {CZ(')+N22—N21(CX +N11) .N12} . . (3.30)

The ability to do orbit 'improvement has been

incorporated in the least squares adjustment by treating

ara s X R Ao S W Seme e
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the satellite initial conditions, Zys as weighted

parameters , with a  priori covariance matrix Cz . In
o -
addition, a solar radiation pressure constant is also

treated as a weighted parameter. The orbit improvement

mode is obtained by increasing the a priori initial

condition variances wused in C The ground station

z
o -
coordination mode is obtained by representing a precise

orbit with small variances 1in Cz , and vrelaxing the
o]

station coordinate covariance matrix CX or deleting it
altogether. Simultaneous improvement of ground station
coordinates and satellite initial conditions is also

possible when both CX and CZ are relaxed.

0

3.3 Adjustment Software

The adjustment software developed for GPS orbit
improvement and preci;e positioning consists of ¢two
distinct program packages. The first, Adjustment Software
for TRacking station and Orbit parameters (ASTRO), was
developed by the ;uthor for the processing  of
observations, formation of the normal equations, iteration
until the solution has converged, and computation and
output of final results. The second proéram package,

Program for Earth orbiting Geodetic Satellites (PEGS), was

dgveloped by Bruce Buffett [Buffett, in prep.] to compute

P



satellite Cartesian coordinates using numerical
integration of the -equations of motion in terms of six
Keplerian initial conditions. The GPS observations were
simulated using program | DIFGPS, developed at The
University of New Brunswick [Davidson et al., 1983]. This
program was modified by the author to compute sate;lite
coordinates wusing PEGS, and to produce data files

compatible with ASTRO.

The main program and 34 subroutines of ASTRO are all
written in FORTRAN T7. The logic flow of program ASTRO is
shown in Figure 3.2. The program starts by setting various
constants and reading ground station, satellite and
observation data files. Description of the data file
formats are given in External Appendix I. The program
then branches for the particular observation type being
processed. For each type , partial derivatives are
evaluated with satellite Cartesian coordinates computed
via calls to PEGS. The observations are proceséed
sequentially, wusing summation techniques to form the
normal equation blocks given in section 3.2 . The
sequential formation of normal equations reduces execution

time and storage requirements, since large design matrices

Ax and Ax' do not have to be stored or mathematically

processed. The program execution, having returned to a



single flow, then adds all a priori covariance information
and computes a least squares solution. The corrections
are added ¢to approximate values and tested against
convergence télerances. If another iteraﬁion is required,
the program re-processes all observations wusing updated
values of the parameters. In the second and subsequent
iterations, program PEGS is <called with an option to
enable analytical computations rather than numérical
integration. The corrections to Keplerian initial
conditions, SZO, are passed to PEGS, which uses analytical
techniques to compute corrections to satellite Cartesian
coordinates, rather than re-integrating the orbit with
updated Keplerian initial conditions. This procedure
proved to be computatiqnélly efficient, however storage
requirements are increased since satellite Cartesian

coordinates must  be retained in memory. Program PEGS also

uses analytical formulations to evaluate +the Jacobian

matrices B1 and B2 . Once all corrections are below
convergence tolerance, the solutions and associated
covariance matrices are computed and printed out. There

is also an option available for storing the normal
equationAmatrices, which could later be used for combining

independent solutions.
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Figure 3.2: ASTRO Conceptual Flowchart
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CHAPTER U

TRACKING NETWORK DESIGN

The effect of satellite orbit errors on ﬁhe accuracy
of positioning results was represented in Chapter 1 by
Equation 1.1 . This relationship shows that given the
available accuracy of 20 to 50 m for GPS satellite
ephemerides, the relative accuracy obtainable on baselines
will be on the order of 1 ppm at best. Results for GPS
positioning published to date have often reached this
level of accuracy [e.g. Lachapelle et al.,1985 ; Goad and
Remondi, 1984 ; Beck et al., 1984], and many researchers
now believe the error limiting results to this level of
accuracy is in the satellite orbit. To obtain baseline
accuracies of 0.1 ppm, satellite positions will have to be

known to an accuracy 6f 2.5 m .



The ability to resolve errors in the orbit elements
defining a short-arc ( four hour ) GPS satellite pass
is mainly dependant upon the tracking station geometry,
the obsérvation accuracy and the -observation type
[Nakiboglu et al., 1985]. The next section of this
chapter gives an outline of the tracking network
configurations used to study shorﬁ—arc GPS orbit
improvement over Canada. The criteria for selecting the
two configurations are given, with a discussion on the
accuracy requirements for tracking station coordinates and
frequency standards. The following section outlines how
GPS observations were simulated for this study. The final
section in this chapter gives the procedures used for
studying GPS orbit improvement capabilities over Canada.
The methods usedrfor comparing observation types, tracking
network configurations, and sensitivity to different orbit
elements are giveh. The solution of receiver clock errors
is outlined, for both orbit improvement and station
coordination tests. Finally, the approéch usgd to compare
results of station solutions usiﬁg orbits with broadcast

ephemeris accuracy versus improved orbits is outlined.

4.1 Tracking Network Configurations

The use of regional tracking networks to improve GPS



orbit accuracy is being investigated by various research
groupé [Stolz et al.,1984 ; Davidson et al.,19857. The
concept of orbit improvement employed at The University of
Caléary involves modeling ~ all ,pberturbing férces actihg
upon the satellites to a desired level of accuracy, in
this case 2.5 m . Each satellite pass 1is defined using
six reference initial conditions, and the equations of
motion for the satellite under the adopted force model are
either numerically integrated or analytically evaluated to
generate satellite Cartesian coordinates [Nakiboglu et
al.,19847]. The reference initial conditions used in this
study are Keplerian orbital elements. A detailed
description of the orbit modeling used in this study can
be found in Buffett Lin prep.]. The sgtellites are
monitored from accurately positioned tracking stations in
the region of 1interest, and wusing these obsérvations
corrections to‘ the reference 1initial conditions are

computed in a least squares adjustment.

The two tracking station configurations used in this
study are shown in Figure 4.1, and the station coordinates

are given in Table 4.1 .
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Table U4.1: Tracking Station Coordinates

WGS 72 and Conventional Terrestrial Datums

Station Lat. (?) Long. (°) Ht. (m)
x (m) y (m) . z {(m)

1 Dominion Radio 49.42 -119.65 547.5
" Astrophysical ~2060856.12. ~3620402.85 4814245.35
Observatory ) ’ ‘
2A Yellowknife 62.47 -114.50 203.9

Seismic -1225808.90 -2689792:.14 5633096.01
Station ’ ’ ) ;
2B Repulse 67.00 ~-86.00 200.0
: Bay 174343:21 -2493224;10 5848595:.82
3A Algonquin 45,95 -78.08 240.0
Radio 917575.63 -4346688.12 4561556.48
Observatory ) ) o ’
3B Houston 30.0 ~-96.00 300.0
Texas -577887.14 -5498228:89 3170522.92
y Port 48.30 54,11 152.0
Blanford 2492049.90 —3&43897;21 §7392u44;.38

Nfld.

fhe ellipsoid coordinates are referred to the WGS 72 datum
and the Cartesian <coordinates are in the conventional
terrestrial system [Vanicek and Krakiwsky, 1982]. . The
first network chosen, network A, was collocated with four
stations of the proposed Canadian Long-Baseline Array
(CLBA) [Canadian Astronomical Society, 1984]. This
network was selected to locate the stations over as largg
an extent as possible, while still retaining the stations
in Canadian territory. CLBA stations were chosen since

accurate station coordinates would be readily available,
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as shown in the results of Shapiro [1979] where relative

station accuracies on the order of 1 part in 1078 yere

obtained using VLBI and laser vranging techniques. The
result, however, is a network with a large east/west

extent but a much smaller north/south extent. The
possibility of this limiting geometric aspect to network A
affecting orbit improvement.solutions was recognized, and
hetwork' B was selected so a comparison could be carried
out. 1In network B, station 2 was moved further north and
station 3 was moved south to Houston Texas, resulting in a

much larger north/south extent.

The effect of inaccuracy in tracking station
coordinates _on orbit improvement solutions was studied,
and these results will be presented in Chapter 5. The
tests involved increasing the a priori standard deviations
on the coordinates and applying random errors to the
coordinate values untii the orbit solution degraded beyond
the desired 1level of accuracy. The wuse of accurate
frequency standards at all tracking stations is also
essential for orbit computations. The method for treating
clock error outlined in Varnum and Chaffee [1982] was
adopted, where cesium fequency standards are used at each
tracking station. The procedure involves solving for a

time offset (bias) and drift for each station clock,



except one station designated as establishing the master

time scale.

4,2 Simulation of Observations

The analyses carried out in this study were done with
simulated observations. The observations were simulated
using the program DIFGPS, developed at The University of
New Brunswick [Davidson et al., }983]. The program was
modified by the author to wuse the ofbit integration
package PEGS for computing satellite positions. Further
mbdificaﬁions were carried out to generate data files

compatible with the adjustment program ASTRO.

The observation types generated were pseudorange,
continuously integrated Doppler (cip), and single
difference phase (SD). In certain tests the observations
were generated with random error applied using a raﬁdom
number generator and one sigma standard deviations of 2 nm
for pseudoranges and 0.1 m for CID and SD. These
accuracies reflect receiver random error, atmospheric
modeling error, satellite group delay and mnmultipath
effects, and are taken from Martin [1978]. These one
sigma values do not include inaccuracy due to satellite
position error and oscillator instability. Instead,

satellite reference initial conditions and clock
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polynomial coefficients are treated as weiéhted parameters
in the 1least squares adjustment, and their inaccuracy is
explicitly propagated.into the solution wusing a priori

covariance information.

Pseudorange and CID observations were simulated at 60
second intervals for orbit improvement tests, while;the SD
intérval used was 80 seconds. This resulted in
approximately 900 observations to each fopr hour satellite
pass. Station codrdination tests were carried out using
pseudorange and CID observations at 180 second intervals
and SD observations at 240 second intervalé. These
intervals produced approximately 360 observations ﬁer
pass, however three passes were pfocessed simultaneously
resulting 1in approximately 900 observations per station

solution.

In certain cases the observations were simulated with
receiver clock biases. The details of these tests will be
given in Chapters 5 and 6. The satellite reference
initial conditions wused to simulate observations define -
the 'cofrect' orbit. The a priori éatellite initial
conditions wused in the adjustment process were varied,

again depending upon the specific test being done.



4,3 Simulation Procedure

The ability to solve errors in orbit .elements was
tested by applying an error to éhe reference initial
conditions used to simulate observations. The errors
applied were usually 50 m (1.8){10'6 radians),:however,
smaller errors of 10 m were used in some cases. The
biased orbit elements were then used as a priori values in
the adjustment prosess, with their a priori standard
deviations 1increased to a level commensurate with the
error applied. A least squares adjustment was then
performed wusing the simulated observations to recover the

correct initial conditions.

The orbit improvemen@ tests were carried out for
three different satellite passes, and for eéch observation
type independantly. Tests were done for one orbit element
at a time, and then multiple elements were solved
simultaneously. Certain multiple eiement tests were
repeaéed using pseudorange and CID observations to network
B in order to test the effect of network'geometﬁy on orbit

improvement capabilities.

The solution of receiver clock errors simultaneously
with either orbit errors or station coordinates was

studied using procedures similar to the orbit improvement



tests. The observations from tracking nethrk A were
simulated with clock biases on stations 1, 2A and 3A.
Orbit solutions' were carried out while simultaneously
solving for these clock errors, using a priori valuesr of
zero for the ‘biases. The solution of clock drifts was
tested by wusing non-zero a priori drift values for
stations 1, 2A and 3A, while the observations were

simulated with zero drifts.

Solutions for station coordinates on a 1local ~scale
were carried out to compare the accuracy of results when
using a broadcast orbit versus an improved orbit. In all
cases the a priori coordinates for two of the three
stations were put in error by 500 m . The comparison was
done by first solving for the station coordinates using a
"priori satellite'initial conditions in error and held
fixed. The incorrect initial conditions weré then
improyed using tracking network A observations,“ then the
local station solution was repeated with the improvéd
orbit. Finally, the local station solﬁtion was performed
using _the incorrect initial conditions, however correctra
priori standard deviations were used to attempt a
simultaneous orbit improvement and station sélution.

The results of all tests described in this section
are presented in the following ¢two ohaptersf Table 4.2

gives a summary of the simulation tests carried out.
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Table 4.2+

Parameters Solved

» single orbit .
elements

* multiple orbit L.
elements

*« multiple orbit .

elements and
clock error

« station coordinates
and clock error

« station coordinates .
and orbit error

Summary of Tests
Purpose of Test

test force model and adjustment
formulation

test computer coding of above

analyze ability to do orbit
improvement over Canada for the
three observation types

comparison of network
configurations

study effect of inaccuracy in
tracking station coordinates

test ability to resolve clock
and orbit error simultaneously

test ability to resolve station
coordinate and clock error
simultaneously

study effect of orbit error on
station coordinate solutions

compare station positioning
using broadcast versus improved
orbits



CHAPTER 5

RESULTS - ORBIT IMPROVEMENT

The simulation results presented in this chapter
dgmonstrate the capability of doing ‘short-arec orbit
improvement over Canada. The first set of results given
in section 5.1 are for single and muitiple orbit element
errors using pseudorange, CID and SD observations féom
network A. In section 5.2 the results of multiple orbit
element error tests are given for observations fron
network B. The next set of results, presented in section
5.3, are for the solution of receiver clock errorsr
simultaneously with orbit element errorsf Finally, in
sgctioﬁ 5.4,' the results of tests on the effect of
inaccuracy in the tracking station coordinates on orbit

improvement are presented.



5.1 Network A Results

Tests were carried out using observations from
network A to determine how well errors in orbit glements
could be recovered. The tests were done for £hree
satellite passes over Canada, each having a four hour
duration, with errors on single elements solved
individually and then 1in various combinations. The

results of these tests have been presented previously_ in

Nakiboglu et al. [1985].

The first set of tests pérformed were done with
perfect observations. No random observational error was
applied in order to test the satellite force model and
adjustment formulation under perfect conditioné. In each
test the a priori value for one orbit elément was put in
error by 50 m o ( 1.8x1076 radian ), and its a priori
standard deviation was also increased to this 1level.
Pseudorange and CID observations were simulated at 60
second intervals, producing approximately 900 observations
per bass. The interval for SD observations was increased
to 80 seconds so that approximately the same number of
observations were generated. This type of test was
carried out separately for each Keplerian orbit element

and for the three different satellite passes over Canada.

Using pseudorange observations, the maximum error
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remaining in an orbit element after the solution converged
was 0.02 m, and generally the remaining error was 0.01 mnm
or‘ less. The one sigma standard deviations for these
solutions ranged from 0.09 to 1.36 m, and were generally
on the order of 0.60 m. The maximum error remaining in
CID éolutions was 0,12 m, and again was generally 0.01 m
or less. The standard deviations ranged from 0.01 to 0.11
m. The SD solutions had a maximum error of 0.35 m, and
the standard deviations ranged from 0.06 to 0.37 m. The
convergence tolerance used to stop the adjustment‘ from
iterating was 1.0 m for corrections to the orbit elements,
indicating the adjustment formulation and force model are

programmed'and,working correctly.

The next set of tests performed were done in the same
manner as the single element tests, except multiple
elements were put in error and solved simultaneously. The
pseudorange, CID and SD results for thesg tests are given

in Tables 5.1, 5.2 and 5.3 respectively.



Table 5.1: Multiple Orbit Element Errors
Pseudorange Solutions

Elements  Error Remaining ¢ of MSCCE ASCCE?
Biased by in Elements Elements
50 Metres
a 0.24 0.14
e 0.02 0.30 0.6 0.2
M 0.46 1.62 : '
a 0.00 0.10
i 0:00 1:32 0.5 0.2
M 0:00 0.60 - :
a 0.00 0.10 0.5 0.3
M 0.00 0.59 :
a 0.00 0.10
Q 0:01 2:83 0.6 0.3
M 0.00 1.70 - -
a 0.24 0.16
e 0.0 0:46 1.1 0.3
i 0:12 2:03 x *
Q 1.30 2.98
M 1:28 3.03
a 0.00 0.11
w 0.01 1:78 0.3 0.2
i 0:01 1:40 ' '
Q 0.01 2:98

1 MSCCE Maximum satellite Cartesian coordinate error.

2 ASCCE

]

Average satellite Cartesian coordinate error.

3 As mentioned previously, the tolerance used to stop the
adjustment from iterating was 1.0 m . The remaining
errors below 1 m will decrease and may actually become
zero if the'adjustment was iterated further with a lower
convergence tolerance. Errors larger than 1 m would not
likely be completely removed since the corrections have

already fallen below this level. The 1larger remaining
errors are due to ill-conditioning in the adjustment and
truncation errors introduced by the analytical

formulation.



Table 5.2: Multiple Orbit Element Errors
CID Solutions

Elements Error Remaining 0 of MSCCE 7 ASCCE
Biased by in Elements Elements
50 Metres (m) (m) - (m) (m)
a 0.70 0.03 ,
e 0.15 0.04 1.7 0.4
M 0.43 0.27 s ’
0.00 0.03
i 0.00 0.19 0.0 0.0
M 0.01 0.16
a 0.00 3 0.0 0.0
M 0.01. 0.16 '
a 0.00 0.03
Q 0.01 0.15 0.0 * 0.0
M 0.01 0.18 )
a 0.66 0.22
e 0.01 0.08 1.2 0.5
i 0.82 0.43 . '
Q 0.60 0.29
M 1.54 0.40
a 0.00 0.03
w 0.01 0.18 0.0 0.0
i’ 0.01 0.25 ’
2 0.19

06.00



~

Table 5.3: Multiple Orbit Element Errors
’ SD Solutions

Elements Error Remaining ¢ of MSCCE ASCCE
Biased by in Elements Elements
50 Metres (m) - (m) (m) (m)
a | 0.21 0.08
e 0.06 0.28 0.8 0.4
M 1:61 0.72 :
a 0.09 0.08
i ) 0.06 0.32 1.4 0.6
M 0.10 0.32 T )
a 0.10 0.06 0.6 0.4
M 0.07 0.30 : ’
.a 0.20 ‘ 0.11
Q 0.16 0.22 0.8 0.4
M 1.12 0.32 ’
a 0.67 0.19 7
e 0.85 0.44 2.0 0.8
i 1:.27 0:42 :
Q 0.34 0.28
M 0:29 1.08
a 0.27 0.11
0 0.13 0.35 1.0 0.8
i 0.78 . 0.33 o
Q 0.03 0.23

The results of these three sets of tests indicate it
is possible to resolve errors of 50 m in multiple orbit
elements using the three observation types separately.
The maximum error remaining in the orbit elements is on
the order of 1.2 to 1.5 m when five elements are solved’
for simultaneously. The level of error in the satellite

Cartesian coordinates is approximately the same as the



error in the orbit elements. The accuracy of the
pseudorange solutions are satisfactory, but generally they
are poorer than CID and SD solutions. This difference can
be attributed ¢to ‘the higher 1level of random error

associated with GPS pseudorange observations.

5.2 Network B Results

The north/south extent of network A is limited since
the' stations are located at CLBA sites. This limitation
may have an affect on the orbit improvement solutions,
therefore network’ B was selected so comparisons could be

made.

Certain multiple orbit element error testg performed
using pseudorange and CID observations from network A were
repeated using network B. The resulté of these tests are
given in .Tables 5.4 and 5.5 for pseudorange and CID
observations respectively. The network B tests were not
done with SD observations, since these results are similar

to CID results.



Table 5.4: Network B - Pseudorange Solutions

Elements Error Remaining o of MSCCE ASCCE

Biased by in Elements Elements

50 Metres (m) (m) (m) (m)
a 0.00 | 0.10
i A 0.00 1:24 0.5 . 0.2
M 0.00 ' 0.59 ’
a 0.24 0.14
Q 0.01 0.26 0.4 0.2
M 0.41 1:34 :
a 0.24 0.13
e 0.02 0.27 0.5 0.3
i 0:12 1.26 : '
Q 0.27 2.70
M 0.58 2.11
‘a 0.00 0.11
w 0.01 1:56 0.4 0.2
i 0.00 1.24 :
Q

0.01 . 2.68

Table 5.5: Network B - CID Solutions

Elements Error Remaining g of MSCCE ASCCE
Biased by in Elements’ Elements
50 Metres (m) (m) (m) (m)
a - 0.68 0.03
e 0.20 0.03 1.4 0.4
M 0.07 T 0.18 T
a 0.00 _ 0.03
i 0.01 0.20 0.0 0.0
M 0.01 0.15 ’ )
a 0.68 0.04
e 0.11 0.06 1.5 0.4
i 1.04 0.35 C )
Q 0.20 0.25
M 0.60 0.26
a 0.00 0.04
w 0.00 0.15 0.0 _ 0.0
i 0.00 0.22 : )
Q

0:00 0:18



The network B pseudorange and CID results p?esented
in Tables 5.4 and 5.5 are only marginally better than the
network A results given in Tables 5.1 and 5.2 . These
results indicate that the greater north/south extent of
network B affords only a slight increase 1in orbit
improvement capabilities 'over Canada, and that network A
is sufficient. It should be noted, however, that although
these tests were performed using three different satelliter
passes, -network B may show greater strength in resolving

errors in other satellite arcs not tested.

5.3 Receiver Clock and Orbit Error Solutions

The use of accurate and stable frequency standards is
necessary ‘at tracking stations for GPS orbit improvement,
however time offsets and drifts in the receiver
oscillators will inevitably be present. At GPS master
control, where satellite orbits and c¢lock states are
predicted and wuploaded to the satelliges, an offset and
drift term is determined for each tracking station clock
relative to one master station [Varnum and Chaffee,1982].

This approach was applied and investigated in this study.

Four test runs were done using pseudorange
observations from network A. The observations were
simulated with receiver clock biases of 1.1, 1.2 and 1.3

seconds on stations 1, 2 and 3 respectively. Random error
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was also applied to the observations, wusing a random
number generator and standard deviation of 2.0 m . Random
observational error was used for these tests since their
affect may Dbe more noticeable in the presence of clock
errors. The resulting orbit solutions should also be more
realistic when the simulated observations are perturbed.
The first test involved an orbit improvement solution
only, with the correct a priori clock bias values used and
weighted heavily. In the second test, the correct orbit
initial conditions were input and a priori values of zero
were used for the clock biases. The results of these two
tests are given in Table 5:6 .

Table 5.6: Orbit and Receiver Clock Error
’ Solutions

Run 1 - Orbit solution, biases known
Elements Error Remaining orof MSCCE ASCCE
Biased by in Elements Elements
50 Metres (m) (m) (m) (m)
a 0.11 0.11
w 1.54 1.73 1.4 0.5
i 1.34 ’ 1.38 T
Q 1:93 +2.88
Run 2 - Bias solution, orbit known
Station Error Remaining ¢ of . MSCCE ASCCE
in Bias Bias
(sec) (sec) (m) (m)
1 0.0x10"9 0.54x1079
2 0:0x10°2 0.51x1072 0.0 0.0
3 1:0x107 2 0:46x1079 :



The orbit improvement solution given in Table 5.6 is
consistent with results presented earlier, however the
errors remaining ;p orbit elements are now of the same
magnitude as the sﬂandard deviations of the solutions.
This result occurs since randoh error has now been applied
to the observations. The results of run 2 indicate large
time bias errors can be solved to a satisfactory level of

accuracy.

The next test performed was a simultaneous solution
of the orbit and time bias errors used in runs 1 and 2,
This test was then repeatgd, with a priori cloék drifts of
11.Ox10—9, 12.0%x1072 and 13.0x10_,‘9 sec-sec—? imposed on
stations 1, 2 and 3 respectively. The ¥a priori drift
standard deviations were also increased to this level, to
determine if the correct zero drift values could be
recovered with thé clock bias and orbit errors. The
results 6f these two tests are given in Tables 5.7 and 5.8

respectively.



Table 5.7: Orbit and

Elements Error Remaining
Biased by in Elements
50 Metres - (m)

a 0.02

w 0.60

i 3:79

Q 0.95
Station Error Remaining

in Bias
(sec)

1 0.0x1078

2 O.2x10—2

3 0.0x10"

Table 5.8: Orbit and Cl

Elements Error Remaining
Biased by in Elements
50 Metres (m)
a 0.02
w 2.20
i 4.30
Q 3.81
Station Error Remaining
in Bias
(sec)
1 1.0x1072 3.
2 3.'0x10_9 y,
3 0.0x10

1.

The results presented 1

receiver clock biases

simultaneously with orbit er

coordinate error is at an
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Clock Bias Solutions
0 6f
Elements

(m)

MSCCE ASCCE

(m) (m)

.5

w = o
e
wwwo -3

g of
Bias
(sec)

1.3x107 9

1:5%10" 9
6.2x10" 2

ock Bias/Drift Solutions

¢ of MSCCE ASCCE
Elements

(m) (m) (m)

0.26 .

4:.36 3.5 1.8

7.08
¢ of Error in g of
Bias Drift 1 Drift
(sec) (secesec ) (secesec” )
9x10”2 0.8x10713  y.1x10713
410”9 1:3x10713  n,0x10713
1x1077 0:6x%10713  1.4x10713

n Tables 5.7 and 5.8 indicate

and drifts can be solved

rors. The satellite Cartesian

acceptable level, however the



Keplerian element solutions are poorerQ The discrepéncy
may occur from a compensating effect in the Keplerian
errors, resuiting in more accurate Cartesian coordinates.
This drop in the accuracy of orbit elements when they are
solved simultaneously with clock biases and drifts may lbe

overcome by using more than one observation type

simultaneously in the solution.

5.4 Effect of Inaccuracy in Tracking Station Coordinates

The ability to improve GPS orbits to a 2.5 m level of
accuracy 1implies an accurate network of tracking stations
exists. The results presented so far were -obﬁained from
tracking stations constrained with a priori coordihate
standard deviatioﬁs of .0.001 m (ie. in effect the
stations were held fixed). Simulation tests were carried
out to determine at what level station coordinate
inaccuracy would corrupt the orbit solﬁtion beyond the 2.5

m level.

The tests were performed using pseudorange and CID
observations from network A, with random observation error
applied. First, an orbit solution was done with the
tracking station coordinateé held fixed. Next, the orbit
solution was repeated with a priori station coordinate

standard deviations increased in gteps_until the orbit
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solution degraded beyond 2.5 m in accuracy. Random error
was also applied to the station codrdinate values
commensurate with the standard deviations used. This
procedure of _ increasing a priori standard deviations and
corrupting the coordinates was only applied to stations 1,
3A aﬁd 4 in the network, allowing ‘for the computation of
relative station accuracies with respect +to station 2A.
The results of these pseudorange and CID tests are given
in Tables 5.9 and 5.10 respectively.

Table 5.9: Tracking Station Inaccuracy
‘Pseudorange Solutions

Elements Error Remaining o of MSCCE ASCCE
Biased by in Elements Elements
50 Metres (m) (m) (m) (m)
Run 1 - Station coordinate ¢ = 0.001 m
a 0.41 0.14
e 0.35 0.30 0.8 0.6
M 1:.03 1:62 .
Run 2 - Stations 1,3,4 coordinate ¢ = 0.100 m
a 0.40 0.16
e - 0.33 0.35 1.8 0.6
M 0.87 1.88 T )
Run 3 - Stations 1,3,4 coordinate ¢ = 0.500 m
a 0.87 0.39 o
e 1.14 0.78 6.6 2.8
M 5.34 4:19 ’



Table 5.10: Tracking Station Inaccuracy
CID Solutions

Elements Error Remaining . ¢ of MSCCE ASCCE
Biased by in Elements Elements
50 Metres (m) (m) (m) (m)
Run 1 - Station coordinate o = 0.001 m
a 0.00 0.03
w 0.01 0.19 0.0 0.0
i 0:03 0.25 )
Q 0.03 0.20
Run 2 ~- Stations 1,3,4 coordinate ¢ = 0.100 m
a 0.13 0.09
w 0.06 0.23 0.5 0.3
i 0.4y 0.57 ’
Q 0.64 0.63
Run 3 - Stations 1,3,4 coordinate ¢ = 0.500
a 0.26 0.33
w 0.61 0.41 2.9 1.5
i 2.05 1:77 )
Q 2.77 2.53
The relative accuracy of tracking stations is

determined using the relation
Relative Accuracy = ¢ d—?, (5.1)
where

d is the distance between stations,

2 2, 2
o4 = /ox+oy+oz, and

Od,ox,oy and 0, are standard deviations of distance d, and

coordinates x,y,z  respectively. It should be noted that

the standard deviation of x is equal to that of Ax between

two stations in this case, since one station is consideréd

-~
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known (fixed). The accuracy of tracking stations relative

to station 2A, computed using Equation 5.1, are given in

Table 5.11

Table 5.11: Relative Accuracy of Tracking Stations

Station Distance Relative Accuracy Relative Accuracy
to for for
Station 2A °x=°y=°z=0j?o m °x=°y=°z=oj50 m
(km) (ppm) (ppm)
1 1500 0.12 0.58
2 2900 0.06 0.30
y 3900 0.04 - 0.22

The results of tests on tracking station coordinate
dccuracy'indioate that relativé accuracies on the order of
0.1 ppm are required to insure the orbit improvement
solution is not corrupted. These results tend to confirm

the conclusions of Stolz et al. [1984].



CHAPTER 6

RESULTS - STATION COORDINATION

The use of GPS observations for determining Station
coordinates and coordinate differences has become a common
practice, even though the satellite system 1is not yet
fully operational. The standard solution method involves
solving for station coordinatesr (or coordinate

differences) and an offset for the receiver clock relative

to GPS time. Simulated tests were performeq for the
solution of station coordinates and clock errors
independently "and simultaneously. These tests were done

with satellite orbit error propagated into the solution,
and the results are given in séction 6.1 . The final set
of tests performed for <thié study was a comparison of
station positioning results with a broadca§t orbit
accuracy versus an improved orbit. The method used to do

this comparison and the corresponding results are given in



section 6.2

6.1 Station Coordinate and Clock Error Solutions

The tesﬁ results presented in this section were
obtained wusing pseudorange and SD observations from three
satellite passes to three local stations. The pseudorange
observations were simulated at 3 minute intervals with
random error applied at a 2 m 1level, while the SD
observations had an interval of U minutes and a 0.1 m
level of random . error. This procedure yielded
approximately 240 observations per pass from the three
stations, or approximately 80 observations per station to
each " satellite pass. The station locations are givén in
Table 6.1

Table 6.1: Local Station Positions

WGS 72 and Conventional Terrestrial Datums

Station " Lat. (°) Long. (°) Ht. (m)
x (m) y (m) z (m)
1 Saskatoon 52.20 253.00 100.0

-1147923:40 -3754688:25 5009723.60

2 Edmonton 53.50 246.50 200.0
-1516128.26 -3486856.28 5103996.84

3 Calgary 51.1 245.9 300.0
-1635663.40 ~-3665148.93 4940770.:35



The first two pseudorange tests involved thgzsolution
of receiver clock biases and drifts only. In run 1, a
priori bias valhes for stations 2 and 3 were input
incorrectly by 1.2 and 1.3 seconds respectively, with g
priori standard deviations increased accordingly. The
second test was a repeat of run 1, with station 2 and' 3 a
priori drifts input with 12x10”2 and 13x10°9 secesec”]
errors respectively. In both tesﬁs, a priori satellite
covariance matrices were used to propagate orbit error
into the solution. Standard deviations of 1 m were used
for the semi-major axis, inclination and right ascension,
and 20 m for the argument of perigee. The results of

these two tests are given in Table 6.2

Table 6.2: Local Station Clock Bias/Drift Solutions

Station Error Remaining o of Error in g of
in Bias Bias Drift Drift
(sec) (sec) (sece.sec”!) (secesec™ 1)
Run 1 - Bias solution
2 0.85x10 2 0.6x1072
3 0:12x107 7 0.6x102
Run 2 - Bias and drift solution
2 0.16x10 2 1.2x1072  1.0x10713 1.0x10713
3 0.34x10"2 1.2x1072  0.2x10713 1.0x10713



The results‘given in Table 6.2 indicate thét bias and
drift solutions are possible for the network of threer
local stations, however, these tests were done with
correct station coordinates. The test performed in run 2
was repeated, with 500 m errors on the coordinates of
stations 2 and 3. The results of this test are given iﬁ
Table 6.3.

Table 6.3: Clock Bias/Drift and Station Coordinate
) Solutions

Station Error Remaining ¢ of Error in ¢ of
in Bias Bias " Drift - Drift
(sec) . (sec) (secesec™ 1) (secesec™ 1)
2 0.6x109 2.6x10"9 '4.0x1o“3 13.0x10—13
3 1.8x107 7 2:5x1079 0.9x107" 13.0x10”"
Station Errors Remaining ¢ of Coordinates
.in Coordinates ’
p.< y Z X y -Z
(m) (m) (m) (m) (m) (m)
2 0.03 0.22 0.37 0.42 0.72 0.64
3 0.02 . 0.67 0.47 0.43 0.71 0.62

The clock bias _ang drift solutions are Slightly
poorer when done simultaneouslj with station coordinates,
however, they aée still acceptabie. The distances from
station 1 to stations 2 and 3 are approximately 464 and
500 km respectively. Applying Equation 5T1’ the relative
accuracies on these ¢two 1lines are 2.3 and 2.1 ppm

respectively. This accuracy for station positioning is



realistic, given the level of orbit error propagated into

the solution.

The last two tests using pseudorange observations and
clock errors also involved an along-track satellite orbit
error. The 6rbit error was imposed by applying a 20 nm
error to the a priori argument of perigeg values for each
satellite. 1In the first tést, the satellite orbits were
held fixed with large a priori weights, allowing the orbit
error to be absorbed into the coordinate solutions. In
the 'second test, correct a priori standard deviations were
used for, the satellite orbit elements. The results of
these two tests are given in Tables 6.4 and 6.5

respecéively.

Table 6.4: Along-track Orbit Error Held Fixed

Station Error Remaining ¢ of Error in o of
in Bias Bias Drift . Drift
(sec) (sec) (sec-sec'?) (secesec™ 1)
2 3.0x1072 2.3x1073 9.0x107 1} 9.8x107!
3 5:8x10 9 2.2%10 0.1x10"" 9.7x10 "
Station Errors Remaining ¢ of Coordinates
in Coordinates .
X y Z X y Z
(m) (m) (m) (m) (m?) (m)
2 4.09 2.15 2.13 0.32 0.61 0.56
3 4.29 1.76 2.99 0.32 0.61 0.54



Table 6.5: Along-track Orbit Error
Correct Weights

Station Error Remaining ¢ of Error in ¢ of
in Bias Bias Drift Drift
(sec) ’ (sec) (sec'sec—?) (sec~sec"?)
2 0.6x1072 2.6x1072 3.3%x10" 1% 13.0x10" 1Y
3 1:8x1079 2:5x10°9 1.:5x10” "% 13.0x10" 14
Station Errors Remaining ] df Cobrdinates‘
: in Coordinates
X y .z X NG z
(m) (m) (m) (m) (m) (m)
2 0.01 0.22 0.36 0.42 0.72 0.64
3 0.01 0.67 0.48 0.43 0.71 0.62

5

The results in Table 6.4 indicate that an orbit error
adversely affects the solution, when the error is held
fixed. The clock bias and drift solutions are only
slightly worse, whereas the station coordinaté solutions
have absorbed most of the orbit error and are
significantly worse. The results in Table 6.5 show that
using correct a priori \weights on the satgllite orbit
results 1in the correct solution., This is evident from a
comparison of Table 6.5 with Table 6.3. The two sets of
results are ﬂearly identical. Using correct weights for
the along-track orbit error of 20 m enabled the solution
of these errors. The remaining error in the argument of
perigee for the three satellites used ranged from 0.5 ¢to

2.8 m .



The tests performed with SD observations involved the
solution of clock drifts with station coordinates. The
affect of clock biasés on the station coondiﬁate solutions
was tested in a manner similar to that used by Remondi
[1984], where a clock bias error is input but not
recovered in the adjustment. The same a priori satellite
covariance matrices used in the previous pseudorange tests
were again used, in order to propagate orbit inaccuracy

into the solution covariance matrix.

In the first test, an a priori bias of 50
microseconds (50x10—6 sec) was input for stations 2 and 3.
Clock drift values of 1.2x10"% and 1.3x1070 sec-seo"? were
used for stations 2 and 3 respectively, where the actual
values should be zero. The solution for £he drifts had

remaining errors of 5.2x107 12 and 4.9x10—?5 sec-sec‘j

for
stations 2 and 3 respectively, and corresponding standard
deviations of 9.2x107 1'% and 9.7x10—?5 sec-sec” . These
results are acceptable, and the existence of 50
microsecond Dbias errors did not severely affect the
solution. This samertest was repeated, with stations 2

and 3 coordinates in error by 500 m . The resulfts of this

test are given in Table 6.6 .



Table 6.6: Clock Drift and Station Coordinate

Solution
Station Error Remaining ¢ of
in Drift Drift
(sec-sec"?) (secesec™ 1)
2 2.Ox10"13 y.9x10 14
3 0:2x107" y.7x107 1
Station Errors Remaining ¢ ‘of Coordinates
in Coordinates
X y Z X y Z
(m) (m) (m) (m) (m) (m)-
2 0.05 0.01 0.04 0. 0.05 0.10
3 0.01 0.02 0.01 0.19 0.06 0.09

The solution for clock drifts in Table 6.6 are
slightly poorer than when coordinate errors were not
present, however thé results are still satisfactory. The
station coordinates Qere recovered with an accuracy,
relative to station 1, of 0.5 and 0.4 ppm for stations 2
and -3 respectively. These results are slightly
optimistic, and again the clock biases did not affect the
results to a large degree. This level of clock bias error
not oorrupting the station coo?dinate solution agrees with

the conclusions of Remondi [1984].

The last two tests carried out for SD observations
were on the effect of orbit errors. JIn the first test, a
20 m error in the argument of perigee was imposed on each

satellite and held fixed in the solution. The same



coordinate and clock errors used for the results in Table

6.6 were used. This test was then repeated, with the
correct a priori weighting on the satellite orbit
elements. The results of these two tests are given in

Tables 6.7 and 6.8 respectively.

Table 6.7: Along-track -Orbit Error Held Fixed

Station Error Remaining o of
in Drift Drift
(secrsec™ ') (sec-sec'?)
2 5.6x10"13 3.6x1o‘1ﬁ
3 9.7x107] 3:6x1071
Station Errors Remaining o 6f Coofdinates
in Coordinates
X y z X y Z
(m) (m) (m) (m) (m) (m)
2 0.17 0.11 0.37 0.12 0.03 0.07
3 0.58 0.11 0.31 0 0.03 0.07
Table 6.8: Along-track Orbit Error
Correct Weights
Station Error Remaining g of
in DrifE1 Drift_
(secesec ) (secrsec )
2 1.7x107 1! 4.9x107 1!
3 1.0x10 §,7x10 !
Station Errors Remaining 0 of Coordinates
in Coordinates
X y Z X y z
(m) . (m) (m) (m) (m) (m)
2 0.04 0.01 0.01 0.18 0.05 0.10
3 0.08 0.01 0.04 0.19 0.06 0.09



The fesults in Table 6;7 show how the orbit error,
when held fixed, affects the sfation coordinate solution.
The “effeot, however, is much 1less severe for SD
observations than for pseudorange observations, as seen by
comparing Tables 6.7 and 6.4 . fhis result is expected,
since SD observations are used to minimize the effect of
orbit errors by partially canceling their effect via the
differencing technique. The results in Table 6.8 show how
correct weighting improves the solution to the 1level of
error seen in Table 6.6, where no.-orbit error was imposed.
The error remaining in the argument of perigee was on the
order of 4 to 5 metres using the SD observations. The
orbit error was not recovered to the same level of
aﬁcuracy as in the pseudorange solutions, but again the SD

observations are not as sensitive to these errors.

6.2 Broadcast Versus Improved Orbits

The simulations were carried out for this section to
show how improvement in positioning accuracy results when
'using an improved orbit versus a broadcast orbit having a
higher 1level of error. The tests were performed with
pseudorange and CID observations under the same conditions
described in section 6.1 . The solution representing a

broadcast orbit was done with 10 m errors on the semi-



major axis, inclination and right ascension, and with a 50
m error on tﬁe argument of perigee. These errors were
applied ¢to the three satellite passés used, and the orbit
elements were held fixed during the station solution. The
pseudorange and CID solutions for these two tests are

given in Table 6.9 .

Table 6.9: Solutions with Broadcast Orbit

Station Errors Remaining ¢ of Coordinates
in Coordinates
X y Z X y Z
(m) (m) (m)' (m) (m) (m)
Run 1 - pseudorange solution
2 4.96 1.17 7.00 0.31 0.23 0.26"
3 4,87 9.60 - 6.64 0.32 0.23 0.25

Run 2 - CID solution

2 3.28 1.76 1.43 0.04 0.
3 2.73 1.71 1.23 0.04 0.

The large errors in the stqtion coordinates show the
effeot‘ of orbit errors on the solution. The 1large
discrepancy Bétween the coordinate standard deviationévand
coordinate errors also implies that the weighting was
incorrect in the adjustment, which is true since the’
orbits were held fixed. It should be noted that for this
-test, pseudorange observations were used and ﬁo clock
errors were solved. In .general, the effeét of orbit errors

would be lessened by using differenced observations,‘such
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as SD, DD or TD. When pseudoranges are used, a clock bias
isiusually solved which may absorb some along track orbit
error, thereby‘improving thg results. The test was carried
out in the manner presented simply to emphasize the effect
of orbit error, and to demonstrate the improvement when

explicitly solving for orbit error.

The incorrect orbit elements were used as é priori
values in an orbit improvement adjustment using network A.
Two orbit solutions were done using pseudorange and CID
‘observations independently, each hav;ng random error
applied to the observatigns. The pseudorange improved
orbit was ‘then used to Pecoﬁpgte the local station
coordinates using pseudorange observations, and similarily

the CID solution was repeated. The results of these

improved orbit solutions are given in Table 6.10

’

Table 6.10: Solutions with Improved Orbit

Station Errors Remaining g of Coordinates
in Coordinates -
X y z X y Z
(m) (m) (m) (m) (m) (m)
Run 1 - pseudorange solution
2 0.22 0.64 0.46 0.39 0.27 0.31
3 ‘0:19 0.11 -0.18 0.40 0:.27 0.30
Run 2 - CID solution
2 0.01 0.01 0.01 0.05 0.04 0.04
3 0.01 0.01 0.01 0.05 0.04 0.04



A comparison of Table 6.10 with 6.9 shows how the
improved orbit yields a more accurate station solution.,
The coordinate errors are now of the same magnitude as the

standard deviations of the solution.

The final test carried out for this study was a
simultaneous solution of orbit errors and station
coordinates. The tests done for the broadcast orbit were
repeated, wusing the correct a priori covariance matrices
to represente the 1level of orbit error present. The

‘

results of these tests are given in Table 6.11 .

Table 6.11: Simultaneous Station Solution and
o Orbit Improvement

Station Errors Remaining ¢ of Coordinates
in Coordinates
X y 4 X y z
(m) (m) (m) (m) (m) (m)
Run 1 - pseudorange solution
2 0.32 0.50 0.16 0.45 0.33 0.36
3 0.16 0.04 0.11 0.46 0.33 0:.35
Run 2 - CID solution
J
2 0.14 0.02 0.02 0.13 0.10 0.06
3 0.18 0.03 0.01 0.13 0.12 0.06

The results given in Table 6.11 are superior to those
in Table 6.9, when the broadcast orbit was held fixed, but
not as good as the resu;ts using an improved orbit given

in Table 6.10 . These results are expected, since the



orbit errors cannot be resolved as well from ar local
network of stations as compared té a larger neéwork of
national extent. The orbit erfor remaining in the
pseudorange and CID solutions ranged from 0.09 tq 16.08 m
‘and 0.45 to 7.26 m respectively. It is encouraging,
however, to see that orbit errors can be partiallyr
recovered simultaneously with station coordinates in . the
context of local positioning over several hundred

kilometres.



CHAPTER T

SUMMARY AND CONCLUSIONS

The main objective of this research, the development
qf a prototype multi-station, multi-pass GPS sétellite
data reduction program, has been met. The adjustment
formulation in program ASTRO is a rigorous, weighted least
squares approach. The abiliﬁy to correct satellite
reference initial conditions is incorporated into the
adjustment to allow for orbit improvement capabilities.
The program 1is also capable of solving for station
coordinates, eitﬁer on their own or simultaneously with
corrections to satellite initial conditions. Program
ASTRO ‘utilizes the orbit integration backage PEGS
[Burrett, in prep.] to obtain satellite Caftesian

coordinates.



7.1 Summary of Software Development

The software developed for this research consists of
two program packages. The orbit integration software was
developed by Buffett [in prep.], and is based on numerical
integration of the equations of motion for the satellite
to compute Cartesian coordinates. Analytical formulations
are used to compute <corrections to satellite Cartesian
coordinates from corrections to reference initial
conditions, rather than re—integrating an updated orbit.
The program package ASTRO was developed by the guthor to
do rigorous least squares adjustments using GPS
observations, with the capability of doing orbit
improvement either simultaneously or independently of
station coordination. The observation types incorpdrated

in the adjustment are pseudorange, continuously integrated

Doppler, and single difference phase. The opservation
equations, defined in Chapter 2, include nuisance
parameters representing satellite and receiver clock

polynomial coefficients, unmodeled fropospheric refraction
scale parameter, range bias for Doppler observations, and
ambiguity parametefs for single difference observations.
All of these parameters, excluding the range bias and
ambiguity parameters, “are treated as -weighted quantities

in the adjustment allowing for proper a priori weights and



estimates. A solar radiation pressure constant is also

included as a weighted parameter.

The adjustment model, developéd in Chapter 3, has a
weighted least squares collocation form, with the
unmodeled satellite perturbations modeled as a signal.
The prototype program, however, does not have this signal

component incorporated.

7.2 Conclusions

Two tracking network configurations, given in Chapter
4y, were used to analyze orbit improvement capabilities
over Canada. The results presented in Chapter 5 indicate
that a 2.5 m level of accuracy is obtainable for satellite
Cartesian coordinates, usiﬁg an accurate, regional
tracking network of four stations located in Canadian
territory. The'optimum network would be located " at CLBA
sites, where the requiréd station positional accuracy of
0.1 ppm is easily'obtained. The results also show the
ability to recover receiver clock bias and drift errors

simultaneously with orbit improvement.

Orbit improvement is possible ‘with either of the
three observation types used, however, an optimum solution

would involve a combination of pseudorange with either



Doppler or single difference observations. The
combination of observation types should strengthen the
éolution of nuisance parameters, such as clock errors,
when solving for orbit errors. The method employed at GPS
master control involves a combination of pseudorange and

Doppler observations [Varnum and Chaffee, 1982].

The results presented in Chapter 6 show how the
accuracy of ‘local station coordinate solutions is
increased when using an improved orbit, as compared to the
accuracy when wusing a broadcast ephemeris. 1The results
also show the ability to parﬁially recover orbit errors
when using broadcast orbits for local positioning on the
order of a few hundred kilometres in station separation.
This ‘simultaneous recovery of orbit errors also improves

the station solution accuracy.

7.3 Recommendations

The software developed to date has produced useful
and interestiné results, however, it is still a prototype
package and utilizes simulated data. Extensions to ¢this
software package are recommended as follows

1. The prototype package should be developed into a
production package, utilizing actual GPS observations.

This would require preprocessing input modules for
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available observations, such as TI4100, Macrometer,
ete. .

The software should be extended to include more
thorough statistical testing, such as residual
analysis and reliability analysis.

Adjustments should be performed with available data
sets. If possible, data from a large tracking network
should be used to further investigate orpit
improvement.

The signal component of the adjustment model should
be inéorporated into the program and investigations
carried 6ut on thg ability of this model to represent
smaller perturbing effects.

The use of an orbit bias téchnique with GPS should be
studied for local positioning andAthe results compared

to results presented in section 6.2 .
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