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Abstract

Geometrical muscle models are typically based on kinematic constraints, that is,
the modes of muscle deformation are preset. Whereas kinematically based models
have been shown to predict muscle behaviour accurately, the contribution of the
kinematic constraints to the favourable model predictions can only be assessed by
eliminating them from the model definition. To this end, a muscle model has been
developed which is based on a constitutive description of muscle tissue and the
theory of deformable continua (continuum muscle model'). Consequently, muscle
deformations result fro_m the solution of the structural problem posed, and the
internal stress distributions become accessiblé._ The continuum muscle model has

been explored by using the Finite Element Method.

In order to establish a c;onnection with the traditional approach to muscle
modelling, the continuum muscle model has been preceded by a model which is
based on kinematically constrained deformation modes. Paying special attention
to physical consistency and simplicity, this model incorporates consistent

equilibrium considerations which relate the external muscle forces to the internal
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fibre forces, and the equations describing the model are expressed by a closed set
of nonlinear algebraic equations. Keeping with the presently accepted view of
muscle structure and function, the assumptions underlying both models aré that
(a) muscle fibres are one-dimensional entities and that (b) the mechanical muscle
behaviour is a reflection of the active and passive muscle fibre characteristics

exclusively.

Model predicted muscle force-length curves have shown a notable dependency on
the parameters which describe the muscle geometry and on the geometrical
boundary conditions. In general, the muscle optimal force is predicted for a muscle
configuration which is different from fhe one at which the muscle fibres assume
optimal Iength. On account of the continuum formulation novel considerations

regarding intra-muscular pressure have been possible.

A number of disparities have been observed between model predictions and
experimental results which are tied to the underlying assumptions of one-
dimensional fibre chéracteristics. Consequently, a reexamination of mechanical
muscle tissue characteristics versus single muscle fibre characteristics seems to

be indicated.
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Chapter 1

Introduction

The contraction of skeletal muscle acting on the skeletal system is responsible for
vertebrate locomotion and movement. In the process of muscle contraction muscle
cells convert chemical energy into mechanical work; muscle cells produce forces
which are channelled by tendinous structures to either side of skeletal articulations,
i.e., joints, and induce movement of the skeletal system. Whereas the cause of
muscle contraction falls into the domain of biology, the exploration of intra- and
extra-muscular force transmission and its dependence on muscle structure falls

into the domain of mechanics.

Studying muscles from a mechanical point of view, adds a further facet to the body
of knowledge assembled in the fields of bio-chemistry, muscle neurology,
physiology, morphology, etc. It is hoped that the integration of information obtained
in the different disciplines will result in beneficial contributions to the development

of medical procedures, to the field of rehabilitation and to the design of prostheses.
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The understanding of muscular function may also be of interest in technical areas,
in particular in the field of robotics. Actuators based on muscular-skeletal design
principles might improve on current implementations from the perspective of

efficiency, motor fine control and failure tolerance.

Stimulated muscle fibres have different characteristics from unstimulated muscle
fibres. In particular, stimulation causes muscle fibres to generate forces, whose
magnitude depends on the fibre length, and to contract. The mechanics of
muscular contraction on a microscopic scale as well as the associated active
(stimulated) and passive (unstimulated) muscle fibre characteristics are thought to
be well understood both from an experimental and theorretical point of view. The
most widely accepted models (or theories) of muscular contraction on a
microscopic scale, that is the Cross Bridge Theory and the Sliding Filament
Theoty, are results of relatively recent research by Huxley [1957, 1974] and

Gordon et al. [1966].

By contrast, models of entire muscles have a far longer tradition. The first efforts
to investigate muscular function scientifically were undertaken by Giovanni Alfonso
Borelli (1608 - 1679) and Niels Stenson (1638 - 1686). Stenson recognized the
pennate structure of muséle, that is, the arrangement of muscle fibres at an angle
relative to the direction of muscular force exertion. He demonstrated, based on
geometrical arguments, that muscles could contract without changing their volume.

This assertion contradicted the conviction held by his contemporaries that the
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animal spirit entered and inflated the muscle, thus causing the tendency of muscle

shortening.

The currently most cited (pennate) muscle models have been proposed by Woittiez
et al. [1983, 1984] and Otten [1985, 1987a, 1987b, 1988]. In general, these
models are based on kinematic constraints, that is, the mode of muscle
deformation is preordained with the imposed mode of muscle deformation showing
a close resemblance to the work of Stenson. The models incorporate the present
knowledge of active and passive muscle fibre behaviour and are essentially based
on the assumptions of one-dimensional fibres with uni-directional fibre activity, non-

interaction between neighbouring fibres, and the constancy of muscle volume.

From an analytical point of view, restricting potential muscle deformations by
kinematic constraints reduces the number'of degrees of freedom inherent to the
model and guarantees solutions independent of more detailed considerations
concerning the constitutive character of muscle tissue. Because of the lack of
general constitutive relations in combination with an adequate theory of
deformation, considerations regarding the internal stress state of the muscle and
statements pertaining to the adequacy of fhe imposed deformation modes with,
respect to local equilibrium of the structure are not possible. Whereas kinematically
based models have been shown to predict muscle behaviour accuratefy, the
contribution of the kinematic; constraints to-the favourable model predictions can

only be assessed by eliminating them from the model definition.



It is, therefore, the goal of this thesis, to develop a muscle model which is based
on a constitutive description of muscle tissue and on the theory of deformable
continua. This continuum muscle model will be used to explore in more detail the
relationship between the tissue contractile condition, the muscle tissue stress state
and the muscle deformation, and to observe their consequences on the muscle

force-length curve.

Muscle tissue will be interpreted as a composite material constituted of a fibrous
component, which carries the active and passive characteristics of muscle fibres,
embedded in a fluid matrix. Both the physical non-linearity due to nonlinear fibre
characteristics and the geometrical non-linearity due to the large deformations
innate to muscle contractions will be incorporated into the model. No kinematic
constraints will be applied, except for anatomically justifiable boundary conditions.
The general approach taken allows for a natural inclusion of muscle tendon sheath
elasticity and deformability into the muscle model. Solutions of the structural

problem will be sought using the Finite Element Method.

The continuum muscle model will be preceded by a "Woittiez-type" muscle model
which is based on kinematically constrained muscle deformation modes
(Chapter 3). The purpose of this model is to establish a basis to which the
continuum model can be compared, thus highlighting the differences between the
two modelling approéches and their predictions. In its formulation, the model is

simple enough to be described by a closed set of algebraic equations, yet it
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contains most of the prominent features of Woittiez’ original model. The '
transparent form of the equations governing this model allows for certain general
observations regarding the model behaviour to be made independently of any
numerical analysis. The model will be explored on its own merits with regard to
muscle work, optimal muscle forces, active muscle range and the relationship

between optimal fibre force and optimal muscle force.

The literature predominantly records models of pennate muscles. In order to
compare the predictions of the here presented models to those by other authors,
only pennate muscles will be considered in this thesis. The formulation of the
continuum muscle model, however, contains no intrinsic limitations which would
preclude the modelling of fusiform muscles, that is, muscles where the musgle

fibres are aligned with the direction of muscular force exertion.

The primary concern in developing. the muscle models is directed towards their
internal consistency. Starting with the assumptions underlying the models, the tools
- of mathematical physics are applied rigorously. Consequently, expected and
unexpected model behaviour have to be seen as a direct reflection of the
underlying assumptions, and the model behaviour will have to be interpreted as
such. The most important assumptions underlying the presented models are, that
muscle fibres have one-dimensional active and passive characteristics coincident
with their length axis, that there is no difect interaction between neighbouring

muscle fibres, and that muscle tissue is incompressible.



In order to avoid confusion in the main body of the text, the following comments
should be made: When not stated otheMise, general remarks related to muscle
fibres or muscle tissue refer to mammalian muscle, more specifically to cat muscle.
Unreferenced model compatrisons to experimental results and experimental
observations are made with respect to expe;iments conducted independently of
this thesis by Dr. Walter Herzog in his laboratory at the University of Calgary. The
term "straight line muscle model" has to be seen in the context of the model
developed in Chapter 3 which does, on purpose, not include any generalized
constitutive law for muscle tissue. Models on the same level of abstraction which
include a more invoh)ed description o'f muscle tissue are absolutely conceivable.
Muscle model geometries in this thesis are loosely tied to the cat medial
gastrocnemius muscle. The focus of this thesis rests, however, on considerations
related to pennate muscles in general. The derivation and analysis of the

presented models are restricted to quasi-static situations.



Chapter 2

Review of Background Material

This chapter provides a short summary of material which is relevant to the édbject
of this thesis. Starting with the concepts underlying the Mechanics of Continua and
an outline of the Finite Element Method, the chapter will conclude by giving a brief
description of the structure of skeletal muscle and by reviewing muscle models

;presented in the literature.

2.1 Continuum Mechanics

This section summarizes concepts of Continuum Mechanics. The selection 6f
topics covered corresponds to what \will be needed in setting up the proposed
continuum muscle model. In particular, the geometrically nonlinear theory of
deformation will be covered, because of the large deformations inherent to muscle
deformations. The treatment follows Truesdell [1955], Malvern [1969] and Becker

[1975].



The following conventions will be adopted throughout this section: tensor entities
will be represented alternatively in component form, e.g. X;, Sy, and symbolic
notation, (x,Ac). Tensor components will be referred to three-dimensional Cartesian
coordinate systems, tensor indices run from 1 to 3, and the same index appearing
twice in any given term implies a summation of terms, e.g. >;i Yy, = iéxi y, Partial

derivatives with respect to coordinates will be abbreviated by the comma operator;

W= (),

o

2.1.1 Kinematics

A body of a finite volum‘e occupies a region in space. The identification of the body
particles with their coordinates in three-dimensional euclidean space is termed a
configuration. Given a body in i’gs original (reference) and deformed (actual or
7spatia|) state, the deformation can be described mathematically by a mapping from

the reference configuration onto the deformed configuration:
X, = X, (X)) (2.1)

The coordinates x; refer to the deformed, and X, refer to the reference

configuration. Diﬁerentiéting Equation 2.1 results in:

_ 9x(Xy)

J

dX, = x,,dX, = F,,dX, (2.2)




or in symbolical notation:

dx = FdX (2.3)

The deformation gradient tensor, F, maps a line element in the reference
coznfiguration to the corresponding line element in the deformed configuration; the
volumetric relation between a reference and actual volume element is given by
dV = detFdV,. F is in itself a measure of deformation. It contains, however,
information about rigid body rotations which require special attention in the
constitutive relations. According to the polar decomposition theorem, F can be

represented by:

F=RU or F=VR (24)

This describes the decomposition of a general deformation into a rotation and a
pure deformation (R being a proper orthogonal rotation tensor and U and V

symmetric positive definite stretch tensors).

The right and left Cauchy-Green deformation (or stretch) tensors (C and B) are

defined by:

C=FF=U? and B = FF" = V2 (2.5)
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A deformation, as opposed to a rigid body motion, is characterized by a change
of distances between neighbouring material particles. This aspect of the
deformation leads to the. (classical) ‘strain measures L and E, the Lagrange and
Euler finite strain tensors. Below, only L will be discussed, which is defined by:

L=_1(C-1 , (2.6)

1
2
with | being the identity tensor.

Relating the reference and spatial configuration to the same coordinate system and
introducing a displacement vector u through x = X + u, one arrives at the strain
displacement relation

Liy = 5 (U g+ Uy, + Uy U ) (2.7)
In linear elasticity one assumes that the displacements u, as well as the
displacement gradients u,; remain small. The quadratic terms in Equation 2.7 as
well as the distincﬁon between the referential and spatial coordinate systems can

be neglected in this case, and one obtains the geometrically linearized strain

tensor:
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it uj,i) (2.8)

2.1.2 Stress State and Equilibrium Condition

A material volume which is subjected to surface forces (t) and body forces (k) will
deform into a new equilibrium configuration. As a consequence, forces will be
transmitted internally from one portion of the continuum to anotlher. Using the
Method of Sections, the continuum can be separated at any point and the
interaction between the two section surfaces can be represented by force and
moment resultants f and m. Focusing on one section surface, a resultant force Af

and resultant moment Am will be transmitted over a section surface area element

AS surrounding a given point P. The Cauchy Stress Principle states that Jim AA—;
f
will have a definite value - = t™ | called the stress vector, and that the moment

ds
resultant will vanish in the limit. The stress vector t™ depends in general not only

on the point P, but also on the orientation of the surface element, which is defined

by its unit normal n.

It can be shown through the force and moment equilibrium of an infinitesimal
tetrahedron and paralielepiped :chat there exists a symmetric stress tensor o,
called the Cauchy stress tensor, which completely specifies the stress state at a
point. The stress vector on a surface element with unit normal n at this point is

obtained from:
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t, = on, (2.9)

Equilibrium considerations on an arbitrary portion of the material volume lead to

the equilibrium conditions:
o +k =0  (210)

where K refers to a volume force density. These equilibrium conditions are

supplemented by the traction boundary conditions
o;n; = t,(a,) ' (2.11)

with a, being a suitable parametrization of the volume boundary, and suitable
geometrical boundary conditions.‘The Cauchy stress tensor (c) expresses stresses
. in terms of the deformed configuration. However, when solving a specific problem,
. the deformed configuration is initially unknown in general. The deformation is,
therefore, most suitably expressed using one of the referentigl strain tensor (C or
L). On the other hand, the conjugate entity to the Lagrange finite stress tensor L
is the second Piola-Kirchhoff stress tensor, S where the stresses are expressed

in terms of the un-deformed geometry. The relation between ¢ and S is given by:

6 = _\_FSFT (2.12)
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The following equation presents the relation between the second Piola-Kirchhoff
stress, S, and the first Piola-Kirchhoff stress, P, where the latter will have some
significance for the derivation of the constitutive relations in the context of this

thesis.

P=FS (2.13)

If both the displacements and displacement gradients are small, no distinction
needs to be made between the reference and the deformed description. In that
case, a distinction between Cauchy and Piola-Kirchhoff stresses is not necessary

and only one stress tensor will be used, denoted o.

2.1.3 Constitutive Relations

The constitutive relations establish a relationship between the strain measures and
the stresses in a continuum. While the discussion in the previous sub-chapters was
independent of any specific material, the constitutive equations rest on the
particularities of the materials out of which the continuum of interest is composed;
universal constitutive relations, which would be valid for an arbitrary material are

not known.

In this thesis, muscle tissue will be treated as a composite (fibre reinforced)
material, which is composed of a fluid matrix and contractile fibres. The fibres run

in a well defined direction at any point within the continuum. If a strain energy
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func'tion', W, is assumed to exist for an isotropic material with one family of ﬁbres,'
Spencer [1984] demonstrated by the theory of invariants that this energy function

can only depend on the following invariants (I ):

L =trC, |, = %((trC)Z—.trCZ), l, = detC (
. 2.14)

I, =aCa =A%, |, =aC?a

where a represents the unit vector in fibre direction, and A is the fibre stretch ratio.

As before, C denotes the left Cauchy-Green stretch tensor.

By definition, the second Piola-Kirchhoff stress tensor components follow from the

strain energy function, W(l,), through:

5
S = o o ( - )
@™ X5 {acKL+ aCLKJ

2.2 The Finite Element Method

In the conteﬁ of solving analytical problems in the theory of continuous media, one
usually sea(ches for fields (e.g. stresses and displace;nents) which are governed
by differential (or integral) eduations, and which correspond, for example, to the
equilibrium state of a continuum under a certain loading and certain boundary

conditions. An exact solution is more often than not unobtainable.
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Consequently, an approximate solution is usually sought by using a discretization
method which reduces the infinite number of degrees of freedom of a continuum
to a finite number of degrees of freedom or parameters, and which converges to
the exact solution as the number of parameters is increased. Different
discretization methods in common use include the power series expansion method,
the finite difference method, direct methods of variational calculus (Ritz’s method)

and the finite element method.

~ The Finite Element Method divides the continuum into a finite number of simply
shaped regions (elements)', which are connected at selected points (nodal points).
The sought solution to the problem at hand is assumed to be of a certain shape
over each element region and to depend uniquely on a finite number of parameters

associated with the nodal points (nodal parameters or nodal degrees of freedom).

In the case of a structural problem, the stress and strain distributions over the
extent of the continuum are the annown functions, while the nodal forces and
displacements are the corresponding nodal parameters. A physical principle, for
example the principle of virtual work, is used to interrelate on an element for
element basis the nodal parameters by way of the assumed approximate solutipns,
which results in a generalized element force-displacement relation. Once these
element force-displacement relations are established for all the elements, a general
force-displacement relationship for the whole continuum can be obtained using

standard matrix methods. The whole procedure results in an algebraic system of
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linear equations which has to be solved for the unknown nodal parameters. Once
this solution is obtained, the approximate continuous stress and strain solutions are

obtained by interpolating the nodal parameters over the element regions.

The finite element method (FEM) exhibits the following advantages over other

discretization methods:

- complex geometries can be modelled with relative ease.
- complex loading and boundary conditions are possible.

- a structure being composed of different structural entities can be represented
easily.

- elements with different material descriptions can be superimposed to obtain a
_more complex material behaviour in a region.

2.3 The Structure of Skeletal Muscle

Muscles are the components of the animal body which are capable of active
contraction. Three types of muscles are commonly distinguished: skeletal, heart
and smooth muscle. Skeletal and heart muscle are characterized as striated
muscles, because of the dark and light striations visible in their fibres when they
are observed under a light microscope. Skeletal muscles constitute a major part
of the animal ‘body and, controlled by voluntary nerve action, they are the

foundation of animal locomotion.
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Skeletal muscles are composed of a large number of individual fibres which are
held together by a sheath of connective tissue, the epimysium. Varying numbers
of fibres within a muscle are grouped together to form fibre bundles or fasciculi
which again are encased in connective tissue, called perimysium. Each muscle
fibre is a single cell with hundreds of nuclei, surrounded by a cell membrane
(sarcolemma) and a connective tissue sheath (endomysium). The fibres are
elongated, with lengths reaching from several millimetres up to 30 cm, and

diameters of 10 to 60 pm.

fhe cell cytoblasm is arranged into strands of myofibrils, each having a diarﬁeter
of abqut 1 um. When stained by dyes and inspected optically, the myofibrils have
a striated appearance with alternating dark and bright regions along their length
axis. The myofibrils can be subdivided further into myofilaments which, in turn, are
composed of sarcomeres, each of which has a length of approximately 2.5 pm. It
is the structure and regular arrangement of the sarcomeres that gives the
myofibrils and, in fact, the skeletal muscle fibres their striated appearanée; an
individual sarcomere extends from the middle of one light region, called Z-Band,
to the next within‘the dark-light striation pattern of the myofibrils. Sarcomeres
constitute the smallest contractile unit within a muscle. They are composed of
interdigitating thick (12 nm diametef) and thin (5 nm diameter) filaments which
shorten by sliding relative to each other under stimulation. The cqntractile tendency

and associated force generation under stimulation is explained.by cross-bridges,
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which periodically form between the thick and thin filaments, and which pull the

thin filaments past the thick filaments.

Isometrically held muscle fibres react to a single stimulation impulse with a force
twitch. Two successive impulses, closely spaced in time, lead to a superposition
or summation of the twitch responses. As the freduency of stimulation impulses is
increased, the superimposed twitch responses fuse into a time-constant fibre force,
and the fibre is then said to be tetanized. In genefal, the fibre force increases
along with the stimulation frequency, but it does not increase beyond a certain

maximum value.

Skeletal muscle fibres can be classified into slow and fast twitch fibres with further
sub-categories; their names are related to the comparative rate of force increase
and force decrease in .response to a single stimulus. Moreover, the fibre types
differ, from a functional point of view, in their fatigu‘e resistance and, perhaps, in
their level of force generation. Slow twitch fibres fatigue less rapidly than fast twitch
fibres. Most muscles contain a blend of different fibre types, where the actual
composition seems to be determined by contractile speed, strength and fatigue

requirements on the muscle.

Different numbers of muscle fibres within a muscle constitute a motor unit. A motor
unit is defined by a single nerve fibre and all the muscle fibres it innervates. All

muscle fibres belonging to a single motor unit are of the same type. The nervous
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system regulates the force generated by a specific muscle through the stimulation

frequency and by recruiting different numbers of motor units within the muscle.

2.4 Muscle Models

For the presentation below, muscle models will be grbuped into functional muscle
models and geometrical muscle models. On the one hand, functional muscle
models consist of a number of equatlons (often a single equation) which follow
from statistical modelling of experimental data. They may, for example, describe
the force-length and/or force-velocity relations of a muscle without attempting to
explain these relations by underlying biological and physical principles. The lack
of a well founded theoretical basis is evidenced by the fact that these models often
contain free parameters, which are available for adjustment when the models are
used. On the other hand, functional muscle models describe muscle behaviour by
certain "guessed-at" relations which may or may not be related to experimental
experience and which contain a certain number of free parameters on purpose.
These free parameters are then ‘adjusted, often through optimization procedures,
to have the muscle or the musculo-skeletal system behave in a bredetermined

manner.

Geometrical muscle models take account of the muscle geometry in deriving the
equations which describe the muscle behaviour, and they attempt to explain the
influence of differing geometrical arrangements and of such structures as tendon

sheaths on muscle performance. They depend on relations describing the muscle
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fibre behaviour, where these relations are often related to the functional muscle
models above, but which are now specific to fibres. A constitutive description of
muscle tissue is rarely encountered in the context of these models. Constitutive

models of muscle tissue will be summarized in Chapter 4.

2.4.1 Functional Muscle Models

Functional muscle models are commonly employed for investigations which relate
more to the musculo-skéletal system than to questions about the inner workings
of muscles. In their purest form, these models intentionally ignore any detailed
current knowledge about muscle behaviour. They rather centre on a specific actual
or perceived functional role of muscles in the musculo-skeletal system. Their
mathematical and/or physical description is based on this functional role. In human
(and animal) gait, for example, the body’s centre of mass follows a sinusoidal
trajectory in space, much liké a mechanical oscillator moving perpendicularly to its
oscillating direction. Several authors [e.g. Alexander 1975, Blickhan 1986,
Greene and McMahon 1979, McMahon and Greene 1979] therefore equate the
animal body with oscillators of varying complexity. All major muscles involved in
the movement are grouped together, and they are assigned suitable spring
stiff'nesses and parallel (dashpot) viscosities to form an oscilléting system with the
body mass. The models are reported to have good predictive capacities related to
questions regarding optimal running speed, the influence of running surface

characteristics on energy consumption during running, etc.
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At the same level of abstraction, Anton and Nigg [1990] developed a model for
walking and running, where the muscle g:roups involved were lumped into a single
force generator whose time rate of force generation was limited to an
experimentally determined value. The time dependent force of the generator was
controlled in such a way, as to maintain a certain movement pattern and, in doing
so, to minimize the work performed by the generator. The model produced realistic
force mggnitudes, and, more importantly, the different characteristics in the force-
time prbfile for running and walking were reproduced by exclusively changing the

speed of the movement pattern.

Most functional muscle models are derivations of Hil’'s Equation or Hill's Three-
Element Model of muscular contraction. Hill [1938] derived an empiric equation for
tetanized (frog sartorius) musc!e, which expresses a hyperbolic relation between
the muscular contractile velocity and the applied load. Hill’'s investigation, which
was restricted to muscle optimal length, was later generalized by Abbott and Wilkie
[1953] ;to varying muscle lengths. The parameters entering Hill's Equation
(especially the maximum isometric force) were thus shown to be dependent on the
muscle length. In his paper, Hill also proposed a mechanical model which was
intended to "visualize" the basic features of his empiric equation. The model
consisted of a contractile element in series with an elastic element (series elastic
element). In more recent times, the model has been extended and its elements

have been related to the Sliding Filament Theory. The most basic extension to
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Hill’s original model consists of the addition of a parallel elastic element, and the
extended model is uéually referred to as Hill’'s Three-Element Model [Fung 1970].
In this model, the series elastic element is commonly associated with the intrinsic
elasticity of the actin and myosin molecules and cross-bridges, while the parallel
elastic element is related to connective tissues, cell membranes, etc. Often, a
viscous element is added in parallel to Hill's Three-Element Model. in order to give
the model the velocity dependence of Hill’'s Equation when the active element is
described as being independent of the shortening velocity. However, already in his
1938 paper as well as in later publications [e.g. Hill 1970], Hill objected to the
interpretation which attributed the lower fibre tensions for higher shortening

velocities to viscous effects.

Hatze [1976] and Audu and Davy [1985] studied a musculo-skeletal motion
problem (the minimum time kicking problem formulated by Hatze [1976]) using
optimal control algorithms. Different muscles and/or muscle groups were
represented by individual Hill Models of varying complexity. The parameteré of the
equations which describe the behaviours‘of the Hill Mode!l elements were obtained
experimentally, except for a newly introduced stimulation over time function. These
stimulation functions were optimized with respect td the minimum time kicking
problem and model! predictions for the skeletal movement sequences validated

against experimental results.
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Zajac[1989] added a tendon s;eries elastic element to Hill's Model and investigated
its influence on the force length relations of the muscle-tendon actuator. He
demonstrated that the tendon elasticity distorts the force length curve of the
muscle-tendon actuator to higher actuator lengths with decreasing tendonal

stiffnesses.

Herzog;[1987] used a modification of the original Hill's Equation to estimafe
individual muscle forces in situations where different muscles are acting together
in various activities. The modifications consisted in adding further parameters
which describe the muscle’s angle of pinnation, its state of activation, physiological
cross sectional area and muscle force constant, i.e., the maximum isometric force

a muscle can exert per unit physiological cross sectional area.

Detached from any Hill type consideration, Otten [1987] proposed a three
parameter mathematical expression which could be used to appfoximate closely
the experimentally determined isometric force length relations of most muscles.
The proposed equation is related to Gauss’ equation for normal distribution, and
the three parameters influence roundness, skewness and width of its graph.
Kaufman et al. [1989] showed that these three parameters are dependent on a
single parameter, namely the index of architecture, which they define as the ratio
of fibre optimal length to muscle belly optimal length. As a consequence, the

general expression given by Otten is made dependent on morphometric data. The
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index of architecture was introduced by Woittiez et al. [1983 and 1984] and

mentioned in a less formal manner already by Benninghoff and Rollhduser [1952].

2.4.2 Geometrical MUscIe Models

Geometrical muscle models incorporate the muscle geometry in one way or the
other into the considerations regarding the behaviour of muscles. The Danish
scientist Niels Stenson (1638 - 1686) was first in formulating a mechanical model
of muscular contraction, using the mathematical tools of his time; Euclidean
geometry. His observations about muscular structure contained the statements that
muscles are composed of pennate structures which, in turn, contain fibres of equal
length énd globally form a parallelepiped between parallel tendons (or tendon
sheaths). With his model, Stenson was able to demonstrate that muscles could
contract without changing their volume, a concept running totally against the beliefs
of his contemporaries. Reaffirming the convictions of ancient greek philosophers,
Descartes (1596 - 1650) had stated in his "De Homine" that a substance or "the
animal spirit" entered from the brain through hollow nerves to make the muscles
swell and contract. (The discussion above was taken from a paper by Kardel
[1990]. Please refer to this paper' for references of original publications by

- Stenson.)

In more recent times, Benninghoff and Rolihduser [1952] discussed the
consequences of different angles of pinnation. Their reasoning, which was based

on trigonometric considerations of individual fibre deformations, resulted in the



statement that the ﬁaximal economical angle of fibre pinnation would be 30°, if the
muscle fibres are assumed to shorten by half of their original lengths. Among all
:possible angles of pinnation, he reported the angle of pinnation of 45° to produce
the highest force in a pennate muscle. He also obsérvedrthat muscles with a high
degree of pinnation would produce a higher force over a smaller distance

compared to muscles with a low degree of pihnation.

The most widely accepted geometrical muscle model in the literature today is the
one by Woittiez et al. [1984]. His three-dimensional model geometry consists of
two kite shaped téndon sheaths (with opposite geometrical orientation at top and
bottom) which in general are not of equal size and are not parallel. Fibres run
between the two tendon sheaths and are allowed to have varying angles of
pinnation. The muscle volume is divided into segments for which, at different
muscle lengths, muscle fibre forces, shortening velocity etc. are calculated.
Through a least square analysis of the instantaneous segment volumes and
segment volumes at muscle optimal length, the overall muscle volume is kept
close to constant. The segmental muscle fibre forces are added after correcting
for the angle of pinnation at different muscle lengths and result in the length
dependent total muscle force. They observed a narrow active and steep passive
force length relation for muscles with a considerable degree of pinnation. Woittiez
reports excellent agreement between the model generated muscle force-length and

force-velocity relations and those obtained by experiments on Wistar rats.
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Otten presented an initial muscle model in 1985 which he later extended to
account for fibre curvature, tendon elasticity aﬁd internal muscle pressure [Otten
1985, 1987a, 1987b and 1988]. The model consists essentially of six sub-units in
a pennate geometrical arrangement, where each unit is formulated as a Hill type
model. The tendon sheaths tie the ends of the sub-units together at either side.
Comparing his model predictions to experiments performed on the cat vastus
lateralis, Otten obtains good agreement. He observes that the inclusion of tendon
elasticity in the model shifts the muscle force length curves to higher lengths. He
also observes reasonable agreement between estimated internal muscle pressure
and those generated by his model, wﬁh the highest pressure being about 120%
of muscle fibre stress. (Using his model for pennate muscles, Heukelom et al.
[1979] estimated the internal muscle pressure in pennate muscles to about 10 kPa.
Based on their respe_ctive m.odels, Benninghoff and Rollhduser [1952], Gans and
Bock [1965], and Gans [1982] on thé other hand did not see any reason for

internal muscle pressure to occur in pennate muscles.)

Dr. M. Epstein and Dr. A. Hoffer, University of Calgary, have recently developed
a geometrical muscle model which is based on a constitutive description of the
muscle tissue and iﬁcludes an accurate treatment of the large muscle
deformations. The model incorporates nonlinear material characteristics for both
the muscle tissue and the tendon sheaths. Tendon sheaths are flexible in bending,

and muscle fibres may take on varying angles of pinnation within the muscle. The
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model has been used to investigate the sensitivity of model predictions on different
constitutive assumptions. Experimentally observed wrinkling of the tendon sheaths
could be reproduced with this model under certain loading conditions [private

communication].



Chapter 3

Straight Line Geometrical Muscle Model

Geometrical muscle models use the muscle geometry for the derivation of the
equations which describe the muécle contractile behaviour. Often, these models
approximate both the initial and the deformed 'muscle georﬁetry by comparatively
simple geometrical shapes which are bordered by straight line segments. These
muscle models és well as the muscle model to be developed in this chapter will

be collectively referred to as "Straight Line Model(s)" (SLM).

The current model as well as similar models in the literature make precise
assumbtions about the posSibIe modes of muscle deformations. Because these
models are not based on a general constitutive theory of muscle tissue, the
~ assumptions are required in order to reduce the number of degrees of freedom
inherent to the model and "co guarantee a solution. The deformation assumptions
are, at times, problematic and their consequences on the muscle predictions

cannot be assessed. For example, tendon sheaths are often assumed to remain
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straight during muscle activity and deformation; this deformation mode represents
the physical reality only under the conditions that tendon sheaths are stiff in
bending or that the stresses have an appropriate distribution within the structure.
However, the former condition is contrary to physiological evidence and the latter

cannot be confirmed within the confines of these models.

Despite the preceding observations, Woittiez' et al. [1983, 1984], for example,
have achieved excellent agreement between their model predictions and
experimental data. Consequently, one may assume that SLM reproduce mus;:le
behaviour to an acceptable degree, and they will be used as a basis of comparison

for the Continuum Muscle Model (CM) which will be developed later in this thesis.

The development of the current SLM will be used to lay the foundations for the
CM. By exploiting the potential for simplicity inherent to SLM, the mathematical
description of the model will result in a closed set of algebraic equations. Due to
the transparent form of these equations, certain observations about the muscle
model behaviour can be made independently of any numerical analysis. Numerical
analysis will, however, be employed for a broadly based exploration of the model

behaviour.

‘The presentation and discussion in this chapter are very much focused on the papers by Woittiez
et al. [1983,1984] due to the shortage of similar work in the literature. While other muscle models exist,
they usually do not have the broad scope of the approach taken by Woittiez.
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3.1 Initial Considerations

A two-dimensional Straight Line Model (SLM) of unipennate muscles will be
developed. The basic features of unipennate muscles are schematically presented
in Figure 3.15. Tendon sheaths run along the lower and upper edge (thick lines),
while the muscle fibres run between the two tendon sheaths from bottom to top
(thin lines). At the lower left and upper right tendon sheath ends, the muscle is
connected to bone or tendons (tendons are indicated in Figure 3.1a). Defining the
line of action of a muscle as the line which runs between the muscle attachment
points, a muscle is termed pennate whenever its fibres intersect this line of action
at an appreciable angle. A unipennate muscle has only one predominant fibre
orientation. This contrasts with multi-pennate muscles which include fibres with
several distinctly different fibre orientations. The general. geometry of a bipennate

muscle is indicated in Figure 3.1b.

Since fibres are assumed to exert forces exclusively along their longitudinal axis,
the degree of pinnation has a direct effect on the magnitude of the force a muscle
can produce. A fibre which is nearly aligned with the muscle’s line of. action
‘ contributes élmost all of the force it generates to the overall muscle force, whereas
a fibre running perpendicularly to the muscle’s line of action does not contribute
to the external férce of the entire muscle. This observation is usually expressed .
by a cosine relation, in which the amount of fibre force contributed to the overall

muscle force is taken to be equal to the fibre fbrce, multiplied by the cosine of the
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Figure 3.1: Schematic geometry of pennate muscles.

angle spanned between the' muscle’s line of action and the fibre direction. The
cosine relation is used, for example, by Woittiez et al. [1983, 1984] and Scott® and
Winter [1991] in their models. Because the value of the cosine function increases
with smaller angles, it would appear that less pinnation is beneficial in obtaining

higher muscle forces. As will be shown below however, the degree of pinnation |

also influences the number of fibres which run in parallel between the two tendon

*The treatment by Scott and Winter [1991] simplifies the pennate muscle geometry even further.
The whole muscle is represented by a single line element which is arranged at an angle to the muscle
tendons. This angle, identified with the angle of pinnation, and the cosine relation is the only
geometrical component of the model.
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éheaths. More fibres are arranged in parallel in the case of a higher degree of

pinnation, and the muscle force increases correspondingly.

The consequences of the changing muscle geometry during muscle deformation
on the fibre angle of pinnation as well as the effects of different initial muséle
geometrieé on the number of fibres acting in parallel are illustrated in Figure 3.2.
Focusing on Figure 3.2a, a unipennate muscle is displayed with tendon sheaths
at the top and bottom, and muscle fibres, indicated by equally spaced lines,
running at an angle between bottom and top tendon shéath. For now, the angle
of pinnation, v, will be defined as the angle included between the line of action of
the muscle and the general fibre dire“ction. The indices indicate the muscle

geometry number 1 (first index = 1) at reference configuration (second index = 0).

When stimul.ated, a muscle fibre generates a force, whose magnitude depends on
the length of the fibre. For a particular length, the fibre force takes on a maximum
value which decreases to zero as the fibre is lengthened or shortened from this
"optimal length". Furthermore, experimental evidence suggest that muscle tissue
and individual muscle fibres are incompressible, that is, their volume does not
change during deformation. Consequently, the fibre cross sectional area decreases
proportionally when a fibre is stretched and increases when a fibre is shortened.
The muscle reference configuration is taken here to refer to a géometry for which
all muscle fibres have a length at which they are able to geﬁerate a maximum

force when stimulated and at which they have a specific cross sectional area.
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Figure 3.2: Consequences of muscle deformation and different initial muscle
geometries on specific muscle attributes.

The areas between any two adjacent lines running in fibre direction in Figure 3.2
are assumed to contain the same number of fibres forming fibre bundles.
Alternatively, two adjacent lines may be seen to border one disproportionately thick

fibre for the current argument. The thickness of these fibres or fibre bundles is
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indicated by t. A unit depth (or thickness) of the muscle perpendicular to the

drawing plane is assumed, which will not change during muscle deformation.

Figure 3.2b displays the same muscle as Figure 3.2a in a deformed (stretched)
configuration® (second indices = 1). The deformation results in a decrease of the
angle of pinnation and a lengthening of the muscle fibres associaf(ed,with a
corresponding decrease in their thickness. The number of fibres acting in parallel
has evidently not.changed, but they are now orientated more in the direction of the
line of action of the muscle, which allows them to contribute a higher proportion
of their current force to the external muscle force (cosine relation). However, the
individual fibre forces have decreased during the deformation on account of the
fibre force-length relation. For any deformation, the external muscle force will be

influenced by these two opposing effects.

A second muscle (first index = 2) with its initial geometry (second index = 0) being
equal to the deformed geometry of the first muscle is shown in Figure 3.2¢c. The
muscle and its fibres are now at reference configuraﬁon, and the fibres take on
their reference cross sectional area and thickness. Therefore, fewer but longer
fibres can be fitted in parallel into this muscle volume. Being at optimal length

however, each fibre is able to exert a higher active force compared to Figure 3.2b.

*The deformed muscle geometry in Figure 3.2b results from the initial geometry in Figure 3.2a by
a stretch in the direction of the line of action of the muscle and followed by a rotation which aligns the
lower tendon sheath with the horizontal. The rotation is carried out for purposes of clarity.
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The.muscle model to be developed will address the trade-off between the force
cont‘ributio'n of individual fibres and the number of fibres acting in parallel in relation
to the angle of pinnation. Muscles of identical volume but with different initial
gedmetries will be modelled in order to study the dependence of certain muscle
characteristics on the initial muscle geométry. Muscle characteristics of interest
include the muscle peak force, the deformafion range over which a muscle is able
to exert a force and the relation between the force-length profiles of muscle fibres

and the whole muscle.

3.2 Model Derivation

The equations which describg the current SLM will be derived in this chapter. The
section starts by stating the simplifications and assumptions underlying the muscle
model. Consequently, the admitted muscle model geometries and kinematics of
deformation will be defined. Finally, after looking at different aspects of the muscle
fibre force-length relation, the secﬁon concludes with the derivation of the

equilibrium conditions.

3.2.1 Simplifications and Assumptions Underlying the Model

The simplifications and assumptions which underlie the current model development

are similar to those encountered in the treatment by Woittiez et al. [1983, 1984].
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Assumptions determine to a large extent how the final model will perform, and

they, therefore, constitute an important part of any model.

Table 3.1 groups the current simplifications and assumptions into three categories,
where the first category (marked 'R’) refers to the initial or reference muscle
cénﬁguration, the éecond (marked 'D’) to the deformed muscle geometry, and the
third group (marked 'A’) lists additional assumptions which do not fit into the first
two categories. The first category of simplifications and assumptions will be carried
over almost unchanged to the development of the Continuum muscle Model (CM)
later in this thesis. For the current model, no use is made of constitutive relations,
except for fibre force-length relations.. Instead, kinematic constraints expressing
assumed muscle deformation modes Vare applied. They constitute the second
category in Table 3.1., and they will be replaced by constitutive relations in the
context of the CM. Table 3.1. makes reference to optimal‘and relative fibre length

which will be defined in Chapter 3.2.3.

It is worth not'ing, that the simplifications and assumptions in Table 3.1 describe
the tendinous sheath as being rigid béth in tension and bending. Fibres, while they
are allowed to contract and elongate freely, are also taken to be stiff in bending.
These simplifications are counter to physiological evidence. As an aside, the
assumed fibre deformation mode implies that the tendon sheaths remain straight

during muscle deformation, whereas the converse does not hold. The muscle

tissue as a whole is seen to behave as a mere superposition of individual fibres,
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R.1  Tendon sheaths are straight.
R.2  All muscle fibres are straight, they have identical directions and are at
optimum length.

D.1  Tendon sheaths remain stralght and malntaln their ongmal length at times,
they are allowed to change in width.

D.2  All muscle fibres remain straight, and they take on identical relative lengths -
and orientation. All fibres are uniformly stimulated.

D.3 The volume of the entire muscle and of any volumetric element of muscle
tissue remain unchanged, that is, the muscle tissue is incompressible.

A.1  The only origin of forces or stresses is seen in the active and passive fibre
force-length property. These forces or stresses act in fibre direction only.

A.2"  There is a unique functional relation between the fibre force and the relative
fibre length.

A.3 The muscle has two points of attachment only. There are no other points
of contact with surrounding structures.

A EEEEEEE———— e ]
Table 3.1: Major simplifications and assumptions underlying the straight line
muscle model.

modulated by the muscle geometry. The incompressibility of muscles under

stimulation has been shown by Abbott and Baskin [1962].

In the context of this chapter, the concept of mechanical stress will be used
loosely. Whenever reference is made to stresses, it will refer to distributed loads
(forces divided by areas). Due to the absence of a general constitutive theory,

stresses are not to be understood as components of a stress tensor.

The final form of the equations below will be independent of the concept of muscle

fibres. Nevertheless, muscle fibres will be referred to whenever it helps the
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argumentation. In these cases, fibres are assumed to extend over the entire
distance between the two tendon sheaths and to possess a thickness being small

compared to the dimensions of the muscle.

2.2 Muscle Model Geometry and Kinematics of Deformation

The general muscle model geometry, whose cross section takes on a trapezoidal
shape, is displayed in Figure 3.3. A uniform rﬁuscle thickness or depth, measured
perpendicularly to the drawing plane is assumed. Tendon sheaths are located at
fhe top and bottom, and fibres run in parallel between the tendon sheaths in a
direction coincident with the boundary fibres indicated at the left and right end. For
the derivation of the equations, the muscle is assumed to be attached rigidly (to
bone) at the left end of the lower tendon sheath, while the right end of the upper
tendon sheath (connected to a tendon) is free to move*. The muscle attachment
point on the left may be identified with the muscle origin and the one on the right
wifh the muscle insertion. As shown in Figure 3.3, the muscle is freed from its

attachment points and force resultants are drawn in their place.

The muscle geometry is described by the following parameters: the lower tendon
sheath length, |, the muscle height at the left end, h,, the difference in height

between the muscle’s right and left end, h,, the muscle depth, d, the overall

“The muscle deformations result from moving the upper right hand apex in the direction of the line
of action of the muscle. However, the deformations are described relative to a coordinate system which
is attached rigidly to the lower tendon sheath. Thus, the rotation of the tendon sheath in global
coordinates is eliminated from the equations.
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Figure 3.3: Muscle model geometry (lateral muscle cross section).

muscle length (the length of the connecting line between the origin and insértion),
L, the angle between the lower tendon plate and the fibre direction, «, the angle
~ between the line of action of the muscle and the lower tendon sheath, B, and the

angle between the fibre direction and the line of action of the muscle, ¥.

From the possible subsets of independent geometrical parameters which describe
the muscle geometry uniquely, the set being composed of |, h,, h,, d and o will be
used below. Following Otten [1988], o will be termed the angle of pinnation in the
context of the current model. This contrasts with the treatment by Woittiez et al.
[1984] who use v for this purpose. The angle a has been chosen here because it
simplifies tﬁe derivation and the final form of the equations below, and because the
angle under which the fibres connect to the tendon sheaths has a higher

significance than y. The general trapezoidal muscle geometry contains the
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commonly treated muscle geometry of muscles with parallel tendon sheaths by

setting h, equal to zero.

For the description of the muscle deformation the concepts of initial or reference
configuration and deformed or actual configuration have to be distinguished.
Initially, the muscle geometry is determined by a set of values for |, h,, h,, d and

o, and the fibres are taken to be at optimal length (see next section). Symbolically

this will be expressed by subscripting parameters which describe the reference
configuration by 0 (e.g. o). The actual configuration is defined by a new set of un-
subscripted parameters which, in general, are functions of the geometrical
parameters at reference configuration and of the actual angle of pinnation, o. It is
a consequence of the simplifications and assumptions made in the previous
section"that only o is needed from the set of actual parameters to determine
uniquely the actual configuration. Dgring the deformation, the angle of pinnation,
o, will chaﬁge, h,, h, and d will change in general, while | will always remain
constant. Values for the dependent parameters, L, B and v, can be obtained at any

configuration.

When the muscle deforms, the fibres will change in length and, on account of the
required constancy of volum_e, their cross sectional area perpendicular to the fibre
direction will change accordi.ngly. If the depth of the muscle is taken to remain
constant, the fibres can only change their thickness in the drawing plane of

Figure 3.2 and 'Figure 3.3. However, the equations below do allow for a uniform
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depth change of the entire muscle, where the amount of depth change is controlled
by an additional kinematic constraint and included in the equations by way of a
parameter, D. D imposes the ratio of fibre thickness changes in depth direction to
the fibre thickness change in the drawing plane of Figure 3.2 and Figure 3.3. A
value of D=0, for example, implies no fibre thickness change in depth direction,
whereas D=1 translates into equal fibre thickness changes in depth and drawing

plane direction during muscle deformation.

The ratio of the actual fibre length to the reference fibre length, which is commonly
called relative fibre length®, is denoted by A. A will also be referred to as the (fibre)
stretch ratio; the fibre forces dépend .ultimately on the fibre stretch ratio. On the
other hand, the absolute fibre length has no significance for the present

considerations and will not appear in the equations.

The equations below expreés the functional dependence of the geometrical
parameters which describe the actual muscle configuration on the indepéndent
parameters at reference configuration and on the actual angle of pinnation, o.
They are derived by trigonometric considerationé and incorporate the

simplificétions and assumptions listed in Table 3.1 under category D.

_ hith

L=__1_2 3.1)
sinf

*The fibre reference length will be defined below as being equal to the fibre optimal length.
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tanp = M+ fle)tanc 3.2)
(h,+hy) +Itana
ho=2aSN%p =12 (3.3)
sina,

1
. - (3.4)
sino. (1 +D {gma _1B
sinc, sino,

If it is desired to express the equations above in terms of v, that is, the angle

A=

between the line of action of the muscle and the fibre direction, then o may be
replaced by the term (B + ) in‘the equations above. For D=0, which corresponds
to a constant musble depth during muscle deformation, Equation 3.4 simplifies

greatly and Equation 3.3 becomes trivial.

Equations 3.1 and 3.2 express trigonometric relations which are obtained directly
from Figure 3.3. Figure 3.4 displays a fibre or fibre bundle in its referenée and
deformed éonfiguration. Equation 3.3 follows by eliminating I, from the following

two equations:

ho = sinoco lfo , (35)
h = sina/, = sino A/,
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Figure 3.4: General deformation of a muscle fibre or muscle fibre bundle.

introducing the stretch ratios in fibre thickness direction, A,, and depth direction, A,

the requirement of volume constancy leads to the relation AAA, = 1 by way of

the following equations:
Vo = lotyd, = [itd = M At A,d, = V
An expression for A, is obtained through:

t ‘ sina,
Ax=_9 =_1 ——>7L,=_t.=._°
sina, sino f sino

(3.6)

(3.7)

The depth change parameter, D, is introduced through the defining equation:

Ay = D(A,-1) + 1

(3.8)
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Substituting Equations 3.7 and 3.8 into the relation AAA, =1, Equation 3.4

results after rearranging.

3.2.3 Fibre Force-Length Relation

Experimental evidence indicates that muscle fibre forces depend on the fibre
length, the deéree of stimulation and the time rate of the fibre length change.
While work has been done in the area, the question of how to quantify the amount
of stimulation in a mathematically precise sense is not entirely resolved. For that
reason no conclusive functional expression which relates the active fibre force to
the degree of stimulation is available. However, the fibre force under stimulation
reaches ei fiore length dependent maximum value, whose magnitudé is
independent of the degree of stimulation as long as the stimulation is above a
specific saturation level. In this case a fibre is said to be maximally stimulated. This
thesis deals only with fibres which are either unstimulated or maximally stimulated,
and the current chapter focuses on maximally stimulated fibres exclusively.
Furthermore, only static or quési static conditions will be considered, which renders
the equations and considerations below independent of the time rate of fibre length

changes.

Muscle fibre force-length relations have been established experimentally by
bringing individual muscle fibres to different absolute lengths and measuring the
forces of maximally stimulated and unstimulated fibres. Figure 3.5 displays the

general form of the fibre force-length relations for a stimulated (solid line - total
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muscle fibre force) and unstimulated fibre (dotted line - passive muscle fibre force).
The difference in force between the total and passive muscle fibre force is
commonly called the active fibre force (dashed line). Rather than using the
absolute fibre length, the abscissa in Figure® 3.5 displays the ratio of the actual
fibre length () to the fibre optimal length (l,), that is, the fibre stretch ratio
A = (I, / l,). The ordinate displays the relative fibre force, where the absolute fibre
force is divided by the maximum active fibre force. The absolute fibre length at
which a fibre reaches its maximum active force is called fibre optimal length. An
unstimulated fibre left to itself will take on a length, called resting length, which, in
most cases, is close or equal to its optimal length. Fibres will be defined to be at
reference length When they take on their resting length which is assumed to be
equal to the fibre optimal !ength. The fibre stretch ratio, A, is equal to 1 at fibre

reference length.

" The literature usually gives examples of fibre force-length relations for different
species and muscles in the form of Figure 3.5, that is, the relative force is plotted
against the stretch ratio. Nevertheless, the expressions "force" and "length" are
used when referring to thé ordinate and abscissa, respectively. Below, the terms
“fibre length" and "fibre relative length" or "fibre stretch ratio" will be used

interchangeably when referring to the fibre stretch ratio. When the difference

*The reference to fibre stress within the figure caption and the ordinate label "P" will be explained
below.
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Figure 3.5: Fibre force and fibre stress profiles (force profile number 1).

between absolute and relative fibre forces is of importance, the relative force-

length relation will be termed active force profile.

Absolute muscle fibre forces are seldom listed in the literature (data obtained
experimentally from frog muscle fibres are given, for example, by Woledge et al.
[19885]). Absolute values are mostly given for active muscle tissue peak stresses
in the fibre direction. However, these active fibre stresses vary greatly in
magnitude; Kaufman et al. [1991], for example, indicate a range from 10 to 100
N/cm? for human muscles. The active stress values ére usually obtained from force

measurements performed on entire muscles, where the muscle peak force under
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maximal stimulation is divided by the average fibre length and where a correction
term is applied to account for the angle of pinnation. This procedure implies the
acceptance and use of a basié muscle model which relates external muscle forces

to muscle tissue stresses.

From a modelling point c;f view, one is confronted with the situation of knowing the
fibre force-length profile which was obtained from a single fibre experiment and
which is assumed to remain unchanged for fibres in the tissue compound;
however, one does not have access to absolute fibre forces but to a muscle tissue
stress. Below, the fibre forces and tissue stresses will be related. At the same
time, two different stresses, the first Piola Kirchhoff stress and the Cauchy stress, _

will be introduced.

If one considers a force profile function f(A) which describes, for example, the total

normalized fibre force in Figure 3.5., the absolute fibre force can be expressed by

FQ\ = FiQ) (3.9)

with F being the force scaling factor. Dividing F by the fibre cross sectional area

corresponding to the fibre optimal length results in

P() = FX" = .A’f_.f(x) = P{(A) (3.10)
0

0
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Keeping in mind the reservations made about the stress concept in Chapter 3.2.1,
P could be termed the first Piola Kirchhoff stress, being the quotient of the actual
fibre force divided by the reference fibre cross sectional area. F(A) and P(L) have
the same profile function f(A), but different scaling factors in magnitude and
dimensions. F(A) applies to each muscle fibre individually, while P(A), considering
the assumptions made about fibre uniformity throughout the muscle, expresses the

tissue stress in fibre direction at any point within the muscle body.

During muscle fibre length changes, the fibre cross section is assumed to change
in such a way as to keep the fibre volume constant. Dividing Equation 3.9 by the
actual fibre cross sectional area, VA(x), leads to

_ F(®) F

A0y - Ap) M = A A

c(})

where o(A) might be called the fibre tissue Cauchy stress in fibre direction, that is,
the actual force acting in fibre direction per unit cross se;:tional area perpendicular -
to the fibre direction in the actual configuration. It foll;)ws from the constancy of
fibre volume that A(\)=A,/A. The scaling factors P and & are equal, but the two

stress profile functions are different.

Figure 3.6 presents the active force profile f(A) of Figure 3.5 as the solid line which

is identical to the first Piola Kifchhoff stress profile. The dashed line corresponds
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Figure 3.6: Active fibre force and stress profiles (force profile number 1).

to the Cauchy stress profile s(A) in Equation 3.11. lts maximum is shifted to the
right and is, at a value of about 1.1, greater than unity. The two curves intersect
at A=1, which corresponds to the reference configuration, and for which the

Cauchy and Piola Kirchhoff stresses ére identical.

From a conceptual perspective, the question arises, which of the fibre stresses P
and o is intended to be derived from experimerits on entire muscles. Below,
stresses reported in the literature will be interpreied as resulting from single fibre

experiments, and they will be identified with P.
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For the derivation of the equilibrium conditions in the next section, it is helpful to
introduce the internal energy of fibre tissue per unit volume at reference

configuration:
W, = P [f()an (3.12)
which, when focusing e.g. on one fibre, follows from

Al .
nlo p UL (3.13)

_‘.;;; [Fa, = VL’O [PAlp . = -
and where Equation 3.9 and the relation |, = Al,, have been used. In Equétion 3.13,
F stands for the fibre force, |, for the fibre length, V,, for the fibre volume at
reference fibre length, and Ay, for the fibre cross sectional area at reference fibre
length. While Equation 3.13 focuses on one fibre, Equation 3.12 gives the internal
energy per unit volufne at any point in the muscle. The internal energy dens:ity is
independent of the location .withi.n’the muscle, due to the simplification which

~ required all fibres to be in the same state of deformation and activation.

In the current context, the term "internal energy" refers to the capacity of the fibre
tissue to produce work and contains an activation energy component resuiting from
the fibre stimulation as well as a strain energy like component associated with the

passive fibre force-length characteristic.
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Two force profiles f(A) will be considered in this chapter. Profile number 1, f,(A),
incorporates both an active ahd passive fibre force-length relation. The active part
is taken directly from Woittiez et al. [1984], whereas the passive part has been
soméwhat modified. The force profiles are disblayed in Figures 3.5 and 3.6. The
active profile has the form of a pérabola centred at A=1, and it is positive over the
range Ae (0.6, 1.4). The total force profile, that is, the active plus passive force
profile, has a local minimum of about 0.84 at A~1.32 and attains a value 61‘ 1 at

A=1.4. Equation'3.14 gives the functional description of force profile number 1:

f1(?") =.f1,act * f1.pas

fyaa = (-6.25A2 + 12.5 - 5.25) (3.14)

f1,pa1s

= 3.289-10-5¢9%%7* - 0.02766

The active forcé profile number 2, Figure 3.7, is a modification of force profile
number 1. In principle, it is generated from the previous profile by shifting the
location of the active fibre force peak (solid line) to the left and is motivated by the
fact that the Cross Bridge Theclnry predicts, and that rﬁeasurements taken on
sarcomere level show, a more asymmetrical force-length relation. Compared to

profile number 1, the range of A over which the fibre generates an active force and
the integral ff(A)dA over the active range have been kept constant. The latter

means that fibres having characteristics described by either profile perform the

same amount of work in a contraction covering their active range. Furthermore, the
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Figure 3.7: Alternate active fibre force and stress profiles (force profile number 2).

active Cauchy stress profile (dashed line) has now a parabolic shape. The curves
have been shifted to the right through a coordinate transformation, to keep the
force profile maximum at A=1. Equation 3.15 presents the equations deséribing
force profile number 2; no passive force profile is included for the considerations

in this chapter.

1 (-6.25(A*)2 + 12.51° - 5.25) |
103407 (3.15)

f2,act (?‘") =

A* = A-0.08349
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3.2.4 Equilibrium Conditions

The equilibrium conditions, which relate muscle ffbre forces to the external muscle
force, are usually given little attention in deriving the models in the literature.
Woittiez et al. [1984], for example, treat this topic in one sentence, saying that "the
product of the force of each fibre and the cosine of its angle results in the force
contribution of each fibre in the direction of the length axis of the muscle” (in terms
of the current model, "angle" refers to the éngle v in Figure 3.3). No attempt has
been made to establish the physical merits of this approach and their discussion

does not indicate any concern with this kind of approach.

Otten [1988] derived equilibrium conditions for a muscle with parallel tendon
sheaths at one particular configuration only by using the methods of sections and
by consideting the equilibrium of the individual tendon sheaths. He fails, however,
to apply the required mechanical rigour. His equations turn out to be essentially

correct, but not for the right reasons.

The equilibrium conditions have probably been treated so carelessly because the
muscle, even on the abstraction level of a straight line model, turns out to be a
statically indeterminate system, which may not have been realized. Figure 3.8.
presents the free body diagram of an entire muscle with parallel tendon sheaths
and two alternative free body diagrams for the uppertendon sheath alone. Looking

at the entire muscle held at two opposing points only, equilibrium is solely possible
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if the forces have a common line of action’, opposite direction and the same

magnitude (Figure 3.8a).

The upper tendon sheath of the muscle, sectioned and redrawn in Figure 3.8, is
in equilibrium if both the force equilibrium condition (closed force polygon) and
moment equilibrium (the lines of action rof all forces intersect at one point) are
satisfied. It was one of the simplifications made for the model that all fibres are
always in the same contractile state, that is, all fibres generate an equal amount
of force. Therefore, one can substitute one resultant force for the distributed fibre
forces, whose line of action intersects the tendon sheath at mid-iength with a
direction parallel to the general fibre orientation. In addition to the line of action,
the magnitude of this fibre force resultant, F, is known in dependence of the fibre
stretch ratio A. The line of action of the external muscle force, F,,, is also known
from the considerations made above. To 9stablish static equilibrium, a closed force
polygon has to be drawn at the intersection of the line of actions of F; and Fy,.
Closing of the force polygon is only possible by introducing an additional force, F,,
which has been drawn with a vertical line of action in Figure 3.8b. This choice of
direction for F, is, howe\/er, in no way unique, which is illustrated by the free body

diagram in Figure 3.8¢, displaying another force system in static equilibrium. The

"In the current model with two muscle attachments at the origin and insertion only, the line of action
of the muscle forces is identical to the line which joins the muscle origin and insertion. in keeping with
commonly accepted terminology, the latter has previously been defined as the line of action of the
muscle. It should, however, be noted that in the case of additional muscle boundary conditions (e.g.
supported tendon sheath) the external muscle forces may have different lines of action neither being
coincident with the "line of action of the muscle".
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Figure 3.8: Free body diagrams for the entire muscle and the upper tendon
sheath.

direction of.F, is important, as it influences directly the 'magnitude of Fy; the

magnitude of F,, in Figure 3.8c is larger than the one in Figure 3.8b.

Otten [1988] assumes F, to have a vertical line of action by alluding to pressure
forces or pressure stresses that have been shown to exist in muscles. However,
the simplifications and assumption underlying his model and the current model, in
particular the absence of any general constitutive law, do not contain a convincing

basis for this choice. By drawing the free bbdy diagram for a trapezoidal muscle
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geometry, one sees at once that F, cannot be perpendicular to both the bottom
and top tendon sheaths. All that can be said about F, is that it is a consequence
of the imposed kinematic constraints. It should also be noted that the line of action

of F, does not intersect the tendon sheath at mid length.

The decision, which one of F,’s possible line of actions to choose, has to be built
on a physical foundation, instead of an arbitrary assumption. This will be achieved
below by using the principle of virtual work. In the context of the current model, the
principle equates the incremental internal energy change to the incremental work
performed by the muscle force, F,,, for any incremental deformation of the muscle

consistent with the kinematic constraints.

It follows from the free body diagram of the entire muscle, Figure 3.8a, that Fy, is
collinear with the line of action of the muscle along which the muscle’s length, L,

is measured (Figure 3.3). The external muscle work can therefore be written as:

W, = [Fy(L)dL (3.16)

and the principle of virtual work can be stated as follows:

a{fw,mdv - Wm} =0 o (317)
A
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The volume integration limits are independent of the kinematic variables so that
the integration and variation may be interchanged. Using Equations 3.12 and 3.16,

Equation 3.17 is transformed into

- [Pt s1dV - Fy(L)8L = 0 (3.18)
v,
and further
5 ¢y OA dL .
Pf(A) == |[dV - F,, (L) ==t = O (3.19)
0G5 [0 - Full) 5 B

By the standard argument of variations, that, given 8a. # 0, the terms enclosed in
parenthesis in Equation 3.19 must be zero, the folloWing equilibrium conditions are
found after integrating and differentiating with respect to o and extensive

trigonometric transformations (Equations 3.2 through 3.4 are used in the process):

£, = P12 R ) ging (1+ D)cosa to)  (3.20)
2| h+h, | " " cosp + Dcosa cos(o )

Equation 3.20 expresses the muscle force, F, in terms of the geometrical
parameters at reference configuration (parameters subscripted by 0), the actual
angle of pinnation, o, the actual angle between the lower tendon sheath and the

line of action of the muscle, B, the first Piola Kirchhoff stress scaling factor, P, the
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fibre force profile function, f(A), and the kinematic parameter controlling muscle
depth changes during contraction, D. By virtue of the Equations 3.2 through 3.4,
the variables B and A in Equation 3.20 can be expressed in terms of a, that is, F,,
is a function of o exclusively. In essence, F,, is determined by the functional form
of the fibre force profile, which at thié point can be an arbitrary function, scaled in
magnitude by a constant (parameters subscripted by zero and P) and modulated
by trigonometric functions of the variables o and B. Combining Equations 3.1 and
3.20, the muscle force, F,,, can be calculated in dependence of the muscle length,
L. Mathematically, thezmodel is completely described by Equations 3.1 through 3.4

and Equation 3.20.

3.3 Model Exploration and Discussion

The dertivation of the equations above has been based on a muscle geometry with
a lateral cross section of the shape of a parallelogram or trapezium (Figure 3.11)
and with an uniform depth. The three-dimensional representation of such a muscle
with parallel tendon sheaths consists of a parallelepiped with rectangulgr tendon
sheath geometries much like the model Stenson workéd with in the 17" century
(see Kardel [1990]). However, the equations describing the current model
represent a larger class of muscle geometries: the limiting factors on the muscle
and tendon geometries are the initial simplifications which require all muscle fibres
always to have identical angles of pinnation and identical relative lengths. In other

words, any muscle geometry may be chosen, as long as the geometry permits a
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deformation which is conform to the kinematic Equations 3.2 through 3.4. This
condition is fulfilled, whenever the orthogonal projection of the upper tendon sheath
in Figure 3.3 into the plane of the lower tendon sheath, results in an identical
shape to the lower tendon sheath. In particular, the tendon sheaths may have a
variable depth along the muscle‘length axis, and the upper tendon sheath may be
curved in the plane of Figure 3.3. If a different admissible muscle geometry is to
be modeled, the final form of Equation 3.20 will change in that, going from
Equation 3.19 to Equation 3.20, the volume integration term will take on a different
form. For example, assuming tendon sheaths of an elliptical shape, and identifying
I, and d, with the major and minor principal axes of the lower tendon sheath, only

the term d,l, in Equation 3.20 would change to =/4 dl,.

When limited to the case of uniform fibre angles of pinnation, the muscle geoﬁmetry
employed by Woittiez et al. [1984] in their rﬁodel is also contained in the current
description. Woittiez et al. used kite-like shapes to represent the tendon sheath
geometries with the kites at the top and bottom of the muscle geometry having
opposite orientation. In this geometry, the muscle fibres running between the
tendon sheaths do not have, in general, a direction which is in parallél to the
lateral mid-plane of the muscle. A longitudinal cross section of the three- ;
~ dimensional muscle geometry takes on the shape of a symmetric trapezium.
~ However, this feature has not been translated info the mathematical treatment of
the model by Woittiez et al. Rather, the trapezium is transformed into a rectangle

by aVeraging the widths of the top and bottom tendon sheaths for each cross
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section. The tendon sheath geometry, as seen through the mathematical
implementation of Woittiez et al., consists of a rectangle ending in two triangies

along the muscle length axis and is an admissible geometry for the current model.

According to Equations 3.1 through 3.4 and Equation 3.20, muscles of different
shapes with identical parameter values for hy,, hy, 1,°, d, and o, will exhibit the
same muscle force-length relation. Because the model behaviour is to a large
extent independent of the absolute model geometry, exploring a simple geometry
(with rectangulaf tendon sheath geometries) will be representative of bther
geometries. The relative independence of the current model on géometry is not
due to an inadequate mathematical treatment, but it is é consequence of the
simplifications made at the outset which are similar to those made by other
authors. It is rather thanks to the modelling approach taken here, that the

independence on geometry becomes readily perceptible.

As a consequence of the discussion above, one could conceive unrealistic murscle
model geometries which would lead to the same results as a simple geometry;
Therefore, caution is necessary when interpreting results from SLM. However, the |
good agreement obtained by Woittiez et al. [1984] between model predictions and
experimental data supports the idea that there is a correspondence between

muscle and model behaviour. The current model will be explored on this basis.

®If a more general geometry than the one underlying the derivation of the equations in the previous
section is to be used, then the parameters should describe the lateral muscle cross section in a plane
which contains the muscle tendons or muscle attachment points.
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Whereas a one to one correspondence could be established from a geometrical
point of view between the treatment by Woittiez et al. [1984] and the current
model, this is not true for the predicted muscle force in dependence of the
changing angle of pinnation. Setting D=0, the term cos(d)/cos(B) in Equation 3.20
‘corresponds to the term cos(y) in the treatment by Woittiez et al. Therefore,
changes in muscle force are here predominantly governed by the angle between
the fibre direction and the lower tendon sheath orientation, whereas they depend
there on the angle between the fibre direction and the direction of the line of action
of the muscle. Realizing that v is always smaller than a, the model by Woittiez et
al. consistently predicts a higher force than the current model. It must be stressed,
however, that the equilibrium equation for the current model has been derived by
using a physical principle, while the one used by Woittiez ét al. has been assumed.
Using the 'model by Woittiei et al., one will predict non-zero forces for a muscle
with all its fibres running perpendicular to the tendon sheaths which does not make

physical sense.

The current model will be explored below by starting from a simple base geometry
with parallel tendon sheaths which will be modified progressively. The geometrical
parameters (Table 3.2) are chosen so that they may be taken as a rough
approximation of the cat gastrocnemius muscle, with the exception of the reference

angle of pinnation, o, which will be freely varied. Anatomical observations would
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h,, = 0.8 cm hy = 0.0 cm
d, =2.5cm I =80cm
(Muscle Volume, V = 16 cm®)
D=0.0
P = 25 N/cm?

o,: variable
Table 3.2: Parameter values for initial muscle model simulations.

limit the choice for the reference angle of pinnation® to an upper limit of about 25°
[Benninghoff and Rollhduser 1952, Wickiewicz et al. 1983, Woittiez et al. 1984].
The first Piola Kirchhoff stress scaling factor, P, will be given a value of 25 N/cm?
for thé remainder of this sub-section'® [Woledge et al. 1985]. The following
~ conventions will be adopted: Parameters subscripted by ‘'max’ will refer to a
configuration for which the fiﬁres are at their maximal active length (A=1.4 fér fibre
force Vprofile nurﬁber 1). Correspondingly, the subscript 'min’ refers to a
configuration of fibre minimal active length. The subscript 'peak’ refers to a
configuration where the muscle reaches its maximum force; this configuration will,

in general, be different from the configuration at which the muscle fibres are at

°Angles of pinnation in the literature are mostly identified with the angle v in Figure 3.3.

'%tten [1988] uses a fibre stress value of 23 N/cm?.
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optimum length. The latter corresponds to the reference configuration for which the

subscript ‘0’ will be used.

Figure 3.9 displays muscle force-length curves for five muscles with similar, but
diﬁerent geometries. The five geometries are described by the same geometrical ‘
parameters given in Table 3.2. They differ, however, in their reference angle of
pinnation, a,, which takes on the values of 15°, 20°, 30°, 40° and 50°, respectively.

The fibre force-length characteristic is given by the active part of force profile
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Figure 3.9: Active muscle force-length relations of similar muscles with different
reference angles of pinnation.
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number 1. With increasing reference angle of pinnation, the peak muscle force
increases steadily while the active muscle range, that is, the interval in muscle
length over which the muscle is able to generate an active force, decreases. It will
be shown below, that the peak muscle force will start to decrease again for higher
reference angles of pinnation than those considered at present. The higher muscle
peak forces for increasing reference angles of pinnation can be explained by the
fact, that more and more fibres are acting in parallel and that this effect
overcompensates for the fibre directions becoming increasingly misaligned with the
line of action of the muscle. The individual muscle fibres become shorter with an
increasing referencé angle of pinnation which decreases their absolute active

range and subsequently the active range of the muscle.

The interrelation between muscle peak force and active range can also be seen
. as a consequence of the fixed amount of work a muscle can potentially perform.
A unit volume of muscle fibre tissue can be seén to have a specific pot'ential to
perform work when the fibres contract completely from maximum to minimum fibre
length. All of the muscles above, containing the same amount of tissﬁe volume,
should be able to perform an equal amount of work over a complete muscle
contraction. Simplifying the concept of work to the product of force times distance,
a higher muscle peak force has to be compensated by a smaller range over which

a muscle force can be exerted.



65

In agreement with the argument above, the integral of the muscle force with
respect to the muscle length over the active muscle range results in the same
value for the curves corresponding to o, = 15° 20° and 30°. Muscles with
reference angles of pinnation of a,, > 38°, however, deform during the contraction
to a configuration in which the fibres attain an actual angle of pinnation of 90°. In
this configuration, which will be termed "neutral configuration", no external muscle
force is present, even if the fibres themselves are still at a relative length at which
they are able to produce a force under stimulation™. The curves in Figure 3.9 for
o, = 40° and 50° both end at the same minimum muscle length corresponding to
the neutral configuration. The muscle force-length integral results in these cases
in a smaller value than for the other curves; the "work potential” contained in the

muscle tissue cannot be fully realized due to geometric effects.

While the muscle force-length curves differ in peak force and range, their shapes
are similar. The symmetric fibre force-length curve is re-scaled to muscle level and
slightly distorted (the peak muscle force is shifted slightly to the right relative to the

mid-point of the active range of each individual curve).

Figure 3.10 displays the active muscle force-length curves for five muscles with a
modified base geometry. Compared to the previous example, the modifications

consist in doubling the muscle height (h, = 1.6 cm) and dividing the tendon plate

""That an actual angle of pinnation of o = 90° results in a zero muscle force, can be seen directly
from Equation 3.20; the term "cos «" evaluates to zero in this case.
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Figure 3.10: Active muscle force-length relations of muscles with alternate
geometry.

length, [, by two (I = 4 cm); the muscle volumes remain unchanged at 16 cm®. The
axes of Figure 3.9 and Figure 3.10 are drawn to the same scale. Compared to
Figure 3.9 the same characteristics, that is, increasing force and decreasing range
for increasing reference angles of pinnation, are observed. While having different
absolute force and length values, the curves are similar in both cases. The change

in geometry has an effect of scaling alone, and nothing has changed in principle |

by going from the base geometry to the modified geometry.



67

The literature attributes a major importance to the "index of architécture" which is
defined by the ratio of the mean fibre length at muscle optimal length and the
muscle optimal length itself'® [Kaufman et al. 1989 and 1991, Woittiez et al. 1984,
Benninghoff and Rollhduser 1952]. According to this view, the index of architecture
is sufficient to characterize a pennate muscle in its force-lengfh behaviour.
However, the force-length curves for o, = 40° in Figure 3.10 and o, = 15° in Figure
3.9 are almost identical (at different absolute muscle lengths), even though they
result from muscles with notably different geometries and with notably different
fibre Iéngth to muscle length ratios. This observation seems to defy any importance
of the index of architecture™. However, it may well be that nature does adhere
to a "design concept" for which the index of architecture constitutes a significant
parameter. If this is thé;case, the currer;t model does not grasp the underlying
reasons for this "design concept”, and, by implication, muscle models similar to thé

current one do not either.

Including the passive fibre forces in the fibre force profile number 1 and using the
muscle base geometry leads to the muscle force-length curves shown in
Figure 3.11. The curves are only plotted up to the maximum muscle lengths

(A = 1.4). The ratio of the force magnitudes corresponding to the relative maxima

"*The muscle optimal length is typically defined as the muscle length at which a muscle can exert
maximum force. Additionally, it is commonly assumed that muscle fibres are also at optimal length in
this case. .

“In reversing the argument, different muscles with identical indices of architecture can be
constructed whose predicted force-length relations are significantly different.
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Figure 3.11: Total muscle force-length curves.

and minima of each individual curve decreases for increasing angles of pinnation.
Also, the muscle forces at maximum muscle length for each curve increase beyond
the relative force maxima. This contrasts with the input fibre force-length relation
which has a well defined local minimum value of 84% of the fibre force at optimum
fibre length and for which the force at maximum fibre length is edual to the force
at fibre optimal length. Consequently, one should proceed with caution when
inferring fibre characteristics from experimentally obtained muscle force-length

curves.
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Figure 3.12: Active muscle force-length curves based on fibre force profile
number 2.

Figure 3.12 displays muscle force-length curves‘ for muscles which are described
by the base geometry and which take the fibre force profile number 2 as input. The
relative shift of muscle peak forces to higher muscle lengths is readily perceptible;
despite the asymrhetric character of the fibre force profile number 2, the muscle
force-length curves become symmetric for higher reference angles of pinnation.
For the current case, only the curve corresponding to o, = 50° reaches the neutral

configuration at its shortest length. Finite element simulations of the continuum

A



70
model in the following chapters will be based to a large extent on the fibre force

profile 2.

So far, entire muscle force-length curves have been considered for discrete values
of the reference angle of pinnation, o, The curves have been generated for
muscle models which were described by different sets of geometrical parameters
and distinct fibre force profiles, thus giving a good idea of the effects of parameter
changes. More detailed aspects, for example where the muscle peak force occurs
relative to the fibre force-length curve, cannot be inferred from these curves.
Selected parameters of interest will now be monitored and displayed individually
for an increased number of different muscle geometries, where the geometries
differ only in their respective reference angle of pinnation, o, (Figures 3.13 through
3.16). The géometric parameters listed in Table 3.2 as well as the active part of
fibre force profile number 1 undetlie the following considerations. A subset of the
parameters displayed in Figures 3.13 through 3.16 can be cross-referenced to

Figure 3.9.

Figure 3.13 displays the minimum and maximum actual angle of pinnation (o,
OLax) @S Well as the actual angle of pinnation corresponding to the configuration at
which the muscle peak force is exerted (at,,,). The curved appearance of the line
representing o, shows that the actual angle of pinnation at which a specific

muscle exerts its peak force does not coincide with the reference angle of

pinnation, oy, at which the fibres are at optimal length. The difference between o,
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Figure 3.13: Range in the actual angle of pinnation and the actual angle of
pinnation corresponding to the muscle peak force as functions of the reference
angle of pinnation.

and o, increases for higher o, Muscles with a higher reference angle of

pinnation than 38° reach the neutral configuration during contraction (a = 90°).

Figure 3.14 presents selected muscle lengths of interest. The muscle lengths
corresponding to the muscle reference configurations (L), that is, the muscle
lengths for which the muscle fibres assume optimal length, and the lengths at
which the muscles exert their peak force, L, diverge more and more with
increasing o, Again, muscle configurations for muscle peak forces are not

identical with configurations for maximum fibre forces. The minimum and maximum
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Figure 3.14: Range in the actual muscle length, the actual muscle length corres-
ponding to the muscle peak force, and the muscle reference length as functions
of the reference angle of pinnation.

active muscle lengths are indicated by L, and L,,. The line representing L. is
not located half-way between the lines corresponding to L, and L, but it
approaches the line representing L,...,. This emphasizes the fact that the symmetric
input fibre force-length curve is transformed into a skewed force-length curve at

muscle level.

The muscle peak force and the muscle force at reference configuration are shown
in Figure 3.15. The absolute highest muscle force is obtained for a muscle with a

reference angle of pinnation of about 52°. For higher reference angles of pinnation,
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Figure 3.15: Muscle force at muscle reference length and muscle peak force as
functions of the reference angle of pinnation.

the muscle peak forces decrease again, and the muscle forces corresponding to

the muscle reference configurations fall back to zero.

Finally, Figure 3.16 indicates the amount of work muscles can perform over a full
contraction. For a muscle with o, < 38°, all muscle fibres are able to contract
completely, and the muscle is therefore able to produce the maximum amount of
work. For higher reference angles of pinnation than 38°, a muscle reaches the
neutral configuration during contraction before its fibres have shortened to their
minimum length. Consequently, the work which can be produced externally to the

muscle is reduced.
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Figure 3.16: Muscle work over a complete contraction as a function of the
reference angle of pinnation.

It has been pointed out above, that from all tHe muscles described by the
geometric parameters in Table 3.2, the muscle with the refgrence angle of
pinnation of 52° produces the highest force (Figure 3.15). Furthermore, it follows
from Figure 3.13 that this force maximum is exerted at an actual angle of pinnation
of close to 45°. At thi;s actual angle of pinnation the muscle fibres assume a
relative length for which the Cauchy stress, introduced in Chapter 3.3, peaks. In
the context of the current model, this "optimal" angle of pinnation of 45° cannot be
explained further. However, the discussion of the CM (Chapter 6) will take this

issue up and consider it in the context of the stress state within the muscle
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structure. Benninghoff and Rollhduser [1952] indicated an "optimal" angle of
pinnation of 45°. However, no distinction was made between the reference and

actual angle of pinnation.

The advantage of a pennate muscle design over a fusiform design is commonly
attributed to the pennate muscles being able to producé a comparatively higher
force on account of the fact that more pdntractile material is 'arranged in parallel
between the tendon sheaths [Gans and Bock 1965, Fung 1970]. Following this
argument and considering exclusively the generated muscle forces as an
optimization criteria, the current model suggests that pennéte muscles should
exhibit a rather high degree of pinnation (up to 57°). Howeve}, anatomical and
experimental evidence suggest that angles of pinnation in unstimulated muscles
at resting length seldo.m exceed 25° [Wagemans 1989, Wickiewicz et al. 1983,
Benninghoff and Rollhduser 1952]. Consideting the model results presented above,
arguments may be made in favour of smaller degrees of pinnation. For example,
it has been shown that muscles with angles of pinnation being greater than about
38° can only perform a portion of the work over a full contraction which is
potentially contained within the tissue volume. Still, an angle of pinnation of 38° is

significantly greater than the angle of 25° indicated anatomically.

Wagemans [1989] performed ultrasound measurements to explore the structural
changes of the human gastrocnemius muscle under maximal voluntary

* contractions. Herzog [1991] used the original results by Wagemans and performed
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data analyses in order to quantify the structural changes in terms of angles of
pinnation, muscle height and muscle depth. The analysis revealed that the
unstimulated muscle assumed angles of pinnation between 25° and 37° depending
on the externally controlled muscle length, whereas the contracted muscle took on
angles of pinnation close to 45° independ,ent of the muscle length before the
contraction was carried out. Relating the results from Wagemans [1989] and
Herzog [1991] to the current model, the following observations can be made:
Assuming an anatomically realistic reference angle of pinnation of 25°, the current
model predicts the peak force to occur very close to this precise angle. During
contraction an angle of pinnation of about 45° is attained by the muscle (Figure
3.13). However, by that time the muscle force level will have decreased to close
to zero. This is contrary to the observations by Wagemans that there is not only
an active force at this configuration, but that, in fact, the maximum muscle force

is reached for this angle of pinnation.

The current model does predict the maximum muscle force for an actual éngle of
pinnation of close to 45° (Figures 3.14 and 3.15). However, ;this actual angle of
pinnation is associated with a reference angle of pinnation of 52° which is not at
all comparable to the observations made by Wagemans. Still, it is felt, that the
agreement between model predictions and experimental observations regarding
the optimal angle of pinnation ére more than a mere coincidence, and this
agreement certainly constitutes a suitable starting point for further investigations.

With respect to the current model, it seems that certain aspects of muscular
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contraction are grasped by the underlying assumptions whereas others are not. In
particular, it may be worth investigating whether the kinematics of tissue
deformation, more precisely the deformation of the contractile microstructures are

as strictly linked to the global muscle deformations as assumed.

In interpreting the ge‘ometric parameters in Table 3.2 as an approximate
description of the cat gastrocnemius muscle, the following comments can be made
by comparing the current model predictions to experimental r'esults by Herzog et
al. [1990]: Assuming a reference angle of pinnation of 25°, the current model
predicts a muscle peak force of about 190 N (Figure 3.15) and a range of close
to 1.9 cm (Figure 3.14). Theée values, when referred to larger sized muscles,
compare favourable io the results by Herzog et al. twho obtained muscle peak
forces between 150 N and 210 N, and a normal range of muscle movement of
about 1.9 cm. For the current model, the range of 1.9 cm covers thé entire extent .
of muscle activity, that is to say that the muscle force in this range starts at zero,
achieves its peak value and then returns again to zero (compare to Figurés 3.9
and 3.12). The experiments by Herzog et al., however, resulted in muscle force-
length curves which start with a small but non-zero force for the shortest muécle
configuration and terminate with a force magnitude slighrtly below the muscle peak

force at the longest muscle configuration'. Therefore, it may be assumed that

"It should also be mentioned in this context that muscle force length-curves analogous to
Figure 3.11 are normally not observed in experiments (the curves in Figure 3.11 are based on the total
fibre force profile number 1 which includes passive fibre forces). Contrary to the current model
predictions, experiments do not show a renewed force increase for muscle lengths being higher than
the length corresponding to the local force minima (e.g. Herzog et al. [1990] and Muhl [1982]).



78

the muscle range investigated by Herzog et al. of 1.9 cm corresponds to ‘a
significéntly smaller muscle length interval in the current model, and that the match
between experimental results and model predictions is, therefore, less perfect. By
exploiting the uncertainties in modél parameter values (e.g. the maximum active
fibre stress, the shape of the fibre force profile, énd the model geometric
parameters which describe the Complex physical muscle geometry) a match could
.be reestablished. A simple fitting procedure, however, does not enhance the

understanding of basic concepts associated with muscular contraction.

Figure 3.17: Influence of trapezoidal muscle cross section and depth change
during contraction on the muscle peak force. -
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So far, only muscle geometries with parallel tendon sheaths and cases with
constant muscle thicknesses during deformation have been considered. The
muscle cross section geometry may take on a trapezoidal shape by assigning non-
zero values to h, (Figure 3.3),.and the muscle can be allowed to thicken during
contraction by assigning non-zero values to the parameter controlling the amount
of depth change, D (Equation 3.4). A thickening of the muscle is associated with
a decréase in the distance between the tendon sheaths. This general deformation
pattern should be expected, because the fibres are assumed to pull between the
tendon sheaths. The effects of trapezoidal muscle cross sections as well as the
degree of thickness change during muscle contraction for muscles of equal volume
on the muscle force at muscle reference length are displayed in Figure 3.17. A
muscle geometry with parallel tendon sheaths déscribed by the muscle length, L, =
10 cm, lower tendon plate length, | =8 cm, and muscle height parameters
h,, = 0.7 cm and h,, = 0.0 cm has been chosen as the starting point. Increasing
values for the ratio h,/h; describe muscle geometries with an increasingly
trapezoidal cross section. Figure 3.17 indicates, that the muscle force decreases
in a nonlinear way for increasing h,/h, values. The muscle force increases with
‘increasing values for D, that is for higher muscle deformations in thicknesé
direction. It is important to realize, that for a fixed h,/h, value the muscle geometry
is also determined. Still, depending on the parameter D the muscle force changes.

This is a consequence of the "quasi" three-dimensional deformation of the muscle
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and this effect is neglected when the muscle equilibrium condition is derived from

a free body diagram with an assumed orientation of F, in Figure 3.8.

3.4 Summary and Qutlook

A geometrical straight line muscle model for parallel fibred pennate muscles has
been developed in this section which is described by a closed set of non-linear
algebraic equations. In the derivation process of this model, the equilibrium
condition has been based on a physical principle, and the technique employed to
derive the equations revealed that the final equations can be easily adapted to
describe more complex muscle geometries. Comparing muscles of similar
geometry but varying reference angles of pinnation, o, predicted peak muscle
forces increased to an absolute maximum- at o, = 52°. Furthermore, the absolute
force maximum is reached under an actual angle of pin'nation of a0 = 45°. While
Wagemans [1989] did observe méximum muscle forces at an actual angle of
pinnat'io‘n of close to 45°, the current model does not reproduce all aspects of her

experimental observations.

The mathematical derivation of the equations governing the presented model! did
not make use of approximations and logical jumps so that any deficiency in model
predictions must be associated with the underlying simplifications and
assumptions. Judging from thé current scientific literature, there is little reason to
doubt that the muscle contractile behaviour has its origin exclusively in contracting

muscle fibres. The kinematic simplifications which, in essence, require both tendon
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sheaths and the muscle fibres to be rigid in bending are obviously too severe, and
they will be abandoned in the development of the continuum muscle model in the

following chapters.



Chapter 4

The Continuum Muscle Model

Geometrical straight line muscle models (SLM), similar to the one presented in
Chapter 3, are predominantly motivated by mathematical simplicity rather than the
attempt to describe the physical reality appropriately. Instead of obtaining the
muscle deformation as the res_ult of internal fibre forces and tissue material
behaviour, the mode of the muscle deformation is imposed by kinematic
constraints. The shape of muscle geometries is restricted from the outset by the
need for closed form analytic expressions which relate the fibre elongations to the
overall muscle deformation. Certain types of questions, for example, the influence
of different tendon sheath flexibilities on muscle performance, cannot be

investigated with these models.

The straight line approach to muscle modelling guarantees a solution in the form
of a muscle force-length relation which results from global equilibrium

considerations. However, the global considerations completely bypass any local
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equilibrium .considerations. It is of no concern, whether the imposed deformation
shapes lead to configurations which ensure a local equilibrium of the sfructure; in
fact this question cannot be settled in the context of these models due to the

absence of more detailed constitutive relations.

Different ways of relaxing the simplifications and assumptions made at the outset
of Chapter 3 could be envisioned. The relaxation of these éimplifications and
assumptions leads, in general, to an indeterminacy of the mathematical equations
~which underlie the model. Rather than being a drawback, the resolution of these
indeterminacies by physically meaningful principles adds to the quality of the
results obtained. An analytical treatment o} the model and closed form solutions

become, however, more and more unlikely.

The theory of continua will be chosen here as an approach to a more detailed
muscle modelling and numerical solutions will be sought with the help of the Finite
Element Method. Special difficulties to be overcome in ti%e modelling process lie
in the fact that the muscle tissue will have to be described as an anisotropic, active
and nonlinear material (physical non-linearity). Because of the large deformations
inherent to muscle deformation, the geometrically nonlinear theory of deformation

has to be employed as well.

A Finite Element program package, Ansys (Vérsion 4.3) by Swanson Analysis
Systems Inc., Houston, has been used for the finite element modelling. Since the

built-in capabilities of this package did not allow an adequate representation of
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muscle tissue behaviour a special element, representing the active muscle fibre

characteristics, has been formulated and linked into the existing program.

4.1 Simplifications and Assumptions

The search for a description of muscle behaviour on a more detailed level
underlies the attempt to use the theory of continua for the purpose of muscle
modelling. This approach does not eliminate the need for making simplifications
" and assumptions during the modelling process. The focus of the simplifications and -
assumptions will rather be shifted from a global perspective (e.g. predefined modes
of global muscle deformation) to. local considerations about muscle tissue and
tendon behaviour. The global structural behaviour as a consequence of the local

assumptions are of particular interest.

The current sub-chapter has to be understood as a compilation of the more
significant simplifications and assumptions made, and it is meant to facilitate a
compariéon of the approach taken in Chapter 3 to the one below. Several topics

are merely touched upon here and discussed further in the following chapters.

Simplifications and assumptions for the current model are essentially made on
three different levels, namely at the level of the continuum description (CD), the
finite element implementation (FEI) and the model generation (MG). Choices made
at higher levels have a direct bearin‘g‘on lower levels. At the CD level, for example,

basic decisions have to be made about how to represent the muscle tissue



85

behaviour in the mathematical language of the theory of ‘continua. Most of these
decisions are bona fide assumptions, in the sense that statements regarding their
completeness in describing tissue behaviour are difficult. Decisions at the FEI and
- MG levels are more of the character of simplifications, that is to say t'hat a different
and perhaps more detailed description could have been chosen. The
simplifications at the FEI level arise from the finite element discretization 6f the
_continuous description. The discretization itself is inevitable, if a solution is to be
sought using any numerical method; there IS however, a choice as to how the
discretization is performed. Because the capabilities of the finite element package
used do not allow an adequate desctiption of the muscie fibre characteristics, a
new element type had to be implemented‘. For that reason, the FEI modelling level

has to be considered separately for the muscle tissue.

In order to compare the current model to the SLM of Chapter 3, similar cases will
be treated. Consequently, relatively simple muscle geometries will be employed at
the MG level. These simplifications are completely arbitrary. Different and more
complex model geometries could be generated using the finite element
implementatidn which are only limited by the model generating capabilities of the
finite element program package used. By contrast, a change in the assumptions
about muscle tissue behaviour would require a reworking of the entire modelling

process from the CD level down.
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It must be emphasized that the basic assumption underlying the remainder of this
thesis concerns the applicability of the theory of continua to muscle modelling. The
great success of the theory of continua in describing a vast number of phenomena
in a wide range of circumstances seems to make this remark superfluous.
Nevertheless, a basic point should be made about how a material - muscle tissue
in the present case - is "seen through the eyes" of the continuum description. As
one traverses muscle tissue on a microscopic scale, one encounters many
different structures (e.g. thick and thin filaments, collagen fibres, sgrcolemma, etc.),
each having different mechanical properties. The continuum description does not
attempt to reproduce this complexity; rather the mechanical behaviour at each
point of the continuum is seen as an average of all the structures in a small
;/olume surrounding this point in the real world structure. This is often compared
to a smearing out or blurring of finer details, and it is this feature which allows the
tools of calculus to be employed for the analysis of real life entities. However, it
cannot be excluded that some essential features of the material are getting lost in
the process of smearing out microscopic details. Special approaches in the theory
of continua (e.g. the theory of micromorphic continua, higher order constitutive
relations etc.) are able to describe ce&ain types of more complex material

characteristics, but they will not be used in the context of this thesis.

For the current treatment, muscle tissue is assumed to be adequately described

as a simple material. This means in particular, that the stress at a given point is
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completely determined by the state of the deformation at this point. The equations

for equilibrium and strain measures in the form given in Chapter 2.1 are applicable.

It is further assumed that there exists a strain energy function (potential function)
for muscle tissue which depends exclusively on the strain measurres and an
additional parameter associated with the degree of stimulation. Due to the
directionality of the contractile property of the fibres, muscle tissue will be
described as a transversely isotropic fibre reinforced material. No dynamic effects

will be taken into account, the analysis will be based on statics exclusively.

The discussion above is also applicable to tendon sheath tissue, except for the
parts which concern the contractile properties of the muscle tissue. Tendon sheath
tissue is seen as a two dimensional entity with tensile stiffness but no bending

stiffness.

Muscles will be represented in two dimensions as plane strain models. The models
are taken to represent the mid-plane of a muscle containing its line of action and
thus the two opposite tendon attachment points. Muscle fibres run within the model
plane. For the treatment of three-dimensional structures in a two-dimensional
idealization, Ansys, the finite element package used, offers only the plane strain
and plane stress “assumptions. Because their will be stresses in the muscle
thickness direction (normal to the rﬁodel plane) and because these stresses take

on a major importance for the model performance, the plane strain assumption
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appears more appropriate. A more general treatment of the third dimension should

certainly be envisioned for future applications.

The finite elements which represent the muscle body, will be implemented as
‘triangular three-noded elements with two translational degrees of freedom per
node. The deformation shape functions allow each individual element to
experieﬁce a homogeneous deformation only. This results in the strains being -
constant over the domain of a single' element and leads to non-conforming
elements. No provision has been made to allow for initial strains. Consequently,
the model reference configuration corresponds to a stress free configuration and
constitutes a trivial equilibrium configuration when no muscle tissue stimulation is

present.

Muscle geometfies at reference configuration are approximated by straight lines
extending over a large part of the muscle geometry. Fibres run straight and parallel
over macroscopic portions of the model geometry, but not necessarily over the
entire extent of the muscle geometry. The fjbre density, that is the number of fibres
penetrating a unit area perpendicular to the. fibre direction, will be constant over
macroscopic afeas of the muscle geometry. A uniform stimulation will be applied
to all the elements representing the muscle tissue. Tendon sheaths will have a
llJnif()rm tensile stiffness over their entire lengths. No restrictions concerning the
deformed configuration are imposed, except fo'r the boundary 6onditions (e.g. at

the tendon attachment points).
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Modelling Level

- Muscle tissue is described as a simple (first order) fibre rein- CD
forced material. A strain energy function is assumed to exist,
which only depends on the strain measures and a stimulation
parameter.

- Tendon sheath tissue has tensile stiffness only. CD
- Constitutive relations are considered for statics only. CD

- Finite elements representing the muscle tissue are implemented FEIl
as two dimensional triangular plane strain (three-noded)
elements with two translational degrees of freedom per node.

The individual elements are restricted to a homogeneous defor-
mation. No provisions for initial strains are made.

- Tendon sheaths are represented by two-noded spar elements FEI
~ with two translational degrees of freedom per node. No moment
is transmitted from one tendon element to its neighbours.

- The reference muscle geometry is approximated by straight line MG
segments of macroscopic extend. At muscle reference configur-
ation, the fibre density is kept constant and fibres run straight
and parallel over large segments of the muscle geometry. The
same tissue stimulation parameter value is used for all
elements representing the muscle tissue. The tensile stiffness
of the tendon sheaths will be uniform over their lengths.

|
Table 4.1: Major simplifications and assumptions underlying the continuum
muscle model.

Table 4.1 summarizes the major simplifications and assumptions undetlying the
continuum muscle model presented in this chapter and the finite element
implementation presented in the next chapter. The modelling level at which these

simplifications and assumptions are made - continuum description (CD), finite
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element implementation (FEI), model generation (MG) - is flagged out at the right

hand side.

4.2 Constitutive Relations

The purpose of .this sub-chapter is to establish a material description for muécle
tissue which can be used in conjunction with the continuum mechanical apbroach
to muscle modelling. Considerations made in Chapter 3.2.3 regarding tﬁe fibre
force-length relations are carried over, and they will be supplemented only to the
extent necessitated by the application of the theory of continuum mechanics.
Tendon sheaths will be described by an elementary elastic material law. They will,

therefore, not be considered at this point in time.

When discussing muscle behaviour, either in the context of a muscle model or in
a more informal manner, the literature commonly regards a muscle as the sum of
_its parts. Muscles are seen to behave as a composition of a large number of
individual fibres, with the force-length relations of individual fibres being transferred
to the whole muscle. A possible interaction between fiSres in the tissue context is
excluded by this point of view. In the case of pennate muscles, an influence of the
muscle geometry on muscle performance is acknowledged, but this influence is
perceived to simply constitute a rescaling of the fibre force-length curve to the
muscle scale. As a case in point, Hill's three element m.odel for muscular

contraction [Hill 1938] has been interpreted to describe adequately both the
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contractile behaviour of a single fibre as well as that of entire muscles’ (e.g. Fung
[1981]). The possibility that fibre tissue might exhibit additional characteristics
compared to single fibre behaviour, which in turn might be important to whole

muscle performance, is rarely considered.

The following arguments may be listed in support of the notion which regards
muscle function as a simple extension of individual fibre performance: the building
blocks of muscles are certainly individual fibres. Single fibres can be identified in
a muscle and they can, in principle, be isolated while keeping them fully functional.
The microscopic active components of muscles, the sarcomeres, seem to be
functionally parcelled by fibres, which is to say, that under stimulation, either all or
noné of the sarcomeres in a single fibre become active. Sarcomeres are aligned
with the fibre length axis and shorten in this direction during contraction. One can
therefore assume that muscle tissue, too, has a contractile direction coincident with
the local fibre direction. Furthermore, considerations about muscle function on the
basis of fibre characteristics do not lead to immediate contradictions when they are
compared to experimental results. However, as manifested in the discussion part
of Chapier 3, muscle models based on single fibre properties do not reproduce all

aspects of muscle behaviour correctly.

'Hill's original equation was established for whole muscles. Extensions to this equation, e.g. Hill's
three element model, introduce additional parameters which are seen to be related to fibre
microstructures, and numerical values of these parameters are often determined by applying the model
to single fibre experiments.
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A large variety of experiments has been performed on single muscle fibres,
especially on amphibiar{. Muscle fibre behaviour is relatively well understood and
the wide acceptance of the cross bridge and sliding filament theory (Huxley [1 957,
1974}, Gordon et al. [1966]) puts this understanding on a theoretical foundation.
While there are considerable variations in the feported values of absolute active
fibre force (which are not necessarily obtained from experiments on individual
fibres) and active fibre range, the main features of fibre force-length curves are

undisputed.

The muscle fibre force is usually thought to originate due to the thick and thin
filament interaction at the sarcomere level and to be passed on along the fibre
length axis from sarcomere to sarcomere. An interesting dissenting opinion.is held
by Vain [1990], who suggests, that the primary actiye component of fibres consists
in a tendency to thicken. The local thickening tendency Would then lead to a
stretching of the collagen fibre network, and the resulting forces would be passed
on over short distances to the sarcolemma and endomysium, with these
connective tissue structures, instead of sarcomere to sarcomere connections,

transferring forces in fibre length direction.

Any attempt to determine active muscle tissue material properties on a small
representative tissue volume specimen directly in an experimental set-up would be
invalidated from the outset; this kind of procedure implies a sectioning of muscle

fibres and, because of individual fibres acting as a unit under stimulation, it would
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alter the properties of the tissue sample in an unpredictable manner. It is also

doubtful, whether a lifelike stimulation of the specimen could be achieved.

Facing these difficulties, researchers have restricted themselves to measure only
passive muscle tissue properties directly. Demer and Yin [1983] and Yin et al.
[1987], for example, performed biaxial stretch experiments on thin canine cardiac
muscle tissue sheets, with the stretch being applied both |n fibre direction and
transverse to fibre direction. Their experimental results were used by Lanir [1983]
and Lanir et al. [1988] to validate a general three-dimensional constitutive model
of passive cardiac muscle tissue. However, the question remains open, whether
active tissue characreristics are merely overlaid on the paseive characteristics, or
whether active musele tissue should be regarded from econstitutive point of view

as a different material compared to passive tissue.

Efforts aimed at gaining a deeper understanding of active muscle tissue material
properties seem to be restricted to- indirect experimental procedures,
complemented by theoretical considerations. Truong [1974] perforrried wave
propagation measurements on whole stimulated muscles and matched the
experimental results with a constitutive model which describes active muscle tissue
as a viscoelastic material. Part of Truong's experimental data has been
reinterpreted successfully by Anton and Epstein [1989] using a perfectly 'elastic but
nonlocal material model. The fact that two completely riifferent material models

- and there may still be others - reproduce the same experimental data, indicates
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that the issue of finding an adequate constitutive law for active muscle tissue is far
from settled. Incidentally, both interpretations mentioned above use a one
dimensional tissue description, which excludes material properties transverse to

fibre direction.

The validity of any constitutive model can, in principle, only be asserted in a
relative sense by the number of different experimental phenomena which are
reproduced by the model in question. Realizing that not all direct experiments
which may be desired for a constitutive validation are practically pbssible, a
different emphasis is put on muscle modelling: a notion of how muscle tissue might
work is translated into a constitutive law on which a muscle model is built. The
model predictions for entire muscles can then be compared to experimental
observations of entire muscles, which are, in a relative sense, easier to obtain.
Compatring predicted and experimentally observed muscle behaviour will give an
indication about the adequacy of the constitutive law and thus about the assumed
underpinnings of muscle tissue behaviour. In this sense, the currently predominant
notion of muscle tiss:ue being a superposition of individual muscle fibre behaviour

will be tested here.

The constitutive law below pictures muscle tissue as a composite or fibre
reinforced material. One-dimensional active and passive muscle fibre
characteristics, which are attributed to the solid muscle tissue components (e.g.

thick and thin filaments) are identified with the one dimensional fibres in the
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constitutive model. The fibres are imagined to be suspended in' a fluid matrix. The
fluid matrix, in turn, represents the water content in muscle tissue and provides the
near incompressibility of the material. Fluid matrix and fibres deform together, that
is, no relative motion between fibres and fluid takes place. Stating it differently, a
control volume under deformation consists at all times of the same material points
representing the same-.collection of fluid and fibre particles. Fibres do not interact

directly, they do however interact indirectly through the fluid matrix.

It will be assumed that a strain energy function exists for muscle tissue and the left
Cauchy-Green stretch tensor, C, will be employed as the measure of deformation.
Spencer [1984] has shown that the strain energy function, W, of a general fibre
reinforced material with one family of fibres can only depend on the following

invariants (1,):

I, =trC, I, = _;__((trC)z—trCz), l, = detC a

I, =aCa =2%, |, =aC?a

where a represents the unit vector in fibre direction. A has the significance of the
stretch ratio of a line element being aligned with the fibre direction and will
therefore be termed fibre stretch ratio. By definition, the second Piola-Kirchhoff

stress tensor components follows from the strain energy function, W(l,), through:
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5

Sk =2, oW 9l + oy (4.2)
T am1 91, {9C,.  9C

Commonly, the term "strain energy function" is associated with energy being
passively stored in a continuum in connection with its deformation (elastic strain
energy). In the present application, a more general view is taken; the active
characteristics of muscle tissue will be included in the strain energy function. Here,
the term "(generalized) strain energy function" implies only, tﬁat there exists a

unique functional dependency of the strain energy, W, on the strain measures, C.

The invariants 1,,l, and I, determine the isotropic characteristics of the matrix
material. In the present case, where the matrix material is assumed to behave as
an incompressible fluid, |, is really needed only in the expression for the strain
energy function which describes the muscle tissue material law. In anticipation of
what will be possible to implement in the finite element program package used, the
strain energy function chosen willl describe a (solid) Mooney-Rivlin material which
depends on the invariants |,,l, and |, [Mooney 1940]. Constants in the actual
expression for the strain energy function will be chosen so that the material law
approximates that of a fluid as closely as possible. The active and passive
unidirectional fibre characteristics enter the strain energy function by means of the
invariant I,. The invariant I5, which accounts for a more general interaction between

fibres, for example under shear deformation, will not be included in the strain
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energy function, because such an interdependence is here assumed not to exist.

By assumption, the strain energy function takes on the additive form:
W=W_(1,l,1,) + We (1,.0) + W, (1) (4.3)

In equation 4.3, the subscript "m" refers to the contribution of the matrix and "f" to
that of the fibre characteristics. The fibre part is, as in Chapter 3.2.3, split further
into an active (subscript "a") and passive part (subscript "p"). ® has the

significance of a stimulation parameter and will be discussed in more detail below.
The functional form of W, , whiéh incorporates the Mooney-Rivlin material law, is

given by the following expression [Kohnke 1989]:

1

3

W_=A(,-3)+B(l,- 3) +C(( - - 1]+D(l3— 1)

C=_é.+B (4.4)
D=1(A(5v -2)+B(i1lv - 5)
2 1 - 2y

The finite element available within Ansys which will be used to represent the tissue
matrix characteristics is based on this particular functional form of W,_. The
independent parameters in Equation 4.4, which are input quantities to the finite
élement muscle modél, are A, B and v. v controls the degree of compressibility,

while A and B influence the elastic response to stretch and shear deformations.
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In the finite element models, A and B will be set to 0.125 N/cm? and v will be set
to 0.4995. These values have to be seen in the context of the other material
parameters introduced below and have been chosen so that the matrix material
behaves as much as possible like an incompressible fluid while still guaranteeing

convergence of the finite element model.

The fibre characteristics are introduced into the strain energy function in
Equation 4.3 by way of the invariant |,. Considering how the second Piola-Kirchhoff
stress tensor is derived from the strain energy function (Equation 4.2), and how the
second Piola-Kirchhoff stress te‘nsor and the Cauqhy stress tensor are interrelated
(Equation 2.12), the folloWing observationé can be made: let the reference
configuration at a cer'tai‘n point within a continuum be described with respect to'a
rectangular cartesian coérdinate syétem with the X, - axis pointing along the fibre
direction, and let the épatial configuration be described with respect to a
rectangular cartesian coordinate system with the x, - éxis pointing along the
deformed fibre direction. The only non-zero stress tensor components will tﬁen be
S, for the second Piola-Kirchhoff stress tensor, P,, for the first Piola-Kirchhoff
stress tensor and o,, for the Cauchy stress tensor. A graphical picture of this
situation is given in Figure 4.1 for the second Piola-Kirchhoff stress and the
Cauchy stress. Furthermore, the second Piola-Kirchhoff stress depends only on
l, =A% (A being the fibre stretch ratio). Under the assumptions made above
regarding the coordinate systems of reference and spatial configuration, I, is equal

to the component C,, of the left Cauchy-Green deformation tensor, C.
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spatial configuration

Figure 4.1: Fibre second Piola-Kirchhoff stress and Cauchy stress components
with respect to local coordinate systems.

The second Piola-Kirchhoff stress-strain relation for the fibre part can, therefore,
be directly given in a simpler and more intuitive way, which corresponds to a one-

dimensional description:

Sy = 511(7\'2) = Sy(ly) (4.5)

This procedure makes the relationship of the following discussion to the one in
Chapter 2.3.2 readily apparent. The stress-strain relations to be developed below
are integrable and the contribution to the strain energy function, W, coming from

the fibre part of the material, W,, can be formally obtained through:

W, = 1 [8,02)dn = L [8,(1,)dl, (4.6)

)
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Thus, a description which is independent of any specific coordinate system is

recovered.

Acc_érding to the discussion in Chapter 3.2.3, there is a direct correspondence
between the functional dependency of the fibre force and the first Piola-Kirchhoff
stress tensor. This similarity persists in the current context with the special choice
of coordinate systems made above, and the first Piola-Kirchhoff stress tensor, P,,.
In Chapter 3.2.3 a "force profil‘e function" was introduced, W'hiCh w'ill also be used
here; in the current context, the force profile will depend on the stimulation

parameter, 6, in addition to its dependence on A:
f(A;0) = ,(A;0) + f,(A) (4.7)

The total force profile is split into an active and passive part. Furthermore, the
force profile is taken to be dependent on i, instead of A% = l,- The final expressions
for different force profile functions can, however, be made depen.dent onA?by a
simple variable transformation. The non-zero first Piola-Kirchhoff stress tensor
component, P,,, follows through scaling with the factor P, which will lbe set to

25 N/cm?:

P,, = Pf(A:©) | (4.8)
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It has to be recalled, that the force profile functions are obtained, in principle, from
single fibre experiments. It is one of the assumptions made here that the functional
dependency remains the same within the muscle tissue seﬁing. Using
Equation 213 and being conscious of the special set of coordinate systems
chosen, the non-zero second Piola-Kirchhoff stress tensor component, S,,, is

obtained from Equation 4.8:

S, = _’;f(k;G)) (4.9)

Below, the mathematical expressions for the force profiles employed in the
folrlowing chapters are listed, and their graphical representations are given in

Figures 4.2 and 4.3:

Force profile number 1:

f,, = ©(-6.25A% + 12,5\ - 5.25)

a

(4.10)
f,, = 3.289:1076 %97 _ 0,02766
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Force profile number 2:

fy, = ®@— __(-6.25(A")2 +12.5)" - 5.25)

1.0340° (4.11)

fp = 1.838:107° e%47» - 0.01059

( A" = A-0.08349 )

Both force profiles have an equal range for their active components, that is, the A-
interval for which the active part of the force profile function is different from zero

is 0.8. The integral of the active force profiles with respect' to A over their
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Figure 4.2: Force profile number 1.
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Figure 4.3: Force profile number 2.

respective active range is also equal. The two force profiles reach their active peak
atA = 1, which will be equated here to the fibre optimal length. Passive fibre profile

componehts are only defined for A > 1.

Force profile number 1 describes in its active component the fibre force-length
relation used by Woiﬁiez et al. {1983, 1984]. In Figure 4.2, the active and passive
force profiles are displayed with solid lines. The dashed lines with star markers
show the results from a finite element simulation of a thin strip of "tissue material",
where the finite element implementation described in the next chapter hasAbeen

used. The closeness of the lines indicates that the intended tissue behaviour has
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Figure 4.4: The influence of the stimulation parameter, 8, on force profile
number 1.

been successfully implemented into the finite element description. Small
differences for small and large values of A are due to the fact, that the tissue (fluid)

matrix has not been implemented as a simple fluid element.

Using the fibre force profile number 1 will lead in the finite element analysis to a

relative shift of the active peak in the muscle force-length curve to the right. Fibre

force profile number 2 compensates for this effect to some degree, in that the
force profile active peak is shifted to the left. This shift is achieved by an
asymmetric active part of the force profile. This profile also reflects the asymmétric

nature of experimentally determined muscle fibre force-length profiles.
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The stimulation parameter, 6, enters the active parts of the force profile functions
as a multiplicative factor. Its influence on the total force profile of type 1 is
illustrated in Figure 4.4. The particular mathematical form is not intended to mirror
the actual muscle tissue or fibre response to a partial stimulation. In fact, it is
doubtful whether one single parameter would suffice to describe the degree of
stimulation adequately.- In the context of this thesis, the musclé behaviour will be
investigated for 6 = 1, which will be identified with maximal stimulation. Because
of the nonlinear nature of the equations underlying the current muscle model, the
finite element solution will have to be obtained by iterations and in incremental
éteps of internal loading or stimulation. It is solely for this reason, that the

simulation parameter, 6, has been introduced here.

The material description of muscle tissue to be used in the continuum model has
been presented in this chapter. How the adopted material description is realized
within the finite elements and the global finite element muscle model is the subject

of the following chapter.



Chapter 5

The Finite Element Implementation

rlt is intended to simulate muscular contraction by using the Finite Element Method.
To this end, models have to be generated whose elements are based on the
constitutive description set out in Chapter 4. Ansys (Version 4.3), the finite element
package used, contains an element which is based on the large deformation theory
and which incbrporates the isotropic material law of Equation 4.4. However, there
is no Iargé deformation elément available which includes the active and anisotropic
characteristics of muscle tissue. Therefore, an element will be formulated below
(custom element)' which adds the anisotropic characteristics to the isotropic
element. After formulating the custom element, the muscle finite element models

to be used in subsequent chapters will be described.
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5.1 Formulation of a Custom Finite Element

The custom finite element will be formulated as a triangular two-dimensional plane
strain element with three nodes, one node being placed at each triangle vertex.
Nodal parameters are the translational displacement degrees of freedom and nodal
forces in the coordinate X- and Y-directions. The element will be formulated
entirely based on numerical methods,min particular, the element (tangent) stiffness
matrix will be established by numerical differentiation. Taking this approach makes
it inherently easier to modify the “element implementation, which is of advantage
-for experimenting with different material laws, for example. In contrast to the
notations used so far, the element for.mulation will make use of the Gibbs vector

and matrix notation.

A new equilibrium configuration of the entire finite element muscle model under
changing (internal) loading and boundary conditions will be sought by using an
iterative approach which is based on the Newton-Raphson Method. In principle, the

equations for the entire finite element model can be put into the following form:

[K],{AU}, = {F}, - {F%}, (5:1)

where the index n refers to the current (n™) iteration. The matrix [K], represents the
global (tangent) stiffness matrix, the vector {AU}, the displacement increment for
the current iteration, the vector {F°}, the applied load vector, and the vector {F9,

denotes the force correction vector which, in the current case, will be assembled
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from the nodal element force vectors {F°},., resulting from the solution of the

preceding iteration. The total displacement after the n" iteration will be given by:"

{U}, = {U},, = {AU}, (5.2)

Equation 5.1 is assembled from the individual element stiffness matrices and force
correction vectors. It is, therefore, necessary to derive expressions for the custom
element stiffness matrix, [K°],, and the nodal force vector of the custom element,
{F°},, based on the spatial element configuratipn. The element nodal coordinate
vector, {X}, and the nodal displac;ement vector, {U}, corresponding to the precéding

iteration are the base information provided. They are represented as follows:

~

EIERC AP AP AP AP AP ARSC T AP AL AP IR A BT

Uy =10,,0,,0,,0,, 05, U} = {Uyx, Uy, Upy, Upy, Upy, Upy}

- The vectors {X} and {U} are of dimension six according to the number of the nodal
degrees of freedom. Vector components superimbosed by a tilde, for example X,
are generic placeholder with the actual value of their index fixing their relative
position within the vector. The plain vector components (no superimposed tilde)
give additional information as to their meaning. X,, for examp‘le, represents the
X-coordinate of node number one, and U, represents the displacement of node

number 1 in X-direction.
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Figure 5.1: Triangular element geometry in reference and spatial configuration,
and unit triangle.

Figure 5.1 displays a triangular element in its reference and in its spatial
(deformed) configuration. Both configurations are described with respect to the
same cartesian coordinate system; in order to avoid confusion, the reference
coordinates are given in upper case letters (X,Y) and the spatial coordinates in
lower case letters (x,y). The triangular element region in both configurations can
be mapped one-to-one onto the unit triangle displayed at the bottom of Figure 5.1.
Forthe case of the triangle in reference configuration, the transformation equations

are given by:
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X=X, + (X = X)E + (X, - X;)n
(5.4)
Y=Y+ (Y, - Y)E (Y, - YN

Identical relations, with the coordinates written in lower case, hold for the triangle

in spatial configuration. An area element is transformed according to:

dA = dxdy = J dédn
. (5.5)
J = (X=X W(Y5-Y,) - (X=X ) (YY)

Furthermore, the following relations are obtained from Equation 5.3 which will be

needed below:

_a_é_ = Ys‘Y1 _81 - _ Ya'Y1

oX J oX J (5.6)
_éé - _ Xa"X1 ﬂ - Xz_X1

Y J oY J

Given the displacement shape functions according to the following equations:

N,(&n) =1-&-n
NZ(E.:'T]) = & . (5'7)

' NS(E»TI) =1

the transformation from reference to spatial configuration can be cast into the
following form which is dependent on the nodal displacements U, and U,, and

where "i" refers to the nodal numbers from 1 to 3:
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3
x=X+ UX(X,Y) =X + ZU,-XN,-(ﬁ,Tl)

i=1

| (5.8)
y=Y+u/(XY)=Y+ ZUIYN,’@’T])

i=1

The shape functicsns restrict the element region to a homogeneous deformation,
that is, lines are mapped into lines by the transformation. Consequently, the
originally triangular element region is mapped onto another triangular region with
straight edges (Figure 5.1). Differentiating Equation 5.8 results in the deformation
gradient, [F]. The equation below exemplifies this step forthé deformation gradient

component Fy:

ox ~ | 9Nigg | 9Nio (5.9)
Fog = 2% = 1 .
X +§U'X(a§ 3X ~ om oX

Using Equations 5.7 and 5.8 the components of the deformation gradient, [F], can

now be expressed in terms of the nodal coordinates and nodal displacement

parameters:
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1

Fac = 145 (Une(%7Y5) + Upe (Ya=Y3) + Up (Y- Y,)
1 :

Fov = —J'( Ui (X5-X5) + Upy (X =X5) + U3X(X2—X1)>

| (5.10)

1 -

Fyx = U(UW(Ya"Ya)+U2Y(Y3‘Y1)+U3’.'(Y1_K"))

Fyy =1 +_1J(U1Y(X3_)(1) + Upy (Xi=X5) + Upy (X-X,))

As a consequence of the assumed displacement shape functions, N, the

deformation gradient components are constant over the domain of each element.

reference configuration

fibre direction

Figure 5.2: Element fibre direction in the reference configuration and element
reference coordinate system (X'-Y’).
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The one-dimensional fibre characteristics have a definite and constant direction in
each element, these fibre characteristics being assumed to be aligned with the
element plane. The fibre direction is uniquely determined by specifying the angle,

o, which is included between the "fibre"-direction and the X-axis of the global

coordinate system (GCS). Figure 5.2 illustrates this point. Furthermore, Figure 5.2
shows a primed coordinate system (X’-Y’) which will be called element coordinate
system (ECS). The X'-axis of the ECS points in fibre direction. The fibre stretch
ratio, A, is obtained by observfng how a line element, being identified here with its
unit tangent vector, {n}, will be stretched under the deformation described by the

deformation gradiént, [F], in Equation 5.10:

 [FI{n}|
i

(5.11)

A = y/(F,xcoso + F,,sina)? + (F

. 2 .
yxcosa + F sina)

{n}\T = {cosa, sinay}

'The second Piola-Kirchhoff stress tensor, with its components referred to the
element coordinate system (X'-Y’), is now obtained by using Equatlon 4.9 and a
suitable force profile function, for example Equations 4.10 and 4.11. In addition,

the value of the stimulation parameter, ©, is needed at this point as input:
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p
—f(X.@©) 0 _
(S = | * . (5.12)

Using the following transformation equation, the Cauchy stresses referred to the

global coordinate system are obtained:

[6]cs = [G"" Z”L = ﬁ[F][Q][S]Ecs[Q]T[F]T
Xy YYlacs 7

(5.13)

~ |cosa -sina
Q] =| .
sino,  coso

The transformation matrix, [Q], transforms the second Piola-Kirchhoff stress tensor
from its representation in the ECS to its representation in the GCS. It is now
necéssary to relate the nodal forces to the Cauchy stresses. Given the nodal force
vector, {F}, and a virtual nodal displacement vector, {du}, in the deformed
configuration |
{FY' = {F,,F}.Fy . F, Fs.Fs} = {F.Fy FogsFoy Foxs P}
{du}" = {b4,,84,,80,,50,,80,,80.} = (5.14)

{8u,,.du,,.8u,, .8u,,,0u,,,8u,}

and introducing the stress vector, {c}, and the virtual (linear) strain vector, {g},
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{c}" = {0,.5,,,0,,}

(5.15)
{de}" = {8e,,,8¢,,,387,}

the Principle of Virtual Work for the element under consideration can be stated as

follows:

f{ae}T{o}dxdy - {3u}{F} = 0 (5.16)

It is important to realize that the Principle of Virtual Work as stated above relates
to the deformed element, that is, to the spatial configuration. Using the
transformation Equations 5.4 with the nodal coordinates of the deformed
configuration and assuming again the displacement shape functions of

Equation 5.7, Equation 5.16 can be transformed into

{Su'}T (f[B]T{o} dxdy - {F}) =0 (5.17)

where [B] represents the operator matrix which relates the nodal displacements
to the linear strains based on the displacement shape functions chosen. Varying
the nodal displacement vector components individually the following expressions

for the nodal forces are obtained:
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[ (5.18)
- (F),

N =

Equation 5.18 represents the element nodal forces which are passed on to main

finite element routines.

The element stifiness matrix, [K®], is derived column by column through numerical
differentiation. To this end, the procedure outlined above will be applied with

incremented and decremented displacement vectors

{U“} = {U} + {AU}

(5.19)
{U} = {U} - {AU} '
where {AU} designates an incremental displacement vector with all its components
set to zero, except for the i component which will have a value of AU = [{AU}].
{U} represents the displacement vector corresponding to the solution of the
previous iteration. With the incremented and decremented displacement vectors,

new nodal force vectors are obtained
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{F*} = {F({U*i})} (5.20)

(F4 = {Fluy)}
and the i" column of the element stiffness matrix, {K¢}, is derived from the

following expression:

(K = o AF) - (5:21)

Subsequently, the element stiffness matrix itself, [K®], is assembled by combining

all stiffness matrix columns according to

[K®] = [{KP}, (KSY {KSY, {KSY S (K2 | (5.22)

Due to the particular nonlinear character of the force profile functions used, the
element stiffness matrix, [K°], will, in general, not be positive definite (after the
singular displacement modes are removed). The implications of this fact are best
shown using a one-dimensional analogy. Figure 5.3 displays a portion of a
nonlinear force-displacement (F-u) relation, represented by the thick curve, for a
one-dimensional mechanical component which, in the current context, can be
taken to represent a muscle fibre under maximal stimulation. Imagine the fibre to
have a configuration corresponding to U,, and to be loaded by an applied force of

magnitude F,. The intersection of the lines for constant U, and F, is not located on
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Figure 5.3: Multiple equilibrium configurations illustrated for the case of a general
non-linear function.

the force-displacement curve, and it does, therefore, not constitute an equilibrium
configuration. There are two possible equilibrium configurations corresponding to
the displacements U, and U,. However, only the equilibrium conﬁgﬁration
corresponding to Uy, is physically indicated, because the higher internal force F,,.
overcompensates the applied force, F,, and leads‘ to a decrease in length and
émaller values of U. Use of the iterative NeMon-Raphson method to search for an

equilibrium configuration
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Un+1 = Un - FI(U) _ Fa
F,f(U) =Un
(5.23)
dF,. (U
Py = L)

will result in a convergence to U, instead of U, when the solution process is |
started from U,. The desired solution can, however, be obtained by using the
absolute value of the force derivative in the denominator of Equation 5.23.

F(U) - F,

a

" TFO ey, 2

In accordance with the considerations above, a matrix norm is defined, | | [l_(e] I,
by transforming [Ke]'to diagonal form with the transformation matrix [T], taking the
absolute values of the diagonal matrix elements, and transformiﬁg the resulting

matrix back by the inverse transformation, [T

K1l = [T] ILTIIKIT] [T] (5.25)

The modified element stiffness matrix is subsequently passed on to the main finite

element routines for incorporation into the global stiffness matrix.
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5.2 The global Finite Element Muscle Model

A general presentation of the typical finite element muscle models used for
performing the simulations in subsequent chapters is given below. All parameter
values indicated will be valid for the remainder of this thesis, except where stated

otherwise.

| The finite element muscle models (Figure 5.4) are generated as plane strain two-
dimensional models using fibre tissue elements (small triangular regions in Figure
5.4) and tendon sheath elements along the upper and lower edges of the
geometries. Each tissue element consists of two superimposed elements: an
isotropic fluid-like element representing the muscle tissue fluid matrix and an
anisotropic custom element representing the muscle fibre characteristics. Tendon
sheath elements are represented by large deflection spar elements. As a
consequence of the plane strain assumption, no thickness changes of the muscles
will occur. The models are taken to represent the mid-section of a muscle which
contains the line of action of the muscle. Fibres are assumed to run within the
model plane. Results, such as the total muscle force for example,‘ have to be

interpreted as "per unit thickness" information.

Figure 5.4 displays two different geometries; a trapezoidal geometry at the top for
which the results can be compared directly to those in Chapter 3, and a more
involved geometry at the bottom, whose shape approximates the lateral cross

section of the (cat) medial gastrocnemius muscle. As displayed, the geometries
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Figure 5.4: Finite element muscle model geometries (not to scale) and finite

element mesh.

Figure 5.5: Finite element muscle model geometries (to scale).
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represent the reference and stress free state. While the geometry at reference
configuration is outlined by straight line segments, restrictions regarding the
deformed geometry are made only to the extent of suitable boundary conditions.

Figure 5.5 provides the exact dimensions of the geometries to be analyzed.

The trapezoidal geohetw (TG) is defined by a lower tendon sheath length of 8 cm,
the vertical heights of 0.7 cm at the left and 0.9 cm at the right. These dimensions
result in a muscle cross sectional area of 6.4 cm? Tendons are assumed to attach
at the lower left and upper right hand side of‘the' tendon sheaths, but they are not
part of the model. The muscle length, which is defined by the length of the line
connecting the two tendon attachmeﬁt sites, is 9.6 cm. Muscle fibres run at an
uniform angle of 30° relative to the lower tendon sheath. The triangular muscle
tissue elements are generated so that their edges form straight lines from lower
to upper tendon sheath at three locations within the muscle, which coincide with
the general fibre direction. The muscle boundary lines at the right and left are also
coincident with the fibre direction. The lines which are coincident with the fibre
direction facilitate the tracking of the changing fibre directions during muscle

deformations.

The medial gaStrochemius geometry (GG) at the bottom of Figure 5.5 can be
divided into the "head" section at the right hand side and the "neck" section at the
left hand side. For the model generation, the neck part is extended all the way to

the right forming a parallelogram, and supplemented by a triangular region at the
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bottom right to form thé muscle head. The top parallelogram region has a
' hoﬁzontal length of 6.5 cm and a vettical height of 0.5 cm. The bottom triangular
region at the right extends a vertical distance of 0.5 cm below the parallelogram
and intersects the bottom line of the parallelogram approximately at half-length.
The right hand edge of the triangular region, which coincides with the fibre
direction in that region, is adjusted so that fibres form an angle of 30° with
adjoining tendon sheaths within the entire geomeiry. Tendon sheaths ruﬁ along the
entire boundariés attop and bottom. Tissue elements are again generated in such
a way that element edges form straight line segments coinciding with the: fibre
direction. In the head section, the fibre direction changes abruptly as one moves
from the poﬁom to the top tendon sheath. Tendons are assumed to attach at the
top left and at the bottom right. The muscle length is 8.1 cm and the muscle cross

sectional area is 4.1 cmz._

Material property values are set to A=B=0.125Ncm?, v-= 0.4995
(Equation 4.4), and P = 25 N/cm? (Equation 4.9). From Yamada [1970] a "(endon
sheath stiffness of 1200 N/cm? has been obtained by'taking the initial slope of the
stress strain relation for cat tendinous tissue. This translates into tendon sheath
spar element specific constants of E-A = 1200 N, with E being the Young's
modulus and A the spar cross sectional area. It is a natural consequence of the
current modelling approach that tendon sheath elasticities can be incorporated into
the model. The tendon sheath elasticity chosen leads to typical tendon stretches

between 4% and 5% for maximum muscle forces.
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For the simulations, tﬁe model boundary conditions rigidly fix the left hand tendon
attachment point, while the right hand tendon attachment point is moved (typically
along the line of action of the muscle). Thus, the left éttachment point may be
identified with the muscle origin and the right attachment point with the muscle
insertion. Two different'analysis protocols will be followéd. According to the first
protocol, both tendon attachment points are initially held fixed, while the muscle
stimulation parameter, @ is gradually increased from O to 1. Subsequently the fully
stimulated muscle model is lengthened aﬁd shortened. Following the second
protocol, the muscle is stretched without stimulation (® = 0) beyond the active
range of the fibres, next, the stimulation is turned on (® = 1) and, finally, the
muscle is shortened as far as possible. All muscle tissue elements of the model |

are always uniformly stimulated.

Ansys Version 4.3, the finite element package used for performing the analysis,
has the deficiency that the custom elements themselves cannot be made visible
on graphical displays. Consequently, no stress plots could be obtained for the
muscle tissue as generated. However, stress and nodal force plots are produced
for the tissue matrix element by themselves. The matrix stresses will be of interest,
_because they reveal how the muscle structure works based on hydrostatic
pressure within the muscle tissue fluid matrix. The nodal force plots will give an
indication as to where and how the muscle fibre component and the muscle fluid

component interact.



Chapter 6

Stress State, Intra-Muscular Pressure and
Global Equmbrlum

Intra-muscular pressure has been experimentally determined by Petrofsky and
Hendershot [1984] to be 2.3 N/cm? for the cat medial gastrocnemius muscle, and
by Otten [1988] to be 13.3 N/cm? in the toad gastrocnemius muscle; the respective
pressure values differ by a factor of five. Theoretical considerations put the
pressure for pennate muscles at 0 N/cm? [Benninghoff and Rollhduser 1952, Gans
and Bock 1965, Gans 1982], 1 N/cm? [Heukelom et al. 1979], and 13 N/cm? [Otten
1988]. In the context of the current continuum model, intra- muscular pressure can
be explored as part of the general stress state within the muscle. Different
pressure levels can be considered to be reasonable, depending on the point of
view. With respect to experimental results, the question arises, which stresses are

actually measured in these experiments.
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The particularities of the muscle structure in combination with the mode of loading
will be shown to have distinctive consequences on the global equilibrium of the

structure.

A point of caution needs to be made: the stress state in the muscle structure
hinges on intricate interdependencies of global deformations, boundary conditions
and boundary effects. In order to make specific arguments below, these complex
interactions need, at times, to be simplified. They should, however, be kept in

mind.

At present, two assertions in muscle mechanics, which have been implemented
into the current continuum model, can be congidered to be undisputed: (a) under |
stimulation, muscle fibres generate a tensile force aligned with their length axis,
and (b) muscle tendon sheaths have a negligible bending stiffness. Associated with
observation (a) is the common understanding that fibres are pulling on the tendon

sheath.

Figure 6.1 illustrates the general effects of a distributed load on the curvature of
a short tendon sheath segment, which is assumed to havé no bending stiffness at
all. The muscle tissue is imagined to be located below the tendon sheath element
and its action on the tendon sheath element has been decomposed into distributed
loads representing the normal and shear stress components. T represents the

tensile force acting on the tendon sheath segment in tangential direction. The
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Figure 6.1: Tendon sheath curvature in relation to applied loads.

relation between the radius of 6urvature, p, the distributed load, p, and the tension,

T, is given by the following expression:

.
= _I (6.1)
P |p

A net pulling action by the muscle tissue on the tendon sheath (Figure 6.1, top)
would result in a concave tendon sheath curvéture. Clearly, this type of tendon
sheath curvature is rarely observed on muscles, except, perhaps, for very small
' regions adjacent to the muscle (tendon) attachment points. What is usually
observed, are relatively flat tendon sheaths (i.e. they have a radius of curvature
approaching infinity) or tendon sheaths with a convex curvature. This implies

however, that the effect of the muscle tissue on the tendon sheath must be of the
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nature of pure shear stresses (Figure 6.1, middie) or a combination of shear
stresses and pushing stresses (Figure 6.1, bottom), the latter being completely

counterintuitive with regard to muscle fibres with an exclusive pulling action.

Figure 6.2 illustrates how equilibrium can be achieved locally in the context of the -
current constitutive model by indu'cing a pressure in the matrix part of the muscle
tissue. For the following argument, let us assume that we considérthe stress state
of a muscle tissue volume element which is located directly beneath the top tendon
sheath and removed from the tendon sheath end points for the gastrocnemius
muscle geometry displayed at the bottom of Figure 5.4. Let us also assume that,
for the stimulated muscle; the tendon sheath radius ofx curvature is infinite at this
location (flat tendon sheath), and that the fibre direction forms an angle of 45° with

the tendon sheath orientation.

The current constitu~tive model considers muscle tissue to be a superposition of an
incompressible fluid matrix part, and a fibrous part. The stress state associated
with the fibrous part only, is indicated for the volume element at the top-left in
Figure 6.2 (o;,, o;, = 0), where two of the edges of the volume element are in
parallel with the local fipre direction. This stress state is taken as the base stress
state to form Mohr’s Circle at the bottom left of Figure 6.2. For a volume element
at the same location but with two of its edges in parallel to the tendon sheath (top,
second from left), the analogous stress state is arrivéd at by the appropriate stress

tensor transformation (dashed vertical line m Mohr’s Circle, bottom left). The - with
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Figure 6.2: Stress state for a volume element adjacent to the tendon sheath.

I

respect to the tendon sheath orientation - oblique fibre tensile stresses are thus

resolved into their normal (c;, = o;,) and shear (t,) components.

For the current assumption of a flat tendon sheath with no bending stiffness, the
discussion above has shown that no normal stress components can be present.
To compensate for the normal stress components, the tissue matrix part must,
therefore, be put under compression (c,,, = o,, = -6;,), as indicated in Figure 6.2
(top, third from left, and bottom left). The matrix stresses take on the form of a

hydrostatic pressure due to the fluid character of the matrix part. The superposition
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of the tissue matrix part and the tissue fibrous part results in a pure shear stress
state (t,) next to the tendon sheath (Figure 6.2, top right, and bottom right). In
summary, matrix hydrostatic stresses will develop in order to achieve local

equilibrium; on the other hand, taking the matrix and fibrous part together, no

normal stresses are imparted on the tendon sheath.

Let us in the current context define the fibre angle of pinnation from a local
pérspective as the angle between the fibre direction and the tendon sheath
orientation. If the angle of pihnation is not equal td 45°, a more general stress
state will result compared to the pure shear stress state above. Still, the matrix
hydrostatic pressure will have to adjust in such a way as to cancel the normal
stress components induced by the fibrous part. The magnitude of the shear
stresses acting on the tendon sheath over thfe tendon sheath length determines
the force acting at the tendon sheath end (or attachment) point. These shear
stresses are highest under an angle of pinnation of 45°, if the fibre stresses are
taken to be independent of the angle of pinnation. This is conform with the
observation in Chapter 3, where the highest muscle force was observed in the
case of a muscle with parallel tendon sheaths having an angle of pinnation of 45°
(to be precise, this angle of pinnation has to be reachedvduring the muscle

defdrmation, when the Cauchy fibre stress peaks).

Clearly, for the current model the tendon sheaths will not remain absolutely flat

along their lengths. The curvature and matrix pressure depend on the global
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muscle deformation and bouﬁdary eﬁecfs. Figure 6.3 displays the principal
stresses of the muscle tissue fluid matrix for an isometrically held muscle under
stimulation. The vector plot is shown for the undeformed muscle geometry, and
only the left sedtion of the gastrocnemius geometry is shown; the vertex at the top,
left hand side, corresponds to the muscle attachment point. The star shaped vector
entities indicate the matrix pressure, with longer vectors indicating relative higher
stresses. Matrix pressure ié developedin the region where the top and bottom
tendon sheaths overlap along the muscle length axis. Close to the muscle
attachhent point, almost no matrix pressure is present. Consequently, the tissue
actually pulls on the top tendon sheath in the normal direction, and the tendon
sheath experiences a concave curvature, which will become apparent in

deformation plots shown in subsequent chapters.

Figure 6.3: Hydrostatic pressure within the muscle tissue fluid matrix.
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The considerations made in connection with Figure 6.2 can be extended by
including the effects of éurvature in relation to t.he tendon sheath tensile forces.
However, a more fundamental consideration relates to the question of what type
of global curvature the tendon sheaths will undergo. Focusing on the active
“character of the fibres and considering the fibre stresses as the primary stresses
for stimulated muscle, the matrix stresses can be considered as a reaction to the
fibre stresses. Globally, there is no physical foundation for the reactions to be
greater than the action. Therefore, the matﬁx compressive stresses are not
expected to overcompensate for the - with respect to the tendon sheath - fibre
normal stresses and to bring the tendon sheaths into a globally convex shape.
What one can reasonably expect, and - in anticipétion of the muscle simulations
presented later - what will actually occur for the current muscle model, is that the
mu;cle tissue matrix developé enough compressive hydrostatic pressure to prevent
the tendon sheaths from peing displaced towards each other. Tendon sheaths will
remain close to being straight, not because of kinematic constraints, blut because
of the mechanics governing the model. There is one notable exception to the last
point: depending on the muscle model geometry, the whole muscle may become
curved during muscle contraction, with one tendon sheath becoming convexly
curved, the other concavely curved However, during simulations with different
muscle geometries, it has never been observed that both tendon sheaths |

experience a convex curvature.
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As a consequence of the discussion above, we are left with the ;‘ollowing
observations: In order to achieve equilibrium adjacent to the tendon sheath, a
compressive hydrostatic pressure is induced in the muscle tissue fluid matrix part.
If there is no curvature in the teﬁdon sheath, the matrix stress level depends only
on the generated fibre stresses and the angle of pinnation. For example, an angle
of pinnation of 45°, results in a matrix hydrostatic pressure of 50% of the fibre
stresses, and the percén,tage value for an angle of pinnation of 25° is 17.8%. The
hydrostatic matrix stress level is not dependent on the absolute muscle size. Due
to the similarity of conditions along the central part of the tendon sheath, the matrix
pressure remains very much the same along the tendon sheath Iength, with
variations being due to changing angles of pinnation, fibre strésses, and tendon

sheath radii of curvature.

Assuming an active fibre streés of 25 N/em? and a fibre angle of pinnation of 25°,
the matrix pressurerwill take on a value in the order of 4.5 N/cm?. Looking-at the
integral muscle tfssue (matrix and fibrous parts superimposed), and defining the
pressure as p=-0 = _%(01 +0,+0,) , with ©; being the muscle tissue principal

stresses, a pressure value of -3.8 N/cm? is arrived at.

The matrix pressure magnitude of 4.5 N/cm? is far closer to the experimental
values of 2.3 N/cm? obtained by Petrofsky and Hendershot [1984], than to those
‘obtained by Otten [1988], which are at a level of 13 N/cm?. There is, however, still

a difference of a factor of two compared to the values given by Petrofsky. In the
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experimental setting, the important question that may be asked is, which stresses
are actually measured? The matrix hydrostatic pressure may not be directly
accessible to experimental measurements, because of interference from the
fibrous tissue constituents. Based on the considerations above, any pressure value
between 4.5 N/cm? and 0.0 N/cm® may result from measurements (a negative
pressure will certainly not be detected by a pressure probe), depending on the
degree of coupling between tissue constituents. On the other hand, starting from
the experimental values, conclusions mig“ht be drawn about tissue constituent

coupling in the context of a more detailed constitutive theory.

The assertion of Benninghoff and Rollhiuser [1952], and Gans and Bock [1965]
that there is no reason for intra-muscular pressure to occur in pennate muscles,
can be considered to be correct, if seen in the correct context. From their
discussions, it appears that they are referring to the normal stress interactions
between the muscle tissue and the tendon sheaths, which has here been labelled
"distributed load" in -conjunction with Figure 6.1. As demonstrated above, the
muscle tissue interacts with relatively flat tendon sheaths predominantly by shear
stresses. Incidentally, this observation gives the question of how muscle tissue
behaves an additional complexion; if, for some reason, experiments reléted to the
exploration of muscle tissue behaviour had been easier to perform on entire
muscles than on single muscle fibres, our understanding of how muscle tissue
reacts to stimulation might well be that it produces shear stresses on the tendon

sheath, rather than a pull in fibre direction.
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Otte;n [1988] also started his ar:guments from the normal stress interactions
between muscle tissue and tendon sheaths, and equated this interaction with
muscle pressure. Taking the tendon sheath curvature and tendon sheath tension
into account, he arrived at stresses acting normal to the tendon sheath in the order
of 13 N/cm? which agreed with his experimental results. Referring to the
discussion of Figures 6.1 and 6.2, this would result in fluid matrix pressures, which
are even higher than 13 N/cm? However, if the fluid matrix pressure is seen, in
principle, as a reaction to‘ the fibre stresses, it is not obvious how this high a

pressure could be generated within a muscle.

A very much simplified picture of the stresses acting on the muscle body when the
tendon sheaths are removed by thé method of sections, is shown in Figure 6.4 for
the case of a muscle with parallel tendon sheaths. Wﬁether the muscle tissue
stresses are the result of a passive muscle stretch or that of internal stimulation,
the main interaction between the muscle tissue and the tendon sheaths consists
of shear stresses. While there are shear stresses at the top and bottom 50und‘ary,
there are no stresses at the right and left end of the muscle, due to the free
boundaries. Consequently, the moment generated by the shear stresées at the top
and bottom boundaries are not compensated for, and the muscle body is not in

equilibrium.

Obviously, the real situation is far more complex, and the moment imbalance is

counteracted by the structure through suitable deformations and stress
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Figure 6.4: Shear stresses acting on the muscle body.

redistributions. Still, the type of loading does impose exceptional demands on the
muscle structure. This is best illustrated by the following example, where the model
behaviour turns out to be catastrophic. The example also illustrates that the
geometrically nonlinear theory of deformation underlying the current modelling

approach is not a mere academic exercise.

Figure 6.5 displays muscle deformations for a muscle with parallel tendon sheaths,
which has been modelled using finite elements based on the linear theory of
deformation. In patticular, the incompressibility of the muscle tissue is imposed by
constraining the trace of the linear strain tensor to a value of 0. The formulation
of these elements incorporates provisions for large déflections based on the
"Updated Lagrange" technique. All material properties have been chosen in

correspondence to those detailed in Chapter 5.

The model geometry and the finite element mesh are displayed at the top of

Figure 6.5. Displacement constraints are applied at the lower left and upper right
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Figure 6.5: Muscle model behaviour based on the geometrically linear theory.

vertices. Figure 6.5, second from top, shows the response of the structure to a
passive stretch when no elements are incorporated into the model which represent
the tendon sheaths at the upper and lower boundaries of the structure. While the
deformation cannot be considered to be physically accurate on account of the
elements being based on the linear theory, they do appear quite reasonable.
Displécements are shown to scale with the original muscle geometry indicated by
the solid lines forming a para_llelogran'i. Stresses (not shown) flow directly between

the points of constraint, and the material is in essence stretched uniaxially.
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The picture changes dramatically when the same stretch is applied to the previous
structure, which now includes spar elements to represent the tendon sheaths
(Figure 6.5, third from top). In this case, the muscle volume is put under shear with
no corresponding shear stresses being present at the free left and right hand
model boundaries. In order to achieve equilibrium, the whole muscle collapses.
Incidentally, the incompressibility constraint according to the linear theory is fully
observed. A similar behaviour occurs for the same structure when it is isometrically
held and when an internal load corresponding to muscle tissue contraction is

applied (Figure 6.5, bottom).

The muscle model presented in Chapters 4 and 5 overcomes the deficiencies of
the linearized theory. However, it cannot eliminate the peculiar loading of the
structure, which is part of the problem definition. The most basic muscle geometry,
that is a muscle with pérallel tendon sheaths, which has been used extensively in
Chapter 3 and by other authors, has the most difficulty in establishing equilibrium.
Therefore, the trapezoidal geometry described in Chapter 5 will be used in the
following chapters. In general, an asymmetric geometry has more ways in adapting

to the imposed loading by asymmetric deformations.

In order to give an impression of how equilibrium is established for the entire
muscle structure, Figure 6.6 displays iso-pressure lines for the muscle tissue fluid
matrix on the gastrocnemius geometry under an isometric contraction. While the

pressure values remain relatively uniform in the midsection, rapid changes in
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Figure 6.6: Lines of constant pressure in the muscle tissue fluid matrix.

pressure magnitudes occur at the two muscle ends, especially close to the lower
left vertex, which corresponds to the non-constrained lower tendon sheath end. As
a whole, the iso-pressure curves do not have the smooth appearance of those

presented by Otten [1988].

Another aspect of global equilibrium is revealed by looking at the nodal reaction
forces on the boundaries corresponding to the tendon sheath locations. Figure 6.7
displays these forces with vectors of proportional scaling for the muscle fluid matrix
elements. Superimposed on the large scale change in force magnitude is a wavy
change of smaller magnitude with relative high periodicity (this is seen easiest
when looking at Figure 6.7 from the side). This aspect has the effect that the
tendon sheaths become wrinkled during model simulations when the stimulation

is taken off too suddenly. Within the current static model, the wrinkling of the
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Figure 6.7: Nodal reaction forces for nodes along the tendonal boundaries.

tendon sheaths corresponds to a "buckling" condition and results in a non-
convergence of the model. Wrinkling of tendon sheaths under rapid unloading has
been observed by Dr. Andy Hoffer at the University of Calgary on the cat

gastrocnemius muscle [private communication].



Chapter 7

Finite Element Model Simulations:
Trapezoidal Muscle Geometry

In this chapter, the results of finite element muscle model simulations for the
trapezoidal muscle geometry described in Chapter 5 will be presented and
discussed. The trapezoidal geometry is suitable to be_treated with the theory
introduced in Chapter 3. Consequently a direct comparison between the Straight
Line Model (SLM) and the Continuum Model (CM) will be possible. It will become
apparent that the two modelling approaches result in significant differences as far

as the muscle force-length curves and the muscle deformations are concerned.

In order to disassociate the influence of the muscle geometry changes and the
effect of the nonlinear active fibre force-length relation duﬁng muscle deformations,
an initial simulation will be based on constant active fibre forces. Subsequently, the
fibre force-length profiles number 1 and 2, which have been introduced in Chapter

4, will be included into the model. Finally, the base geometry will be modified
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slightly, to include changing muscle fibre orientations within the muscle volume at
reference configuration; the intent is to study the behaviour of a muscle model,
where the length axes of the muscle fibres in reference configuration form a

S-shaped curve. For this geometry, a comparison to the SLM will not be possible.

The muscle geometry and deformation plots presented in this chapter are not
scaled uniformly. However, an outline of the muscle geometry at reference
configuration is always.superimposed on displacement plots, in order to provide
a point of reference. Deformations are displayed to scale. The material parameters
for the tissue fluid matrix constituent and the tendon sheath stiffness are chosen
in accordance with Chapters 4 énd 5 (matrix material constants, A =
B = 0.125 N/ecm?, v = 0.4995, tendonal stiffness, 1200 N/cm?, and the active fibre

stress, P = 25 N/cm?).

7.1 Constant Fibre Force

For a given muscle geometry, the muscle force-length curve is essentially
influenced by two components which are (a) the fibre stretch ratio dependent
nonlineaf fibre force-length relation, and (b) the change in fibre orientations as well
as geometry changes during muscle deformations. In order to separate the two
effects, the simulations in the current section assume a fibre length independent
. active fibre force. In the context of the CM this is achieved by assuming a strain
independent active first Piola Kirchhoff stress of 25 N/cm?, where this stress is

measured per unit area perpendicular to the fibre direction at the muscle reference
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configuration. Furthermore, no passive fibre characteristics are included in the
current model. Therefore, the muscle forces resulting from a passive muscle
stretch are associated with the resistance to deformations of the muscle tissue

matrix part only.

Figure 7.1 presents the muscle geometry in the reference configuration and
selected deformed geometries for the current simulation. Within the initial geometry
(top), all musde fibres are assumed to run straight between the tendon sheaths
at the top and bottom; the fibre directions are in parallel to the two muscle
boundary lines at the right and left. Furthermore, the edges of the triangular finite
elements form straight lines at three locations inside the muscle volume which
coincide with the fibre direction. Throughout the muscle, the fibre stretch ratio is
equal to A =1 in the reference configuratién. The muscle is constrained at its
origin at the lower left vertex, and stretched or contracted by displacing its insertion
at the upper right vertex in the direction of the line of action of the muscle. Initially,
a passive stretch is applied, that is, the muscle .is elongated without an)} fibre
stimulation (the stimulation parameter,®, introduced in Chapter 4 is set to 0).
Subsequently, full muscle stimulation is applied (® = 1) and the muscle is allowed

to contract in incremental steps.as far as possible.

In the most stretched configuration, differences in the deformations of the
unstimulated and stimulated muscle become apparent. While there is a

pronotnced bend along the tendon sheaths in the unstimulated muscle, the tendon



144

Figure 7.1: Muscle geometry and deformations for constant fibre force. Displayed
are the initial muscle geometry (top), the geometry after a passive stretch (second
from top), stretched and stimulated (third from top), and fully contracted (bottom).
sheath shapes become more regular in the stimulated case. In the latter case,
both tendon sheaths are straight over large portions of their lengths, with concave
tendon sheath curvatures close to the muscle attachment locations and at the free
tendon sheath ends. Furthermore, the tendon sheaths show an elongation in the
stimulated configuration. This can be seen by comparing the positions of the

unconstrained tendon sheath ends for the stimulated and unstimulated

configuration to the undeformed muscle geometry, shown by solid lines
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superimposed to the deformed geometries. The difference in geometries is
important from an experimental point of view: the active muscle forceflength curve
for a muscle is usually determined by measuring muscle forcgs for the stimulated
(total muscle force) and unstimulated muscle (passive muscle force) at different
muscle lengths. The differences of the total and passive muscle forces for
corresponding muscle lengths are identified with the length dependerﬁ active
muscle force. The respective muscle forces arer then extrapolated to the muscle
fibre level and conclusions are drawn about muscle fibre characteristics. It is of
importance to realize that, even if the overall muscle length is kept constant, the
fibre stretch ratios or relative fibre lengths may be quite different in the stimulated
and unstimulated configuration. Due to the fibre stretch ratio independent fibre
force in the current analysis, the disparity between fibre stretch ratios in the
Vstimulated and unstimulated configuration will not result in undue consequences.
It will, however, have significant consequences for the simulations presented in the

following sections which include a stretch ratio dependent fibre force.

In the most contracted configuration (bottom of Figure 7.1), the entire muscle
becomes slightly arched, with the upper, longer tendon sheath taking on a convex
curvature, while the lower tendon sheath assumes’a concave shape. Close to zero
muscle force is reached at that configuration. While the SLM éttains zero muscle
force at fibre angles of pinnation of 90° measured relative to the lower tendon
sheath, the CM maximum angle of pinnation is greater than 90° at the muscle

origin. As can be observed, the fibre angles of 'pinnation vary considerably along
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the muscle length axis with angles of pinnation being less than 90° over most of
the muscle geometry. Fibres at the right and left muscle boundaries become
notably curved; fibres removed from the boundaries, however, remain straight for
all practiéal purposes (refer to straight lines coincident with the fibre directions in
the central part of the muscle geometry). It can be concluded from the variations
in fibre curvature and in fibre angles of pinnation that the strains and,
consequently, the fibre stretch ratios vary significantly over the muscle body, which
contrasts with the assumptions of uniform fibre deformations in the SLM. That the
muscle does not globally reach angles of pinnation closer to 90‘; at minimum
muscle length can be attributed to the small but finite elaéticity included in the
tissue matrix material description, and the counter-productivity of the fibres having

an angle of pinnation of more than 90°.

Figure 7.2 presents the muscle force-length curves resulting from the current finite
element simulation. Considering the fact that the fibre description does not
incorporate any passive components, the muscle force-length curve for the
unstimulated muscle, indicated by "passiile", reflects essentially the matrix
resistance against deformation. The passive muscle force starts at a muscle length
of 9.6 cm, which corresponds to the distance between muscle origin and insertion
at muscle reference configuration. Model convergence is only obtained up to the
end of the passive force curve shown. A stretch beyond the absolute muscle
length of 11.4 cm fesults in finite element model instabilities. By contrast, the

stimulated muscle can be stretched beyond this point, and the simulation has been
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Figure 7.2: Muscle force length curves for muscle with fibre stretch ratio
independent fibre forces. Unstimulated - "passive", stimulated - "total", difference
of former - "active".

broken off by choice at the end of the total muscle force curve shown. This
indicates that the internal fibre forces stabilize the structure. The stretched
configurations displayed in Figure 7.1 correspond to the passively éttainable
muscle length of 11.4 cm. A close to zero muscle force is reached for a muscle

length of 8.3 cm.

The difference of the total and passive muscle force curves is here defined and
displayed as the active muscle force curve. A passive resistance of the muscle for

shortened positions is expected. It is however not possible to obtain the muscle
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passive force for shortened muscle configurations. "Pushing" the unstimulated
muscle model to shorter lengths than resting length results very rapidly in unstable
model performancé. Also, the squeezed muscle geometry has only a remote
similarity to the stimulated muscle geometry for the same overall muscle length.
If the passive force could be obtained, the total and passive muscle forces for
corresponding muscle lengths would be related to completely different muscle
configurations, which renders the derivation of an active muscle force-length curve
based on the difference of active and passive muscle forces at corresponding

muscle lengths pointless.

The active muscle force-length curve of Figure 7.2 is reproduced in Figure 7.3 and
overlaid with the model predictions of the SLM for the current trapezoidal geometry
(hollow squares) and for a similar muscle with parallel tendon sheaths (filled
squares). All muscles to be compared have identical volume, equal lower tendon
sheath length and angles of pinnation. At the muscle reference length of 9.6 cm,
the muscle forces predicted by the CM and the SLM for the trapezoidal geo'metry
practically coincide, with the QM gctually producing a slightly higher force, which
has to be attributed to the change in cc;nﬁguration between the stimulated and
unstimulated muscle (the SLM maintains the unstimulated muscle geometry by

definition).

For stretched muscle configurations however, the CM muscle forces do not follow

the SLM predictions corresponding to the trapezoidal geometry. Rather, the CM
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Figure 7.3: Comparison of muscle force length curves. Resulits for trapezoidal CM
indicated by solid line, trapezoidal SLM by hollow squares, and parallel tendon
sheath SLM by filled squares.

muscle force curve approaches the one resulting form the SLM paratlel tendon
sheath muscle predictions. The asymptotic force value for high muscle stretches
is equal to I,-sinoco~l'3’ = 100 N for the current CM andrthe SLM paraliel tendon
sheath muscle (with I, = 8 cm, the lower tendon sheath length, o, = 36°, the
reference angle of pinnation, and P = 25 N/cm?, the first Piola Kirchhoff active fibre
stress magnitude). This force corresponds to the value which would be typically |
predicted for a fusiform muscle with a cross sectional area equal to the area

perpendicular to the fibre direction in the current muscle geometry (the latter is

commonly termed physiological cross-sectional area).
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It follows from the preceding observations that the CM and SLM do behave
differently. On the other hand, the agreement of force values at the muscle
reference configuration and in the asymptotic limit reinforces the reciprocal

confidence in the consistency of both models.

For the shortened muscle the SLM muscle force curves corresponding to both
geometries intercept the abscissa practically at the same location. The CM curve
misses this abscissa interception by about 0.2 cm. In fact, the curve displays lower
force values than both SLM curves throughout the muscle shortening interval. As
has been pointed out before, bart of this deficiency can be attributed to the passive
tissue matrix stresses. However, recalling the discussion above and realizing that
the CM does behave differenﬂy than the SLM, part of the force difference is due
to a dissimilar deformation behaviour of the two models. In the current CM, local
equilibrium has to be attained, a concept to which the SLM is completely oblivious.
Reaching equilibrium imposes "constraints" regarding suitable deformations and
corresponding stresses which may inhibit the capacity §f force production external
to the muscle. The distinctively different configurations of the current CM at low
muscle lengths to those of the parallel or trapezoidal SLM at corresponding muscle
lengths reveals that the latter would not constitute equilibrium configurations of the

former.
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7.2 Fibre Stretch Ratio dependent Fibre Force

In contrast to the previous. model where the fibre forces were assumed to be
independent of the fibre stretch ratio, the models presented below include stretch
ratio dependent fibre forces. The fibre force profiles number 1 and number 2,
which have been introduced in Chapter 4, will be used. These profiles differ from
one another in the relative locations of their active fibre force peaks within the
stretch ratio intervals for which there exist positive active fibre forces, as well as
in the magnitude of the depression in the total (active plus passive) fibre force-

length curve for stretch ratios above unity (see Figures 4.2 and 4.3).

7.2.1 Fibre Force Profile Number 1

In agreement with Woittiez et al. [1984], the fibre force profile #1 incorporates a
symmetric active fibre force-length relation. The passive component is defined for
stretch ratios greater than 1 and the combined (active plus passive) force profile
has a local minimum at stretch ratios greater than 1 amounting to 84% of the

active fibre force peak.

Figure 7.4 presents a sequence of muscle mode! deformations, starting, at the top,
with the fully stretched configuration and ending, at the bottom, with the contracted
muécle. The fully stretched configuration corresponds to a muscle length where the

fibres are stretched beyond their active range (11.4 cm), while the contracted
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Figure 7.4: Deformations of a muscle model which is based on fibre stretch ratio
dependent fibre forces. Stretched configuration at the top, contracted configuration
at the bottom.



153

configuration corresponds to a muscle length of (9.0 cm). The muscle length at

reference configuration is 9.6 cm.

The configurations at which the fibres produce a signifiCant active force (second
from top to second from bottom) show an extru_sio'n of the muscle tissue-at the
muscle ends with ensuing fibre curvature, where this effect is primarily visible at
the right hand boundary. This extrusion is not noticeable for th‘e most stretched
configuration (top) and barely perceptible for the most contracted configuration

where the muscle force is close to zero.

In general, muscle fibres removed from the muscle end sections remain stréight

during muscle deformation, but the fibre directions vary slightly along the muscle
tength axis. The configuration displayed at the middle of Figure 7.4 constitutes an
exception to the observation relating to straight fibres: close to the lower tendon
sheath, fibres removed from the muscle ends become slightly curved with angles
of pinnation assuming lower values compared to the predominant fibre directions.
This effect becomes visible by holding a straight edge to the reference lines
coinciding with the fibre directions inside the muscle. In a dissected cat
gastrocnemius muscle, muscle fibres can be observed to form a S-shaped curve
between the tendon sheaths. While the fibre curvature observed above for the
current model assumes the cdrresponding tendency, it is too small to draw

conclusion about the ultimate purpose of fibre curvature in physical muscles. As
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far as the model is concerned, the curvature results from the requirement of local

and global equilibrium of the structure.

Tendon sheaths do remain remarkably straight, with a very slight, globally_ convex
curvature for the top and bottom tendon sheath (again, placing a straight edge on
the deformation plots in Figure 7.4 clarifies this point). Except for the translation
of the top tendon sheath during muscle contraction, the tendon sheaths deform
only slightly. This contrasts with experimental observations, where the tendon
sheath .does undergo noticeable deformations after stimulation is applied, which

is even true for an isometric contraction.

While the tendon sheaths do not undergo signiﬁc;ant deformations perpendicular
to their length axes, they do stretch during model contraction. This can be seen
immediately by comparing the deformed geometry to the outlined geometry at
reference configuration in Figure 7.4, second from bottom. The tendon stretch
increases linearly over the tendon sheath lengths, with the highestr stretch being
located next to the muscle attachment sites. A visual representation of this fact is
given in Figure 7.5, where the relative magnitude of the tendon sheath strain over
the tendon sheath lengths is indicated by the lines perpendicular to the tendon

sheaths.

The muscle force-length curves for the current simulation are displayed in
Figure 7.6. The passive and total force-length relations, which are obtained directly

from the finite element analysis, are indicated by solid lines. The active force-



155

J—— AR
IR

Figure 7.5: Tendon sheath strain. Horizontal lines represent top and bottom
tendon sheat_hs, vertical lines indicate relative tendon sheath stretch.

length curve, which has been obtained by taking the difference of the former two

curves, is shown by the daéhed line.

For the discussion below, it will be helpful to introduce the following conventions:

Referring to the active muscle force-length curve, the section having a positive

slope will be called the ascending limb, and the section having a negative slope
the descending limb. As for the total muscle force-length curve, the section
merging into the active muscle force-length curve will be termed active branch, and

the one merging into the passive muscle force-length curve passive branch.

On examining the total muscle force curve, it is striking that this curve does not
feature a notable decrease in force magnitude between the active and the passive
branches. While there is a small force decrease, the two branches are joined with,

what could be called, a plateau region. This contrasts with the predictions of the
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Figure 7.6: Muscle force length curves for muscle with fibre stretch ratio
dependent fibre force (symmetric active force profile). Unstimulated - "passive",
stimulated - "total", difference of former - "active".

SLM which show a distinctive depression in the muscle force-length curve in that
region (see Figure 3.11). The total force magnitude in the plateau region is
significantly higher than the active muscle force peak. This is associated with the

fact that the active muscle force peak is located at a muscle length for which a

passive muscle force is already manifest.

While model convergence typically results within three iterations on the passive
muscle force-length curve as well as on the active and passive branches of the

total force-length curve, convergence in the plateau region takes up to the order
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of twenty iterations. The implications of this observation are that equilibrium
configurations in the plateau region are not very sharply distinguished from
neighbouring configurations; in other words, the equilibrium is indifferent in the

plateau region.

The emergence of a plateau region can be examined in the context of the
nonlinear fibre force-length relation whose particular features cause intrinsic
difficulties to the structure in establishing equilibrium. Figure 7.7 displays a force
displacement relation which is similar to the current muscle fibre characteristics.'
On applying a slowly increasing load to a component with such a behaviour, the
displacement increases gradually up ;to the local maximum characterized by a
horizontal. tangent (the solid line of the graph is followed). Any further force
increase results in an abrupt change in displacement along the dashed line, that
is, a jump ensues to the disﬁlacement value at which the previous force level is
attained on the right hand branch of the force displacement relation ("snap-
through" effect). A similar behavipur occurs on unloading the component, except
that the "snap-through" takes place when a force level corresponding to the local

minimum in the graph is reached.

If the displacement instead of the applied force is increased or decreased
gradually, the above snap-through effect is absent. For the current model, the
displacement of the muscle insertion is imposed and the muscle origin is fully

constrained. While the muscle length is controlled, the internal deformations are
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Figure 7.7: Force displacement history for a component having a nonlinear force
length relation with inflection point.

free to adjust themselves according to the requirements of local and global
equilibrium. It is conceivable, and will actually materialize in a case treated further
below in this chapter, that effects similar to the snap-through behaviour discussed
above will take place within the overall muscle structure. In contrast to the
~ schematic one dimensional case above, this does not imply a jump in one specific
characteristic length parameter, but the realization of multiple equilibrium
configurations within the neighbourhood of a specific configuration, which may be
a finite "distance" apart form one another. Furthermore, there is no‘guarantee for

stability of these equilibrium conditions.
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In the current model, the "snap-through" tendency is minimized by globally varying
tissue deformations which equalize the muscle force within the plateau region. The
varying degrees of muscle tissue deformations within the muscle body are readily
apparent by looking at the configuration in Figure 7.4 which is placed third from the
top. Boundary fibres are extruded. Consequently, they have higher stretch ratios
than those located at the interior of the muscle. In fact, the boundary fibres are
well on their passive branch of the total fibre force-length curve; the passive fibre
forces limit the degree of tissue extrusion. They contain the muscle tissue and
insure its form stability. If this support function of the boundary fibres is eliminated
by taking the passive fibre force Component out on the constitutive level, model
simulations diverge. The tendon elasticity also increases the stability of the
structure. Simulations with significantly increased tendon stifiness values showed
an increased propensity for unstable muscle model behaviour in the plateau

region.

For a more detailed discussion and in order to compére the predictions of the
current CM and of the SLM, Figure 7.8 shows the active and passive muscle
force-length curves for the different models in superposition. The solid curves
correspond to the CM results, and the dashed lines represent SLM results for the
current trapezoidal muscle geometry. The hollow squares indiéate SLM'resuIts for
a similar muscle geometry with parallel tendon sheaths whose volume, lower

tendon sheath length and angle of pinnation are equal to the current trapezoidal
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geometry. It should be reiterated that the CM passive and total muscle force-length
curves result directly from the finite element analysis, while the CM active muscle
force-length curve is obtained indirectly. The latter is obtained by subtracting total
and passive muscle forces at corresponding muscle lengths; while this operation -
is performed for equal overall muscle lengths, the configurations for the stimulated

and unstimulated muscles at these lengths are different in general.
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Figure 7.8: Muscle force length curves for muscle with fibre stretch ratio
dependent fibre force (symmetric active force profile). Solid lines - CM results,
dashed lines and hollow squares - SLM results.

The last section, based on the assumptions of constant fibre force, revealed a

similar behaviour between the current trapezoidal muscle geometry and the
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comparable parallel tendon shéath geometry for increased muscle stretches. Under
the current assumptions of fibre stretch ratio dependent fibre forces, this
correspondence has disappeared; the CM results are much closer to the
trapezoidal SLM results (dashed lines) than to those of the parallel tendon sheath
SLM results (hollow squares). Focusing on the two SLM active force-length curves,
it is interesting to observe that they differ quite significantly in their muscle peak
forces and active muscle ranges, even though the muscle geémetries are very
similar. This sensitivity on the muscle geometry should be kept in mind for the
discussion below in the light of the differences in configurations for the stimulated

and unstimulated muscle.

Comparing the CM and SLM passive muscle force curves for the trapezoidal
geometry, the CM force curve initially exhibits somewhat higher force values, while
forces increase far less rapidly for higher muscle stretches. As expected, both
passive force curves have their origin at the muscle reference length of 9.6 cm.
The initially higher CM passive forces are due to the different mode of deformation
compared to the SLM. The CM mode of deformation leads right away to tendon
streiches which result in additional passive forces. However, it will be
demonstrated below that it is also the influence of the tendon sheath elasticities
which cause the passive forces to increase less rapidly with increasing muscle
stretches. The muscle model by Otten [1988] does include tendon sheath
elasticities. In his model, the effect of the tendon sheath elasticities shifts the

passive force curve slightly to higher muscle length. However, no changes in the
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general appearance of the curve (e.g. here the observed decrease in the slope)

are apparent.

Comparing the CM and SLM active muscle force curves, the CM force cu.rve
appears to be shifted to higher muscle lengths with a slightly lower peak force, a
larger range, and an overall smaller slope of the ascending limb. The descending
limb runs out more gradually. An element of virtual agreement between the two
curves consists in the muscle force - muscle length integral, which is a measure
of the work a muscle is able to perforr_n over a complete active contraction (this
work is in addition to the work regained from elastic energy storage during the
passive stretch of the muscle). The CM integral evaluates to about 97% of the
SLM integral, with the latter being the theoretical limit because the theory
underlying the SLM does not allow for any losses and/or elastic energy storage
within the muscle structure. In princip;le, the differences between the CM and SLM
behaviour above conform with observations made by Otten [1988] in relation to his
model. Compared to.Otten, however, the differences observed here are far more

significant in magnitude.

All the differences in the muscle force curves mentioned above follow from the
inclusion of elastic tendon sheaths and from the absence of global kinematic
constraints in the CM. Starting with the unstimulated muscle in reference
configuration (referencé muscle length, 9.6 cm) and stimulating the muscle while

holding it isometrically results in a muscle deformation whose primary feature is
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schematically depicted in Figure 7.9. The tendc;n sheéths become stretched and
increase in length. This results in the muscle fibres assuming an incréased angle
of pinnation and a decreased length (dashed lines in Figure 7.9). A second effect
is associated with the increase in absolute tendon sheath lengths; as the tendon
sheaths become longer, they move closer together in order to maintain the original
muscle volume. The tendon sheaths have to approach one another even further‘
in order to compensate for the muscle tissue which is extruded at the muscle
ends. The reduced distance between tendon sheaths results in a further decrease

in muscle fibre lengths.

‘Figure 7.9: Effects of tendon stretch on fibre angle of pinnation and fibre length.”

Comparing the isometrically stimulated configuration (Figure 7.4, second from
bottom) to the corresponding reference configuration (Figure 7.1, top) and
considering the muscle fibre at muscle mid-length reveals that the fibre has

shortened from a stretch ration of A = 1.0 to about A = 0.8 and that its angle of
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pinnation (measured against the lower tendon sheath) has increased from 30° to
about 37°. Both effects combined tend to decrease the muscle force at this muscle
reference length of 9.6 cm, which explains the difference in force magnitudes in
Figure 7.8. between the CM and SLM predictions. Realizing that the majority of the
muscle fibres in the stimulated configuration take on a stretch ratio substantially
below A = 1.0 explains the offset between the two active fdrce-length curves; the
CM's capacity to shorten from muscle reference length is decreased compared to
the SLLM, where the muscle fibres, by definition, maintain a stretch ratio of A = 1.0

for the stimulated condition.

Under a passive muscle stretch, the general effects of tendon sheath stretch, that
is, a fibre rearrangement which results in smaller fibre lengths and higher angles
of pinnation compared to the SLM, will also occur. Consequently, the CM passive

muscle force curve is less steep than SLM curve.

The input fibre force-length relation places the passive fibre force onset coinciding
with the active fibre peak force. On the muscle level, the onset of the passive force
and active peak force are offset considerably as a consequence of the tendon
sheath elasticities and the absence of global displacement constraints.
Consequently, appropriate caution should be applied when inferring fibre

characteristics from experimentally determined muscle behaviour.

The lower value of the CM active force peak compared to the SLM peak force in

Figure 7.8 results from a loss of synchronization in the fibre stretch ratios. The
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primary effect of tendon sheath stretch, which is schematically depicted in Figure
7.9, causes a global change in relative fibre lengths and angles of pinnation.
However, these changes are uniform within the muscle volume with the result that
the muscle fibres are still synchronized. The muscle peak force, while occurring
at a different muscle length, is expected to be equal to the force of a muscle with
stiff tendon sheaths. In the current context, the extrusion of the muscle tissue at ‘
the muscle ends makes the difference. As mentioned before, this extrusion is a
consequence of the internal loading and it is necessary in order to contain the
muscle body. Muscle boundary fibres are stretched onto the passive branch of the
fibre force-length curve until they develop e_nough tension t6 stem further
deformations, while the fibres in the muscle mid-section shorten. Compared to the
SLM, not all the fibres reach optimal length at the same configuration which results

in a decreased active peak muscle force.

In Figure 7.8, the difference in active peak muscle f.orce between the CM and SLM
is not very significant. However, the considerations made above take on an
increased importance when they are extrapolated to a fully three-dimensional
muscle model. In the current model, the tissue extrusions are limited to the two
muscle ends, and the tissue is contained in depth direction by the plane strain
assumption. In a three-dimensional model, tissue extrdsion would have to be
expected all around the free muscle body boundaries which would greatly increase
the effect of fibre de-synchronization and, consequently, decrease the potential

active muscle force peak considerably.
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The difference of 3% in the active muscle force - muscle length integral between
the CM and SLM is due to elastic strain energy storage within the matrix fluid part
of the muscle tissue in the shortened muscle configuration. The strain energy
stored during the passive muscle stretch and the stretch of the tendon sheaths due
to active fibre stresses is regained during muscle contraction. However, the
shortest muscle position in Figure 7.4 constitutes a deformed, i.e. strained,
configuration compared to the reference configuration. Due to the small, but finite
tissue matrix elasticity, a small amount of strain energy is contained within the
muscle tissue. This portion of the fibre "work potential”, while it could be regained
in principle during muscle relaxation in the context of the current theory
(postulation of a strain energy function), is effectively lost for any system external
to the muscle. Over a complete contraction of the CM the active force - length
integral evaluates in the order of 3% below the value obtained for a strain energy
free situation (SLM), which is rather small. However, the difference becomes more
important for partial contractions, that is, for contractions ending with muscle
lengths corresponding to non-zero muscle forces. In this case, the portion of the
- work generated by the fibres which has been converted into tendon stretch (tendon

strain energy) cannot be regained for external muscle work.

Returning to the CM total force-length curve in Figure 7.6 and comparing its
important features to expetimental data of in-situ force measurements on the cat

gastrocnemius muscle by Herzog et al. [1990], the following observations can be
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made: The almost linear force increase over large portions of the active branch,
the relatively small force decrease within the plateau region, and the offset
between passive force onset and total force peak correspond well. HoWever,. the
experiments do not show a renewed force increase for higher muscle lengths
Corresponding to the passive branch in the current simulation. In fact, the current
model behaviour is very much influenced by, and a stable muscle behaviour is
dependent on the significant passive force component in Figure 7:6. By contrast,
the experiments by Herzog show an almost negligible passive force component
over a muscle length interval which extended beyond the muscle’s normal range
of motion. A similar observation regarding low muscle passive forces has been
made by Muhl [1982] who conducted muscle force-length measurements on the

digastric muscle of New Zealand White rabbit.

7.2.2 Fibre Force Profile Number 2

In order to obtain some indications regarding the sensitivity of the muscle force-
length relations on varying fibre force-length relations, this séction presents results
for model simulations based on alternate fibre characteristics. The force profile
number 2 differs from the force profile number 1, which has been employed in the
previous section, in that (a) the active fibre force-length relation is asymmetric and
(b) the relative minimum of the total fibre force-length relation between the active

and passive branch takes on a smaller value.
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Figure 7.10: Muscle force length curves for muscle with fibre stretch ratio
dependent fibre force (asymmetric active force profile). Unstimulated - "passive”,
stimulated - "total", difference of former - "active".

Figure 7.10 presents the muscle force-length relations for thé current simulation.
Comparing these results to Figure 7.6 of the previo'ﬁs section, the differences are
not very striking. In particular, the active muscle force-length éurve still shows a
parabolic shape, that ié, the asymmetry in the input fibre force-length relation is not
appafent at muscle level. The offset between the passive muscle fdrce onset and
the peak active muscle force is virtually identical. Also, the difference in peak total
mdscle force and the minimum total force within the plateau region is very close

in both simulations.
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Differences become only apparent on closer examination: The slopes of the
ascending and descending limb of the active muscle force-length curve have
increased for the current simulation and the active muscle range has somewhat
decreased. While the value of the active force peak is currently higher, the
maximum total force in the plateau region is lower. The magnitudes of these
differences are not very important. From an experimental point of view, it is
doubtful whether these differences could be observed with an appropriate degree
of confidence considering the usual inherent spread in experimental data. Both the
symmetric and asymmetric fibre force-length curves lead to fairly symmetric
muscle force-length charactefistics. Starting from a muscle force-length curve, it

is difficult to infer the underlying fibre characteristics with certainty.

Figure 7.11 displays the comparison between CM and SLM model results based
on the current asymmetric fibre force-length profile. In principle, all the
observations made in the previous section and the related discussions can by
carried over. Comparing the active muscle force curves emphasized the loss of
asymmetry in the case of the CM. A fairly symmetric muscle force-length curve is
consistent with the experimental results of Woittiez et al. [1984] on White Wistar
rat muscles [1984]. On the other hand, Muhl [1982] determined asymmetric muscle
force-length relations for the digastric muscle of New Zealand White rabbits, which
‘resemble the SLM predictions in Figure 7.11. It should be noted that both Woittiez

et al. and Muhl performed muscle force-length experiments on the entire muscle-
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. Figure 7.11: Muscle force length curves for muscle with fibre streich ratio
dependent fibre force (asymmetric active force profile). Solid lines - CM results,
dashed lines - SLM results.

tendon c;omplex. Mubhl obtained two muscle force-length rélations, one representing
the raw experimental data, the other having been corrected for the tendon stretch.
The comments above apply to the latter because this force-length relation is
indicative of the muscle behaviour excluding the tendon and because the current

models do not include tendons.
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7.3 Curved Muscle Fibres

When a cat medial gastrocnemius muscle is dissected longitudinally from origin to
insertion, muscle fibres are seen to form a characteristic S-shaped curve in a plane
which is perpenldicular to the tendon sheath planes. In order to investigate how the
‘current model behaves when fibres take on varying angles of pinnation between
the tendon sheaths, the trapezoidal geometry has been modified slightly.
Figure 7.12 displays, at the top, the modified geometry; within the middle two
quarte‘rs of the vertical distance between the tendon sheaths, the fibre angle of
pinnation has, as before, the value of 30° measured against the lower tendoh
sheath. Within the top and bottom quarter, the angle of pinnation has been
reduced to 20°. Thus, the fibre length axes take on a crude S-shaped form
between the tendon sheaths with a discontinuity in the angle of pinnation at the
junction of the muscle regions (or layers). l;orce'profile number 2 will be used in

the simulations below.

As far as the fibre arrangement is concerned, the modified geometry has the
following consequences: if all the muscle fibres are assumed to have a constant
and uniforrﬁ thickness, which is the point of view adopted below, more fibres can
be placed in parallel within the mid-layer than in either layer next to the tendon
sheaths (compare to Chapter 3.1). This implies that a certain percentage of fibres

in the mid layer terminate at the interface with the top and bottom layers.
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Figure 7.12: Muscle with initially curved fibres. Reference configuration
most stretched configuration - second from top, most contracted configuration

bottom.
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Ultrasound measurements performed by Wagemans [1989] on human
gastrocnemius muscles under voluntary contractions show that muscle fibres
appear to be straight in the stimulated and contracted muscle. The current model
behaves contrary to these observations. The plots in Figure 7.12 (second from top
to bottom) show a sequence of stimulated muscle configurations from maximum
stretch to maximum contraction. They reveal that the difference in angles-of

pinnation between the layers generally increases, rather than decreases.

While _the model behaviour is certainly in contradiction with the experimental
observations made by Wagemans, -it is an expected consequence of the
assumptions made about the constitutive characteristics of muscle tissue. Each
‘layer may be considered as an individual muscle with its characteristic range in
angles of pinnation over a complete contraction in accordance with Chapter 3. A
muscle with a lower reference angle of pinnation (top and bottom layer) also has
a lower angle of pinnation after a full contraction than a muscle with a higher
reference angle of pinnation (middle layer). Joining the muscles together in order
- to form the current geometry does not change this basic consideration. Also,
matdhing the fibre densities in the different layers in order to obtain the "same
number of fibres" in parallel in all three layers does not change the model
behaviour significantly as far as the relative angles of pinnation over a contraction
are concerned. Furthermore, if one assumes that fibres are packed as densely as

possible in the top and bottom layers, the matching of fibres would imply a less
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Figure 7.13: Muscle force length curves for muscle with initially curved fibres.
Muscle fibres have force profile #2 characteristics. Unstimulated - "passive",
stimulated - "total", difference of former - "active".

than optimal fibre packing in the mid-layer which would be a doubtful strategy from

an economical point of view.

Figure 7.13 presents the muscle‘ force-length curves for the current muscle
geometry. Despite the mismatched "number of fibres" between the different Iéyers,
the passive muscle force-léngth curve as well as the active and passive branches

of the total force-length curve héve a smooth appearance, that is, the general

muscle function is not disturbed by the fibre mismatch. The difference in fibre
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Figure 7.14: Nodal reaction forces for the muscle fluid matrix elements.

directional stresses is compenséted by the tissue fluid matrix at the layer
interfaces. Figure 7.14 gives an impression of this effect: it depicfs the nodal
- reaction forces of the finite elements which represent the tissue fluid matrix. In
addition to the tissue to tendon sheath interface; forces are present along the lines
where the layers with different angles of pinnation are joined. These forces put the
tissue fluid matrix in the mid-layer under increased pressure compared to the top

and bottom layer.

The active and passive branch of the total muscle force-length curve are joined by
a irregular curve, which is‘a result of the "snap-throuéh" effect discussed in
~ conjunction with Figure 7.7. At the layer junctions, the discontinuities in the angles
of pinnétion Ieac_i to local instabilities wheﬁ the fibres take 6n é stretch ratio

corresponding to the descending portion of the fibre force-length curve (negative
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slope). The points on the irregular portion of the total force-length curve do not
represent equilibrium configurations as the finite eleme‘nt solution iterates through
"neighbouring” configurations, none of which being an equilibrium configuratfon. It
‘should however be stressed that the solution does not diverge and that the
configurations and muscle force values from iteration to iteration do not change too
drastically. The muscle force - muscle length integral of the active force curve
results in 95% of the theoretical value, which demonstrates that even the non-
converged solutions have a relation to the overall performance of the muscle.
Comparing the overall form of the active muscle force-length curve to those in the
previous sections reveals a lower maximum force level and in increase in the

muscle range over which this force level is maintained.

It should also be pointed out that the non-convérgence does not constitute éfailure
on the part of the CM. The non-convergence is a consequence of the problematic
type of the fibre force-length nonlinearty, which is compounded with the
discontinuity in fibre angles of pinnation at the layer junctions. A finite element
model with a greatly refined mesh which incorporates a smoother transition in
angles of pinnation wouid be expected to behave better as far as model
convergence is concerned. The general model behaviour (maintenance of different

angles of pinnation in different layers) is, hbwever, not expected to change.

Muscle fibres are usually seen to pass on forces between their origins and

insertions from sarcomere to sarcomere with the implication that when one
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sarcomere within a fibre fails, the whole fibre would become dysfunctic_)nal. As
outlined above, the current geometry may be interpreted to contain fibres which
extend over the mid-layer only. in other words, they are not connected to the
tendon sheaths and should be considered dysfunctional according to the point of
view above. The simulation results showing a normal muscle behaviour for a large
portion of the contraction history and the reasonable value for the active muscle
force - muscle length integral indicate that this disfunction simply does not occur.
Not the fibre forces passed on annghthe muscle fibres, but the global stress state
control the muscle behaviour. While the stress state changes locally if a fibre is
severed, the global étress state hardly changes. Consequently, a localized fibre

damage is not expected to render the entire fibre useless.



Chapter 8

Finite Element Simulations:
Gastrocnemius Geometry

Straight Iin-e models similar to the one presented in Chapter 3 limit the degree of
details in muscular geometry which can be represented and.analyzed. In order to
permit a comparison between the present Continuum Model (CM) and the Straight
Line Model (SLM), the sirﬁulations in‘ the previous chapter were based on
geometr‘ies appropriate for SLM analyses. However, one advgntage of the CM over
the SLM is that more involved geometries can be treated. In taking advantage of
the CM’s increasedlﬂexibility, the simulations in this chapter will be based on a

geometry which approaches the shape of the cat medial gastrocnemius muscle.

The interpretation of simulations in the previous sections have been focused very
much on the muscle behaviour as it is characterized by the muscle force-length

relation. In the second part of this chapter, the focus will be shifted to the aspect
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of structural integrity. An alternate mode of muscular contraction will be presumed

and its consequences on muscle deformation and stress state will be outlined.

8.1 Fibre Force Profile Number 2

The following simulations are based on the gastrocnemius geometry as presented
in Chapter 5 and reproduced in Figure 8.1, top. This geometry is characterized by
a slender "neck" section at the left end and a thickened "head" section at the right
end of the geometry. Tendon sheaths run along the extent of both the upper and
lower geometry boundaries. Fibre angles of pinnation take on a value of 30°
relative to adjoining tendon sheaths. This results in discontinuously changing fibre
directions within the head seétion similar to those in Chapter 7.3. Continuous lines
(formed by the edges of the triangular elements) at regular intervals over the
muscle length, which coincide with the local fibre direction, make the fibre
directions apparent. Méterial parameters are identical to those in the previous
chapter (matrix material constants, A = B = 0.125 N/cm?, v = 0.4995, tendonal
stiffness, 1200 N/cm?, and active fibre stress, P = 25 N/cm?). The fibre force profile
number 2 will be used for the simulations in this section. The muscle origin at the
top-left is fully constrained, while the muscle insertion at the bottom-right is
displaced along the line of action of the muscle for the deforming muscle.
Deformation plots in Figure 8.1 are not uniformly scaled. In order to provide a point
of reference, outlines of the muscle geometry at reference configuration are

superimposed to the deformed geometries.
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Figure 8.1: Medial gastrocnemius muscle geometry and deformations. Displayed
are the initial muscle geometry (top) and a sequence of configurations from most
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stretched (second from top) to fully contracted (bottom).
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Within the deformed configurations in Figure 8.1, initially straight muscle fibres -
remain straight except for minor curvatures at the two free boundaries next to the
origin and insertion. A minor degree of fibré curvature can also be observed in the
neck section of the moderately strétched configuration (fourth from top). For all
configurations, the relative’cha‘nge in fibre directions within the head section
peréists. In fact, the degree of the fibre direction change along the line of the fibre
angle discontindity in reference'configuration is amplified for the configurations
shown in Figure 8.1, fourth from top to bottom. The latter conforms with the

observations made in Chapter 7.3, and the discussion can be carried over.

Furthermore, the muscle force-length relation for the current simulation is similar
to the one presented in Chapter 7.3. In particular, the irregulatity of the total
. muscle force curve over the plateau region has the same degree of severity and
is due to the instabilities forming inside the muscle georr;etry along the line of the

fibre angle discontinuity within the head section.

The stimulated muscle undergoes a significant deformation perpendicular to the
muscle’s line of action. This deformation mode is especially apparent for shorter
muscle lengths and results in a bending of the whole muscle for the shortest
configuration. While the general tendency of deformation can be observed when
one stretches an iéolated cat medial gastr‘ocnemius muscle, the degree of

deformation resulting from the current simulation appears too high.
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However, it is important to realize that the here observed deformation mode is
restricted within the biological system. The lower boundary of the muscle geometry
in Figure 8.1 coincides with the location of another muscle, i.e. the plantaris
muscle. The plantaris muscle prevents the medial gastrocnemius frgm‘ deforming
in the downwards vertical direction of Figure 8.1. In order to mimic the effects of
the plantaris muscle on the medial gastrocnemius muscle, the boundary conditions
over the extent of the lower tendon sheath will be modified in the following manner:
nonlinear gap boundary elements are applied along the lower tendon sheath
boundary which prevent the muscle from deforming downwards in vertical
direction. Nodes on the lower tendon sheath boundary remain unconstrained in
their horizontal and upwards vertical direction. To conform with these new
boundary conditions, the muscle is stretched and contracted by moving its insertion

in horizontal direction.

Figure 8.2 presents the muscle deformations obtained for a simulation with the
modified boundary conditions described above. Because of the boundary
conditions an overall bending of the muscle is absent. In the shortest muscle
configuration (bottom) most of the nonlinear gap boundary elements on the lower
tendon sheath boundary within the muscle head section are active, that is, the gap
is closed and the muscle is supported at these locations. Along the neck section
and close to‘the muscle insertion, however, the gap elements are open, which

corresponds to a liting of the gastrocnemius muscle away from the plantaris
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Figure 8.2: Medial gastrocnemius muscle deformations for supported lower

tendon sheath boundary. A sequence of deformations is displayed from most
stretched (top) to fully contracted (bottom).
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muscle. Muscle fibres inside the muscle geometry remain mostly straight. Contrary
to the previous simulation however, the degreé of fibre angle change along the line
of the fibre angle discontinuity within the head section has decreased. This aspect
" corresponds bet’ger to the observations made by Wagemans of straight muscle
fibres within the contracted human gastrocnemius muscle [1989]. The free muscle
boundaryd adjacent to the muscle insertion has a rounder and smoother
appearance which comes closer to anatomical observations than that of the
previous simulation _(Figljre 8.1, bottom). The free muscle boundary adjacent to the
muscle origin takes on a notch-shaped form. This general shape has been

observed on serial sections of the medial gastrocnemius muscle of the cat.

Figure 8.3 presents the muscle force-length curves for the current simulation. As
before, the cu.rve labelled "passive" corresponds to muscle elongations without
~ stimulation (stimulation parameter © = 0), the curve labelled "total" corresponds to
‘muscle deformations for fully stimulated fibres (® = 1), and the curve labelled
"active” constitutes the difference of the former two curves. Comparea 'to the
results of Chapter 7.3, the total force-length curve shows a lesser degree of
irregularity within the plateau region joining the active and passive branch. On the
other hand, the curve has some degr;ae of irregularity well onto its passive branch.
The active force-length curve has, in contrast to the results in Chapter 7, a clearly
asymmetric shape with a steep ascending limb and a more gradual descending
limb. In its asymmetric shape, the active curve resembles the general shape

obtained by Muhl in experiments on the digastric muscle of New Zealand White
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Figure 8.3: Muscle force length curves for medial gastrocnemius muscle with
supported lower tendon sheath. Unstimulated - "passive", stimulated - "total",
difference of former - "active".

rabbit [1982]. In the digastric muscle, muscle fibres connect directly to the bone
of tﬁe jaw, that is, thex digastric muscle has only one free tendon sheath. The
current model, with its lower tendon sheath supported, approaches the aspect of
the digastric muscle. It must however be stressed that Woittiez et al. [1984]
obtained a close to symmetric muscle force-length curve for the medial
gastrocn;amius muscles of Wistar rats whose geometry is presumably more closely
approximated by the current model than that of the digastric muscle. As has

already been observed throughout Chapter 7, the onset of the passive force
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occurring at significantly lower muscle lengths than muscle optimal length differs
both from Muhl and Woittiez. The magnitude of the passive muscle force over the
active muscle range appears toé high compared to Muhl [1982], Woittiez et al.
[1984], and .Herzog et al. [1990]. Judging by the data of Herzog the cat
gastrocnemius muscle seems to function mostly on the ascending limb and a little
bit beyond the active force peak which translates to a muscle working range of
about 2 cm. The current model predicts a corresponding raﬁge of only about 1 cm.
This deficiency in range has already been observed in the context of the Straight

Line Model in Chapter 3 as well as in the simulations of Chapter 7.

It must be reiterated that the model predictions are a direct consequence of the
assumptions about muscle tissue characteristics and muscle geometry, all of which
being reasonable when taken by themselves. Having the global muscle model
behave more closely to experimental muscle data requires that the underlying
assumptions h_ave to be changed, and this change may have to be done in a way
which is not supported by currently accepted perceptions about muscle fibre and

muscle tissue characteristics.

8.2 Alternate Mode of Muscular Contraction

Muscle force-length relations resulting from the simulations so far exhibit the main
characteristics of experimental observations, even though the model predictions
and experimental data are not in complete agreement. More importantly, the model

results are consistent with the underlying assumptions concerning muscle tissue



187

characteristics. In addition to the force-length relations, the current continuum
muscle model also provides prediclztions about muscle deformations and stress
state. Unfortunately, no or only scant experimental data relating to general muscle
deformations and tissue stresses are available for comparison. One may, however,
make the following observations: Free tendon sheaths, i.e. tendon sheaths which
are not supported by neighbouring structures, usually take on a convex shape
during contraction, even if the curvature is minute; the current model predicts a
concave curvature. Some pennate muscles, with the cat gastrocnemius muscle
being an example, do have curved fibres when they are not stimulated. Wagemans
[1989] has shown that, at least for the human gastrocnemius muscle, this
curvature disappears under stimulation and contraction; the current model
preserves and, for certain cases, even magnifies any initial fibre curvature under
stimulation. Muscle pressure measurements by Otten [1988] resulted in a smooth
pressure distribution within the muscle; the current model predictions result in
irregular pressure distributions with local pressure concentrations (as seen in
Figure 6.6). In the current model, the interaction between muscle tissue and
tendon sheath, which is visualized by the nodal reaction forces ih Figure 6.7, is
irrégular and leads to model instabilities when the stimulation parameter, ©, is
changed too rapidly Setween iterations. Calling on engineering judgement, neither
the pressure distribution nor the muscle tissue to tendon sheath interactions
generated by the model conform with what would be expected from a balanced

structure.
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In an attempt to alleviate the incongruities listed above, the continuum model has
been modified by introducing an al‘ternate mode of muscular contraction which
consists of: (a) the muscle tissue is given some degree of compressibility (or
expansivity), and (b) the fibre contractiie property has been removed and
substituted by a tissue tendency to expand isotropically. The fibre passive
characteristics have not been changed. The current modifications are remotely
related to the suggestions of Vain [1990] who proposed a thickening tendency of

muscle fibres.

Figure 8.4 presents tﬁe muscle deformation, tissue to tendon sheath interaction
and muscle tissue matrix pressure distribution for a simulation based on the
- changed tissue characteristics. The gastrocnemius geometry with supported lower
tendon sheath boundary has been used for the simulation. The free, that is,
unsupported tendon sheath at the top of the muscle geometry deforms now into
a convex shape. Furthermore, the initially present discontinuities in fibre directions
within the muscle head section have disappeared completely. Both the tissue to
tendon sheath interaction and the pressure distribution take on a much smoother
pattern compared to Figures 6.6 and 6.7. They correspond better to a balanced
structure. Finally, the model converges even for significant changes of the
stimulation parameter, ©, between iterations. It should also be mentioned that the
muscle does generate a tensile force matching previous results, even though the

modified tissue characteristics have the tissue expand under stimulation.
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Figure 8.4: Muscle deformation, tissue - tendon sheath interaction, and tissue
. matrix pressure distribution based on the alternate mode of muscular contraction.

Certainly, the improved structural model behaviour has been obtained by making
changes to the muscle tissue description which contradict physiological evidence.
Muscle tissue has been shown to be incompressible, e.g. Abbott et al. [1962], and
it is unquestionable that muscle fibres do contract. The point to be made here is
that a more balanced structural behaviour can be achieved by modifying the
assumptions about tissue characteristics. The modifications implemented above

are too radical; more subtle modifications which conform with physiological
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observations would obviously be desirable, but could not be found with the current
model. Bound by the original decisions regarding exclusively contracting and
independent muscle fibre behavfour, possible changes to the material model are
limited without reworking the whole muscle model from the beginning. For now, the
modifications made to the material description above may serve to inspire a
change in perspective with regard to the perceived muscle tissue behdviour_ and

to indicéte new directions for further research.

It should also be mentioned that a structurally more satisfying muscle behaviour
can be obtained by increasing the passive characteristics of the muscle tissue
description. In the c;ontext of the current model, this can be simply achieved by
increasing the constants A and B in the muscle tissue matrix description. This
approach provides the tissue with additionél shear rigidity and eliminates all the
problems of convergence in Chapter 7.3 as well as some of the incongruities listed
at the outset of this section. One might favour this approach as it does not
immediately contradict physiological facts. However, any increase in the passive
components of the tissue description would result in‘ more strain energy storage
for muscle deformations with an associated decrease in available muscle work
external to the muscle, which translates into a smaller muscle:peak force 'a_nds an
reduced muscle range. While the muscle force-length curve can be patched up by
changing the muscle fibre force profile accordingly, this does not change the fact
that a larger amount of work gene}ated by thé fibres will be transformed into strain

energy rather than external muscle work.
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The function of skeletal muscle consists in geherating work on the skeletal system.
It may be expected that nature accomplishes this efficiently, i.e. without wasting
energy on internal (strain) energy storage which would be lost for all practical
‘purposes. Only further research can tell whether modifications to the material
description presented in Chapter 4 are necessary. If they are, it appears more
sensible for these modifications to affect the active tissue characteristics than the

passive ones.



Chapter 9 , '

Summary and Conclusions

Two mechanical models of muscular contraction have been presented in the
context of this thesis. Keeping with the presently accepted view of muscle structure
and function, the assumptions underlying both models are that muscle fibres are
one-dimensional entities and that the mechanical muscle.-behaviour is a reflection

of the active and passive muscle fibre characteristics exclusively.

The Straight Line muscle Model (SLM) has been based on kinematic constrained
muscle deformation modes, similgr to the treatment by other authors. Paying
special attention to physical consistency and simplicity, the SLM is founded on
consistent equilibrium considerations which relate the internal fibre forces to the
external muscle force, and the equations describing the model are expressed by
a closed set of nonlinear algebraic equations. The changing number of muscle
fibres acting in parallel as a function of the geometrical parameters, most notably

the reference angle of pinnation, is taken into account by the model.
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The Continuum muscle Model (CM) has been based on constitutive relations for
muscle tissue. No kinematic constraints have been applied, except for anatomically
justifiable boundary conditions, and the model formulation allows for a natural
inclusion of tendon sheath elasticities. Overall muscle deformations are not
preordained, but result from the solution of the stmc@ural problem. In addition to
the muscle force-length relation, the internal stress state of the muscle becomes
accessible. The CM has the potential of representing more complicated muscle
geométries, muscle fibre curvature, varying muscle fibre densities, etc.
Furthermore, the concepts underlying the‘ model are transferrable to a three-

dimensional modelling approach.

The unifying factor of both models consists in the active and passive Muscle
Tissue Energy Density function (MTED)*. Given the active MTED function and the
volume of a muscle, the amount of work this muscle can produce over a complete
contraction, expressed by the integral of the active muscle force over the active
muscle range, is determined and equal for both muscle models. However, the
actual shape of the muscle force-length relations show a no’gable dependency on
the parameteré describing the muscle geometry at reference configuration and, in
the case of the CM, on the boundary conditions. Therefore, most experimentally

obtained muscle force-length relations could probably be reproduced using the

"The constitutive treatment of the CM is based on the MTED function. The SLM also uses the
MTED function but in a less rigorous manner.
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presented models in their current implementation’. A more detailed model
description, which might include a three-dimensional geometry, different fibre

densities and orientations throughout the structure, etc., appears dispensable.

Muscle force-length relations constitute the majority of quantified experimental data
pertaiﬁing to mechanical muscle characteristics, and they certainly describe one
‘of the most important aspects of muscular function in the musculo-skeletal system.
However, they do not describe all aspects of muscular contraction. The presented
models do allow for additional considerations which have led to the following
incongruities: Although the fibre angle of pinnation predicted by the model for
maximum muscle force is in agreement with the experimental observations by
Wagemans [1989], the values of the angles of pinnation over the extent of a
complete contraction are significantly different. Contrary to experimental
observations, muscle deformations obtained from CM simulations result in a -
globally concave curvature of unsupported tendon sheaths. Furthermore, the

resulting stress state within the muscle does not conform to a balanced structure.

These incongruities cannot be resolved by adjusting the geometrical parameters
or by changing the functional form of the input fibre force-length relation. Rather,
they are a reflection of the initial model assumptions about muscle tissue

behaviour, and changes to the model have to be made at that level. It is, therefore,

%In addition to the parameters describing the muscle geometry, the scaling factor for active fibre
stress, P, may have to be adjusted to this end. Given the variations in magnitude for fibre stresses
listed in the literature however, good arguments can be made for using greatly varying values.



195

felt that further work should be concerned wit'h the‘reexaminat‘ion and modification
of these assumptions, even if this should require to step beyond the bounds of
currently established experimental ground. Realizing that desirable experiments on
muscles and muscle tissue are at times difficult, if not impossible to perform,
models similar to the presented CM may prove themselves to be invaluable tools

in obtaining indications about the validity of modified assumptions.
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