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Abstract 

Geometrical muscle models are typically based on kinematic constraints, that is, 

the modes of muscle deformation are preset. Whereas kinematically based models 

have been shown to predict muscle behaviour accurately, the contribution of the 

kinematic constraints to the favourable model predictions can only be assessed by 

eliminating them from themodel definition. To this end, a muscle model has been 

developed which is based on a constitutive description of muscle tissue and the 

theory of deformable continua (continuum muscle model). Consequently, muscle 

deformations result from the solution of the structural problem posed, and the 

internal stress distributions become accessible. The continuum muscle model has 

been explored by using the Finite Element Method. 

In order to establish a connection with the traditional approach to muscle 

modelling, the continuum muscle model has been preceded by a model which is 

based on kinematically constrained deformation modes. Paying special attention 

to physical consistency and simplicity, this model incorporates consistent 

equilibrium considerations which relate the external muscle forces to the internal 
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fibre forces, and the equations describing the model are expressed by a closed set 

of nonlinear algebraic equations. Keeping with the presently accepted view of 

muscle structure and function, the assumptions underlying both models are that 

(a) muscle fibres are one-dimensional entities and that (b) the mechanical muscle 

behaviour is a reflection of the active and passive muscle fibre characteristics 

exclusively. 

Model predicted muscle force-length curves have shown a notable dependency on 

the parameters which describe the muscle geometry and on the geometrical 

boundary conditions. In general, the muscle optimal force is predicted for a muscle 

configuration which is different from the one at which the muscle fibres assume 

optimal length. On account of the continuum formulation novel considerations 

regarding intra-muscular pressure have been possible. 

A number of disparities have been observed between model predictions and 

experimental results which are tied to the underlying assumptions of one-

dimensional fibre characteristics. Consequently, a reexamination of mechanical 

muscle tissue characteristics versus single muscle fibre characteristics seems to 

be indicated. 
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Chapter 1 

Introduction 

The contraction of skeletal muscle acting on the skeletal system is responsible for 

vertebrate locomotion' and movement. In the process of muscle contraction muscle 

cells convert chemical energy into mechanical work; muscle cells produce forces 

which are channelled bytendinous structures to either side of skeletal articulations, 

i.e., joints, and induce movement of the skeletal system. Whereas the cause of 

muscle contraction falls into the domain of biology, the exploration of intra- and 

extra-muscular force transmission and its dependence on muscle structure falls 

into the domain of mechanics. 

Studying muscles from a mechanical point of view, adds a further facet to the body 

of knowledge assembled in the fields of bio-chemistry, muscle neurology, 

physiology, morphology, etc. It is hoped that the integration of information obtained 

in the different disciplines will result in beneficial contributions to the development 

of medical procedures, to the field of rehabilitation and to the design of prostheses. 
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The understanding of muscular function may also be of interest in technical areas, 

in particular in the field of robotics. Actuators based on muscular-skeletal design 

principles might improve on current implementations from the perspective of 

efficiency, motor fine control and failure tolerance. 

Stimulated muscle fibres have different characteristics from unstimulated muscle 

fibres. In particular, stimulation causes muscle fibres to generate forces, whose 

magnitude depends on the fibre length, and to contract. The mechanics of 

muscular 'contraction on a microscopic scale as well as the associated active 

(stimulated) and passive (unstimulated) muscle fibre characteristics are thought to 

be well understood both from an experimental and theoretical point of view. The 

most widely accepted models (or theories) of, muscular contraction on a 

microscopic scale, that is the Cross Bridge Theory and the Sliding Filament 

Theory, are results of relatively recent research by Huxley [1957, 1974] and 

Gordon et al. [1966]. 

By contrast, models of entire muscles have a far longer tradition. The first efforts 

to investigate muscular function scientifically were undertaken by Giovanni Alfonso 

Borelli (1608 - 1679) and Niels Stenson (1638 - 1686). Stenson recognized the 

pennate structure of muscle, that is, the arrangement of muscle fibres at an angle 

relative to the direction of muscular force exertion. He demonstrated, based on 

geometrical arguments, that muscles could contract without changing their volume. 

This assertion contradicted the conviction held by his contemporaries that the 
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animal spirit entered and inflated the muscle, thus causing the tendency of muscle 

shortening. 

The currently most cited (pennate) muscle models have been proposed by Woittiez 

et al. [1983, 1984] and Often [1985, 1987a, 1987b, 1988]. In general, these 

models are based on kinematic constraints, that is, the mode of muscle 

deformation is preordained with the imposed mode of muscle deformation showing 

a close resemblance to the work of Stenson. The models incorporate the present 

knowledge of active and passive muscle fibre behaviour and are essentially based 

on the assumptions of one-dimensional fibres with uni-directional fibre activity, non-

interaction between neighbouring fibres, and the constancy of muscle volume. 

From an analytical point of view, restricting potential muscle deformations by 

kinematic constraints reduces the number of degrees of freedom inherent to the 

model and guarantees solutions independent of more detailed considerations 

concerning the constitutive character of muscle tissue. Because of the lack of 

general constitutive relations in combination with an adequate theory of 

deformation, considerations regarding the internal stress state of the muscle and 

statements pertaining to the adequacy of the imposed deformation modes with,, 

respect to local equilibrium of the structure are not possible. Whereas kinematically 

based models have been shown to predict muscle behaviour accurately, the 

contribution of the kinematic constraints tothe favourable model predictions can 

only be assessed by eliminating them from the model definition. 
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It is, therefore, the goal of this thesis, to develop a muscle model which is based 

on a constitutive description of muscle tissue and on the theory of deformable 

continua. This continuum muscle model will be used to explore in more detail the 

relationship between the tissue contractile condition, the muscle tissue stress state 

and the muscle deformation, and to observe their consequences on the muscle 

force-length curve. 

Muscle tissue will be interpreted as a composite material constituted of a fibrous 

component, which carries the active and passive characteristics of muscle fibres, 

embedded in a fluid matrix. Both the physical non-linearity due to nonlinear fibre 

characteristics and the geometrical non-linearity due to the large deformations 

innate to muscle contractions will be incorporated into the model. No kinematic 

constraints will be applied, except for anatomically justifiable boundary conditions. 

The general approach taken allows for a natural inclusion of muscle tendon sheath 

elasticity and deformability into the muscle model. Solutions of the structural 

problem will be sought using the Finite Element Method. 

The continuum muscle model will be preceded by a "Woittiez-type" muscle model 

which is based on kinematically constrained muscle deformation modes 

(Chapter 3). The purpose of this model is to establish a basis to which the 

continuum model can be compared, thus highlighting the differences between the 

two modelling approaches and their predictions. In its formulation, the model is 

simple enough to be described by a closed set of algebraic equations, yet it 
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contains most of the prominent features of Woittiez' original model. The 

transparent form of the equations governing this model allows for certain general 

observations regarding the model behaviour to be made independently of any 

numerical analysis. The model will be explored on its own merits with regard to 

muscle work, optimal muscle forces, active muscle range and the relationship 

between optimal fibre force and optimal muscle force. 

The literature predominantly records models of Dennate muscles. In order to 

compare the predictions of the here presented models to those by other authors, 

only pennate muscles will be considered in this thesis. The formulation of the 

continuum muscle model, however, contains no intrinsic limitations which would 

preclude the modelling of fusiform muscles, that is, muscles where the muscle 

fibres are aligned with the direction of muscular force exertion. 

The primary concern in developing the muscle models is directed towards their 

internal consistency. Starting with the assumptions underlying the models, the tools 

of mathematical physics are applied rigorously. Consequently, expected and 

unexpected model behaviour have to be seen as a direct reflection of the 

underlying assumptions, and the model behaviour will have to be interpreted as 

such. The most important assumptions underlying the presented models are, that 

muscle fibres have one-dimensional active and passive characteristics coincident 

with their length axis, that there is no direct interaction between neighbouring 

muscle fibres, and that muscle tissue is incompressible. 
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In order to avoid confusion in the main body of the text, the following comments 

should be made: When not stated otherwise, general remarks related to muscle 

fibres or muscle tissue refer to mammalian muscle, more specifically to cat muscle. 

Unreferenced model comparisons to experimental results and experimental 

observations are made with respect to experiments conducted independently of 

this thesis by Dr. Walter Herzog in his laboratory at the University of Calgary. The 

term "straight line muscle model" has to be seen in the context of the model 

developed in Chapter 3 which does, on purpose, not include any generalized 

constitutive law for muscle tissue. Models on the same level of abstraction which 

include a more involved description of muscle tissue are absolutely conceivable. 

Muscle model geometries in this thesis are loosely tied to the cat medial 

gastrocnemius muscle. The focus of this thesis rests, however, on considerations 

related to pennate muscles in general. The derivation and analysis of the 

presented models are restricted to quasi-static situations. 



Chapter 2 

Review of Background Material 

This chapter provides a short summary of material which is relevant to the subject 

of this thesis. Starting with the concepts underlying the Mechanics of Continua and 

an outline of the Finite Element Method, the chapter will conclude by giving a brief 

description of the structure of skeletal muscle and by reviewing muscle models 

presented in the literature. 

21 Continuum Mechanics  

This section summarizes concepts of Continuum Mechanics. The selection of 

topics covered corresponds to what will be needed in setting up the proposed 

continuum muscle model. In particular, the geometrically nonlinear theory of 

deformation will be covered, because of the large deformations inherent to muscle 

deformations. The treatment follows Truesdell [1965], Malvern [1969] and Becker 

[1975]. 
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The following conventions will be adopted throughout this section: tensor entities 

will be represented alternatively in component form, e.g. X 1, a, and symbolic 

notation, (x, or). Tensor components will be referred to three-dimensional Cartesian 

coordinate systems, tensor indices run from 1 to 3, and the same index appearing 

twice in any given term implies a summation of terms, e.g. X, y Ex1 y1. Partial 

derivatives with respect to coordinates will be abbreviated by the comma operator; 

.0 = 
xi 

2.1.1 Kinematics  

A body of a finite volume occupies a region in space. The identification of the body 

particles with their coordinates in three-dimensional euclidean space is termed a 

configuration. Given a body in its original (reference) and deformed (actual or 

spatial) state, the deformation can be described mathematically by a mapping from 

the reference configuration onto the deformed configuration: 

xi = Xi (Xi) (2.1) 

The coordinates x refer to the deformed, and Xj refer to the reference 

configuration. Differentiating Equation 2.1 results in: 

dx =   = x1 dX F1 dX 
axi 

(2.2) 
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or in symbolical notation: 

dx = FdX (2.3) 

The deformation gradient tensor, F, maps a line element in the reference 

configuration to the corresponding line element in the deformed configuration; the 

volumetric relation between a reference and actual volume element is given by 

d V = detFd V. F is in itself a measure of deformation. It contains, however, 

information about rigid body rotations which require special attention in the 

constitutive relations. According to the polar decomposition theorem, F can be 

represented by: 

F = RU or F = VR (2.4) 

This describes the decomposition of a general deformation into a rotation and a 

pure deformation (R being a proper orthogonal rotation tensor and U and V 

symmetric positive definite stretch tensors). 

The right and left Cauchy-Green deformation (or stretch) tensors (C and B) are 

defined by: 

C=FTF=U2 and B=FFT=V2 (2.5) 
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A deformation, as opposed to a rigid body motion, is characterized by a change 

of distances between neighbouring material particles. This aspect of the 

deformation leads to the. (classical) strain measures L and E, the Lagrange and 

Euler finite strain tensors. Below, only L will be discussed, which is defined by: 

L = 

2 

with I being the identity tensor. 

(2.6) 

Relating the reference and spatial configuration to the same coordinate system and 

introducing a displacement vector u through x = X + u, one arrives at the strain 

displacement relation 

L1 = (uI,J+uJ+uK,uKJ) (2.7) 

In linear elasticity one assumes that the displacements u1 as well as the 

displacement gradients ulj remain small. The quadratic terms in Equation 2.7 as 

well as the distinction between the referential and spatial coordinate systems can 

be neglected in this case, and one obtains the geometrically linearized strain 

tensor: 
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(2.8) 

2.1.2 Stress State and Equilibrium Condition  

A material volume which is subjected to surface forces (t) and body forces (k) will 

deform into a new equilibrium configuration. As a consequence, forces will be 

transmitted internally from one portion of the continuum to another. Using the 

Method of Sections, the continuum can be separated at any point and the 

interaction between the two section surfaces can be represented by force and 

moment resultants f and m. Focusing on one section surface, a resultant force if 

and resultant moment Am will be transmitted over a section surface area element 
Af 

AS surrounding a given point P. The Cauchy Stress Principle states that fl 

will have a definite value df = t, called the stress vector, and that the moment 
dS 

resultant will vanish in the limit. The stress vector t depends in general not only 

on the point P, but also on the orientation of the surface element, which is defined 

by its unit normal n. 

It can be shown through the force and moment equilibrium of an infinitesimal 

tetrahedron and parallelepiped that there exists a symmetric stress tensor 

called the Cauchy stress tensor, which completely specifies the stress state at a 

point. The stress vector on a surface element with unit normal n at this point is 

obtained from: 
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ti= a,in, (2.9) 

Equilibrium considerations on an arbitrary portion of the material volume lead to 

the equilibrium conditions: 

= 0 (2.10) 

where k refers to a volume force density. These equilibrium conditions are 

supplemented by the traction boundary conditions 

pnj = t, (a,) (2.11) 

with aa being a suitable parametrization of the volume boundary, and suitable 

geometrical boundary conditions. The Cauchy stress tensor () expresses stresses 

in terms of the deformed configuration. However, when solving a specific problem, 

the deformed configuration is initially unknown in general. The deformation is, 

therefore, most suitably expressed using one of the referential strain tensor (C or 

L). On the other hand, the conjugate entity to the Lagrange finite stress tensor L 

is the second Piola-Kirchhoff stress tensor, 5, where the stresses are expressed 

in terms of the un-deformed geometry. The relation between a and S is given by: 

a = J_FSFT 
IFI 

(2.12) 
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The following equation presents the relation between the second Piola-Kirchhoff 

stress, S, and the first Piola-Kirchhoff stress, P, where the latter will have some 

significance for the derivation of the constitutive relations in the context of this 

thesis. 

P=FS (2.13) 

If both the displacements and displacement gradients are small, no distinction 

needs to be made between the reference and the deformed description. In that 

case, a distinction between Cauchy and Piola-Kirchhoff stresses is not necessary 

and only one stress tensor will be used, denoted a. 

2.1.3 Constitutive Relations  

The constitutive relations establish a relationship between the strain measures and 

the stresses in a continuum. While the discussion in the previous sub-chapters was 

independent of any specific material, the constitutive equations rest on the 

particularities of the materials out of which the continuum of interest is composed; 

universal constitutive relations, which would be valid for an arbitrary material are 

not known. 

In this thesis, muscle tissue will be treated as a composite (fibre reinforced) 

material, which is composed of a fluid matrix and contractile fibres. The fibres run 

in a well defined direction at any point within the continuum. If a strain energy 
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function , W, is assumed to exist for an isotropic material with one family of fibres, 

Spencer [1984] demonstrated by the theory of invariants that this energy function 

can only depend on the following invariants (Ia): 

1 
= trC, 12 =_((trC)2-trC 2), 13 = detC 

14 = aCa = X2 , 15 = aC 2a 

(2.14) 

where a represents the unit vector in fibre direction, and ? is the fibre stretch ratio. 

As before, C denotes the left Cauchy-Green stretch tensor. 

By definition, the second Piqla-Kirchhoff stress tensor components follow from the 

strain energy function, W(la), through: 

SKL=Ela + lc 
a=1 taCKL aCLKJ 

(2.15) 

2.2 The Finite Element Method  

In the context of solving analytical problems in the theory of continuous media, one 

usually searches for fields (e.g. stresses and displacements) which are governed 

by differential (or integral) equations, and which correspond, for example, to the 

equilibrium state of a continuum under a certain loading and certain boundary 

conditions. An exact solution is more often than not unobtainable. 
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Consequently, an approximate solution is usually sought by using a discretization 

method which reduces the infinite number of degrees of freedom of a continuum 

to a finite number of degrees of freedom or parameters, and which converges to 

the exact solution as the number of parameters is increased. Different 

discretization methods in common use include the power series expansion method, 

the finite difference method, direct methods of variational calculus (Ritz's method) 

and the finite element method. 

The Finite Element Method divides the continuum into a finite number of simply 

shaped regions (elements), which are connected at selected points (nodal points). 

The sought solution to the problem at hand is assumed to be of a certain shape 

over each element region and to depend uniquely on a finite number of parameters 

associated with the nodal points (nodal parameters or nodal degrees of freedom). 

In the case of a structural problem, the stress and strain distributions over the 

extent of the continuum are the unknown functions, while the nodal forces and 

displacements are the corresponding nodal parameters. A physical principle, for 

example the principle of virtual work, is used to interrelate on an element for 

element basis the nodal parameters by way of the assumed approximate solutions, 

which results in a generalized element force-displacement relation. Once these 

element force-displacement relations are established for all the elements, a general 

force-displacement relationship for the whole continuum can be obtained using 

standard matrix methods. The whole procedure results in an algebraic system of 
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linear equations which has to be solved for the unknown nodal parameters. Once 

this solution is obtained, the approximate continuous stress and strain solutions are 

obtained by interpolating the nodal parameters over the element regions. 

The finite element method (FEM) exhibits the following advantages over other 

discretization methods: 

complex geometries can be modelled with relative ease. 

complex loading and boundary conditions are possible. 

a structure being composed of different structural entities can be represented 
easily. 

elements with different material descriptions can be superimposed to obtain a 
more complex material behaviour in a region. 

2,3 The Structure of Skeletal Muscle  

Muscles are the components of the animal body which are capable of active 

contraction. Three types of muscles are commonly distinguished: skeletal, heart 

and smooth muscle. Skeletal and heart muscle are characterized as striated 

muscles, because of the dark and light striations visible in their fibres when they 

are observed under a light microscope. Skeletal muscles constitute a major part 

of the animal body and, controlled by voluntary nerve action, they are the 

foundation of animal locomotion. 
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Skeletal muscles are composed of a large number of individual fibres which are 

held together by a sheath of connective tissue, the epimysium. Varying numbers 

of fibres within a muscle are grouped together to form fibre bundles or fasciculi 

which again are encased in connective tissue, called perimysium. Each muscle 

fibre is a single dell with hundreds of nuclei, surrounded by a cell membrane 

(sarcolemma) and a connective tissue sheath (endomysium). The fibres are 

elongated, with lengths reaching from several millimetres up to 30 cm, and 

diameters of 10 to 60 gm. 

The cell cytoplasm is arranged into strands of myofibrils, each having a diameter 

of about 1 tim. When stained by dyes and inspected optically, the myofibrils have 

a striated appearance with alternating dark and bright regions along their length 

axis. The myofibrils can be subdivided further into myofilaments which, in turn, are 

composed of sarcomeres, each of which has a length of approximately 2.5 gm. It 

is the structure and regular arrangement of the sarcomeres that gives the 

myofibrils and, in fact, the skeletal muscle fibres their striated appearance; an 

individual sarcomere extends from the middle of one light region, called Z-Band, 

to the next within the dark-light striation pattern of the myofibrils. Sarcomeres 

constitute the smallest contractile unit within a muscle. They are composed of 

interdigitating thick (12 nm diameter) and thin (5 nm diameter) filaments which 

shorten by sliding relative to each other under stimulation. The contractile tendency 

and associated force generation under stimulation is explained by cross-bridges, 
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which periodically form between the thick and thin filaments, and which pull the 

thin filaments past the thick filaments. 

Isometrically held muscle fibres react to a single stimulation impulse with a force 

twitch. Two successive impulses, closely spaced in time, lead to a superposition 

or summation of the twitch responses. As the frequency of stimulation impulses is 

increased, the superimposed twitch responses fuse into a time-constant fibre force, 

and the fibre is then said to be tetanized. In general, the fibre force increases 

along with the stimulation frequency, but it does not increase beyond a certain 

maximum value. 

Skeletal muscle fibres can be classified into slow and fast twitch fibres with further 

sub-categories; their names are related to the comparative rate of force increase 

and force decrease in response to a single stimulus. Moreover, the fibre types 

differ, from a functional point of view, in their fatigue resistance and, perhaps, in 

their level of forcegeneration. Slow twitch fibres fatigue less rapidly than fast twitch 

fibres. Most muscles contain a blend of different fibre types, where the actual 

composition seems to be determined by contractile speed, strength and fatigue 

requirements on the muscle. 

Different numbers of muscle fibres within a muscle constitute a motor unit. A motor 

unit is defined by a single nerve fibre and all the muscle fibres it innervates. All 

muscle fibres belonging to a single motor unit are of the same type. The nervous 
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system regulates the force generated by a specific muscle through the stimulation 

frequency and by recruiting different numbers of motor units within the muscle. 

2.4 Muscle Models  

For the presentation below, muscle models will be grouped into functional muscle 

models and geometrical muscle models. On the one hand, functional muscle 

models consist of a number of equations (often a single equation) which follow 

from statistical modelling of experimental data. They may, for example, describe 

the force-length and/or force-velocity relations of a muscle without attempting to 

explain these relations by underlying biological and physical principles. The lack 

of a well founded theoretical basis is evidenced by the fact that these models often 

contain free parameters, which are available for adjustment when the models are 

used. On the other hand, functional muscle models describe muscle behaviour by 

certain "guessed-at" relations which may or may not be related to experimental 

experience and which contain a certain number of free parameters on purpose. 

These free parameters are then adjusted, often through optimization procedures, 

to have the muscle or the musculo-skeletal system behave in a predetermined 

manner. 

Geometrical muscle models take account of the muscle geometry in deriving the 

equations which describe the muscle behaviour, and they attempt to explain the 

influence of differing geometrical arrangements and of such structures as tendon 

sheaths on muscle performance. They depend on relations describing the muscle 
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fibre behaviour, where these relations are often related to the functional muscle 

models above, but which are now specific to fibres. A constitutive description of 

muscle tissue is rarely encountered in the context of these models. Constitutive 

models of muscle tissue will be summarized in Chapter 4. 

2.4.1 Functional Muscle Models  

Functional muscle models are commonly employed for investigations which relate 

more to the musculo-skeletal system than to questions about the inner workings 

of muscles. In their purest form, these models intentionally ignore any detailed 

current knowledge about muscle behaviour. They rather centre on a specific actual 

or perceived functional role of muscles in the musculo-skeletal system. Their 

mathematical and/or physical description is based on this functional role. In human 

(and animal) gait, for example, the body's centre of mass follows a sinusoidal 

trajectory in space, much like a mechanical oscillator moving perpendicularly to its 

oscillating direction. Several authors [e.g. Alexander 1975, Blickhan 1986, 

Greene and McMahon 1979, McMahon and Greene 1979] therefore equate the 

animal body with oscillators of varying complexity. All major muscles involved in 

the movement are grouped together, and they are assigned suitable spring 

stiff nesses and parallel (dashpot) viscosities to form an oscillating system with the 

body mass. The models are reported to have good predictive capacities related to 

questions regarding optimal running speed, the influence of running surface 

characteristics on energy consumption during running, etc. 



21 

At the same level of abstraction, Anton and Nigg [1990] developed a model for 

walking and running, where the muscle groups involved were lumped into a single 

force generator whose time rate of force generation was limited to an 

experimentally determined value. The time dependent force of the generator was 

controlled in such a way, as to maintain a certain movement pattern and, in doing 

so, to minimize the work performed by the generator. The model produced realistic 

force magnitudes, and, more importantly, the different characteristics in the force-

time profile for running and walking were reproduced by exclusively changing the 

speed of the movement pattern. 

Most functional muscle models are derivations of Hill's Equation or Hill's Three-

Element Model of muscular contraction. Hill [1938] derived an empiric equation for 

tetanized (frog sartorius) muscle, which expresses a hyperbolic relation between 

the muscular contractile velocity and the applied load. Hill's investigation, which 

was restricted to muscle optimal length, was later generalized by Abbott and Wilkie 

[1953] to varying muscle lengths. The parameters entering Hill's Equation 

(especially the maximum isometric force) were thus shown to be dependent on the 

muscle length. In his paper, Hill also proposed a mechanical model which was 

intended to "visualize" the basic features of his empiric equation. The model 

consisted of a contractile element in series with an elastic element (series elastic 

element). In more recent times, the model has been extended and its elements 

have been related to the Sliding Filament Theory. The most basic extension to 
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Hill's original model consists of the addition of a parallel elastic element, and the 

extended model is usually referred to as Hill's Three-Element Model [Fung 1970]. 

In this model, the series elastic element is commonly associated with theintrinsic 

elasticity of the actin and myosin molecules and cross-bridges, while the parallel 

elastic element is related to connective tissues, cell membranes, etc. Often, a 

viscous element is added in parallel to Hill's Three-Element Model in order to give 

the model the velocity dependence of Hill's Equation when the active element is 

described as being independent of the shortening velocity. However, already in his 

1938 paper as well as in later publications [e.g. Hill 1970], Hill objected to the 

interpretation which attributed the lower fibre tensions for higher shortening 

velocities to viscous effects. 

Hatze [1976] and Audu and Davy [1985] studied a musculo-skeletal motion 

problem (the minimum time kicking problem formulated by Hatze [1976]) using 

optimal control algorithms. Different muscles and/or muscle groups were 

represented by individual Hill Models of varying complexity. The parameters of the 

equations which describe the behaviours of the Hill Model elements were obtained 

experimentally, except for a newly introduced stimulation overtime function. These 

stimulation functions were optimized with respect to the minimum time kicking 

problem and model predictions for the skeletal movement sequences validated 

against experimental results. 
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Zajac [1989] added a tendon series elastic element to Hill's Model and investigated 

its influence on the force length relations of the muscle-tendon actuator. He 

demonstrated that the tendon elasticity distorts the force length curve of the 

muscle-tendon actuator to higher actuator lengths with decreasing tendonal 

stiff nesses. 

Herzog [1987] used a modification of the original Hill's Equation to estimate 

individual muscle forces in situations where different muscles are acting together 

in various activities. The modifications consisted in adding further parameters 

which describe the muscle's angle of pinnation, its state of activation, physiological 

cross sectional area and muscle force constant, i.e., the maximum isometric force 

a muscle can exert per unit physiological cross sectional area. 

Detached from any Hill type consideration, Often [1987] proposed a three 

parameter mathematical expression which could be used to approximate closely 

the experimentally determined isometric force length relations of most muscles. 

The proposed equation is related to Gauss' equation for normal distribution, and 

the three parameters influence roundness, skewness and width of its graph. 

Kaufman et al. [1989] showed that these three parameters are dependent on a 

single parameter, namely the index of architecture, which they define as the ratio 

of fibre optimal length to muscle belly optimal length. As a consequence, the 

general expression given by Often is made dependent on morphometric data. The 
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index of architecture was introduced by Woittiez et al. [1983 and 1984] and 

mentioned in a less formal manner already by Benninghoff and Rollhäuser [1952]. 

24.2 Geometrical Muscle Models  

Geometrical muscle models incorporate the muscle geometry in one way or the 

other into the considerations regarding the behaviour of muscles. The Danish 

scientist Niels Stenson (1638 - 1686) was first in formulating a mechanical model 

of muscular contraction, using the mathematical tools of his time; Euclidean 

geometry. His observations about muscular structure contained the statements that 

muscles are composed of pennate structures which, in turn, contain fibres of equal 

length and globally form a parallelepiped between parallel tendons (or tendon 

sheaths). With his model, Stenson was able to demonstrate that muscles could 

contract without changing theirvolume, a concept running totally against the beliefs 

of his contemporaries. Reaffirming the convictions of ancient greek philosophers, 

Descartes (1596 - 1650) had stated in his "De Homine" that a substance or "the 

animal spirit" entered from the brain through hollow nerves to make the muscles 

swell and contract. (The discussion above was taken from a paper by Kardel 

[1990]. Please refer to this paper for references of original publications by 

Stenson.) 

In more recent times, Benninghoff and Rollhäuser [1952] discussed the 

consequences of different angles of pinnation. Their reasoning, which was based 

on trigonometric considerations of individual fibre deformations, resulted in the 
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statement that the maximal economical angle of fibre pinnation would be 300, if the 

muscle fibres are assumed to shorten by half of their original lengths. Among all 

possible angles of pinnation, he reported the angle of pinnation of 45° to produce 

the highest force in a pennate muscle. He also observed that muscles with a high 

degree of pinnation would produce a higher force over a smaller distance 

compared to muscles with a low degree of pinnation. 

The most widely accepted geometrical muscle model in the literature today is the 

one by Woittiez et al. [1984]. His three-dimensional model geometry consists of 

two kite shaped tendon sheaths (with opposite geometrical orientation at top and 

bottom) which in general are not of equal size and are not parallel. Fibres run 

between the two tendon sheaths and are allowed to have varying angles of 

pinnation. The muscle volume is divided into segments for which, at different 

muscle lengths, muscle fibre forces, shortening velocity etc. are calculated. 

Through a least square analysis of the instantaneous segment volumes and 

segment volumes at muscle optimal length, the overall muscle volume is kept 

close to constant. The segmental muscle fibre forces are added after correcting 

for the angle of pinnation at different muscle lengths and result in the length 

dependent total muscle force. They observed a narrow active and steep passive 

force length relation for muscles with a considerable degree of pinnation. Woittiez 

reports excellent agreement between the model generated muscle force-length and 

force-velocity relations and those obtained by experiments on Wistar rats. 
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Often presented an initial muscle model in 1985 which he later extended to 

account for fibre curvature, tendon elasticity and internal muscle pressure [Often 

1985, 1987a, 1987b and 1988]. The model consists essentially of six sub-units in 

a pennate geometrical arrangement, where each unit is formulated as a Hill type 

model. The tendon sheaths tie the ends of the sub-units together at either side. 

Comparing his model predictions to experiments performed on the cat vastus 

lateralis, Often obtains good agreement. He observes that the inclusion of tendon 

elasticity in the model shifts the muscle force length curves to higher lengths. He 

also observes reasonable agreement between estimated internal muscle pressure 

and those generated by his model, with the highest pressure being about 120% 

of muscle fibre stress. (Using his model for pennate muscles, Heukelom et al. 

[1979] estimated the internal muscle pressure in pennate muscles to about 10 kPa. 

Based on their respective models, Benninghoff and Rollhäuser [1952], Gans and 

Bock [1965], and Gans [1982] on the other hand did not see any reason for 

internal muscle pressure to occur in pennate muscles.) 

Dr. M. Epstein and Dr. A. Hoffer, University of Calgary, have recently developed 

a geometrical muscle model which is based on a constitutive description of the 

muscle tissue and includes an accurate treatment of the large muscle 

deformations. The model incorporates nonlinear material characteristics for both 

the muscle tissue and the tendon sheaths. Tendon sheaths are flexible in bending, 

and muscle fibres may take on varying angles of pinnation within the muscle. The 
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model has been used to investigate the sensitivity of model predictions on different 

constitutive assumptions. Experimentally observed wrinkling of the tendon sheaths 

could be reproduced with this model under certain loading conditions [private 

communication]. 



Chapter 3 

Straight Line Geometrical Muscle Model 

Geometrical muscle models use the muscle geometry for the derivation of the 

equations which describe the muscle contractile behaviour. Often, these models 

approximate both the initial and the deformed muscle geometry by comparatively 

simple geometrical shapes which are bordered by straight line segments. These 

muscle models as well as the muscle model to be developed in this chapter will 

be collectively referred to as "Straight Line Model(s)" (SLM). 

The current model as well as similar models in the literature make precise 

assumptions about the possible modes of muscle deformations. Because these 

models are not based on a general constitutive theory of muscle tissue, the 

assumptions are required in order to reduce the number of degrees of freedom 

inherent to the model and to guarantee a solution. The deformation assumptions 

are, at times, problematic and their consequences on the muscle predictions 

cannot be assessed. For example, tendon sheaths are often assumed to remain 
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straight during muscle activity and deformation; this deformation mode represents 

the physical reality only under the conditions that tendon sheaths are stiff in 

bending or that the stresses have an appropriate distribution within the structure. 

However, the former condition is contrary to physiological evidence and the latter 

cannot be confirmed within the confines of these models. 

Despite the precedihg observations, Woittiez1 et al. [1983, 1984], for example, 

have achieved excellent agreement between their model predictions and 

experimental data. Consequently, one may assume that SLM reproduce muscle 

behaviour to an acceptable degree, and they will be used as a basis of comparison 

for the Continuum Muscle Model (CM) which will be developed later in this thesis. 

The development of the current SLM will be used to lay the foundations for the 

CM. By exploiting the potential for simplicity inherent to SLM, the mathematical 

description of the model will result in a closed set of algebraic equations. Due to 

the transparent form of these equations, certain observations about the muscle 

model behaviour can be made independently of any numerical analysis. Numerical 

analysis will, however, be employed for a broadly based exploration of the model 

behaviour. 

'The presentation and discussion in this chapter are very much focused on the papers by Woittiez 
et al. [1983,1984] due to the shortage of similar work in the literature. While other muscle models exist, 
they usually do not have the broad scope of the approach taken by Woittiez. 
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3.1 Initial Considerations  

A two-dimensional Straight Line Model (SLM) of unipennate muscles will be 

developed. The basic features of unipennate muscles are schematically presented 

in Figure 3.1 a. Tendon sheaths run along the lower and upper edge (thick lines), 

while the muscle fibres run between the two tendon sheaths from bottom to top 

(thin lines). At the lower left and upper right tendon sheath ends, the muscle is 

connected to bone or tendons (tendons are indicated in Figure 3.1 a). Defining the 

line of action of a muscle as the line which runs between the muscle attachment 

points, a muscle is termed pennate whenever its fibres intersect this line of action 

at an appreciable angle. A unipennate muscle has only one predominant fibre 

orientation. This contrasts with multi-pennate muscles which include fibres with 

several distinctly different fibre orientations. The general geometry 'of a bipennate 

muscle is indicated in Figure 3.1 b. 

Since fibres are assumed to exert forces exclusively along their longitudinal axis, 

the degree of pinnation has a direct effect on the magnitude of the force a muscle 

can produce. A fibre which is nearly aligned with the muscle's line of action 

contributes almost all of the force it generates to the overall muscle force, whereas 

a fibre running perpendicularly to the muscle's line of action does not contribute 

to the external force of the entire muscle. This observation is usually expressed 

by a cosine relation, in which the amount of fibre force contributed to the overall 

muscle force is taken to be equal to the fibre force, multiplied by the cosine of the 
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a) 

Tendon Sheath  

Tendon  

b) 

Tendon Sheath  

Tendon  

Fibre  

Figure 3.1: Schematic geometry of pennate muscles. 

angle spanned between the muscle's line of action and the fibre direction. The 

cosine relation is used, for example, by Woittiez et al. [1983, 1984] and Scott2 and 

Winter [1991] in their models. Because the value of the cosine function increases 

with smaller angles, it would appear that less pinnation is beneficial in obtaining 

higher muscle forces. As will be shown below however, the degree of pinnation 

also influences the number of fibres which run in parallel between the two tendon 

2The treatment by Scott and Winter [1991] simplifies the pennate muscle geometry even further. 
The whole muscle'is represented by a single line element which is arranged at an angle to the muscle 
tendons. This angle, identified with the angle of pinnation, and the cosine relation is the only 
geometrical component of the model. 
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sheaths. More fibres are arranged in parallel in the case of a higher degree of 

pinnation, and the muscle force increases correspondingly. 

The consequences of the changing muscle geometry during muscle deformation 

on the fibre angle of pinnation as well as the effects of different initial muscle 

geometries on the number of fibres 'acting in parallel are illustrated in Figure 3.2. 

Focusing on Figure 3.2a, a unipennate muscle is displayed with tendon sheaths 

at the top and bottom, and muscle fibres, indicated by equally spaced lines, 

running at an angle between bottom and top tendon sheath. For now, the angle 

of pinnation, y, will be defined as the angle included between the line of action of 

the muscle and the general fibre direction. The indices indicate the muscle 

geometry number 1 (first index = 1) at reference configuration (second index = 0). 

When stimulated, a muscle fibre generates a force, whose magnitude depends on 

the length of the fibre. For a particular length, the fibre force takes on a maximum 

value which decreases to zero as the fibre is lengthened or shortened from this 

"optimal length.". Furthermore, experimental evidence suggest that muscle tissue 

and individual muscle fibres are incompressible, that is, their volume does not 

change during deformation. Consequently, the fibre cross sectional area decreases 

proportionally when a fibre is stretched and increases when a fibre is shortened. 

The muscle reference configuration is taken here to refer to a geometry for which 

all muscle fibres have a length at which they are able to generate a maximum 

force when stimulated and at which they have a specific cross sectional area. 
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b) 
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tii< tio 

11< 10 

Figure 3.2: Consequences of muscle deformation and different initial muscle 
geometries on specific muscle attributes. 

The areas between any two adjacent lines running in fibre direction in Figure 3.2 

are assumed to contain the same number of fibres forming fibre bundles. 

Alternatively, two adjacent lines may be seen to border one disproportionately thick 

fibre for the current argument. The thickness of these fibres or fibre bundles is 
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indicated by t. A unit depth (or thickness) of the muscle perpendicular to the 

drawing plane is assumed, which will not change during muscle deformation. 

Figure 3.2b displays the same muscle as Figure 3.2a in a deformed (stretched) 

configuration  (second indices = 1). The deformation results in a decrease of the 

angle of pinnation and a lengthening of the muscle fibres associated, with a 

corresponding decrease in their thickness. The number of fibres acting in parallel 

has evidently not changed, but they are now orientated more in the direction of the 

line of action of the muscle, which allows them to contribute a higher proportion 

of their current force to the external muscle force (cosine relation). However, the 

individual fibre forces have decreased during the deformation on account of the 

fibre force-length relation. For any deformation, the external muscle force will be 

influenced by these two opposing effects. 

A second muscle (first index = 2) with its initial geometry (second index = 0) being 

equal to the deformed geometry of the first muscle is shown in Figure 3.2c. The 

muscle and its fibres are now at reference configuration, and the fibres take on 

their reference cross sectional area and thickness. Therefore, fewer but longer 

fibres can be fitted in parallel into this muscle volume. Being at optimal length 

however, each fibre is able to exert a higher active force compared to Figure 3.2b. 

3The deformed muscle geometry in Figure 3.2b results from the initial geometry in Figure 3.2a by 
a stretch in the direction of the line of action of the muscle and followed by a rotation which aligns the 
lower tendon sheath with the horizontal. The rotation is carried out for purposes of clarity. 
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The-muscle model to be developed will address the trade-off between the force 

contribution of individual fibres and the number of fibres acting in parallel in relation 

to the angle of pinnation. Muscles of identical volume but with different initial 

geometries will be modelled in order to study the dependence of certain muscle 

characteristics on the initial muscle geometry. Muscle characteristics of interest 

include the muscle peak force, the deformation range over which a muscle is able 

to exert a force and the relation between the force-length profiles of muscle fibres 

and the whole muscle. 

3.2 Model Derivation  

The equations which describe the current SLM will be derived in this chapter. The 

section starts by stating the simplifications and assumptions underlying the muscle 

model. Consequently, the admitted' muscle model geometries and kinematics of 

deformation will be defined. Finally, after looking at different aspects of the muscle 

fibre force-length relation, the section concludes with the derivation of the 

equilibrium conditions. 

3.2.1 Simplifications and Assumptions Underlying the Model  

The simplifications and assumptions which underlie the current model development 

are similar to those encountered in the treatment by Woittiez et al. [1983, 1984]. 
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Assumptions determine to a large extent how the final model will perform, and 

they, therefore, constitute an important part of any model. 

Table 3.1 groups the current simplifications and assumptions into three categories, 

where the first category (marked 'R') refers to the initial or reference muscle 

configuration, the second (marked 'D') to the deformed muscle geometry, and the 

third group (marked 'A') lists additional assumptions which do not fit into the first 

two categories. The first category of simplifications and assumptions will be carried 

over almost unchanged to the development of the Continuum muscle Model (CM) 

later in this thesis. For the current model, no use is made of constitutive relations, 

except for fibre force-length relations. Instead, kinematic constraints expressing 

assumed muscle deformation modes are applied. They constitute the second 

category in Table 3.1., and they will be replaced by constitutive relations in the 

context of the CM. Table 3.1 makes reference to optimal and relative fibre length 

which will be defined in Chapter 3.2.3. 

It is worth noting, that the simplifications and assumptions in Table 3.1 describe 

the tendinous sheath as being rigid both in tension and bending. Fibres, while they 

are allowed to contract and elongate freely, are also taken to be stiff in bending. 

These simplifications are counter to physiological evidence. As an aside, the 

assumed fibre deformation mode implies that the tendon sheaths remain straight 

during muscle deformation, whereas the converse does not hold. The muscle. 

tissue as a whole is seen to behave as a mere superposition of individual fibres, 
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R.1 Tendon sheaths are straight. 
R.2 All muscle fibres are straight, they have identical directions and are at 

optimum length. 

D.1 Tendon sheaths remain straight and maintain their original length; at times, 
they are allowed to change in width. 

D.2 All muscle fibres remain straight, and they take on identical relative lengths 
and orientation. All fibres are uniformly stimulated. 

D.3 The volume of the entire muscle and of any volumetric element of muscle 
tissue remain unchanged, that is, the muscle tissue is incompressible. 

A.1 The only origin of forces or stresses is seen in the active and passive fibre 
force-length property. These forces or stresses act in fibre direction only. 

A.2 There is a unique functional relation between the fibre force and the relative 
fibre length. 

A.3 The muscle has two points of attachment only. There are no other points 
of contact with surrounding structures. 

Table 3.1: Major simplifications and assumptions underlying the straight line 
muscle model. 

modulated by the muscle geometry. The incompressibility of muscles under 

stimulation has been shown by Abbott and Baskin [1962]. 

In the context of this chapter, the concept of mechanical stress will be used 

loosely. Whenever reference is made to stresses, it will refer to distributed loads 

(forces divided by areas). Due to the absence of a general constitutive theory, 

stresses are not to be understood as components of a stress tensor. 

The final form of the equations below will be independent of the concept of muscle 

fibres. Nevertheless, muscle fibres will be referred to whenever it helps the 
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argumentation. In these cases, fibres are assumed to extend over the entire 

distance between the two tendon sheaths and to possess a thickness being small 

compared to the dimensions of the muscle. 

3.2.2 Muscle Model Geometry and Kinematics of Deformation  

The general muscle model geometry, whose cross section takes on a trapezoidal 

shape, is displayed in Figure 3.3. A uniform muscle thickness or depth, measured 

perpendicularly to the drawing plane is assumed. Tendon sheaths are located at 

the top and bottom, and fibres run in parallel between the tendon sheaths in a 

direction coincident with the boundary fibres indicated at the left and right end. For 

the derivation of the equations, the muscle is assumed to be attached rigidly (to 

bone) at the left end of the lower tendon sheath, while the right end of the upper 

tendon sheath (connected to a tendon) is free to move4. The muscle attachment 

point on the left may be identified with the muscle origin and the one on the right 

with the muscle insertion. As shown in Figure 3.3, the muscle is freed from its 

attachment points and force resultants are drawn in their place. 

The muscle geometry is described by the following parameters: the lower tendon 

sheath length, I, the muscle height at the left end, h1, the difference in height 

between the muscle's right and left end, h2, the muscle depth, d, the overall 

4The muscle deformations result from moving the upper right hand apex in the direction of the line 
of action of the muscle. However, the deformations are described relative to a coordinate system which 
is attached rigidly to the lower tendon sheath. Thus, the rotation of the tendon sheath in global 
coordinates is eliminated from the equations. 
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Figure 3.3: Muscle model geometry (lateral muscle cross section). 

muscle length (the length of the connecting line between the origin and insertion), 

L, the angle between the lower tendon plate and the fibre direction, a, the angle 

between the line of action of the muscle and the lower tendon sheath, 0, and the 

angle between the fibre direction and the line of action of the muscle, y. 

From the possible subsets of independent geometrical parameters which describe 

the muscle geometry uniquely, the set being composed of I, h1, h2, d and a will be 

used below. Following Often [1988], a will be termed the angle of pinnation in the 

context of the current model. This contrasts with the treatment by Woittiez et al. 

[1984] who use yfor this purpose. The angle a has been chosen here because it 

simplifies the derivation and the final form of the equations below, and because the 

angle under which the fibres connect to the tendon sheaths has a higher 

significance than y. The general trapezoidal muscle geometry contains the 
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commonly treated muscle geometry of muscles with parallel tendon sheaths by 

setting h2 equal to zero. 

For the description of the muscle deformation the concepts of initial or reference 

configuration and deformed or actual configuration have to be distinguished. 

Initially, the muscle geometry is determined by a set of values for I, h1, h2, d and 

a, and the fibres are taken to be at optimal length (see next section). Symbolically 

this will be expressed by subscripting parameters which describe the reference 

configuration by 0 (e.g. a0). The actual configuration is defined by a new set of un-

subscripted parameters which, in general, are functions of the geometrical 

parameters at reference configuration and of the actual angle of pinnation, a. It is 

a consequence of the simplifications and assumptions made in the previous 

section' that only a is needed from the set of actual parameters to determine 

uniquely the actual configuration. During the deformation, the angle of pinnation, 

a, will change, 111, h2 and d will change in general, while I will always remain 

constant. Values for the dependent parameters, L, 0 and y, can be obtained at any 

configuration. 

When the muscle deforms, the fibres will change in length and, on account of the 

required constancy of volume, their cross sectional area perpendicular to the fibre 

direction will change accordingly. If the depth of the muscle is taken to remain 

constant, the fibres can only change their thickness in the drawing plane of 

Figure 3.2 and Figure 3.3. However, the equations below do allow for a uniform 
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depth change of the entire muscle, where the amount of depth change is controlled 

by an additional kinematicconstraint and included in the equations by way of a 

parameter, D. D imposes the ratio of fibre thickness changes in depth direction to 

the fibre thickness change in the drawing plane of Figure 3.2 and Figure 3.3. A 

value of D=O, for example, implies no fibre thickness change in depth direction, 

whereas D=1 translates into equal fibre thickness changes in depth and drawing 

plane direction during muscle deformation. 

The ratio of the actual fibre length to the reference fibre length, which is commonly 

called relative fibre length5, is denoted by X. X will also be referred to as the (fibre) 

stretch ratio; the fibre forces depend ultimately on the fibre stretch ratio. On the 

other hand, the absolute fibre length has no significance for the present 

considerations and will not appear in the equations. 

The equations below express the functional dependence of the geometrical 

parameters which describe the actual muscle configuration on the independent 

parameters at reference configuration and on the actual angle of pinnation, a. 

They are derived by trigonometric considerations and incorporate the 

simplifications and assumptions listed in Table 3.1 under category D. 

L h1+h2 
sinf3 

(3.1) 

5lhe fibre reference length will be defined below as being equal to the fibre optimal length. 
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(h1+ h2)tana 
tanl3 

(hi +h2) +/tana 

- 'A Sina 
hi -  1110 

si nez0 

1 

(3.2) 

/ = 1,2 (3.3) 

I 

sincz 1+D 
sina sina 0 

(3.4) 

If it is desired to express the equations above in terms of ', that is, the angle 

between the line of action of the muscle and the fibre direction, then ez may be 

replaced by the term (f3 + ,y) in the equations above. For D=O, which corresponds 

to a constant muscle depth during muscle deformation, Equation 3.4 simplifies 

greatly and Equation 3.3 becomes trivial; 

Equations 3.1 and 3.2 express trigonometric relations which are obtained directly 

from Figure 3.3. Figure 3.4 displays a fibre or fibre bundle in its reference, and 

deformed configuration. Equation 3.3 follows by eliminating 'fo from the following 

two equations: 

ho = sin; 40 
(3.5) 

h = sinalf = sina2JfØ 
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Figure 3.4: General deformation of a muscle fibre or muscle fibre bundle. 

Introducing the stretch ratios in fibre thickness direction, 2, and depth direction, 7d' 

the requirement of volume constancy leads to the relation 22d = 1 by way of 

the following equations: 

= If td IfOttOd 0'O = V 

An expression for is obtained through: 

Ax  to t 
sin; sina 

= t = sin; 

TO sinc'L 

(3.6) 

(3.7) 

The depth change parameter, D, is introduced through the defining equation: 

Xd = D(-1) + 1 (3.8) 
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Substituting Equations 3.7 and 3.8 into the relation ?'XXd = 1, Equation 3.4 

results after rearranging. 

3.2.3 Fibre Force-Length Relation  

Experimental evidence indicates that muscle fibre forces depend on the fibre 

length, the degree of stimulation and the time rate of the fibre length change. 

While work has been done in the area, the question of how to quantify the amount 

of stimulation in a mathematically precise sense is not entirely resolved. For that 

reason no conclusive functional expression which relates the active fibre force to 

the degree of stimulation is available. However, the fibre force under stimulation 

reaches a fibre length dependent maximum value, whose magnitude is 

independent of the degree of stimulation as long as the stimulation is above a 

specific saturation level. In this case a fibre is said to be maximally stimulated. This 

thesis deals only with fibres which are either unstimulated or maximally stimulated, 

and the current chapter focuses on maximally stimulated fibres exclusively. 

Furthermore, only static or quasi static conditions will be considered, which renders 

the equations and considerations below independent of the time rate of fibre length 

changes. 

Muscle fibre force-length relations have been established experimentally by 

bringing individual muscle fibres to different absolute lengths and measuring the 

forces of maximally stimulated and unstimulated fibres. Figure 3.5 displays the 

general form of the fibre force-length relations for a stimulated (solid line - total 
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muscle fibre force) and unstimulated fibre (dotted line - passive muscle fibre force). 

The difference in force between the total and passive muscle fibre force is 

commonly called the active fibre force (dashed line). Rather than using the 

absolute fibre length, the abscissa in Figure  3.5 displays the ratio of the actual 

fibre length (li) to the fibre optimal length (') that is, the fibre stretch ratio 

= (If / 1f0). The ordinate displays the relative fibre force, where the absolute fibre 

force is divided by the maximum active fibre force. The absolute fibre length at 

which a fibre reaches its maximum active force is called fibre optimal length. An 

unstimulated fibre left to itself will take on a length, called resting length, which, in 

most cases, is close or equal to its 'optimal length. Fibres will be defined to be at 

reference length when they take on their resting length which is assumed to be 

equal to the fibre optimal length. The fibre stretch ratio, ?, is equal to 1 at fibre 

reference length. 

The literature usually gives examples of fibre force-length relations for different 

species and muscles in the form of Figure 3.5, that is, the relative force is plotted 

against the stretch ratio. Nevertheless, the expressions "force" and "length" are 

used when referring to the ordinate and abscissa, respectively. Below, the terms 

"fibre length" and "fibre relative length" or "fibre stretch ratio" will be used 

interchangeably when referring to the fibre stretch ratio. When the difference 

6The reference to fibre stress within the figure caption and the ordinate label "P" will be explained 
below. 
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Figure 3.5: Fibre force and fibre stress profiles (force profile number 1). 

between absolute and relative fibre forces is of importance, the relative force-

length relation will be termed active force profile. 

Absolute muscle fibre forces are seldom listed in the literature (data obtained 

experimentally from frog muscle fibres are given, for example, by Woledge et al. 

[1985]). Absolute values are mostly given for active muscle tissue peak stresses 

in the fibre direction. However, these active fibre stresses vary greatly in 

magnitude; Kaufman et al. [1991], for example, indicate a range from 10 to 100 

N/cm2 for human muscles. The active stress values are usually obtained from force 

measurements performed on entire muscles, where the muscle peak force under 
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maximal stimulation is divided by the average fibre length and where a correction 

term is applied to account for the angle of pinnation. This procedure implies the 

acceptance and use of a basic muscle model which relates external muscle forces 

to muscle tissue stresses. 

From a modelling point of view, one is confronted with the situation of knowing the 

fibre force-length profile which was obtained from a, single fibre experiment and 

which is assumed to remain unchanged for fibres in the tissue compound; 

however, one does not have access to absolute fibre forces but to a muscle tissue 

stress. Below, the fibre forces and tissue stresses will be related. At the same 

time, two different stresses, the first Piola Kirchhoff stress and the Cauchy stress, 

will be introduced. 

If one considers a force profile function f(?) which describes, for example, the total 

normalized fibre force in Figure 3.5., the absolute fibre force can be expressed by 

FQ.) = Ef(?) (3.9) 

with E being the force scaling factor. Dividing F by the fibre cross sectional area 

corresponding to the fibre optimal length results in 

P(X) = F(2) = F f(7) = 
AA 

(3.10) 
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Keeping in mind the reservations made about the stress concept in Chapter 3.2.1, 

P could be termed the first Piola Kirchhoff stress, being the quotient of the actual 

fibre force divided by the reference fibre cross sectional area. FQ) and P(X) have 

the same profile function f(A.), but different scaling factors in magnitude and 

dimensions. F(X) applies to each muscle fibre individually, while P(7), considering 

the assumptions made about fibre uniformity throughout the muscle, expresses the 

tissue stress in fibre direction at any point within the muscle body. 

During muscle fibre length changes, the fibre cross section is assumed to change 

in such a way as to keep the fibre volume constant. Dividing Equation 3.9 by the 

actual fibre cross sectional area, A(A.), leads to 

aQ') = F(?) = F f() = F f(2) = = ôs(?) (3.11) 
A(2) A(2) A0 2 

where a(k) might be called the fibre tissue Cauchy stress in fibre direction, that is, 

the actual force acting in fibre direction per unit cross sectional area perpendicular 

to the fibre direction in the actual configuration. It follows from the constancy of 

fibre volume that A(X)=Ad. The scaling factors P and ô are equal, but the two 

stress profile functions are different. 

Figure 3.6 presents the active force profile f(X) of Figure 3.5 as the solid line which 

is identical to the first Piola Kirchhoff stress profile. The dashed line corresponds 
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Figure 3.6: Active fibre force and stress profiles (force profile number 1). 

to the Cauchy stress profile s(?) in Equation 3.11. Its maximum is shifted to the 

right and is, at a value of about 1.1, greater than unity. The two curves intersect 

at 2=1, which corresponds to the reference configuration, and for which the 

Cauchy and Piola Kirchhoff stresses are identical. 

From a conceptual perspective, the question arises, which of the fibre stresses P 

and a is intended to be derived from experiments on entire muscles. Below, 

stresses reported in the literature will be interpreted as resulting from single fibre 

experiments, and they will be identified with I. 
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For the derivation of the equilibrium conditions in the next section, it is helpful to 

introduce the internal energy of fibre tissue per unit volume at reference 

configuration: 

W t = P ff (k) d% 

which, when focusing e.g. on one fibre, follows from 

)_J'Fdlf = 1 5PAf0!f0 d2. = A0I,0 15   5f(?) d?. v,0 

(3.12) 

(3.13) 

and where Equation 3.9 and the relation If = Mfo have been used. In Equation 3.13, 

F stands for the fibre force, If for the fibre length, V10 for the fibre volume at 

reference fibre length, and Aft for the fibre cross sectional area at reference fibre 

length. While Equation 3.13 focuses on one fibre, Equation 3.12 gives the internal 

energy per unit volume at any point in the muscle. The internal energy density is 

independent of the location within the muscle, due to the simplification which 

required all fibres to be in the same state of deformation and activation. 

In the current context, the term "internal energy" refers to the capacity of the fibre 

tissue to produce work and contains an activation energy component resulting from 

the fibre stimulation as well as a strain energy like component associated with the 

passive fibre force-length characteristic. 
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Two force profiles f(?..) will be considered in this chapter. Profile number 1, f1(X), 

incorporates both an active and passive fibre force-length relation. The active part 

is taken directly from Woittiez et al. [1984], whereas the passive part has been 

somewhat modified. The force profiles are displayed in Figures 3.5 and 3.6. The 

active profile has the form of a parabola centred at ?.=1, and it is positive over the 

range ?E (0.6, 1.4). The total force profile, that is, the active plus passive force 

profile, has a local minimum of about 0.84 at X=1.32 and attains a value of 1 at 

?=1.4. Equation3.14 gives the functional description of force profile number 1: 

f1(2)  = f 1, ad + i,pas 

1, act = (_6.25 ?.2 + 12.5?. - 5.25) 

i,pas = 3.2891O 6e9°37 - 0.02766 

(3.14) 

The active force profile number 2, Figure 3.7, is a modification of force profile 

number 1. In principle, it is generated from the previous profile by shifting the 

location of the active fibre force peak (solid line) to the left and is motivated by the 

fact that the Cross Bridge Theory predicts, and that measurements taken on 

sarcomere level show, a more asymmetrical force-length relation. Compared to 

profile number 1, the range of ?. over which the fibre generates an active force and 

the integral f f(A.)dA. over the active range have been kept constant. The latter 

means that fibres having characteristics described by either profile perform the 

same amount of work in a contraction covering their active range. Furthermore, the 
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Figure 3.7: Alternate active fibre force and stress profiles (force profile number 2). 

active Cauchy stress profile (dashed line) has now a parabolic shape. The curves 

have been shifted to the right through a coordinate transformation, to keep the 

force profile maximum at X=1. Equation 3.15 presents the equations describing 

force profile number 2; no passive force profile is included for the considerations 

in this chapter. 

2, act (%) =   1 (-6.25 (X*)' + 12;52 -5.25) 
1.034%* 

= ?- 0.08349 

(3.15) 
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3.2.4 Equilibrium Conditions  

The equilibrium conditions, which relate muscle fibre forces to the external muscle 

force, are usually given little attention in deriving the models in the literature. 

Woittiez et al. [1984], for example, treat this topic in one sentence, saying that "the 

product of the force of each fibre and the cosine of its angle results in the force 

contribution of each fibre in the direction of the length axis of the muscle" (in terms 

of the current model, "angle" refers to the angle ? in Figure 3.3). No attempt has 

been made to establish the physical merits of this approach and their discussion 

does not indicate any concern with this kind of approach. 

Often [1988] derived equilibrium conditions for a muscle with parallel tendon 

sheaths at one particular configuration only by using the methods of sections and 

by considering the equilibrium of the individual tendon sheaths. He fails, however, 

to apply the required mechanical rigour. His equations turn out to be essentially 

correct, but not for the light reasons. 

The equilibrium conditions have probably been treated so carelessly because the 

muscle, even on the abstraction level of a straight line model, turns out to be a 

statically indeterminate system, which may not have been realized. Figure 3.8. 

presents the free body diagram of an entire muscle with parallel tendon sheaths 

and two alternative free body diagrams for the upper tendon sheath alone. Looking 

at the entire muscle held at two opposing points only, equilibrium is solely possible 
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if the forces have a common line of action7, opposite direction and the same 

magnitude (Figure 3.8a). 

The upper tendon sheath of the muscle, sectioned and redrawn in Figure 3.8b, is 

in equilibrium if both the force equilibrium condition (closed force polygon) and 

moment equilibrium (the lines of action of all forces intersect at one point) are 

satisfied. It was one of the simplifications made for the model that all fibres are 

always in the same contractile state, that is, all fibres generate an equal amount 

of force. Therefore, one can substitute one resultant force for the distributed fibre 

forces, whose line of action intersects the tendon sheath at mid-length with a 

direction parallel to the general fibre orientation. In addition to the line of action, 

the magnitude of this fibre force resultant, FF, is known in dependence of the fibre 

stretch ratio X. The line of action of the external muscle force, FM, is also known 

from the considerations made above. To establish static equilibrium, a closed force 

polygon has to be drawn at the intersection of the line of actions of FF.and FM. 

Closing of the force polygon is only possible by introducing an additional force, FA, 

which has been drawn with a vertical line of action in Figure 3.8b. This choice of 

direction for FA is, however, in no way unique, which is illustrated by the free body 

diagram in Figure 3.8c, displaying another force system in static equilibrium. The 

71n the current model with two muscle attachments at the origin and insertion only, the line of action 
of the muscle forces is identical to the line which joins the muscle origin and insertion. In keeping with 
commonly accepted terminology, the latter has previously been defined as the line of action of the 
muscle. It should, however, be noted that in the case of additional muscle boundary conditions (e.g. 
supported tendon sheath) the external muscle forces may have different lines of action neither being 
coincident with the line of action of the muscle. 
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Figure 3.8: Free body diagrams for the entire muscle and the upper tendon 
sheath. 

direction of. FA is important, as it influences directly the magnitude of FM; the 

magnitude of FM in Figure 3.8c is larger than the one in Figure 3.8b. 

Often [1988] assumes FA to have a vertical line of action by alluding to pressure 

forces or pressure stresses that have been shown to exist in muscles. However, 

the simplifications and assumption underlying his model and the current model, in 

particular the absence of any general constitutive law, do not contain a convincing 

basis for this choice. By drawing the free body diagram for a trapezoidal muscle 
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geometry, one sees at once that FA cannot be perpendicular to both the bottom 

and top tendon sheaths. All that can be said about FA is that it is a consequence 

of the imposed kinematic constraints. It should also be noted that the line of action 

of FA does not intersect the tendon sheath at mid length. 

The decision, which one of FA's possible line of actions to choose, has to be built 

on a physical foundation, instead of an arbitrary assumption. This will be achieved 

below by using the principle of virtual work. In the context of the current model, the 

principle equates the incremental internal energy change to the incremental work 

performed by the muscle force, FM, for any incremental deformation of the muscle 

consistent with the kinematic constraints. 

It follows from the free body diagram of the entire muscle, Figure 3.8a, that FM is 

collinear with the line of action of the muscle along which the muscle's length, L, 

is measured (Figure 3.3). The external muscle work can therefore be written as: 

W ext = fFm (L) dL 

and the principle of virtual work can be stated as follows: 

6[fwlnt dv - W ext] = 

(3.16) 

(3.17) 
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The volume integration limits are independent of the kinematic variables so that 

the integration and variation may be interchanged. Using Equations 3.12 and 3.16, 

Equation 3.17 is transformed into 

fi6f (X) R d V - FM(L)L = 0 (3.18) 
VO 

and further 

[fo.fdv - FM(L)]öcz = 0 (319) 

By the standard argument of variations, that, given 6cc 0, the terms enclosed in 

parenthesis in Equation 3.19 must be zero, the following equilibrium conditions are 

found after integrating and differentiating with respect to cc and extensive 

trigonometric transformations (Equations 3.2 through 3.4 are used in the process): 

FM 42h, + h21 d0/0sina0  (1 + D)cosa  f(?) (3.20) 
2 [h1 +h2 J0 cos3 + Dcosacos(a -) 

Equation 3.20, expresses the muscle force, FM, in terms of the geometrical 

parameters at reference configuration (parameters subscripted by 0), the actual 

angle of pin nation, a, the actual angle between the lower tendon sheath and the 

line of action of the muscle, f, the first Piola Kirchhoff stress scaling factor, l, the 
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fibre force profile function, f(?), and the kinematic parameter controlling muscle 

depth changes during contraction, D. By virtue of the Equations 3.2 through 3.4, 

the variables P and X. in Equation 3.20 can be expressed in terms of a, that is, FM 

is a function of a exclusively. In essence, FM is determined by the functional form 

of the fibre force profile, which at this point can be an arbitrary function, scaled in 

magnitude by a constant (parameters subscripted by zero and l) and modulated 

by trigonometric functions of the variables a and P. Combining Equations 3.1 and 

3.20, the muscle force, FM, can be calculated in dependence of the muscle length, 

L. Mathematically, the model is completely described by Equations 3.1 through 3.4 

and Equation 3.20. 

3.3 Model Exploration and Discussion  

The derivation of the equations above has been based on a muscle geometry with 

a lateral cross section of the shape of a parallelogram or trapezium (Figure 3.11) 

and with an uniform depth. The three-dimensional representation of such a muscle 

with parallel tendon sheaths consists of a parallelepiped with rectangular tendon 

sheath geometries much like the model Stenson worked with in the 17'h century 

(see Kardel [1990]). However, the equations describing the current model 

represent a larger class of muscle geometries: the limiting factors on the muscle 

and tendon geometries are the initial simplifications which require all muscle fibres 

always to have identical angles of pinnation and identical relative lengths. In other 

words, any muscle geometry may be chosen, as long as the geometry permits a 
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deformation which is conform to the kinematic Equations 3.2 through 3.4. This 

condition is fulfilled, whenever the orthogonal projection of the upper tendon sheath 

in Figure 3.3 into the plane of the lower tendon sheath, results in an identical 

shape to the lower tendon sheath. In particular, the tendon sheaths may have a 

variable depth along the muscle length axis, and the upper tendon sheath may be 

curved in the plane of Figure 3.3. If a different admissible muscle geometry is to 

be modeled, the final form of Equation 3.20 will change in that, going from 

Equation 3.19 to Equation 3.20, the volume integration term will take on a different 

form. For example, assuming tendon sheaths of an elliptical shape, and identifying 

I and d0 with the major and minor principal axes of the lower tendon sheath, only 

the term d010 in Equation 3.20 would change to 2t/4 d010. 

When limited to the case of uniform fibre angles of pinnation, the muscle geometry 

employed by Woittiez et al. [1984] in their model is also contained in the current 

description. Woittiez et al. used kite-like shapes to represent the tendon sheath 

geometries with the kites at the top and bottom of the muscle geometry having 

opposite orientation. In this geometry, the muscle fibres running between the 

tendon sheaths do not have, in general, a direction which is in parallel to the 

lateral mid-plane of the muscle. A longitudinal cross section of the three-

dimensional muscle geometry takes on the shape of a symmetric trapezium. 

However, this feature has not been translated into the mathematical treatment of 

the model by Woittiez et al. Rather, the trapezium is transformed into a rectangle 

by averaging the widths of the top and bottom tendon sheaths for each cross 
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section. The tendon sheath geometry, as seen through the mathematical 

implementation of Woittiez et al., consists of a rectangle ending in two triangles 

along the muscle length axis and is an admissible geometry for the current model. 

According to Equations 3.1 through 3.4 and Equation 3.20, muscles of different 

shapes with identical parameter values for 1110, h20, 108, d0 and c, will exhibit the 

same muscle force-length relation. Because the model behaviour is to a large 

extent independent of the absolute model geometry, exploring a simple geometry 

(with rectangular tendon sheath geometries) will be representative of other 

geometries. The relative independence of the current model on geometry is not 

due to an inadequate mathematical treatment, but it is a consequence of the 

simplifications made at the outset which are similar to those made by other 

authors. It is rather thanks to the modelling approach taken here, that the 

independence on geometry becomes readily perceptible. 

As a consequence of the discussion above, one could conceive unrealistic muscle 

model geometties which would lead to the same results as a simple geometry. 

Therefore, caution is necessary when interpreting results from SLM. However, the 

good agreement obtained by Woittiez et al. [1984] between model predictions and 

experimental data supports the idea that there is a correspondence between 

muscle and model behaviour. The current model will be explored on this basis. 

81f a more general geometry than the one underlying the derivation of the equations in the previous 
section is to be used, then the parameters should describe the lateral muscle cross section in a plane 
which contains the muscle tendons or muscle attachment points. 
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Whereas a one to one correspondence could be established from a geometrical 

point of view between the treatment by Woittiez et al. [1984] and the current 

model, this is not true for the predicted muscle force in dependence of the 

changing angle of pinnation. Setting D=0, the term cos(a)/cos(j3) in Equation 3.20 

corresponds to the term cos(y) in the treatment by Woittiez et al. Therefore, 

changes in muscle force are here predominantly governed by the angle between 

the fibre direction and the lower tendon sheath orientation, whereas they depend 

there on the angle between the fibre direction and the direction of the line of action 

of the muscle. Realizing that y is always smaller than a, the model by Woittiez et 

al. consistently predicts a higher force than the current model. It must be stressed, 

however, that the equilibrium equation for the current model has been derived by 

using a physical principle, while the one used by Woittiez et al. has been assumed. 

Using the 'model by Woittiez et al., one will predict non-zero forces for a muscle 

with all its fibres running perpendicular to the tendon sheaths which does not make 

physical sense. 

The current model will be explored below by starting from a simple base geometry 

with parallel tendon sheaths which will be modified progressively. The geometrical 

parameters (Table 3.2) are chosen so that they may be taken as a rough 

approximation of the cat gastrocnemius muscle, with the exception of the reference 

angle of pinnation, cx0, which will be freely varied. Anatomical observations would 
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h10 = 0.8 cm 1120 = 0.0 cm 

d0 =2.5cm I =8.0cm 

(Muscle Volume, V = 16 cm) 

D = 0.0 

[3 = 25 N/cm2 

a0: variable 

Table 3.2: Parameter values for initial muscle model simulations. 

limit the choice for the reference angle of pinnation9 to an upper limit of about 25° 

[Benninghoff and Rollhäuser 1952, Wickiewicz et al. 1983, Woittiez et al. 1984]. 

The first Piola Kirchhoff stress scaling factor, i, will be given a value of 25 N/cm2 

for the remainder of this sub-section1° [Woledge et al. 1985]. The following 

conventions will be adopted: Parameters subscripted by 'max' will refer to a 

configuration for which the fibres are at their maximal active length (X=1.4 for fibre 

force profile number 1). Correspondingly, the subscript 'mm' refers to a 

configuration of fibre minimal active length. The subscript 'peak' refers to a 

configuration where the muscle reaches its maximum force; this configuration will, 

in general, be different from the configuration at which the muscle fibres are at 

9Angles of pinnation in the literature are mostly identified with the angle y in Figure 3.3. 

100tten [1988] uses a fibre stress value of 23 N/cm2. 



63 

optimum length. The latter corresponds to the reference configuration for which the 

subscript '0' will be used. 

Figure 3.9 displays muscle force-length curves for five muscles with similar, but 

different geometries. The five geometries are described by the same geometrical 

parameters given in Table 3.2. They differ, however, in their reference angle of 

pinnation, cç, which takes on the values of 15°, 200, 30°, 40° and 500, respectively. 

The fibre force-length characteristic is given by the active part of force profile 
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Figure 3.9: Active muscle force-length relations of similar muscles with different 
reference angles of pinnation. 
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number 1. With increasing reference angle of pinnation, the peak muscle force 

increases steadily while the active muscle range, that is, the interval in muscle 

length over which the muscle is able to generate an active force, decreases. It will 

be shown below, that the peak muscle force will start to decrease again for higher 

reference angles of pinnation than those considered at present. The higher muscle 

peak forces for increasing reference angles of pinnation can be explained by the 

fact, that more and more fibres are acting in parallel and that this effect 

overcompensates for the fibre directions becoming increasingly misaligned with the 

line of action of the muscle. The individual muscle fibres become shorter with an 

increasing reference angle of pinnation which decreases their absolute active 

range and subsequently the active range of the muscle. 

The interrelation between muscle peak force and active range can also be seen 

as a consequence of the fixed amount of work a muscle can potentially perform. 

A unit volume of muscle fibre tissue can be seen to have a specific potential to 

perform work when the fibres contract completely from maximum to minimum fibre 

length. All of the muscles above, containing the same amount of tissue volume, 

should be able to perform an equal amount of work over a complete muscle 

contraction. Simplifying the concept of work to the product of force times distance, 

a higher muscle peak force has to be compensated by a smaller range over which 

a muscle force can be exerted. 
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In agreement with the argument above, the integral of the muscle force with 

respect to the muscle length over the active muscle range results in the same 

value for the curves corresponding to cc, = 15°, 200 and 30°. Muscles with 

reference angles of pinnation of; > 38°, however, deform during the contraction 

to a configuration in which the fibres attain an actual angle of pinnation of 90°. In 

this configuration, which will be termed "neutral configuration", no external muscle 

force is present, even if the fibres themselves are still at a relative length at which 

they are able to produce a force under stimulation11. The curves in Figure 3.9 for 

= 40° and 50° both end at the same minimum muscle length corresponding to 

the neutral configuration. The muscle force-length integral results in these cases 

in a smaller value than for the other curves; the "work potential" contained in the 

muscle tissue cannot be fully realized due to geometric effects. 

While the muscle force-length curves differ in peak force and range, their shapes 

are similar. The symmetric fibre force-length curve is re-scaled to muscle level and 

slightly distorted (the peak muscle force is shifted slightly to the right relative to the 

mid-point of the active range of each individual curve). 

Figure 3.10 displays the active muscle force-length curves for five muscles with a 

modified base geometry. Compared to the previous example, the modifications 

consist in doubling the muscle height (h1 = 1.6 cm) and dividing the tendon plate 

11 That an actual angle of pinnation of a = 900 results in a zero muscle force, can be seen directly 
from Equation 3.20; the term "cos a" evaluates to zero in this case. 
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Figure 3.10: Active muscle force-length relations of muscles with alternate 
geometry. 

length, I, by two (I = 4cm); the muscle volumes remain unchanged at 16 cm3. The 

axes of Figure 3.9 and Figure 3.10 are drawn to the same scale. Compared to 

Figure 3.9 the same characteristics, that is, increasing force and decreasing range 

for increasing reference angles of pinnation, are observed. While having different 

absolute force and length values, the curves are similar in both cases. The change 

in geometry has an effect of scaling alone, and nothing has changed in principle 

by going from the base geometry to the modified geometry. 
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The literature attributes a major importance to the "index of architecture" which is 

defined by the ratio of the mean fibre length at muscle optimal length and the 

muscle optimal length itself12 [Kaufman et al. 1989 and 1991, Woittiez et al. 1984, 

Benninghoff and Rollhäuser 1952]. According to this view, the index of architecture 

is sufficient to characterize a pennate muscle in its force-length behaviour. 

However, the force-length curves for a0 = 40° in Figure 3.10 and a0 = 150 in Figure 

3.9 are almost identical (at different absolute muscle lengths), even though they 

result from muscles with notably different geometries and with notably different 

fibre length to muscle length ratios. This observation seems to defy any importance 

of the index of architecture13. However, it may well be that nature does adhere 

to a "design concept" for which the index of architecture constitutes a significant 

parameter. If this is the case, the current model does not grasp the underlying 

reasons for this "design concept", and, by implication, muscle models similar to the 

current one do not either. 

Including the passive fibre forces in the fibre force profile number 1 and using the 

muscle base geometry leads to the muscle force-length curves shown in 

Figure 3.11. The curves are only plotted up to the maximum muscle lengths 

(X = 1.4). The ratio of the force magnitudes corresponding to the relative maxima 

'?'The muscle optimal length is typically defined as the muscle length at which a muscle can exert 
maximum force. Additionally, it is commonly assumed that muscle fibres are also at optimal length in 
this case. 

131n reversing the argument, different muscles with identical indices of architecture can be 
constructed whose predicted force-length relations are significantly different. 
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Figure 3.11: Total muscle force-length curves. 

and minima of each individual curve decreases for increasing angles of pinnation. 

Also, the muscle forces at maximum muscle length for each curve increase beyond 

the relative force maxima. This contrasts with the input fibre force-length relation 

which has a well defined local minimum value of 84% of the fibre force at optimum 

fibre length and for which the force at maximum fibre length is equal to the force 

at fibre optimal length. Consequently, one should proceed with caution when 

inferring fibre characteristics from experimentally obtained muscle force-length 

curves. 
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Figure 3.12: Active muscle force-length curves based on fibre force profile 
number 2. 

Figure 3.12 displays muscle force-length curves for muscles which are described 

by the base geometry and which take the fibre force profile number 2 as input. The 

relative shift of muscle peak forces to higher muscle lengths is readily perceptible; 

despite the asymmetric character of the fibre force profile number 2, the muscle 

force-length curves become symmetric for higher reference angles of pinnation. 

For the current case, only the curve corresponding to a0 = 500 reaches the neutral 

configuration at its shortest length. Finite element simulations of the continuum 
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model in the following chapters will be based to a large extent on the fibre force 

profile 2. 

So far, entire muscle force-length curves have been considered for discrete values 

of the reference angle of pinnation, cç. The curves have been generated for 

muscle models which were described by different sets of geometrical parameters 

and distinct fibre force profiles, thus giving a good idea of the effects of parameter 

changes. More detailed aspects, for example where the muscle peak force occurs 

relative to the fibre force-length curve, cannot be inferred from these curves. 

Selected parameters of interest will now be monitored and displayed individually 

for an increased number of different muscle geometries, where the geometries 

differ only in their respective reference angle of pinnation, ao (Figures 3.13 through 

3.16). The geometric parameters listed in Table 3.2 as well as the active part of 

fibre force profile number 1 underlie the following considerations. A subset of the 

parameters displayed in Figures 3.13 through 3.16 can be cross-referenced to 

Figure 3.9. 

Figure 3.13 displays the minimum and maximum actual angle of pinnation (amjn, 

umax) as well as the actual angle of pinnation corresponding to the configuration at 

which the muscle peak force is exerted (cx). The curved appearance of the line 

representing a shows that the actual angle of pinnation at which a specific 

mucle exerts its peak force does not coincide with the reference angle of 

pinnation, a, at which the fibres are at optimal length. The difference between a 
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Figure 3.13: Range in the actual angle of pinnation and the actual angle of 
pinnation corresponding to the muscle peak force as functions of the reference 
angle of pinnation. 

and aak increases for higher a0. Muscles with a higher reference angle of 

pinnation than 38° reach the neutral configuration during contraction (a = 900). 

Figure 3.14 presents selected muscle lengths of interest. The muscle lengths 

corresponding to the muscle reference configurations (Lj.et), that is, the muscle 

lengths for which the muscle fibres assume optimal length, and the lengths at 

which the muscles exert their peak force, L. ç, diverge more and more with 

increasing c. Again, muscle configurations for muscle peak forces are not 

identical with configurations for maximum fibre forces. The minimum and maximum 
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ponding to the muscle peak force, and the muscle reference length as functions 
of the reference angle of pinnation. 

active muscle lengths are indicated by Lmi, and L. The line representing L'-peak is 

not located half-way between the lines corresponding to Lmax and Lmins but it 

approaches the line representing Lm. This emphasizes the fact that the symmetric 

input fibre force-length curve is transformed into a skewed force-length curve at 

muscle level. 

The muscle peak force and the muscle force at reference configuration are shown 

in Figure 3.15. The absolute highest muscle force is obtained for a muscle with a 

reference angle of pinnation of about 52°. For higher reference angles of pinnation, 
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Figure 3.15: Muscle force at muscle reference length and muscle peak force as 
functions of the reference angle of pinnation. 

the muscle peak forces decrease again, and the muscle forces corresponding to 

the muscle reference configurations fall back to zero. 

Finally, Figure 3.16 indicates the amount of work muscles can perform over a full 

contraction. For a muscle with a0 < 38°, all muscle fibres are able to contract 

completely, and the muscle is therefore able to produce the maximum amount of 

work. For higher reference angles of pinnation than 38°, a muscle reaches the 

neutral configuration during contraction before its fibres have shortened to their 

minimum length. Consequently, the work which can be produced externally to the 

muscle is reduced. 
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Figure 3.16: Muscle work over a complete contraction as a function of the 
reference angle of pinnation. 

It has been pointed out above, that from all the muscles described by the 

geometric parameters in Table 3.2, the muscle with the reference angle of 

pinnation of 52° produces the highest force (Figure 3.15). Furthermore, it follows 

from Figure 3.13 that this force maximum is exerted at an actual angle of pinnation 

of close to 450 At this actual angle of pinnation the muscle fibres assume a 

relative length for which the Cauchy stress, introduced in Chapter 3.3, peaks. In 

the context of the current model, this "optimal" angle of pinnation of 45° cannot be 

explained further. However, the discussion of the CM (Chapter 6) will take this 

issue up and consider it in the context of the stress state within the muscle 
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structure. Benninghoff and Rollhäuser [1952] indicated an "optimal" angle of 

pinnation of 450 However, no distinction was made between the reference and 

actual angle of pinnation. 

The advantage of a pennate muscle design over a fusiform design is commonly 

attributed to the pennate muscles being able to produce a comparatively higher 

force on account of the fact that more contractile material is arranged in parallel 

between the tendon sheaths [Gans and Bock 1965, Fung 1970]. Following this 

argument and considering exclusively the generated muscle forces as an 

optimization criteria, the current model suggests that pennate muscles should 

exhibit a rather high degree of pinnation (up to 570). However, anatomical and 

experimental evidence suggest that angles of pinnation in unstimulated muscles 

at resting length seldom exceed 25° [Wagemans 1989,. Wickiewicz et al. 1983, 

Benninghoff and Rollhâuser 1952]. Considering the model results presented above, 

arguments may be made in favour of smaller degrees of pinnation. For example, 

it has been shown that muscles with angles of pinnation being greater than about 

38° can only perform a portion of the work over a full contraction which is 

potentially contained within the tissue volume. Still, an angle of pinnation of 38° is 

significantly greater than the angle of 25° indicated anatomically. 

Wagemans [1989] performed ultrasound measurements to explore the structural 

changes of the human gastrocnemius muscle under maximal voluntary 

contractions. Herzog [1991] used the original results by Wagemans and performed 
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data analyses in order to quantify the structural changes in terms of angles of 

pinnation, muscle height and muscle depth. The analysis revealed that the 

unstimulated muscle assumed angles of pinnation between 25° and 37° depending 

on the externally controlled muscle length, whereas the contracted muscle took on 

angles of pinnation close to 45° independent of the muscle length before the 

contraction was carried out. Relating the results from Wagemans [1989] and 

Herzog [1991] to the current model, the following observations can be made: 

Assuming an anatomically realistic reference angle of pinnation of 25°, the current 

model predicts the peak force to occur very close to this pecise angle. During 

contraction an angle of pinnation of about 45° is attained by the muscle (Figure 

3.13). However, by that time the muscle, force level will have decreased to close 

to zero. This is contrary to the observations by Wagemans that there is not only 

an active force at this configuration, but that, in fact, the maximum muscle force 

is reached for this angle of pinnation. 

The current model does predict the maximum muscle force for an actual angle of 

pinnation of close to 45° (Figures 3.14 and 3.15). However, this actual angle of 

pinnation is associated with a reference angle of pinnation of 52° which is not at 

all comparable to the observations made by Wagemans. Still, it is felt, that the 

agreement between model predictions and experimental observations regarding 

the optimal angle of pinnation are more than a mere coincidence, and this 

agreement certainly constitutes a suitable starting point for further investigations. 

With respect to the current model, it seems that certain aspects of muscular 
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contraction are grasped by the underlying assumptions whereas others are not. In 

particular, it may be worth investigating whether the kinematics of tissue 

deformation, more precisely the deformation of the contractile microstructures are 

as strictly linked to the global muscle deformations as assumed. 

In interpreting the geometric parameters in Table 3.2 as an approximate 

description of the cat gastrocnemius muscle, the following comments can be made 

by comparing the current model predictions to experimental results by Herzog et 

al. [1990]: Assuming a reference angle of pinnation of 25°, the current model 

predicts a muscle peak force of about 190 N (Figure 3.15) and a range of close 

to 1.9 cm (Figure 3.14). These values,. when referred to larger sized muscles, 

compare favourable to the results by Herzog et al. who obtained muscle peak 

forces between 150 N and 210 N, and a normal range of muscle movement of 

about 1.9 cm. For the current model, the range of 1.9 cm covers the entire extent 

of muscle activity, that is to say that the muscle force in this range starts at zero, 

achieves its peak value and then returns again to zero (compare to Figures 3.9 

and 3.12). The experiments by Herzog et al., however, resulted in muscle force-

length curves which start with a small but non-zero force for the shortest muscle 

configuration and terminate with a force magnitude slightly below the muscle peak 

force at the longest muscle configuration 14. Therefore, it may be assumed that 

141t should also be mentioned in this context that muscle force length-curves analogous to 
Figure 3.11 are normally not observed in experiments (the curves in Figure 3.11 are based on the total 
fibre force profile number 1 which includes passive fibre forces). Contrary to the current model 
predictions, experiments do not show a renewed force increase for muscle lengths being higher than 
the length corresponding to the local force minima (e.g. Herzog et al. [1990] and Muhl [1982]). 
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the muscle range investigated by Herzog et al. of 1.9 cm corresponds to a 

significantly smaller muscle length interval in the current model, and that the match 

between experimental results and model predictions is, therefore, less perfect. By 

exploiting the uncertainties in model parameter values (e.g. the maximum active 

fibre stress, the shape of the fibre force profile, and the model geometric 

parameters which describe the complex physical muscle geometry) a match could 

be reestablished. A simple fitting procedure, however, does not enhance the 

understanding of basic concepts associated with muscular contraction. 

Figure 3.17: Influence of trapezoidal muscle cross section and depth change 
during contraction on the muscle peak force. 
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So far, only muscle geometries with parallel tendon sheaths and cases with 

constant muscle thicknesses during deformation have been considered. The 

muscle cross section geometry may take on a trapezoidal shape by assigning non-

zero values to 112 (Figure 3.3), and the muscle can be allowed to thicken during 

contraction by assigning non-zero values to the parameter controlling the amount 

of depth change, D (Equation 3.4). A thickening of the muscle is associated with 

a decrease in the distance between the tendon sheaths. This general deformation 

pattern should be expected, because the fibres are assumed to pull between the 

tendon sheaths. The effects of trapezoidal muscle cross sections as well as the 

degree of thickness change during muscle contraction for muscles of equal volume 

on the muscle force at muscle reference length are displayed in Figure 3.17. A 

muscle geometry with parallel tendon sheaths described by the muscle length, L0 

10 cm, lower tendon plate length, I= 8 cm, and muscle height parameters 

1110 = 0.7 cm and 1120 = 0.0 cm has been chosen as the starting point. Increasing 

values for the ratio 112/111 describe muscle geometries with an increasingly 

trapezoidal cross section. Figure 3.17 indicates, that the muscle force decreases 

in a nonlinear way for increasing 112/111 values. The muscle force increases with 

increasing values for D, that is for higher muscle deformations in thickness 

direction. It is important to realize, that for a fixed 112/111 value the muscle geometry 

is also determined. Still, depending on the parameter D the muscle force changes. 

This is a consequence of the "quasi" three-dimensional deformation of the muscle 
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and this effect is neglected when the muscle equilibrium condition is derived from 

a free body diagram with an assumed orientation of FA in Figure 3.8. 

3.4 Summary and Outlook  

A geometrical straight line muscle model for parallel fibred pennate muscles has 

been developed in this section which is described by a closed set of-non-linear 

algebraic equations. In the derivation process of this model, the equilibrium 

condition has been based on a physical principle, and the technique employed to 

derive the equations revealed that the final equations can be easily adapted to 

describe more complex muscle geometries. Comparing muscles of similar 

geometry but varying reference angles of pinnation, cx0, predicted peak muscle 

forces increased to an absolute maximum 'at a0 = 52°. Furthermore, the absolute 

force maximum is reached under an actual angle of pinnation of a = 45°. While 

Wagemans [1989] did observe maximum muscle forces at an actual angle of 

pinnation of close to 45°, the current model does not reproduce all aspects of her 

experimental observations. 

The mathematical derivation of the equations governing the presented model did 

not make use of approximations and logical jumps so that any deficiency in model 

predictions must be associated with the underlying simplifications and 

assumptions. Judging from the current scientific literature, there is little reason to 

doubt that the muscle contractile behaviour has its origin exclusively in contracting 

muscle fibres. The kinematic simplifications which, in essence, require both tendon 
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sheaths and the muscle fibres to be rigid in bending are obviously too severe, and 

they will be abandoned in the development of the continuum muscle model in the 

following chapters. 



Chapter 4 

The Continuum Muscle Model 

Geometrical straight line muscle models (SLM), similar to the one presented in 

Chapter 3, are predominantly motivated by mathematical simplicity rather than the 

attempt to describe the physical reality appropriately. Instead of obtaining the 

muscle deformation as the result of internal fibre forces and tissue material 

behaviour, the mode of the muscle deformation is imposed by kinematic 

constraints. The shape of muscle geometries is restricted from the outset by the 

need for closed form analytic expressions which relate the fibre elongations to the 

overall muscle deformation. Certain types of questions, for example, the influence 

of different tendon sheath flexibilities on muscle performance, cannot be 

investigated with these models. 

The straight line approach to muscle modelling guarantees a solution in the form 

of a muscle force-length relation which results from global equilibrium 

considerations. However, the global considerations completely bypass any local 
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equilibrium considerations. It is of no concern, whether the imposed deformation 

shapes lead to configurations which ensure a local equilibrium of the structure; in 

fact this question cannot be settled in the context of these models due to the 

absence of more detailed constitutive relations. 

Different ways of relaxing the simplifications and assumptions made at the outset 

of Chapter 3 could be envisioned. The relaxation of these simplifications and 

assumptions leads, in general, to an indeterminacy of the mathematical equations 

which underlie the model. Rather than being a drawback, the resolution of these 

indeterminacies by physically meaningful principles adds to the quality of the 

results obtained. An analytical treatment of the model and closed form solutions 

become, however, more and more unlikely. 

The theory of continua will be chosen here as an approach to a more detailed 

muscle modelling and numerical solutions will be sought with the help of the Finite 

Element Method. Special difficulties to be overcome in the modelling process lie 

in the fact that the muscle tissue will have to be described as an anisotropic, active 

and nonlinear material (physical non-linearity). Because of the large deformations 

inherent to muscle deformation, the geometrically nonlinear theory of deformation 

has to be employed as well. 

A Finite Element program package, Ansys (Version 4.3) by Swanson Analysis 

Systems Inc., Houston, has been used for the finite element modelling. Since the 

built-in capabilities of this package did not allow an adequate representation of 
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muscle tissue behaviour a special element, representing the active muscle fibre 

characteristics, has been formulated and linked into the existing program. 

4.1 Simplifications and Assumptions  

The search for a description of muscle behaviour on a more detailed level 

underlies the attempt to use the theory of continua for the purpose of muscle 

modelling. This approach does not eliminate the need for making simplifications 

and assumptions during the modelling process. The focus of the simplifications and 

assumptions will rather be shifted from a global perspective (e.g. predefined modes 

of global muscle deformation) to local considerations about muscle tissue and 

tendon behaviour. The global structural behaviour as a consequence of the local 

assumptions are of particular interest. 

The current sub-chapter has to be understood as a compilation of the more 

significant simplifications and assumptions made, and it is meant to facilitate a 

comparison of the approach taken in Chapter 3 to the one below. Several topics 

are merely touched upon here and discussed further in the following chapters. 

Simplifications and assumptions for the current mOdel are essentially made on 

three different levels, namely at the level of the continuum description (CD), the 

finite element implementation (FEl) and the model generation (MG). Choices made 

at higher levels have a direct bearing on lower levels. At the CD level, for example, 

basic decisions have to be made about how to represent the muscle tissue 
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behaviour in the mathematical language of the theory of continua. Most of these 

decisions are bona fide assumptions, in the sense that statements regarding their 

completeness in describing tissue behaviour are difficult. Decisions at the FEI and 

MG levels are more of the character of simplifications, that is to say that a different 

and perhaps more detailed description could have been chosen. The 

simplifications at the FEI level arise from the finite element discretization of the 

continuous description. The discretization itself is inevitable, if a solution is to be 

sought using any numerical method; there is, however, a choice as to how the 

discretization is performed. Because the capabilities of the finite element package 

used do not allow an adequate description of the muscle fibre characteristics, a 

new element type had to be implemented. For that reason, the FEI modelling level 

has to be considered separately for the muscle tissue. 

In order to compare the current model to the SLM of Chapter 3, similar cases will 

be treated. Consequently, relatively simple muscle geometries will be employed at 

the MG level. These simplifications are completely arbitrary. Different and more 

complex model geometries could be generated using the finite element 

implementation which are only limited by the model generating capabilities of the 

finite element program package used. By contrast, a change in the assumptions 

about muscle tissue behaviour would require a reworking of the entire modelling 

process from the CD level down. 
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It must be emphasized that the basic assumption underlying the remainder of this 

thesis concerns the applicability of the theory of continua to muscle modelling. The 

great success of the theory of continua in describing a vast number of phenomena 

in a wide range of circumstances seems to make this remark superfluous. 

Nevertheless, a basic point should be made about how a material - muscle tissue 

in the present case - is "seen through the eyes" of the continuum description. As 

one traverses muscle tissue on a microscopic scale, one encounters many 

different structures (e.g. thick and thin filaments, collagen fibres, sarcolemma, etc.), 

each having different mechanical properties. The continuum description does not 

attempt to reproduce this complexity; rather the mechanical behaviour at each 

point of the continuum is seen as an average of all the structures in a small 

volume surrounding this point in the real world structure. This is often compared 

to a smearing out or blurring of finer details, and it is this feature which allows the 

tools of calculus to be employed for the analysis of real life entities. However, it 

cannot be excluded that some essential features of the material are getting lost in 

the process of smearing out microscopic details. Special approaches in the theory 

of continua (e.g. the theory of micromorphic continua, higher order constitutive 

relations etc.) are able to describe certain types of more complex material 

characteristics, but they will not be used in the context of this thesis. 

For the current treatment, muscle tissue is assumed to be adequately described 

as a simple material. This means in particular, that the stress at a given point is 
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completely determined by the state of the deformation at this point. The equations 

for equilibrium and strain measures in the form given in Chapter 2.1 are applicable. 

It is further assumed that there exists a strain energy function (potential function) 

for muscle tissue which depends exclusively on the strain measures and an 

additional parameter associated with the degree of stimulation. Due to the 

directionality of the contractile property of the fibres, muscle tissue will be 

described as a transversely isotropic fibre reinforced material. No dynamic effects 

will be taken into account, the analysis will be based on statics exclusively. 

The discussion above is also applicable to tendon sheath tissue, except for the 

parts which concern the contractile properties of the muscle tissue. Tendon sheath 

tissue is seen as a two dimensional entity with tensile stiffness but no bending 

stiffness. 

Muscles will be represented in two dimensions as plane strain models. The models 

are taken to represent the mid-plane of a muscle containing its line of action and 

thus the two opposite tendon attachment points. Muscle fibres run within the model 

plane. For the treatment of three-dimensional structures in a two-dimensional 

idealization, Ansys, the finite element package used, offers only the plane strain 

and plane stress assumptions. Because their will be stresses in the muscle 

thickness direction (normal to the model plane) and because these stresses take 

on a major importance for the model performance, the plane strain assumption 
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appears more appropriate. A more general treatment of the third dimension should 

certainly be envisioned for future applications. 

The finite elements which represent the muscle body, will be implemented as 

triangular three-noded elements with two translational degrees of freedom per 

node. The deformation shape functions allow each individual element to 

experience a homogeneous deformation only. This results in the strains being 

constant over the domain of a single element and leads to non-conforming 

elements. No provision has been made to allow for initial strains. Consequently, 

the model reference configuration corresponds to a stress free configuration and 

constitutes a trivial equilibrium configuration when no muscle tissue stimulation is 

present. 

Muscle geometries at reference configuration are approximated by straight lines 

extending over a large part of the muscle geometry. Fibres run straight and parallel 

over macroscopic portions of the model geometry, but not necessarily over the 

entire extent of the muscle geometry. The fibre density, that is the number of fibres 

penetrating a unit area perpendicular to the. fibre direction, will be constant over 

macroscopic areas of the muscle geometry. A uniform stimulation will be applied 

to all the elements representing the muscle tissue. Tendon sheaths will have a 

uniform tensile stiffness over their entire lengths. No restrictions concerning the 

deformed c'onfiguration are imposed, except for the boundary conditions (e.g. at 

the tendon attachment points). 
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Modelling Level 

- Muscle tissue is described as a simple (first order) fibre rein- CD 
forced material. A strain energy function is assumed to exist, 
which only depends on the strain measures and a stimulation 
parameter. 

- Tendon sheath tissue has tensile stiffness only. CD 

- Constitutive relations are considered for statics only. CD 

- Finite elements representing the muscle tissue are implemented FEI 
as two dimensional triangular plane strain (three-noded) 
elements with two translational degrees of freedom per node. 
The individual elements are restricted to a homogeneous defor-
mation. No provisions for initial strains are made. 

- Tendon sheaths are represented by two-noded spar elements FEI 
with two translational degrees of freedom per node. No moment 
is transmitted from one tendon element to its neighbours. 

The reference muscle geometry is approximated by straight line MG 
segments of macroscopic extend. At muscle reference configur-
ation, the fibre density is kept constant and fibres run straight 
and parallel over large segments of the muscle geometry. The 
same tissue stimulation parameter value is used for all 
elements representing the muscle tissue. The tensile stiffness 
of the tendon sheaths will be uniform over their lengths. 

Table 4.1: Major simplifications and assumptions underlying the continuum 
muscle model. 

Table 4.1 summarizes the major simplifications and assumptions underlying the 

continuum muscle model presented in this chapter and the finite element 

implementation presented in the next chapter. The modelling level at which these 

simplifications and assumptions are made - continuum description (CD), finite 
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element implementation (FEI), model generation (MG) - is flagged out at the right 

hand side. 

4.2 Constitutive Relations  

The purpose of this sub-chapter is to establish a material description for muscle 

tissue which can be used in conjunction with the continuum mechanical approach 

to muscle modelling. Considerations made in Chapter 3.2.3 regarding the fibre 

force-length relations are carried over, and they will be supplemented only to the 

extent necessitated by the application of the theory of continuum mechanics. 

Tendon sheaths will be described by an elementary elastic material law. They will, 

therefore, not be considered at this point in time. 

When discussing muscle behaviour, either in the context of a muscle model or in 

a more informal manner, the literature commonly regards a muscle as the sum of 

its parts. Muscles are seen to behave as a composition of a large number of 

individual fibres, with the force-length relations of individual fibres being transferred 

to the whole muscle. A possible interaction between fibres in the tissue context is 

excluded by this point of view. In the case of pennate muscles, an influence of the 

muscle geometry on muscle performance is acknowledged, but this influence is 

perceived to simply constitute a rescaling of the fibre force-length curve to the 

muscle scale. As a case in point, Hill's three element model for muscular 

contraction [Hill 1938] has been interpreted to describe adequately both the 
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contractile behaviour of a single fibre as well as that of entire muscles' (e.g. Fung 

[1981]). The possibility that fibre tissue might exhibit additional characteristics 

compared to single fibre behaviour, which in turn might be important to whole 

muscle performance, is rarely considered. 

The following arguments may be listed in support of the notion which regards 

muscle function as a simple extension of individual fibre performance: the building 

blocks of muscles are certainly individual fibres. Single fibres can be identified in 

a muscle and they can, in principle, be isolated while keeping them fully functional. 

The microscopic active components of muscles, the sarcomeres, seem to be 

functionally parcelled by fibres, which is to say, that under stimulation, either all or 

none of the sarcomeres in a single fibre become active. Sarcomeres are aligned 

with the fibre length axis and shorten in this direction during contraction. One can 

therefore assume that muscle tissue, too, has a contractile direction coincident with 

the local fibre direction. Furthermore, considerations about muscle function on the 

basis of fibre characteristics do not lead to immediate contradictions when they are 

compared to experimental results. However, as manifested in the discussion part 

of Chapter 3, muscle models based on single fibre properties do not reproduce all 

aspects of muscle behaviour correctly. 

'Hill's original equation was established for whole muscles. Extensions to this equation, e.g. Hill's 
three element model, introduce additional parameters which are seen to be related to fibre 
microstructures, and numerical values of these parameters are often determined by applying the model 
to single fibre experiments. 
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A large variety of experiments has been performed on single muscle fibres, 

especially on amphibian. Muscle fibre behaviour is relatively well understood and 

the wide acceptance of the cross bridge and sliding filament theory (Huxley [1957, 

1974], Gordon et al. [1966]) puts this understanding on a theoretical foundation. 

While there are considerable variations in the reported values of absolute active 

fibre force (which are not necessarily obtained from experiments on individual 

fibres) and active fibre range, the main features of fibre force-length curves are 

undisputed. 

The muscle fibre force is usually thought to originate due to the thick and thin 

filament interaction at the sarcomere level and to be passed on along the fibre 

length axis from sarcomere to sarcornere. An interesting dissenting opinionis held 

by Vain [1990], who suggests, that the primary active compqnent of fibres consists 

in a tendency to thicken. The local thickening tendency would then lead to a 

stretching of the collagen fibre network, and the resulting forces would be passed 

on over short distances to the sarcolemma and endomysium, with these 

connective tissue structures, instead of sarcomere to sarcomere connections, 

transferring forces in fibre length direction. 

Any attempt to determine active muscle tissue material properties on a small 

representative tissue volume specimen directly in an experimental set-up would be 

invalidated from the outset; this kind of procedure implies a sectioning of muscle 

fibres and, because of individual fibres acting as a unit under stimulation, it would 
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alter the properties of the tissue sample in an unpredictable manner. It is also 

doubtful, whether a lifelike stimulation of the specimen could be achieved. 

Facing these difficulties, researchers have restricted themselves to measure only 

passive muscle tissue properties directly. Demer and Yin [1983] and Yin et al. 

[1987], for example, performed biaxial stretch experiments on thin canine cardiac 

muscle tissue sheets, with the stretch being applied both in fibre direction and 

transverse to fibre direction. Their experimental results were used by Lanir [1983] 

and Lanir et al. [1988] to validate a general three-dimensional constitutive model 

of passive cardiac muscle tissue. However, the question remains open, whether 

active tissue characteristics are merely overlaid on the passive characteristics, or 

whether active muscle tissue should be regarded from a constitutive point of view 

as a different material compared to passive tissue. 

Efforts aimed at gaining a deeper understanding of active muscle tissue material 

properties seem to be restricted to indirect experimental procedures, 

complemented by theoretical considerations. Truong [1974] performed wave 

propagation measurements on whole stimulated muscles and matched the 

experimental results with a constitutive model which describes active muscle tissue 

as a viscoelastic material. Part of Truong's experimental data has been 

reinterpreted successfully by Anton and Epstein [1989] using a perfectly elastic but 

nonlocal material model. The fact that two completely different material models 

- and there may still be others - reproduce the same experimental data, indicates 
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that the issue of finding an adequate constitutive law for active muscle tissue is far 

from settled. Incidentally, both interpretations mentioned above use a one 

dimensional tissue description, which excludes material properties transverse to 

fibre direction. 

The validity of any constitutive model can, in principle, only be asserted in a 

relative sense by the number of different experimental phenomena which are 

reproduced by the model in question. Realizing that not all direct experiments 

which may be desired for a constitutive validation are practically possible, a 

different emphasis is put on muscle modelling: a notion of how muscle tissue might 

work is translated into a constitutive law on which a muscle model is built. The 

model predictions for entire muscles can then be compared to experimental 

observations of entire muscles, which are, in a relative sense, easier to obtain. 

Comparing predicted and experimentally observed muscle behaviour will give an 

indication about the adequacy of the constitutive law and thus about the assumed 

underpinnings of muscle tissue behaviour. In this sense, the currently predominant 

notion of muscle tissue being a superposition of individual muscle fibre behaviour 

will be tested here. 

The constitutive law below pictures muscle tissue as a composite or fibre 

reinforced material. One-dimensional active and passive muscle fibre 

characteristics, which are attributed to the solid muscle tissue components (e.g. 

thick and thin filaments) are identified with the one dimensional fibres in the 
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constitutive model. The fibres are imagined to be suspended in a fluid matrix. The 

fluid matrix, in turn, represents the water content in muscle tissue and provides the 

near incompressibility of the material. Fluid matrix and fibres deform together, that 

is, no relative motion between fibres and fluid takes place. Stating it differently, a 

control volume under deformation consists at all times of the same material points 

representing the same-collection of fluid and fibre particles. Fibres do not interact 

directly, they do however interact indirectly through the fluid matrix. 

It will be assumed that a strain energy function exists for muscle tissue and the left 

Cauchy-Green stretch tensor, C, will be employed as the measure of deformation. 

Spencer [1984] has shown that the strain energy function, W, of a general fibre 

reinforced material with one family of fibres can only depend on the following 

invariants (la) 

1 trC, 12 ..((trC)2_trC2), 13 = detC 

14 = aCa = X2 , 15 = aC 2a 

(4.1) 

where a represents the unit vector in fibre direction. 2.. has the significance of the 

stretch ratio of a line element being aligned with the fibre direction and will 

therefore be termed fibre stretch ratio. By definition, the second Piola-Kirchhoff 

stress tensor components follows from the strain energy function, W(la), through: 
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5 

110, SKLawIa1a +  

c=1 ala aCKL ac LKJ 

(4.2) 

Commonly, the term "strain energy function" is associated with energy being 

passively stored in a continuum in connection with its deformation (elastic strain 

energy). In the present application, a more general view is taken; the active 

characteristics of muscle tissue will be included in the strain energy function. Here, 

the term "(generalized) strain energy function" implies only, that there exists a 

unique functional dependency of the strain energy, W, on the strain measures, C. 

The invariants 11,12 and 13 determine the isotropic characteristics of the matrix 

material. In the present case, where the matrix material is assumed to behave as 

an incompressible fluid, 13 is really needed only in the expression for the strain 

energy function which describes the muscle tissue material law. In anticipation of 

what will be possible to implement in the finite element program package used, the 

strain energy function chosen will describe a (solid) Mooney-Rivlin material which 

depends on the invariants 11,12 and 13 [Mooney 1940]. Constants in the actual 

expression for the strain energy function will be chosen so that the material law 

approximates that of a fluid as closely as possible. The active and passive 

unidirectional fibre characteristics enter the strain energy function by means of the 

invariant 14. The invariant 15, which accounts for a more general interaction between 

fibres, for example under shear deformation, will not be included in the strain 
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energy function, because such an interdependence is here assumed not to exist. 

By assumption, the strain energy function takes on the additive form: 

W = Wm(li,l2,l3) + W fa ( 14;e) + W,( 14) (4.3) 

In equation 4.3, the subscript "rn" refers to the contribution of the matrix and "f" to 

that of the fibre characteristics. The fibre part is, as in Chapter 3.2.3, split further 

into an active (subscript "a") and passive part (subscript "p"). e has the 

significance of a stimulation parameter and will be discussed in more detail below.. 

The functional form of Wm , which incorporates the Mooney-Rivlin material law, is 

given by the following expression [Kohnke 1989]: 

Wm = A(11 -3) + B(I2- 3) + C (T ' 
\2 

-1 +D(13-1)2 

(4.4) 

D = 1(A(5v - 2) + B(llv - 5) 

2I 1-2v 

The finite element available within Ansys which will be used to represent the tissue 

matrix characteristics is based on this particular functional form of Wm. The 

independent parameters in Equation 4.4, which are input quantities to the finite 

element muscle model, are A, B and v. v controls the degree of compressibility, 

while A and B influence the elastic response to stretch and shear deformations. 
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In the finite element models, A and B will be set to 0.125 N/cm2 and v will be set 

to 0.4995. These values have to be seen in the context of the other material 

parameters introduced below and have been chosen so that the matrix material 

behaves as much as possible like an incompressible fluid while still guaranteeing 

convergence of the finite element model. 

The fibre characteristics are introduced into the strain energy function in 

Equation 4.3 by way of the invariant 14. Considering how the second Piola-Kirchhoff 

stress tensor is derived from the strain energy 'function (Equation 4.2), and how the 

second Piola-Kirchhoff stress tensor and the Cauchy stress tensor are interrelated 

(Equation 2.12), the following observations can be made: let the reference 

configuration at a certain point within a continuum be described with respect toa 

rectangular cartesian coordinate system with the X1 - axis pointing along the fibre 

direction, and let the spatial configuration be' described with respect to a 

rectangular cartesian coordinate system with the x1 - axis pointing along the 

deforrned fibre direction. The only non-zero stress tensor components will then be 

S. 1 for the second Piola-Kirchhoff stress tensor, P11 for the first Piola-Kirchhoff 

stress tensor and all for the Cauchy stress tensor. A graphical picture of this 

situation is given in Figure 4.1 for the second Piola-Kirchhoff stress and the 

Cauchy stress. Furthermore, the second Piola-Kirchhoff stress depends only on 

14 = 2 (% being the fibre stretch ratio). Under the assumptions made above 

regarding the coordinate systems of reference and spatial configuration, 14 is equal 

to the component C11 of the left Cauchy-Green deformation tensor, C. 
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reference configuration 

spatial configuration 

X2 

Figure 4.1: Fibre second Piola-Kirchhoff stress and Cauchy stress components 
with respect to local coordinate systems. 

The second Piola-Kirchhoff stress-strain relation for the fibre part can, therefore, 

be directly given in a simpler and more intuitive way, which corresponds to a one-

dimensional description: 

S11 = S11 (2.2) = S11 (14) (4.5) 

This procedure makes the relationship of the following discussion to the one in 

Chapter 2.3.2 readily apparent. The stress-strain relations to be developed below 

are integrable and the contribution to the strain energy function, W, coming from 

the fibre part of the material, Wf, can be formally obtained through: 

W = !fS11(A2)d22 = 1 1104) d 14 
2  2 fS  

(4.6) 
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Thus, a description which is independent of any specific coordinate system is 

recovered. 

According to the discussion in Chapter 3.2.3, there is a direct correspondence 

between the functional dependency of the fibre force and the first Piola-Kirchhoff 

stress tensor. This similarity persists in the current context with the special choice 

of coordinate systems made above, and the first Piola-Kirchhoff stress tensor, P11. 

In Chapter 3.2.3 a "force profile function" was introduced, which will also be used 

here; in the current context, the force profile will depend on the stimulation 

parameter, 9, in addition to its dependence on A.: 

f(A.;®) = fa(%;®) + f(A) (4.7) 

The total force profile is split into an active and passive part. Furthermore, the 

force profile is taken to be dependent on A., instead of A.2 = 14. The final expressions 

for different force profile functions can, however, be made dependent on A.2 by a 

simple variable transformation. The non-zero first Piola-Kirchhoff stress tensor 

component, P11, follows through scaling with the factor l, which will be set to 

25 N/cm2: 

Pu = f(A.;®) (4.8) 
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It has to be recalled, that the force profile functions are obtained, in principle, from 

single fibre experiments. It is one of the assumptions made here that the functional 

dependency remains the same within the muscle tissue setting. Using 

Equation 2.13 and being conscious of the special set of coordinate systems 

chosen, the non-zero second Piola-Kirchhoff stress tensor component, S11, is 

obtained from Equation 4.8: 

Si1 = -f(A.;®) (4.9) 

Below, the mathematical expressions for the force profiles employed in the 

following chapters are listed, and their graphical representations are given in 

Figures 4.2 and 4.3: 

Force profile number 1: 

i,a = E) (-6.25%2 + 12.57. -5.25) 

f = 3.28910 6e9°37 - 0.02766 

(4.10) 
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Force profile number 2: 

= 1.034A. () + 12.52 -5.25) 

= 1.838-1 06 e97 ' - 0.01059 

= 2-0.08349 ) 

(4.11) 

Both force profiles have an equal range for their active components, that is, the 2-

interval for which the active part of the force profile function is different from zero 

is 0.8. The integral of the active force profiles with respect to 2 over their 

1.50 

1.25 

0.25 = 

active+passive 

0.00I 'III I(I JIll JI l I 

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

passive 

Figure 4.2: Force profile number 1. 



103 

1.50 

1.25 

1.00 

U-
0.75 

0.50 

0.25 

acttve+passlve 

0.00 
0.5 06 0.7 0.8 0.9 1.0 1.1 1.2 13 14 1.5 1.6 

.7' 

Figure 4.3: Force profile number 2. 

respective active range is also equal. The two force profiles reach their active peak 

at ? = 1, which will be equated here to the fibre optimal length. Passive fibre profile 

components are only defined for %> 1. 

Force profile number 1 describes in its active component the fibre force-length 

relation used by Woittiez et al. [1983, 1984]. In Figure 4.2, the active and passive 

force profiles are displayed with solid lines. The dashed lines with star markers 

show the results from a finite element simulation of a thin strip of "tissue material", 

where the finite element implementation described in the next chapter has been 

used. The closeness of the lines indicates that the intended tissue behaviour has 
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Figure 4.4: The influence of the stimulation parameter, 8, on force profile 
number 1. 

been successfully implemented into the finite element description. Small 

differences for small and large values of X are due to the fact, that the tissue (fluid) 

matrix has not been implemented as a simple fluid element. 

Using the fibre force profile number 1 will lead in the finite element analysis to a 

relative shift of the active peak in the muscle force-length curve to the right. Fibre 

force profile number 2 compensates for this effect to some degree, in that the 

force profile active peak is shifted to the left. This shift is achieved by an 

asymmetric active part of the force profile. This profile also reflects the asymmetric 

nature of experimentally determined muscle fibre force-length profiles. 
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The stimulation parameter, 9, enters the active parts of the force profile functions 

as a multiplicative factor. Its influence on the total force profile of type 1 is 

illustrated in Figure 4.4. The particular mathematical form is not intended to mirror 

the actual muscle tissue or fibre response to a partial stimulation. In fact, it is 

doubtful whether one single parameter would suffice to describe the degree of 

stimulation adequately. In the context of this thesis, the muscle behaviour will be 

investigated for 9 = 1, which will be identified with maximal stimulation. Because 

of the nonlinear nature of the equations underlying the current muscle model, the 

finite element solution will have to be obtained by iterations and in incremental 

steps of internal loading or stimulation. It is solely for this reason, that the 

simulation parameter, 0, has been introduced here. 

The material description of muscle tissue to be used in the continuum model has 

been presented in this chapter. How the adopted material description is realized 

within the finite elements and the global finite element muscle model is the subject 

of the following chapter. 



Chapter 5 

The Finite Element Implementation 

It is intended to simulate muscular contraction by using the Finite Element Method. 

To this end, models have to be generated whose elements are based on the 

constitutive description set out in Chapter 4. Ansys (Version 4.3), the finite element 

package used, contains an element which is based on the large deformation theory 

and which incorporates the isotropic material law of Equation 4.4. However, there 

is no large deformation element available which includes the active and anisotropic 

characteristics of muscle tissue. Therefore, an element will be formulated below 

(custom element) which adds the anisotropic characteristics to the isotropic 

element. After formulating the custom element, the muscle finite element models 

to be used in subsequent chapters will be described. 
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5.1 Formulation of a Custom Finite Element  

The custom finite element will be formulated as a triangular two-dimensional plane 

strain element with three nodes, one node being placed at each triangle vertex. 

Nodal parameters are the translational displacement degrees of freedom and nodal 

forces in the coordinate X- and Y-directions. The element will be formulated 

entirely based on numerical methods, in particular, the element (tangent) stiffness 

matrix will be established by numerical differentiation. Taking this approach makes 

it inherently easier to modify the element implementation, which is of advantage 

• for experimenting with different material laws, for example. In contrast to the 

notations used so far, the element formulation will make use of the Gibbs vector 

and matrix notation. 

A new equilibrium configuration of the entire finite element muscle model under 

changing (internal) loading and boundary conditions will be sought by using an 

iterative approach which is based on the Newton-Raphson Method. In principle, the 

equations for the entire finite element model can be put into the following form: 

[K]{U} = {Fa} - (5.1) 

where the index n refers to the current (n 1h)iteration. The matrix [K] represents the 

global (tangent) stiffness matrix, the vector {U} the displacement increment for 

the current iteration, the vector {Fa} the applied load vector, and the vector {Fc} 

denotes the force correction vector which, in the current case, will be assembled 
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from the nodal element force vectors {F°}.1 resulting from the solution of the 

preceding iteration. The total displacement after the n" iteration will be given by: 

{U} = {U}1 + O U In (52) 

Equation 5.1 is assembled from the individual element stiffness matrices and force 

correction vectors. It is, therefore, necessary to derive expressions for the custom 

element stiffness matrix, [K1, and the nodal force vector of the custom element, 

Fe}, based on the spatial element configuration. The element nodal coordinate 

vector, {X}, and the nodal displacement vector, {U}, corresponding to the preceding 

iteration are the base information provided. They are represented as follows: 

{U}T={Ui,02,03,U4,05,U6}{Uix ,Uiy,U2x ,U2y,U3x ,U3y} 

The vectors {X} and {U} are of dimension six according to the number of the nodal 

degrees of freedom. Vector components superimposed by a tilde, for example Ri, 

are generic placeholder with the actual value of their index fixing their relative 

position within the vector. The plain vector components (no superimposed tilde) 

give additional information as to their meaning. X1, for example, represents the 

X-coordinate of node number one, and U1, represents the displacement of node 

number 1 in X-direction. 
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Figure 5.1: Triangular element geometry in reference and spatial configuration, 
and unit triangle. 

Figure 5.1 displays a triangular element in its reference and in its spatial 

(deformed) configuration. Both configurations are described with respect to the 

same cartesian coordinate system; in order to avoid confusion, the reference 

coordinates are given in upper case letters (X,Y) and the spatial coordinates in 

lower case letters (x,y). The triangular element region in both configurations can 

be mapped one-to-one onto the unit triangle displayed at the bottom of Figure 5.1. 

For the case of the triangle in reference configuration, the transformation equations 

are given by: 
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X = X1 + (X2 - X1) + (X3 - X1)i 
(5.4) 

Identical relations, with the coordinates written in lower case, hold for the triangle 

in spatial configuration. An area element is transformed according to: 

dA = dxdy = J ddi 

J = (X2-X1)(Y3-Y1) - (X3-X1)(Y2-Y1) 
(5.5) 

Furthermore, the following relations are obtained from Equation 5.3 which will be 

needed below: 

=  - 

Tx i ax 
- X3-X1 = X2-X1 

(5.6) 

Given the displacement shape functions according to the following equations: 

N, (4,11) = 1 -   - r 

N2 (41 11) = 

N3(,) =11 

(5.7) 

the transformation from reference to spatial configuration can be cast into the 

following form which is dependent on the nodal displacements Uix and U1,, and 

where "i" refers to the nodal numbers from 1 to 3: 
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3 

X = X + u(X,Y) = X + E UIXNI(,TI) 
1=1 

Y = Y + u(X,Y) = Y + 

(5.8) 

The shape functions restrict the element region to a homogeneous deformation, 

that is, lines are mapped into lines by the transformation. Consequently, the 

originally triangular element region is mapped onto another triangular region with 

straight edges (Figure 5.1). Differentiating Equation 5.8 results in the deformation 

gradient, [F]. The equation below exemplifies this step for the deformation gradient 

component F: 

F = ax = 1 (IN a + 

XX i1 ax an 
(5.9) 

Using Equations 5.7 and 5.8 the components of the deformation gradient, [F], can 

now be expressed in terms of the nodal coordinates and nodal displacement 

parameters: 
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Fxx = 1 + U2 (Y - ) + 

+ U2 -X) + 

FYX=  + U3(Y- Y2 )) 

FYY=  

(5.10) 

As a consequence of the assumed displacement shape functions, N1, the 

deformation gradient components are constant over the domain of each element. 

Y, 

reference configuration 

x 

3 

fibre direction 

2 

Figure 5.2: Element fibre direction in the reference configuration and element 
reference coordinate system (X'-Y'). 
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The one-dimensional fibre characteristics have a definite and constant direction in 

each element, these fibre characteristics being assumed to be aligned with the 

element plane. The fibre direction is uniquely determined by specifying the angle, 

a, which Js included between the "fibre"-direction and the X-axis of the global 

coordinate system (GCS). Figure 5.2 illustrates this point. Furthermore, Figure 5.2 

shows a primed coordinate system (X'-Y') which will be called element coordinate 

system (ECS). The X-axis of the ECS points in fibre direction. The fibre stretch 

ratio, 2, is obtained by observing how a line element, being identified here with its 

unit tangent vector, {n}, will be stretched under the deformation described by the 

deformation gradient, [F], in Equation 5.10: 

l[F]{n}I  
I {n} I 

= (Fcosa + Fsina)2 + (Fcosa + Fsina)2 

{n}T = {cosa, sina} 

(5.11) 

The second Piola-Kirchhoff stress tensor, with its components referred to the 

element coordinate system (X'-Y'), is now obtained by using Equation 4.9 and a 

suitable force profile function, for example Equations 4.10 and 4.11. In addition, 

the value of the stimulation parameter, ®, is needed at this point as input: 
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0 

[S]Ecs 

0 0 

(5.12) 

Using the following transformation equation, the Cauchy stresses referred to the 

global coordinate system are obtained: 

cY 

c5 3YY.GC$ 

_1 
- hF] 

(5.13) 

cosa -sina 
[Q]= 

sina co&x 

The transformation matrix, [0], transforms the second Piola-Kirchhoff stress tensor 

from its representation in the ECS to its representation in the GCS. It is now 

necessary to relate the nodal forces to the Cauchy stresses. Given the nodal force 

vector, {F}, and a virtual nodal displacement vector, {6u}, in the deformed 

configuration 

= {F1,F2,F3,F4,F5,F6} = {Flx ,FIY ,F IF IF F 

{6u}T = {01,6Q2,3O3,8O4,öO5,U6} = 

{u1 

(5.14) 

and introducing the stress vector, {}, and the virtual (linear) strain vector, {c}, 
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= 

{88)T = 

(5.15) 

the Principle of Virtual Work for the element under consideration can be stated as 

follows: 

fi 8ej1{ajdxdy - {u}T{F} = 0 (5.16) 

It is important to realize that the Principle of Virtual Work as stated above relates 

to the deformed element, that is, to the spatial configuration. Using the 

transformation Equations 5.4 with the nodal coordinates of the deformed 

configuration and assuming again the displacement shape functions of 

Equation 5.7, Equation 5.16 can be transformed into 

{6u}T (f[B]T{} dxdy - {F}) = 0 (5.17) 

where [B] represents the operator matrix which relates the nodal displacements 

to the linear strains based on the displacement shape functions chosen. Varying 

the nodal displacement vector components individually the following expressions 

for the nodal forces are obtained: 
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(.v2 - .V3) all + (x3 - x2) c ly 

(x3 - x2)ayy  + (y2 - 

(y3-y1)Y+ (XI -x3)s xy 

(x1 

(.v1 -y2)o'XX +(x2 - XI) cY xy 

(x2 -x1)oyy +(y1 -y2)cY XY 

= {Fe} 
(5.18) 

Equation 5.18 represents the element nodal forces which are passed on to main 

finite element routines. 

The element stiffness matrix, [K°], is derived column by column through numerical 

differentiation. To this end, the procedure outlined above will be applied with 

incremented and decremented displacement vectors 

{U'} = {U} + {iXU1} 

{U'} = {U} - {U,} 
(5.19) 

where {AU} designates an incremental displacement vector with all its components 

set to zero, except for the ii" component which will have a value of i.\U = I{AU}I. 

{U} represents the displacement vector corresponding to the solution of the 

previous iteration. With the incremented and decremented displacement vectors, 

new nodal force vectors are obtained 
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{F'} = jFQU+'))j 
(5.20) 

{F'} = fFQU-'j)j 

and the 1th column of the element stiffness matrix, {K}, is derived from the 

following expression: 

K,8} - 1 1{F'} - (F-111 
2LU 

(5.21) 

Subsequently, the element stiffness matrix itself, [Ki, is assembled by combining 

all stiffness matrix columns according to 

[K°] = [{Kr},{K;},{K;},{K;},{K;},{K:}] (5.22) 

Due to the particular nonlinear character of the force profile functions used, the 

element stiffness matrix, [K°], will, in general, not be positive definite (after the 

singular displacement modes are removed). The implications of this fact are best 

shown using a one-dimensional analogy. Figure 5.3 displays a portion of a 

nonlinear force-displacement (F-u) relation, represented by the thick curve, for a 

one-dimensional mechanical component which, in the current context, can be 

taken to represent a muscle fibre under maximal stimulation. Imagine the fibre to 

have a configuration corresponding to U1, and to be loaded by an applied force of 

magnitude Fa. The intersection of the lines for constant U1 and Fa is not located on 
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Figure 5.3: Multiple equilibrium configurations illustrated for the case of a general 
non-linear function. 

the force-displacement curve, and it does, therefore, not constitute an equilibrium 

configuration. There are two possible equilibrium configurations corresponding to 

the displacements U11 and U1. However, only the equilibrium configuration 

corresponding to U111 is physically indicated, because the higher internal force F, 

overcompensates the applied force, Fa, and leads to a decrease in length and 

smaller values of U. Use of the iterative Newton-Raphson method to search for an 

equilibrium configuration 
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un+1 = Un - F. (U) - Fa 

F'f(U) 

F'f(U) = 
dU 

dF.(U) 

u=Un 
(5.23) 

will result in a convergence to U instead of U111 when the solution process is 

started from U1. The desired solution can, however, be obtained by using the 

absolute value of the force derivative in the denominator of Equation 5.23. 

un+1 = Un - F(U) - F 

(F'f(U)I u=Un 
(5.24) 

In accordance with the considerations above, a matrix norm is defined, I I [Ke] I I 

by transforming [K°]to diagonal form with the transformation matrix [T], taking the 

absolute values of the diagonal matrix elements, and transforming the resulting 

matrix back by the inverse transformation, [T] 1: 

fl [K°] II = [T] I [TJ_l[Ke][T] I [T] (5.25) 

The modified element stiffness matrix is subsequently passed on to the main finite 

element routines for incorporation into the global stiffness matrix. 
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5.2 The global Finite Element Muscle Model  

A general presentation of the typical finite element muscle models used for 

performing the simulations in subsequent chapters is given below. All parameter 

values indicated will be valid for the remainder of this thesis, except where stated 

otherwise. 

The finite element muscle models (Figure 5.4) are generated as plane strain two-

dimensional models using fibre tissue elements (small triangular regions in Figure 

5.4) and tendon sheath elements along the upper and lower edges of the 

geometries. Each tissue element consists of two superimposed elements: an 

isotropic fluid-like element representing the muscle tissue fluid matrix and an 

anisotropic custom element representing the muscle fibre characteristics. Tendon 

sheath elements are represented by large deflection spar elements. As a 

consequence of the plane strain assumption, no thickness changes of the muscles 

will occur. The models are taken to represent the mid-section of a muscle which 

contains the line of action of the muscle. Fibres are assumed to run within the 

model plane. Results, such as the total muscle force for example, have to be 

interpreted as "per unit thickness" information. 

Figure 5.4 displays two different geometries; a trapezoidal geometry at the top for 

which the results can be compared directly to those in Chapter 3, and a more 

involved geometry at the bottom, whose shape approximates the lateral cross 

section of the (cat) medial gastrocnemius muscle. As displayed, the geometries 
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Figure 5.4: Finite element muscle model geometries (not to scale) and finite 
element mesh. 
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Figure 5.5: Finite element muscle model geometries (to scale). 
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represent the reference and stress free state. While the geometry at reference 

configuration is outlined by straight line segments, restrictions regarding the 

deformed geometry are made only to the extent of suitable boundary conditions. 

Figure 5.5 provides the exact dimensions of the geometries to be analyzed. 

The trapezoidal geometry (TG) is defined by a lower tendon sheath length of 8 cm, 

the vertical heights of 0.7 cm at the left and 0.9 cm at the right. These dimensions 

result in a muscle cross sectional area of 6.4 cm2 Tendons are assumed to attach 

at the lower left and upper right hand side of the tendon sheaths, but they are not 

part of the model. The muscle length, which is defined by the length of the line 

connecting the two tendon attachment sites, is 9.6 cm. Muscle fibres run at an 

uniform angle of 300 relative to the lower tendon sheath. The triangular muscle 

tissue elements are generated so that their edges form straight lines from lower 

to upper tendon sheath at three locations within the muscle, which coincide with 

the general fibre direction. The muscle boundary lines at the right and left are also 

coincident with the fibre direction. The lines which are coincident with the fibre 

direction facilitate the tracking of the changing fibre directions during muscle 

deformations. 

The medial gastroctemius geometry (GG) at the bottom of Figure 5.5 can be 

divided into the "head" section at the right hand side and the "neck" section at the 

left hand side. For the model generation, the neck part is extended all the way to 

the right forming a parallelogram, and supplemented by a triangular region at the 
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bottom right to form the muscle head. The top parallelogram region has a 

horizontal length of 6.5 cm and a vertical height of 0.5 cm. The bottom triangular 

region at the right extends a vertical distance of 0.5 cm below the parallelogram 

and intersects the bottom line of the parallelogram approximately at half-length. 

The right hand edge of the triangular region, which coincides with the fibre 

direction in that region, is adjusted so that fibres form an angle of 300 with 

adjoining tendon sheaths within the entire geometry. Tendon sheaths run along the 

entire boundaries at top and bottom. Tissue elements are again generated in such 

a way that element edges form straight line segments coinciding with the fibre 

direction. In the head section, the fibre direction changes abruptly as one moves 

from the bottom to the top tendon sheath. Tendons are assumed to attach at the 

top left and at the bottom right. The muscle length is 8.1 cm and the muscle cross 

sectional area is 4.1 cm2. 

Material property values are set to A = B = 0.125 N/cm2, v = 0.4995 

(Equation 4.4), and I = 25 N/cm2 (Equation 4.9). From Yamada [1970], a tendon 

sheath stiffness of 1200 N/cm2has been obtained by taking the initial slope of the 

stress strain relation for cat tendinous tissue. This translates into tendon sheath 

spar element specific constants of E•A = 1200 N, with E being the Young's 

modulus and A the spar cross sectional area. It is a natural consequence of the 

current modelling approach that tendon sheath elasticities can be incorporated into 

the model. The tendon sheath elasticity chosen leads to typical tendon stretches 

between 4% and 5% for maximum muscle forces. 
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For the simulations, the model boundary conditions rigidly fix the left hand tendon 

attachment point, while the right hand tendon attachment point is moved (typically 

along the line of action of the muscle). Thus, the left attachment point may be 

identified with the muscle origin and the right attachment point with the muscle 

insertion. Two different analysis protocols will be followed. According to the first 

protocol, both tendon attachment points are initially held fixed, while the muscle 

stimulation parameter, ®, is gradually increased from 0 to 1. Subsequently the fully 

stimulated muscle model is lengthened and shortened. Following the second 

protocol, the muscle is stretched without stimulation (® = 0) beyond the active 

range of the fibres, next, the stimulation is turned on (€ = 1) and, finally, the 

muscle is shortened as far as possible. All muscle tissue elements of the model 

are always uniformly stimulated. 

Ansys Version 4.3, the finite element package used for performing the analysis, 

has the deficiency that the custom elements themselves cannot be made visible 

on graphical displays. Consequently, no stress plots could be obtained for the 

muscle tissue as generated. However, stress and nodal force plots are produced 

for the tissue matrix element by themselves. The matrix stresses will be of interest, 

because they reveal how the muscle structure works based on hydrostatic 

pressure within the muscle tissue fluid matrix. The nodal force plots will give an 

indication as to where and how the muscle fibre component and the muscle fluid 

component interact. 



Chapter 6 

Stress State, Intra-Muscular Pressure and 
Global Equilibrium 

Intra-muscular pressure has been experimentally determined by Petrofsky and 

Hendershot [1984] to be 2.3 N/cm2 for the cat medial gastrocnemius muscle, and 

by Often [1988] to be 13.3 N/cm2 in the toad gastrocnemius muscle; the respective 

pressure values differ by a factor of five. Theoretical considerations put the 

pressure for pennate muscles at 0 N/cm2 [Benninghoff and Rollhäuser 1952, Gans 

and Bock 1965, Gans 1982], 1 N/cm2 [Heukelom et al. 1979], and 13 N/cm2 [Often 

1988]. In the context of the current continuum model, intra- muscular pressure can 

be explored as part of the general stress state within the muscle. Different 

pressure levels can be considered to be reasonable, depending on the point of 

view. With respect to experimental results, the question arises, which stresses are 

actually measured in these experiments. 
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The particularities of the muscle structure in combination with the mode of loading 

will be shown to have distinctive consequences on the global equilibrium of the 

structure. 

A point of caution needs to be made: the stress state in the muscle structure 

hinges on intricate interdependencies of global deformations, boundary conditions 

and boundary effects. In order to make specific arguments below, these complex 

interactions need, at times, to be simplified. They should, however, be kept in 

mind. 

At present, two assertions in muscle mechanics, which have been implemented 

into the current continuum model, can be considered to be undisputed: (a) under 

stimulation, muscle fibres generate a tensile force align.ed with their length axis, 

and (b) muscle tendon sheaths have a negligible bending stiffness. Associated with 

observation (a) is the common understanding that fibres are pulling on the tendon 

sheath. 

Figure 6.1 illustrates the general effects of a distributed load on the curvature of 

a short tendon sheath segment, which is assumed to have no bending stiffness at 

all. The muscle tissue is imagined to be located below the tendon sheath element 

and its action on the tendon sheath element has been decomposed into distributed 

loads representing the normal and shear stress components. T represents the 

tensile force acting on the tendon sheath segment in tangential direction. The 
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Figure 6.1: Tendon sheath curvature in relation to applied loads. 

relation between the radius of curvature, p, the distributed load, p, and the tension, 

T, is given by the following expression: 

P 
P1 

(6.1) 

A net pulling action by the muscle tissue on the tendon sheath (Figure 6.1, top) • 

would result in a concave tendon sheath curvature. Clearly, this type of tendon 

sheath curvature is rarely observed on muscles, except, perhaps, for very small 

• regions adjacent to the muscle (tendon) attachment points. What is usually 

observed, are relatively flat tendon sheaths (i.e. they have a radius of curvature 

approaching infinity) or tendon sheaths with a convex curvature. This implies 

however, that the effect of the muscle tissue on the tendon sheath must be of the 
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nature of pure shear stresses (Figure 6.1, middle) or a combination of shear 

stresses and pushing stresses (Figure 6.1, bottom), the latter being completely 

counterintuitive with regard to muscle fibres with an exclusive pulling action. 

Figure 6.2 illustrates how equilibrium can be achieved locally in the context of the 

current constitutive model by inducing a pressure in the matrix part of the muscle 

tissue. For the following argument, let us assume that we consider the stress state 

of a muscle tissue volume element which is located directly beneath the top tendon 

sheath and removed from the tendon sheath end points for the gastrocnemius 

muscle geometry displayed at the bottom of Figure 5.4. Let us also assume-that, 

for the stimulated muscle, the tendon sheath radius of curvature is infinite at this 

location (flat tendon sheath), and that the fibre direction forms an angle of 45° with 

the tendon sheath orientation. 

The current constitutive model considers muscle tissue to be a superposition of an 

incompressible fluid matrix part, and a fibrous part. The stress state associated 

with the fibrous part only, is indicated for the volume element at the top-left in 

Figure 6.2 (of 1,of 11 = 0), where two of the edges of the volume element are in 

parallel with the local fibre direction. This stress state is taken as the base stress 

state to form Mohr's Circle at the bottom left of Figure 6.2. For a volume element 

at the same location but with two of its edges in parallel to the tendon sheath (top, 

second from left), the analogous stress state is arrived at by the appropriate stress 

tensor transformation (dashed vertical line in Mohr's Circle, bottom left). The - with 
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Figure 6.2: Stress state for a volume element adjacent to the tendon sheath. 

respect to the tendon sheath orientation - oblique fibre tensile stresses are thus 

resolved into their normal (a1 = af 2) and shear (zr) components. 

For the current assumption of a flat tendon sheath with no bending stiffness, the 

discussion above has shown that no normal stress components can be present. 

To compensate for the normal stress components, the tissue matrix part must, 

therefore, be put under compression (m1 = m2 = -c f 1)' as indicated in Figure 6.2 

(top, third from left, and bottom left). The matrix stresses take on the form of a 

hydrostatic pressure due to the fluid character of the matrix part. The superposition 
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of the tissue matrix part and the tissue fibrous part results in a pure shear stress 

state (;) next to the tendon sheath (Figure 6.2, top right, and bottom right). In 

summary, matrix hydrostatic stresses will develop in order to achieve local 

equilibrium; on the other hand, taking the matrix and fibrous part together, no 

normal stresses are imparted on the tendon sheath. 

Let us in the current context define the fibre angle of pinnation from a local 

perspective as the angle between the fibre direction and the tendon sheath 

orientation. If the angle of pinnation is not equal to 45°, a more general stress 

state will result compared to the pure shear stress state above. Still, the matrix 

hydrostatic pressure will have to adjust in such a way as to cancel the normal 

stress components induced by the fibrous part. The magnitude of the shear 

stresses acting on the tendon sheath over the tendon sheath length determines 

the force acting at the tendon sheath end (or attachment) point. These shear 

stresses are highest under an angle of pinnation of 45°, if the fibre stresses are 

taken to be independent of the angle of pinnation. This is conform with the 

observation in Chapter 3, where the highest muscle force was observed in the 

case of a muscle with parallel tendon sheaths having an angle of pinnation of 45° 

(to be precise, this angle of pinnation has to be reached during the muscle 

deformation, when the Cauchy fibre stress peaks). 

Clearly, for the current model the tendon sheaths will not remain absolutely flat 

along their lengths. The curvature and matrix pressure depend on the global 
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muscle deformation and boundary effects. Figure 6.3 displays the principal 

stresses of the muscle tissue fluid matrix for an isometrically held muscle under 

stimulation. The vector plot is shown for the undeformed muscle geometry, and 

only the left section of the gastrocnemius geometry is shown; the vertex at the top, 

left hand side, corresponds to the muscle attachment point. The star shaped vector 

entities indicate the matrix pressure, with longer vectors indicating relative higher 

stresses. Matrix pressure is developed -'in the region where the top and bottom 

tendon sheaths overlap along the muscle length axis. Close to the muscle 

attachment point, almost no matrix pressure is present. Consequently, the tissue 

actually pulls on the top tendon sheath in the normal direction, and the tendon 

sheath experiences a concave curvature, which will become apparent in 

deformation plots shown in subsequent chapters. 

Figure 6.3: Hydrostatic pressure within the muscle tissue fluid matrix. 
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The considerations made in connection with Figure 6.2 can be extended by 

including the effects of curvature in relation to the tendon sheath tensile forces. 

However, a more fundamental consideration relates to the question of what type 

of global curvature the tendon sheaths will undergo. Focusing on the active 

character of the fibres and considering the fibre stresses as the primary stresses 

for stimulated muscle, the matrix stresses can be considered as a reaction to the 

fibre stresses. Globally, there is no physical foundation for the reactions to be 

greater than the action. Therefore, the matrix compressive stresses are not 

expected to overcompensate for the - with respect to the tendon sheath - fibre 

normal stresses and to bring the tendon sheaths into a globally convex shape. 

What one can reasonably expect, and - in anticipation of the muscle simulations 

presented later - what will actually occur for the current muscle model, is that the 

muscle tissue matrix develops enough compressive hydrostatic pressure to prevent 

the tendon sheaths from being displaced towards each other. Tendon sheaths will 

remain close to being straight, not because of kinematicconstraints, but because 

of the mechanics governing the model. There is one notable exception to the last 

point: depending on the muscle model geometry, the whole muscle may become 

curved during muscle contraction, with one tendon sheath becoming convexly 

curved, the other concavely curved. However, during simulations with different 

muscle geometries, it has never been observed that both tendon sheaths 

experience a convex curvature. 
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As a consequence of the discussion above, we are left with the following 

observations: In order to achieve equilibrium adjacent to the tendon sheath, a 

compressive hydrostatic pressure is induced in the muscle tissue fluid matrix part. 

If there is no curvature in the tendon sheath, the matrix stress level depends only 

on the generated fibre stresses and the angle of pinnation. For example, an angle 

of pinnation of 45°, results in a matrix hydrostatic pressure of 50% of the fibre 

stresses, and the percentage value for an angle of pinnation of 25° is 17.8%. The 

hydrostatic matrix stress level is not dependent on the absolute muscle size. Due 

to the similarity of conditions along the central part of the tendon sheath, the matrix 

pressure remains very much the same along the tendon sheath length, with 

variations being due to changing angles of pinnation, fibre stresses, and tendon 

sheath radii of curvature. 

Assuming an active fibre stress of 25 N/cm2 and a fibre angle of pinnation of 25°, 

the matrix pressure will take on a value in the order of 4.5 N/cm2. Looking-at the 

integral muscle tissue (matrix and fibrous parts superimposed), and defining the 

pressure as p = - = - + + a3) , with o being the muscle tissue principal 

stresses, a pressure value of -3.8 N/cm2 is arrived at. 

The matrix pressure magnitude of 4.5 N/cm2 is far closer to the experimental 

values of 2.3 N/cm2 obtained by Petrofsky and Hendershot [1984], than to those 

obtained by Otten [1988], which are at a level of 13 N/cm2. There is, however, still 

a difference of a factor of two compared to the values given by Petrofsky. In the 
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experimental setting, the important question that may be asked is, which stresses 

are actually measured? The matrix hydrostatic pressure may not be directly 

accessible to experimental measurements, because of interference from the 

fibrous tissue constituents. Based on the considerations above, any pressure value 

between 4.5 N/cm2 and 0.0 N/cm2 may result from measurements (a negative 

pressure will certainly not be detected by a pressure probe), depending on the 

degree of coupling between tissue constituents. On the other hand, starting from 

the experimental values, conclusions might be drawn about tissue constituent 

coupling in the context of a more detailed constitutive theory. 

The assertion of Benninghoff and Rollhäuser [1952], and Gans and Bock [1965] 

that there is no reason for intra-muscular pressure to occur in pennate muscles, 

can be considered to be correct, if seen in the correct context. From their 

discussions, it appears that they are referring to the normal stress interactions 

between the muscle tissue and the tendon sheaths, which has here been labelled 

"distributed load" in conjunction with Figure 6.1. As demonstrated above, the 

muscle tissue interacts with relatively flat tendon sheaths predominantly by shear 

stresses. Incidentally, this observation gives the question of how muscle tissue 

behaves an additional complexion; if, for some reason, experiments related to the 

exploration of muscle tissue behaviour had been easier to perform on entire 

muscles than on single muscle fibres, our understanding of how muscle tissue 

reacts to stimulation might well be that it produces shear stresses on the tendon 

sheath, rather than a pull in fibre direction. 
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Often [1988] also started his arguments from the normal stress interactions 

between muscle tissue and tendon sheaths, and equated this interaction with 

muscle pressure. Taking the tendon sheath curvature and tendon sheath tension 

into account, he arrived at stresses acting normal to the tendon sheath in the order 

of 13 N/cm2, which agreed with his experimental results. Referring to the 

discussion of Figures 6.1 and 6.2, this would result in fluid matrix pressures, which 

are even higher than 13 N/cm2. However, if the fluid matrix pressure is seen, in 

principle, as a reaction to the fibre stresses, it is not obvious how this high a 

pressure could be generated within a muscle. 

A very much simplified picture of the stresses acting on the muscle body when the 

tendon sheaths are removed by the method of sections, is shown in Figure 6.4 for 

the case of a muscle with parallel tendon sheaths. Whether the muscle tissue 

stresses are the result of a passive muscle stretch or that of internal stimulation, 

the main interaction between the muscle tissue and the tendon sheaths consists 

of shear stresses. While there are shear stresses at the top and bottom boundary, 

there are no stresses at the right and left end of the muscle, due to the free 

boundaries. Consequently, the moment generated by the shear stresses at the top 

and bottom boundaries are not compensated for, and the muscle body is not in 

equilibrium. 

Obviously, the real situation is far more complex, and the moment imbalance is 

counteracted by the structure through suitable deformations and stress 
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Figure 6.4: Shear stresses acting on the muscle body. 

redistributions. Still, the type of loading does impose exceptional demands on the 

muscle structure. This is best illustrated by the following example, where the model 

behaviour turns out to be catastrophic. The example also illustrates that the 

geometrically nonlinear theory of deformation underlying the current modelling 

approach is not a mere academic exercise. 

Figure 6.5 displays muscle deformations for a muscle with parallel tendon sheaths, 

which has been modelled using finite elements based on the linear theory of 

deformation. In particular, the incompressibility of the muscle tissue is imposed by 

constraining the trace of the linear strain tensor to a value of 0. The formulation 

of these elements incorporates provisions for large deflections based on the 

"Updated Lagrange" technique. All material properties have been chosen in 

correspondence to those detailed in Chapter 5. 

The model geometry and the finite element mesh are displayed at the top of 

Figure 6.5. Displacement constraints are applied at the lower left and upper right 
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Figure 6.5: Muscle model behaviour based on the geometrically linear theory. 

vertices. Figure 6.5, second from top, shows the response of the structure to a 

passive stretch when no elements are incorporated into the model which represent 

the tendon sheaths at the upper and lower boundaries of the structure. While the 

deformation cannot be considered to be physically accurate on account of the 

elements being based on the linear theory, they do appear quite reasonable. 

Displacements are shown to scale with the original muscle geometry indicated by 

the solid lines forming a parallelogram. Stresses (not shown) flow directly between 

the points of constraint, and the material is in essence stretched uniaxially. 
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The picture changes dramatically when the same stretch is applied to the previous 

structure, which now includes spar elements to represent the tendon sheaths 

(Figure 6.5, third from top). In this case, the muscle volume is put under shear with 

no corresponding shear stresses being present at the free left and right hand 

model boundaries. In order to achieve equilibrium, the whole muscle collapses. 

Incidentally, the incompressibility constraint according to the linear theory is fully 

observed. A similar behaviour occurs for the same structure when it is isometrically 

held and when an internal load corresponding to muscle tissue contraction is 

applied (Figure 6.5, bottom). 

The muscle model presented in Chapters 4 and 5 overcomes the deficiencies of 

the linearized theory. However, it cannot eliminate the peculiar loading of the 

structure, which is part of the problem definition. The most basic muscle geometry, 

that is a muscle with parallel tendon sheaths, which has been used extensively in 

Chapter 3 and by other authors, has the most difficulty in establishing equilibrium. 

Therefore, the trapezoidal geometry described inChapter 5 will be used in the 

following chapters. In general, an asymmetric geometry has more ways in adapting 

to the imposed loading by asymmetric deformations. 

In order to give an impression of how equilibrium is established for the entire 

muscle structure, Figure 6.6 displays iso-pressure lines for the muscle tissue fluid 

matrix on the gastrocnemius geometry under an isometric contraction. While the 

pressure values remain relatively uniform in the midsection, rapid changes in 
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Figure 6.6: Lines of constant pressure in the muscle tissue fluid matrix. 

pressure magnitudes occur at the two muscle ends, especially close to the lower 

left vertex, which corresponds to the non-constrained lower tendon sheath end. As 

a whole, the iso-pressure curves do not have the smooth appearance of those 

presented by Often [1988]. 

Another aspect of global equilibrium is revealed by looking at the nodal reaction 

forces on the boundaries corresponding to the tendon sheath locations. Figure 6.7 

displays these forces with vectors of proportional scaling for the muscle fluid matrix 

elements. Superimposed on the large scale change in force magnitude is a wavy 

change of smaller magnitude with relative high periodicity (this is seen easiest 

when looking at Figure 6.7 from the side). This aspect has the effect that the 

tendon sheaths become wrinkled during model simulations when the stimulation 

is taken off too suddenly. Within the current static model, the wrinkling of the 
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Figure 6.7: Nodal reaction forces for nodes along the tendonal boundaries. 

tendon sheaths corresponds to a "buckling" condition and results in a non-

convergence of the model. Wrinkling of tendon sheaths under rapid unloading has 

been observed by Dr. Andy Hoffer at the University of Calgary on the cat 

gastrocnemius muscle [private communication]. 



Chapter 7 

Finite Element Model Simulations: 
Trapezoidal Muscle Geometry 

In this chapter, the results of finite element muscle model simulations for the 

trapezoidal muscle geometry described in Chapter 5 will be presented and 

discussed. The trapezoidal geometry is suitable to be treated with the theory 

introduced in Chapter 3. Consequently a direct comparison between the Straight 

Line Model (SLM) and the Continuum Model (CM) will be possible. It will become 

apparent that the two modelling approaches result in significant differences as far 

as the muscle force-length curves and the muscle deformations are concerned. 

In order to disassociate the influence of the muscle geometry changes and the 

effect of the nonlinear active fibre force-length relation during muscle deformations, 

an initial simulation will be based on constant active fibre forces. Subsequently, the 

fibre force-length profiles number 1 and 2, which have been introduced in Chapter 

4, will be included into the model. Finally, the base geometry will be modified 
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slightly, to include changing muscle fibre orientations within the muscle volume at 

reference configuration; the intent is to study the behaviour of a muscle model, 

where the length axes of the muscle fibres in reference configuration form a 

S-shaped curve. For this geometry, a comparison to the SLM will not be possible. 

The muscle geometry and deformation plots presented in this chapter are not 

scaled uniformly. However, an outline of the muscle geometry at reference 

configuration is always superimposed on displacement plots, in order to provide 

a point of reference. Deformations are displayed to scale. The material parameters 

for the tissue fluid matrix constituent and the tendon sheath stiffness are chosen 

in accordance with Chapters 4 and 5 (matrix material constants, A = 

B = 0.125 N/cm2, v = 0.4995, tendonal stiffness, 1200 N/cm2, and the active fibre 

stress, I = 25 N/cm2). 

71 Constant Fibre Force  

For a given muscle geometry, the muscle force-length curve is essentially 

influenced by two components which are (a) the fibre stretch ratio dependent 

nonlinear fibre force-length relation, and (b) the change in fibre orientations as well 

as geometry changes during muscle deformations. In order to separate the two 

effects, the simulations in the current section assume a fibre length independent 

• active fibre force. In the context of the CM this is achieved by assuming a strain 

independent active first Piola Kirchhoff stress of 25 N/cm2, where this stress is 

measured per unit area perpendicular to the fibre direction at the muscle reference 
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configuration. Furthermore, no passive fibre characteristics are included in the 

current model. Therefore, the muscle forces resulting from a passive muscle 

stretch are associated with the resistance to deformations of the muscle tissue 

matrix part only. 

Figure 7.1 presents the muscle geometry in the reference configuration and 

selected deformed geometries for the current simulation. Within the initial geometry 

(top), all muscle fibres are assumed to run straight between the tendon sheaths 

at the top and bottom; the fibre directions are in parallel to the two muscle 

boundary lines at the right and left. Furthermore, the edges of the triangular finite 

elements form straight lines at three locations inside the muscle volume which 

coincide with the fibre direction. Throughout the muscle, the fibre stretch ratio is 

equal to X. = 1 in the reference configuration. The muscle is constrained at its 

origin at the lower left vertex, and stretched or contracted by displacing its insertion 

at the upper right vertex in the direction of the line of action of the muscle. Initially, 

a passive stretch is applied, that is, the muscle is elongated without any fibre 

stimulation (the stimulation parameter,®, introduced in Chapter 4 is set to. 0). 

Subsequently, full muscle stimulation is applied (® = 1) and the muscle is allowed 

to contract in incremental steps. as far as possible. 

In the most stretched configuration, differences in the deformations of the 

unstimulated and stimulated muscle become apparent. While there is a 

pronounced bend along the tendon sheaths in the unstimulated muscle, the tendon 
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Figure 7.1: Muscle geometry and deformations for constant fibre force. Displayed 
are the initial muscle geometry (top), the geometry after a passive stretch (second 
from top), stretched and stimulated (third from top), and fully contracted (bottom). 

sheath shapes become more regular in the stimulated case. In the latter case, 

both tendon sheaths are straight over large portions of their lengths, with concave 

tendon sheath curvatures close to the muscle attachment locations and at the free 

tendon sheath ends. Furthermore, the tendon sheaths show an elongation in the 

stimulated configuration. This can be seen by comparing the positions of the 

unconstrained tendon sheath ends for the stimulated and unstimulated 

configuration to the undeformed muscle geometry, shown by solid lines 
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superimposed to the deformed geometries. The difference in geometries is 

important from an experimental point of view: the active muscle force-length curve 

for a muscle is usually determined by measuring muscle forces for the stimulated 

(total muscle force) and unstimulated muscle (passive muscle force) at different 

muscle lengths. The differences of the total and passive muscle forces for 

corresponding muscle lengths are identified with the length dependent active 

muscle force. The respective muscle forces are then extrapolated to the muscle 

fibre level and conclusions are drawn about muscle fibre characteristics. It is of 

importance to realize that, even if the overall muscle length is kept constant, the 

fibre stretch ratios or relative fibre lengths may be quite different in the stimulated 

and unstimulated configuration. Due to the fibre stretch ratio independent fibre 

force in the current analysis, the disparity between fibre stretch ratios in the 

stimulated and unstimulated configuration will not result in undue consequences. 

It will, however, have significant consequences for the simulations presented in the 

following sections which include a stretch ratio dependent fibre force. 

In the most contracted configuration (bottom of Figure 7.1), the entire muscle 

becomes slightly arched, with the upper, longer tendon sheath taking on a convex 

curvature, while the lower tendon sheath assumesa concave shape. Close to zero 

muscle force is reached at that configuration. While the SLM attains zero muscle 

force at fibre angles of pinnation of 900 measured relative to the lower tendon 

sheath, the CM maximum angle of pinnation is greater than 90° at the muscle 

origin. As can be observed, the fibre angles of pinnation vary considerably along 
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the muscle length axis with angles of pinnation being less than 900 over most of 

the muscle geometry. Fibres at the right and left muscle boundaries become 

notably curved; fibres removed from the boundaries, however, remain straight for 

all practical purposes (refer to straight lines coincident with the fibre directions in 

the central part of the muscle geometry). It can be concluded from the variations 

in fibre curvature and in fibre angles of pinnation that the strains and, 

consequently, the fibre stretch ratios vary significantly over the muscle body, which 

contrasts with the assumptions of uniform fibre deformations in the SLM. That the 

muscle does not globally reach angles of pinnation closer to 90° at minimum 

muscle length can be attributed to the small but finite elasticity included in the 

tissue matrix material description, and the counter-productivity of the fibres having 

an angle of pinnation of more than 90°. 

Figure 7.2 presents the muscle force-length curves resulting from the current finite 

element simulation. Considering the fact that the fibre description does not 

incorporate any passive components, the muscle force-length curve for the 

unstimulated muscle, indicated by "passive", reflects essentially the matrix 

resistance against deformation. The passive muscle force starts at a muscle length 

of 9.6 cm, which corresponds to the distance between muscle origin and insertion 

at muscle reference configuration. Model convergence is only obtained up to the 

end of the passive force curve shown. A stretch beyond the absolute muscle 

length of 11.4 cm results in finite element model instabilities. By contrast, the 

stimulated muscle can be stretched beyond this point, and the simulation has been 
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Figure 7.2: Muscle force length curves for muscle with fibre stretch ratio 
independent fibre forces. Unstimulated - "passive", stimulated - "total", difference 
of former - "active". 

broken off by choice at the end of the total muscle force curve shown. This 

indicates that the internal fibre forces stabilize the structure. The stretched 

configurations displayed in Figure 7.1 correspond to the passively attainable 

muscle length of 11.4 cm. A close to zero muscle force is reached for a muscle 

length of 8.3 cm. 

The difference of the total and passive muscle force curves is here defined and 

displayed as the active muscle force curve. A passive resistance of the muscle for 

shortened positions is expected. It is however not possible to obtain the muscle 
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passive force for shortened muscle configurations. "Pushing" the unstimulated 

muscle model to shorter lengths than resting length results very rapidly in unstable 

model performance. Also, the squeezed muscle geometry has only a remote 

similarity to the stimulated muscle geometry for the same overall' muscle length. 

If the passive force could be obtained, the total and passive muscle forces for 

corresponding muscle lengths would be related to completely different muscle 

configurations, which renders the derivation of an active muscle force-length curve 

based on the differenceof active and passive muscle forces at corresponding 

muscle lengths pointless. 

The active muscle force-length curve of Figure 7.2 is reproduced in Figure 7.3 and 

overlaid with the model predictions of the SLM for the current trapezoidal geometry 

(hollow squares) and for a similar muscle with parallel tendon sheaths (filled 

squares). All muscles to be compared have identical volume, equal lower tendon 

sheath length and angles of pinnation. At the muscle reference length of 9.6 cm, 

the muscle forces predicted by the CM and the SLM for the trapezoidal geometry 

practically coincide, with the CM actually producing a slightly higher force, which 

has to be attributed to the change in configuration between the stimulated and 

unstimulated muscle (the SLM maintains the unstimulated muscle geometry by 

definition). 

For stretched muscle configurations however, the CM muscle forces do not follow 

the SLM predictions corresponding to the trapezoidal geometry. Rather, the CM 
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Figure 7.3: Comparison of muscle force length curves. Results for trapezoidal CM 
indicated by solid line, trapezoidal SLM by hollow squares, and parallel tendon 
sheath SLM by filled squares. 

muscle force curve approaches the one resulting form the SLM parallel tendon 

sheath muscle predictions. The asymptotic force value for high muscle stretches 

is equal to /,-sin;-13 /,-sinao-13 = 100 N for the current CM and the SLM parallel tendon 

sheath muscle (with It = 8 cm, the lower tendon sheath length, ; = 30°, the 

reference angle of pinnation, and P = 25 N/cm2, the first Piola Kirchhoff active fibre 

stress magnitude). This force corresponds to the value which would be typically 

predicted for a fusiform muscle with a cross sectional area equal to the area 

perpendicular to the fibre direction in the current muscle geometry (the latter is 

commonly termed physiological cross-sectional area). 



150 

It follows from the preceding observations that the CM and SLM do behave 

differently. On the other hand, the agreement of force values at the muscle 

reference configuration and in the asymptotic limit reinforces the reciprocal 

confidence in the consistency of both models. 

For the shortened muscle the SLM muscle force curves corresponding to both 

geometries intercept the abscissa practically at the same location. The CM curve 

misses this abscissa interception by about 0.2 cm. In fact, the curve displays lower 

force values than both SLM curves throughout the muscle shortening interval. As 

has been pointed out before, part of this deficiency can be attributed to the passive 

tissue matrix stresses. However, recalling the discussion above and realizing that 

the CM does behave differently than the SLM, part of the force difference is due 

to a dissimilar deformation behaviour of the two models. In the current CM, local 

equilibrium has to be attained, a concept to which the SLM is completely oblivious. 

Reaching equilibrium imposes "constraints" regarding suitable deformations and 

corresponding stresses which may inhibit the capacity of force production external 

to the muscle. The distinctively different configurations of the current CM at low 

muscle lengths to those of the parallel or trapezoidal SLM at corresponding muscle 

lengths reveals that the latter would not constitute equilibrium configurations of the 

former. 
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7.2 Fibre Stretch Ratio dependent Fibre Force  

In contrast to the previous, model where the fibre forces were assumed to be 

independent of the fibre stretch ratio, the models presented below include stretch 

ratio dependent fibre forces. The fibre force profiles number 1 and number 2, 

which have been introduced in Chapter 4, will be used. These profiles differ from 

one another in the relative locations of their active fibre force peaks within the 

stretch ratio intervals for which there exist positive active fibre forces, as well as 

in the magnitude of the depression in the total (active plus passive) fibre force-

length curve for stretch ratios above unity (see Figures 4.2 and 4.3). 

7.2.1 Fibre Force Profile Number 1  

In agreement with Woittiez et al. [1984], the fibre force profile #1 incorporates a 

symmetric active fibre force-length relation. The passive component is defined for 

stretch ratios greater than 1 and the combined (active plus passive) force profile 

has a local minimum at stretch ratios greater than 1 amounting to 84% of the 

active fibre force peak. 

Figure 7.4 presents a sequence of muscle model deformations, starting, at the top, 

with the fully stretched configuration and ending, at the bottom, with the contracted 

muscle. The fully stretched configuration corresponds to a muscle length where the 

fibres are stretched beyond their active range (11.4 cm), while the contracted 



152 

4py4& 4. 

Figure 74: Deformations of a muscle model which is based on fibre stretch ratio 
dependent fibre forces. Stretched configuration at the top, contracted configuration 
at the bottom. 
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configuration corresponds to a muscle length of (9.0 cm). The muscle length at 

reference configuration is 9.6 cm. 

The configurations at which the fibres produce a significant active force (second 

from top to second from bottom) show an extrusion of the muscle tissue at the 

muscle ends with ensuing fibre curvature, where this effect is primarily visible at 

the right hand boundary. This extrusion is not noticeable for the most stretched 

configuration (top) and barely perceptible for the most contracted configuration 

where the muscle force is close to zero. 

In general, muscle fibres removed from the muscle end sections remain straight 

during muscle deformation, but the fibre directions vary slightly along the muscle 

length axis. The configuration displayed at the middle of Figure 7.4 constitutes an 

exception to the observation relating to straight fibres: close to the lower tendon 

sheath, fibres removed from the muscle ends become slightly curved with angles 

of pinnation assuming lower values compared to the predominant fibre directions. 

This effect becomes visible by holding a straight edge to the reference lines 

coinciding with the fibre directions inside the muscle. In a dissected cat 

gastrocnemius muscle, muscle fibres can be observed to form a S-shaped curve 

between the tendon sheaths. While the fibre curvature observed above for the 

current model assumes the corresponding tendency, it is too small to draw 

conclusion about the ultimate purpose of fibre curvature in physical muscles. As 
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far as the model is concerned, the curvature results from the requirement of local 

and global equilibrium of the structure. 

Tendon sheaths do remain remarkably straight, with a very slight, globally convex 

curvature for the top and bottom tendon sheath (again, placing a straight edge on 

the deformation plots in Figure 7.4 clarifies this point). Except for the translation 

of the top tendon sheath during muscle contraction, the tendon sheaths deform 

only slightly. This contrasts with experimental observations, where the tendon 

sheath does undergo noticeable deformations after stimulation is applied, which 

is even true for an isometric contraction. 

While the tendon sheaths do not undergo significant deformations perpendicular 

to their length axes, they do stretch during model contraction. This can be seen 

immediately by comparing the deformed geometry to the outlined geometry at 

reference configuration in Figure 7.4, second from bottom. The tendon stretch 

increases linearly over the tendon sheath lengths, with the highest stretch being 

located next to the muscle attachment sites. A visual representation of this fact is 

given in Figure 7.5, where the relative magnitude of the tendon sheath strain over 

the tendon sheath lengths is indicated by the lines perpendicular to the tendon 

sheaths. 

The muscle force-length curves for the current simulation are displayed in 

Figure 7.6. The passive and total force-length relations, which are obtained directly 

from the finite element analysis, are indicated by solid lines. The active force-
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Figure 7.5: Tendon sheath strain. Horizontal lines represent top and bottom 
tendon sheaths, vertical lines indicate relative tendon sheath stretch. 

length curve, which has been obtained by taking the difference of the former two 

curves, is shown by the dashed line. 

For the discussion below, it will be helpful to introduce the following conventions: 

Referring to the active muscle force-length curve, the section having a positive 

slope will be called the ascending limb, and the section having a negative slope 

the descending limb. As for the total muscle force-length curve, the section 

merging into the active muscle force-length curve will be termed active branch, and 

the one merging into the passive muscle foráe-length curve passive branch. 

On examining the total muscle force curve, it is striking that this curve does not 

feature a notable decrease in force magnitude between the active and the passive 

branches. While there is a small force decrease, the two branches are joined with, 

what could be called, a plateau region. This contrasts with the predictions of the 
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Figure 7.6: Muscle force length curves for muscle with fibre stretch ratio 
dependent fibre force (symmetric active force profile). Unstimulated - "passive", 
stimulated - "total", difference of former - "active". 

SLM which show a distinctive depression in the muscle force-length curve in that 

region (see Figure 3.11). The total force magnitude in the plateau region is 

significantly higher than the active muscle force peak. This is associated with the 

fact that the active muscle force peak is located at a muscle length for which a 

passive muscle force is already manifest. 

While model convergence typically results within three iterations on the passive 

muscle force-length curve as well as on the active and passive branches of the 

total force-length curve, convergence in the plateau region takes up to the order 
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of twenty iterations. The implications of this observation are that equilibrium 

configurations in the plateau region are not very sharply distinguished from 

neighbouring configurations; in other words, the equilibrium is indifferent in the 

plateau region. 

The emergence of a plateau region can be examined in the context of the 

nonlinear fibre force-length relation whose particular features cause intrinsic 

difficulties to the structure in establishing equilibrium. Figure 7.7 displays a force 

displacement relation which is similar to the current muscle fibre characteristics. 

On applying a slowly increasing load to a component with such a behaviour, the 

displacement increases gradually up to the local maximum characterized by a 

horizontal, tangent (the solid line of the graph is followed). Any further force 

increase results in an abrupt change in displacement along the dashed line, that 

is, a jump ensues to the displacement value at which the previous force level is 

attained on the right hand branch of the force displacement relation ("snap-

through" effect). A similar behaviour occurs on unloading the component, except 

that the "snap-through" takes place when a force level corresponding to the local 

minimum in the graph is reached. 

If the displacement instead of the applied force is increased or decreased 

gradually, the above snap-through effect is absent. For the current model, the 

displacement of the muscle insertion is imposed and the muscle origin is fully 

constrained. While the muscle length is controlled, the internal deformations are 
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Figure 7.7: Force displacement history for a component having a nonlinear force 
length relation with inflection point. 

free to adjust themselves according to the requirements of local and global 

equilibrium. It is conceivable, and will actually materialize in a case treated further 

below in this chapter, that effects similar to the snap-through behaviour discussed 

above will take place within the overall muscle structure. In contrast to the 

schematic one dimensional case above, this does not imply a jump in one specific 

characteristic length parameter, but the realization of multiple equilibrium 

configurations within the neighbourhood of a specific configuration, which may be 

a finite "distance" apart form one another. Furthermore, there is no guarantee for 

stability of these equilibrium conditions. 
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In the current model, the "snap-through" tendency is minimized by globally varying 

tissue deformations which equalize the muscle force within the plateau region. The 

varying degrees of muscle tissue deformations within the muscle body are readily 

apparent by looking at the configuration in Figure 7.4 which is placed third from the 

top. Boundary fibres are extruded. Consequently, they have higher stretch ratios 

than those located at the interior of the muscle. In fact, the boundary fibres are 

well on their passive branch of the total fibre force-length curve; the passive fibre 

forces limit the degree of tissue extrusion. They contain the muscle tissue and 

insure its form stability. If this support function of the boundary fibres is eliminated 

by taking the passive fibre force component out on the constitutive level, model 

simulations diverge. The tendon elasticity also increases the stability of the 

structure. Simulations with significantly increased tendon stiffness values showed 

an increased p.ropensity for unstable muscle model behaviour in the plateau 

region. 

For a more detailed discussion and in order to compare the predictions of the 

current CM and of the SLM, Figure 7.8 shows the active and passive muscle 

force-length curves for the different models in superposition. The solid curves 

correspond to the CM results, and the dashed lines represent SLM results for the 

current trapezoidal muscle geometry. The hollow squares indicate SLM results for 

a similar muscle geometry with parallel tendon sheaths whose volume, lower 

tendon sheath length and angle of pinnation are equal to the current trapezoidal 
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geometry. It should be reiterated that the CM passive and total muscle force-length 

curves result directly from the finite element analysis, while the CM active muscle 

force-length curve is obtained indirectly. The latter is obtained by subtracting total 

and passive muscle forces at corresponding muscle lengths; while this operation 

is performed for equal overall muscle lengths, the configurations for the stimulated 

and unstimulated muscles at these lengths are different in general. 

Muscle Length 

Figure 7.8: Muscle force length curves for muscle with fibre stretch ratio 
dependent fibre force (symmetric active force profile). Solid lines - CM results, 
dashed lines and hollow squares - SLM results. 

The last section, based on the assumptions of constant fibre force, revealed a 

similar behaviour between the current trapezoidal muscle geometry and the 
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comparable parallel tendon sheath geometry for increased muscle stretches. Under 

the current assumptions of fibre stretch ratio dependent fibre forces, this 

correspondence has disappeared; the CM results are much closer to the 

trapezoidal SLM results (dashed lines) than to those of the parallel tendon sheath 

SLM results (hollow squares). Focusing on the two SLM active force-length curves, 

it is interesting to observe that they differ quite significantly in their muscle peak 

forces and active muscle ranges, even though the muscle geometries are very 

similar. This sensitivity on the muscle geometry should be kept in mind for the 

discussion below in the light of the differences in configurations for the stimulated 

and unstimulated muscle. 

Comparing the CM and SLM passive muscle force curves for the trapezoidal 

geometry, the CM force curve initially exhibits somewhat higher force values, while 

forces increase far less rapidly for higher muscle stretches. As expected, both 

passive force curves have their origin at the muscle reference length of 9.6 cm. 

The initially higher CM passive forces are due to the different mode of deformation 

compared to the SLM. The CM mode of deformation leads right away to tendon 

stretches which result in additional passive forces. However, it will be 

demonstrated below that it is also the influence of the tendon sheath elasticities 

which cause the passive forces to increase less rapidly with increasing muscle 

stretches. The muscle model by Often [1988] does include tendon sheath 

elasticities. In his model, the effect of the tendon sheath elasticities shifts the 

passive force curve slightly to higher muscle length. However, no changes in the 
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general appearance of the curve (e.g. here the observed decrease in the slope) 

are apparent. 

Comparing the CM and SLM active muscle force curves, the CM force curve 

appears to be shifted to higher muscle lengths with a slightly lower peak force, a 

larger range, and an overall smaller slope of the ascending limb. The descending 

limb runs out more gradually. An element of virtual agreement between the two 

curves consists in the muscle force - muscle length integral, which is a measure 

of the work a muscle is able to perform over a complete active contraction (this 

work is in addition to the work regained from elastic energy storage during the 

passive stretch of the muscle). The CM integral evaluates to about 97% of the 

SLM integral, with the latter being the theoretical limit because the theory 

underlying the SLM does not allow for any losses and/or elastic energy storage 

within the muscle structure. In principle, the differences between the CM and SLM 

behaviour above conform with observations made by Often [1988] in relation to his 

model. Compared to Often, however, the differences observed here are far more 

significant in magnitude. 

All the differences in the muscle force curves mentioned above follow from the 

inclusion of elastic tendon sheaths and from the absence of global kinematic 

constraints in the CM. Starting with the unstimulated muscle in reference 

configuration (reference muscle length, 9.6 cm) and stimulating the muscle while 

holding it isometrically results in a muscle deformation whose primary feature is 
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schematically depicted in Figure 7.9. The tendon sheaths become stretched and 

increase in length. This results in the muscle fibres assuming an increased angle 

of pinnation and a decreased length (dashed lines in Figure 7.9). A second effect 

is associated with the increase in absolute tendon sheath lengths; as the tendon 

sheaths become longer, they move closer together in order to maintain the original 

muscle volume. The tendon sheaths have to approach one another even further 

in order to compensate for the muscle tissue which is extruded at the muscle 

ends. The reduced distance between tendon sheaths results in a further decrease 

in muscle fibre lengths. 

7 
.7 
7 

Figure 7.9: Effects of tendon stretch on fibre angle of pinnation and fibre length. 

Comparing the isometrically stimulated configuration (Figure 7.4, second from 

bottom) to the corresponding reference configuration (Figure 7.1, top) and 

considering the muscle fibre at muscle mid-length reveals that the fibre has 

shortened from a stretch ration of 2 = 1.0 to about ? = 0.8 and that its angle of 
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pinnation (measured against the lower tendon sheath) has increased from 300 to 

about 370 Both effects combined tend to decrease the muscle force at this muscle 

reference length of 9.6 cm, which explains the difference in force magnitudes in 

Figure 7.8. between the CM and SLM predictions. Realizing that the majority of the 

muscle fibres in the stimulated configuration take on a stretch ratio substantially 

below 2 = 1.0 explains the offset between the two active force-length curves; the 

CM's capacity to shorten from muscle reference length is decreased compared to 

the SLM, where the muscle fibres, by definition, maintain a stretch ratio of ? = 1.0 

for the stimulated condition. 

Under a passive muscle stretch, the general effects of tendon sheath stretch, that 

is, a fibre rearrangement which results in smaller fibre lengths and higher angles 

of pinnation compared to the SLM, will also occur. Consequently, the CM passive 

muscle force curve is less steep than SLM curve. 

The input fibre force-length relation places the passive fibre force onset coinciding 

with the active fibre peak force. On the muscle level, the onset of the passive force 

and active peak force are offset considerably as a consequence of the tendon 

sheath elasticities and the absence of global displacement constraints. 

Consequently, appropriate caution should be applied when inferring fibre 

characteristics from experimentally determined muscle behaviour. 

The lower value of the CM active force peak compared to the SLM peak force in 

Figure 7.8 results from a loss of synchronization in the fibre stretch ratios. The 
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primary effect of tendon sheath stretch, which is schematically depicted in Figure 

7.9, causes a global change in relative fibre lengths and angles of pinnation. 

However, these changes are uniform within the muscle volume with the result that 

the muscle fibres are still synchronized. The muscle peak force, while occurring 

at a different muscle length, is expected to be equal to the force of a muscle with 

stiff tendon sheaths. In the current context, the extrusion of the muscle tissue at 

the muscle ends makes the difference. As mentioned before, this extrusion is a 

consequence of the internal loading and it is necessary in order to contain the 

muscle body. Muscle boundary fibres are stretched onto the passive branch of the 

fibre force-length curve until they develop enough tension tO stem further 

deformations, while the fibres in the muscle mid-section shorten. Compared to the 

SLM, not all the fibres reach optimal length at the same configuration which results 

in a decreased active peak muscle force. 

In Figure 7.8, the difference in active peak muscle force between the CM and SLM 

is not very significant. However, the considerations made above take on an 

increased importance when they are extrapolated to a fully three-dimensional 

muscle model. In the current model, the tissue extrusions are limited to the two 

muscle ends, and the tissue is contained in depth direction by the plane strain 

assumption. In a three-dimensional model, tissue extrusion would have to be 

expected all around the free muscle body boundaries which would greatly increase 

the effect of fibre de-synchronization and, consequently, decrease the potential 

active muscle force peak considerably. 
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The difference of 3% in the active muscle force - muscle length integral between 

the CM and SLM is due to elastic strain energy storage within the matrix fluid part 

of the muscle tissue in the shortened muscle configuration. The strain energy 

stored during the passive muscle stretch and the stretch of the tendon sheaths due 

to active fibre stresses is regained during muscle contraction. However, the 

shortest muscle position in Figure 7.4 constitutes a deformed, i.e. strained, 

configuration compared to the reference configuration. Due to the small, but finite 

tissue matrix elasticity, a small amount of strain energy is contained within the 

muscle tissue. This portion of the fibre "work potential", while it could be regained 

in principle during muscle relaxation in the context of the current theory 

(postulation of a strain energy function), is effectively lost for any system external 

to the muscle. Over a complete contraction of the CM the active force - length 

integral evaluates in the order of 3% below the value obtained for a strain energy 

free situation (SLM), which is rather small. However, the difference becomes more 

important for partial contractions, that is, for contractions ending with muscle 

lengths corresponding to non-zero muscle forces. In this case, the portion of the 

- work generated by the fibres which has been converted into tendon stretch (tendon 

strain energy) cannot be regained for external muscle work. 

Returning to the CM total force-length curve in Figure 7.6 and comparing its 

important features to experimental data of in-situ force measurements on the cat 

gastrocnemius muscle by Herzog et al. [1990], the following observations can be 
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made: The almost linear force increase over large portions of the active branch, 

the relatively small force decrease within the plateau region, and the offset 

between passive force onset and total force peak correspond well. However,, the 

experiments do not show a renewed force increase for higher muscle lengths 

corresponding to the passive branch in the current simulation. In fact, the current 

model behaviour is very much influenced by, and a stable muscle behaviour is 

dependent on the significant passive force component in Figure 7.6. By contrast, 

the experiments by Herzog show an almost negligible passive force component 

over a muscle length interval which extended beyond the muscle's normal range 

of motion. A similar observation regarding low muscle passive forces has been 

made by Muhl [1982] who conducted muscle force-length measurements on the 

digastric muscle of New Zealand White rabbit. 

722 Fibre Force Profile Number 2  

In order to obtain some indications regarding the sensitivity of the muscle force-

length relations on varying fibre force-length relations, this section presents results 

for model simulations based on alternate fibre characteristics. The force profile 

number 2 differs from the force profile number 1, which has been employed in the 

previous section, in that (a) the active fibre force-length relation is asymmetric and 

(b) the relative minimum of the total fibre force-length relation between the active 

and passive branch takes on a smaller value. 
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Figure 7.10: Muscle force length curves for muscle with fibre stretch ratio 
dependent fibre force (asymmetric active force profile). Unstimulated - "passive", 
stimulated - "total", difference of former - "active". 

Figure 7.10 presents the muscle force-length relations for the current simulation. 

Comparing these results to Figure 7.6 of the previous section, the differences are 

not very striking. In particular, the active muscle force-length curve still shows a 

parabolic shape, that is, the asymmetry in the input fibre force-length relation is not 

apparent at muscle level. The offset between the passive muscle force onset and 

the peak active muscle force is virtually identical. Also, the difference in peak total 

muscle force and the minimum total force within the plateau region is very close 

in both simulations. 
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Differences become only apparent on closer examination: The slopes of the 

ascending and descending limb of the active muscle force-length curve have 

increased for the current simulation and the active muscle range has somewhat 

decreased. While the value of the active force peak is currently higher, the 

maximum total force in the plateau region is lower. The magnitudes of these 

differences are not very important. From an experimental point of view, it is 

doubtful whether these differences could be observed with an appropriate degree 

of confidence considering the usual inherent spread in experimental data. Both the 

symmetric and asymmetric fibre force-length curves lead to fairly symmetric 

muscle force-length characteristics. Starting from a muscle force-length curve, it 

is difficult to infer the underlying fibre characteristics with certainty. 

Figure 7.11 displays the comparison between CM and SLM model results based 

on the current asymmetric fibre force-length profile. In principle, all the 

observations made in the previous section and the related discussions can by 

carried over. Comparing the active muscle force curves emphasized the loss of 

asymmetry in the case of the CM. A fairly symmetric muscle force-length curve is 

consistent with the experimental results of Woittiez et al. [1984] on White Wistar 

rat muscles [1984]. On the other hand, Muhl [1982] determined asymmetric muscle 

force-length relations for the digastric muscle of New Zealand White rabbits, which 

resemble the SLM predictions in Figure 7.11. It should be noted that both Woittiez 

et al. and Muhl performed muscle force-length experiments on the entire muscle-
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• Figure 7.11: Muscle force length curves for muscle with fibre stretch ratio 
dependent fibre force (asymmetric active force profile). Solid lines - CM results, 
dashed lines - SLM results. 

tendon complex. Muhl obtained two muscle force-length relations, one representing 

the raw experimental data, the other having been corrected for the tendon stretch. 

The comments above apply to the latter because this force-length relation is 

indicative of the muscle behaviour excluding the tendon and because the current 

models do not include tendons. 
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73 Curved Muscle Fibres  

When a cat medial gastrocnemius muscle is dissected longitudinally from origin to 

insertion, muscle fibres are seen to form a characteristic S-shaped curve in a plane 

which is perpendicular to the tendon sheath planes: In order to investigate how the 

current model behaves when fibres take on varying angles of pinnation between 

the tendon sheaths, the trapezoidal geometry has been modified slightly. 

Figure 7.12 displays, at the top, the modified geometry; within the middle two' 

quarters of the vertical distance between the tendon sheaths, the fibre angle of 

pinnation has, as before, the value of 300 measured against the lower tendon 

sheath. Within the top and bottom quarter, the angle of pinnation has been 

reduced to 200. Thus, the fibre length axes take on a crude S-shaped form 

between the tendon sheaths with a discontinuity in the angle of pinnation at the 

junction of the muscle regions (or layers). Force' profile number 2 will be used in 

the simulations below. 

As far as the fibre arrangement is concerned, the modified geometry has the 

following consequences: if all the muscle fibres are assumed to have a constant 

and uniform thickness, which is the point of view adopted below, more fibres can 

be placed in parallel within the mid-layer than in either layer next to the tendon 

sheaths (compare to Chapter 3.1). This implies that a certain percentage of fibres 

in the mid layer terminate at the interface with the top and bottom layers. 
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Figure 7.12: Muscle with initially curved fibres. Reference configuration - top, 
most stretched configuration - second from top, most contracted configuration - 

.bottom. 
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Ultrasound measurements performed by Wagemans [1989] on human 

gastrocnemius muscles under voluntary contractions show that muscle fibres 

appear to be straight in the stimulated and contracted muscle. The current model 

behaves contrary to these observations. The plots in Figure 7.12 (second from top 

to bottom) show a sequence of stimulated muscle configurations from maximum 

stretch to maximum contraction. They reveal that the difference in angles -of 

pinnation between the layers generally increases, rather than decreases. 

While the model behaviour is certainly in contradiction with the experimental 

observations made by Wage mans, it is an expected consequence of the 

assumptions made about the constitutive characteristics of muscle tissue. Each 

layer may be considered as an individual muscle with its characteristic range in 

angles of pinnation over a complete contraction in accordance with Chapter 3. A 

muscle with a lower reference angle of pinnation (top and bottom layer) also has 

a lower angle of pinnation after a full contraction than a muscle with a higher 

reference angle of pinnation (middle layer). Joining the muscles together in order 

to form the current geometry does not change this basic consideration. Also, 

matching the fibre densities in the different layers in order to obtain the "same 

number of fibres" in parallel in all three layers does not change the model 

behaviour significantly as far as the relative angles of pinnation over a contraction 

are concerned. Furthermore, if one assumes that fibres are packed as densely as 

possible in the top and bottom layers, the matching of fibres would imply a less 
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Figure 7.13: Muscle force length curves for muscle with initially curved fibres. 
Muscle fibres have force profile #2 characteristics. Unstimulated - "passive", 
stimulated - "total", difference of former - "active". 

than optimal fibre packing in the mid-layer which would be a doubtful strategy from 

an economical point of view. 

Figure 7.13 presents the muscle force-length curves for the current muscle 

geometry. Despite the mismatched "number of fibres" between the different layers, 

the passive muscle force-length curve as well as the active and passive branches 

of the total force-length curve have a smooth appearance, that is, the general 

muscle function is not disturbed by the fibre mismatch. The difference in fibre 
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Figure 7.14: Nodal reaction forces for the muscle fluid matrix 'elements. 

directional stresses is compensated by the tissue fluid matrix at the layer 

interfaces. Figure 7.14 gives an impression of this effect: it depicts the nodal 

reaction forces of the finite elements which represent the tissue fluid matrix. In 

addition to the tissue to tendon sheath interface, forces are present along the lines 

where the layers with different angles of pinnation are joined. These forces put the 

tissue fluid matrix in the mid-layer under increased pressure compared to the top 

and bottom layer. 

The active and passive branch of the total muscle force-length curve are joined by 

a irregular curve, which is a result of the "snap-through" effect discussed in 

conjunction with Figure 7.7. At the layer junctions, the discontinuities in the angles 

of pinnation lead to local instabilities when the fibres take on a stretch ratio 

corresponding to the descending portion of the fibre force-length curve (negative 
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slope). The points on the irregular portion of the total force-length curve do not 

represent equilibrium configurations as the finite element solution iterates through 

"neighbouring" configurations, none of which being an equilibrium configuration. It 

should however be stressed that the solution does not diverge and that the 

configurations and muscle force values from iteration to iteration do not change too 

drastically. The muscle force - muscle length integral of the active force curve 

results in 95% of the theoretical value, which demonstrates that even the non-

converged solutions have a relation to the overall performance of the muscle. 

Comparing the overall form of the active muscle force-length curve to those in the 

previous sections reveals a lower maximum force level and in increase in the 

muscle range over which this force level is maintained. 

It should also be pointed out that the non-convergence does not constitute a failure 

on the part of the CM. The non-convergence is a consequence of the problematic 

type of the fibre force-length nonlinearty, which is compounded with the 

discontinuity in fibre angles of pinnation at the layer junctions. A finite element 

model with a greatly refined mesh which incorporates a smoother transition in 

angles of pinnation would be expected to behave better as far as model 

convergence is concerned. The general model behaviour (maintenance of different 

angles of pinnation in different layers) is, however, not expected to change. 

Muscle fibres are usually seen to pass on forces between their origins and 

insertions from sarcomere to sarcomere with the implication that when one 



177 

sarcomere within a fibre fails, the whole fibre would become dysfunctional. As 

outlined above, the current geometry may be interpreted to contain fibres which 

extend over the mid-layer only. In other words, they are not connected to the 

tendon sheaths and should be considered dysfunctional according to the point of 

view above. The simulation results showing a normal muscle behaviour for a large 

portion of the contraction history and the reasonable value for the active muscle 

force - muscle length integral indicate that this disfunction simply does not occur. 

Not the fibre forces passed on along the muscle fibres, but the global stress state 

control the muscle behaviour. While thestress state changes locally if a fibre is 

severed, the global stress state hardly changes. Consequently, a localized fibre 

damage is not expected to render the entire fibre useless. 



Chapter 8 

Finite Element Simulations: 
Gastrocnemius Geometry 

Straight line models similar to the one presented in Chapter 3 limit the degree of 

details in muscular geometry which can be represented and analyzed. In order to 

permit a comparison between the present Continuum Model (CM) and the Straight 

Line Model (SLM), the simulations in the previous chapter were based on 

geometries appropriate for SLM analyses. However, one advantage of the CM over 

the SLM is that more involved geometries can be treated. In taking advantage of 

the CM's increased flexibility, the simulations in this chapter will be based on a 

geometry which approaches the shape of the cat medial gastrocnemius muscle. 

The interpretation of simulations in the previous sections have been focused very 

much on the muscle behaviour as it is characterized by the muscle force-length 

relation. In the second part of this chapter, the focus will be shifted to the aspect 
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of structural integrity. An alternate mode of muscular contraction will be presumed 

and its consequences on muscle deformation and stress state will be outlined. 

8.1 Fibre Force Profile Number 2  

The following simulations are based on the gastrocnemius geometry as presented 

in Chapter 5 and reproduced in Figure 8.1, top. This geometry is characterized by 

a slender "neck" section at the left end and a thickened "head" section at the right 

end of the geometry. Tendon sheaths run along the extent of both the upper and 

lower geometry boundaries. Fibre angles of pinnation take on a value of 300 

relative to adjoining tendon sheaths. This results in discontinuously changing fibre 

directions within the head section similar to those in Chapter 7.3. Continuous lines 

(formed by the edges of the triangular elements) at regular intervals over the 

muscle length, which coincide with the local fibre direction, make the fibre 

directions apparent. Material parameters are identical to those in the previous 

chapter (matrix material constants, A = B = 0.125 N/cm2, v = 0.4995, tendonal 

stiffness, 1200 N/cm2, and active fibre stress, l' =25 N/cm2). The fibre force profile 

number 2 will be used for the simulations in this section. The muscle origin at the 

top-left is fully constrained, while the muscle insertion at the bottom-right is 

displaced along the line of action of the muscle for the deforming muscle. 

Deformation plots in Figure 8.1 are not uniformly scaled. In order to provide a point 

of reference, outlines of the muscle geometry at reference configuration are 

superimposed to the deformed geometries. 
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Figure 8.1: Medial gastrocnemius muscle geometry and deformations. Displayed 
are the initial muscle geometry (top) and a sequence of configurations from most 
stretched (second from top) to fully c'ontracted (bottom). 
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Within the deformed configurations in Figure 8.1, initially straight muscle fibres. 

remain straight except for minor curvatures at the two free boundaries next to the 

origin and insertion. A minor degree of fibre curvature can also be observed in the 

neck section of the moderately stretched configuration (fourth from top). For all 

configurations, the relative change in fibre directions within the head section 

persists. In fact, the degree of the fibre direction change along the line of the fibre 

angle discontinuity in reference configuration is amplified for the configurations 

shown in Figure 8.1, fourth from top to bottom. The latter conforms with the 

observations made in Chapter 7.3, and the discussion can be carried over. 

Furthermore, the muscle force-length relation for the current simulation is similar 

to the one presented in Chapter 7.3. In particular, the irregularity of the total 

muscle force curve over the plateau region has the same degree of severity and 

is due to the instabilities forming inside the muscle geometry along the line of the 

fibre angle discontinuity within the head section. 

The stimulated muscle undergoes a significant deformation perpendicular to. the 

muscle's line of action. This deformation mode is especially apparent for shorter 

muscle lengths and results in a bending of the whole muscle for the shortest 

configuration. While the general tendency of deformation can be observed when 

one stretches an isolated cat medial gastrocnemius muscle, the degree of 

deformation resulting from the current simulation appears too high. 
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However, it is important to realize that the here observed deformation mode is 

restricted within the biological system. The lower boundary of the muscle geometry 

in Figure 8.1 coincides with the location of another muscle, i.e. the plantaris 

muscle. The plantaris muscle prevents the medial gastrocnemius from deforming 

in the downwards vertical direction of Figure 8.1. In order to mimic the effects of 

the plantaris muscle on the medial gastrocnemius muscle, the boundary conditions 

over the extent of the lower tendon sheath will be modified in the following manner: 

nonlinear gap boundary elements are applied along the lower tendon sheath 

boundary which prevent the muscle from deforming downwards in vertical 

direction. Nodes on the lower tendon sheath boundary remain unconstrained in 

their horizontal and upwards vertical direction. To conform with these new 

boundary conditions, the muscle is stretched and contracted by moving its insertion 

in horizontal direction. 

Figure 8.2 presents the muscle deformations obtained for a simulation with the 

modified boundary conditions described above. Because of the boundary 

conditions an overall bending of the muscle is absent. In the shortest muscle 

configuration (bottom) most of the nonlinear gap boundary elements on the lower 

tendon sheath boundary within the muscle head section are active, that is, the gap 

is closed and the muscle is supported at these locations. Along the neck section 

and close to the muscle insertion, however, the gap elements are open, which 

corresponds to a lifting of the gastrocnemius muscle away from the plantaris 
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Figure 8.2: Medial gastrocnemius muscle deformations for supported lower 
tendon sheath boundary. A sequence of deformations is displayed from most 
stretched (top) to fully contracted (bottom). 
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muscle. Muscle fibres inside the muscle geometry remain mostly straight. Contrary 

to the previous simulation however, the degree of fibre angle change along the line 

of the fibre angle discontinuity within the head section has decreased. This aspect 

corresponds better to the observations made by Wagemans of straight muscle 

fibres within the contracted human gastrocnemius muscle [1989]. The free muscle 

boundary adjacent to the muscle insertion has a rounder and smoother 

appearance which comes closer to anatomical observations than that of the 

previous simulation (Figure 8.1, bottom). The free muscle boundary adjacent to the 

muscle origin takes on a notch-shaped form. This general shape has been 

observed on serial sections of the medial gastrocnemius muscle of the cat. 

Figure 8.3 presents the muscle force-length curves for the current simulation. As 

before, the curve labelled "passive" corresponds to muscle elongations without 

stimulation (stimulation parameter ® = 0), the curve labelled "total" corresponds to 

muscle deformations for fully stimulated fibres (® = 1), and the curve labelled 

"active" constitutes the difference of the former two curves. Compared to the 

results of Chapter 7.3, the total force-length curve shows a lesser degree of 

irregularity within the plateau region joining the active and passive branch. On the 

other hand, the curve has some degree of irregularity well onto its passive branch. 

The active force-length curve has, in contrast to the results in Chapter 7, a clearly 

asymmetric shape with a steep ascending limb and a more gradual descending 

limb. In its asymmetric shape, the active curve resembles the general shape 

obtained by Muhl in experiments on the digastric muscle of New Zealand White 
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• Figure 8.3: Muscle force length curves for medial gastrocnemius muscle with 
supported lower tendon sheath. Unstimulated - "passive", stimulated - "total", 
difference of former - "active". 

rabbit [1982]. In the digastric muscle, muscle fibres connect directly to the bone 

of the jaw, that is, the digastric muscle has only one free tendon sheath. The 

current model, with its lower tendon sheath supported, approaches the aspect of 

the digastric muscle. It must however be stressed that Woittiez et al. [1984] 

obtained a close to symmetric muscle force-length curve for the medial 

gastrocnemius muscles of Wistar rats whose geometry is presumably more closely 

approximated by the current model than that of the digastric muscle. As has 

already been observed throughout Chapter 7, the onset of the passive force 
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occurring at significantly lower muscle lengths than muscle optimal length differs 

both from Muhl and Woittiez. The magnitude of the passive muscle force over the 

active muscle range appears too high compared to Muhl [1982], Woittiez et al. 

[1984], and Herzog et al. [1990]. Judging by the data of Herzog the cat 

gastrocnemius muscle seems to function mostly on the ascending limb and a little 

bit beyond the active force peak which translates to a muscle working range of 

about 2 cm. The current model predicts a corresponding range of only about 1 cm. 

This deficiency in range has already been observed in the context of the Straight 

Line Model in Chapter 3 as well as in the simulations of Chapter 7. 

It must be reiterated that the model predictions are a direct consequence of the 

assumptions about muscle tissue characteristics and muscle geometry, all of which 

being reasonable when taken by themselves. Having the global muscle model 

behave more closely to experimental muscle data requires that the underlying 

assumptions have to be changed, and this change may have to be done in a way 

which is not supported by currently accepted perceptions about muscle fibre and 

muscle tissue characteristics. 

8.2 Alternate Mode of Muscular Contraction  

Muscle force-length relations resulting from the simulations so far exhibit the main 

characteristics of experimental observations, even though the model predictions 

and experimental data are not in complete agreement. More importantly, the model 

results are consistent with the underlying assumptions concerning muscle tissue 
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characteristics. In addition to the force-length relations, the current continuum 

muscle model also provides predictions about muscle deformations and stress 

state. Unfortunately, no or only scant experimental data relating to general muscle 

deformations and tissue stresses are available for comparison. One may, however, 

make the following observations: Free tendon sheaths, i.e. tendon sheaths which 

are not supported by neighbouring structures, usually take on a convex shape 

during contraction, even if the curvature is minute; the current model predicts a 

concave curvature. Some pennate muscles, with the cat gastrocnemius muscle 

being an example, do have curved fibres when they are not stimulated. Wagemans 

[1989] has shown that, at least for the human gastrocnemius muscle, this 

curvature disappears under stimulation and contraction; the current model 

preserves and, for certain cases, even magnifies any initial fibre curvature under 

stimulation. Muscle pressure measurements by Often [1 988] resulted in a smooth 

pressure distribution within the muscle; the current model predictions result in 

irregular pressure distributions with local pressure concentrations (as seen in 

Figure 6.6). In the current model, the interaction between muscle tissue and 

tendon sheath, which is visualized by the nodal reaction forces in Figure 6.7, is 

irregular and leads to model instabilities when the stimulation parameter, €, is 

changed too rapidly between iterations. Calling on engineering judgement, neither 

the pressure distribution nor the muscle tissue to tendon sheath interactions 

generated by the model conform with what would be expected from a balanced 

structure. 
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In an attempt to alleviate the incongruities listed above, the continuum model has 

been modified by introducing an alternate mode of muscular contraction which 

consists of: (a) the muscle tissue is given some degree of compressibility (or 

expansivity), and (b) the fibre contractile property has been removed and 

substituted by a tissue tendency to expand isotropically. The fibre passive 

characteristics have not been changed. The current modifications are remotely 

related to the suggestions of Vain [1990] who proposed a thickening tendency of 

muscle fibres. 

Figure 8.4 presents the muscle deformation, tissue to tendon sheath interaction 

and muscle tissue matrix pressure distribution for a simulation based on the 

changed tissue characteristics. The gastrocnemius geometry with supported lower 

tendon sheath boundary has been used for the simulation. The free, that is, 

unsupported tendon sheath at the top of the muscle geometry deforms now into 

a convex shape. Furthermore, the initially present discontinuities in fibre directions 

within the muscle head section have disappeared completely. Both the tissue to 

tendon sheath interaction and the pressure distribution take on a much smoother 

pattern compared to Figures 6.6 and 6.7. They correspond better to a balanced 

structure. Finally, the model converges even for significant changes of the 

stimulation parameter, e, between iterations. It should also be mentioned that the 

muscle does generate a tensile force matching previous results, even though the 

modified tissue characteristics have the tissue expand under stimulation. 
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Figure 8.4: Muscle deformation, tissue - tendon sheath interaction, and tissue 
matrix pressure distribution based on the alternate mode of muscular contraction. 

Certainly, the improved structural model behaviour has been obtained by making 

changes to the muscle tissue description which contradict physiological evidence. 

Muscle tissue has been shown to be incompressible, e.g. Abbott et al. [1962], and 

it is unquestionable that muscle fibres do contract. The point to be made here is 

that a more balanced structural behaviour can be achieved by modifying the 

assumptions about tissue characteristics. The modifications implemented above 

are too radical; more subtle modifications which conform with physiological 
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observations would obviously be desirable, but could not be found with the current 

model. Bound by the original decisions regarding exclusively contracting and 

independent muscle fibre behaviour, possible changes to the material model are 

limited without reworking the whole muscle model from the beginning. For now, the 

modifications made to the material description above may serve to inspire a 

change in perspective with regard to the perceived muscle tissue behaviour and 

to indicate new directions for further research. 

It should also be mentioned that a structurally more satisfying muscle behaviour 

can be obtained by increasing the passive characteristics of the muscle tissue 

description. In the context of the current model, this can be simply achieved by 

increasing the constants A and B in the muscle tissue matrix description. This 

approach provides the tissue with additional shear rigidity and eliminates all the 

problems of convergence in Chapter 7.3 as well as some of the incongruities listed 

at the outset of this section. One might favour this approach as it does not 

immediately contradict physiological facts. However, any increase in the passive 

components of the tissue description would result in more strain energy storage 

for muscle deformations with an associated decrease in available muscle work 

external to the muscle, which translates into a smaller muscle peak force and. an 

reduced muscle range. While the muscle force-length curve can be patched up by 

changing the muscle fibre force profile accordingly, this does not change the fact 

that a larger amount of work generated by the fibres will be transformed into strain 

energy rather than external muscle work. 
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The function of skeletal muscle consists in generating work on the skeletal system. 

It may be expected that nature accomplishes this efficiently, i.e. without wasting 

energy on internal (strain) energy storage which would be lost for all practical 

purposes. Only further research can tell whether modifications to the material 

description presented in Chapter 4 are necessary. If they are, it appears more 

sensible for these modifications to affect the active tissue characteristics than the 

passive ones. 



'Chapter 9 

Summary and Conclusions 

Two mechanical models of muscular contraction have been presented in the 

context of this thesis. Keeping with the presently accepted view of muscle structure 

and function, the assumptions underlying both models are that muscle fibres are 

one-dimensional entities and that the mechanical muscle. behaviour is a reflection 

of the active and passive muscle fibre characteristics exclusively. 

The Straight Line muscle Model (SLM) has been based on kinematic constrained 

muscle deformation modes, similar to the treatment by other authors. Paying 

special attention to physical consistency and simplicity, the SLM is founded on 

consistent equilibrium considerations which relate the internal fibre forces to the 

external muscle force, and the equations describing the model are expressed by 

a closed set of nonlinear algebraic equations. The changing number of muscle 

fibres acting in parallel as a function of the geometrical parameters, most notably 

the reference angle of pinnation, is taken into account by the model. 
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The Continuum muscle Model (CM) has been based on constitutive relations for 

muscle tissue. No kinematic constraints have been applied, except for anatomically 

justifiable boundary conditions, and the model formulation allows for a natural 

inclusion of tendon sheath elasticities. Overall muscle deformations are not 

preordained, but result from the solution of the structural problem. In addition to 

the muscle force-length relation, the internal stress state of the muscle becomes 

accessible. The CM has the potential of representing more complicated muscle 

geometries, muscle fibre curvature, varying muscle fibre densities, etc. 

Furthermore, the concepts underlying the model are transferrable to a three-

dimensional modelling approach. 

The unifying factor of both models consists in the active and passive Muscle 

Tissue Energy Density function (MTED)1. Given the active MTED function and the 

volume of a muscle, the amount of work this muscle can produce over a complete 

contraction, expressed by the integral of the active muscle force over the active 

muscle range, is determined and equal for both muscle models. However, the 

actual shape of the muscle force-length relations show a notable dependency on 

the parameters describing the muscle geometry at reference configuration and, in 

the case of the CM, on the boundary conditions. Therefore, most experimentally 

obtained muscle force-length relations could probably be reproduced using the 

1The constitutive treatment of the CM is based on the MTED function. The SLM also uses the 
MTED function but in a less rigorous manner. 
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presented models in their current implementation 2. A more detailed model 

description, which might include a three-dimensional geometry, different fibre 

densities and orientations throughout the structure, etc., appears dispensable. 

Muscle force-length relations constitute the majority of quantified experimental data 

pertaining to mechanical muscle characteristics, and they certainly describe one 

*f the most important aspects of muscular function in the musculo-skeletal system. 

However, they do not describe all aspects of muscular contraction. The presented 

models do allow for additional considerations which have led to the following 

incongruities: Although the fibre angle of pinnation predicted by the model for 

maximum muscle force is in agreement with the experimental observations by 

Wagemans [1989], the values of the angles of pinnation over the extent of a 

complete contraction are significantly different. Contrary to experimental 

observations, muscle deformations obtained from CM simulations result in a 

globally concave curvature of unsupported tendon sheaths. Furthermore, the 

resulting stress state within the muscle does not conform to a balanced structure. 

These incongruities cannot be resolved by adjusting the geometrical parameters 

or by changing the functional form of the input fibre force-length relation. Rather, 

they are a reflection of the initial model assumptions about muscle tissue 

behaviour, and changes to the model have to be made at that level. It is, therefore, 

21n addition to the parameters describing the muscle geometry, the scaling factor for active fibre 
stress, P, may have to be adjusted to this end. Given the variations in magnitude for fibre stresses 
listed in the literature however, good arguments can be made for using greatly varying values. 
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felt that further work should be concerned with the reexamination and modification 

of these assumptions, even if this should require to step beyond the bounds of 

currently established experimental ground. Realizing that desirable experiments on 

muscles and muscle tissue are at times difficult, if not impossible to perform, 

models similar to the presented CM may prove themselves to be invaluable tools 

in obtaining indications about the validity of modified assumptions. 
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