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EPIGRAPH

“Sir, our math shows that the bird is equal to or greater than the word.”

“Check it again!”

“This is what happens, Larry! This is what happens when you find a

stranger in the Alps!”

—Walter Sobchak
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1

1— CHAPTER 1 —
INTRODUCTION

DIOPHANTINE EQUATION IS an indeterminate polynomial equation

whose unknowns are restricted to integral values only. The study of

these equations, named after the Hellenistic mathematician Diophan-

tus of Alexandria, has a long and intriguing history that, unfortu-

nately, we will not delve into. For the purposes of this thesis, we are most interested

in a particular Diophantine equation, namely the Pell equation

T 2−DU 2 = 1 . (1.1)

Due to an incorrect attribution by Euler, these equations were named after John Pell

and though “it is both historically wrong and unjust to those early individuals who did

make important contributions to its study” [48, p. 5], the name has stuck. It is clear that

(1.1) has trivial solutions, that is (T , U ) = (±1,0), but what is not immediately evident is

that it always has at least one non-trivial solution [48, Thm. 1.3, p. 6]. The fundamental

solution of (1.1) is the solution (t , u) with t , u > 0 and t + u
p

D minimal. Using this

fundamental solution, we can characterize any other solutions: if (T , U ) is a solution of

(1.1), then for some n ∈Z+ and choice of sign, T +U
p

D =±(t + u
p

D)n.

At this point, we also highlight a particular instance of the Pell equation: T 2 −

410286423278424U 2 = 1. This Pell equation represents the translation into a modern

mathematical setting of Archimedes’ Cattle Problem. In a letter addressed to Eratos-

thenes of Cyrene, Archimedes laid out a computational challenge in the form of a “lightly
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satirical” [48, p. 23] epigram. The challenge to the reader is to find a solution to the num-

ber of cattle of the Sun, divided into four differently coloured herds (say W ,X ,Y,Z) of

bulls and cows (upper- and lower-case, respectively) whose ratios are given by
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W +X is a perfect square and Y + Z is a triangular number; that is, an integer of the

form n(n+ 1)/2 for some n ≥ 1.

With the appropriate sequence of algebraic steps, we can combine and reduce these

equations to the Pell equation we stated previously. The solutions related to this equation

will serve as nice examples for a number of the calculations and algorithms that appear

in the chapters to follow. They are large enough to illustrate the details of several tech-

niques, but still easily manageable with only minor assistance from a computer. We end

this section with the comment that the Cattle Problem has been used as an illustrative

example previously in the literature. See, for example, [57] and of course [48].

Diophantine equations arise in several areas of mathematics, two applications of which

we discuss here. The general binary quadratic Diophantine equation has the form

ax2+ b xy + cy2+ d x + e y + f = 0 . (1.2)

It was first solved by Joseph Lagrange over 200 years ago [54] and, as the authors of [73]
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point out, the problem of solving (1.2) can be reduced to determining whether or not an

ideal in a quadratic order is principal. This in turn requires us to determine, in essence,

solutions to a Pell equation. If this ideal is in fact principal, solutions to (1.2) can be

determined by exhibiting its generator.

Another interesting application is that of finding integer points on elliptic curves, also

by way of principal ideal testing. For several parametric families of elliptic curves, it has

been shown that the integral points on the curves are given by Diophantine m-tuples; for

example, [28], [33], [47], [68] and [77]. These are a set of m positive integers such that

the product of any two elements increased by 1 is a perfect square [28]. To prove the

results cited above, the authors show that a given system of equations has no solutions.

If we have such a solution, then we can construct a principal ideal of specific norm in a

certain quadratic field. Working in the opposite direction, we instead find all the ideals

with the given norm and test them for principality. If none are principal, then the system

of equations is insoluble.

1.1. UNCONDITIONALLY CORRECT SOLUTIONS OF THE PELL EQUATION

Solutions to the Pell equation can be computed by looking at the solutions of a similar

Diophantine equation, specifically

X 2−DY 2 = 4σ , (1.3)

where σ ∈ {±1}.

In the case of (1.3), the fundamental solution is the solution (x, y) for which x +

y
p

D > 2 and is least. Let η0 = (x + y
p

D)/2, a quantity called the fundamental unit. It

can be shown [48, Cor. 1.10, p. 11, Tbl. 1.1, p. 13] that if (t , u) is the fundamental solu-
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tion to (1.1) and (x, y) is the fundamental solution of (1.3), then for some k ∈ {1,2,3,6},

t + u
p

D = ηk
0 .

However, as we will see in later chapters, just because a non-trivial solution to these

equations exists, this does not mean it is easy to compute. Far from it, in fact. For

computational reasons we will not go into at this point, we usually prefer to determine a

quantity known as the regulator and use that to calculate η0, if it is needed. It is known

that computing the regulator, particularly when D > 1025, is very difficult. As we will see

from the results presented in Chapter 2, we expect for a large proportion of real quadratic

fields that the regulator is much greater than D1/2−ε [48, (9.26), p. 230]. In recent years,

several authors have devised cryptographic applications whose security is based on the

difficulty of these and other related computations. We refer the interested reader to such

works as [8], [11], [38], [45], and [46], though this list is far from definitive.

Computing the regulator unconditionally is not important for these cryptographic

applications, though it is important when trying to find solutions to Diophantine equa-

tions. As an example of this, we briefly discuss a problem considered by Jacobson and

Williams in [47]. They wished to show that the equation

d1x3
2− d3x2

2 =
d3 j1− d1 j2

j2
= c , (1.4)

where d1, d3, j1, j2, and c are given integer constants, has no integer solutions. To do this,

it is sufficient to show that the ideals of norm cd1 in a certain quadratic order were not

principal. Using the index-calculus algorithm, they determined an approximation to the

regulator and found a total of 8 candidate ideals, none of which were principal. However,
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the correctness of this approximation depends on a certain unproven Riemann hypoth-

esis. The best they could say was that (1.4) had no integer solutions assuming the truth

of this hypothesis. By using the unconditional regulator verification algorithm outlined

later in this section—and in much more detail in Section 3.6—and an unconditional prin-

cipal ideal testing algorithm [73, 77], they were able to show unconditionally that (1.4)

has no integer solutions [73, p. 54–5].

In the remainder of this section, we will present an overview of the important ad-

vances made in regulator computations, both conditional and unconditional. Let K =

Q(
p

D) be a real quadratic number field. By applying the continued fraction algorithm

to
p

D , one can compute the regulator in time O(D1/2+ε). The development of this

technique traces back through some well-known mathematicians, such as Euler and La-

grange, as well as many ancient Indian and Greek mathematicians. For those interested

in this rich history, we refer to [48, Ch. 2 and §§3.1–3.3, pp. 19–62] and the citations

found there. Using the infrastructure and the idea of baby-steps and giant-steps, Daniel

Shanks [75] was able to produce an algorithm for computing the regulator uncondition-

ally in time O(D1/4+ε). Using the infrastructure and an estimate of the character sum

L(1, (∆n )), where (∆n ) is the Kronecker symbol, Hendrik Lenstra in 1982 [56] was able to

produce a regulator algorithm which runs in time O(D1/5+ε). The original ideas for the

index-calculus algorithm, usually presented in terms of binary quadratic forms, were pre-

sented by Arjen and Hendrik Lenstra in 1987 [55], with more details filled in by James

Hafner and Kevin McCurley in 1989 [35]. Johannes Buchmann further expanded the real

quadratic field case [10]. The running time of this algorithm is L∆[1/2,
p

2+o(1)]where

L∆[u, v] = exp(v(log |∆|)u(log log |∆|)1−u). This increase in speed comes at a price, how-

ever: the output is conditional on the truth of the generalized Riemann hypothesis.
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In 2003, Michael Jacobson, Jr., Ákos Pintér and Gary Walsh [44] presented an al-

gorithm which unconditionally verifies the value of the regulator R′ computed by the

index-calculus algorithm. This was adapted by Robbert de Haan, Michael Jacobson, Jr.,

and Hugh Williams [21, 22] to work with ( f , p) representations, and included a refined

optimization of the algorithm’s parameters. This algorithm, with expected running time

in O(∆1/6+ε), is the one we are most interested in for this thesis.

The main ideas behind the algorithms in [21] and [22] are as follows. Uncondition-

ally, we can say the approximation R′ is a multiple of the actual regulator R. The first step

is to verify that R′ is less than an explicit upper bound and then determine a lower bound

on the value of R by way a of a baby-step / giant-step algorithm. We also verify that R′ is

close enough to an integer multiple of R—specifically |R′−cR|< 1 for some c ∈Z+—and,

if not, determine a new value for R′ that does satisfy this condition. Once we have that R′

is close to an exact multiple of R and have bounds for R, we need to determine the value

of c . In essence, this is done by trial dividing R′ by a series of potential prime divisors.

By keeping track of which numbers have been successfully tested, we compute the prime

power factorization of c .

We obviously glossed over many details in the preceding description, in particular

those surrounding the baby-step / giant-step algorithm used to find a lower bound on

R. One particular optimization concerns storing the baby-step list. We compute and

store a list of ideals L= {a1,a2, . . . ,at ,at+1,at+2}. When actually implementing this step,

we have only a limited amount of memory available. If D becomes large enough, we

will run out of room to store L. To overcome this, de Haan noted that gaps could be

introduced in L without adding much algorithm overhead. We instead store every l th

ideal in the list L′ = {a1,al ,a2l , . . . ,aN l}∪ {at ,at+1,at+2}, where N is such that N l ≤ t <
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(N +1)l . After computing the giant steps, if we have an ideal a j ∈L′—or a j ∈L′, but for

simplicity’s sake we will ignore this for now—then we must have at least one ideal in the

set N = {a j ,a j+1, . . . ,a j+l−1} in L′. Thus, we replace a search for a j in L by an iteration

attempting to match an ideal in N with an ideal in L′.

Using the O(D1/6+ε) algorithm and the preceding improvements, de Haan was able

to unconditionally verify the regulator for a real quadratic field with a 60-decimal digit

discriminant in 6 days and 23.5 hours. These results were expanded upon in [22], where

the authors were able to unconditionally verify the regulator for a 65-decimal digit dis-

criminant in 102 days and 7 hours.

Our contributions. The key idea behind our proposed change to this setup is as fol-

lows. Let H (ai ) denote the hash of ai and set

L′′ = {H (a1), H (al ), H (a2l ), . . . , H (aN l )} ∪
�

H (at ), H (at+1), H (at+2)
	

,

where again N is such that N l ≤ t < (N + 1)l . When we are checking if the giant step

b j is in L′, we do not expect to find a match. Thus, most of the time, we can get away

with only checking if H (b j ) ∈L′′. If H (b j ) 6∈L′′, then clearly we cannot have b j ∈L′. If,

however, we do find H (b j ) ∈ L′′, it does not immediately follow that b j ∈ L′. We may

just be unlucky and have found a random hash collision. To determine which case we are

faced with, a random collision or having found b j ∈L′, we proceed through a resolution

process. This process will terminate quite rapidly in the case of a random collision due

to a probabilistic argument. If the process runs through to the end, however, an explicit

ideal comparison determines which case we are in unconditionally. With an appropriate

choice of hash function and length of hash stored in L′′, we will achieve some significant
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memory savings and, hopefully, a noticeable decrease in run-time.

For the implementation of this hashed baby-step list, we take advantage of the refine-

ments to the supporting algorithms which have been made since in [21] and [22]. In

addition to using these improvements, our reimplementation is written in C using GMP

for its multi-precision arithmetic. The former was written in C++ using NTL and it is

well-known that the GMP arithmetic routines are faster than their NTL counterparts.

In order to maximize the efficiency of the O(∆1/6+ε) algorithm, we must also ensure a

computational balance between the various parts is maintained. To do this, we must

optimize several algorithmic parameters. We have performed a more detailed analysis

of these parameters and have enhanced the accuracy of their computation, resulting in

some significant computational savings. For moderate-size discriminants, those in the

30–40 decimal digit range, our hashed baby-step list algorithm results in roughly a 10%

run-time savings. For larger discriminants, due to two confounding factors, we see these

savings disappear. Preliminary numerical tests in a shared high-performance comput-

ing environment we accessed through WestGrid seem to show these improvements can

scale to larger discriminants. Unfortunately, due to some practical roadblocks discussed

in later chapters, this work is still in its early stages and the results are limited, though

promising.

1.2. COMPACT REPRESENTATIONS OF CERTAIN QUADRATIC INTEGERS

Once we have a correct approximation for the regulator of a real quadratic field, it can

be useful to determine the associated fundamental unit η0. We saw this was the case for

determining solutions to the Pell equation. However, we can expect that
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η0 =
x + y

p
∆

2
� exp(∆1/2+ε) .

Unfortunately, this means that when ∆ is large, x and y can be so enormous that it is

impossible to write them down in reasonable time. As two examples of this, we consider

two specific values of∆. Consider the Pell equation

T 2− 410286423278424 ·U 2 = 1 ,

the equation derived from Archimedes’ Cattle Problem. If we solve this equation, the

values computed for T and U have approximately 103,200 digits each. The resulting

solution to the Cattle Problem contains approximately 206,500 digits and was first ex-

plicitly stated in 1965 by Hugh Williams, Gus German and Robert Zarnke [86]. Harry

Nelson [69] repeated this calculation and published the complete solution in 1981 on

twelve pages of fine print. To give the reader an idea of just how large this number is,

Figure 1.1 shows a full-size excerpt of roughly the first 8,600 digits of the Cattle Problem

solution. Nelson’s original paper contains 12 pages of these fine-print pages; there were

47 of these subpages, scaled to one-third of their original size to fit four per page.

In [48, p. 62], the authors mention that for the 30-digit discriminant

∆= 990676090995853870156271607886 ,

the values of x and y in η0 are greater than 102·1015
. Attempting to print out these numbers,

using the same font size and page layout as Nelson, would require approximately 6 billion

pages.1

1Most of Nelson’s pages are 64× 70-digit blocks giving a total of 35,840 digits per double-sided page.
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Figure 1.1: Excerpt of the explicit solution to Archimedes’ Cattle Problem from [69].

The idea for a compact representation, originally presented by Johannes Buchmann,

Christoph Thiel, and Hugh Williams in 1995 [12], is to represent an algebraic number

in terms of a power product which satisfies a number of conditions. By doing so, they

achieved a vast reduction in the number of digits needed to write down the number.

Moreover, they showed how arithmetic operations could be performed on such repre-

sentations, leading to more efficient calculations than those using the original numbers.

We focus specifically on the compact representation of an algebraic integer θ in a real

quadratic field.

From the literature, we know that an algorithm such as AX [48, Alg. 11.6, p. 279]

will compute an OK-ideal a = (θ) where log2θ is approximately x using O(log x log∆)

elementary operations. AX works by determining the binary expansion of x and then
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appropriately multiplying a series of ideals by way of a square-and-multiply routine. By

storing the resulting relative generators λi and a sequence of ideal norms Li , an explicit

power product representation of θ can be computed:

θ=
l
∏

i=0

 

λi

L2
i

!2l−i

. (1.5)

This is the essence of the algorithm CRAX. A representation such as (1.5) requires only

O((log logθ) log∆) bits to store, compared to the sizeable O(logθ) bits needed to express

θ as (x + y
p
∆)/2.

An interesting application of these compact representations is as certificates for the

decision problem known as the principal ideal problem: given an ideal a of some order O

of a real quadratic field, determine if there exists θ ∈O such that a= (θ) or not. We could,

for example, use a principal ideal test such as the one described in [73, §7] to determine if

the ideal a was principal or not. If the test is successful—that is, a is principal—the output

of this algorithm gives an approximation of logθ. This value can then be passed as input

to CRAX to produce a compact representation of θ. Since these representations can be

produced in polynomial time, they serve to show that the principal ideal problem is an

NP problem [16, 62]. For the interested reader, we point out that, in fact, this decision

problem is in NP and co-NP [17, Thm. 1.1].

Our contributions. We present two modifications to the process of computing a com-

pact representation which lead to significant reductions in their storage requirements.

The first change is based on the observation on the size of the individual relative gen-

erator terms µi computed by EADDXY during the squaring portion of the square-and-
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multiply routine of AX mentioned previously. From [48, pp. 445–6], we know

O(∆1/4)<µi <O(∆3/4) .

Thus, while the generators of the representation are bounded above and so cannot be-

come too large, they are also bounded below and so cannot become too small. This situa-

tion comes as a result of the distance inaccuracies inherent to the giant-step computation

at the heart of EADDXY. By altering the distances used as input to EADDXY, we can

compensate for this error. Doing so reduces the lower bound on the relative generator

produced, and so reduces the overall size of the compact representation.

The second modification comes about from the simple observation that if the giant

steps computed in CRAX could traverse a greater distance, we would need to store fewer

relative generators. In other words, we would reduce the value of l in (1.5) above. Rather

than computing the square of an ideal as our giant-step, and hence doubling its distance,

we can compute the cube or fourth power of the ideal. In this way, we can triple or

quadruple the distance of the ideal. The end result is a significant reduction in the total

number of relative generators needed to be stored in the compact representation.

There is a downside to this second modification, unfortunately. By travelling a greater

distance during a giant step, we incur a greater distance inaccuracy and hence a larger indi-

vidual relative generator than before. We can, of course, combine our two modifications

to somewhat counteract this issue. This leads to a trade-off between smaller individual

relative generator terms and a smaller number of overall terms which must be carefully

balanced to ensure an optimal result.

We have developed a number of algorithms to allow the computation of these new
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compact representations. Some are extensions of existing algorithms to allow them to

work with ( f , p) representations, while others are derived from the existing square-and-

multiply routines to allow for cubing and quadrupling. Theoretically, we have deter-

mined that using a cube-and-multiply or a quadruple-and-multiply routine will give the

most memory-efficient compact representation. Numerical testing indicates that, in fact,

the quadruple-and-multiply routine is more efficient—on average, that is—and we have

observed roughly a 37% reduction in memory storage requirement as compared to the

standard compact representation.

We also mention in passing that these concepts can be used in other number field

settings. In particular, they can be extended to complex cubic and totally complex quartic

fields, both of which have unit rank one. However, in this thesis we focus exclusively on

the case of real quadratic fields and will not delve further into these higher-degree fields.

1.3. OUTLINE OF THESIS

In Chapter 2, we give a brief overview of the concepts and results needed to understand

and develop both those algorithms presented previously in the literature which we draw

on and our modifications and improvements to them. We touch on topics from algebraic

number theory, particularly focusing on real quadratic fields and ideals of the maximal

order of such fields, the theory of continued fractions, and some key analytic results

needed to prove correctness and statements concerning expected run-times.

Chapter 3 is devoted to outlining the major advances in the process of computing

the regulator of a real quadratic field, starting with the connection between computing

the regulator and determining the continued fraction expansion of
p

D , the development

of infrastructure techniques, analytic results concerning approximations of the value of
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L(1,χ ), the application of index calculus techniques, and ending with the regulator veri-

fication algorithm.

With this verification algorithm fresh in mind, we present our modifications to it

in Chapter 4. We look at the selection of a suitable hash function, how our changes

effect the process of optimum parameter selection, and give a practical assessment of the

issues faced when actually implementing these changes. Detailed timing comparisons are

presented as well. We compare our implementation to the results previously given in the

literature. Further comparisons are made between the efficiency of various hash function

choices, as well as how the length of hash stored effects the run-time.

The refinements to compact representations of certain quadratic integers is the topic

of Chapter 5. We show the details of how the inputs to EADDXY are modified, how

larger-distance giant steps can be effectively computed, and how we balance the trade-off

between smaller relative generators and fewer relative generators. We also introduce a se-

ries of algorithms, extensions of some of the more well-known algorithms for computing

with ( f , p) representations of OK-ideals, which allow us to compute cubes, fourth-, and

higher powers of OK-ideals. Proofs of correctness and an analysis of their run-times are,

of course, provided. We end Chapter 5 with an analysis of the theoretical improvements

achieved and supporting evidence in the form of results from numerical testing.

Chapter 6 presents a summary of the results we have achieved in this thesis, along

with a discussion of several directions for future research on these topics. Finally in the

appendices, we explain in much more detail our implementation and the various options

that can be configured, discuss how the correctness of our code was tested, and present

some additional graphs and figures that were left out of the main material.
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2— CHAPTER 2 —
BACKGROUND & NOTATION

2.1. INTRODUCTION

�
OR THIS CHAPTER, WE will assume that the reader has at least a ba-

sic knowledge of number fields and ideals. A number of the results

given here are presented without proof as they are standard results

which may be found in a number of texts. The specific notation

we will adopt for the remainder of this thesis is that of [48]. In particular, symbols set

in roman type (a, b , c , . . . ) will generally represent integers; symbols set in Greek let-

ters (α,β,γ , . . . ) will represent algebraic numbers; symbols set in fraktur type (a,b,c, . . . )

will represent ideals; and symbols set in blackboard bold type (N,Z, . . . ) or script type

(L,O, . . . ) will represent sets, rings, fields or other mathematical structures. The majority

of the uncited definitions and results presented in this chapter come either from standard

algebraic number theory works—[18] and [29], for example—or from [48] itself.

2.2. QUADRATIC NUMBER FIELDS AND THEIR ORDERS

Let D ∈Z be an integer, not a perfect square, and greater than 1. The algebraic extension

field K = Q(
p

D) is a real quadratic number field. The elements α ∈ K are quadratic

numbers, which have the form α = (a + b
p

D)/c for integers a, b , and c . The conjugate

α of a α ∈ K is given by α = (a − b
p

D)/c and the norm N (α) of α is N (α) = αα =

(a2− b 2D)/c2. In particular, we are most interested in a subset of quadratic numbers: the

quadratic integers. Quadratic integers are the elements of K that are integral over Z, that
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is, the elements which are zeroes of monic polynomials irreducible over Z. If we let

r =







1 if D 6≡ 1 (mod 4) ,

2 otherwise
and ω =

r − 1+
p

D

r
, (2.1)

then the quadratic integers ofK take the form α= a+ bω.

The set of all quadratic integers inK forms a structure known as a module. If A is an

additive abelian group, then M is a Z-module of A if it is an additive abelian subgroup of

A. If ζ1,ζ2, . . . ,ζn ∈K and

M=
� n
∑

i=1

xiζi xi ∈Z
�

,

then we say the module M is generated by {ζ1,ζ2, . . . ,ζn}, which is denoted as M =

[ζ1,ζ2, . . . ,ζn]. We are particularly interested in modules generated by two elements. A

quadratic order O ofK is a module M= [ζ1,ζ2]which is a subring ofK containing 1 and

where ζi = ai + bi

p
D for ai , bi ∈Q (i = 1,2) and a1b2− a2b1 6= 0. Using this concept of

modules and orders, we can express the set of quadratic integers OK as the maximal order

[1,ω] ofK, which is also called the ring of integers.

Finally, we also need to introduce an important invariant that will be quite useful in

the following material. The discriminant ∆O of an order O = [ζ1,ζ2] is ∆O = (ζ1ζ 2 −

ζ 1ζ2)
2. An important fact to note is that the value of the discriminant is independent of

the choice of basis elements ζi . In the case of the maximal order OK, the field discriminant

∆OK
can be explicitly determined as ∆OK

= 4D/r 2 and hence, K=Q(
Æ

∆OK
). Another

fact to keep in mind is that for every non-square ∆, there is only one order of Q(
p
∆)
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with discriminant∆, and that is

O =


1,
∆+
p
∆

2



 . (2.2)

2.3. UNITS AND THE FUNDAMENTAL UNIT

If α 6= 0 and β are two elements of OK, we say α divides β, written α |β, if there exists a

third element γ ∈OK such thatβ= αγ . The units of OK are those elements which divide

1; in other words, the invertible quadratic integers. The set of units forms a multiplicative

group of OK called the unit group and denoted O∗K. Units can be completely classified as

η is a unit if and only if |N (η)|= 1.

There is one particular unit in which we are most interested in this thesis: the smallest

unit of OK greater than 1. This unit is called the fundamental unit and is denoted η∆.

The reason η∆ is called fundamental is because we can write any other unit in terms

of it. More precisely, if η ∈ O∗K is a unit then η = ±ηn
∆ for some integer n. Thus,

O∗K = 〈−1,η∆〉. As the size of η∆ grows exponentially as ∆ increases, we turn to a more

manageable quantity called the regulator, denoted R= logη∆. The end goal in this thesis

is to improve the efficiency of a computer implementation, and as such we prefer to

use the base-2 regulator in our algorithms, denoted R = log2η∆, and emphasize this by

explicitly writing “log2.” As we will see in later chapters, a great deal of effort has gone

into the problems of computing and expressing these two quantities.

2.4. IDEALS

Since OK is an integral domain, we can discuss the ideals of OK. These are non-empty

subrings of OK that are closed under external multiplication: i is an OK-ideal if i is a

subring of OK and for any α ∈ OK, αi ⊆ i. It can be shown that if a is an OK-ideal,
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then we can write it as generated as an OK module by at most two elements of OK:

a = (θ1,θ2) for θ1,θ2 ∈ OK. In fact, if a is a non-zero OK-ideal, then we can represent

it as the Z-module [a, b + cω], where a, b , c ∈ Z; a, c > 0; 0 ≤ b < a; c | a, b ; and

ac |N (b + cω) [48, Thms. 4.21, 4.22, and 4.24]. The conjugate ideal a of an OK-ideal a is

a= [a,β] = [a, b + cω]. By setting

S = c , Q =
ra

c
, and P =

r b

c
+(r − 1) ,

an OK-ideal can be represented as

a= S





Q

r
,

P +
p

D

r



 , (2.3)

where S,Q, P ∈ Z, r ∈ {1,2}, r | Q, and r Q | D − P 2. For the remainder of this thesis,

we will commonly refer to an ideal as “S[Q, P]” where it is understood that S,Q, and P

satisfy the conditions listed here.

Addition and product operations can be defined on OK-ideals, though we will focus

exclusively on the multiplication of ideals. If a′ = (θ1,θ2) and a′′ = (ψ1,ψ2) are OK-ideals,

then the product ideal a′a′′ is defined as (θ1ψ1,θ2ψ1,θ1ψ2,θ2,ψ2). An obvious question

to ask at this point is, given the product ideal a′a′′, how do we determine values for S,

Q, and P such that a′a′′ = S[Q, P]? We will defer answering this question until later in

Section 2.10 and merely state here that it is relatively easy to do. We also remark that if

a= [θ1,θ2], then [48, p. 88]

(α)a= α(θ1,θ2) = (αθ1,αθ2) = [αθ1,αθ2] .
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The concept of ideals can be further extended to what are called fractional ideals: a

non-empty subring i of K—rather than OK—that is closed under external multiplication

from K and such that there exists a non-zero γ ∈OK with γ i ⊆OK. In essence, this last

condition says the elements of i have γ as a “common denominator.”

Theorem 2.1. The set of all fractional OK-ideals forms a multiplicative abelian group, de-

noted F(K).

If a and b are two OK-ideals, we say that a divides b, denoted a | b, if there exists a

non-zero OK-ideal c such that b= ac. This statement of ideal division can translated into

a statement about sets.

Lemma 2.2 (“To divide is to contain”). If a, b are two OK-ideals, then a | b if and only if

b⊆ a.

The concept of divisibility leads us to the idea of prime ideals. An ideal p ( 6= OK) is

prime if whenever p | ab then p | a or p | b.

In the ring of rational integers, we have unique factorization as guaranteed by the

Fundamental Theorem of Arithmetic. However, this may not be the case in an arbitrary

ring of integers. The reason unique factorization of elements can fail is because irre-

ducible elements need not be prime in these extension fields. Although we lose unique

factorization at an element level, it can be restored at the ideal level using, in particular,

the prime ideals of OK. OK is in fact a Dedekind domain, that is an integral domain in

which every non-zero ideal can be written as a power product of finitely many distinct

prime ideals (unique up to order). Moreover, one can show that prime ideals are irre-

ducible ideals—ideals whose only divisors are OK and themselves—and vice versa, giving

us unique factorization of ideals.

Two ideals are said to be equivalent if there exist non-zero α,β ∈OK such that (α)a=
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(β)b and denote this by a∼ b. We remark that we will frequently abuse this notation by

writing a= (γ )b, where it is understood that (γ ) = (β/α) is a fractional OK-ideal.

A principal ideal a is an OK-ideal which can be written as a = (θ) for some θ ∈ OK,

in other words it has only a single generator.

Theorem 2.3. The set of all principal fractional ideals, denoted P(K), forms a subgroup of

F(K).

It will be desirable to have nice representative ideals for the computations we do in

later chapters. An OK-ideal a is primitive if it cannot be written as an integer multiple of

another ideal b. More exactly, a is primitive if a 6= (m)b for any m ∈ Z, where |m| > 1.

Using the notation of (2.3), we say an ideal a is primitive if S = 1, denoted as a= [Q, P].

Although restricting ourselves to primitive ideals is a start, this is not good enough as we

will see shortly. Before continuing, we must first discuss norms. The norm N (a) of an

OK-ideal a is the index |OK/a| and when the ideal a is written in the form of (2.3), we

have

N (a) = S2Q/r . (2.4)

Working in the rational integers, it is often useful to simplify calculations modulo

some integer. In this way, intermediate results are reduced to numbers of a manageable

size and will not become unwieldy. Returning to OK-ideals, the norm can be used to

measure the size of the generators of an ideal and the idea of “modulo” can be replaced

with reduction. Thus, we will refer to an OK-ideal a as reduced if it is a primitive ideal

and there does not exist α ∈ a, α 6= 0, such that both |α|<N (a) and |α|<N (a). A useful

property of reduced OK-ideals, when written in the form of (2.3), is that 0 < P <
p

D

and 0<Q < 2
p

D [48, Cor. 5.8.1, p. 101].

We are left with the question of how to compute a reduced ideal from a given prim-
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itive ideal. To answer it, we must delve into the theory of continued fractions. As such,

we will defer this discussion until after Section 2.8.

2.5. THE IDEAL CLASS GROUP

Returning to the notion of ideal equivalence, we see it is actually an equivalence relation

on the set of OK-ideals. Let [i] denote the equivalence class of an ideal i, or more simply

the ideal class of i. A key result needed for the remainder of this chapter is the following.

Theorem 2.4. Every ideal class contains a reduced ideal.

For∆< 0, there will be at most two reduced ideals in each class. In the case of∆> 0,

however, there can be many reduced ideals; in fact there tend to be roughly O(R) of them.

The following result can be used to show that there are finitely many reduced OK-ideals.

Theorem 2.5 ([87, Thm. 3.5, p. 411]). i is a reduced OK-ideal if and only if there exists

some β ∈ i such that i= [N (i),β] where −N (i)<β< 0<β<N (i).

As a consequence of Theorem 2.5, we see that if i is a reduced OK-ideal, we must have

N (i) < β−β = ω−ω =
p
∆. This leads us to our desired result, the proof of which,

presented below, is based on the results from [87].

Theorem 2.6. The number of reduced OK-ideals is finite.

Proof. Let i be a reduced OK-ideal. We know the norm of i, N (i), is a positive integer

which, by Theorem 2.5, is bounded above by
p
∆. Hence, there are only a finite number

of values N (i) could assume. Let m be one of these values. By Lemma 2.2, m ∈ i if and

only if i | (m), but since OK is a Dedekind domain, we know (m) has only finitely many

divisors. This implies that (m) can belong to only a finite number of OK-ideals. Now,

if N (i) = m, then clearly m ∈ i, so only finitely many OK-ideals can have a given norm.

Hence, there can only be a a finite number of reduced OK-ideals.
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Previously, we mentioned that the set of non-zero fractional OK-ideals F(K) forms

a group under ideal multiplication and that the principal OK-ideals P(OK) form a sub-

group. In fact, since F(K) is an abelian group, P(OK) is a normal subgroup and hence the

factor group F(K)/P(K) is well-defined and abelian. This quotient group F(K)/P(K) is

called the ideal class group, denoted by ClK. Recalling Theorems 2.4 and 2.6, we see that

ClK is a finite group. The order of ClK is commonly called the class number and denoted h.

Using ideal multiplication, a closed, associative, commutative multiplication for ClK can

be defined by [a][b] = [ab]. The identity element of ClK is the class [OK] of principal

ideals and for every class [a], there exists an inverse class [b] such that [a][b] = [OK]. In

fact, this inverse class is given by [a].

2.6. ANALYTIC RESULTS

Let G be a finite abelian group. A function χ : G→C is a character if χ (ab ) = χ (a)χ (b )

for a, b ∈G, χ (c) 6= 0 for some c ∈G, and |χ (d )|= 1 for all d ∈G for which χ (d ) 6= 0.

The principal character of G is a character χ defined on G such that χ (a) = 1 for all

a ∈ G. One important property of a character is that if 1G is the identity element of G,

then χ (1G) = 1. The notion of characters leads us to L-functions. We specialize G to

G = (Z/mZ)∗ and take χ to be any non-principal character of G. If χ (n) = 0 whenever

(m, n)> 1, then χ is called a Dirichlet character. The Dirichlet L-function is

L(s ,χ ) =
∞
∑

n=1

χ (n)

n s , (2.5)

where χ is a Dirichlet character and s = σ + i t ∈C.

Approximating the value of this L-function, particularly the value of L(1,χ ), will be

of great importance in the chapters that follow. To this end, we point out two key results.
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The first is that L(s ,χ ) converges absolutely for all σ > 1. The second allows us to rewrite

(2.5) in terms of an Euler product when σ > 1:

L(s ,χ ) =
∏

p

�

1−
χ (p)

p s

�−1

. (2.6)

At this point, we will further specialize the Dirichlet character we are considering by

taking χ = χ∆ = (
∆
n ), the Kronecker symbol. The Kronecker symbol is a generalization of

the Jacobi symbol to all integers, which itself is a generalization of the Legendre symbol.

The main result we have been building up to in this section is the analytic class number

formula, which relates several of the important quantities we have discussed.

Theorem 2.7 (Analytic class number formula).

2hR
p
∆
= L (1,χ∆) .

Proof. See [48, Thm. 8.35 and Cor. 8.35.1, pp. 204–5].

2.7. CONSEQUENCES OF THE ANALYTIC CLASS NUMBER FORMULA AND SOME
RIEMANN HYPOTHESES

The Riemann Hypothesis and its extended version are vital both in terms of guaranteeing

correctness and run-time bounds for several algorithms in Chapter 3. This now well-

known hypothesis was formulated by Georg Friedrich Bernhard Riemann in 1859, in

connection with his work on the zeta function. It has remained as one of the most famous

unsolved problems in mathematics. In this section, we introduce these hypotheses and

briefly discuss some of their consequences, particularly in connection with the analytic

class number formula.
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Let s = σ + i t be a complex number. The Riemann zeta function is

ζ (s) =
∞
∑

n=1

1

n s .

It is convergent for σ > 1 and can be analytically continued to the entire complex plane,

save for a pole of order 1 at s = 1. Considering the zeroes of ζ (s), there is a sequence of

trivial zeroes at the negative even integers. The remaining non-trivial zeroes are known to

lie in the critical strip 0<σ < 1. The Riemann hypothesis is the conjecture that if ζ (s) = 0

and σ > 0, then σ = 1/2.

If the Riemann zeta function is generalized from its setting in the rational numbersQ

to a quadratic number field, we arrive at the Dedekind zeta function. LetK be a quadratic

number field. The Dedekind zeta function is defined by the series

ζK(s) =
∑

a

1

|N (a)s |
,

where a varies over the non-zero integral ideals of K. A well-known result, stated by

Erich Hecke, is that ζK(s) = ζ (s)L
�

s ,
�∆

n

��

. As with the Riemann zeta function, ζK(s)

can be analytically continued to the entire complex plane except for a simple pole at

s = 1. The residue of this pole is given by the analytic class number formula stated in

Theorem 2.7.

Recalling the L-function L(s ,χ ) from (2.5), page 22, if χ is the principal character,

then

L(s ,χ ) =
∞
∑

n=1

χ (n)

n s =
∞
∑

n=1

1

n s = ζ (s) .

Thus, the L-function is a generalization of the Riemann zeta function. By replacing ζ (s)



25

by L(s ,χ ) in the Riemann hypothesis, the extended Riemann hypothesis (ERH) can be

derived: if L(s ,χ ) = 0 and σ > 0, then σ = 1/2.

Although we will not discuss it in any detail, we remark that this hypothesis can be

generalized further. The aptly named generalized Riemann hypothesis (GRH) deals with

any L-function, not just L(s ,χ ): no zeta function of a proper Hecke character has a zero

with real part larger than 1/2.

Assuming the ERH, John Littlewood [59] was able to derive a very tight bound on

the value of L(1,χ ). Specifically,

(1+ o(1))(c1 log log |∆|)−1 < L(1,χ )< (1+ o(1))c2 log log |∆| ,

where c1 = 4(r +1)eγ/π2, c2 = r eγ , and γ is the Euler-Mascheroni constant 0.577215 . . . .

If we desire an unconditional bound on L(1,χ ), the best known bound comes from the

work of Stéphane Louboutin [60]. He showed

|L(1,χ )| ≤
log∆+c0

2
,

where c0 ≈ 0.046.

Using the analytic class number formula and both Littlewood’s and Louboutin’s

bounds, bounds on the regulator R can be derived. As presented previously, the fun-

damental unit can be expressed as

η∆ =
x + y

p
∆

2
.
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Since N (η∆) =±1, we have x =
Æ

y2∆± 4, and as y ≥ 1—because η∆ > η∆—, we find

η∆ =

Æ

y2∆± 4+ y
p
∆

2
≥
p
∆− 4+

p
∆

2
,

and hence

R≥ log

p
∆− 4+

p
∆

2
.

Equality is achieved when ∆ = x2 + 4 and x2 + 4 is squarefree infinitely often [67].

This gives us a sharp lower bound on the size of R. To determine an upper bound on

R, we must turn to the analytic class number formula. Looking at Theorem 2.7, R is

maximal when h = 1, giving R≤
p
∆L(1,χ )/2. If we are willing to accept a conditional

upper-bound, we can use Littlewood’s bounds. For an unconditional bound, we turn to

Louboutin’s bounds, which give

R≤
p
∆

4

�

log
p
∆+c0

�

≈
p
∆ log∆

4
.

Combining the upper and lower bounds on R, we find R=O(∆1/2+ε).

A second consequence of the analytic class number formula is the Brauer-Siegel The-

orem, which shows how the size of R grows with respect to ∆. The result was origi-

nally proved by Carl Siegel [76] for quadratic number fields, though Siegel conjectured it

would hold for higher-degree fields; Richard Brauer provided a proof of this generaliza-

tion [9].

Theorem 2.8 (Brauer-Siegel Theorem).

lim
∆→∞

log hR

log
p

|∆|
= 1 .
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2.8. CONTINUED FRACTIONS

At this point, we take a break from the analytic material and side-step into the study of

continued fractions. Continued fractions play a large role in many aspects of number

theory, in particular the study of Diophantine equations. Let φ=φ0 a real number. By

recursively defining φ j+1 = (φ j − q j )
−1 for j = 0,1, . . . , i and q j ∈Z, φ0 can be expressed

as the continued fraction1

φ0 = q0+
1

q1+
1

...
qi−1+

1

qi +
1

φi+1

.

The qi values are known as partial quotients and the number φi+1 is a complete quo-

tient. If q1, q2, . . . , qi ≥ 1 and φi+1 > 1, then the continued fraction is simple. Since it

is cumbersome to fully express continued fractions, we will adopt the short-hand no-

tation 〈q0, q1, . . . , qi ,φi+1〉 for a continued fraction and [q0, q1, . . . , qi ,φi+1] for a simple

continued fraction. We will be focusing on simple continued fractions for most of the

remainder of this section.

The finite continued fractions [q0, q1, . . . , qk] (k = 0,1,2, . . . ) are called the k th conver-

gents of the continued fraction. These convergents can also be recursively computed. If

we set A−2 = 0, A−1 = 1, B−2 = 1, B−1 = 0, and recursively define (for i ≥ 0)

Ai = qi Ai−1+Ai−2 and Bi = qi Bi−1+Bi−2 ,

1I much prefer Edsger Dijkstra’s version: The proper definition of a continued fraction is of course “a
fraction whose numerator is an integer and whose denominator is an integer plus a continued fraction” [23].



28

then Ai/Bi is the i th convergent for [q0, q1, . . . , qi ,φi+1].

If a continued fraction can be expressed as [q1, q2, . . . , qn], then it is called a finite

continued fraction. If not, then it is an infinite continued fraction. Infinite continued

fractions are said to be periodic if we can find integers N and l , l minimal, such that

qN+l+i = qN+i (i = 0,1, . . . ). The integer l is the length of the period of the continued

fraction and the sequence q1, q2, . . . , qN−1 is the preperiod. If there is no preperiod, in

other words N = 0, then the infinite continued fraction is purely periodic.

So what kinds of numbers can be represented by continued fractions? The finite case

is easy. It can be shown that every finite simple continued fraction represents a rational

number and, conversely, that every rational number can be expressed by a finite simple

continued fraction. The infinite case is a little bit more tricky, since it is not immediately

clear that it converges to some value. However, it can be shown that infinite continued

fractions represent irrational numbers and, conversely, that given an irrational number

α, we can find a unique infinite simple continued fraction whose value is α.

The only remaining case is that of periodic infinite continued fractions. Joseph La-

grange categorized these continued fractions by showing that an infinite simple continued

fraction is periodic if and only if the number it represents is a quadratic irrational: a real

number α of the form (a+ b
p

D)/c , where a, b , and c are integers and
p

D 6∈Q. It can

be shown that α is a quadratic irrational if and only if it can be expressed as

α=
P +
p

D

Q
,

where P , Q (6= 0), and D (> 0) are integers,
p

D 6∈Q, and Q | (D − P 2).

At this point we hope the connection between periodic simple continued fractions



29

and the ideals of the maximal order OK is starting to come into focus. If α > 1 is a

quadratic irrational and −1 < α < 0, then α is known as a reduced quadratic irrational.

Using this notion of a reduced quadratic irrational, Lagrange’s result can be refined to

the following statement: the infinite simple continued fraction of a quadratic irrational is

purely periodic if and only if α is reduced.

Now that we know a quadratic irrational can be expressed by periodic simple contin-

ued fractions, an obvious question to ask is: how do we compute it? Suppose we take

φ0 =
p

D and form the sequence φ1,φ2, . . . where

φi+1 =
1

φi − qi

and qi = bφic

for i = 0,1,2, . . . . Clearly we can write

φi =
Pi +
p

D

Qi

> 1

where Pi and Qi are integers, P0 = 0, Q0 = 1, and Qi |D−P 2
i . As theφi are quadratic irra-

tionals, the sequence {qi}i≥0 forms the periodic simple continued fraction [q0, q1, . . . , qi ,

φi+1]. Using this fact, and some algebraic manipulations, the following recursive formu-

las for qi , Pi , and Qi can be derived:

qi =

$

Pi +
p

D

Qi

%

, (2.7)

Pi+1 = qi Qi − Pi , (2.8)

Qi+1 =
D − P 2

i+1

Qi

. (2.9)
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These formulas are at the heart of some of key algorithms we discuss in following chap-

ters, and so we pause to consider their computational cost. Our first comment is that

since
p

D is an irrational number, computing qi via (2.7), as stated, is inefficient. Instead,

it is replaced by
$

Pi +
p

D

Qi

%

=

$

Pi + b
p

Dc
Qi

%

.

We are able to do this since we have Qi ≥ 1; see [77, Lem. 2.66, p. 22]. The second point

we make is that division is an expensive operation. Considering the formula for Qi+1,

(2.9), we remark that this formula can be improved by making use of Tenner’s algorithm

[48, §3.4, p. 63]. Let qi and Ri respectively be the quotient and remainder upon dividing

Pi + b
p

Dc by Qi . In other words, Pi + b
p

Dc= qi Qi +Ri . Clearly we can rewrite (2.8)

as

Pi+1 = b
p

Dc−Ri (2.10)

and by substituting (2.8) into (2.9), we find

Qi+1 =Qi−1− qi (Pi+1− Pi ) . (2.11)

Since most computers provide both the quotient and remainder on division, this change

saves us the cost of a division and a squaring operation at the expense of some extra

storage.

2.9. CONTINUED FRACTIONS AND THE IDEALS OF OK

The theory of continued fractions can now be united with that of the orders of a real

quadratic field. At the end of Section 2.4, we were left with the question of how to

compute a reduced OK-ideal from a given ideal. We will answer that question now. Let
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φ0 = (P0+
p

D)/Q0 and a= a1 = [Q0, P0] be an OK-ideal. If we compute the continued

fraction expansion of φ0, it is clear from the material in the previous section that ai+1 =

[Qi , Pi] will also be an OK-ideal. We define

ψi =
1

−φi

=
Qip

D − Pi

=
Pi +
p

D

Qi−1

and point out that computing another step in the continued fraction expansion of φi is

equivalent to multiplying ai by the fractional ideal (ψi ) [48, §5.1, pp. 102–3]. Thus, we

have the relation

ai+1 = (ψi )ai . (2.12)

If we further define

θ0 =−φ0, θ1 = 1, and θi+1 = qi−1θi +θi−1 ,

then we can show θi+1 =ψiθi and hence [48, (3.17), §3.1, p. 46]

θi+1 =
i
∏

k=1

ψk =
Qi

Q0

i
∏

k=1

φk

for i ≥ 1. Thus, (2.12) becomes

ai+1 = (θi )a1 .

From this, it is clear that ai ∼ a1 for all i ≥ 1. In other words, by applying the con-

tinued fraction algorithm to φ0, we can produce a sequence of primitive ideals that are

all equivalent to a. Of particular interest is that if we begin with a primitive, but not

necessarily reduced, ideal a1, we will eventually produce a reduced ideal ai = (θi )a1 [48,
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Prop. 3.4, p. 53; Thm. 3.5, p. 54; and Thm. 5.8, p. 103]. Furthermore, every subsequent

ideal ai+1,ai+2, . . . will also be reduced.

What happens if we start with a already a reduced ideal, say a= a1 =OK? As above,

we can compute a sequence of ideals ai ∼ a1. Since a1 is a principal ideal and ai+1 =

(ψi )ai , we see that all of the ideals in this sequence are principal. By Theorem 2.6, page 21,

since there are only finitely many reduced OK-ideals, this sequence must also be periodic.

Hence, we can find some minimal p > 0 such that ap+1 = a1. By definition, we know

ψi =
Pi +
p

D

Qi

> 1

and, since a1 is reduced, 0< Pi <
p

D and 0<Qi < 2
p

D . So 1<ψ1 <
p

D . In addition,

we have [48, Prop. 3.16, p. 68]

θi+m > Fm+1θi (2.13)

where F j is the j th Fibonacci number: F0 = 0, F1 = 1, and F j+1 = F j + F j−1. Thus,

1= θ1 <θ2 <θ3 < · · ·<θp < · · · .

Using these inequalities, these ideals can be arranged into a cycle C = {a1,a2, . . . ,ap} called

the cycle of reduced principal ideals. A well-known fact—derived, for instance, from [48,

(5.33), p. 113]—is that if the length of the principal ideal cycle is p, then the fundamental

unit η∆ = θp+1. Since ψi > 1, ψiψi+1 > 2—set m = 2 in (2.13)—and θp+1 =
∏p

i=1ψp , we

must have

η∆ > 2bp/2c or equivalently R= log2η∆ >
� p

2

�

.

Hence, p ≈O(R) =O(∆1/2+ε).
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2.10. IDEAL PRODUCTS AND THE INFRASTRUCTURE

One of the key arithmetic operations we perform in later chapters is to compute a rep-

resentation of the product of two ideals. Given two ideals a′ and a′′, we know from the

previous material that the product ideal a′a′′ is generated by at most two generators. But

how can we quickly determine them? Let

a′ =





Q ′

r
,

P ′+
p

D

r



 and a′′ =





Q ′′

r
,

P ′′+
p

D

r





be two primitive OK-ideals. The product of two primitive ideals need not be primitive,

so we write it as a′a′′ = S[Q, P]. By multiplying out the generators of a′ and a′′ and

applying some algebraic manipulations [48, §5.4, pp. 117–118], the following formulas

for calculating S, Q, and P can be produced. We first solve

S =V
�

Q ′

r

�

+W
�

Q ′′

r

�

+Y
�

P ′+ P ′′

r

�

,

using the extended Euclidean algorithm for integers V , W , and Y . Setting S = gcd(Q ′,

Q ′′, P ′+ P ′′), we see this equation has a solution. Next, we set

Q =
Q ′Q ′′

S2 r
and P ≡ P ′′+

U Q ′′

r S
(mod Q) ,

where U ≡W (P ′− P ′′)+Y R′′ (mod Q ′/S) and R′′ = (D − P ′′2)/Q ′′.

If a′ and a′′ are reduced ideals, most likely the product ideal will not be reduced. How-

ever, using the material in Section 2.9 we can easily compute a reduced ideal a equivalent

to a′a′′. The main issue with using these composition formulas is that the intermediate

values can be of size O(∆).
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Let a1 = [1,ω] be the first ideal in C. The distance of ai = (θi ) is defined as δi =

δ(ai ) = log2θi . This concept of distance is quite natural, as we can see from a re-

sult independently discovered by Aleksandr Khintchine [51] and Paul Lévy [58]. They

showed—specialized to our situation—that we can probabilistically expect limi→∞
i
Æ

θi =

eτ, where τ =π2/(12 log2)≈ 1.186569. Taking base-2 logarithms of this expression gives

δi = log2θi ≈ iτ log2 e ≈ 1.712i , showing that there is an approximately linear relation-

ship between the index of an ideal in C and its distance. We also point out that since C is

a cycle, we can always reduce a given distance δi modulo the regulator.

Let ai and a j be two reduced principal ideals in C. Since they are principal, their

product a= aia j = (θiθ j ) will also be principal. As we stated above, a may no longer be

reduced. However, we can compute aia j = (m)b1 for some m ∈Z and primitive ideal b1.

We can then produce a sequence of ideals b1,b2, . . . by applying the continued fraction

algorithm and, as we showed previously, we will eventually find a reduced ideal bk . At

this point we have

bk = (θ
′
k)b1 =

 

θ′kθiθ j

m

!

and as bk is reduced, we must have bk = al ∈ C for some l . Considering the distance of

al , we find

δl = δ(al ) = log2

 

θ′kθiθ j

m

!

≡ δi +δ j + log2

θ′k
m
(mod R) . (2.14)

The key observation to make is that we are tantalizingly close to forming a group out of

C with the operation of a giant step—that is, ideal multiplication followed by reduction.

Unfortunately, this operation does not satisfy one key property: it is not an associative

operation. Instead of having δl = δi+δ j in (2.14), we are stuck with the additional error
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term log2(θ
′
k/m) and so δl is only close to δi + δ j . However, this error term can be

bounded in absolute value, say by µ. This bound depends on the particular reduction al-

gorithm selected, but for the method described above, it can be shown that µ<O(log∆)

[48, p. 175], which is quite small compared to δi ,δ j ≈O(R).

This group-like structure in the cycle of reduced principal ideals, called the infrastruc-

ture, was discovered by Daniel Shanks [75]. He was also able to derive a more efficient

method for computing the reduced product ideal a′a′′ of two reduced principal ideals.

Rather than multiplying then reducing, Shanks’ method, called NUCOMP, combines

these two steps and reduces the intermediate operands before the final product is com-

puted. This keeps the operands of size roughly O(
p
∆). Shanks’ method was originally

designed for ideal composition in imaginary quadratic fields, but it was later shown by

Alf van der Poorten [82] to be effective in the real case, so long as the operands are large

enough to compensate for the additional overhead. The particular version of NUCOMP

we use is that described by Hugh Williams and Michael Jacobson, Jr., in [48, Alg. 5.1,

pp. 122, 441–3].

In the remainder of this thesis, we will refer to a single application of the continued

fraction algorithm to the ideal ai as a (forward) baby step, denoted ai+1 = ρ(ai ). Although

we will not derive the formulas here, given a reduced principal ideal ai ∈ C, we can also

compute the backward baby step ai−1 = ρ
−1(ai ) [48, §3.4, p. 64]. By using the infras-

tructure and NUCOMP, we can skip a number of applications of the continued fraction

algorithm to move more quickly through the cycle of reduced principal ideals. We denote

by a′ ?a′′ the computation of the reduced ideal equivalent to the product ideal a′a′′ via an

application of NUCOMP and refer to this process as a giant step.
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2.11. ( f , p) REPRESENTATIONS

While performing computations in the infrastructure, we need to keep track of the gen-

erators of the ideals we are working with or, equivalently, their distances. Both options

have disadvantages. The size of the coefficients of the generators grow exponentially and

so are infeasible to store for large ∆. As distances are logarithms of quadratic irrationals,

and hence transcendental numbers, maintaining accurate distance approximations in the

face of round-off and truncation errors is difficult. Michael Jacobson, Jr., Renate Schei-

dler, and Hugh Williams introduced the concept of an ( f , p) representation [45] to work

around these difficulties and provide provable bounds on the round-off and truncation

errors accumulated during computations. This idea was later refined by the same authors

[46] and we will use the procedures as described in [48, Ch. 11, p. 265].

Let p ∈ N and f ∈ R be such that 1 ≤ f < 2p . If a is a primitive OK-ideal, then an

( f , p) representation of a is a triple (b, d , k) where b∼ a, d ∈N such that 2p < d ≤ 2p+1,

and k ∈Z. In addition, there exists θ ∈K such that b= (θ)a with

�

�

�

�

�

θ

2k−p d
− 1

�

�

�

�

�

<
f

2p .

In essence, an ( f , p) representation stores both an approximation to the relative generator

θ and an approximation of its distance, both with precision p. The parameter f is a

measure of the approximation error, though it is rarely if ever explicitly computed. k ≈

log2θ and so measures the rough relative distance of b with respect to a, and d holds the

p + 1 most significant bits of an approximation to θ. The value of k can then be used to

adjust d to give an explicit approximation of the relative generator θ as θ≈ 2k−p d . If b is

a reduced OK-ideal, then (b, d , k) is a reduced ( f , p) representation.
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There are a number of advantages to using ( f , p) representations [48, p. 265]. The

three most important ones, from our perspective, are that it is relatively easy to analyse

the accuracy of operations on ( f , p) representations, the precision needed for a given

accuracy level tends to be lower than other methods, and all operations of ( f , p) rep-

resentations involve only integer arithmetic, avoiding explicit floating-point calculations

involving logarithms. Because of this last point, implementations of ( f , p) representa-

tions are very fast compared to methods based on floating-point arithmetic.

In the definition of an ( f , p) representation presented above, there were no require-

ments on θ other than that b = (θ)a. When performing operations on ( f , p) repre-

sentations of reduced ideals, it is advantageous to use representations with small relative

generators. A w-near ( f , p) representation is a a reduced ( f , p) representation (b, d , k) of

an OK-ideal a with the following two conditions:

1. k < w for some w ∈Z+ and

2. if ρ(b) = (ψ)b then there exist integers d ′ and k ′ such that k ′ ≥ w, 2p < d ′ ≤ 2p+1

and
�

�

�

�

�

ψθ

2k ′−p d ′
− 1

�

�

�

�

�

<
f

2p .

Such representations have the useful property that θ≈ 2w and k ≈ w. Since this property

will be used repeatedly in later material, particularly with respect to compact representa-

tions, we will state it more formally.

Lemma 2.9 ([48, Lem. 11.3, p. 270]). Let (b, d , k) be a w-near ( f , p) representation of

some OK-ideal a with p > 4 and f < 2p−4. If θ and ψ are defined as above, then

15N (b)

16
p
∆
<

15

16ψ
<
θ

2w <
17

16
and − log2

34ψ

15
< k −w < 0 .
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The second benefit to w-near representations is that they can be combined with NU-

COMP to partially compensate for the log2(θ
′
k/m) error term in (2.14) when performing

a series of giant step computations. Determining a w-near representation in between each

application of NUCOMP will limit the propagation of this error.

It can be shown [48, §11.3, p. 279] that if ai and a j are distinct ideals such that

(ai , di , ki ) and (a j , d j , k j ) are both w-near ( f , p) representations of the same ideal, then

|i − j | ≤ 2. In other words, two w-near ( f , p) representations of the same ideal are very

close to each other in the infrastructure. As a notational convenience, we will use a[w]

to denote any of these ideals.

2.12. ALGORITHMS

In this final section, we will discuss a number of basic algorithms that are needed in the

following chapters for performing various computations with ( f , p) representations. The

majority of these algorithms will not be explicitly presented, rather references to the ap-

propriate sections of [21] or [48]will be given. Because of this, we present a flowchart in

Figure 2.1 to help the reader better understand the dependencies between the algorithms.

We point out that not all the algorithms included in this flowchart will be discussed in this

thesis. Several algorithms are included strictly for those readers attempting to familiarize

themselves with our implementation.

To start, an initial ( f , p) representation for a given OK-ideal a needs to be derived.

There are two trivial ( f , p) representations that can be immediately determined [48,

§11.1, p. 267]. Taking b = a, we have b ∼ a with relative generator θ = 1. Substi-

tuting this into the definition of an ( f , p) representation gives two sets of values for d

and k. The first representation, used most frequently in the algorithms that follow, is

(a, 2p+1,0); alternatively, we can take (a, 2p+1,−1). Both are valid ( f , p) representations
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(E)NUCOMP

REMOVE

(E)NUMULT

IMULT

WNEAR EWNEAR

WMULT ADDXY EADDXY

EXP AX

FIND CRAX

CR

Figure 2.1: Algorithm dependencies.

for any value of f .

Given an ( f , p) representation (b, d , k) of a, we can determine a w-near representa-

tion (c, g , h) of a via the algorithm WNEAR [48, Alg. 11.2, pp. 275, 454–456]. This

algorithm will produce a w-near ( f + 9/8, p) representation of a. With a bit of work,

WNEAR can be extended to return a relative generator c = (a + b
p

D)/Q such that

c= (c)b where b= [Q, P]. This enhanced algorithm is called EWNEAR [48, Alg. 12.1,

pp. 286 and 457], though we remark that the version presented in [48] is restricted to the

case when k < w. As the algorithmic modifications we propose in Chapter 5 also require

EWNEAR to produce a relative generator in the k > w case, we will present this further

extension in Section 5, page 145.
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We can also compute ( f , p) representations of the forward and backward baby steps

ρ(a) and ρ−1(a) via FORWARD BABY STEP [21, Alg. 3.5, p. 28] and BACKWARD

BABY STEP [21, Alg. 3.6, p. 30]. Given a reduced ( f , p) representation (ai , di , ki ) of

a, these two algorithms will produce an ( f + 2, p) representation (ai+1, di+1, ki+1) or

(ai−1, di−1, ki−1), respectively, of a. If ai = [Qi−1, Pi−1], these algorithms can be easily

modified to return a relative generator ψ = (Pi +
p

D)/Qi−1 such that ρ(ai ) = (ψ)ai or

ψ= (−Pi−1+
p

D)/Qi−1 such that ρ−1(ai ) = (ψ)ai .

We now turn to the issue of computing ideal products. Let (b′, d ′, k ′) and (b′′, d ′′, k ′′)

be, respectively, reduced ( f ′, p) and ( f ′′, p) representations of a′ and a′′. We can use

NUMULT [48, Alg. 11.1, pp. 269, 448–9] to determine a reduced ( f , p) representation

(b, d , k) of a′a′′ where f = 17/8+ f ′+ f ′′+ f ′ f ′′/2p . Optionally, NUMULT can return

ν ∈OK where

b=
(ν)b′b′′

N (b′)N (b′′)
;

we refer to this enhanced algorithm as ENUMULT. As mentioned previously, we prefer

to work with w-near representations. If (a[x], dx , kx) and (a[y], dy , ky) are respectively,

x- and y-near ( f ′, p) and ( f ′′, p) representations of a= (1), we can employ ADDXY [48,

Alg. 11.5, p. 279] to produce an x + y-near ( f , p) representation (a[x + y], d , k) of a

where f = 13/4+ f ′+ f ′′+ f ′ f ′′/2p . EADDXY [48, Alg. 12.3, p. 286] is the enhanced

version of this algorithm which returns λ ∈O such that

a[x + y] =
�

λ

N (a[x])N (a[y])

�

a[x]a[y] .

Finally, if we are merely given some x ∈ Z+, we can use AX [48, Alg. 11.6, pp. 279–80]

to compute an x-near ( f , p) representation (a[x], d , k) of a= (1) for some f ∈ [1,2p).
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2.13. COMPACT REPRESENTATIONS

Unlike the previous algorithms we have mentioned, we cannot extend AX to produce

a simple relative generator θ such that a[x] = (θ)a = (θ). In essence, the coefficients

of such a generator would just be too large to express. In this section, we discuss why

this is the case and how compact representations can be used to work around this prob-

lem. The idea for a compact representation was originally presented by Johannes Buch-

mann, Christoph Thiel, and Hugh Williams [12], though we will use the notation and

algorithms of [48] in the description that follows. Also, although we will focus on the

problem of representing the generator θ of an ideal a[x] = (θ) for x > 0, we remark

that Michael Jacobson, Jr., and Hugh Williams discuss the compact representation of

quadratic integers in a more general setting, as well as some arithmetic operations which

can be applied to them [48, §§12.2–3, pp. 290–304].

Recall that the algorithm AX allows us to compute a reduced principal ideal a at dis-

tance approximately x from a1 = (1). At the heart of AX is a square-and-multiply routine

that uses the binary expansion of x to make a series of giant steps in the infrastructure.

For each bit in the binary expansion, we compute the giant step a j ? a j —the squaring

step—which results in an ideal with roughly double the distance from where we started.

If the current bit is a 1, then we also adjust the resulting ideal via ρ to correct the distance

we are at—the multiplying step.

How does this help us in reducing the number of bits we need to write down θ? At

each stage of AX, suppose we were to keep track of the relative generator that appears.

For the giant steps we would have µ j such that a′j+1 = (µ j/N (a j )
2)a2

j from EADDXY,

and for the adjustment steps we would have ν j such that a j+1 = (ν j )a
′
j+1 from EWNEAR.

We draw the reader’s attention to the fact that the norm of the ideal a j is not a part of
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the relative generator µ j computed by EADDXY. As such, we must account for this and

store them ourselves as L j+1 =N (a j ).

At the end of AX, we will not only have an ideal an = a[x] = (θ) at distance ap-

proximately x, but also two sets of quadratic integers {µ1,µ2, . . . ,µn} and {ν1, ν2, . . . , νn},

and a set of ideal norms {L1, L2, . . . , Ln}. Now, since we only perform an adjustment step

for non-zero bits in the binary expansion of x, we would expect that roughly half of the

ν j values will be 1. Moreover, since the other ν j values will be relatively small, at least

compared to the µ j values, we can quite easily combine µ j and ν j into a single relative

generator λ j , where a j+1 = (λ j/L2
j+1)a

2
j . In fact, if

µ j =
a1+ b1

p
∆

r
and ν j =

a2+ b2

p
∆

N (a′j+1)
,

then

λ j =







a1a2+∆b1b2

r N (a′j+1)






+







a1b2+ a2b1

r N (a′j+1)







p
∆

r
.

This process is handled by the algorithm IMULT [48, Alg. 12.2, p. 286].

At this point it should be clear that if we combine the relative generators λ j and ideal

norms L j by an appropriate combination of multiplications, divisions, and exponentia-

tions, we will get the generator θ. In essence, what we have done so far is simply to find

an explicit power product representation of θ:

θ=
l
∏

i=0

 

λi

L2
i

!2l−i

. (2.15)

We know that for large values of ∆, it is infeasible to expand this power product. But,
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what if we just left these terms in a formal power product? How much space do we

need to represent these individual terms? As we will now show, these two sets of relative

generators and ideal norms are exactly what we are looking to write down as a compact

representation.

Let the binary representation of x be given as x =
∑l

i=0 2l−i bi , where b0 = 1 and

bi ∈ {0,1}, and let Li+1, λi be as above. Considering (2.15), as l = dlog2 xe and x ≈ log2θ,

we see that this product has O(log2 log2θ) terms, and as the ideals we compute while

executing AX are reduced, we know that 0 < Li+1 <
p
∆. In order to say something

about the size of λi , we must now introduce the concept of height.

Definition 2.10. Let α ∈OK. The height of α is H (α) =max{|α|, |α|}.

Recalling that |N (α)| = |αα| ≥ 1, we see that H (α) ≥ 1 and so an element’s height

cannot be arbitrarily small. An upper bound for H (α) can also be found in our case,

where α is the relative generator resulting from an application of ENUCOMP.

Let λ = (m + n
p
∆)/r where m, n ∈ Z and r = 1,2 depending on ∆ (mod 4). For

each of the squaring steps, we compute a[si+1] = a[2si] and if we let a[si] = (πi ), then in

light of (2.15) we find

πi+1 =

 

λi+1

L2
i+1

!

π2
i . (2.16)

Now, since the ideals a[si] are reduced principal ideals, we must also have some θ j in

the simple continued fraction expansion of
p
∆ such that a[si] = (θ j ). By Lemma 2.9,

page 37, we know
15N

�

a[si]
�

16
p
∆

2si <πi <
17

16
2si

and, with a change of subscripts and slight rearrangement of terms,
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1

πi−1

<
16
p
∆

15N (a[si−1])
2−si−1 .

Combining these inequalities with (2.16), we see

λi =
L2

iπi

π2
i−1

<

 

16
p
∆

15Li

2−si−1

!2 
17L2

i

16
2si

!

=
16 · 17

152
2si−2si−1∆ . (2.17)

Since si − 2si−1 ∈ {0,1}, we have

λi <
5

2
∆ .

Using a similar argument we can show

|λi | ≤
172

15 · 16

p
∆<

7

5

p
∆ ,

and so

H (λi )<
5

2
∆ . (2.18)

Combining all of the previous observations gives us the definition of a compact rep-

resentation that we are seeking.

Definition 2.11. For any θ such that (θ) = a[x] ∈OK, a compact representation of θ is

θ=
l
∏

i=0

 

λi

L2
i

!2l−i

where the following properties are satisfied:

1. l =O(log logθ) for large θ.

2. λi ∈OK and Li is an integer (0≤ i ≤ l ).



45

3. 0< Li ≤∆1/2 and H (λi ) =O(∆) (0≤ i ≤ l ).

4. π j ∈OK, L j = |N (π j )|,

π j =
j
∏

i=0

 

λi

L2
i

!2 j−i

,

π j generates a reduced ideal b j , where b0 = a[1], and

L2
i+1bi+1 = λi+1b

2
i (0≤ i ≤ l − 1) .

In the remainder of this thesis, we will specify compact representations using the set of triples

{(mi , ni , Li )}, where λi = (mi + ni

p
D)/r .

We remark that this definition is slightly different from that given in [48]. In partic-

ular, if we expand the product in Definition 2.11, we have

θ=

 

λl

L2
l

! 

λl−1

L2
l−1

!2 
λl−2

L2
l−2

!4

· · ·
 

λ2

L2
2

!2l−2 

λ1

L2
1

!2l−1 

λ0

L2
0

!2l

.

Notice that upon substituting di := Li+1, λ := dl , L0 = N
�

(1)
�

= 1 and shifting the

denominators right one term, we get

θ=

 

λl

d 2
l−1

! 

λl−1

d 2
l−2

!2 
λl−2

d 2
l−3

!4

· · ·
 

λ2

d 2
1

!2l−2 

λ1

d 2
0

!2l−1
�

λ0

1

�2l

=
dl

dl

 

λl

d 2
l−1

! 

λl−1

d 2
l−2

!2 
λl−2

d 2
l−3

!4

· · ·
 

λ2

d 2
1

!2l−2 

λ1

d 2
0

!2l−1
�

λ0

1

�2l

= dl

�

λl

dl

��

λl−1

dl−1

�2�λl−2

dl−2

�4

· · ·
�

λ2

d2

�2l−2�
λ1

d1

�2l−1�
λ0

d0

�2l

= λ
l
∏

i=0

�

λi

di

�2l−i

,
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which is the power product given in [48, (12.8), p. 290].

Returning to the Cattle Problem, the base-2 regulator of Q(
p

410286423278424) is

approximately R = 343065.070997 . . . , which can be verified via a number of software

packages. Using the ceiling of this value as input to CRAX [48, Alg. 12.4, p. 287], along

with an appropriate precision p, we obtain the compact representation given in Table 2.1.

For brevity’s sake, we will not include any trivial components—those relative generators

λi = 1—in the representations generated by CRAX or its variants to be presented later.

Moreover, the bit-counts listed in the text have been reduced by 3 bits per trivial generator

removed, one for each of mi = 1, ni = 0, and Li = 1.

In order to write down θ using standard decimal representation, we require O(log2θ)

bits. However, using a compact representation, we require only O((log2 log2θ) log2∆)

bits to express θ. In our example, writing out the coefficients of the fundamental unit

η410286423278424 would require 686,106 bits; the compact representation in Table 2.1 takes

only 1,212 bits.



47

Table 2.1: Compact representation of η410286423278424.

i mi ni Li i mi ni Li

5 692151654643 34171 1 13 105401119805274 5203573 14226959

6 1485823139703 73354 789265 14 63441154824 3132 87180

7 13018318544112 642705 4183599 15 58095534745996 2868132 14030668

8 116251981891416 5739272 15943256 16 106572415688343 5261399 3597385

9 91042564137939 4494702 3694935 17 50385403194207 2487489 3422487

10 99043143493614 4889685 12774777 18 125764468113497 6208896 3702695

11 407320198377372 20109088 10909076 19 — — 1

12 14984774932785 739788 6772647
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3— CHAPTER 3 —
PAST WORK

3.1. INTRODUCTION

�
N THIS CHAPTER WE will present an overview of the previous advance-

ments that have been made to the process of computing the regulator of

a real quadratic number field. We present the main ideas behind each

method, develop explicit pseudocode for the algorithm, and give proofs

of correctness and statements about their run-time complexity. We also point out the

major refinements that have been made to each algorithm since its original introduction.

An important point to take away from this chapter is that while significant achievements

have been made in this area of computational number theory, the techniques used are

increasingly complex. Each step forward draws on more and more topics from algebraic

and analytic number theory, touching on some of their deep and unsolved problems.

We begin this chapter by looking at the connection between the continued fraction

expansion of
p

D and the cycle of reduced principal OK-ideals (Section 3.2). This is fol-

lowed by applying infrastructure techniques to the problem which deliver a significant

reduction in algorithmic complexity (Section 3.3), as well as highlighting some practical

improvements that have been made. Analytic number theory results are then considered

to produce further enhancements (Section 3.4), though additional improvements from

the use of index-calculus techniques comes at the expense of unconditional correctness

(Section 3.5). We end the chapter with a verification procedure which takes these con-

ditionally correct results and attempts to verify them unconditionally as efficiently as
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possible (Section 3.6).

As mentioned in Chapter 1, as part of this thesis we have produced an implementation

of the majority of the algorithms that follow. We will only give abbreviated signatures

for the functions described in this chapter. For the complete signatures, and those of the

supporting algorithms, we refer the reader to the C header files for our library.

3.2. THE CONTINUED FRACTION ALGORITHM

As we noted in Section 2.5 (Theorem 2.6, page 21), there are only a finite number of

reduced principal ideals in a real quadratic number field and we can arrange them in a

cycle based on the distance of their generators (page 32). Moreover, if the length of this

cycle is p, then the generator of ap+1 is the fundamental unit, η∆. This leads us to the

first algorithm we can devise for computing the regulator of a real quadratic number

field. By starting with the ideal a1 = (1), computing the continued fraction expansion of

ω and traversing the cycle of reduced principal ideals one-by-one, we can determine the

regulator.

Before presenting the algorithm, we remark that an improvement can be made by

using ambiguous ideals, that isO-ideals a satisfying a= a. While computing the continued

fraction expansion, when we encounter either Qs = Qs+1 or Ps = Ps+1, then we can

immediately calculate the regulator [48, Thm. 5.20]. If s ≥ 1 is minimal with one of the

above equalities, we know

η∆ =



















Qs

Q0

s
∏

i=1

φi
2 if Ps = Ps+1 ,

Ps+1+
p

D

Q0

s
∏

i=1

φi
2 if Qs =Qs+1 ,
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and hence,

R=



















log2

Qs

Q0

+ 2
s
∑

i=1

log2φi if Ps = Ps+1 ,

log2

Ps+1+
p

D

Q0

+ 2
s
∑

i=1

log2φi if Qs =Qs+1 .

The corresponding algorithm is presented in Algorithm 3.1, which has been implemented

in our library as mpz_qf_compute_regulator(..., ALG_CFRAC).

Algorithm 3.1: Regulator of a real quadratic number field (continued fraction)

Input: D > 0.
Output: An approximation of the base-2 regulator R.

1: Set Q0 = r , P0 = r b(b
p

Dc− r + 1)/r c+ r − 1, a1 = [Q0, P0], R= 0, and i = 1.
2: while ai 6= a1 do

3: Set ai+1 = [Qi+1, Pi+1] = ρ(ai ) and R←R+ log2((Pi+1+
p

D)/Qi ).
4: if Pi+1 = Pi then

5: return R= log2(Qi/Q0)+ 2R.
6: else if Qi+1 =Qi then

7: return R= log2((Pi+1+
p

D)/Q0)+ 2R.
8: end if
9: Set i ← i + 1.

10: end while
11: return R.

Theorem 3.2. Algorithm 3.1 executes in O(∆1/2+ε) elementary operations.

Proof. The correctness of this algorithm follows from the discussion in [48, §5.3, p. 113].

The run-time follows from the observation that the length p of the cycle of reduced

principal ideals is O(
p
∆ log∆) [48, §3.4, p. 68].

3.3. THE BABY-STEP / GIANT-STEP ALGORITHM

The next improvement to the process of computing the regulator came with the discovery

of the infrastructure of a real quadratic field by Shanks [75] (described on page 35). The

main idea of this algorithm is to use the continued fraction expansion ofω to compute a
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list of “baby steps” a1,a2, . . . and then use NUCOMP to compute a series of “giant steps”

b1,b2, . . . until we find one in the baby-step list. Once we have found, say, b j = ai , we

can calculate the regulator as R = δ(bi )−δ(a j ). The key is to construct a sufficiently

long list of baby-steps so that we are guaranteed to find this match. We compute the list

L = {a1,a2, . . . ,at ,at+1,at+2}, where t is chosen such that δ(at−1) <
4
p
∆ < δ(at ). For

the series of giant steps, we take b1 = at and compute b2,b3, . . . using bi+1 := bi ? b1.

How do we know that we will eventually find an ideal b j ∈ L? Let ai = [Qi−1, Pi−1]

and a j = [Q j−1, P j−1] be two reduced principal ideals. From the material in Section 2.10,

we know that if we compute the product ideal aia j , we get (m)c = aia j , where m ∈ Z

and c is a primitive, but not necessarily reduced, principal ideal. We can then compute a

reduced ideal c′ equivalent to c and we know that c′ = ak for some k. Thus, we have

ak = aia j

 

θ′k
m

!

or δ(ak)≡ δ(ai )+δ(a j )+ log2

�

�

�

�

�

θ′k
m

�

�

�

�

�

(mod R) . (3.1)

Let c = log2 |θ′k/m|. Since we are using NUCOMP to compute reduced ideal products,

we know that at the end of that algorithm we have a reduced ideal b such that (µ)b= aia j .

Combining this with (3.1), we find |θ′k/m| = 1/µ. It can be shown [48, §A.1] that

(1/2)∆−3/4 < 1/µ≤ 1, and so we can bound c by

−3

4
log2∆− 1< c≤ 0 . (3.2)

Now consider two consecutive ideals in our series of giant steps, say bi and bi+1, and

(3.1). We see that δ(bi+1)−δ(bi ) = δ(b1)+c≤ δ(b1)+ 1= δ(at )+ 1. Applying (2.13),

page 32, we find that θt+2 > F3θt = 2θt , where F3 is the third Fibonacci number. Thus,

log2θt+2 > log2θt + 1 and we have
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δ(bi+1)−δ(bi )<δ(at+2) .

This means that the distance we travel using NUCOMP to compute a giant step of dis-

tance δ(at ) never exceeds δ(at+2). Since our baby-step list L contains all the ideals up to

and including at+2, we are guaranteed that a giant step will eventually land in L. Thus,

we will have a bi ∈ L, in particular say bi = a j , and we can calculate the regulator as

R= δ(bi )−δ(a j ). The corresponding algorithm is presented in Algorithm 3.3.

Algorithm 3.3: Regulator of a real quadratic number field (baby-step / giant-step)

Input: D > 0.
Output: An approximation of the base-2 regulator R.

1: Set Q0 = r , P0 = r b(b
p

Dc− r + 1)/r c+ r − 1, a1 = [Q0, P0], and L= {a1}.
/* Generate baby-step list */

2: Compute t such that δ(at−1)<
4
p

D <δ(at ).
3: for i = 2,3, . . . , t + 2 do

4: Compute L←L∪{ai} where ai = ρ(ai−1).
5: if ai ∈L with Pi = Pi−1 then

6: return R= log2(Q0/Qi )+ 2δ(ai ).
7: end if
8: if ai ∈L with Qi =Qi−1 then

9: return R= log2((Pi +
p

D)/Q0)+ 2δ(ai ).
10: end if

11: end for
/* Compute giant steps */

12: Set b1 = at , b2 = b1 ? at and i = 2.
13: while bi 6∈L do

14: Compute bi+1 = bi ? at and set i ← i + 1.
15: end while
16: Find a j ∈L such that bi = a j .
17: Return R= δ(bi )−δ(a j ).

Theorem 3.4. Algorithm 3.3 executes in O(∆1/4+ε) elementary operations.

Proof. See [48, Thm. 7.16, p. 179].
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Shanks’ baby-step / giant-step algorithm gives us a large efficiency gain over the con-

tinued fraction based algorithm shown previously. However, further gains are possible.

The algorithm’s efficiency depends on the accuracy of the upper bound on R we choose,

and
p
∆ is a rather loose bound. With a tighter bound on R, we can achieve a greater

balance between the number of baby-step operations and the number of giant steps, and

thus have a more efficient algorithm. The modification we describe now was originally

presented by Buchmann and Williams [15].

Rather than computing L as L = {a1,a2, . . . ,at ,at+1,at+2} with t as described previ-

ously, we instead choose a small value v and check if 0 < R < v2. We do this by com-

puting a baby-step list L of ideals up to distance v—let at satisfy δ(at ) > v > δ(at−1)—

and by taking giant steps of distance v using b1 = at . If R is not found within this

range, we extend L by setting L = L ∪ {at+3,at+4, . . . ,au ,au+1,au+2}, where au satisfies

δ(au) > 2v > δ(au−1), and then take giant steps of distance 2v by using b1 = au . This

doubling process is continued until we find some range such that (2k−1v)2 <R< (2k v)2.

At worst, we will require the computation of 2k v baby steps and giant steps.

The corresponding algorithm is presented in Algorithm 3.5, which has been imple-

mented in our library as mpz_qf_compute_regulator(..., ALG_BSGS).

Algorithm 3.5: Regulator of a real quadratic number field (BS/GS improved)

Input: D > 0, v.
Output: An approximation of the base-2 regulator R.

1: Set Q0 = r , P0 = r b(b
p

Dc− r + 1)/r c+ r − 1, a1 = [Q0, P0], L= {a1}, and s = 2.
/* Generate (or expand) baby-step list */

2: Compute t such that δ(at−1)< v <δ(at ).
3: for i = s , s + 1, . . . , t + 2 do

4: Compute L←L∪{ai} where ai = ρ(ai−1).
5: if ai ∈L with Pi = Pi−1 then

6: return R= log2(Q0/Qi )+ 2δ(ai ).
7: end if
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8: if ai ∈L with Qi =Qi−1 then
9: return R= log2((Pi +

p
D)/Q0)+ 2δ(ai ).

10: end if
11: end for
12: Set s ← t + 3.
/* Compute giant steps up to distance v2 */

13: Set b1 = at , b2 = b1 ? at and i = 2.
14: while δ(bi )< v2 do

15: Compute bi+1 = bi ? at and set i ← i + 1.
16: if bi ∈L then

17: goto Step 22
18: end if

19: end while
/* Increase the regulator upper bound and recompute */

20: Set v← 2v.
21: goto Step 2
22: Find a j ∈L such that bi = a j .
23: Return R= δ(bi )−δ(a j ).

Theorem 3.6. Algorithm 3.5 executes in O(R1/2∆ε) elementary operations.

Proof. See the discussion following the proof of Theorem 7.16 in [48, p. 179].

An improved version of this method has been presented by Buchmann and Vollmer

[13, 14], based on the work of Terr [78] for computing the order of an element in a finite

abelian group. Terr showed that for an element g in a finite abelian group G, there exist

integers e ≥ 0 and 0 ≤ f < e satisfying g e(e+1)/2 = g f . Moreover, if e is minimal, then

ord(g ) = e(e + 1)/2− f [14, Lem. 9.7.7, p. 205].

In our case, this result can be applied to the infrastructure of a real quadratic field

by taking note of its similarity to the cyclic group 〈g 〉 [14, Prop. 10.2.1, p. 223]. We

begin by computing a series of baby steps a1 = (α1),a2 = (α2), . . . ,ai = (αi ), . . . until we

find L such that δ(a2(L+1)) ≥ (1/2) log2∆. The giant steps b1,b2, . . . are computed by

determining γi ≥ 0 such that bi = (γi/α2(L+i))bi−1 = (βi )bi−1. Once we find be = a f ,
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where f ∈ {1,2, . . . , 2(e + L+ 1)}, then we can compute

R= log2

 

α f
∏e

i=1βi

!

.

This algorithm runs in time O((log∆+
p
R)(log∆)3) [14, Prop. 10.2.7, p. 228]. Fur-

ther details, including a pseudocode implementation, can be found in Section 10.2 of

[14, pp. 222–230]. Due to time constraints, this algorithm was not implemented in our

library.

3.4. AN ANALYTIC ALGORITHM

The next significant advance in real quadratic field regulator computations came about

from the work of H. W. Lenstra, Jr. [55]. It improves upon Shanks’ baby-step / giant-

step algorithm by combining it with some key analytic number theory results. The

main idea of this algorithm is to compute an approximation of the product hR using

the analytic class number formula and a sufficiently accurate approximation of L(1,χ ).

By bounding the error term of this approximation, we can produce a range in which

hR is known to be (§3.4.1). We then employ infrastructure techniques to compute an

integer multiple h∗R of the regulator by searching this interval (§3.4.2). By applying

these techniques a second time, we can determine the value of the multiplier h∗ and

thus calculate R (§3.4.3). It is important to note that although the complexity of this

algorithm is contingent on the truth of the extended Riemann Hypothesis (ERH), the

computed regulator is unconditionally correct. The ERH is only used to estimate the

error in approximating hR.
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3.4.1. Determining a range for hR. The first stage of the algorithm is to determine

a range in which hR is known to be. Recall from our discussion of L(1,χ ) that we can

write it as an Euler product: L(1,χ ) =
∏

p

�

1−χ (p)/p
�−1. One way we can approximate

L(1,χ ) is by considering the truncated version of this product. In other words, we let

B(x,χ ) =
∏

p<x

�

1−
χ (p)

p

�−1

(3.3)

and try to find some x such that B(x,χ ) is as close to L(1,χ ) as we desire. To do this, we

will need to derive bounds on the error of this approximation which, quite clearly, come

from the “tail” of the Euler product—that is, the terms left off the product. Let

B(x,χ ) =
∏

p≥x

�

1−
χ (p)

p

�−1

represent the product of these terms. As noted in [48], we can show that, under the

ERH, the relative error in using the truncated Euler product as an approximation is

�

�

� logB(x,χ )
�

�

�=O
�

log |∆| log x
p

x

�

.

This method has been improved by Bach [4] by reducing the relative error to O(log∆

/(
p

x log x)) as follows. Rather than working with a single value of x, we instead average

(3.3) over several nearby values. We take the values x+i (i = 0,1, . . . , x−1) and determine

the corresponding values of B(x + i ,χ ), weighting each by the coefficient

ai =
(x + i) log(x + i)

∑x−1
j=0 (x + j ) log(x + j )

.
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Bach showed [4, Thm. 6.3] that under the GRH, these weighted terms satisfy the in-

equality
�

�

�

�

�

L(1,χ )−
x−1
∑

i=0

ai logB(x + i ,χ )

�

�

�

�

�

<
Alog |∆|+B
p

x log x
, (3.4)

for constants A and B , and it is this approximation that is used in modern implementa-

tions of Lenstra’s algorithm. For convenience, we define

S(x) =
x−1
∑

i=0

ai logB(x + i ,χ ) and A(x) =
Alog |∆|+B
p

x log x
.

Remember that we are trying to produce a range in which we know that hR lies. By

appealing to the analytic class number formula (Theorem 2.7, page 23), we see that (3.4)

implies that

hR≈
p
∆exp(S(x))

2 log2
=: E .

More precisely, we can show that the interval we are looking for is

|hR− E | ≤
E

log2
|exp(A(x))− 1|=: L2 .

As is shown in [48, Thm. 10.1, p. 242], x =∆1/5 is the optimal value for this approxima-

tion in conjunction with the rest of Lenstra’s algorithm.

3.4.2. Computing a multiple of R. Once we have an approximation of hR and a

range in which the true value lies, we can proceed to determine an integer multiple of

the regulator. We begin by computing a list L of baby steps consisting of all the reduced

principal ideals of distance less than L+1. We next compute a reduced principal ideal am

such that δ(am)≈ E . It is this ideal that we will use to compute an integer multiple h∗R.
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Let at ∈ L such that δ(at ) < L < δ(at+1). We compute a series of giant steps by

setting c1 = am and computing c2,c3, . . . using ci+1 := ci ? at . This differs slightly from

Shanks’ O(∆1/4+ε) algorithm where we computed the series of giant steps using b1 = at

and bi+1 := bi ? at (note the subscripts on the a ideals). A second difference is that we

check for both ci ∈L and ci ∈L. If ci = ak ∈L, then

h∗R= δ(c j )−δ(ak) .

Similarly, if c j = ak ∈L, then

h∗R= δ(am)−
�

δ(c1,c j )−δ(ak)
�

− log2

�

Qm−1

r

�

,

where by δ(c1,c j ) we mean the distance from c1 to c j . In the pseudocode to follow, we

will refer to this multiple h∗R as R′.

3.4.3. Determining h∗. Once we have computed the integer multiple h∗R of the regu-

lator, we can proceed with determining the value of h∗ and hence R. First, we determine

whether or not R > E/
p

L. The reason for this is to ensure the complexity results by

optimizing the balance between a baby-step / giant-step search for the regulator and trial

division of the product h∗R to calculate h∗. Moreover, verifying this bound allows us to

prevent complications with the determination of h∗ as we will see later.

As with the previous part of this algorithm, verifying this lower bound is done via a

baby-step / giant-step routine: set c1 = at and compute c2,c3, . . . using ci+1 := ci ? at . We

continue computing this series of ideals until either we find c j or c j ∈ L or we find that

δ(c j )> E/
p

L. In the first case, we can immediately determine R as
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R=







δ(c j )−δ(ak) if c j ∈L ,

δ(c j )+δ(ak)− log2

�Q j−1

r

�

if c j ∈L

and exit the algorithm. In the second case, we know that R must then exceed E/
p

L and

so we must proceed to calculate h∗.

The basic idea for this second stage is to determine the prime power factorization of

h∗ by taking the primes that could possibly divide it and trial dividing to see if they do.

More specifically, for all primes q that could divide h∗, we compute the ideal a at distance

h∗R/q and check if a = (1). If the ideal at distance h∗R/q is (1), then we know that

h∗R/q is also an integer multiple of the regulator and hence q | h∗. We then determine the

highest power of q that divides h∗ by computing the series of ideals ea2,ea3, . . . at distances

h∗R/q2, h∗R/q3, . . . (resp.) until we find an ideal eak = (1), but eak+1 6= (1). This tells us

that qk || h∗. On the other hand, if the ideal a at distance h∗R/q is not equal to (1), then

we know that q - h∗. Once we have worked our way through the possible prime divisors

of h∗, we know the complete factorization of h∗ and can compute R easily. Recall that

at this point of the algorithm we know that R > E/
p

L. This means that we need only

consider primes q such that h∗R/q > E/
p

L, or equivalently q < h∗R
p

L/E .

The corresponding algorithm is presented in Algorithm 3.7, which has been imple-

mented in our library as mpz_qf_compute_regulator(..., ALG_ANALYTIC).

Algorithm 3.7: Regulator of a real quadratic number field (analytic improvements)

Input: Discriminant∆> 0.
Output: An approximation of the base-2 regulator R.

1: Set Q =∆1/5.
/* Approximation of hR */

2: Compute E =
p
∆exp(S(Q,∆))/(2 log2) and L=

p

(E/ log2)|exp(A(Q,∆))− 1|.
/* Integer multiple h∗R (=R′) */
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3: Set a1 = (1), L= {a1}, and i = 1.
4: while δ(ai )< L+ 1 do

5: Compute ai+1 = ρ(ai ) and set L←L∪{ai+1}.
6: if ai+1 = [Qi , Pi] with Pi = Pi−1 then

7: return R= 2δ(ai )+ log2(Q0/Qi−1).
8: end if
9: if ai+1 = [Qi , Pi] with Qi =Qi−1 then

10: return R= 2δ(ai )+ log2(Q0ψi/Qi−1).
11: end if
12: Set i ← i + 1.

13: end while
14: Compute am such that δ(am)≈ E and set c1 = am and i = 1.
15: repeat

16: Compute ci+1 = ci ? at .
17: if ci = ak ∈L then

18: Set R′ = δ(ci )−δ(ak)
19: goto Step 27

20: end if
21: if ci = ak ∈L then

22: Set R′ = δ(am)−
�

δ(ci ),δ(c1)−δ(ak)
�

− log2(Qm−1/r )
23: goto Step 27

24: end if
25: Set i ← i + 1.

26: end repeat
/* Determine if R> E/

p
L */

27: Set c1 = at , c2 = c1 ? at , and i = 2.
28: do

29: if ci = ak ∈L then
30: return R= δ(ci )−δ(ak).

31: else
32: Set ci+1 = ci ? at and i ← i + 1.

33: end if
34: while δ(ci )< E/

p
L

/* Compute the factorization of h∗ */
35: Set h∗ = 1 and q = 2.
36: while p <

p
L+ L5/2/E do

37: Set i ← 1 and compute a= a[R/q].
38: while a= (1) do

39: Set i ← i + 1 and compute a= a[R/q i].
40: end while
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41: Set h∗← h∗ · q (i−1) and q to the next prime greater than q .
42: end while
43: return R=R′/h∗.

Theorem 3.8. Algorithm 3.7 executes in O(∆1/5+ε) elementary operations.

Proof. See [48, Thm. 10.1, pp. 242–3].

In practice, however, there is a more efficient method for computing the sequence

of a[R/qi] ideals, where qi denotes the i th prime. The key observation to make is that

we can reuse the work expended while computing a[h∗R/qi+1] in order to compute

a[h∗R/qi]. This method was originally described in [43, pp. 214–5], though our de-

scription below follows the notation used in [48, §10.2, p. 244].

For the prime qi , we need to compute a reduced principal ideal an which satisfies

h∗R
qi

<δ(an)<
h∗R
qi

+δ(at ) .

Having already computed am = a[h∗R/qi+1] for the preceding prime, we have an ideal

such that
h∗R
qi+1

<δ(am)<
h∗R
qi+1

+δ(at )

and, if we were to compute an ideal as at distance δ(as ) ≈ h∗R/qi − δ(am), then by

setting an = as ? am we would find

h∗R
qi

<δ(as )+δ(am)≈ δ(an)≤
h∗R
qi

+δ(at )

as desired.

Now as could be determined via AX, however it is more efficient to compute it from
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a list of precomputed ideals. Set I = {at0
,at1

,at2
, . . . ,atk

} where δ(ati
)≈ 2iδ(at ) and k is

sufficiently large. If we also set rδ(at ) = h∗R/qi +δ(am) for some real number r , then

δ(as )≈ ([r ]+ 1)δ(at ) = qδ(at ) (3.5)

where q ∈ Z. To compute as with distance approximately qδ(at ) using I, we determine

a reduced ideal b equivalent to
k
∏

j=0

at j

b j

where the b j come from the binary expansion of q =
∑k

i=0 2i bi . Notice that

δ(b)≈ bkδ
�

atk

�

+ bk−1δ
�

atk−1

�

+ · · ·+ b1δ
�

at1

�

+ b0δ
�

at0

�

≈ 2k bkδ(at )+ 2k−1bk−1δ(at )+ · · ·+ 2b1δ(at )+ b0δ(at )

=
� k
∑

i=0

2i bi

�

δ(at ) = qδ(at )≈ δ(as ) .

Due to time constraints, this improvement was not included in our implementation

of Algorithm 3.7.

3.5. THE INDEX-CALCULUS METHOD

Up until this point, all the algorithms we have discussed have exponential expected run-

times in log∆. The index-calculus algorithm we present next has a subexponential run-

time [10].

All index-calculus algorithms can be broken down into two major components: gen-

erating random smooth objects and solving a linear algebra problem. In our case, real

quadratic number fields, the random objects we generate are smooth principal ideals.



64

These are principal ideals that factor into a product of prime ideals of small norm. Before

we can describe the idea behind the index-calculus algorithm in more detail, we need to

introduce a few definitions.

Definition 3.9. Let p1, p2, . . . , pk ∈ Z be the first k rational primes that are not inert in

Q(
p
∆) (i.e., the Kronecker symbol (∆/pi ) 6= −1). For each pi , let pi be a prime OK-ideal

such that pi | (pi ). If pi ramifies, that is (∆/pi ) = 0, we have a unique choice for pi . If pi

splits, (∆/pi ) = 1, then there are two ideals to choose from: pi and pi . It does not matter

which we select, so long as we only select one. We call the set FB = {p1,p2, . . . ,pk} a factor

base.

Definition 3.10. Let (α) be a principal ideal. If (α) factors completely over the factor base,

then we can write (α) =
∏

i p
vi
i where vi ∈ Z. For convenience, we will denote this product

as FB~v and call the vector of exponents ~v = [vi] a relation. The set of all relations Λ forms a

sublattice of Zk which we call the relation lattice.

In the material that follows, we will actually be working with extended relations

(~v, log2 |α|) where FB~v = (α) and the extended relation lattice Λ′, a sublattice of Zk ×R.

Consider the homomorphism Ω′ : Zk ×R→ ClK that maps (~v, log2 |α|) to the ideal class

[FB~v]. Buchmann [14, Prop. 11.5.2] noted that if the ideal classes of the prime ideals

in the factor base generate the class group, then Ω′ is surjective and ker(Ω′) = Λ′, so

ClK
∼= Zk/Λ and det(Λ′) = hR. This is an extension of a result due to Pohst and Zassen-

haus [70], who used Ω :Zk → ClK to show that det(Λ) = h.

Now, in order for the ideal classes of the prime ideals in the factor base to generate

the class group, we need to take all prime ideals whose norm is less than a given bound.

For unconditional results, we may use the Minkowski bound of (2/π)
p
∆, though we

incur a steep computational cost as this bound grows exponentially. If we are willing to
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assume the generalized Riemann Hypothesis (GRH), then we may use Bach’s bound [3]

6 log2∆.

Once we know that FB generates ClK, we need to compute a set of random relations

L′ =
�

(~v1, log2 |γ1|), (~v2, log2 |γ2|), (~v3, log2 |γ3|), . . . , (~vn, log2 |γn|)
	

such that L′ generates Λ′ and not just a sublattice of Λ′. The most obvious method to

verify this is to check if det(L′) = hR, however this is not a computationally efficient

method. By the work of several authors [48, pp. 170–1], it is known that the problem of

integer factorization can be reduced to that computing the class number h of a quadratic

field; in terms of complexity theory, integer factorization is known to be an NP problem

and strongly suspected to not be in P—that is, solutions to an instance of the problem

can be verified in polynomial time, but there is no known polynomial time algorithm

to determine solutions. As such, computing h appears to be at least as hard as factoring.

Instead, as in Lenstra’s algorithm from Section 3.4, we will compute an approximation

h of hR via an approximation of L(1,χ ) such that the only multiple of hR in the open

interval (h, 2h) is hR itself. Thus, once h < det(L′) < 2h is satisfied, we know det(L′) =

hR and hence that L′ generates Λ′.

Once we know that L′ generates the extended relation lattice, we form the relation

matrix ML = [~v
T

1 , ~v T
2 , . . . , ~v T

n ] and compute its Hermite normal form HNF(ML) = [0 |

H ]. An invertible square matrix M = [mi j ] is in Hermite normal form if M is upper

triangular, its diagonal entries mi i are positive, and in a given row i the entries to the

right of the diagonal satisfy 0 ≤ mi j < mi i ( j > i ). Since HNF(ML) is upper-triangular,

we can easily compute det(L) = det(H ) to find h by simply taking the product of the
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diagonal entries of H . At this point, we also need to compute det(L′), for which we

need to compute the multiple of R corresponding to the real part of L′. To do this, we

compute a basis {~x1,~x2, . . . ,~xn} of the null space of ML, then we have det(L′) = det(L)R′

whereR′ = rgcd(~r ·~x1,~r ·~x2, . . . ,~r ·~xn) = mR and~r = (log2 |γ1|, log2 |γ2|, . . . , log2 |γn|). The

function rgcd represents the real gcd of two integer multiples of the same real number;

in other words, for x, y ∈ Z and R ∈ R, rgcd(xR, yR) = gcd(x, y)R. Maurer [61] has

described one method for calculating rgcd which uses the continued fraction expansion

of xR/yR= x/y. This results in integers a and b such that a(xR)+b (yR) = (ax+b y)R=

gcd(x, y)R. The corresponding algorithm is presented in Algorithm 3.11.

Algorithm 3.11: Regulator of a real quadratic number field (index-calculus)

Input: Discriminant∆> 0.
Output: An approximation of the base-2 regulator R.

1: Compute a factor base FB= {p1,p2, . . . ,pk} of non-inert prime ideals such that N (pi )
< B for some bound B and such that each pi divides a unique rational prime.

2: Compute an approximation h of hR such that h < hR< 2h and set n = 0.
3: do

4: Increase n and compute n > k random extended relations (~vi , log2 |γi |).
5: Set ML = [~v

T
i ], compute [0 |H ] =HNF(ML), and set h ′← det(H ).

6: Compute a basis {~x1,~x2, . . . ,~xn−k} of null(ML).
7: Set ~r = (log2 |γ1|, log2 |γ2|, . . . , log2 |γn|) and compute

R′ = rgcd(~r ·~x1, ~r ·~x2, . . . , ~r ·~xn−k) .

8: while h ′ = 0 or h ′R′ > 2h.
9: return R=R′ and h = h ′.

The steps in the previous algorithm are deliberately vague. Although we will not

discuss them here, there have been a number of papers—see [10, 35] for the original al-

gorithms and, for instance, the works cited in [48, Endnote 9, p. 350] and the those

in [83, 84]—dealing with the implementation complexities of this algorithm, in both the
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real and imaginary cases. For instance, in Step 4 we need to generate random extended re-

lations. However we choose to do this, we need to verify that we are randomly sampling

from the entire lattice. Moreover, as any particular ideal equivalence class contains mul-

tiple reduced ideals, once we have a relation, we must ensure that we are then randomly

sampling from the reduced ideals in the resulting equivalence class. Because of these and

other complexities, we have elected not to implement this algorithm in our library, but

instead chose to interface with other preexisting implementations. These other imple-

mentations are available through mpz_qf_compute_regulator(..., ALG_INDEXCALC).1

In order to discuss the run-time of this index-calculus algorithm, we require the fol-

lowing definition.

Definition 3.12. For a, b ∈R and 0≤ a ≤ 1, define

L∆[a, b] := exp
�

b (log |∆|)a(log log |∆|)1−a� .

This function L∆[a, b] allows us to more accurately describe the range between a

polynomial algorithm and an exponential one. If we let a = 0, then L∆[0, b] = (log |∆|)b

is polynomial in log |∆|. On the other hand, if a = 1, we see that L∆[1, b] is exponential

in log |∆|: L∆[1, b] = |∆|b . For the other values of a (0< a < 1), we find that L∆[a, b] is

asymptotically between a polynomial function and an exponential function; we refer to

this as a subexponential function. The index-calculus algorithm described above is a subex-

ponential algorithm, an algorithm whose running time is asymptotic to a subexponential

function.

Theorem 3.13. Assuming the truth of the ERH and GRH, Algorithm 3.11 will execute in

1Although we interface against several libraries implementing the index-calculus algorithm, there is
currently no way of selecting a particular implementation at run-time; one must be chosen at compile-
time.



68

expected time L∆[1/2,
p

2+ o(1)] for all∆> 41.

Proof. The lower bound on∆ ensures that the factor base bound—that is dL∆[1/2,
p

2+

o(1)]e—is large enough so that the ideal classes of the factor base primes generate the class

group. See [14, Thm. 11.5.30, p. 267] for the remainder of the proof.

At this point, we also need to highlight that the correctness of the output of Algo-

rithm 3.11 is dependent on the ERH and GRH. Without the assumption of these hy-

potheses, the best we can say is that the value of the regulator returned is close to an

integer multiple of the true regulator. The value of the class number returned will be

a divisor of the true class number or, if the interval (h, 2h) is determined incorrectly, a

multiple of it.

3.6. A VERIFICATION ALGORITHM

The next development in the line of regulator-computing algorithms for real quadratic

fields is a verification algorithm presented by Michael J. Jacobson, Jr., Ákos Pintér and

Gary Walsh [44]. This algorithm was then adapted to work with ( f , p) representations

by Robbert de Haan, Michael Jacobson, Jr., and Hugh Williams [21, 22], including a

more detailed optimization of the algorithm’s parameters. As we mentioned in the pre-

vious section, if we drop the GRH assumption, then the most we can say about the

outputs are that R is an integer multiple of the true regulator and h is a divisor of the

true class number. As the name implies, the idea of the verification algorithm is to use

the index-calculus algorithm to generate a multiple of the regulator, which is then verified

unconditionally.

We begin by assuming that we are given a multiple of the regulator R′ that is close to
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an integer multiple of the actual regulator R. More specifically, we assume

|R′− cR|< 1 (3.6)

for some c ∈Z+. Our goal is to confirm this assumption and then to show that c = 1.

To verify that R′ is close to an integer multiple of the regulator, we use AX(R′) to

compute an ( f , p) representation (ai , di , ki ) of a1 (= (1)) and check if

a1 ∈ {ai ,ai+1, . . . ,ai+8} . (3.7)

If R′ satisfies (3.6), then by Theorem 11.12 of [48, p. 282] we see that (3.7) must hold,

however the converse need not be true. To work around this, we note that we can refine

R′ so that (3.6) does hold. By applying FIND to (ai , di , ki ), we compute an ( f + 1/4, p)

representation (a j , d j , k j ) of a1 and by replacing R′ by k j− p+y/2, where 2y < d 2
j ≤ 2y+1,

we now have a value for R′ that satisfies (3.6) [48, §15.1, p. 388]. Assuming (3.7) holds,

we let j ∈ {i , i + 1, . . . , i + 8} be such that a j = a1.

The final part of the algorithm is to verify that c = 1, which we split into two steps.

This splitting is identical to that done in Lenstra’s algorithm when we determined h∗; see

Section 3.4.3, page 59. The first step is to verify a precomputed lower bound K for R,

selected to minimize the run-time of the overall algorithm, which we accomplish by way

of a baby-step / giant-step method. The second is to show c = 1 by determining its prime

power factorization by iterating over all of the possible prime divisors. The rationale for

verifying a lower bound on R is the same as before: we need it to ensure an optimum

balance between the baby-step / giant-step search and the following trial division phase.

As also mentioned in the Section 3.4.3, it also prevents finding a prime q with a[R′/q]
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close to (1), even though q - c .

Let λ = d(1/2) log2∆e + 1. We begin by precomputing a lower bound K for the

regulator, again selected to minimize the overall run-time, and selecting values s and Q

such that 2Q s ≥ K , selected to balance the run-times for the baby-step and giant-step

phases. Next, we take a1 = (1) and compute a set of baby-steps L = {a1,a2,a3, . . . ,at}

where at = AX(s + λ). We then proceed to compute a series of Q giant steps a[2s],

a[4s], a[6s], . . . , a[2Q s], at each step checking if a[2q s] or a[2q s] ∈ L. If so, then we

can use the techniques covered previously in Sections 3.3 and 3.4 to quickly determine R.

If not, then we must have R> 2Q s ≥ K for any c ∈ Z+ which gives us the lower bound

on the regulator we require.

For the second step, we try to confirm that c = 1 by determining its prime power

factorization. Let S = {a4,a3,a2,a1,a2,a3,a4}. We can show that if a[R′/q] 6∈ S, then

we must have q - c . However, if a[R′/q] ∈ S, we cannot immediately say that q | c . As

before, it may be the case that if q is sufficiently large—q ≈R—, then R′/q may be small

enough that a[R′/q] ∈ S even though q - c . To prevent this from happening, we can use

Theorem 15.6 of [48] to show that we can verify c = 1 by verifying that a[R′/q] 6∈ S for

all primes q <R′/K+1, assuming R is sufficiently large (see [48, p. 393] for details). For

a given prime q , once we find that q | c , we determine the greatest power of q dividing c

by computing the series of ideals a[R′/q i] until we find a[R′/q i+1] is not equal to (1).

At that point, we know that q i || c . We can also make use of the improvement to com-

puting the sequence of a[R′/qi] described in the paragraphs following Algorithm 3.7

on page 62, though here we use ( f , p) representations to maintain accuracy. The corre-

sponding algorithm is presented in Algorithm 3.14.
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Algorithm 3.14: Regulator of a real quadratic number field (verification algorithm)

Precomputation: Select K ≈ (R′)2/3 such that the total run-time of the algorithm is
minimized. Select s ,Q such that 2Q s ≥ K and the run-times of the baby-step and
giant-step phases are balanced.

Input: Discriminant∆> 0, bound K > 0, and integers s ,Q.
Output: An approximation of the base-2 regulator R.
/* Compute a value for R′ */

1: Use the index-calculus algorithm to determine an approximation R′ of the regulator.
/* Verify that R′ is close to an integer multiple of R */

2: Compute an ( f , p) representation (ai , di , ki ) of a1 with distance R′ via the algorithm
AX.

3: Set j = i .
4: while a j 6= a1 do

5: Set a j ← ρ(a j ) and j ← j + 1.
6: if j = i + 9 then

7: return “R′ not close enough to a multiple of the regulator.”
8: end if

9: end while
/* Refine the approximation R′ */

10: Apply the algorithm FIND to the ( f , p) representation (ai , di , ki ) to compute an
( f , p) representation (a j , d j , k j ) of a1.

11: Set R′← k j − p + y/2 where y is such that 2y < d 2
j ≤ 2y+1.

/* Verify that R> 2Q s */
12: Set λ= d(1/2) log2∆e+ 1, a1 = (1), ai = a1, L= {a1}, at =AX[s +λ], and i = 1.
13: while ai 6= at do

14: Compute ai+1 = ρ(ai ), set L←L∪{ai+1}, and set i ← i + 1.
15: end while
16: for q = 1,2, . . . ,Q do

17: Compute the ideal a[2q s] via the algorithm AX.
18: if a[2q s] ∈L then

19: return R= δ(a[2q s])−δ(ak), where a[2q s] = ak ∈L.
20: end if
21: if a[2q s] ∈L then

22: returnR′ = δ(a[2s])−
�

δ(a[2q s]),δ(a[2s])−δ(ak)
�

−log2( bQ/r ), where
a[2q s] = ak ∈L and a[2s] = ( bQ, bP ).

23: end if
24: end for
/* Determine the factorization of c */
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25: Set c = 1, q to be the largest prime less than R′/(2Q s) + 1, ea = (1), γ = 0, and
compute S = {a4,a3,a2,a1,a2,a3,a4}.

26: Precompute the ideals a[δt0
],a[δt0

], . . . ,a[δtm
], where δti

= 2i (s − 1).
27: while q ≥ 2 do

28: Set δ←dR′/qe− γ , ba= (1), and compute the binary expansion of
�

δ

s − 1

�

+ 1=
r
∑

k=0

bk2k .

29: for each bi = 1 (i = 0,1, . . . , r ) do
30: Compute ba← ba ? a[δti

] via the algorithm ADDXY.
31: end for each
32: Compute a[R′/q] = ea ?ba via the algorithms ADDXY and WNEAR.
33: Set ea← a[R′/q] and γ ← δ(ea).
34: if a[R′/q] ∈ S then

35: Set e = 1.
36: do

37: Set e← e + 1 and compute a[R′/q e].
38: while a[R′/q e] ∈L
39: Set c← cq e−1.

40: end if
41: Set q to be the largest prime less than q , or set q← 1 if q = 2.

42: end while
43: return R=R′/c .

This algorithm is implemented in our library as mpz_qf_compute_regulator(...,

ALG_VERIFY).

In order to maximize the efficiency of this algorithm, we must ensure that the number

of operations required for its two parts are balanced. To verify the approximation R′, we

compute t + 2 baby steps (stored in L) and since at = a[s +λ], we have t ≈ (s +λ)/1.7.

In other words, computing L requires O(s) elementary operations. In order to show that

R > K , we compute the series of giant steps a[2q s] (q = 1,2, . . . ,Q). We require one

ADDXY invocation for each q and, recalling that Q and s satisfy 2Q s ≥ K , this gives us

a cost of O(s) +O(Q log∆) elementary operations. Combining these two observations
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by noting that we need O(s) =O(Q) =O(
p

K) in order to achieve an optimal run-time

complexity for the baby-step and giant-step phases, we arrive at a cost of

O(K1/2+K1/2+ε) =O(K1/2+ε) .

On the other hand, to verify that c = 1 we must trial divide by a range of possible prime

divisors. The prime number theorem states that if π(x) is the prime-counting function,

then asymptotically π(x) ∼ x/ log(x). Using this as a guide, we would expect to have

approximately (R′/K+1)/ log(R′/K+1) primes less than R′/K+1. So, this verification

requires roughly (R′/K+1)/ log(R′/K+1) invocations of AX at a cost of O(logR′ log∆)

elementary operations each. This gives a cost of

O

�� R′/K + 1

log(R′/K + 1)

�

logR′ log∆
�

=O((R′/K)1+ε) .

elementary operations. Thus, to balance the two parts of the verification algorithm, we

need K1/2 ≈R′/K or equivalently K ≈ (R′)2/3. With this value of K , the overall run-time

is O((R′)1/3+ε) =O(∆1/6+ε), assuming that R is close to R′. As is mentioned by Jacobson

and Williams [48, p. 394], we have an explicit upper bound on R from the analytic class

number formula and the upper bound on L(1,χ ) of (1/2) log |∆|+ 1, so we would not

execute the algorithm if our approximation R′ exceeds this regulator bound by more than

1. Moreover, R must be sufficiently large in order for the second stage of this algorithm

to give a correct answer. We must guarantee that when we are testing c for divisibility by

a prime q , R is large enough as that we actually have a[R′/q] ∈ S because q | c and not
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because R′/q ≈ 1. R is sufficiently large when [48, p. 394]

R>M
�

2 log2∆+ log
17

4

�

, (3.8)

which will happen if K satisfies this lower bound (see also [48, Thm. 15.6, p. 392]). We

determined previously that we need K ≈ (R′)2/3 to balance the algorithm, so we also have

M = (R′)1/3+ 1. (3.8) will be satisfied for R′ > 216(log∆)3 [48, p. 394] and if this is not

the case, R is small enough to be quickly verified by the continued fraction algorithm

given in Section 3.2.

Theorem 3.15. Assuming the ERH and GRH, Algorithm 3.14 executes in expected time

O(∆1/6+ε). The output of Algorithm 3.14 is unconditionally correct.

Proof. See [48, Thm. 15.7, p. 394].

3.6.1. Implementation Concerns. There are a number of implementation concerns

for this verification algorithm, most of which have been discussed in other works such as

[48, §15.3, pp. 397–399] and [21, Ch. 6].

As mentioned in the previous material in this section, we need to store a list of baby-

steps L. In practice, this list is actually stored as a hash table to allow for fast lookups, so

searching for ideals in L is not an expensive operation. However, we have only a limited

amount of storage space—in the form of RAM—available for it. If the size of L exceeds

this limit, we are forced to swap portions of L out to a hard-disk cache which severely

impacts the implementation’s performance. We could restrict ourselves to a shorter baby-

step list guaranteed to fit in RAM, however this would lead to an imbalance in work

loads between the baby-step and giant-step phases of the algorithm. de Haan mentioned
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[21, 22] another work-around for this problem, namely that we can get away with only

storing a partial baby-step list

L′ =
n

a1,al ,a2l , . . . ,aml

o

∪
n

at ,at+1,at+2

o

,

with m such that ml ≤ t < (m + 1)l , and rather than checking if the giant step a ∈ L,

we check if ρn(a j ) ∈ L′ for some n = 1,2, . . . , l . On a practical implementation note,

the baby-step list is stored in a hash table and the extra lookups are not computationally

expensive. In essence, we are trading a slight increase in computational overhead—ρ is a

relatively efficient computation—for lower storage requirements. This change is imple-

mented in our library as mpz_qf_compute_regulator(..., ALG_VERIFY_PARTIAL_L).

A second concern is the selection of the particular values for the s , Q, and K parame-

ters. We will hold off describing how these values are computed for the time being, how-

ever we should point out that they are highly implementation and machine dependent.

The multi-precision arithmetic library chosen, compiler optimization flags selected, any

CPU architecture differences, for example, have a great impact on the values of these

parameters. Our implementation differs from de Haan’s implementation—detailed in

Section 4.3.2 and Appendix A—and as such, we were not able to reuse the parameter

values he specified in [21].

As the O(∆1/6+ε) algorithm makes heavy use of ( f , p) representations, we must deter-

mine a suitable precision p to ensure that the intermediate computations and results are

numerically correct. de Haan has presented a detailed analysis of the precisions required

for each component of the verification algorithm. Rather than repeating that work here,

we summarize it below and direct the interested reader to [21, §6.3, pp. 73–83] for de-
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tails of the analysis. For the regulator approximation refinement stage—Steps 2–11 of

Algorithm 3.14—we required p such that 2p > 21R′ log2R′, assuming R′ > 106. The

precision p is largely irrelevant for the baby-step computation phase, save for when we

compute the end-of-list bound a[s + λ] in Step 12. We are only storing the coefficients

of the baby-step ideals and stopping when we find an ideal matching a[s+λ]. Neither of

these require us to compute ( f , p) representations of each baby-step ideal, so we can use

the version of ρ which operates on OK-ideals and not the ( f , p) representation version.

Moreover, as de Haan points out, a larger precision is required for computing the initial

giant step a[2s] than is required for a[s + λ]. As such, we can ignore this precision cal-

culation. For the giant-step phase, we refer to the following result for determining the

necessary precision.

Theorem 3.16 ([21, Thm. 6.4, p. 74]). Assume that s > 16, Q > max{16, log2 s} and

that (b0, d0, k0) = a[2s], which is an ( f0, p) representation of a1 such that f0 < 49s
p

e/2

where e ≈ 2.71828 . . . is Euler’s constant. Then, if 2p ≥ 221Q2 s , we have an ( fQ−1, p)

representation (bQ−1, dQ−1, kQ−1) of a1 at the end of [Step 24 of Algorithm 3.14], where

bQ−1 = a[2sQ] and fQ−1 < 2p−4.

For the final multiplier-finding phase, we can use another result from de Haan’s work.

Theorem 3.17 ([21, Thm. 6.8, p. 80]). Assume that R′ > 106, (R′)1/2 < K < (R′)5/6 and

max{16,K2/5} < s < K3/5. If 2p > 19R′max{93, log2R′} then all ( f , p) representations

that are computed during [Steps 25–42 of Algorithm 3.14] satisfy f < 2p−4.

3.6.2. Parallelization. As the computations involved in Algorithm 3.14 are very time

consuming for larger discriminants, an obvious question to ask is: can all or part of the
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algorithm be parallelized?

We adopt the following standard terminology for the remainder of this thesis. A

compute cluster is a collection of processors and memory, connected by a combination

of memory buses and high-speed network interconnects. The cluster is divided into a

number of compute nodes, or simply nodes, each having an equal number of processors

and amount of memory. The nodes are connected by the high-speed network. Within

each node, all the processors have shared access to all of the node’s memory via a memory

bus. We will refer to a machine or node with one single-core processor as a single processor

machine. Machines or nodes with multiple single-core processors, a multi-core processor,

or multiple multi-core processors will be called multi-processor machines.

With this terminology in mind, we can discuss two techniques for parallel commu-

nication which can be used in conjunction. Message passing involves creating separate

processes on each node which then communicate with each other by literally passing

messages back-and-forth. Generally, one process will control the division of tasks and

handle collecting the final results after computations are finished. Threading is used to

make a process on a single multi-processor machine or node run in parallel. The process

is divided into a number of light-weight processes called threads which are inexpensive

to create and share all the memory allocated to the parent process. However, care must

be taken to ensure that data produced by one thread is not accidentally overwritten by

another thread and therefore corrupted.

As the authors of [22] point out, the multiplier-finding phase is quite straight-forward

to parallelize: each processor in the cluster works on a different interval of primes. de

Haan found [21, §6.4.2, p. 85] that the best result comes from a heuristic that splits the

range of possible prime divisors into three parts in a 1:5:6 distribution. That is, the first
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part contains 1/12th of the range and is comprised of the smallest primes, and so on. One-

third of the number of processors are assigned to each part, and then the parts are further

subdivided using the prime number theorem.

The baby-step and giant-step phases, however, are more difficult to parallelize. When

using message passing to parallelize Algorithm 3.14 on a cluster, we have to keep in mind

that each node needs access to the entire baby-step list during the giant-step phase. This

means that each node must either compute a complete copy of L for itself, or must share

its portion of L with every other node. As the communication overhead in the latter case

would be prohibitively expensive, the authors of [21, 22] chose to use the former method.

Unfortunately, this limits the size of baby-step list we can store to the amount of memory

available on an individual node, rather than that available to the whole cluster.

For the baby-step phase on a cluster with multi-processor nodes, we can use threading

to divide up the interval of s +λ baby steps into equally sized intervals and so parallelize

the computation. Each processor will also have to compute two appropriately sized giant-

steps to determine the starting and ending ideals for its interval. The giant-steps can be

parallelized in a similar fashion. As each node has a complete copy of the baby-step list,

each processor can be given a range of giant steps to compute. In this phase, however,

we only need to compute one additional giant-step to determine the appropriate starting

ideal.

Theorem 3.18. Using the parallelized version of the O(∆1/6+ε) regulator verification algo-

rithm outlined above on a cluster consisting of n nodes, each with r shared-memory proces-

sors, will result in an expected speed-up of a factor n2/3 r .

Proof. See [21, §6.5.6. pp. 92–93].
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4— CHAPTER 4 —
NEW DEVELOPMENTS: THE O(∆1/6+ε) VERIFICATION ALGORITHM

4.1. INTRODUCTION

�
AVING GIVEN AN OUTLINE in the previous chapter of the current

state of regulator computations in real quadratic numbers fields, we

can now move on to the real heart of this thesis: the presentation of

our modifications to the O(∆1/6+ε) regulator verification algorithm

and to compact representations of algebraic integers. In this chapter, we focus on the

former topic and our improvements to the storage requirements and, to a lesser extent,

the run-time of certain algorithms from Chapter 3. This chapter will deal exclusively

with improvements to the O(∆1/6+ε) regulator verification algorithm. In Section 4.2 we

propose and discuss a method for reducing the memory requirements of the O(∆1/6+ε)

algorithm by storing a list of hashes of the baby-step ideals in L, rather than the ideals

themselves or a subset of them. Section 4.3 deals with practical implementation con-

cerns, in particular how we select an appropriate hash function and how we optimize

our choice of parameters for the algorithm. Finally, in Section 4.4, we present some nu-

merical evidence showing the practical improvements these modifications have allowed

us to make.

4.2. REDUCING MEMORY USAGE IN THE O(∆1/6+ε) ALGORITHM

As was discussed in Section 3.6.1, for the O(∆1/6+ε) regulator verification algorithm, we

need to store a list of baby-steps L in a limited amount of space. The length of this list
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increases as the discriminant increases, and so for a large enough discriminant, we will

run out of memory. We saw one way to squeeze a larger baby-step list into this space

was by storing only every l th ideal in the partial baby-step list L′. In this section, we will

describe our further improvement to this idea: storing a hash of the coefficients of each

ideal.

Definition 4.1. A hash function H is a function that takes as input a message m of arbi-

trary length and outputs a digest d =H (m) of fixed length.

Whichever hash function we choose to apply to the ideals in L needs to have some

common properties, such as being

• efficient: given a message m, the digest H (m) can be computed very quickly;

• deterministic: given a message m, the function H always outputs the same digest

H (m); and

• uniformly distributed: considering the set of expected messages, each digest should

be generated with the same probability.

Later, in Section 4.3, we will look in more depth at the particular choice of hash function

our implementation uses.

Let H (ai ) be the hash of the ideal ai = [Qi−1, Pi−1], which we store in a hashed baby-

step list

L′′ =
n

H (a1), H (al ), H (a2l ), . . . , H (aN l )
o

∪
n

H (at ), H (at+1), H (at+2)
o

,

with N such that N l ≤ t < (N + 1)l . In addition to this list, we store the two ideals

a2 = [Q1, P1] and a(N+1)l = [Q(N+1)l−1, P(N+1)l−1]; the reason for this will be explained

later. The key observation behind this idea is that in reality we do not expect to find
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a giant step—or its conjugate for that matter, but we will ignore this ideal for the time

being—in the baby-step list. This allows us to replace the check for ρi (a j ) ∈ L′ for some

i = 0,1, . . . , l with a check for H (a j−1+i ) ∈L′′ for i = 0,1,2, . . . , l . If H (a j−1+i ) 6∈L′′, then

clearly we cannot have ρi (a j ) ∈ L′. However, what if we do find H (a j−1+i ) ∈ L′′? We

cannot immediately say that ρi (a j ) ∈L′ as we may have the unfortunate luck of finding a

random hash collision in our hash function H . How we differentiate between these two

is the topic of the remainder of this section.

4.2.1. Resolving Hash Collisions. Before being able to discuss how we distinguish

between a random hash collision and having found an actual giant step in the baby-step

list, we need to present a series of lemmas. The first lemma tells us how the coefficients

of two equal OK-ideals compare to each other. Lemma 4.2(a) deals with the case of two

reduced OK-ideals, whereas 4.2(b) deals with a reduced OK-ideal and the conjugate of a

reduced OK-ideal. These comparisons are key when we are testing if the ideal which

results from a giant step is in the list of baby steps.

Lemma 4.2. Let ai+1 = [Qi , Pi] and a j+1 = [Q j , P j ] be two reduced OK-ideals. If Qi =Q j

and

a.) Pi ≡ P j (mod Qi ), then Pi = P j .

b.) Pi ≡−P j (mod Qi ), then Pi = P j+1.

Proof. Part (a) of this lemma follows from the fact that ai+1 and a j+1 are reduced and have

a unique reduced basis. Part (b) follows from (a) and the symmetry property of the cycle

of reduced principal ideals.

The next lemma illustrates the connection between the continued fraction expansion

of ω and the coefficients of the ideals in cycle of reduced principal ideals. Although we
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do not use this lemma directly in our collision resolution process, it is needed to prove

Lemma 4.4.

Lemma 4.3 ([87, Lem. 6.1, p. 418]). If, in the continued fraction expansion of φ0 =φ, we

have −1<φ1 < 0, then

qk =

$

Pk+1+
p

D

Qk

%

for all k ≥ 1.

As we briefly mentioned near the start of this section, we must test if the ideal re-

sulting from a giant step or its conjugate is in the baby-step list. From the material in

the Chapter 2, we already know how ρ affects an ideal in the cycle of reduced principal

ideals. We have yet to discuss how it affects the conjugate of such an ideal, which is the

subject of the final lemma.

Lemma 4.4. If a j and ak are two reduced OK-ideals and a j = ak , then a j+1 = ak−1.

Proof. Suppose a j = ak . Considering the norm of each ideal, we see that N (a j ) = N (ak)

and in light of (2.4) (page 20), we have N (a j ) = N (a j ) = N (ak). Thus, Q j−1 = Qk−1.

Now, considering the two ideals as Z-modules, we see
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p
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and so we must have Pk−1 ≡−P j−1 (mod Q j−1). By Lemma 4.2(b), this means Pk−1 = P j .

Recalling the formulas given for the operation ρ ((2.7)–(2.9), page 29), we see that

D−P 2
j =Q j Q j−1 and D−P 2

k−1
=Qk−1Qk−2. Since P j = Pk−1 and Q j−1 =Qk−1 , we must

have Q j =Qk−2. By Lemma 4.3, we get
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qk−2 =

$

Pk−1+
p

D

Qk−2

%

=









P j +
p

D

Q j







= q j .

And so rearranging the equation Pk−1 = qk−2Qk−2 − Pk−2, and making the appropriate

substitutions, gives Pk−2 = q j Q j − P j = P j+1. Thus, (Q j , P j+1) = (Qk−2, Pk−2), or equiva-

lently a j+1 = ak−1.

At this point, we can discuss in detail how we can distinguish between a random hash

collision and having found a giant step in the baby-step list. Suppose that during the

giant step calculations we find an ideal a j or a j in the list L′. If a j ∈ L′, then we have

a j = ak l for some k such that 1 ≤ k ≤ N and H (a j−1) = H (ak l−1) ∈ L′′. If k < N and

we repeatedly apply ρl to a j , it is clear that we will continue to find matches in L′. More

specifically, we will find

a j+l = ak l+l = a(k+1)l H (a( j−1)+l ) =H (a(k+1)l−1) ,

a j+2l = a(k+2)l H (a( j−1)+2l ) =H (a(k+2)l−1) ,
...

...

a j+i l = a(k+i)l H (a( j−1)+i l ) =H (a(k+i)l−1) ,
...

...

so long as k + i ≤ N . However if k = N , or k + i > N , then since we have stored the

ideal a(N+1)l , we can apply ρl and directly verify that Q( j−1)+l =Q(N+1)l−1 and P( j−1)+l =

P(N+1)l−1.

If a j ∈ L′, then we have a j = ak l for some k such that 1 ≤ k ≤ N and H (a j−1) =

H (ak l−1) ∈ L′′. If k > 1, we can repeatedly apply ρl to a j , we find a series of matches as
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before. This time, keeping in mind Lemma 4.4, we find

a j+l = ak l−l = a(k−1)l H (a( j−1)+l ) =H (a(k−1)l−1) ,

a j+2l = a(k−2)l H (a( j−1)+2l ) =H (a(k−2)l−1) ,
...

...

a j+i l = a(k−i)l H (a( j−1)+i l ) =H (a(k−i)l−1) ,
...

...

so long as k− i ≥ 1. If k = 1, or k− i < 1, then we have a j = al . Let p be the length of the

principal ideal cycle; so ap+1 = a1. On applying ρl to a j , we find a j+l = al−l = ap , which

implies that a j+l−1 = ap+1 = a1 = a1. Thus, we have a j+l−1 = a1, or equivalently a j+l =

a2. Since we have stored a2, we can directly verify that Q( j−1)+l =Q1 and P( j−1)+l = P1.

Now as we mentioned previously, we do not expect to find a j or a j ∈ L′. So most of

the time, we can get away with asking if H (a j−1) ∈ L′′. If H (a j−i ) 6∈ L′′, then neither a j

nor a j could be in L′. In the rare case where H (a j−1) ∈ L′′, we know from the previous

discussion that H (a j−1) =H (ak l−1) for some 1≤ k ≤N . We proceed by cases. If 1< k <

N , and neither H (a j+l−1) = H (a(k+1)l−1) nor H (a j+l−1) = H (a(k−1)l−1), then we know

a j ,a j 6∈ L′. If k =N , and either Q j+l−1 6=Q(N+1)l−1 or P j+l−1 6= P(N+1)l−1, then we know

a j ,a j 6∈L′. If k = 1, if neither Q j+l−1 =Q1 nor P j+l−1 = P1, then we know a j ,a j 6∈L′.

However, if H (a j−1) ∈ L′′ and we find H (a j+l−1) = H (a(k±1)l−1), then we must also

check if H (a j+2l−1) = H (a(k±2)l−1). We continue this process as long as we keep finding

H (a j+i l−1) = H (a(k±i)l−1) or until we make an explicit check if a j+i l = a2 or a(N+1)l .

As we remarked above, finding H (a j−1) ∈ L′′ is a rarity, even more so finding a series

of them. Assuming the hash function we select has a uniformly distributed output, we
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would expect for an m-bit digest that a random hash collision occurs with probability

1/2m. Probabilistically then, we can expect this method will rapidly determine hash

collisions caused by simple bad luck. For the incredibly unlikely case where this series of

hash comparisons cannot resolve a hash collision—this would occur with a probability

of 1/2mN/2 on average—, the explicit ideal comparison with a2 and a(N+1)l will certify

whether we truly found a match or not.

4.3. IMPLEMENTATION CONCERNS

In this section we will discuss a number of concerns which need to be addressed when

implementing the O(∆1/6+ε) regulator verification algorithm and our refinements to it.

For the computations that follow, we use the same set of D values that are used in [21];

they are reproduced in Table 4.1, page 86, for easy reference.

4.3.1. Hash function selection. One of the key components of creating the hashed

baby-step list L′′ is, of course, a hash function. We analysed a number of options for

functions to use in our implementation of the hashed baby-step list. The end goal of this

effort was to find a hash function that

• is fast,

• has a low collision rate,

• produces hash values that are reasonably uniformly distributed, and

• whose hash values require a minimal number of bits to store.

By collision rate, we mean the percentage of hashes of giant steps that match the hash

values stored in L′′ purely by chance. Although this bound on this rate is arbitrary,

we will assume a collision rate of at most 1% is acceptable. The uniform distribution

requirement is important for ensuring that the placement of hashed ideals into the hash
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Table 4.1: Discriminants used throughout various calculations in this chapter.

l (∆) D

15 124190375333324

20 69632554314051593309

25 4406306728804374025823929

30 738873402423833494183027176953

35 31164492970387567346024018986843756

40 3461098894786290215020396111246648264709

45 604021226554971154994549211891921127777412533

50 60052664893046439628963962033761710627773229455337

55 8769379294905277263932258302237739734875811854229214677

60 730189467691077755331569166053721301652308776100865143502041

65 39286375734542594749758050835151655092118848530833398743561568481



87

table is balanced. To calculate which hash table bucket an ideal hash H (a) should be

stored in, we simply truncate H (a) to a certain number of bits—the size of our hash table

is always a power of two—and use the resulting value as an index to a bucket. If the hash

values are uniformly distributed, we should only have a few ideal hashes stored in each

bucket. However, if the hash values are clustered around a subset of possible values, we

incur a non-negligible lookup cost as we are then forced to sift through many potential

matches on every table lookup.

Although there are numerous hash functions we could have implemented and tested,

we feel that the functions below give a decent, albeit introductory, overview of how

certain classes of hash functions perform in our application. We will look at a basic trun-

cation of bits, a cryptographic hash, reduction modulo a prime, and a generic hash table

lookup function. Towards the end of this section we will provide a graphical comparison

of the hash functions.

Our initial idea for a “hash function" was to simply take a number of the low-order

bits of the P coefficient of a = [Q, P]. The hash values produced by this method, how-

ever, are not uniformly distributed—a chi-squared goodness of fit test showed a� 0.01%

probability of the observed results being sampled from a discrete uniform distribution—

and so during the giant-step phase of Algorithm 3.14, we observe a number of random

collisions, varying of course with the size of L′′. For instance, with a 35-decimal digit

discriminant and taking the lowest 32 bits of P , we found approximately 425 collisions;

a 0.2% collision rate. Of course, for a larger discriminant we need to take additional low-

order bits as part of the hash in order to keep the collision rate at an acceptable level.

With a 55-digit discriminant, we found roughly 7.6 million collisions (6.45% collision

rate). But, in terms of speed, this is clearly the best method: the hash overhead is just a
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machine-word sized store of a value already residing in the processor’s cache.

The first true hash function we chose to investigate was MD5. MD5 is a crypto-

graphic hash function developed by Ron Rivest [72] that produces a 128-bit (16-byte)

hash value from an arbitrary length input. Our implementation of MD5 is actually a

slightly modified version of md5deep [53]. To compute the hash of a = [Q, P], we take

the byte-arrays used to store its Q and P coefficients, concatenate them as Q||P , and

compute MD5(Q||P ). We then truncate the resulting 128-bit hash to the desired length.

The resulting hash values are quite uniformly distributed, though this is not surprising

as MD5 was designed not to exhibit bias. The goodness-of-fit tests showed distributions

with a 35%–85% chance of being sampled from a discrete uniform distribution. In addi-

tion, MD5 exhibits a nice avalanche effect: small changes in an input produce substantial

changes in the output hash value. From a computational aspect, we were concerned that

a cryptographic hash would be overkill for this application. The basic operations used in

MD5 are simple bit-wise logic operations and bit-shifts, which individually are extremely

fast. However, the sheer number of these operations which must be performed, espe-

cially when weighed against the previously mentioned least-significant-bits hash, could

be a hindrance. Is the trade-off between a high operation count versus better collision

resistance and avalanche effect properties worthwhile?

The next hashing idea we chose to investigate was a simple remainder calculation

using an appropriately-sized prime modulus. In particular, we looked at the Mersenne

primes Mn = 2n − 1 because of a very useful reduction algorithm for numbers of this

form. The following theorem gives a more general reduction strategy, but clearly setting

c = 1 gives the desired result for Mersenne primes.

Theorem 4.5 ([20, Thm. 9.2.12, p. 455]). For an integer N = 2q ± c, where q , c ∈ Z with
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q > 0, and for any integer x, we have x ≡ (x (mod 2q))∓ cbx/2qc (mod N ).

By restricting ourselves to Mersenne primes, we can replace the rather costly remain-

der operation by a series of very fast left-shift, logical-AND, and subtraction operations

since

x (mod 2q) 7→ x & 0· · ·01· · ·1
︸ ︷︷ ︸

q

and
� x

2q

�

7→ x >> q .

Of course, there are only at most a couple Mersenne primes in the bit-length range we are

interested in—M31 and M61—, so to expand our choices, we can turn to pseudo-Mersenne

primes.

Definition 4.6. A pseudo-Mersenne prime is a prime p of the form 2q − c, where log2 c ≤

bq/2c.

If we further restrict c to values with small Hamming weight, say < 3, we can re-

place the multiplication in Theorem 4.5 by further left-shift and addition operations.

When implementing this Mersenne reduction technique using GMP, note that if q is less

than the word size of the target processor, the operations can be implemented by using a

logical-AND bit-mask on the low-order mp_limb_t of y and by calling the GMP function

mpz_tdiv_q_2exp(...), respectively.

Looking at the case of the Mersenne prime M31, we find two issues. The first is that

we do not achieve the same level of the avalanche effect inherent to MD5 and other cryp-

tographic hashes. For instance, with a 35-decimal digit discriminant we found no random

hash collisions while using a 31-bit truncated MD5 hash, whereas we had approximately

910 random collisions reducing modulo the 31-bit Mersenne prime, about a 0.4% colli-

sion rate. Using the 32-bit pseudo-Mersenne prime 232−5, we found about 460 collisions.
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The second issue is that for even moderately-sized discriminants—over 30 decimal digits—

our hash input is at least a few machine-words in length. This forces us to use the GMP

functions mpz_tdiv_q_2exp(...) and mpz_sub_ui(...) to implement this fast-modulo

algorithm, and thus adding a non-negligible overhead. For the 64-bit implementation, we

selected the pseudo-Mersenne prime 264− 257.

We also implemented a version of Robert (Bob) Jenkin, Jr.’s One-at-a-time hash [49]

and Lookup3 hash [50]. Like MD5, these hash functions produce a 32-bit hash from

an arbitrary-length input using only single-precision additions, bitwise-XORs, and shifts.

In addition, although they are not cryptographic hashes, they are designed to have good

avalanche characteristics. In our testing, the output hashes were decently uniformly dis-

tributed. The worst goodness-of-fit test we observed showed distributions that had an

approximately 12% chance of being sampled from a discrete uniform distribution. We

also remark that the One-at-a-time hash is missing from the 64-bit comparisons that fol-

low as it is strictly a 32-bit hash, unlike the Lookup3 hash which has a 64-bit variant.

For each of the above hash functions, both 32-bit and 64-bit versions, we computed

and stored 100,000 baby-steps. This was followed by 100,000 appropriately sized giant

steps, as dictated by the optimized s +λ value for the O(∆1/6+ε) algorithm. A summary

of the timing results for hash table insertions and searches are presented in Figures 4.1

and 4.2 for the 32-bit hashes and Figures 4.3 and 4.4 for the 64-bit hashes.

From these figures, we can see that our initial concerns about the overhead of MD5

and the GMP functions needed for the Mersenne and pseudo-Mersenne reduction al-

gorithms are justified. Additionally, the Lookup3 hash seems to be outperforming the

One-at-a-time hash, but this is not too surprising as the Lookup3 hash is a refined, though

slightly more complex, version of the One-at-a-time hash. As such, we will focus exclu-
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Figure 4.1: Hash table insertion times for various discriminant lengths (32-bit).
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Figure 4.2: Hash table lookup times for various discriminant lengths (32-bit).
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Figure 4.3: Hash table insertion times for various discriminant lengths (64-bit).
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sively on the least significant 32 bits (LSB-32) hash and the Lookup3 hash in the remainder

of this section.

4.3.2. Optimization parameters. There are a number of variables and run-time op-

timization parameters for the O(∆1/6+ε) algorithm. A few of these were introduced in

Chapter 3—such as s , Q, and K—whereas others are important only when the algorithm

is actually implemented, and so have been quietly glossed over until this point. As was

done in [21], we normalize the running times in terms of the average time required to

compute a baby-step in the analysis that follows. A detailed description of the variables

and optimized parameters used in the following discussion is presented in Tables 4.2 and

4.3. Most of these variables and parameters were introduced in [21]. However, as we

saw in the previous section, the amount of time needed to compute and store or lookup

a hash varies based on the particular hash function selected. To account for this in our

optimization formulas, we introduce the variables h and ν .

From the detailed analysis given in [21, §6.5, pp. 86–92], we know the overall run-

time cost of the O(∆1/6+ε) algorithm can be expressed as the sum of the three quanti-

ties

TimeBS =
s +λ

1.7r
, (4.1)

TimeGS =
(Q − r n)(µ+ l − 1)

r n
, and (4.2)

TimeFM =
R′

r nK ln(2)

�

µ log2(R′/s)+ 2(l − 1)

2 log2(R′/K)

�

. (4.3)

We can easily determine l by computing
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Table 4.2: Variables needed for optimizing the run-time of the O(∆1/6) regulator verifi-
cation algorithm.

Variable Description

R′2 An approximation of the regulator.

λ Additional distance needed to ensure a giant step or its conjugate will
land in L (λ= d(1/2) log2∆e).

µ The time ratio between computing a baby step and computing a giant
step.

h The time ratio between computing the hash of an ideal and computing
a baby step.

ν The time ratio between searching for H (a) in a hash table and comput-
ing H (a).

N Four (or six) less than the number of ideals we are able to store in
memory. (We must store a1, at , at+1, and at+2 in addition to every lth

ideal. To use the hashed baby-step list, we also need a2 and a(m+1)l .)

n The number of compute nodes used during algorithm execution. For
multi-processor or multi-core systems, we can count each processor or
core as a separate machine if threading is disabled.

r The number of processors and cores available on each compute node.
If threading is disabled, we must set r = 1. (See n above.)

Table 4.3: Parameters determined by the optimization formulas for the O(∆1/6) regulator
verification algorithm.

Parameter Description

l The gap-size required to fit L′ in the memory space available.

K The regulator bound used to balance the algorithm work-load between
the baby-step, giant-step, and multiplier-finding phases.

s Used to determine the number of baby steps to store in L.

Q Used to determine the number of giant steps to compute.

M Upper bound on the potential prime divisors of R′2 (M =R′2/K).
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l =
0.6(s +λ)

N − (r − 1)
(4.4)

and, using the initial approximation

Q =
K

2s
, (4.5)

we can substitute (4.4) and (4.5) into TimeBS+TimeGS, allowing us to solve for s in terms

of K . Doing so gives

s =

s

1.7
�

(µ− 1)(N − (r − 1))+ 0.6λ
�

2n(N − (r − 1))

p
K . (4.6)

Combining these equations back into (4.1)–(4.3) gives a function for the expected running

time in terms of just the parameter K :

f (K) = TimeBS+TimeGS+TimeFM . (4.7)

We do not present the fully-substituted formula here, both due to its sheer complexity

and because it will not aid in understanding the optimization method. However, we

do point out that a MAPLE script is presented in Section A.3.4, page 230, which will

explicitly recreate this formula, if so desired. As an aid to the reader, however, we present

a numerical example of f (K) in Figure 4.5 for the discriminant ∆ = 124190375333324,

using the parameters for a 100-node cluster of Intel Xeon E5530 processors.

Turning to our addition of ideal hashing to the O(∆1/6+ε) algorithm, we need to revise

the preceding equations to account for the extra computational overhead. During the
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Figure 4.5: An instance of f (K) for∆= 124190375333324.

baby-step phase, we need to compute an ideal hash for each ideal stored at a cost of h.

Since we are only storing every l th ideal, (4.1) becomes

TimeBS =
s +λ

1.7r

�

1+
h

l

�

. (4.8)

During the giant-step phase, we need to compute an ideal hash and perform a hash table

lookup for each of the l − 1 baby steps following every giant step produced. This means

(4.2) becomes

TimeGS =
(Q − r n)

�

µ+(l − 1)(1+ hν)
�

r n
. (4.9)

Similarly during the multiplier-finding phase, we perform l−1 baby steps following each

a[R′/qi] computation. As each of these baby steps now requires a hash computation and
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hash table lookup, (4.3) becomes

TimeFM =
R′/K

r n ln(2)

�

µ log2(R′/s)+ 2(l − 1)(1+ hν)

2 log2(R′/K)

�

. (4.10)

4.3.3. Optimization parameter selection. It is infeasible to symbolically find an ex-

pression for K which minimizes (4.7) in terms of the other variables and parameters in-

volved. Instead, we minimize this equation by computing its derivative f ′(K) and nu-

merically approximating f ′(K) = 0. We then use the ceiling of this approximation as the

optimum value for K , which in turn is used to approximate the optimum values of s , Q,

and l .

In order to perform these calculations, however, we need to determine values for the

µ, h, and ν constants specified in (4.1)–(4.3). This is done empirically and the results,

of course, will vary from machine to machine. For µ, we take the average time needed

to compute ρ(ai ) divided by the average time needed to compute ADDXY(a j ,at ). h is

determined by dividing the average time needed to compute and store H (a) by the average

time needed to compute ρ(a). ν is determined by dividing the average time needed to call

hashtable_search(...) by the average time needed to call hashtable_insert(...).

For discriminants up to around 20 decimal digits, we were able to determine values for

these constants by averaging the results from several thousand baby-step and giant-step

computations over ten to twenty thousand random discriminants at each discriminant

length. Beyond this range we are restricted to the discriminants from [21] and [22] as

we were unable to produce further regulator approximations. The implemented index-

calculus algorithms we had access to either could not scale beyond this range or were not

functional.
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We also need to determine an acceptable accuracy for the numerical approximation

of the zero of f ′(K). Repeating the calculations for the parameters listed in Tables 7.2

and 7.5–7.7 of [21], we found that the zero of the derivative of (4.7) was calculated to

an accuracy of roughly | f ′(K)| < 1 × 10−6. By increasing the precision of MAPLE’s

floating point calculations to 25 decimal digits, we are able to recalculate these zeroes to an

accuracy of about | f ′(K)|< 1× 10−19. This change alone gives us about a 20% reduction

in the value of K , and hence a significant reduction in the number of baby and giant steps

we need to compute. Using the MAPLE script mentioned in the preceding section and

the empirical measurements mentioned above, we computed the optimal parameters for

the single- and multi-processor implementations of the O(∆1/6+ε) algorithm using the

LSB-32 and Lookup3 hashes. The values are listed in Tables 4.4–4.11.

Table 4.4: Optimal values for s (single-processor).

l (∆) From [21] Partial L LSB-32 Lookup3

15 2067 1680 1160 1143

20 28989 15841 11132 10925

25 500537 197669 139276 137000

30 2987168 1220382 861764 849835

35 17540584 9471963 6711231 6613907

40 92758446 40844765 30292922 29866303

45 742974984 294021503 233264657 231005360

50 5577266787 1992734173 1810501874 1786351716

55 — 9762388493 9376524778 9255211055
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Table 4.5: Optimal values for Q (single-processor).

l (∆) From [21] Partial L LSB-32 Lookup3

15 82 57 70 70

20 472 492 598 604

25 3617 4906 5927 5990

30 19914 26404 31823 32077

35 113660 183850 222397 224105

40 569508 713199 857574 864079

45 3758569 4682471 6050500 6075211

50 24879661 29691656 43862754 43888758

55 — 136130482 212667923 213580199

Table 4.6: Optimal values for l (single-processor).

l (∆) From [21] Partial L LSB-32 Lookup3

15 1 1 1 1

20 1 1 1 1

25 1 1 1 1

30 1 1 1 1

35 1 1 1 1

40 5 3 1 1

45 34 19 4 4

50 251 125 27 27

55 — 655 140 140
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Table 4.7: Optimal values for K (single-processor).

l (∆) From [21] Partial L LSB-32 Lookup3

15 335466 189110 160646 159688

20 27356281 15583757 13299272 13187010

25 3620796031 1939305208 1650710156 1641159405

30 118969311943 64444320739 54847020549 54519626467

35 3987312218758 3482837881003 2985113620557 2964416216543

40 105653501790311 58260863779734 51956806359377 51613683125421

45 5585044280443265 2753494225739124 2822735297272690 2806812565621660

50 277521007943539695 118335154832244015 158827194458235768 156801512960662300

55 — 2657917292592307000 3988172085477465173 3953459623944492093
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Table 4.8: Optimal values for s (100 nodes, single processor).

l (∆) Unthreaded [21] Threaded [21] Reimplemented Lookup3

15 — — 473 344

20 — — 4689 3414

25 — — 57180 41849

30 — — 361335 264145

35 335671 410387 2791771 2045351

40 1842489 1968939 11705134 8818360

45 15536657 17168915 98049349 73086887

50 147933454 162324372 935434484 697295489

55 979952963 1056759343 6921903583 5166228351

60 — 5776794659 57234681978 42708057371

65 — — 311979177889 249040653446

Table 4.9: Optimal values for Q (100 nodes, single processor).

l (∆) Unthreaded [21] Threaded [21] Reimplemented Lookup3

15 — — 13 16

20 — — 113 135

25 — — 1167 1381

30 — — 6291 7434

35 832829 756919 44778 52791

40 4154933 4052919 182364 211743

45 29526779 28273207 1319415 1539031

50 247800379 238411447 11709089 13651802

55 1468911639 1430111338 81491806 94885456

60 — 7757347522 618190516 718786976

65 — — 3369680096 3147382632
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Table 4.10: Optimal values for K (100 nodes, single processor).

l (∆) Unthreaded [21] Threaded [21] Reimplemented Lookup3

15 — — 12184 10590

20 — — 1057717 916149

25 — — 133442699 115553714

30 — — 4545798103 3926845192

35 559112756857 621259151670 250018355584 215951226594

40 15310835757647 15959900553825 4269174404922 3734437219338

45 917494866658340 970840569801550 258735401291404 224965887931234

50 73315931890405630 77399976766003286 21906170170976937 19038679021864581

55 2878928625823502223 3022567033942801739 1128156840544009744 980399864116469098

60 — 89625207458288884837 70763875069170128902 61395990810949500970

65 — — 2102540051867409802425 1567652454263416881427
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Table 4.11: Optimal values for l (100 nodes, single processor).

l (∆) Unthreaded [21] Threaded [21] Reimplemented Lookup3

15 — — 1 1

20 — — 1 1

25 — — 1 1

30 — — 1 1

35 1 1 1 1

40 1 1 1 1

45 1 1 1 1

50 8 5 2 2

55 49 27 13 10

60 — 160 107 80

65 — — 582 464

As de Haan noticed from his results, further run-time improvements can be realized

with some empirical refinements to these computed values. For the single-processor im-

plementation, we were able to improve the running time by about 5% on average. For

the parallelized implementation, this improvement increased to about 13.9% on average

for discriminants up to 35 decimal digits in length, but only to roughly 6.4% for 40-digit

and larger discriminants. However, we cannot conclusively say whether this is a systemic

property or merely a statistical anomaly due to the limited sample of discriminants we

had to work with. These refined parameters are listed in Tables 4.12–4.13.

4.3.4. Implementation profiling. In this last subsection before we present our timing

results, we will briefly discuss some of the practical optimizations made in our implemen-
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Table 4.12: Empirically refined values for s (single-processor).

l (∆) From [21] Partial L LSB-32 Lookup3

15 2067 2016 1972 1944

20 28989 17426 18925 18573

25 500537 177903 236770 232900

30 2987168 1220382 1464999 1444720

35 17540584 10419160 11409093 11243642

40 92758446 57182671 51497968 50772716

45 742974984 382227954 396549917 392709112

50 5577266787 3077853186 3036797918

Table 4.13: Empirically refined values for Q (single-processor).

l (∆) From [21] Partial L LSB-32 Lookup3

15 82 48 42 42

20 472 448 352 356

25 3617 5452 3487 3524

30 19914 26404 18720 18869

35 113660 167137 130822 131827

40 569508 509428 504456 508282

45 3758569 3601901 3559118 3573654

50 24879661 25801620 25816917
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tation of the algorithms in this thesis. For a more detailed discussion of these, we refer

the reader to Appendix A.

The guiding principle behind how our implementation came together is based on a

comment Donald Knuth made in his 1974 paper on structured programming with “go

to” statements:

Programmers waste enormous amounts of time thinking about, or worrying

about, the speed of noncritical parts of their programs, and these attempts at effi-

ciency actually have a strong negative impact when debugging and maintenance

are considered. We should forget about small efficiencies, say about 97% of the

time: premature optimization is the root of all evil.

Yet we should not pass up our opportunities in that critical 3%. . . . A good

programmer. . . will be wise to look carefully at the critical code; but only after

that code has been identified. It is often a mistake to make a priori judgements

about what parts of a program are really critical, since the universal experience

of programmers who have been using measurement tools has been that their in-

tuitive guesses fail. [52, p. 268]

Whenever an algorithm was implemented from its pseudocode description, the struc-

ture and operations were preserved as much as possible. Of course, there were some

minor pre-profiling optimizations made, but these were few and far between. The major-

ity of the alterations and improvements were made only after extensive profiling, cache-

simulation and analysis to determine bottle-necks in program execution.

One of the most significant pre-profiling changes was the decision to use a global

pool of multi-precision integers. The repeated allocation, initialization and clearing of

the multi-precision integers used as temporary variables in various algorithms is compu-
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tationally expensive. In fact, as mentioned in the GMP documentation:

Initializing and Clearing

Avoid excessive initializing and clearing of variables, since this can be quite

time consuming, especially in comparison to otherwise fast operations like addi-

tion.

A language interpreter might want to keep a free list or stack of initialized

variables ready for use. It should be possible to integrate something like that with

a garbage collector too. [31, §3.11]

In some profiling runs, we saw the need for over 100,000 temporary variables being satis-

fied by maybe a few thousand pooled integers, leading to a substantial run-time savings.

This idea was extended to a global pool of ideals for use in temporary calculations, but

this is not as widely used in our library.

For the performance analysis of our programs, we used the VALGRIND tool suite

[81], with visualization and data summaries produced by KCACHEGRIND [85]. Al-

though the emulation VALGRIND performs can give an accurate picture of how a pro-

gram executes, there are some caveats to be aware of. The first is a massive expansion

in run-time. Because of the detail a profiler captures and, in the case of VALGRIND, the

cache-simulation it performs, it is not uncommon to see a 100- to 150-fold increase in

run-time. As an example, running our single-processor implementation of the O(∆1/6+ε)

algorithm using ideal hashing on the regulators from a 35-digit discriminant took roughly

20 seconds. When the program was placed under the profiler’s control, it executed in

roughly 42 minutes; a 127-fold increase.

The second point to keep in mind is that VALGRIND only tracks CPU instructions

issued by the program it is profiling. It does not track the instruction counts for operating
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system (kernel) functions—nor are they included in the cache simulation—and it does not

track memory and disk I/O. For programs that read or write a lot of data to disk, this

activity will not show up as a bottle-neck. In our case, our implementation has little

operating system interaction and virtually no file I/O.

The third point is that while VALGRIND produces an instruction cost for each and

every function call made by a program, it treats all instructions as having an equal ex-

ecution time. This can be somewhat rectified by using the cache-simulation results and

a measurement of a particular system’s cache latencies to come up with an estimated

instruction cost. Figure 4.6 shows the latency measurements from one compute node

of the Institute for Security, Privacy and Information Assurance (ISPIA) cluster. From

these measurements, we have produced a decently accurate model of the actual run-time

using some of KCACHEGRIND’s built-in tools. A more accurate analysis could be per-

formed with a sampling profiler like OPROFILE, however due to time and system access

constraints, this was not done.

One of our focal points for optimization was reducing CPU cache misses. As can be

seen in Figure 4.6, if the data needed during the execution of our algorithms—temporary

variables, various ideals, hash table entries, etc.—is not readily available in the L1 cache,

we incur a considerable cost to copy it in from the lower L2 cache and an even greater cost

if it must be brought in from RAM. In the particular case of an ISPIA cluster compute

node, there is a 3 CPU clock-cycle wait for data residing in the L1 cache, a 15-cycle wait

for L2 cache data, and roughly a 285-cycle wait for data in RAM. The delay for retrieving

data from swap space is, at least, an order of magnitude greater than this. The sudden

spikes in latency indicate where we have exceed the storage space in a particular cache:

the Pentium 4 Xeon processors in our compute nodes have a 32KB L1 cache and 6MB L2
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Figure 4.6: Cache latency measurements for an Intel Pentium 4 Xeon processor.

cache. The reason we see the first spike after 32KB, but the second one before the 6MB

mark has to do with the particular cache structure on this processor. It has independent

data and instruction caches at the L1 level, but a unified L2 cache. Thus, we can fill the

L1 data cache without losing the measurement instructions, but when we approach the

size of the L2 cache, we start swapping data and instructions back-and-forth from RAM.

In terms of absolute numbers of cache misses, by far the most expensive functions are

those relating to initializing the hash table used for L′′ and then storing and retrieving

ideal hashes from it. These account for roughly 98% to 99% of all cache read and write

misses. This is not surprising as our implementation uses roughly 75% of the available

system RAM for this hash table. When we initially create the hash table, we must zero

out the block of memory allocated to store it. Though this ensures that the table indeed
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starts empty, it is a very expensive process that is unfortunately only necessary to handle a

rare situation. From a security standpoint, any modern operating system will not allocate

memory pages to a process that it has not preemptively zeroed out. If the operating

system did not do so, there is a very real risk of exposing privileged system information

or another user’s private data to a process which should not see this information. So the

risk to our implementation comes not from the system, but actually from itself. If we

ask for, use, and return memory before allocating the hash table, the operating system

may allocate some of these now “dirty” memory pages to us rather than allocating a

block of fresh pages. As our process was the last to write to them, there is no issue in

returning them non-zeroed. Guaranteeing that this situation would not occur, though, is

very difficult and so we are forced to explicitly zero out the hash table.

Turning to hash table storage and retrieval functions, because of the random accesses

to such a large block of memory, the L1 and L2 caches are virtually useless in maintaining

cache locality. On practically every store or retrieval we are forced to pull data in from

RAM. Instead of trying to maintain locality, we have focused on preventing these, in a

sense, one-time memory accesses from overwriting much more useful data that we wish

to keep cached; temporary variables, some key ideals, and the instructions needed to

execute the currently running function, for example. Protecting the cache in this way

is done via so called non-temporal memory access functions which instruct the CPU to

store or retrieve data from RAM, but not place a copy in its caches.

In the remainder of this section, we present a summary of the diagnostic and timing

data from the cache-performance simulations. Because of the interactions and dependen-

cies between the various algorithms used in the O(∆1/6+ε) algorithm—recall Figure 2.1

on page 39—we have chosen to illustrate this data in a calling-context ring chart [66].
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This type of chart not only allows us to show the estimated operation cost of a function,

but also how this cost relates to those of its parent and child functions in a condensed

visual format; the greater an angle covered by a given wedge, the larger its relative cost.

The calling-context ring chart for the single-processor implementation using LSB-32 ideal

hashing for a 45-decimal digit discriminant is presented in Figure 4.7. Additional ring

charts are presented in Appendix A for the 25-, 30-, 35-, and 40-decimal digit discrimi-

nants in Figures B.6–B.9, pages 242–245.

The innermost ring in the chart represents estimated costs of the immediate functions

called by the O(∆1/6+ε) algorithm. The next larger ring presents the child functions called

by those in the innermost ring—the “grandchild” functions of the O(∆1/6+ε) algorithm—

and so on. The colours of each wedge have no meaning, save for the grey ones. These

wedges represent an amalgamation of the functions that were too small to individually

record; in this case, those functions whose estimated cost is less than around 1% of the

overall run-time. To help simplify the labels, we have generally only labelled functions

with an estimated cost of at least 4%.

From Figure 4.7 we obtain a fairly accurate picture of the operation costs of the var-

ious component functions used in the O(∆1/6+ε) algorithm. ADDXY occupies the ma-

jority of the run-time, with a mostly even split between its component functions NU-

MULT and EWNEAR. We note, however, that the estimated cost of WNEAR appears

to be growing as the size of the discriminant is increased. The majority of NUMULT is

spent executing ENUCOMP, which we would expect from glancing over its pseudocode

description. While neither ENUCOMP nor EWNEAR has a significant overhead, the

most expensive child functions are various GMP routines. A similar situation can be seen

with the ρ operation. The end observation to make is that the most significant implemen-
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mpz fp addxy() [50.2% (37.5% + 12.7%)]

mpz fp numult() [22.7%]

mpz fp enucomp() [19.0%]

mpz tdiv q() [3.4%]

mpz mul() [3.2%]

mpz gcdext() [2.6%]

mpz fp remove() [1.4%]

mpz fp wnear() [26.3%]

mpz tdiv q() [6.5%]

mpz addmul() [4.7%]

mpz qi rho() [33.5%]

mpz tdiv qr() [13.4%]

mpz sub() [5.5%]

mpz submul() [4.2%] mpz set() [4.0%]

mpz fp ax() [4.6%]

mpz qi cmp() [3.6%]

hashtable insert() [2.6%]

Figure 4.7: Estimated cycle costs with function calling contexts for the single-processor O(∆1/6+ε) algorithm using
ideal hashing (LSB-32, 45 decimal digit discriminant).
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tation improvements will probably come from eliminating some arithmetic operations

from ρ and from the inner-most while-loops in ENUCOMP and EWNEAR. However,

this does not appear to be an easy task.

4.4. TIMING RESULTS

In this section we present the timing results for our numerical tests which were generated

using the ISPIA Advanced Cryptography Lab cluster consisting of 152 IBM HS20 Blade

nodes, each with dual 2.4GHz Intel Pentium 4 Xeon processors and 2 GB of RAM. The

first table of timing results—Table 4.14, page 114—is meant to give a comparison between

the implementation from [21] and our reimplementation of those algorithms. The key

difference between the two is that the former was written in C++ using NTL for its

multi-precision arithmetic. Our reimplementation is written in C using GMP. It is well-

known that the GMP arithmetic routines are faster than their counterparts in NTL. The

NTL routines are solely written in C++, with a strong focus on portability and a clean,

consistent interface. On the other hand, the GMP routines tend to be written in hand-

optimized assembly code. The NTL routines and data types also come with additional

computational overhead from details like, for example, C++ class initialization and de-

struction. While NTL can be compiled to use GMP as its multi-precision integer package,

these are generally wrapped with code to check function inputs before passing them off

to various GMP subroutines. All of this combined makes the basic GMP routines, in

particular, significantly faster than their NTL counterparts. As these are the routines

we use most frequently in our implementation, we expect to see a marked improvement

in run-time and want to properly attribute those gains coming from switching to GMP

versus those from our modifications to the O(∆1/6+ε) algorithm. This comparison also

takes into account the algorithmic refinements which were made to the base algorithms,
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such as NUCOMP, and any compiler and optimization flag differences.

The second and third sets of timing results—Tables 4.15 and 4.16, pages 117 and

120, respectively—show the run-time improvements realized by our algorithmic modi-

fications, using the LSB-32 and Lookup3 hashes. In the four figures that follow each of

these three tables are graphical plots of the observed timings, the phase balance, an expo-

nential regression (purple) with a 95% confidence interval (CI) (orange) for the mean and

a 95% prediction interval (PI) (cyan) for future results, and extrapolated timings for larger

discriminants (60–67 decimal digits). Table 4.17, page 123, gives a summary comparison

of the three sets of results, which we will focus on now.

The vast majority of our implementation’s speedup comes from the switch in the

underlying multi-precision arithmetic library. For the single-processor implementation,

the run-time savings due to switching from a partial baby-step list to a hashed list seem

to top out around 10%. However, this is only for discriminants near the 30 to 35 decimal

digit range. For larger discriminants, this savings rapidly disappears.

Starting at the 45-digit discriminant mark in the single-processor implementation,

we exhaust the available memory storage and are forced to use a partial list as in [21,

22]. As the value of l increases, the balance between the baby-step, giant-step, and

multiplier-finding phases changes drastically, as can be seen in Figures 4.9, 4.13, and 4.17

on pages 115, 118, and 121, respectively.

We can use the optimizing function from (4.7), page 95, to determine if this situation

should be expected or not. Recall that, for a given value of K , f (K) represents the over-

all cost of the O(∆1/6+ε) algorithm in terms of the number of baby-step operations. To

calculate an estimated time per phase, we could multiply it by the actual average time

to compute ρ at a given discriminant size. For our implementation, this constant varies



11
4

Table 4.14: Observed timings for single-processor implementation (partial baby-step list).

Default parameters Empirically-adjusted parameters

l (∆) BS Time GS Time FM Time Total BS Time GS Time FM Time Total Savings

15 0.00273s 0.00237s 0.00474s 0.00984s 0.00313s 0.00201s 0.00411s 0.00924s 6.10%

20 0.0213s 0.0217s 0.0158s 0.0588s 0.0230s 0.0195s 0.0154s 0.0579s 1.53%

25 0.282s 0.246s 0.114s 0.642s — — — — 0%

30 1.72s 1.45s 0.549s 3.72s — — — — 0%

35 14.5s 11.4s 3.58s 29.4s 14.7s 10.4s 3.46s 28.6s 2.72%

40 39.8s 54.2s 15.6s 1m 50s 54.7s 37.5 14.9s 1m 47s 2.73%

45 3m 49s 6m 42s 2m 23s 12m 53s 4m 26s 5m 1s 2m 15s 11m 41s 9.31%

50 21m 11s 45m 21s 42m 50s 1h 49m
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Figure 4.8: Observed timings for single-processor implementation (partial baby-step list).
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Figure 4.10: Exponential regression for single-processor implementation timings (partial
baby-step list).
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Table 4.15: Observed timings for single-processor implementation (LSB-32 hashing).

Default parameters Empirically-adjusted parameters

l (∆) BS Time GS Time FM Time Total BS Time GS Time FM Time Total Savings

15 0.00105s 0.00256s 0.00430s 0.00791s 0.00149s 0.00188s 0.00404s 0.00741s 6.32%

20 0.00750s 0.0272s 0.0175s 0.0522s 0.0114s 0.0166s 0.0151s 0.0431s 17.4%

25 0.104s 0.301s 0.127s 0.532s 0.153s 0.180s 0.117s 0.450s 15.4%

30 0.622s 1.79s 0.611s 3.02s 0.967s 1.09s 0.563s 2.62s 13.2%

35 4.74s 14.7s 4.20s 23.6s 7.88s 8.03s 3.67s 19.6s 16.9%

40 25.7s 1m 5s 18.6s 1m 50s 39.0s 46.7s 19.3s 1m 45s 4.54%

45 2m 38s 8m 6s 2m 25s 13m 10s 4m 4s 5m 33s 2m 33s 12m 10s 7.59%

50 19m 20s 1h 6m 32m 24s 1h 57m 33m 31s 37m 42s 35m 26s 1h 47m 8.55%

55 1h 39m 5h 46m 7h 31m 14h 57m 2h 55m 3h 11m 8h 6m 14h 13m 4.91%
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Figure 4.12: Observed timings for single-processor implementation (LSB-32 hashing).
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Figure 4.14: Exponential regression for single-processor implementation timings (LSB-32
hashing).
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Table 4.16: Observed timings for single-processor implementation (Lookup3 hashing).

Default parameters Empirically-adjusted parameters

l (∆) BS Time GS Time FM Time Total BS Time GS Time FM Time Total Savings

15 0.00106s 0.00274s 0.00441s 0.00820s 0.00152s 0.00185s 0.00404s 0.00740s 9.76%

20 0.00752s 0.0263s 0.0169s 0.0507s 0.0123s 0.0158s 0.0146s 0.0427s 15.8%

25 0.0992s 0.299s 0.127s 0.525s 0.152s 0.191s 0.116s 0.459s 12.6%

30 0.634s 1.72s 0.614s 2.97s 1.04s 1.04s 0.560s 2.64s 11.1%

35 4.82s 13.4s 4.00s 22.2s 7.74s 8.24s 3.70s 19.7s 11.3%

40 26.1s 1m 4s 17.4s 1m 48s 41.6s 41.2s 16.7s 1m 40s 7.41%

45 2m 41s 8m 0s 2m 17s 12m 58s 4m 31s 4m 58s 2m 16s 11m 46s 9.25%

50 19m 2s 1h 9m 29m 9s 1h 57m 32m 37s 37m 31s 28m 18s 1h 38m 16.2%

55 1h 35m 5h 42m 7h 0m 14h 17m 2h 45m 3h 21m 7h 6m 13h 12m 7.58%
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Figure 4.16: Observed timings for single-processor implementation (Lookup3 hashing).
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Table 4.17: Summary of single-processor timing results (32-bit).

Timings Savings vs. [22]

l (∆) From [22] Partial L LSB-32 Lookup3 Partial L LSB-32 Lookup3

15 0.42s 0.0092s 0.0074s 0.0074s 97.8% 98.2% 98.2%

20 0.93s 0.058s 0.043s 0.043s 93.8% 95.4% 95.4%

25 3.20s 0.64s 0.45s 0.46s 80.0% 85.9% 85.6%

30 14.60s 3.72s 2.62s 2.64s 74.5% 82.1% 81.9%

35 1m 27s 28.6s 19.6s 19.7s 67.1% 77.5% 77.4%

40 6m 12s 1m 47s 1m 45s 1m 40s 71.2% 71.8% 73.1%

45 1h 10m 11m 41s 12m 10s 11m 46s 83.3% 82.6% 83.2%

50 1d 9h 1h 49m† 1h 47m 1h 38m 94.5%† 94.6% 95.1%

55 — 14h 13m 13h 12m

†: Due to suspected computer hardware issues, we were unable to determine this timing using empirically-adjusted parameters. In its place, we
have included the timing determined using the default parameters.
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between 0.8 µs and 1 µs. However, since we are more interested in a relative comparison

between the three phases, this is not necessary at this point. Figure 4.20 shows the theo-

retical run-time percentages for each phase of the algorithm, assuming we use the single-

processor implementation with LSB-32 hashing. We see that the optimum parameters

computed should evenly balance the three phases of the algorithm, at least for smaller

discriminants. However, once we are unable to store a complete baby-step list, a greater

and greater percentage of the run-time is consumed by the multiplier-finding phase. Near

the 70 decimal digit discriminant range, the relative time needed for the baby-step phase

is negligible, whereas the giant-step and multiplier-finding phases are split roughly 1-to-2.

Our observed results largely match these predicted results. Rather than seeing an

equal three-way split in phases for small discriminants, we have a roughly 40%–40%–
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Figure 4.20: Theoretical phase balance for single-processor implementation (LSB-32 hash-
ing).
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20% split.1 Once we exhaust our storage space, we see the predicted growth of the

multiplier-finding phase. By the time we reach a 55-digit discriminant, the final phase

of the O(∆1/6+ε) algorithm is consuming over half—roughly 55%—of the total run-time.

Manual adjustment of the optimum parameters allows us to balance the baby-step and

giant-step phases so that they consume roughly equal percentages of the run-time. But,

this tweaking does not alter the percentage of run-time used in the multiplier-finding

phase.

The second reason for the reduction in efficiency gains of the ideal hashing algorithm

for larger discriminants has to do with the hash function itself, specifically the size of hash

we are storing in L′′. In a nut shell, a 32-bit hash is insufficient for larger discriminants.

Comparing the hash functions chosen for our implementation, we find using the LSB-32

hash gives slightly better performance than using the Lookup3 hash for discriminants less

than 40 decimal digits, but the Lookup3 hash wins out for larger discriminants. For the

smaller discriminants, the sheer speed of the LSB-32 hash is enough to overcome the small

number of random hash collisions that need to be handled by the hash-collision resolu-

tion process. As the discriminant size increases, however, the hash collision rate increases

significantly due to the non-uniform hash distribution of the LSB-32 hash. During our

testing, we observed a < 0.5% collision rate for discriminants under 35 decimal digits,

2–4% for 35- to 50-digit discriminants, and 5–8% for 50- to 60-digit discriminants. The

uniformly distributed output of the Lookup3 hash helps offset this cost and thus it be-

comes more efficient for larger discriminants, even given its slightly larger computational

overhead.

Figures 4.21 and 4.22 show the estimated average run-time of the unmodified algo-

1We are ignoring the 15- and 20- digit results because it is hard to accurately measure the times-per-phase
given that they are so fast.



126

rithm and the modified version using both the LSB-32 and Lookup3 hashes. As we

expect from the numerical results summarized in Table 4.17, the best-fit curves in Fig-

ure 4.21 show that the O(∆1/6+ε) algorithm using the Lookup3 hash is the most efficient

for discriminants in the 30–40 decimal digit range. Ultimately, however, a 32-bit hash is

insufficient for the size of discriminants we are most interested in working with, those

in the 60 to 70 decimal digit range. Looking at Figure 4.22, the unmodified O(∆1/6+ε)

algorithm is more efficient when we are restricted to storing 32-bit hashes in our hashed

baby-step list L′′. In fact, the run-time estimate curves for the unmodified algorithm and

the Lookup3-based ideal hashing algorithm intersect for discriminants between 51 and 52

decimal digits.

The best efficiency gains for the O(∆1/6+ε) ideal hashing algorithm are made when

we can keep the random hash collision rate below 0.5%. From Table 4.17, our best

improvement in run-time comes at the 35 decimal-digit discriminant range: just over a

10% run-time savings. For the LSB-32 and Lookup3 hash functions, taking into account

the optimum parameters computed for this discriminant size, the random collision rates

are both 0.32%. Moving up to the 40 decimal-digit range gives a collision rate in the 2.75%

to 3% range. The overhead in handling this increased number of random hash collisions

eliminates our run-time savings. The only way to fix this situation is to increase the size

of hash we store in L′′.

To better illustrate this point, we have taken a timing measurement for the O(∆1/6+ε)

algorithm using ideal hashing and artificially increased the random collision rate. We

accomplish this by zeroing out a selected number of bits of the computed ideal hash. In

essence, we artificially guarantee that those bits of the hashes will always collide with

each other. Figure 4.23 shows how this change to the collision rate alters the observed
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run-time. Initially we see a very gradual increase in the run-time of the multiplier-finding

phase of the algorithm, while the baby-step and giant-step phases remain constant. Even-

tually, though, the increase in this phase levels off and the giant-step phase begins to

dominate the computation. Figure 4.24 shows the same measurements in terms of the

percentage of time spent in phase of the O(∆1/6+ε) algorithm. We point out the similar-

ity between this graph—the middle portion of it, at least—and those in Figures 4.9, 4.13,

and 4.17 on pages 115, 118, and 121, respectively. If we were to attempt to verify the reg-

ulator associated with a, say, 65-digit discriminant using our Lookup3-based O(∆1/6+ε)

ideal hashing algorithm, we would expect a similar run-time distribution between the

three phases as that seen on the right-hand side of Figure 4.24. That is, we would expect

the baby-step and multiplier-finding phases to be completely dwarfed by the giant-step

phase.

Turning to the parallel implementation, we chose to focus exclusively on the Lookup3

hash as it outperforms, in terms of the random collision rate, the LSB-32 hash for larger

discriminant sizes. Due to the suspected hardware problems we encountered with the

ISPIA cluster, the majority of our effort was focused on trying to optimize the larger

55- and 60-digit discriminant cases and get any results we could. The aftermath of this

can be seen in the numerical timings summarized in Table 4.19 on page 133. While our

implementation is significantly faster than the timings for the “regular” parameters given

in [22], we are far from being competitive with the timings for “modified” parameters

presented there, at least for the small to mid-sized discriminants.

However, we were able to produce a 60-digit discriminant run-time measurement

for our O(∆1/6+ε) ideal hashing algorithm which is sizably smaller than the “modified”

parameter timing presented in [22]. Moreover, this timing was recorded using the default
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Table 4.18: Observed timings for parallel implementation (100 single-processor nodes, Lookup3 hashing).

Default parameters Empirically-adjusted parameters

l (∆) BS Time GS Time FM Time Total BS Time GS Time FM Time Total Savings

15 0.00263s 0.000867s 0.00584s 0.00934s 0.00268s 0.000879s 0.00575s 0.00930s 0.40%

20 0.00466s 0.00128s 0.0230s 0.0290s 0.00514s 0.00135s 0.0219s 0.0284s 2.00%

25 0.00308s 0.00255s 0.176s 0.209s — — — — 0%

30 0.188s 0.00657s 0.846s 1.04s 0.160s 0.00791s 0.871s 1.04s 0.24%

35 1.33s 0.0375s 5.48s 6.84s 0.735s 0.0703s 5.86s 6.67s 2.53%

40 7.06s 0.172s 23.9s 31.1s 3.18s 0.420s 26.3s 29.9s 3.82%

45 56.2s 1.63s 3m 11s 4m 9s 22.5s 3.3s 3m 9s 3m 34s 13.9%

50 6m 34s 15.8s 27m 55s 34m 44s 2m 42s 32.9s 27m 53s 31m 8s 10.4%

55 45m 42s 1m 58s 3h 26m 4h 14m 18m 20s 4m 4s 3h 22m 3h 44m 11.7%

60 6h 40m 13m 49s 1d 21.8h 2d 4.6h
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Table 4.19: Summary of parallel implementation timing results (32-bit).

l (∆) [22] Regular [22]Modified Lookup3

15 — — 0.00930s

20 — — 0.0284s

25 — — 0.209s

30 — — 1.04s

35 1m 7s 2.35s 6.67s

40 1m 23s 11.02s 29.9s

45 3m 3s 1m 20s 3m 34s

50 25m 39s 12m 8s 31m 8s

55 5h 41m 2h 39m 3h 44m

60 7d 4h 4d 9h 2d 4.6h†

†: Due to suspected computer hardware issues, we were unable to determine this timing using empirically-
adjusted parameters. In its place, we have included the timing determined using the default parameters.

values produced by the optimization formulas, not the empirically refined ones, and so

we can expect to reduce this timing further still.

We also see a different situation with respect to the phase run-time balance. Since

each node is required to compute its own copy of the baby-step list, we do not see a time

reduction in this phase of the algorithm. With the giant steps distributed evenly across

the available cluster nodes, we see a corresponding reduction in run-time. In fact, the

giant-step phase consumes only a couple of percent of the overall algorithm run-time,

at least for larger discriminants. By far, the most expensive phase of the parallelized

algorithm is the multiplier-finding phase. For 35-digit and higher discriminants, roughly

90% of the algorithm run-time is spent in this phase.
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However, this is at odds with the theoretical predictions. Figure 4.29 shows the

theoretical run-time percentages for each phase of the algorithm, assuming we use 100

single-core processors with 32-bit Lookup3 hashing. We see that the optimum parame-

ters computed should split the overall run-time roughly 2-to-1 between the baby-step and

multiplier-finding phases of the algorithm. However, once we are unable to store a com-

plete baby-step list, a greater and greater percentage of the run-time is consumed by the

giant-step phase. Near the 70 decimal digit discriminant range, the relative time needed

for the baby-step phase is negligible, whereas the giant-step and multiplier-finding phases

are split roughly 1-to-2, just as in the single-processor case. Using our empirically-adjusted

parameters, the relative percentage of the giant-step phase does seem to match the theo-

retical model. However, our only explanation for the observed 1-to-4 balance between
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the baby-step and multiplier-finding phases is that we have a non-uniform distribution of

work between the nodes during the later phase.

Because of the difficulties we were encountering with the ISPIA cluster, we decided

to move our implementation to a more reliable system. Through Compute Canada, we

were able to acquire an account with the Western Canada Research Grid (WestGrid) HPC

consortium. This gave us access to a 288-node (2304-core) 64-bit cluster situated in the

Research Computing Facility at the University of Victoria. Due to looming deadlines,

we decided to focus our efforts exclusively on the 65-digit discriminant from [22]. For

our reimplementation of the partial baby-step version of the O(∆1/6+ε) algorithm, we

Table 4.20: Optimal and empirically refined parameters for l (∆) = 65 (100 nodes, single
processor, partial baby-step list).

Parameter Theoretically optimal Empirically refined

s 340193960077 219479974234

Q 2694953928 4177178588

K 1833614097520553081019 —

l 634 —

Table 4.21: Optimal and empirically refined parameters for l (∆) = 65 (100 nodes, single
processor, Lookup3 hashing).

Parameter Theoretically optimal Empirically refined

s 249040653446 146494502027

Q 3147382632 5350550474

K 1567652454263416881427 —

l 464 —
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Table 4.22: Observed phase balances for l (∆) = 65 (100 nodes, single processor).

Run-time percentage

Phase Partial L Lookup3

BS Phase 8.31% 8.83%

GS Phase 0.61% 0.14%

FM Phase 93.24% 91.03%

achieved a run-time of 18 days and 11 hours. Using the hashed baby-step list version of

the algorithm, we saw a roughly 4.61% improvement in the overall run-time: it ran in 17

days, 14.5 hours. Tables 4.20 and 4.21 lists the parameters used in these computations and

the observed phase balances presented in Table 4.22 are similar to those observed on the

ISPIA cluster—see Figure 4.26 on page 131—, which we mentioned above were at odds

with the theoretical predictions.

4.5. CONCLUDING REMARKS

In this chapter we have presented our modification to the O(∆1/6+ε) regulator verification

algorithm: a method for reducing the memory requirements of the algorithm by storing

a list of hashes of the baby-step ideals in L, rather than the ideals themselves or a subset of

them. The key idea behind the change is that when we are attempting to find a given giant

step in the baby-step list L′, we do not actually expect to find a match. Because of this, it

is usually sufficient to compare the hash of the giant-step ideal to a list of baby-step ideal

hash values. From our single-processor tests, we saw that with an appropriate choice of

parameters and hash function, we can achieve roughly a 10% improvement in run-time.

Looking at the parallel timing results, it is difficult to say anything definitive about the
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algorithm as we push into the 60 decimal-digit discriminant and larger range, at least for

the time being. We observed a 4.6% improvement, but further parameter refinements

and computations are certainly necessary.

When attempting to apply our modified algorithm to larger discriminants, one must

keep two values in mind. The first is the value of the l parameter. If this grows too large,

the balance between the baby-step, giant-step, and multiplier-finding phases of the algo-

rithm becomes skewed. In our single-processor numerical tests, we saw the multiplier-

finding phase consuming over half of the overall run-time. In the parallel-processor tests,

we saw this approaching 90% of the overall run-time. The second value to watch is the

rate of random hash collisions between the giant-step ideal hashes and the baby-step ideal

hashes stored in L′′. Turning to our numerical results again, we find that the maximum

collision rate we should allow is around 0.5%. As soon as we begin to exceed this limit,

the efficiency gains made are rather quickly diminished by the additional overhead caused

by the hash-collision resolution process. At a random collision rate of around 2–3%, we

find that our modified algorithm is no faster than the unmodified algorithm.
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5— CHAPTER 5 —
NEW DEVELOPMENTS: COMPACT REPRESENTATIONS

5.1. INTRODUCTION

�
UR NEXT CHAPTER PRESENTS several modifications to the idea of a

compact representation introduced in Section 2.13. The first of these

involves a change to CRAX which reduces the heights of the individ-

ual compact representation terms. This is discussed in Section 5.2. Sec-

tion 5.3 outlines an adjustment to the definition of a compact representation which allows

it to be computed in fewer iterations. As we will see in Section 5.4, a combination of these

changes gives us a compact representation that is, quite likely, as small as we can expect to

achieve with these methods. These analytical results are backed up by various numerical

computations which we present in Section 5.5.

5.2. REDUCING MEMORY USAGE IN COMPACT REPRESENTATIONS

Recall from Section 2.13 that the compact representation of θ ∈ OK, where (θ) = a[x],

is given by

θ=
l
∏

i=0

 

λi

L2
i

!2l−i

where λi = (mi + ni

p
∆)/r (mi , ni ∈ Z) and Li ∈ Z such that (L2

i )ai+1 = (λi )a
2
i . Also in

that section, we determined a bound on the size of the λi , specifically,

1≤H (λi )≤
5

2
∆ .
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We would like to reduce this upper bound and so reduce the amount of memory needed

to store a compact representation of θ.

Consider for a moment the sequence of si values computed as AX executes. These

are a sequence of values corresponding to the intermediate results produced by apply-

ing a square-and-multiply process according to the binary representation of x. Let x =
∑l

i=0 2l−i bi be such a representation and set s0 = b0 (= 1). As we progress through AX

computing giant steps, ideally we wish to compute

a[si+1]
′ = a[si]

2 .

However because of the way EADDXY1 works—recall (3.1), page 52—, when we com-

pute a[si]
2 we actually “fall short” of this ideal, computing instead

a[si+1]
′ = (µi )ea[si+1] = (µi )a[si]

2 .

See Figure 5.1 for an illustration of this process. Looking back at (2.14), page 34, it is

the error term in computing a giant step which throws us off. The relative generator µi

returned by EADDXY can thus be thought of as a correction factor. We then take the

ideal a[si+1]
′ and, depending on the value of bi , either set a[si+1] = a[si+1]

′ or compute a

baby-step a[si+1] = ρ(a[si+1]
′) = (νi )a[si+1]

′. We also combine the relative generators µi

and νi into a single generator λi so that

a[si+1] = (µi · νi )ea[si+1] = (λi )a[si]
2 .

1Actually, it is (E)NUCOMP in particular that causes this.
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ai eai a′i+1
ai+1

θi
2

µi νi

λi

Figure 5.1: The main loop of CRAX, as presented in [48, Alg. 12.4, pp. 287–8].

As we also mentioned in Section 2.13, theseµi values constitute the majority of the λi

terms that we wish to store as a compact representation. So what if we could reduce the

size of µi by some reasonably large amount? With some careful reasoning [48, pp. 445–

6], one can show
p

2/r∆1/4

qi + 3
<µi <

2
�
p

2/r∆1/4
�3

qi N (a[si+1])
,

where a[si] = [Qi/r, (Pi +
p
∆)/r ] and qi = b(Pi +

p
∆)/Qic. The important point to

take away from this inequality is that

O(∆1/4)<µi <O(∆3/4) . (5.1)

In other words, while the relative generator µi is bounded and cannot become too large,

it also cannot become very small.

In the following text, we will describe a method to adjust the si values—and hence

the inputs to EADDXY—to exploit the short-fall we experience and so reduce the upper

bound in (5.1). If we increase the si values at each step, we will compute ideals a[si+1]
′

further along the infrastructure than we want. As before, we still experience a short-fall

and end up computing ea[si+1] instead. The key thing to note, however, is that the ideal
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ea[si+1] is now much closer to our goal of a[si+1] than it was before. By using a larger

and backwards EWNEAR step, we use the relative generator νi to cancel out, in a sense,

a substantial portion of µi . See Figure 5.2 for an illustration of this idea.

a j ea j
a j+1 a′j+1

θ j
2

µ j

ν j

λ j

Figure 5.2: Proposed change to CRAX.

Let h ∈Z+ and set y = x+h assuming x ≥ 3h. If we replace the binary representation

of x in Step 1 of CRAX with that of y, we quite obviously end up computing a compact

representation of a[y]. Now, regardless of the value of y we start with, at the end of

CRAX we want to have computed a compact representation of a[x]. So we have to

correct for the “+h” we have added by appropriately inserting a “−h.” Looking at the

last two iterations of the while-loop in Step 4 of CRAX, we compute

sl−1 = 2sl−2+ bl−1 = 2
�

l−2
∑

i=0

2l−2−i bi

�

+ bl−1 =
l−1
∑

i=0

2l−1−i bi ,

and

sl = 2sl−1+ bl =
l
∑

i=0

2l−1bi = y = x + h ;

clearly in this last computation is where we will need the “−h.” We split the while-loop in

two, iterating the first loop over 0≤ i ≤ l −2 and the second over the singleton i = l −1.



143

Furthermore, for the second “loop,” we modify Step 6 to set si+1 = 2si − h. Thus when

we compute sl , we find sl = y − h = x + h − h = x.

Consider if we were to add a “−h” to both the sl−1 and sl terms and modified the

while-loops accordingly. Then we find

sl−1 = 2sl−2+ bl−1− h = 2
�

l−2
∑

i=0

2l−2−i bi

�

+ bl−1− h =
l−1
∑

i=0

2l−1−i bi − (2
1− 1)h ,

sl = 2sl−1+ bl − h =
�

l
∑

i=0

2l−1bi − 2h
�

− h =
l
∑

i=0

2l−1bi − (2
2− 1)h ,

which leads us to the generalized form of this modification. Let n be the largest integer

such that x ≥ (2n − 1)h and set y = x + (2n − 1)h. We iterate the first while-loop over

0 ≤ i < l − n and the second over l − n ≤ i < l , with the modification to Step 6 as

mentioned previously. Considering the si values computed, we have

s0 = b0 ,

s1 = 2s0+ b1 = 2b0+ b1 ,

...

sl−n−1 =
l−n−1
∑

i=0

2l−n−1−i bi ,

sl−n = 2sl−n−1+ bl−n − h =
l−n
∑

i=0

2l−n−i bi − (2
1− 1)h ,

sl−n+1 = 2sl−n + bl−n+1− h = 2
�

l−n
∑

i=0

2l−n−i bi − h
�

+ bl−n+1− h ,

=
l−n+1
∑

i=0

2l−n+1−i bi − 2h − h =
l−n+1
∑

i=0

2l−n+1−i bi − (2
2− 1)h ,

...
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sl−1 =
l
∑

i=0

2l−1−i bi − (2
n−1− 1)h ,

sl =
l
∑

i=0

2l−i bi − (2
n − 1)h = y − (2n − 1)h = x .

Thus at the end of CRAX, we will still compute a[sl ] = a[x] as desired. All that remains

is to determine an appropriate value for h and from that, determine how much the size

of λi can be reduced.

Recalling (5.1), we can suppose that a reasonable maximal value for h would be some-

thing of size approximately (1/4) log2∆. So, let h = d(1/4) log2∆e. In order to determine

how much λi is reduced, we must compute a revised bound for H (λi ). As CRAX exe-

cutes, it finds a series of reduced principal OK-ideals a[si] = ai = (αi )a1. For any fixed

i (1 ≤ i ≤ l ), we must have some θ j in the simple continued fraction expansion of
p
∆

such that αi = θ j . Recalling Lemma 2.9, we can conclude that for two consecutive ideals

a[si−1] and a[si],

15N (ai )

16
p
∆

2si−1 <αi−1 <
17

16
2si−1 and

15Li+1

16
p
∆

2si−h <αi <
17

16
2si−h . (5.2)

From the definition of a compact representation, we also know that

αi+1 =

 

λi+1

L2
i+1

!

α2
i =⇒ λi =

L2
iαi

α2
i−1

, (5.3)

and so combining (5.2) and (5.3), we get

λi < L2
i

 

17

16
2si−h

! 

16
p
∆

15Li

2−si−1

!2

=
162 · 17

152 · 16
2si−h−2si−1∆=

16 · 17

152
2si−2si−1−h∆, (5.4)
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and since si − 2si−1 ∈ {0,1}

λi <
5

2
2−d(1/4) log2∆e∆≤

5

2
∆−1/4∆=

5

2
∆3/4.

Hence, our modification to CRAX reduces the height of λi from O(∆) to O(∆3/4).

Before presenting our modified version of CRAX, we must deal with a technical issue.

The algorithm EWNEAR as presented in [48, Alg. 12.1, pp. 286 and 457] is restricted to

the case when k < w. With the changes to CRAX proposed above, we require EWNEAR

to function in the k > w case as well. Below we present our modifications of EWNEAR

to allow this. As we are merely adding some key values which allow the determination

of a relative generator, the proof of correctness of EWNEAR will remain unchanged.

Algorithm 5.1: EWNEAR

Input: (b, d , k), w, p, where (b, d , k) is a reduced ( f , p) representation of some O-ideal
a. Here b[Q/r, (P +

p
D)/r ], where P + b

p
Dc ≥Q, 0≤ b

p
Dc− P ≤Q.

Output: (c, g , h) a w-near ( f + 9/8, p) representation of a and a, b , where c = (a +
b
p

D)/Q and c= cb.
1: case 1: k < w

2: Put B−2 = 1, B−1 = 0.
3: Find s ∈Z≥0 such that 2s Q ≥ 2p+4. Put Q0 =Q, P0 = P , M = d2p+s−k+wQ0/de,

Q−1 = (D − P 2)/Q, T−2 =−2s P0+ b2s
p

Dc, T−1 = 2s Q0, i = 1.
4: while Ti−2 ≤M do

5: qi−1 = b(Pi−1+ b
p

Dc)/Qi−1c
6: Pi = qi−1Qi−1− Pi−1
7: Qi =Qi−2− qi−1(Pi − Pi−1)
8: Ti−1 = qi−1Ti−2+Ti−3
9: Bi−1 = qi−1Bi−2+Bi−3

10: i ← i + 1
11: end while
12: Put ei−1 = d2p−s+3Ti−3/Q0e
13: if d ei−1 ≤ 22 p−k+w+3 then

14: Put c= [Qi−2/r, (Pi−2+
p

D)/r ], e = ei−1,
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a = (Ti−3−b2s
p

Dc)/2s , b = Bi−3.
15: else

16: Put c= [Qi−3/r, (Pi−3+
p

D)/r ], e = d2p−s+3Ti−4/Q0e,
a = (Ti−4−b2s

p
Dc)/2s , b = Bi−4.

17: end if
18: Find t such that

2t <
ed

22 p+3
≤ 2t+1 .

19: Put

g =
¢

ed

2p+t+3

¥

, h = k + t .

20: end case
21: case 2: k > w

22: Put B∗−2 = 1, B∗−1 = 0.
23: Put s = p + 4, Q∗0 =Q, P ∗0 = P , M ∗ = d2k−w+4, Q∗1 = (D − P 2)/Q,

T ∗−2 = 2s Q∗0 , T ∗−1 = 2s P ∗0 + b2
s
p

Dc, and i = 1.
24: while T ∗i−2 <Q∗i M ∗ do

25: q∗i = b(P
∗
i−1+ b

p
Dc)/Q∗i c

26: P ∗i = q∗i Q∗i − P ∗i−1
27: Q∗i+1 =Q∗i−1− q∗i (P

∗
i − P ∗i−1)

28: T ∗i−1 = q∗i T ∗i−2+T ∗i−3
29: B∗i−1 = q∗i B∗i−2+B∗i−3
30: i ← i + 1

31: end while
32: Put q∗i = b(P

∗
i−1+ b

p
Dc)/Q∗i c, P ∗i = q∗i Q∗i − P ∗i−1,

e = dT ∗i−2/2Q∗i e, e ′ = dT ∗i−3/2Q∗i−1e, j = 3.
33: while e ′ ≥ d2k−w+3 do

34: e← e ′

35: e ′←dTi−2− j/2Q∗i− j e
36: j ← j + 1

37: end while
38: Find t (t ′) such that

2t−1 ≤
e

8d
< 2t .

�

2t ′−1 ≤
e ′

8d
< 2t ′ .

�

39: Put c= [Q∗i− j+3/r, (P ∗i− j+3+
p

D)/r ], g = d2p+3+t d/ee, h = k − t ,

a = (T ∗i−2−B∗i−2b2
s
p
∆c)/2s , b = B∗i− j+2.



147

40: end case

Our modified algorithm, HCRAX, is presented in Algorithm 5.2. Its correctness

follows from the preceding discussion.

Algorithm 5.2: HCRAX

Input: x, p, where x ∈Z+ and 2p > 11.2x max{16 log2 x}.
Output: (a[x], d , k), (mi , ni ), and Li , where (a[x], d , k) is an x-near ( f , p) represen-

tation of a = (1) with f < 2p−4, (mi , ni ) are pairs of integers, and Li ∈ Z+ for
i = 0,1, . . . , l where l is such that x =

∑l
j=0 2l− j b j and b0 = 1, b j ∈ {0,1}.

1: Put h = d(1/4) log2∆e, compute the maximal n such that x/(2n − 1) ≥ h, and put
y = x +(2n − 1)h.

2: Compute the binary representation of y with

y =
l
∑

i=0

2l−i bi and b0 = 1, bi ∈ {0,1} (1≤ i ≤ l ).

3: Put

Q = r, P = r

$

b
p
∆c− r + 1

r

%

+ r − 1, (b, d , k) = ([Q, P], 2p + 1,0),

s = b0, L0 = 1, and i = 0.
4: Put ((b0, d0, k0), m0, n0) = EWNEAR((b, d , k), s , p).
5: while i < l − n do

6: Put Li+1 =N (bi ) and

((bi+1, di+1, ki+1), mi+1, ni+1) = EADDXY((bi , di , ki ), (bi , di , ki ), s , s , p).

7: Set s ← 2s + bi+1.
8: if bi+1 6= 0 then

9: Put N =N (bi+1) and set

((bi+1, di+1, ki+1), m′i+1, n′i+1)← EWNEAR((bi+1, di+1, ki+1), s , p).

10: Set (mi+1, ni+1)← IMULT(mi+1, ni+1, m′i+1, n′i+1,N ).
11: end if
12: Set i ← i + 1.

13: end while
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14: while i < l do
15: Put Li+1 =N (bi ) and

((bi+1, di+1, ki+1), mi+1, ni+1) = EADDXY((bi , di , ki ), (bi , di , ki ), s , s , p).

16: Set s ← 2s + bi+1− h.
17: Put N =N (bi+1) and set

((bi+1, di+1, ki+1), m′i+1, n′i+1)← EWNEAR((bi+1, di+1, ki+1), s , p).

18: Set (mi+1, ni+1)← IMULT(mi+1, ni+1, m′i+1, n′i+1,N ).
19: Set i ← i + 1.

20: end while
21: Put Ll+1 =N (bl ) and (a[x], d , k) = (bl , dl , kl ).

Theorem 5.3. Let θ ∈OK such that a[x] = (θ) for some x ∈ Z+. The total number of bits

required to express θ as an h-compact representation is O((log2 log2θ) log2∆
3/4).

Proof. From the discussion preceding Algorithm 5.2, we know H (λi ) < (5/2)∆
3/4. As

l = dlog2 xe and 2x < (16
p
∆/15)θ, we also have l =O(log2 log2θ). Thus, we require

O(l log2∆
3/4) =O((log2 log2θ) log2∆

3/4)

bits to express θ as an h-compact representation.

Returning once more to our running example, we can use HCRAX to produce the

h-compact representation of the fundamental unit η410286423278424 shown in Table 5.1. We

invite the reader to compare it to the compact representation given by CRAX in Ta-

ble 2.1, page 47. The representation in Table 5.1 uses only 974 bits, a substantial size

reduction of 19.6% as compared to the standard compact representation.
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Table 5.1: h-compact representation of η410286423278424.

i mi ni Li i mi ni Li

5 1600186729 79 1 13 -11963646785 3648 20212201

6 126127662947 6188 12924743 14 -58391253311 2973 13014671

7 -6712468796 341 1183897 15 14890719660 755 1280375

8 -766498224 248 1891592 16 55817571288 -2016 7405320

9 16814222688 -684 6888180 17 -1791778223 4850 26406361

10 3566127224 -64 1912936 18 22988634517 -439 13835951

11 -2186792333 165 3016057 19 26413208897 1304 2347585

12 28814796035 1414 702239 20 — — 1

5.3. FURTHER REDUCING MEMORY USAGE IN COMPACT REPRESENTATIONS

We saw in the last section a modification to the compact representation presented in [48,

§11.1]which reduces the height of the individual terms to O(∆3/4). An obvious question

to ask is if we can do better than this? Trying to reduce the size of the individual terms

further will be extremely hard, but what if we could reduce the total number of terms?

Recalling CRAX again, for each step of the algorithm we compute an ideal (a[si+1]) at

double the distance of the ideal we are currently at (a[si]), then store the relative gen-

erator between these two ideals (λi ). In order to store fewer terms, we have to progress

further from ideal to ideal. So what if we were to, say, compute an ideal at triple the dis-

tance we are at currently? In other words, instead of computing the binary expansion of

x and applying a square-and-multiply routine, what if we computed a ternary expansion

and used a cube-and-multiply routine?

The main hurdle to overcome is the cubing step. Thankfully Imbert, Jacobson, and
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Schmidt have recently presented a dedicated ideal cubing algorithm: NUCUBE [41,

Alg. 4]. We present this algorithm below and note that in addition to correcting a few

minor typos, the pseudocode and formulas have been reformatted to match the style of

presentation used in [48]. This was done to help the reader more clearly see how the

formulas in NUCOMP were extended from computing an ideal product to computing

an ideal cube. It is important to note, however, that these formulas are not the most

efficient ones. Vanessa Dixon has presented a version of this algorithm [26] using the

structure and formulas from [41, Alg. 4] which have been optimized to exploit the fact

that Q ′ =Q ′′ and P ′ = P ′′. We encourage reimplementations to use Steps 1–22 from [26,

Alg. 3.5, p. 45] instead of Steps 1–16 below. Finally, we also note that the algorithm has

been extended to compute a relative generator as NUCOMP does.

Algorithm 5.4: NUCUBE

Input: a= [Q ′/r, (P ′+
p

D)/r ], a reduced invertible OK-ideal.
Output: A reduced OK-ideal b = [Q/r, (P +

p
D)/r ] such that b ∼ a3. (Optional out-

put: A,B ,C where µ= |(A+B
p

D)/C | and µb= a3.)
1: Compute S = (Q ′/r, 2P ′/r ) and solve V (Q ′/r )+Y (2P ′/r ) = S for V ,Y ∈Z.
2: Put

R′ =
D − P ′2

Q ′
, Q ′′ =

Q ′2

r S2
, P ′′ ≡ P ′+

Y R′Q ′

r S
(mod Q ′′).

3: Compute S ′ = (SQ ′/r, S(P ′+P ′′)/r ) and solve K(SQ ′/r )+L(S(P ′+P ′′)/r ) = S ′ for
K , L ∈Z.

4: Put U ≡K(P ′′− P ′)+ LR′ (mod Q ′′/S) where 0≤U <Q ′′/S.
5: Put R−2 = R0 =K , R−1 = L, C−2 =C0 =−1, C−1 = 0, and i =−1.
6: if R−1 < b

Æ

Q ′/r 2D1/4c then
7: Put

Qi+1 =Q ′3/r S2, Pi+1 =U Q ′/r S + P ′ (mod Qi+1).

8: Go to Step 17.
9: end if



151

10: while Ri > b
Æ

Q ′/r 2D1/4c do
11: i ← i + 1.
12: qi = bRi−2/Ri−1c.
13: Ri = Ri−2− qi Ri−1.
14: Ci =Ci−2− qi Ci−1.

15: end while
16: Put eP ≡ P ′+U Q ′/r (mod Q/S) and

M1 =
(Q ′/r S)Ri +(eP − P ′)Ci

Q/S
, M2 =

(P ′+ eP )Ri + r SR′Ci

Q/S
,

Qi+1 = (−1)i−1(Ri M1−Ci M2), Pi+1 =
(Q ′/r S)Ri +Qi+1Ci−1

Ci

− P ′.

17: Put j = 1,

Q ′i+1 = |Qi+1|, ki+1 =

$

b
p

Dc− Pi+1

Q ′i+1

%

, P ′i+1 = ki+1Q ′i+1+ Pi+1.

(Bi−1 = |Ci−1|, Bi = |Ci |.)
18: if P ′i+1+ b

p
Dc<Q ′i+1 then

19: Set j ← 2 and put

qi+1 =

$

Pi+1+ b
p

Dc
Q ′i+1

%

, Pi+2 = qi+1Q ′i+1− Pi+1,

Qi+2 =
D − P 2

i+2

Q ′i+1

, Q ′i+2 = |Qi+2|,

ki+2 =

$

b
p

Dc− Pi+2

Q ′i+2

%

, P ′i+2 = ki+2Q ′i+2+ Pi+2.

(Bi ← sign(Qi+1)|Ci |, Bi+1 = qi+1Bi +Bi−1.)
20: if P ′i+2+ b

p
Dc<Q ′i+2 then

21: Set j ← 3 and put

qi+2 =

$

Pi+2+ b
p

Dc
Q ′i+2

%

, Pi+3 = qi+2Q ′i+2− Pi+2,
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Qi+3 =
D − P 2

i+3

Q ′i+2

, Q ′i+3 = |Qi+3|,

ki+3 =

$

b
p

Dc− Pi+3

Q ′i+3

%

, P ′i+3 = ki+3Q ′i+3+ Pi+3.

(Bi+2 = qi+2Bi+1+Bi .)
22: end if

23: end if
24: Put b = [Q ′i+ j/r, (P ′i+ j +

p
D)/r ]. (A= S(Qi+ j Bi+ j−2+ Pi+ j Bi+ j−1), B = −SBi+ j−1,

C =Qi+ j .)

It is relatively straight-forward to turn NUCUBE into an algorithm that can work

with ( f , p) representations. We begin with the following theorem for determining an

( f , p) representation of the cube of an ( f , p) representation.

Theorem 5.5 ([48, Thm. 11.2, p. 268]). Let (b, d ′, k ′) be an ( f ′, p) representation of an

OK-ideal a. If d ′3 ≤ 23 p+1, put d = dd ′3/22 pe and k = 3k ′. If 23 p+1 < d ′3 ≤ 23 p+2, put

d = dd ′3/22 p+1e and k = 3k ′+1. If d ′3 > 23 p+2, put d = dd ′3/22 p+2e and k = 3k ′+2. Then

(b3, d , k) is an ( f , p) representation of the product ideal a3, where f = 1+ 3 f ′+ 3 f ′2/2p +

f ′3/22 p .

Proof. Let b = θa for θ ∈K. By the definition of d in the theorem, it is easy to see that

2p < d ≤ 2p+1. From the definition of an ( f , p) representation, we know

�

�

�

�

�

2p−k ′θ

d ′
− 1

�

�

�

�

�

<
f ′

2p ,

and rearranging this inequality gives
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d ′

2p

�

1−
f ′

2p

�

<
θ

2k ′
<

d ′

2p

�

1+
f ′

2p

�

.

As 2p < d ′ ≤ 2p+1 and f ′/2p < 1/16, we have

d ′

2p

�

1−
f ′

2p

�

> 1 ·
�

1−
1

16

�

> 0 and
d ′

2p

�

1+
f ′

2p

�

< 2 ·
�

1+
1

16

�

< 4,

and thus
�

1−
f ′

2p

�3

<
23(p−k ′)θ3

d ′3
<

�

1+
f ′

2p

�3

.

If we set f ∗ = 3 f ′+ 3 f ′2/2p + f ′3/22 p then

1−
f ∗

2p = 1−
3 f ′

2p −
3 f ′2

22 p
−

f ′3

23 p
< 1−

3 f ′

2p +
3 f ′2

22 p
−

f ′3

23 p
=
�

1−
f ′

2p

�3

and

�

1+
f ′

2p

�3

= 1+
3 f ′

2p +
3 f ′2

22 p
+

f ′3

23 p
= 1+

3 f ′+ 3 f ′2/2p + f ′3/22 p

2p = 1+
f ∗

2p .

Hence

1−
f ∗

2p <
23 p−3k ′θ3

d ′3
< 1+

f ∗

2p . (5.5)

Now suppose that d ′3 ≤ 23 p+1. Since d = d ′3/22 p + ε for 0≤ ε < 1, (5.5) becomes

1−
f ∗

2p <
2p−kθ3

d − ε
< 1+

f ∗

2p
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and as d − ε= d (1− ε/d ),

�

1−
ε

d

�

�

1−
f ∗

2p

�

<
2p−kθ3

d
<
�

1−
ε

d

�

�

1+
f ∗

2p

�

.

Looking at the right-hand side of this inequality, (1− ε/d )< 1 so

�

1−
ε

d

�

�

1+
f ∗

2p

�

< 1+
f ∗

2p < 1+
1

2p +
f ∗

2p = 1+
f

2p ;

considering the left-hand side, ε < 1 and 2p < d so 2pε < d . Rearranging this inequality

gives 1− 1/2p < 1− ε/d and thus

1−
f

2p = 1−
1

2p −
f ∗

2p < 1−
1

2p −
f ∗

2p +
f ∗

22 p
=
�

1−
1

2p

�
�

1−
f ∗

2p

�

<
�

1−
ε

d

�

�

1−
f ∗

2p

�

.

It follows that
�

�

�

�

�

2p−kθ3

d
− 1

�

�

�

�

�

<
f

2p

and (b3, d , k) is an ( f , p) representation of a3, where b3 = θ3a3. The theorem follows by

applying similar arguments when 23 p+1 < d ′3 ≤ 23 p+2 and when d ′3 > 23 p+2.

We use the above result to produce the following algorithm which, given an ( f , p)

representation of an ideal a, computes an ( f , p) representation of the cube a3. Notice

that it executes in O(log2∆) elementary operations.

Algorithm 5.6: FPCUBE

Input: (b′, d ′, k ′), p, where (b′, d ′, k ′) is a reduced ( f ′, p) representation of an invertible
OK-ideal a. Here b′ = [Q ′/r, (P ′+

p
D)/r ].

Output: A reduced ( f , p) representation (b, d , k) of a3, where b= [Q/r, (P +
p

D)/r ],
(P +

p
D)/Q > 1, −1< (P −

p
D)/Q < 0, k ≤ 3k ′+2, and f = f ∗+17/8 with f ∗ =

3 f ′+ 3 f ′2/2p + f ′3/22 p . (Optional output: a, b ∈ Z, where ν = (a+ b
p

D)/r ∈OK
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and b= (ν/N (b′)3)b′3.)
1: Put (b,A,B ,C ) =NUCUBE(b′) where b= [Q/r, (P +

p
D)/r ].

2: if A+B
p

D < 0 then
3: Set A←−A, B←−B .

4: end if
5: Set C ← |C |
6: if d ′3 ≤ 23 p+1 then

7: Put e = bd ′3/22 pc and h = 3k ′.
8: else if 23 p+1 < d ′3 ≤ 23 p+2 then

9: Put e = bd ′3/22 p+1c and h = 3k ′+ 1.
10: else

11: Put e = bd ′3/22 p+2c and h = 3k ′+ 2.
12: end if
13: Find s ≥ 0 such that 2s Q > 2p+4B .
14: Put T = 2s A+Bb2s

p
Dc.

15: Put (b, d , k) = REMOVE((b, e , h),T ,C , s , p). (If A,−B < 0, put a = |A|, b = B ,
otherwise put a =A, b =−B .)

Proof (of correctness of FPCUBE). By Theorem 5.5, (b′3, g , h) is an ( f , p) representation of

a′3 with f = 1+ f ∗. As the relative generatorµ returned by NUCUBE is such that |µ| ≥ 1

and |µ|b = b′3, REMOVE will compute an ( f , p) representation (b, d , k) of a′3 with

f = 1+ f ∗+ 9/8= 17/8+ f ∗. Moreover, |N (µ)|=N (b′)3/N (b) where N (b) = |Qi+ j |/r ,

so

ν =
N (b′)3

µ
=N (b)|µ|=

�

�

�

�

�

a+ b
p

D

r

�

�

�

�

�

∈O.

The next step we need to make is to develop an algorithm similar to ADDXY; one

which, given an OK-ideal a[x], determines an OK-ideal a[3x].

Algorithm 5.7: TRIPLEX

Input: (a[x], d ′, k ′), x, p, where (a[x], d ′, k ′) is an x-near ( f , p) representation of the
OK-ideal a= (1).

Output: (a[3x], d , k), a 3x-near ( f , p) representation of a where f = 13/4 + 3 f ′ +
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3 f ′2/2p + f ′3/22 p .
1: Put (c, g , h) = FPCUBE((a[x], d ′, k ′), p).
2: Put (c′, g ′, h ′) =WNEAR((c, g , h), 3x, p).
3: Put a[3x] = c′, d = g ′, and k = h ′.

Proof (of correctness of TRIPLEX). FPCUBE will return (c, g , h), an ( f , p) representation

of a[x]3 with h ≤ 3k ′ + 2 ≤ 3x − 1. Because of this, the first case of WNEAR will be

called to produce a 3x-near ( f , p) representation of a[x]3.

We remark that by the same reasoning used to determine the computational complex-

ity of ADDXY, TRIPLEX will execute in O(log2∆) elementary operations. As in the

case of EADDXY, we can also make a slight modification to TRIPLEX to simultaneously

compute the relative generator.

Algorithm 5.8: ETRIPLEX

Input: (a[x], d ′, k ′), x, p, where (a[x], d ′, k ′) is an x-near ( f , p) representation of the
OK-ideal a= (1).

Output: (a[3x], d , k), a, b , where (a[3x], d , k) is a 3x-near ( f , p) representation of a,
f = 13/4+ 3 f ′+ 3 f ′2/2p + f ′3/22 p , and

λ=
a+ b

p
D

r
such that a[3x] =

�

λθ3

N (a[x])3

�

a,

where a[x] = (θ)a.
1: Put ((c, g , h),a′, b ′) = FPCUBE((a[x], d ′, k ′), p).
2: Put ((c′, g ′, h ′),a′′, b ′′) = EWNEAR((c, g , h), 3x, p).
3: Put a[3x] = c′, d = g ′, k = h ′, and (a, b ) = IMULT(a′, b ′,a′′, b ′′,N (c)).

Proof (of correctness of ETRIPLEX). In Step 1, we use the optional output of FPCUBE to

find integers a′, b ′ where

c=
�

µ

N (a[x])3

�

a[x]3 ,

andµ= (a′+b ′
p

D)/r ∈O. In the next step, we find c′ = νc and ν = (a′′+b ′′
p

D)/r ∈O.
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Thus,

λ=
µν

N (c)
=

a+ b
p

D

r
∈O

and

a[3x] = c′ =
�

λ

N (a[x])3

�

a[x]3 = (θ)a

where θ= λθ′3/N (a[x])3 and satisfies

�

�

�

�

�

2pθ

2k d
− 1

�

�

�

�

�

<
f

2p .

At this point we have all of the base algorithms needed to present our cube-and-

multiply based routine for computing a compact representation. To help the reader bet-

ter understand the dependencies between these new algorithms and the ones previously

introduced in Chapter 2, we present an updated algorithm flowchart in Figure 5.3.

Algorithm 5.9: 3CRAX

Input: x, p, where x ∈Z+ and 2p > 11.2x max{16 log2 x}.
Output: (a[x], d , k), (mi , ni ), and Li , where (a[x], d , k) is an x-near ( f , p) represen-

tation of a = (1) with f < 2p−4, (mi , ni ) are pairs of integers, and Li ∈ Z+ for
i = 0,1, . . . , l where l is such that x =

∑l
j=0 3l− j b j and b0 6= 0, b j ∈ {0,1,2}.

1: Compute the ternary representation of x with

x =
l
∑

i=0

3l−i bi and b0 6= 0, bi ∈ {0,1,2} (1≤ i ≤ l ).

2: Put

Q = r, P = r

$

b
p
∆c− r + 1

r

%

+ r − 1, (b, d , k) = ([Q, P], 2p + 1,0),

s = b0, L0 = 1, and i = 0.
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8

(E)NUCOMP (E)NUCUBE

REMOVE

(E)NUMULT (E)FPCUBE

IMULT

WNEAR EWNEAR

WMULT ADDXY EADDXY (E)TRIPLEX

EXP AX

FIND CRAX 3CRAX

HCRAX 3HCRAX

CR

Figure 5.3: Updated algorithm dependencies
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3: Put ((b0, d0, k0), m0, n0) = EWNEAR((b, d , k), s , p).
4: while i < l do

5: Put Li+1 =N (bi ) and

((bi+1, di+1, ki+1), mi+1, ni+1) = ETRIPLEX((bi , di , ki ), s , p).

6: Set s ← 3s + bi+1.
7: if bi+1 6= 0 then

8: Put N =N (bi+1) and set

((bi+1, di+1, ki+1), m′i+1, n′i+1)← EWNEAR((bi+1, di+1, ki+1), s , p).

9: Set (mi+1, ni+1)← IMULT(mi+1, ni+1, m′i+1, n′i+1,N ).
10: end if
11: Set i ← i + 1.

12: end while
13: Put Ll+1 =N (bl ) and (a[x], d , k) = (bl , dl , kl ).

Proof (of correctness of 3CRAX). As 3CRAX executes, it produces a series of reduced prin-

cipal OK-ideals a[si] = bi = (πi )a1 (a1 = (1)) where

�

�

�

�

�

2pπi

2ki di

− 1

�

�

�

�

�

<
f

2p .

Moreover, πi ∈ OK, |N (πi )| = N (a[si]) = N (bi ) = Li+1 and since 2p > 11.2x max{16,

log2 x}, Theorem 11.9 of [48, p. 280] ensures that f < 2p−4. If we set λi = (mi +

ni

p
D)/r , then

πi+1 =

 

λi+1

L3
i+1

!

π3
i (5.6)

where π0 = λ0. If we define L0 = 1, then we get

π j =
j
∏

i=0

 

λi

L3
i

!3 j−i

for j = 0,1, . . . , l . When j = l , we have sl = x, a[x] = bl = (πl ), and hence a[x] = (θ)
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where

θ=
l
∏

i=0

 

λi

L3
i

!3 j−i

.

In order to formally state the definition of a 3-compact representation, we first need

to derive bounds on the heights of the λi defined in the preceding proof. For any fixed i

(1≤ i ≤ l ), we must have some θ j in the simple continued fraction expansion of ω such

that πi = θ j . By Lemma 2.9, we thus have

15N (bi+1)

16
p
∆

2si <θ j <
17

16
2si (5.7)

and hence,
15Li+1

16
p
∆

2si <πi <
17

16
2si . (5.8)

From (5.6) we see λi = (L
3
iπi )/π

3
i−1, which, when combined with (5.8), gives

λi < L3
i

 

17

16
2si

! 

16
p
∆

15Li

2−si−1

!3

=
163 · 17

153 · 16
2si−3si−1∆3/2 =

162 · 17

153
2si−3si−1∆3/2 (5.9)

since si − 3si−1 ∈ {0,1,2}. Hence,

λi <
162 · 17 · 22

153
∆3/2 <

11

2
∆3/2 .

Now, since λi = (L
3
iπi )/π

3
i−1 and |πiπi |= Li+1, we find

|λi |=

�

�

�

�

�

�

L3
iπi

π3
i−1

�

�

�

�

�

�

=
L3

i (Li+1/πi )

(Li/πi−1)
3
=

L3
i Li+1π

3
i−1

L3
iπi

=
Li+1π

3
i−1

πi
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and so

|λi |< Li+1

 

17

16
2si−1

!3 
16
p
∆

15Li+1

2−si

!

=
173

162 · 15
23si−1−si

p
∆<

3

2

p
∆ . (5.10)

since 3si−1− si ∈ {0,−1,−2}. Thus,

H (λi )<
11

2
∆3/2 . (5.11)

Considering λ0, we see

15L1

16
p
∆
< λ0 <

17

16
2s0 =

17

8
,

as s0 = 1, and so (5.11) holds for i = 0 as well. At this point, we can state the definition of

a 3-compact representation.

Definition 5.10. For any θ such that (θ) = a[x] ∈O, a 3-compact representation of θ is

θ=
l
∏

i=0

 

λi

L3
i

!3l−i

where the following properties are satisfied:

1. l = dlog3 log2θe.

2. λi ∈OK and Li is an integer (0≤ i ≤ l ).

3. 0< Li ≤∆1/2 and H (λi ) =O(∆3/2) (0≤ i ≤ l ).

4. π j ∈OK, L j = |N (π j )|,

π j =
j
∏

i=0

 

λi

L3
i

!3 j−i

,
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π j generates a reduced ideal b j , where b0 = a[1] and

L3
i+1bi+1 = λi+1b

3
i (0≤ i ≤ l − 1) .

Theorem 5.11. Let θ ∈OK such that a[x] = (θ) for some x ∈Z+. The total number of bits

required to express θ as a 3-compact representation is O((log3 log2θ) log2∆
3/2).

Proof. From (5.11) we know H (λi )< (11/2)∆3/2. If we set si = x, θ j = θ and N (bi+1) = 1

in (5.7), we have 2x < (16
p
∆/15)θ. Since l = dlog3 xe, we require

O(l log2∆
3/2) =O((log3 log2θ) log2∆

3/2)

bits to express θ as a 3-compact representation.

Returning to our running example, we can employ 3CRAX to produce the 3-compact

representation of the fundamental unit η410286423278424 shown in Table 5.2. (The previous

two compact representations are on pages 47 and 149.) As we can see, the number of

terms has definitely been reduced, but the individual sizes have increased. However, this

is to be expected: we are traversing a greater distance in the cycle of reduced principal

ideals on each iteration of the main while-loop, but the short-fall we experience at the

end of each giant-step has been magnified. Thus, the correction we need to make will be

larger.

As we continue in this section, we will see just how far we can push this trade-off

between increased term sizes and a decreased number of terms. Overall for our example,

we require 1,186 bits, which is a 2.1% savings compared to the compact representation,

but it is also 22.1% larger than the h-compact representation.
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Table 5.2: 3-compact representation of η410286423278424.

i mi ni Li

3 461840850098620 22800731 1

4 393847945106440948064 19443973068552 2422664

5 1748981591548163056061 86345889031527 5221225

6 9417841462337825471 464951659728 1434745

7 61583040732846306699904 3040307815152853 37042535

8 9934001598858842146176 490434092525128 17298472

9 9857042566970449959 486634683738 898455

10 897726603790655651009 44320078659572 13953959

11 8561762325532279619533 422687684791656 3462265

12 — — 1

Of course, we can also combine the ideas behind both the h-compact and 3-compact

representations to reduce the number of bits needed to express θ even further. Working

through the details of adding “−h” to the new Step 6 in 3CRAX, we find we must let n be

the largest integer such that x ≥ ((3n−1)/2)h and set y = x+((3n−1)/2)h. Furthermore,

in light of ETRIPLEX, we compute

a[si+1]
′ = (µi )a[si]

3 =
�

(µ′i )a[si]
��

(µ′′i )a[si]
2
�

for each iteration of the main while-loop. Thus, as in the case of HCRAX, we have

O(∆1/4) < µ′i ,µ
′′
i < O(∆3/4), and since µi = µ

′
iµ
′′
i , we see O(∆1/2) < µi < O(∆3/2). So

our choice of h needs to be increased to h = d(1/2) log2∆e.
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If we modify (5.9) and (5.10) as we modified (5.2), we find

λi < L3
i

 

17

16
2si−h

! 

16
p
∆

15Li

2−si−1

!3

=
163 · 17

153 · 16
2si−h−3si−1∆3/2 =

162 · 17

153
2si−3si−1−h∆3/2 ,

since si − 3si−1 ∈ {0,1,2}. So

λi <
162 · 17 · 22

153
∆3/2 <

11

2
2−d(1/2) log2∆e∆3/2 =

11

2
∆ . (5.12)

Similarly, we have

|λi |< Li+1

 

17

16
2si−1

!3 
16
p
∆

15Li+1

2−si+h

!

=
16 · 173

15 · 163
23si−1−si+h∆1/2

≤
16 · 173

15 · 163
· 2h∆1/2 <

3

2
2d(1/2) log2∆e∆1/2 =

3

2
∆ . (5.13)

Thus, we find that the heights of the λi produced by 3HCRAX are bounded by

H (λi )<
11

2
∆ . (5.14)

Algorithm 5.12: 3HCRAX

Input: x, p, where x ∈Z+ and 2p > 11.2x max{16 log2 x}.
Output: (a[x], d , k), (mi , ni ), and Li , where (a[x], d , k) is an x-near ( f , p) represen-

tation of a = (1) with f < 2p−4, (mi , ni ) are pairs of integers, and Li ∈ Z+ for
i = 0,1, . . . , l where l is such that x =

∑l
j=0 3l− j b j and b0 6= 0, b j ∈ {0,1,2}.

1: Put h = d(1/2) log2∆e and compute the maximal n such that

x

(3n − 1)/2
≥ h,

and put y = x +((3n − 1)/2)h.
2: Compute the ternary representation of y with
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y =
l
∑

i=0

3l−i bi and b0 6= 0, bi ∈ {0,1,2} (1≤ i ≤ l ).

3: Put

Q = r, P = r

$

b
p
∆c− r + 1

r

%

+ r − 1, (b, d , k) = ([Q, P], 2p + 1,0),

s = b0, L0 = 1, and i = 0.
4: Put ((b0, d0, k0), m0, n0) = EWNEAR((b, d , k), s , p).
5: while i < l − n do

6: Put Li+1 =N (bi ) and

((bi+1, di+1, ki+1), mi+1, ni+1) = ETRIPLEX((bi , di , ki ), s , p).

7: Set s ← 3s + bi+1.
8: if bi+1 6= 0 then

9: Put N =N (bi+1) and set

((bi+1, di+1, ki+1), m′i+1, n′i+1)← EWNEAR((bi+1, di+1, ki+1), s , p).

10: Set (mi+1, ni+1)← IMULT(mi+1, ni+1, m′i+1, n′i+1,N ).
11: end if
12: Set i ← i + 1.

13: end while
14: while i < l do

15: Put Li+1 =N (bi ) and

((bi+1, di+1, ki+1), mi+1, ni+1) = ETRIPLEX((bi , di , ki ), s , p).

16: Set s ← 3s + bi+1− h.
17: Put N =N (bi+1) and set

((bi+1, di+1, ki+1), m′i+1, n′i+1)← EWNEAR((bi+1, di+1, ki+1), s , p).

18: Set (mi+1, ni+1)← IMULT(mi+1, ni+1, m′i+1, n′i+1,N ).
19: Set i ← i + 1.

20: end while
21: Put Ll+1 =N (bl ) and (a[x], d , k) = (bl , dl , kl ).
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Theorem 5.13. Let θ ∈OK such that a[x] = (θ) for some x ∈Z+. The total number of bits

required to express θ as a 3h-compact representation is O((log3 log2θ) log2∆).

Proof. We know H (λi ) < (11/2)∆ and, as stated in the proof of Theorem 5.11, we also

have l = dlog3 log2θe. Thus we need

O(l log2∆
3/2) =O((log3 log2θ) log2∆)

bits to express θ as a 3h-compact representation.

Going back to our running examples one more time, we use 3HCRAX to produce

the 3h-compact representation of the fundamental unit η410286423278424 shown in Table 5.3.

(See pages 47, 149, and 163 for the other compact representations.) For this 3h-compact

representation, we need only 852 bits; a savings of 29.7% over the compact representa-

tion and of 12.5% over the h-compact representation. We would like to emphasize that

the memory savings of using a 3h-compact representation over a compact representation

comes almost entirely from a reduced number of terms, and not a reduced term size. This

is expected as both CRAX and 3HCRAX generate λi with H (λi ) =O(∆). On average,

the compact representation in Table 2.1 uses 65.2 bits per λi , whereas the 3h-compact

representation in Table 5.3 uses 65.3 bits. On the other hand, the h-compact represen-

tation does derive its memory savings from a reduced term size; the representation in

Table 5.1 uses 44.4 bits per λi on average.

In 3CRAX and 3HCRAX, as presented previously, we compute the ternary repre-

sentation of x as

x =
l
∑

i=0

3l−i bi and b0 6= 0, bi ∈ {0,1,2} (1≤ i ≤ l ).
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Table 5.3: 3h-compact representation of η410286423278424.

i mi ni Li

3 182299754 9 1

4 1222201773973992 62412364 22908172

5 128329945705305 4780740 8685255

6 331044493042892 15107681 10823735

7 163479422159904 -3917272 12575240

8 -136293163131663 7346283 10273359

9 189325393222681 9232568 3289273

10 99843396702949 4693418 24479305

11 915125032449 -45173 63457

12 688242823029 33978 874185

13 — — 1

However, we can replace this with a signed ternary representation of x, where

x =
l
∑

i=0

3l−i bi and b0 6= 0, bi ∈ {0,±1} (1≤ i ≤ l ),

and with appropriate change to Step 1 of Algorithms 5.9 and 5.12, shave a few more

bits off the compact representation. For a signed 3h-compact representation, we have

si − 3si−1 ∈ {0,±1}, and so (5.12) and (5.13) instead become

λi <
162 · 17

153
2si−3si−1−h∆3/2 ≤

162 · 17 · 2
153

· 2−h∆3/2 <
11

4
∆
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and

|λi |<
173

15 · 162
23si−1−si+h∆1/2 ≤

173 · 2
15 · 162

· 2h∆1/2 <
11

4
∆ .

Thus, we find for a signed 3h-compact representation that

H (λi )<
11

4
∆ ,

which is just slightly worse than the bound of H (λi ) < (5/2)∆ for the regular compact

representation.

Looking again at η410286423278424, Tables 5.4 and 5.5 show the signed 3- and signed 3h-

compact representations of the fundamental unit which require 1,137 and 843 bits, re-

spectively. Compared to the compact and h-compact representations respectively, the

signed 3-compact representation gives us a savings of 6.2% and an increase of 16.7%; the

signed 3h-compact representation saves us 30.7% and 13.7%. As an aside, a summary of

the results of this and the previous section will be given in Table 5.9 on page 179.

5.4. EXTENDING COMPACT REPRESENTATIONS TO HIGHER BASES

At this point, we have said about all there is to say regarding 3-compact representations.

However, a valid question to pose is: can we extend this idea further? What about a

4-compact, 5-compact, or higher representation? While we do not have dedicated algo-

rithms like NUCUBE for computing higher powers, we can use some other algorithms

at our disposal to model these. Computationally, of course, these are not as efficient as

a dedicated algorithm, however since we are more interested in the resulting size of the

compact representation, we will not concern ourselves with optimizing their run-time.

Furthermore, although we will not formally define a 4-compact, 5-compact, and
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Table 5.4: Signed 3-compact representation of η410286423278424.

i mi ni Li

4 461840850098620 22800731 1

5 393847945106440948064 19443973068552 2422664

6 1748981591548163056061 86345889031527 5221225

7 10189739201431422114 503059663177 1434745

8 98000352201190176 4838202744 467916

9 9934001598858842146176 490434092525128 17298472

10 9857042566970449959 486634683738 898455

11 897726603790655651009 44320078659572 13953959

12 8561762325532279619533 422687684791656 3462265

13 — — 1

Table 5.5: Signed 3h-compact representation of η410286423278424.

i mi ni Li

3 283577395 14 1

4 91022547145107 -3309911 7585079

5 128329945705305 4780740 8685255

6 331044493042892 15107681 10823735

7 163479422159904 -3917272 12575240

8 -136293163131663 7346283 10273359

9 189325393222681 9232568 3289273

10 99843396702949 4693418 24479305

11 915125032449 -45173 63457

12 688242823029 33978 874185

13 — — 1
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higher representations, they can be defined in a manner similar to the 3-compact rep-

resentation (Definition 5.10 on page 161). We will also not provide pseudocode for the

algorithms named below, though they are implemented in our library and their proto-

types can be found in fp-representation.h.

For the time being, we will occupy ourselves with only the 4-compact and 5-compact

representations. We can compute a quaternary representation of an integer x as

x =
l
∑

i=0

4l−i bi and b0 6= 0, bi ∈ {0,1,2,3} (1≤ i ≤ l ),

and for the signed quaternary representation, we have a choice:

x =
l
∑

i=0

4l−i bi and b0 6= 0, bi ∈ {−1,0,1,2} (1≤ i ≤ l ) or

x =
l
∑

i=0

4l−i bi and b0 6= 0, bi ∈ {−2,−1,0,1} (1≤ i ≤ l ).

For the quinary and signed quinary representation, of course, we have

x =
l
∑

i=0

5l−i bi and b0 6= 0, bi ∈ {0,1, . . . , 4} (1≤ i ≤ l ) and

x =
l
∑

i=0

5l−i bi and b0 6= 0, bi ∈ {−2,−1,0,1,2} (1≤ i ≤ l ).

For the 4CRAX algorithm to compute a 4-compact representation, we require

• an algorithm which computes a reduced O-ideal b∼ a4 and µ such that (µ)b= a4,

• a variant of this algorithm which works with ( f , p) representations,

• and an algorithm which computes an ideal a[4x] from an ideal a[x].

For 5CRAX, we will need similar versions of these three algorithms. Once these algo-
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rithms are in place, we can begin computing 4-compact and 5-compact representations.

Returning to the fundamental unit η410286423278424, a 4-compact representation is given

in Table 5.6, which requires 1,282 bits. Recall that we noticed an increase in the size of

the individual representation terms when we moved from a compact representation to a

3-compact representation. As is expected, when moving to a 4-compact representation,

we see this increase in term-size again. For a 4-compact representation, we can use the

previously detailed formulas to show

H (λi )<
45

4
∆2

and determine that for θ ∈ OK such that a[x] = (θ) (x ∈ Z+), the total number of bits

required to express θ is O((log4 log2θ) log2∆
2).

Table 5.6: 4-compact representation of η410286423278424.

i mi ni Li

3 4570714250827732415837751 225652681196857720 1

4 310039102409865561222148449 15306394339130632983 4183599

5 20121795383099716771078676382 993397711937195910501 3694935

6 216803128672757353707614145296 10703405330581644340160 10909076

7 370923983038325258991916217558 18312234521696087195947 14226959

8 111177377246951965118728645488 5488742434438124188688 14030668

9 93151864204342796770942395969 4598836584979894864110 3422487

10 — — 1

Now, earlier we mentioned that we have a choice in implementing a signed 4-compact
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representation, namely do we take bi ∈ {−1,0,1,2} or bi ∈ {−2,−1,0,1}? Implementing

both, we find that computing a signed 4-compact representation of η410286423278424 using

bi ∈ {−1,0,1,2} again requires 1,282 bits, whereas using bi ∈ {−2,−1,0,1} requires only

1,242 bits. In the general case, it seems hard to predict a priori which signed base will

produce a shorter signed compact representation. Our initial guess was that the base-4

expansion with fewer non-zero terms—particularly twos—would lead to a smaller repre-

sentation, since when bi =±2,±1 we compute a slightly larger νi value than in the bi = 0

case. However, the two base-4 expansions can result in slightly different sequences of

a[si] ideals being computed, which seems to have a larger effect on the overall represen-

tation size.

In fact, this occurs in our running example. During the signed 4CRAX computations,

we find the signed base-4 expansions of x = 343066 as

343066=
9
∑

i=0

49−i bi where {b0, b1, . . . , b9}= {1,1,1,0,−1,0,0,1,2,2}

=
9
∑

i=0

49−i bi where {b0, b1, . . . , b9}= {1,1,1,0,−1,0,1,−2,−1,−2} .

The second expansion has an extra non-zero term, but the overall compact representation

is 40 bits shorter.

Looking at the heights of the individual λi generators in a signed 4-compact represen-

tation, we find

H (λi )<
45

8
∆2 .

As with the 3-compact representation, we can extend the 4- and signed 4-compact

representations to 4h- and signed 4h-compact representations as follows. As in the base-3
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case, we need to increase h by a further factor of (1/4) log2∆ to h = d(3/4) log2∆e. We

also must compute the maximal n such that

x

(4n − 1)/3
≥ h,

and put y = x + ((4n − 1)/3)h. The remainder of 4HCRAX is structured similarly to

3HCRAX. For bounds on H (λi ), we find

H (λi )<
45

4
∆5/4 and H (λi )<

45

8
∆5/4

for a 4h- and signed 4h-compact representation, respectively. Furthermore, for θ ∈ OK
such that a[x] = (θ) (x ∈ Z+), the total number of bits required to express θ as a 4h-

compact representation is O((log4 log2θ) log2∆
5/4).

We can compute the 4h-compact representation of η410286423278424 given in Table 5.7 us-

ing 4HCRAX, which requires only 832 bits to store. Compared to the signed 3h-compact

representation, this represents an additional savings of 1.3%. As happened above, a signed

4h-compact using bi ∈ {−1,0,1,2} also requires only 832 bits. However, in the case of a

signed 4h-compact representation using bi ∈ {−2,−1,0,1} the resulting compact repre-

sentation requires 843 bits.

Moving up to a 5-compact and signed 5-compact representation of η410286423278424, we

need 1,385 and 1,335 bits, respectively. As noted previously, this is caused by the increased

size of the individual terms in the 5- and signed 5-compact representations:

H (λi )< 47∆5/2 and H (λi )<
47

4
∆5/2 ,
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Table 5.7: 4h- and signed 4h-compact representation of η410286423278424.

i mi ni Li

2 1600186729 79 1

3 4388379400321456612 216947663917 12924743

4 11399368843715584 -506977600 1891592

5 -6858207859883840 370889024 1912936

6 7270829486946172 359936327 702239

7 2998820192664699648 148049590976 1189832

8 -654539422395294144 33846945408 7405320

9 952354193589757649 47017000210 13835951

10 — — 1

for the 5- and signed 5-compact representations, respectively. Overall, O((log5 log2θ)

log2∆
5/2) bits are needed to store the total representation. If we set h = dlog2∆e, compute

the maximal n such that
x

(5n − 1)/4
≥ h,

and put y = x + ((5n − 1)/4)h, we can compute a 5h- and signed 5h-compact representa-

tion. Looking one more time at the heights of the λi generators, we see that

H (λi )< 47∆3/2 and H (λi )<
47

4
∆3/2

for these two representations, with O((log5 log2θ) log2∆
3/2) bits needed to store the total

representation. The 5h- and signed 5h-compact representations of η410286423278424 require

877 and 875 bits, respectively, which is in fact larger than the storage needed for the 4h-
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and signed 4h-compact representations.

At this point, we find the first indications that pursuing this idea to higher powers

(i.e., 6-compact and higher representations) may not result in further memory savings.

Unfortunately, the increase in size of the individual terms of the compact representations

begins dominating over the savings from a decreased overall number of terms. In the

remainder of this section, we look at an analytical argument to justify this claim. In the

following section, we will present some calculations that confirm, numerically at least,

that this analysis is valid.

Table 5.8 gives a summary of the bounds on H (λi ) for the various bases we have

discussed previously. Since the signed h-compact representation is the most efficient for

any given base, we will focus solely on these variants in our analysis.

Table 5.8: Summary of the H (λi ) bounds and number of terms for various compact
representations.

Representation H (λi ) bound l

h-compact
5

2
∆3/4 log2 log2θ

Signed 3h-compact
11

4
∆ log3 log2θ

Signed 4h-compact
45

8
∆5/4 log4 log2θ

Signed 5h-compact
47

4
∆3/2 log5 log2θ

Signed 6h-compact
63

5
∆7/4 log6 log2θ
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To determine the overall expected size Sx of the signed base-x h-compact represen-

tation in bits, we multiply the base-2 logarithm of the H (λi ) bounds from Table 5.8 by

the corresponding number of terms l . In general, these H (λi ) bounds are given by some

constant Bx multiplied by∆(x+1)/4. Expanding and standardizing the logarithm bases, we

see that

Sx = log2

�

Bx∆
(x+1)/4

�

· logx log2θ

= log2 Bx logx log2θ+ log2

�

∆(x+1)/4
�

logx log2θ

=
�

log2 Bx

log2 x

�

log2 log2θ+
�

x + 1

4 log2 x

�

log2∆ log2 log2θ . (5.15)

The Bx values are given by

Bx =max

¨

16x−1 · 17

15x ,
17x

15 · 16x−1

«

2bx/2c =max

¨

17

15

16x−1

15x−1
,
17

15

17x−1

16x−1

«

2bx/2c

=
17

15
max

¨
�16

15

�x−1

,
�17

16

�x−1«

2bx/2c =
17

15
max

�16

15
,
17

16

�x−1

2bx/2c

as 17/15, 16/15, and 17/16 are all greater than 1. Thus for either signed or unsigned

compact representations,

Bx <
17

15

�16

15

�x−1

2bx/2c <
17

15

�16

15

�x−1

2x−1 =
17

15

�32

15

�x−1

and log2 Bx is of size O(x). Asymptotically then, the (x + 1)/(4 log2 x) coefficient will

dominate this expression as the discriminant increases. Looking at Figure 5.4, we see this

coefficient has a minimum between x = 3 and x = 4.

In this thesis, we are most interested in computing compact representations where
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Figure 5.4: Plot of (x + 1)/(4 log2 x).

θ = η∆, the fundamental unit. As such, the column of l values in Table 5.8 can be

rewritten as

logx log2θ= logx log2η∆ = logx R,

where x ∈ {2,3, . . . , 6}. Recall that we can loosely bound the regulator by
p
∆ and, after

substitution, we are left with

l < logx

p
∆ (5.16)

as an upper bound on the number of terms in our various compact representations. Spe-

cializing (5.15) using (5.16), we find

Sx =
�

log2 Bx

2 log2 x

�

log2∆+
�

x + 1

8 log2 x

�

�

log2∆
�2 .
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Again, asymptotically, the (x + 1)/(8 log2 x) coefficient will dominate this expression as

the discriminant increases and the minimum still occurs between x = 3 and x = 4. In

fact, if we compare the two functions S3 and S4, we find that S4 < S3 for discriminants

greater than 1016.5. In other words, for discriminants larger than about 16 decimal digits,

the signed 4h-compact representation is the most efficient one.

This conclusion supports our initial impression that base-5 and higher representations

are not worth considering. From an analytic viewpoint, the trade-off between increasing

the heights of the individual compact representation terms and gaining a representation

with a fewer number of terms is no longer working in our favour. Because of this, we

will not provide numerical results for the base-5 or higher compact representations in the

next section.

5.5. NUMERICAL TESTING

Since the preceding discussion only shows the savings in one particular case, we turn to

some empirical results to further support our memory-saving claims. Figures B.1–B.5

(pages 237–241) show a statistical analysis of a random sampling of 28,000 discriminants

evenly spread from length 5 through 18. We calculated an approximation of the associated

regulator for each discriminant and used this to compute various compact representations

of the fundamental unit. For each of the regular, h-, signed 3h-, signed 4h-, and signed 5h-

compact representations, we computed a best-fit regression line (red) for the data, as well

as provided distribution box plots,2 a 95% confidence interval (blue) for our regression

line, and a 95% prediction interval (cyan) for further data points. Figure 5.5 shows a sum-

mary comparison of the average representation length for each discriminant length, along

with the associated best-fit curves. Figure 5.6 shows the average relative savings of each

2For each box plot, potential outliers have been marked with a “×” symbol.
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Table 5.9: Summary of sizes and relative memory savings for the various compact representations of η410286423278424.

Representation Bits Relative savings Representation Bits Relative savings

Standard 1,212 — Signed 4 {−2, . . . , 1} 1,242 -2.5%

h 974 19.6% 4h 832 31.4%

3 1,186 2.1% Signed 4h {−1, . . . , 2} 832 31.4%

Signed 3 1,141 5.9% Signed 4h {−2, . . . , 1} 843 30.4%

3h 852 29.7% 5 1,385 -14.3%

Signed 3h 843 30.4% Signed 5 1,335 -10.1%

4 1,282 -5.8% 5h 877 27.6%

Signed 4 {−1, . . . , 2} 1,282 -5.8% Signed 5h 875 27.8%
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new type of compact representation, as compared to the regular compact representation.

In the previous section, our analytical discussion concluded that the signed 4h-compact

representation should be the most efficient for large enough discriminants. The numer-

ical results that follow seems to show that the signed 4h-compact representation is more

efficient all the time. Why is this?

We initially speculated that this discrepancy is caused by our conservative bound on

H (λi ). However, this only provides a piece of the answer. When we computed the

bounds shown in Table 5.8 (on page 175), we followed the process as outlined by (5.2)

(on page 144) and the equations following it. Specifically, for the signed base-3 case we

have

λi <
162 · 17

153
2si−3si−1−h∆3/2 and |λi |<

173

15 · 162
23si−1−si+h∆1/2

and since si − 3si−1 ∈ {0,±1},

H (λi ) =max

¨

162 · 17

153
2,

173

15 · 162
2

«

∆<
11

4
∆ .

Similarly for the signed base-4 case, we have

λi <
163 · 17

154
2si−4si−1−h∆2 and |λi |<

174

15 · 163
24si−1−si+h∆1/2

and since si − 4si−1 ∈ {−1,0,1,2} (or equivalently {−2,−1,0,1}),

H (λi ) =max

¨

163 · 17

154
22,

174

15 · 163
21

«

∆5/4 <
45

8
∆5/4

�

H (λi ) = max

¨

163 · 17

154
21,

174

15 · 163
22

«

∆5/4 <
45

8
∆5/4

�

.
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However, as we said, this is a conservative bound. In essence, we are assuming that each

digit in the base-3 representation is a 1 and each digit in the base-4 representation is a 2

(or −2). Turning to a probabilistic argument, for a randomly selected number we would

expect the proportions of the digits in its representation to approximately be equal. For

example, for a signed base-3 representation, we would expect to see 0, 1, and −1 each

roughly 33% of the time. If we take this into account, we derived the following bound

on H (λi ) for the signed base-3 case:

H (λi ) =max

¨

162 · 17

153
,

173

15 · 162

«
�1

3
2−1+

1

3
20+

1

3
21
�

∆<
43

20
∆ .

Similarly for the signed base-4 case, we have

H (λi ) =max

¨

163 · 17

154
,

174

15 · 163

«
�1

4
2−1+

1

4
20+

1

4
21+

1

4
22
�

∆5/4 <
13

5
∆5/4 .

Using these probabilistic bounds in S3 and S4 in place of the bounds from Table 5.8, we

find that S4 is now strictly less than S3 for discriminants larger than roughly 1014.

We can extend these empirical results further by using the series of discriminants from

[21, Tbl. 7.8, p. 101], as well as the regulator approximations given there, to produce the

same variety of compact representations as above for the associated fundamental units. A

comparison of the sizes of these representations is shown in Figure 5.7 with a comparison

of the relative savings versus the standard compact representation shown in Figure 5.8.

We must be a little more cautious with these extended results, however. Because of

the limited sampling, it is difficult to make a definitive claim on the relative efficiencies

of the various h-compact representations at this point. For the majority of these larger

discriminants, the signed 4h-compact representation is the most efficient. However, for a
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given discriminant, the signed 3h-compact representation may be just as, or even slightly

more, efficient. With further measurements, we expect to find that the signed 4h-compact

representation is most efficient on average.

As a final point of comparison, we turn to the regulator

R′ ≈ 70795074091059722608293227655184666748799878533480399.6730200233

for the quadratic field of 110-digit discriminant ∆ = 4(10110 + 3) recently computed by

Michael Jacobson, Jr., and Jean-François Biasse [6, p. 63]. After extensive testing, we

determined that this regulator approximation is incorrect. However, at the time of writ-

ing, we have not been able to compute the correct value. We can still use this value to
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Figure 5.9: Size of various compact representations of an algebraic integer in the field
with discriminant∆= 4(10110+ 3).



185

generate compact representations, though they will be representations of some algebraic

integer in the field, not of the fundamental unit. Figure 5.9 shows a comparison of the

five compact representation varieties we have focused on. The standard compact repre-

sentation requires 119,115 bytes to express this element, whereas the signed 4h-compact

representation, using the digits {−2,−1,0,1}, needs only 75,243 bytes, a 36.8% savings.

This is in line with the relative savings suggested by Figure 5.8.

5.6. CONCLUDING REMARKS

In this chapter, we presented two substantial refinements to the idea of a compact repre-

sentation for certain quadratic integers. The first was noticing that the size of the individ-

ual compact representation terms could be reduced by a substantial factor. This was done

by modifying the inputs to EADDXY and exploiting a key behaviour of (E)NUCOMP.

Specifically, by increasing the distances input to EADDXY, we force NUCOMP to take

a slightly larger giant step than is needed. When this giant-step is adjusted by EWNEAR

and the two resulting relative generators are combined, they partially cancel. Thus, each

of the relative generators stored in the compact representation are reduced in size.

The second refinement was to notice that the overall number of terms could be re-

duced by computing larger giant steps on each iteration of CRAX. Rather than taking

the binary expansion of input distance x and applying a square-and-multiply routine,

we can consider the base-3, -4, or higher expansion of x and apply a cube-and-multiply,

quadruple-and-multiply, etc. routine. By doing so, we progress through the infrastructure

more quickly and so need to store fewer relative generators in the compact representation.

There is a trade-off in doing this, however: the size of the individual relative generators

increases as larger and larger giant steps are taken. For these higher-base compact repre-

sentations, we are also able to slightly further reduce the size of the individual terms by
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allowing for a signed representation of x.

Asymptotically, the signed 4h-compact representation results in the most efficient

balance between larger individual compact representation terms and a reduced overall

number of terms. Numerical testing supports this conclusion. In the large-discriminant

tests we performed, we found overall memory savings of around 37% as compared to the

standard compact representation.
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6— CHAPTER 6 —
CONCLUSION & FUTURE DIRECTIONS

6.1. SUMMARY

�
HE FIRST RESULT WE presented was our attempt at improving the

run-time of the O(∆1/6+ε) regulator verification algorithm. The key

to our modification is the observation that when we are checking for

a match between a particular giant step in the list of baby-step ideals,

we do not actually expect to succeed. Because of this, we can replace the explicit com-

parison of ideals with a “fuzzy comparison” of ideals by comparing the hashes of the two

ideals. In the majority of cases, this is sufficient to determine that the ideals are different.

The resulting savings in storage leads to some slight reductions in the computational time

required by the algorithm.

There is an important caveat, however. If the rate of random hash collisions increases

too much, particularly if the gap-length in a partial baby-step list is also large, the effi-

ciency gains are quickly diminished.

Turning to the problem of representing the generators of reduced principal ideals,

we made significant achievements. We crafted changes to CRAX, the algorithm for de-

termining such compact representations, which are designed to minimize the distance

short-fall we experience when computing giant steps with EADDXY and EWNEAR. By

taking a giant step of slightly greater distance than was previously specified, we can use

the relative generator from EWNEAR to reduce some of the size of the relative gener-

ator from EADDXY. This h-compact representation has a significantly reduced storage
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requirement as compared to the regular compact representation.

In addition, we developed algorithms for computing ( f , p) representations of the cube

and higher powers of an ( f , p) representation, though the explicit pseudocode for most of

these was omitted due to their extreme similarity to the cubing algorithms. We used these

algorithms to show how shifting from a square-and-multiply to a cube- or fourth-power-

and-multiply routine reduces the overall number of terms as compared to the regular

representation. Unfortunately, these shorter base-3 and base-4 compact representations

come at the expense of larger individual terms. Combining h-compact representations

with these base-3 and base-4 representations results in the best-case scenario. Theoreti-

cally, the signed 4h-compact representation gives us the largest storage savings. Numerical

testing, in the case of larger discriminants, supports this conclusion and we have observed

a fairly consistent storage savings of around 37%.

As a concluding remark, we reiterate a statement made in the introduction to this

work: these concepts can be used in other settings. They can be extended higher-degree

number fields which have unit rank one, in particular complex cubic and totally complex

quartic fields. Furthermore, we can translate these results to algebraic function fields;

that is, finite algebraic extensions K of Fq(t ), the quotient field of the polynomial ring

Fq[t] where q is a prime power and Fq is a finite field. These fields share many similar

properties and often problems posed in a number field setting have an analogous problem

in a function field setting. It has been shown that compact representations exist for real

quadratic congruence fields [74], work which has since been generalized to function fields

of arbitrary degree [30].
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6.2. FUTURE DIRECTIONS: IMPROVING OUR 64-BIT IMPLEMENTATION OF THE

O(∆1/6+ε) ALGORITHM AND REFINING THE OPTIMAL PARAMETER
FORMULAS

The numerical testing results presented in Chapter 4 show that a 32-bit hash is probably

insufficient for our modified O(∆1/6+ε) ideal hashing algorithm to achieve its maximum

efficiency for larger discriminants. The excessive random hash collision rate in our single-

processor tests, coupled with the large values determined for the parameter l , more than

eliminate any run-time gains we achieved for smaller discriminants. In fact, in this situa-

tion, the unmodified O(∆1/6+ε) algorithm is superior.

As we mentioned in Chapter 4, we transferred our implementation from the ISPIA

cluster at the University of Calgary to the Nestor cluster at the University of Victoria,

made available to us via WestGrid. While our parallelized implementation now runs on

this machine, there is a significant amount of further tuning and base-line calculations

that need to be performed before we can show how far our modified algorithm can be

pushed. We observed 4.6% improvement in overall run-time as compared to the previous

O(∆1/6+ε) algorithm, and further investigation will show more clearly how the efficiency

gains of our modified algorithm scale to higher discriminants.

One of the largest hurdles we faced in generating the results in Chapter 4—and the

64-bit results we were unable to generate—was determining optimal values for the param-

eters used by the O(∆1/6+ε) algorithm. As we have seen, a lot of work has been done

in this area, but we would like to take this further. The optimization formulas given

in Section 4.3.2 get us fairly close to the optimal values for s , Q, K and l , but manual

refinements are unfortunately still needed. Ultimately, these refinements need to be in-

corporated back into the optimization formulas.

One other key area we would like to investigate is whether some of the assumptions
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made when deriving the various optimizing formulas need to be changed. For instance,

we currently assume that if there is enough memory, we should take l = 1 and store a

complete copy of the baby-step list. However, some of our numerical tests show that, in

fact, we can get a faster run-time by taking l > 1, even when we have the space to store L′

or L′′ in its entirety. Figure 6.1 shows one such result for a 40-digit discriminant. In this

case, we have the memory space for a complete list, but we can achieve an approximately

15% improvement in run-time by forcing l = 10.
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Figure 6.1: Observed run-time improvement when forcing the storage of a partial
baby-step list.

6.3. FUTURE DIRECTIONS: PARALLELIZING THE STORAGE OF L

In his thesis, de Haan remarked:

Because the baby steps need to be stored and then later on accessed during the
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giant steps this means that each process has to either compute its own baby step

list or that the processes have to send the part of the baby step list they computed

and to receive the rest. Communicating parts of the baby step list is expected to

be slower than having the processes compute their own list, which is why we have

decided to use the latter method. [21, §6.4.1, pp. 84–5]

However, we feel that we have come up with two methods to distribute the baby-step list

L that may have an acceptable level of internode communication overhead.

In the current parallelized algorithm, the giant-step phase is distributed by assigning

each node a contiguous range of roughly (Q − 1)/n giant steps to compute. What if we

tried to distribute L in a similar fashion? We could try assigning each node a range of (s+

b )/n baby steps, starting at the ideal astart =AX[i(s+b )/n] and ending at aend =AX[(i+

1)(s + b )/n − 1]. However, we need to keep in mind that in order to simultaneously

distribute the giant-step phase, we must ensure that each giant step b j is compared against,

in essence, the entire listL. As stated above, each node would only compare its set of giant

steps against its set of baby steps; there are “gaps” in the comparison. Instead, we need

to assign the same baby-step and giant-step ranges to multiple nodes rather than assigning

each unique ranges. If mn computational nodes are available to us, we can assign the

first range of baby-steps to nodes 1,2, . . . , n, the second to n+ 1, n+ 2, . . . , 2n, and so on.

Similarly, the first range of giant steps are assigned to nodes 1, n+1, . . . , (mn−1)+1, the

second to 2, n + 2, . . . , (mn − 1) + 2, and so on. See Figure 6.2 for an illustration of this

assignment process. By careful selection of the start and end ideals, we can guarantee that

each giant step will be compared against the entire baby-step list as required.

Unfortunately, there is a serious drawback to this process. Let node b n + g , where

1≤ b ≤ m and 1≤ g ≤ n, be the node storing the b th portion of L′′ and computing the
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Figure 6.2: Parallelizing both the baby-step and giant-step phases. The horizontal (red)
blocks represent nodes sharing a common portion of the (partial or hashed) baby-step
list, while the vertical blocks (blue) represent nodes sharing a common portion of the
giant-step list.
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g th set of giant steps. For a fixed value of b , the nodes {b n+1, b n+2, b n+3, . . .} comprise

the b th baby-step group; for a fixed value of g , the nodes {g , n+ g , 2n+ g , . . .} comprise

the g th giant-step group. If node b ′n + g ′ finds a giant step b j such that H (b j ) ∈ L′′,

it is not immediately clear which group of nodes will be storing H (ρl (b j )). This node

would have to “ask”—using a pair of MPI_Comm_bcast(...) and MPI_Comm_recv(...)

function calls—each node in the g ′th giant-step group whether or not they are storing

the value H (ρl (b j )). Given a low random collision rate, this may not be too expensive

of a communication overhead. But, if the collision rate rises, it may quickly become

prohibitively expensive.

For the second method of distributing the baby-step ideals across multiple nodes, we

exploit the hashing modification introduced in Chapter 4. With negligible overhead, we

can distribute ∆ and a few key parameters—an approximation of the regulator, s , and

Q—to each of the cluster nodes and have each begin generating L. However, rather than

store the entire list, we do the following. For each ideal ai ∈ L, the nodes compute

H (ai ) and rather than immediately storing this hash, they examine its low-order bits and

compare them against their own MPI node id. By node id, we mean the integer returned

by the MPI_Comm_rank(...) function call. If the bits match, then that particular node

stores H (ai ) in its baby-step hash list L′′node id while the rest discard it. If the values H (ai )

are uniformly distributed, we should have a uniform distribution of L′′ across the cluster

nodes. Moreover, since the MPI node id values are guaranteed to be unique, we have

L′′ =L′′1 ∪L
′′
2 ∪ · · · ∪L

′′
cluster size where L′′i ∩L

′′
j =∅ if i 6= j .

If we restrict the number of nodes n used by our implementation to a power of two, we

can truncate H (ai ) to an exact bit-length for comparison to the MPI node id using a fast
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bitwise-AND operation. It is important to note that each node is still computing a full

baby-step list, even though they only store 1/nth of them. Because of this, it is not clear if

this idea for generating and storing L′′ will lead to a computational improvement. It will

certainly be slower than computing only 1/nth of L as in the previous method, but faster

than storing a complete list. As most of the computed H (ai ) values are discarded, we will

incur a much smaller memory-latency penalty in storing that 1/nth portion in RAM.

Once the baby-step list is generated, the giant steps are assigned in contiguous ranges

of (Q − 1)/n steps and computed as before. If node a finds a giant step b j such that

H (b j ) ∈ L′′a , we are in a better position than in the previous method. Upon computing

H (ρl (b j )), the node immediately knows on which node that hash value is stored, if it is

stored at all. Node a can directly ask node, say, b if it is storing the value H (ρl (b j )) or

not via a pair of MPI_Comm_send(...) and MPI_Comm_recv(...) function calls. This

will greatly reduce the chances of node intercommunication conflicts and may result in a

tolerable communication overhead even in the face of a moderate random hash collision

rate.

In a computing environment where each node has multiple processors or cores, we

can improve this method slightly further. After each node has finished generating its por-

tion of L′′, it can spawn two one-way communication threads: one for sending messages,

the other for receiving. While the main process is computing giant steps on one processor

or core, the sending and receiving threads will generally be idle. If H (b j ) ∈ L′′a is found

on node a, the main process signals the sending thread to contact the node b which is

potentially storing H (ρl (b j )). The receiving thread on node b gets this query, performs

the lookup, and signals its sending thread to reply “yes” or “no.” The receiving thread

on node a gets this response and passes it to the main process, which can then determine



195

how to proceed. The advantage to this setup is that the main process on node b will keep

computing giant steps and not be interrupted by the communication and lookup activity

generated by the request from node a. Furthermore, if the main process on node b is

waiting for a reply to its own query, the receiving and sending threads can handle the

query from node a without any additional delay.

We end this section by repeating an earlier comment. Although both of these meth-

ods will allow the baby steps and giant steps to be parallelized, it is hard to say if a compu-

tational improvement will be seen. It is not clear what the best distribution of nodes into

baby-step and giant-step groups will be. Roughly an even number of each? Significantly

more giant-step groups than baby-step groups, since the giant steps are more computa-

tionally intensive? It is also unclear to which extent the duplication of computations will

slow down the algorithm. On the bright side, either method should more effectively

maximize the memory storage available and, thus, help keep the optimizing parameter l

smaller. In this way, we should be able to better maintain the balance between the three

phases of the O(∆1/6+ε) algorithm and, hopefully, better minimize its run-time.

6.4. FUTURE DIRECTIONS: ALTERNATIVE TYPES OF COMPACT
REPRESENTATIONS

There are other types of number representations we did not investigate which may lead

to further memory savings for compact representations. For example, we could consider

using a non-adjacent form (NAF ) representation. The NAF representation of the integer

x, introduced by George Reitwiesner [71], is a signed base-2 representation such that for

any two consecutive digits bi and bi+1, we have bi bi+1 = 0 [36, p. 98]. That is, any two

non-zero values in the representation are separated by a zero. These representations have

some important properties: namely, they are unique, have minimal Hamming weight,
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and the average density of non-zero digits among all NAFs of a given length is approx-

imately 1/3 [36, Thm. 3.29]. As a comparison for this last point, we mention that the

average density of non-zero digits in the standard binary representation is approximately

1/2. While this reduction in the non-zero digits of the representation would be benefi-

cial to reducing the memory requirements of a compact representation, there is a more

critical property to keep in mind. The length of a NAF representation of an integer is at

most one more than the length of its binary representation [36, Thm. 3.29].

The idea of a NAF representation has been generalized to a width-w NAF (wNAF),

by using the following two conditions:

1. there is at most one non-zero digit amongst any w consecutive digits in the repre-

sentation and

2. each non-zero digit appearing in the representation is odd and less than 2w−1 in

absolute value.

The NAF representation described in the previous paragraph is a wNAF representation

with w = 2. The obvious benefit to this generalized representation is to further reduce

the number of non-zero digits that appear: the average density of non-zero digits is 1/(w+

1). In terms of an overall length, however, the wNAF representation of an integer is again

at most one more than the length of its binary representation. Our intuition is that, on

average, the extra storage needed for an additional µi term will outweigh any savings

obtained by not storing even several of the νi terms, particularly when combined with

the higher-base compact representations.

Another example is the double-base representation of the integer x, given by

x =
∑

i , j

bi , j 2
i 3 j ,
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where bi , j ∈ {0,1}. It is important to note that, for any given integer x, we can have

multiple equivalent representations. Even restricting ourselves to canonic double-base rep-

resentations, those using the minimum number of 2i 3 j terms, we can be left with multiple

choices. For instance, if x = 127 there are 783 representations and 3 canonic representa-

tions:

127= 2233+ 2132+ 2030 = 2233+ 2430+ 2031 = 2531+ 2033+ 2230 [40] .

These representations only require O(log n/ log log n) digits to store and near-canonic

representations can be computed via a number of methods [2, 24, 25, 27]. The advantage

to this representation over a standard binary or ternary representation is that we require

fewer terms.

It could be quite beneficial if this numeric representation could be applied to create

a double-base compact representation. First, by reducing the overall number of terms of

the representation, we would reduce the overall storage requirements, just as we did in

Chapter 5 by moving from a compact to a 3-compact to a 4-compact representation. Fur-

thermore, by restricting ourselves to the bases 2 and 3, we have the potential of avoiding

the per-term expansion we encountered due to the increasing bound on H (λi ).

In order to actually use the representation above to compute a compact representa-

tion, we require the concept of a chain. A double-base chain for an integer x is an expan-

sion of the form

x =
m
∑

i=1

bi 2
ai 3bi ,

where bi = ±1 and such that a1 ≥ a2 ≥ · · · ≥ am and b1 ≥ b2 ≥ · · · ≥ bm. Vassil Dim-

itrov, Laurent Imbert, and Pradeep Mishra [24] presented an efficient elliptic curve point
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multiplication algorithm using double-base chains, which could be adapted to compute a

compact representation. The outline of such an algorithm would resemble that of Algo-

rithm 6.1 below, which is based on CRAX for simplicity’s sake. Of course, in addition

to storing the λi and Li values of the compact representation, we must also store one

additional bit per term to specify whether it must be squared or cubed.

Algorithm 6.1: Double-base CRAX

Input: x, p, where x ∈Z+.
Output: (a[x], d , k), an x-near ( f , p) representation of a= (1) and a set of integer pairs
(mi , ni ) and integers Li ∈Z+, i = 0,1,2, . . . , l , where l = blog2 xc.

1: Compute a double-base chain representation of x with

x =
l
∑

i=0

ci 2
al−i 3bl−i , c0 = 1, ci =±1 (1≤ i ≤ l ) .

2: Put

Q = r, P = r

$

b
p

Dc− r + 1

r

%

+ r − 1, b=



1,
P +
p

D

r



 ,

d = 2p + 1, k = 0, i = j = 0, s0 = 1, L0 = 1, a−1 = 0, b−1 = 0.
3: Put ((b0, d0, k0), m0, n0) = EWNEAR((b, d , k), 1, p).
4: while i < l do

5: Set a = al−i − al−(i−1), b = bl−i − bl−(i−1).
6: while a ≥ 0 do

7: Put L j+1 =N (b j ) and

((b j+1, d j+1, k j+1), m j+1, n j+1)
= EADDXY((b j , d j , k j ), (b j , d j , k j ), s j , s j , p) .

8: Put s j+1 = 2s j .
9: Set j ← j + 1, a← a− 1.

10: end while
11: while b ≥ 0 do

12: Put L j+1 =N (b j ) and

((b j+1, d j+1, k j+1), m j+1, n j+1) = ETRIPLEX((b j , d j , k j ), s j , p) .
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13: Put s j+1 = 3s j .
14: Set j ← j + 1, b ← b − 1.

15: end while
16: Put s j+1← s j+1+ c j+1, N =N (b j+1), and

((b j+1, d j+1, k j+1), m′, n′)← EWNEAR((b j+1, d j+1, k j+1), s j+1, p) .

17: Put (m j+1, n j+1) = IMULT(m j+1, n j+1, m′, n′,N ).
18: i ← i + 1, j ← j + 1.

19: end while
20: Put a[x] = b j , d = d j , k = k j .

As an example, we use Algorithm 6.1 to compute the compact representation of the

generator of AX[1717]. We point out that this example is based on the elliptic curve

point multiplication example given in [40, §II, pp. 1–2]. Following the s j values in the

algorithm above, we see it computes

s0← 1 s4 = 2s3 = 16 s7 = 2s6 = 286

s1 = 2s0 = 2 s5 = 3s4 = 48 s8 = 2s7 = 572

s2 = 2s1 = 4 s6 = 3s5 = 144 s9 = 3s8 = 1716

s3 = 2s2 = 8 s6← s6− 1= 143 s9← s9+ 1= 1717

as desired. At the end of Algorithm 6.1, we have the tuples {λi , (mi , ni )} for i = 0,1, . . . , 9.

Expressing these as a product, we have γ equal to the product

λ9

L2
9

 

λ8

L3
8

!3 
λ7

L2
7

!6 
λ6

L2
6

!12 
λ5

L3
5

!36 
λ4

L3
4

!108 
λ3

L2
3

!216 
λ2

L2
2

!432 
λ1

L2
1

!864 
λ0

L2
0

!1728

,

where, of course, AX[1717] = (γ ). We can simplify this statement by observing that

the exponents are actually the coefficients resulting from a staircase walk for the double-
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base chain 1717 = 2633 − 2231 + 2030. If we visualize the double-base chain terms on a

2x2 grid, a staircase walk is simply the path traced out by moving from the bottom-right

corner to the top-left [40]. This concept is illustrated in Figure 6.3. In general, using the

coefficients from a staircase walk to simplify a product like the one given above results in

the formal product

γ =
l
∏

i=0

 

λi

Lei
i

!2 fi 3gi

where el = 2, ei = (2
fi 3gi )/(2 fi+13gi+1), and 2 fi 3gi is the i th staircase walk coefficient for the

double-base chain representation of x (i = 0,1, . . . , l −1). It would be quite interesting to

see what storage savings could be realized by such a double-base compact representation.

33

32

31

30

20 21 22 23 24 25 26

1

-1

1

Figure 6.3: A staircase walk for the double-base chain 1717= 2633− 2231+ 2030.
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A— APPENDIX A —
IMPLEMENTATION

There’s nothing more permanent than a temporary fix.

A.1. DEVELOPMENT

�
HE VARIOUS ALGORITHMS LISTED and cited in this thesis have been

implemented in a two-part process. The algorithms were initially im-

plemented in Maple and later in C using GMP, the GNU Multiple

Precision Arithmetic Library [32], and MPI, the Message Passing In-

terface [64]. MAPLE was chosen for the initial prototype as in the past, I have found that

it hides a number of the annoying, but necessary, complexities of programming like mem-

ory management, data structure implementation, and data conversion and other such

routines. Moreover, since its syntax is based on Pascal, it is relatively straight-forward to

translate into lower-level languages such as C and C++.

The C implementation was developed using the Eclipse software development kit

[80] and the Eclipse CDT plug-in [79] in conjunction with Valgrind [81], a debugging

and profiling tool suite that can not only automatically detect many memory manage-

ment and threading bugs, but also perform very detailed profiling to help find execution

bottlenecks.

The actual development machine varied over the course of this thesis, from a server

with 2 dual-core AMD Opteron 2214 processors and 6 GB of RAM, to a desktop machine
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with a single-core Intel Pentium 4 2.40GHz processor and 1 GB of RAM, and then to the

Institute for Security, Privacy and Information Assurance’s (ISPIA) cluster with 152 IBM

HS20 Blades each configured with a dual-core Intel Pentium 4 Xeon processor and 2 GB

of RAM. All of the timing results presented in this thesis were generated from programs

run on the ISPIA cluster. As mentioned in Chapters 4 and 6, we have recently added

WestGrid’s NESTOR cluster to this list. This capability cluster, hosted by the Research

Computing Facility of the University of Victoria, has 288 IBM iDataplex nodes, each

configured with two Intel Xeon x5550 quad-core processors and 24 GB of RAM.

A.2. SOURCE CODE

A.2.1. Licensing. The source code files for the C implementation are available from

the author via email: aksilves@math.ucalgary.ca or aksilvester@gmail.com. The

library and testing suite is distributed under the following ISC-style license.

Library license:
Copyright (c) 2010, Alan Silvester <aksilvester@gmail.com>

Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The MD5 routines used in the library have been placed in the public domain:

MD5 library license:
An implementation of the MD5 message-digest algorithm.

This file is placed in the public domain.

The code in this file is based on md5deep (http://md5deep.sf.net),
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a cross-platform set of programs to compute various message digests.

md5deep was written by Special Agent Jesse Kornblum, United States Air
Force Office of Special Investigations. As such, it is a work of the
US Government. In accordance with 17 USC 105, copyright protection is
not available for any work of the US Government.

The SQLite interface and code used in the library have also been placed in the public

domain:

SQLite license:
All of the deliverable code in SQLite has been dedicated to the public domain
by the authors. All code authors, and representatives of the companies they
work for, have signed affidavits dedicating their contributions to the public
domain and originals of those signed affidavits are stored in a firesafe at
the main offices of Hwaci. Anyone is free to copy, modify, publish, use,
compile, sell, or distribute the original SQLite code, either in source code
form or as a compiled binary, for any purpose, commercial or non-commercial,
and by any means.

The O(∆1/6+ε) algorithm requires a routine that will solve an instance of the infrastruc-

ture discrete logarithm problem. Our implementation uses a portion of the program

written by Jean-François Biasse for [6, 7] that uses an (as of yet) unreleased integer factor-

ization library by Jérôme Milan [65]. However, as both authors have requested that I not

distribute the code, those routines are not available in our library and the relevant func-

tions have been replaced with stubs. Anyone wishing to compile and use this library will

have to either implement an infrastructure DLP solver by themselves or contact Biasse

and Milan.

In the remainder of this section, rather than list the full source code, we will briefly

discuss the structure of the library and some of the more interesting functions.

A.2.2. Pooling integers. Before using a GMP integer, an mpz_t, it must be initialized

by passing it as a parameter to the function mpz_init. Once you are finished with it,
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you should call mpz_clear to release any memory that may have been allocated while

using the mpz_t. Unfortunately, repeatedly initializing and clearing GMP variables can

be very computationally expensive. Many of the algorithms presented in this thesis, as

well as those cited from other sources, use several temporary variables. To reduce the

computational overhead associated with these, we have implemented an mpz_t pool data

type, mpz_pool_t, and supporting functions. The library mpz-pool.h implements the

pool using two singly-linked lists with linear searching. The linked lists are actually used

as stacks, named free and used, and a linear search is only used to remove nodes from

used. The other addition and removal operations are implemented as pops and pushes.

By being careful in how temporary variables are acquired and released in each function,

the linear search will degrade nicely into a pop operation with only one extra pointer

comparison as overhead. Any number of pools may be defined and used in a program,

but there is always a global pool, aptly named pool, available for use. I exclusively use

this pool in my program’s implementation.

Rudimentary statistics are maintained by each pool and can be printed out using the

mpz_pool_stats function. Currently, four counters are used to track the number of

integers in the pool, the number of new integers that have been created since the pool

was initialized (using mpz_pool_init), the number of times an integer has been removed

from the pool, and the number of times one has been returned. In order, these counters

are nodes, allocs, borrows, and returns. Although it has not been done, it should be

possible to implement a basic garbage collector using these statistics in addition to the

mpz_pool_clear_free function, if the memory usage of this pool becomes an issue.
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A.2.3. Debugging. As mentioned in the Development section at the start of this chap-

ter, Valgrind was heavily used to hunt down memory management and threading bugs.

To aid the end-user, should they not wish to use Valgrind, there is also a great deal of

debugging code in the library. The various commands are (normally) defined as blank

macros, so there is no overhead incurred to have these statements in the code; your C

compiler will optimize them away.

If you would like to enable the debugging routines, simply remove the first number

sign from the following line

DEBUG := #-DDEBUG # Uncomment to enable debugging output

in the top-level Makefile and rebuild the library.

Before using any of the debugging functions, a call to DEBUG_INIT must be made.

There are five levels of debugging output available: trace, info, warning, error, and fatal.

By default, all five levels will send their output to stderr. You can redirect these by

using the DEBUG_SET_* commands. Debugging output for the the trace, info, warning,

and error levels can also be temporarily disabled with the DEBUG_DISABLE_* commands;

they can be re-enabled with a call to the appropriate DEBUG_ENABLE_* command. To

output a debugging message, simply add a call to the appropriate DEBUG_* command.

You should be aware, though, the DEBUG_FATAL command will not return; after printing

its message, it calls exit(1) and terminates the program. If you would like to return a

different return code, you may use the DEBUG_FATAL_RC command.

DEBUG_TRACE_IN and DEBUG_TRACE_OUT are two specialized tracing commands. If

these commands are called, they output a message similar to the DEBUG_TRACE command,

however they then indent (or unindent) all following messages from any of the DEBUG_*
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commands.

A.2.4. Checkpointing. A major concern with any high-availability computers is the

unexpected loss of work. Looking at the timing data in [21, 22], some of the calculations

can take days, if not weeks or months. How can we protect ourselves against acciden-

tal job cancellation, hardware failures, unexpected power outages, or even something as

esoteric as stray cosmic rays flipping bits in RAM? The simple answer is to use process

checkpointing to save the state of our program at a regular interval. If a problem oc-

curs, we can roll-back to the most recent checkpoint and continue as though nothing

happened. Instead of losing weeks of computations, perhaps we only loose an hour or

so. However, it is one thing to say that we will save checkpoints. It is another matter

entirely to actually come up with a method that works, does not add much overhead to

our computations, and is quick at restoring our program’s state after an interruption.

The simplest method of checkpointing a process is to halt it, take a complete snapshot

of everything stored in memory, store the memory image to a file, and resume the pro-

cess. For a one-time checkpoint, this method can work rather well. For repeated check-

points, however, we run into issues. When working with a program processing large

amounts of data, this method can use a lot of disk space. We could refine our checkpoint-

ing process to have a function that, when called, writes out certain pieces of memory to

a file, but avoids saving temporary variables and data it does not need to keep. However,

this means we must be very careful in how we write out the data, how we import it back

in, and how we determine which variables need saving. Once we have this done, we still

have to devise a method to resume our program at the point where the checkpoint left

off. This can be quite a lot of work to figure out.
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One of the more popular types of checkpointing programs are so called transparent

checkpointing programs. Rather than coming up with routines like those described pre-

viously and deciding when and how to use them, you can link your program against a

special library and have virtually everything handled automagically. Generally these li-

braries handle checkpointing more than just the memory a program is using. Most can

save and restore file descriptors that your program may be reading from or writing to;

network sockets, including any unprocessed data in buffers; shared libraries that your

program has loaded while running; child processes, and all the memory, file descriptors,

network sockets, and more that they are using. Moreover, usually you can specify what

things not to save, like temporary variables. Some more modern checkpointing programs

can be used without even altering the source code of your program. You can simply load

your program with the checkpointing program and it runs as normal, but with regular

automatic snapshots taken. These work well even with distributed programs using MPI-

style libraries. The checkpointing program used for my implementation, once it was

placed on the ISPIA cluster, was DISTRIBUTED MULTITHREADED CHECKPOINTING

(DMTCP).

A.3. DEPENDENCIES

This library has some substantial dependencies which are discussed in this section.

The Debugger code is a standalone program that only depends on some standard C

headers (stdio, stdlib, and string). There are only two portability issues that may

arise:

1. A number of routines rely on the __FUNCTION__ pre-processor macro and

2. A write-only filehandle is opened for /dev/null (debugger.c, lines 87 and 106).

The HashTable implementation depends on Debugger as well as some standard headers
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(stdlib, string, math, and inttypes).

At a number of places in the library, we have used functions provided by the GNU C

Library, GLIBC, that are GNU extensions to either the C90/C99 or POSIX standards.

Accordingly, the library is set to compile with the flag -D_GNU_SOURCE. The GNU exten-

sions used are described in Subsection A.3.2, as well as rough work-arounds if you wish

to compile the library with a compiler other than GCC.

As mentioned at the start of this appendix, the library depends heavily on both GMP

and MPI. Unfortunately, the most recent versions of these libraries (at the time of this

writing) are missing a few key functions needed for the algorithms presented or referred

to in this thesis. These are described in Subsection A.3.3.

In order to execute the O(∆1/6+ε) algorithm efficiently, we first need to calculate a

number of parameters that allow us to find the optimal balance between the running

times of the various pieces of the algorithm. However, as these parameters depend on the

discriminant of the field we are working in, we must recalculate them when the discrim-

inant changes. Subsection A.3.4 describes how we can automate this process.

A.3.1. LINUX timing extension to the POSIX standard. A formerly excellent high-

resolution, low-latency method of getting CPU timing information was the Time Stamp

Counter (TSC). Introduced with the INTEL Pentium processor, and present on all x86-

compatible processors since then, the TSC is a 64-bit register that counts the number

of processor ticks since it was reset. Unfortunately, with the advent of computers with

multiple CPUs and multi-core / hyperthreaded CPUs, the TSC can no longer be relied

on to provide an accurate timestamp. Since the introduction of the Pentium Pro, INTEL

processors have supported out-of-order execution, where the instructions in a program
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are not necessarily executed in the order they appear. This can cause a read of the TSC to

be executed earlier or later than expected, producing a misleading result.

On a system with multiple CPUs or with a multi-core processor, a program may mi-

grate from one CPU or core to another during its execution. However, the TSCs on each

CPU or core are not necessarily synchronized which can lead to inaccurate timing. Even

if a process is locked to a single CPU or core, power-saving measures by the operating

system (such as CPU-frequency scaling) may alter the speed of the CPU or core, thereby

making the TSC tick at a non-constant rate.

On newer INTEL CPUs, a constant-rate TSC has been included that runs at the max-

imum frequency of the CPU, regardless of its current frequency. On LINUX-based sys-

tems, this can be determined by the constant_tsc flag in /proc/cpuinfo. However,

even on these systems, using the TSC for timing may skew the results as a computation

may have some “spin-up” time where the OS keeps the CPU at a lower frequency before

switching to a higher one. This has the effect of making computations seem like they

require more processor cycles than they actually do.

Because of these issues, direct use of the TSC is discouraged. On LINUX-based sys-

tems, the operating system1 can detect whether the TSC is reliable, detect alternatives

like a high precision event timer (HPET) or advanced configuration and power interface

(ACPI) timer, and automatically select the best one.

The POSIX-standard gettimeofday function is one common way of getting the cur-

rent time from a LINUX operating system. This function returns the current time ex-

pressed as the number of seconds and microseconds elapsed since the UNIX Epoch.2 But

as of Issue 7 of the POSIX-standard [39], gettimeofday has been deprecated and applica-

1Since kernel version 2.6.18, that is.
2January 1, 1970, at 00:00:00 UTC.
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tions are encouraged to use its replacement clock_gettime. According to the standard:

All implementations shall support a clock_id of CLOCK_REALTIME as defined

in <time.h>. This clock represents the real-time clock for the system. For this

clock, the values returned by clock_gettime() and specified by clock_settime()

represent the amount of time (in seconds and nanoseconds) since the Epoch. An

implementation may also support additional clocks. The interpretation of time

values for these clocks is unspecified. [39]

The clock_gettime function, like gettimeofday, returns the current time elapsed since

the UNIX Epoch. However, the time returned by clock_gettime is measured in seconds

and nanoseconds. Moreover, in a multiple CPU or multi-core system, the time returned

by clock_gettime(CLOCK_REALTIME, ...) will be consistent across all processors and

cores.

However, gettimeofday and clock_gettime have their own problems. Both func-

tions are affected by any adjustments made to the system clock, such as those made by

settime, settimeofday, adjtimex, clock_settime(CLOCK_REALTIME, ...). This is

an issue not because a user may change the system time during the execution of our pro-

gram, but because a large portion of modern computers keep their system clocks synchro-

nized to an external time source via mechanisms like the Network Time Protocol (NTP).

On LINUX-based systems, the usual program doing this work is the Network Time Pro-

tocol Daemon ntpd. ntpd works by occasionally getting the current time from a remote,

highly-accurate timeserver (usually attached to an atomic clock or a fixed-location GPS

receiver) and calculating the difference between the local and remote current times, cor-

recting for any latency involved in the communication. Once ntpd knows how far off

the local clock is, it will either jump the clock forward or backwards suddenly, if the lo-
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cal time is off by a large amount (> 0.5 seconds), or will begin slowly slewing the local

clock, by altering its frequency to make it run slightly faster or slightly slower, until it

matches up with the time from the remote timeserver. Obviously, this will effect any

timing we attempt to do with gettimeofday or clock_gettime and unfortunately, both

my development machine and the ISPIA cluster have ntpd running.

Thankfully, though, GCC supports an additional (and optional) clock that is guaran-

teed to not jump forwards or backwards: CLOCK_MONOTONIC. From the POSIX standard:

This clock represents the monotonic clock for the system. For this clock, the

value returned by clock_gettime() represents the amount of time (in seconds and

nanoseconds) since an unspecified point in the past (for example, system start-up

time, or the Epoch). This point does not change after system start-up time. The

value of the CLOCK_MONOTONIC clock cannot be set via clock_settime().

[39]

However, although CLOCK_MONOTONIC is not effected by ntpd’s sudden time jumps, it is

still susceptible to its clock-slewing frequency adjustments. Because of this, LINUX-based

operating systems3 provide an additional clock: CLOCK_MONOTONIC_RAW. This clock is

guaranteed to have a constant frequency. If it is available, my library will attempt to use

CLOCK_MONOTONIC_RAW and will fall-back to CLOCK_MONOTONIC and then, as a last-resort

CLOCK_REALTIME.

A.3.2. GNU extensions to the C90, C99 and POSIX standards. Most of the GNU-

extension functions used in the library are string-processing and timing functions. In

mpz_qf_regulator_dehaan, when calling MAPLE via execl (see Subsection A.3.4 for

why we do this), the arguments are specified as C-strings. We use the GNU extension
3Since kernel version 2.6.28.
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asprintf to automatically allocate the storage needed for strings representing three of

the arguments. This can be worked around by using the C99 function snprintf. The

C90 function sprintf should not be used due to buffer-overflow concerns.

Library code:
if (UNLIKELY(asprintf(&strN, "%l", N)) < 0)
{

DEBUG_ERROR("Unable to allocate memory calling to Maple script");
return 0;

}

C99-compliant code:
int len = snprintf(strN, 0, "%ld", N);
strN = (char*) malloc((len+1)*sizeof(char));
if (UNLIKELY(strN == NULL))
{

DEBUG_ERROR("Unable to allocate memory calling to Maple script");
return 0;

}
snprintf(strN, len+1, "%ld", N);

Also in the same function, we use the GNU extension strndup to make a copy

of a portion of a string. This can be worked around by again using the C99 function

snprintf.

Library code:
lhs = strndup(str, exp);
if (UNLIKELY(lhs == NULL))
{

DEBUG_ERROR("Unable to allocate memory calling to Maple script");
return 0;

}
rhs = strndup(str+exp, strlen(str)-exp);
if (UNLIKELY(rhs == NULL))
{

DEBUG_ERROR("Unable to allocate memory calling to Maple script");
return 0;

}

C99-compliant code:
int len = snprintf(rhs, 0, "%s", str+exp);
rhs = (char*) malloc((strlen(str)-exp+1)*sizeof(char));
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if (UNLIKELY(rhs == NULL))
{

DEBUG_ERROR("Unable to allocate memory calling to Maple script");
return 0;

}
snprintf(rhs, strlen(str)-exp+1, "%s", str+exp);
str[exp] = ’\0’;
len = snprintf(lhs, 0, "%s", str);
lhs = (char*) malloc((exp+1)*sizeof(char));
if (UNLIKELY(lhs == NULL))
{

DEBUG_ERROR("Unable to allocate memory calling to Maple script");
return 0;

}
snprintf(lhs, exp+1, "%s", str);

A.3.3. GMP: additional functions. In the second portion of the O(∆1/6+ε) regulator

verification algorithm, we need to trial divide by a range of potential prime divisors in

order to determine if c = 1. For efficiency reasons, we begin with the largest prime

q below the given bound M and work backwards until we reach q = 2. GMP has a

built-in function mpz_nextprime that returns the smallest prime4 greater than the input

integer. Unfortunately, GMP does not have a “previous prime” function; the following

is a patch to rectify this situation. It is derived from GMP’s mpz_nextprime function

and, accordingly, is hereby licensed under the GNU Lesser General Public License as

published by the Free Software Foundation, either version 3 of the License, or (at your

option) any later version.

Source code: libgmp3c2-mpz_prevprime.patch
1 --- gmp-4.3.1+dfsg/mpz/nextprime.c 2009-05-12 00:12:12.000000000 -0600
2 +++ gmp-4.3.1+dfsg/mpz/nextprime.c 2010-02-02 14:57:11.000000000 -0700
3 @@ -118,3 +118,95 @@
4 done:
5 TMP_SFREE;

4The function, as of version 4.3.1 of GMP, actually calculates the smallest odd integer greater than the
input and sieves this value over the primes less than 1010. If the number passes this test, GMP proceeds to
perform ten Miller-Rabin primality tests. If successful, the integer is returned.
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6 }
7 +
8 +void
9 +mpz_prevprime (mpz_ptr p, mpz_srcptr n)

10 +{
11 + unsigned short *moduli;
12 + unsigned long difference;
13 + int i;
14 + unsigned prime_limit;
15 + unsigned long prime;
16 + int cnt;
17 + mp_size_t pn;
18 + unsigned long nbits;
19 + unsigned incr;
20 + TMP_SDECL;
21 +
22 + /* First handle tiny numbers */
23 + if (mpz_cmp_ui (n, 5) < 0)
24 + {
25 + mpz_set_ui (p, 2);
26 + return;
27 + }
28 + mpz_sub_ui (p, n, 2);
29 + mpz_setbit (p, 0);
30 +
31 + if (mpz_cmp_ui(p, 9) == 0)
32 + {
33 + mpz_set_ui(p, 7);
34 + return;
35 + }
36 + if (mpz_cmp_ui (p, 11) <= 0)
37 + return;
38 +
39 + pn = SIZ(p);
40 + count_leading_zeros (cnt, PTR(p)[pn - 1]);
41 + nbits = pn * GMP_NUMB_BITS - (cnt - GMP_NAIL_BITS);
42 + if (nbits / 2 >= NUMBER_OF_PRIMES)
43 + prime_limit = NUMBER_OF_PRIMES - 1;
44 + else
45 + prime_limit = nbits / 2;
46 +
47 + TMP_SMARK;
48 +
49 + /* Compute residues modulo small odd primes */
50 + moduli = TMP_SALLOC_TYPE (prime_limit * sizeof moduli[0], unsigned short);
51 +
52 + for (;;)
53 + {
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54 + /* FIXME: Compute lazily? */
55 + prime = 3;
56 + for (i = 0; i < prime_limit; i++)
57 + {
58 + moduli[i] = mpz_fdiv_ui (p, prime);
59 + prime += primegap[i];
60 + }
61 +
62 +#define INCR_LIMIT 0x10000 /* deep science */
63 +
64 + for (difference = incr = 0; incr < INCR_LIMIT; difference += 2)
65 + {
66 + /* First check residues */
67 + prime = 3;
68 + for (i = 0; i < prime_limit; i++)
69 + {
70 + signed r;
71 + /* FIXME: Reduce moduli + incr and store back, to allow for
72 + division-free reductions. Alternatively, table primes[]’s
73 + inverses (mod 2^16). */
74 + r = (moduli[i] - incr);
75 + while (r < 0)
76 + r += prime;
77 + r %= prime;
78 + prime += primegap[i];
79 +
80 + if (r == 0)
81 + goto next;
82 + }
83 +
84 + mpz_sub_ui (p, p, difference);
85 + difference = 0;
86 +
87 + /* Miller-Rabin test */
88 + if (mpz_millerrabin (p, 10))
89 + goto done;
90 + next:;
91 + incr += 2;
92 + }
93 + mpz_sub_ui (p, p, difference);
94 + difference = 0;
95 + }
96 + done:
97 + TMP_SFREE;
98 +}
99 --- gmp-4.3.1+dfsg/gmp-h.in 2009-05-12 00:12:12.000000000 -0600

100 +++ gmp-4.3.1+dfsg/gmp-h.in 2010-02-02 14:57:18.000000000 -0700
101 @@ -999,6 +999,9 @@
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102 #define mpz_nextprime __gmpz_nextprime
103 __GMP_DECLSPEC void mpz_nextprime __GMP_PROTO ((mpz_ptr, mpz_srcptr));
104

105 +#define mpz_prevprime __gmpz_prevprime
106 +__GMP_DECLSPEC void mpz_prevprime __GMP_PROTO ((mpz_ptr, mpz_srcptr));
107 +
108 #define mpz_out_raw __gmpz_out_raw
109 #ifdef _GMP_H_HAVE_FILE
110 __GMP_DECLSPEC size_t mpz_out_raw __GMP_PROTO ((FILE *, mpz_srcptr));

Two common calculations we need to perform are determining t ≥ 0 such that 2t ≤

x < 2t+1 for a given integer x and, similarly, determining t ≥ 0 such that 2t y ≤ x < 2t+1y

for given integers x and y. To solve these inequalities, we have implemented two func-

tions: mpz_find_2exp_range and mpz_find_2exp_range_z, respectively. Additionally,

these functions take an input flag (the parameter “equality” in the following code) which

will cause them to compute x such that 2t < x ≤ 2t+1 or 2t y < x ≤ 2t+1y. Although these

functions are currently implemented in our library in utilities.c, they will eventually

be converted into a patch against GMP.

Source code: libgmp3c2-mpz_find_2exp_range.patch
1 unsigned int
2 mpz_find_2exp_range(mpz_ptr x, int equality)
3 {
4 if (mpz_sgn(x) == 0)
5 {
6 return 0;
7 }
8

9 mp_limb_t msb_x, t;
10

11 // Pointer to the most significant limb of x
12 mp_limb_t *hi = x->_mp_d + (x->_mp_size - 1);
13

14 /*
15 * Get the most significant bit index in the most
16 * significant limb of x.
17 */
18 asm("bsrl %1, %0" : "=r" (msb_x) : "r" (*hi));
19

20 // Use this to determine the most significant bit index
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21 t = msb_x + (x->_mp_size - 1) * sizeof(mp_limb_t) * 8;
22

23 /*
24 * Compute masks for most significant bit in this limb and
25 * see if any other bits are set. If none are (ie, limb == 0)
26 * then we need to check the lower significance limbs
27 * to see if x is a power of two.
28 */
29 mp_limb_t upper, lower;
30 switch (msb_x)
31 {
32 case 0:
33 upper = GMP_NUMB_MAX << 1;
34 lower = 0;
35 break;
36 case GMP_LIMB_BITS-1:
37 upper = 0;
38 lower = GMP_NUMB_MAX >> 1;
39 break;
40 default:
41 upper = GMP_NUMB_MAX << (msb_x + 1);
42 lower = GMP_NUMB_MAX >> (GMP_LIMB_BITS - msb_x);
43 break;
44 };
45

46 if ((x->_mp_d[x->_mp_size - 1] & (upper | lower)) == 0)
47 {
48 // x might be a power of two
49

50 // Are there lower limbs that we need to check?
51 if (x->_mp_size > 1)
52 {
53 do
54 {
55 if (*hi-- != 0)
56 {
57 // Found a non-zero limb, x not a power of two.
58 goto DONE;
59 }
60 }
61 while (hi > x->_mp_d);
62 }
63

64 /*
65 * x is a power of 2. Do we need 2^t < x or 2^t <= x?
66 */
67 if (equality > 0)
68 {
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69 // 2^t < x.
70 t--;
71 }
72 }
73

74 DONE:
75 return t;
76 }

Source code: libgmp3c2-mpz_find_2exp_range_z.patch
1 int
2 mpz_find_2exp_range_z(mpz_ptr x, mpz_ptr y, int equality)
3 {
4 if (mpz_sgn(x) == 0)
5 {
6 return 0;
7 }
8

9 mp_limb_t msb_x, msb_y, t;
10

11 // Pointers to the most significant limb of x and y
12 mp_limb_t *hi_x = x->_mp_d + (x->_mp_size - 1);
13 mp_limb_t *hi_y = y->_mp_d + (y->_mp_size - 1);
14

15 /*
16 * Get the most significant bit index in the most
17 * significant limbs of x and y.
18 */
19 asm("bsrl %1, %0" : "=r" (msb_x) : "r" (*hi_x));
20 asm("bsrl %1, %0" : "=r" (msb_y) : "r" (*hi_y));
21

22 // Use this to determine the most significant bit index
23 msb_x += (x->_mp_size - 1) * sizeof(mp_limb_t) * 8;
24 msb_y += (y->_mp_size - 1) * sizeof(mp_limb_t) * 8;
25

26 /*
27 * Temporarily left-shift y or x, depending on t.
28 * We also need to re-grab a pointer to MSL(y) (or
29 * MSL(x)) as it will change if mpz_mul_2exp()
30 * calls gmp_realloc().
31 */
32 t = msb_x - msb_y;
33 if (t >= 0)
34 {
35 mpz_mul_2exp(y, y, t);
36 hi_y = y->_mp_d + (y->_mp_size - 1);
37 }
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38 else
39 {
40 mpz_mul_2exp(x, x, t);
41 hi_x = x->_mp_d + (x->_mp_size - 1);
42 }
43

44 /*
45 * Compare the MSLs of x and y. If MSL(x) < MSL(y), we
46 * have 2^t * y < x < 2^(t+1) * y and are done. If MSL(x)
47 * > MSL(y), we need to set t <- t+1 to satisfy the above
48 * inequality. If MSL(x) = MSL(y), then we need to check
49 * the lower significance limbs as well.
50 */
51 if (*hi_x < *hi_y)
52 {
53 t--;
54 }
55 else if (*hi_x == *hi_y)
56 {
57 // Are there lower limbs that we need to check?
58 if (x->_mp_size > 1)
59 {
60 // Need to check the lower limbs
61 do
62 {
63 hi_x--;
64 hi_y--;
65

66 if (*hi_x < *hi_y)
67 {
68 // LIMB(x) < LIMB(y)
69 t--;
70 goto DONE;
71 }
72 else if (*hi_x > *hi_y)
73 {
74 goto DONE;
75 }
76

77 }
78 while (hi_x > x->_mp_d);
79 }
80

81 // x and y are equal. Check if this is allowed.
82 if (equality > 0)
83 {
84 // No, we want 2^t * y < x.
85 t--;
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86 }
87 }
88

89 DONE:
90 /*
91 * Undo the temporary left-shift of y (or x). Note, we cannot
92 * use t as its value may have changed.
93 */
94 if (msb_x - msb_y >= 0)
95 {
96 mpz_tdiv_q_2exp(y, y, msb_x - msb_y);
97 }
98 else
99 {

100 mpz_tdiv_q_2exp(x, x, msb_y - msb_x);
101 }
102

103 if (t < 0)
104 t = 0;
105

106 return t;
107 }

It may be possible to squeeze a bit more out of the mpz_find_2exp_range_z imple-

mentation by working limb-by-limb, making temporary copies as needed. We would

then avoid the mpz_mul_2exp call, though it remains to be seen if this will lead to a sig-

nificant improvement or not.

A.3.4. Optimizing the O(∆1/6+ε) parameters. How these global variables are set de-

pends on a couple of compile-time flags. To use the automated method described below,

the library must be compiled with the -DUSE_MAPLE flag. If it is unset, these parameters

will not be computed by the compute_delta16_parameters function. All of the func-

tions for the various O(∆1/6+ε) algorithms assume that these parameters have been set

before being calling. Not doing so will, most likely, result in your program crashing.

If MPI has also been enabled, via the -DUSE_MPI flag, the -DUSE_MAPLE flag will

split the global MPI group in two. The first group contains a number of dedicated
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MAPLE computing nodes, the second contains the computing nodes that will actu-

ally work on the O(∆1/6+ε) algorithm. This is done to allow load-balancing of the

available MAPLE computing nodes, as the number of worker nodes should far exceed

the number of MAPLE computing nodes. Respectively the two MPI groups are called

MPI_worker_group and MPI_maple_group. Two MPI intra-communicators are initial-

ized, MPI_COMM_MAPLE and MPI_COMM_WORKER, though the former is rarely used. An

MPI inter-communicator MPI_INTERCOMM_WORKER_MAPLE is also available and is used for

worker nodes to request that optimum parameters be computed on their behalf. The de-

tails of which communicator to use given which compile-time flags have been abstracted

behind a number of the functions available in the ISPIA-MPI library. Any extensions

to the library should use the cluster_* functions presented in ispia-mpi.h in order to

ensure compatibility with existing functions.

There are two parts to the automated process for calculating the optimum parameters

for the O(∆1/6+ε) algorithms. The first is a generic shell script that takes a filename

followed by any number of space-delineated strings as arguments. It then translates the

space-delimited strings into MAPLE’s array syntax, starts MAPLE, passes it the array,

and instructs it to open the script file specified by the filename in the first argument.

Source code: runmaple.sh
1 #!/bin/bash
2

3 theargs="\"$0\"";
4

5 for var in "$@"
6 do
7 theargs="$theargs,\"$var\""
8 done
9

10 /usr/local/maple9/bin/maple -q -s <<__EOM__
11 NARGS:=$#-1:
12 ARGS:=[$theargs][3..-1]:
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13 read("$1");
14 __EOM__

The second part is the MAPLE script that was mentioned in the previous paragraph.

This script turns off “pretty-printing” and uses the input variables in the ARGS array to

calculate the optimal parameters via the formulas described in Section 4.3.2. The four

integers s , Q, K , and l are then printed out, in that order.

Source code: optimize-d-16.maple
1 #!/usr/bin/env /usr/local/maple9/bin/maple
2

3 # Disable the pretty-printer
4 interface(prettyprint=0):
5

6 # Set up the optimization formulas
7 f:=BSTime + GSTime + FMTime;
8 BSTime:=((s + lambda)/(17/10) + 2)*(1 + h) / r;
9 GSTime:=(Q-r*n)*(mu + (l-1)*(1+h*nu))/(r*n);

10 FMTime:=1/(r*n*ln(2)) * (R/K) * ( (mu*log[2](R/s) + 2*(l-1)*(1+h*nu))
11 / (2*log[2](R/K)) );
12

13 # Set up optimum parameter relations
14 s:=sqrt(34)/2 * 1/(sqrt( 51*r^2*n*(1+h*nu) - 50*(1+h)*(N-r+1) ))
15 * sqrt(r*K*( 5*(N-r+1)*((1+h*nu)-mu) - 3*lambda*(1+h*nu) ));
16 Q:=K/(2*s);
17 l:=(6/10)*(s + lambda)/(N-(r-1));
18

19 # Set input variables from command-line arguments
20 # Note: R2 argument converted to base-2 as all index-calculus algorithms we have
21 # access to produce base-e regulator approximations. Change as needed.
22 Delta:=parse(ARGS[1]):
23 lambda:=ceil((1/2)*log[2](Delta)) + 1;
24 R2:=parse(ARGS[2])/ln(2):
25 mu:=parse(ARGS[3]):
26 h:=parse(ARGS[4]);
27 nu:=parse(ARGS[5]);
28 N:=parse(ARGS[6]):
29 n:=parse(ARGS[7]):
30 r:=parse(ARGS[8]):
31

32 # Explicit formula to optimize
33 #f;
34

35 # Convert formula to function.
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36 g:=unapply(f, K):
37

38 # Compute derivative f’ of formula to optimize.
39 gp:=unapply(diff(g(x),x),x):
40

41 # Increase precision of calculations.
42 Digits:=25;
43

44 # Numerically compute zero of derivative
45 initial_zero_approximation:=??;
46 fsolve(gp(10^x)=0, x=initial_zero_approximation);
47 newK:=10^(%);
48

49 # Print out the optimum parameters
50 ceil(subs(K=newK, s));
51 ceil(subs(K=newK, Q));
52 ceil(newK);
53 ceil(subs(K=newK, l));

To use the automated process, we calculate or estimate the input variables—µ, h, ν ,

N , n, and r —, redirect the standard input and output streams to a temporary pipe, use a

fork-and-exec block to run the runmaple.sh script, and print the input variables to the

pipe. After MAPLE has finished its computations, the output is then read back from

the pipe, parsed via some standard C string functions, and converted back into GMP

integers. The explicit execlp function call to open a connection to MAPLE is:

Running MAPLE from library:
execlp("runmaple.sh", "runmaple.sh", "optimize-d-16.maple", strDelta, strReg,

strmu, strh, strnu, strN, strn, strr, NULL);

Note, if MAPLE is not available on your particular computer or compute node, but

is available on a remote machine, this technique will work over an SSH connection pro-

vided that password-less logins are used.

A.4. TESTING

To aid in testing this implementation, the MAPLE program GENERATEPIC was created.

It explicitly computes the ideals in the principal ideal cycle, the relative generator θi
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for each ideal (where ai = (θi )a1), and an approximation of the distance of each ideal

(log2θi ). The program also, on input of a precision p, generates an ( f , p) representation

of each ideal by setting k = blog2θic and computing a range of acceptable d values. The

program outputs the data as a table using LATEX markup. To typeset the resulting file,

the geometry, xtab, amssymb and xcolor packages are required. Figure A.1 shows an

excerpt of the resulting document.

Principal ideal cycle for Q(
√

10000003)

i [Q,P ] θi θi approx. log2 θi d range k
1 [1, 0] 1 1 0 [15421, 17476] 0
2 [1759, 3162] 3162 +

√
10000003 6324.28 12.6267 [23810, 26983] 12

3 [3142, 2115] 9487 + 3
√

10000003 18973.8 14.2117 [17858, 20238] 14
4 [2847, 1027] 12649 + 4

√
10000003 25298.1 14.6267 [23810, 26984] 14

5 [2349, 1820] 22136 + 7
√

10000003 44271.9 15.4341 [20834, 23611] 15
6 [731, 2878] 56921 + 18

√
10000003 113842 16.7967 [26787, 30357] 16

7 [1613, 2970] 477504 + 151
√

10000003 955008 19.8652 [28089, 31833] 19
8 [4034, 1869] 1489433 + 471

√
10000003 2.97887e+06 21.5063 [21904, 24823] 21

9 [1317, 2165] 1966937 + 622
√

10000003 3.93387e+06 21.9075 [28926, 32782] 21
10 [282, 3103] 9357181 + 2959

√
10000003 1.87144e+07 24.1576 [17201, 19494] 24

11 [1361, 3101] 207824919 + 65720
√

10000003 4.15650e+08 28.6308 [23877, 27060] 28
12 [3314, 2343] 840656857 + 265839

√
10000003 1.68131e+09 30.6469 [24146, 27365] 30

13 [2733, 971] 1048481776 + 331559
√

10000003 2.09696e+09 30.9657 [30115, 34130] 30
14 [2523, 1762] 1889138633 + 597398

√
10000003 3.77828e+09 31.8151 [27131, 30747] 31

15 [3734, 761] 2937620409 + 928957
√

10000003 5.87524e+09 32.452 [21094, 23906] 32
16 [311, 2973] 4826759042 + 1526355

√
10000003 9.65352e+09 33.1684 [17330, 19640] 33

Figure A.1: Excerpt of output from GENERATEPIC(10000003,14).

Source code: GENERATEPIC
1 GeneratePIC:=proc(d :: posint, p :: posint)
2 local r, Q, P, i, q, l, psi, theta, fd, k, thistheta;
3 Q:=table();
4 P:=table();
5 r:=1: Q[0]:=1: P[0]:=0:
6 if (d mod 4 = 1) then r:=2; Q[0]:=2; P[0]:=1; fi:
7 #
8 # Prevent this loop from running away if there are too many ideals
9 #

10 for i from 0 to 5000 do
11 q[i]:=floor((P[i] + sqrt(d))/Q[i]);
12 P[i+1]:=q[i]*Q[i] - P[i];
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13 Q[i+1]:=(d - P[i+1]^2)/Q[i];
14 if (i <> 1) and (P[i] = P[1]) and (Q[i] = Q[1]) then break; fi;
15 od:
16 l:=i;
17 psi:=table():
18 for i from 1 to l do
19 psi[i]:=(P[i] + sqrt(d))/Q[i-1];
20 od:
21 theta[0]:=(sqrt(d)-P[0])/Q[0]: theta[1]:=1:
22 for i from 2 to l do
23 theta[i]:=expand(psi[i-1]*theta[i-1]);
24 od:
25 fd:=fopen(cat("D-", d, "-p-", p, ".tex"), WRITE);
26 fprintf(fd, "\\documentclass{article}\n"):
27 fprintf(fd, "\\usepackage[landscape,margin=1in]{geometry}\n"):
28 fprintf(fd, "\\usepackage[table]{xcolor}\n"):
29 fprintf(fd, "\\usepackage{xtab}\n"):
30 fprintf(fd, "\\usepackage{amssymb}\n");
31 fprintf(fd, "\\definecolor{lightlightgray}{rgb}{0.85,0.85,0.85}\n"):
32 fprintf(fd, "\\pagestyle{empty}\n\n"):
33 fprintf(fd, "Principal ideal cycle for $\mathbb{Q}(\sqrt{%d})$", d);
34 fprintf(fd, "\\bigskip\n");
35 fprintf(fd, "\n");
36 fprintf(fd, "\\begin{document}\n"):
37 fprintf(fd, "\\tablefirsthead{\\hline $i$ & $[Q,P]$ & $\\theta_i$ &
38 $\\theta_i$ approx. & $\\log_2 \\theta_i$ & $d$ range &
39 $k$ \\\\\\hline}\n"):
40 fprintf(fd, "\\tablehead{\\hline $i$ & $[Q,P]$ & $\\theta_i$ &
41 $\\theta_i$ approx. & $\\log_2 \\theta_i$ & $d$ range &
42 $k$ \\\\\\hline}\n"):
43 fprintf(fd, "\\rowcolors{0}{}{lightlightgray}\n"):
44 fprintf(fd, "\\begin{xtabular}{ccccccc}\n"):
45 for i from 0 to l-1 do
46 k:=floor(log[2](theta[i+1])):
47 thistheta:="";
48 if (nops(theta[i+1]) > 1) then
49 if type(op(2,theta[i+1]), ‘*‘) then
50 if type(op(1, theta[i+1]), ‘fraction‘) then
51 thistheta:=cat("\\frac{", op(1,op(1,theta[i+1])), "}{",
52 op(2,op(1,theta[i+1])), "} + \\frac{",
53 op(1,op(1,op(2,theta[i+1]))), "\\sqrt{", d,
54 "}}{", op(2,op(1,op(2,theta[i+1]))), "}");
55 else
56 thistheta:=cat(op(1,theta[i+1]), " + ", op(1,op(2,theta[i+1])),
57 "\\sqrt{", d, "}");
58 fi;
59 else
60 thistheta:=cat(op(1,theta[i+1]), "+\\sqrt{", d, "}");
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61 fi;
62 else
63 thistheta:=convert(theta[i+1], string);
64 fi;
65 fprintf(fd, "%d & $[%d, %d]$ & $%s$ & %g & %g & $[%d, %d]$ &
66 %d \\\\\n", i+1, Q[i], P[i], thistheta, evalf(theta[i+1]),
67 evalf(log[2](theta[i+1])), ceil(2^(p+4-k)*theta[i+1]/17),
68 floor(2^(p+4-k)*theta[i+1]/15), k);
69 od:
70 fprintf(fd, "\\end{xtabular}\n"):
71 fprintf(fd, "\\end{document}\n"):
72 fclose(fd);
73 end proc:
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B— APPENDIX B —
ADDITIONAL TABLES AND FIGURES
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Figure B.1: Statistical analysis of random compact representations.
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Figure B.2: Statistical analysis of random h-compact representations.
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Figure B.3: Statistical analysis of random 3h-compact representations.
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Figure B.4: Statistical analysis of random 4h-compact representations.
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Figure B.5: Statistical analysis of random 5h-compact representations.
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mpz fp addxy() [55.1% (35.7% + 19.5%)]

mpz fp numult() [26.8%]

mpz fp enucomp() [21.1%]

mpz mul() [3.4%]

mpz gcdext() [3.2%]

mpz sub() [2.5%]

mpz fp remove() [1.9%]

mpz fp wnear() [26.6%]

mpz addmul() [4.8%]

mpz sub() [3.1%]

mpz qi rho() [26.7%]

mpz tdiv qr() [7.1%]

mpz sub() [5.8%]

mpz submul() [4.3%]
mpz set() [4.3%]

hashtable insert() [5.4%]

Figure B.6: Estimated cycle costs, with function calling contexts, for the single-processor O(∆1/6+ε) algorithm using
ideal hashing (LSB-32, 25 decimal digit discriminant).
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mpz fp addxy() [52.1% (35.7% + 16.4%)]

mpz fp numult() [24.8%]

mpz fp enucomp() [19.9%]

mpz mul() [3.4%]

mpz gcdext() [2.8%]

mpz sub() [2.6%]

mpz fp remove() [1.6%]

mpz fp wnear() [25.7%]

mpz addmul() [4.7%]

mpz tdiv q() [3.4%]

mpz qi rho() [27.3%]

mpz tdiv qr() [7.4%]

mpz sub() [5.9%]

mpz submul() [4.4%]

mpz set() [4.4%]

hashtable insert() [9.5%]

Figure B.7: Estimated cycle costs, with function calling contexts, for the single-processor O(∆1/6+ε) algorithm using
ideal hashing (LSB-32, 30 decimal digit discriminant).
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mpz fp addxy() [46.6% (36.8% + 9.7%)]

mpz fp numult() [21.9%]

mpz fp enucomp() [17.7%]

mpz mul() [3.1%]

mpz tdiv q() [2.5%]

mpz sub() [2.4%]

mpz fp remove() [1.5%]
mpz fp wnear() [23.3%]

mpz addmul() [4.3%]

mpz tdiv q() [3.1%]

mpz qi rho() [26.1%]

mpz tdiv qr() [7.0%]

mpz sub() [5.6%]

mpz submul() [4.2%]

mpz set() [4.2%]
hashtable insert() [9.9%]

Figure B.8: Estimated cycle costs, with function calling contexts, for the single-processor O(∆1/6+ε) algorithm using
ideal hashing (LSB-32, 35 decimal digit discriminant).
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mpz fp addxy() [46.9% (34.5% + 12.5%)]

mpz fp numult() [21.5%]

mpz fp enucomp() [17.7%]

mpz mul() [3.0%]

mpz tdiv q() [2.6%]

mpz gcdext() [2.5%]

mpz fp remove() [1.4%]mpz fp wnear() [24.3%]

mpz addmul() [4.3%]

mpz tdiv q() [5.3%]

mpz qi rho() [32.2%]

mpz tdiv qr() [12.5%]

mpz sub() [5.9%]

mpz submul() [4.5%]

mpz set() [4.2%]

hashtable insert() [10.4%]

Figure B.9: Estimated cycle costs, with function calling contexts, for the single-processor O(∆1/6+ε) algorithm using
ideal hashing (LSB-32, 40 decimal digit discriminant).


