```
School of
Foundational
Learning
```


BASIC MATH 1

MATHO7O1

Curriculum Writer:

Glenna Healey, B.Comm, B.Ed.

Math Committee Members:

Glenna Healey, Ann Hanna, Diny Woyiwada, Terry Price, Sahar Husain, Mary R. Smith, Tasha Singendonk, Melanie MacDonald, Michael Gaschnitz, Maureen Stewart, Bev Kosior, Brenda Thomas, Gary Haerle, Meghan Clayton, Penny Marcotte, Rim Schewczyk, Graham Besse and Isaac Besse

Basic Math 1
Bow Valley College
345 6th Avenue SE
Calgary AB T2G 4V1
Attn: Director, Learning Resource Services
email: copyright@bowvalleycollege.ca
© 2015 Bow Valley College

Adapted from: Girard, L. and Tagami, W. (2010) Adult Literacy Fundamental Mathematics: Book 1-6.
Retrieved from: http://solr.bccampus.ca

Acknowledgments

The three Basic Math workbooks (1, 2 \& 3) are an adaptation of and are based on the work of
Liz Girard and Wendy Tagami (2010)
Steve Ballantyne, Lynne Cannon, James Hooten, and Kate Nonesuch (1994)
Leslie Tenta (1993)
Marjorie E. Enns (1983)

Attribution 4.0 International. http://creativecommons.org/licenses/by/4.0/

To the Learner:

This is Book 1 in a series of three Basic Math workbooks, created for you, the learner. The intention behind this book is for you to have an affordable, Canadian, adult basic education math workbook from which to build your foundation in math.

Your life is important.

Be kind and do math!

Table of Contents

Unit 1: Number Introduction 1
1.1 Whole Numbers 1
1.2 Reading and Writing Numbers. 9
Review: Place Value/Reading \& Writing Numbers 34
1.3 Expanded and Standard Form 36
Review: Expanded and Standard Form 43
1.4 Comparing Whole Numbers 45
Review: Comparing Whole Numbers 51
1.5 Rounding Numbers 52
Review: Rounding 60
Unit 1 Review - Number Introduction 62
Unit 2: Addition 71
2.1 Addition. 71
2.2 Estimating Answers in Addition 76
2.3 Addition of More Than Two Numbers 78
2.1-2.3 Review - Addition. 80
2.4 Addition with Carrying 82
2.4 Review - Addition with Carrying 89
2.5 Word Problems - Addition 91
Unit 3: Subtraction 97
3.1 Subtraction 97
3.2 Checking Subtraction 102
3.1-3.2 Review: Subtraction 104
3.3 Subtraction with Borrowing 106
3.4 Estimating Answers in Subtraction 111
3.5 Word Problems - Subtraction 113
Unit 2 and Unit 3 Review - Addition \& Subtraction 118
Unit 3 Review - Subtraction 122
Unit 4: Multiplication 129
4.1 Multiplication Facts 129
4.1 Review: Multiplication Facts. 147
4.2 Multiplying Larger Numbers. 149
4.3 Two Digit Multipliers 156
4.4 Three Digit Multipliers 167
4.5 Multiplying by 10,100 , and 1000 169
4.6 Estimating Products 170
4.7 Word Problems - Multiplication 172
Unit 5: Division 178
5.1 Division Facts 178
5.2 Remainders 185
5.3 Divisibility Tests for 2,3 and 5 188
5.4 Dividing Larger Numbers by One Digit Divisors 193
5.5 Zero as a Placeholder in Division 196
5.6 One Digit Divisors with Remainders. 199
5.1-5.6 Review: Division 202
5.7 Dividing by Two Digit Divisors 204
Unit 5 Division continued
5.8 Dividing by Three Digit Divisors 211
5.9 Dividing by Multiples of 10 213
5.10 Word Problems - Division 215
Unit 5 Review - Division 223
Unit 4 \& Unit 5 Review - Multiplication \& Division 229
5.11 Order of Operations 235
Unit 1-5 Review 241
Extra Review for Whole Numbers Units 1 - 5. 253
Unit 6 Fraction Introduction 263
6.1 Introducing Fractions 263
6.2 Reading Fractions 268
6.3 Comparing Fractions 271
6.4 Equivalent Fractions 275
6.1-6.4 Review: Fractions Introduction 279
6.5 Types of Fractions 281
6.6 Writing Improper Fractions as Mixed Numbers 284
6.6 and 6.7 Review - Fractions 289
6.8 Factors 293
6.9 Simplifying Fractions 298
Unit 6 Review Fraction Introduction 309
Unit 7: Multiplying \& Dividing Fractions 315
7.1 Multiplying Fractions 315
7.2 Simplify Before Multiplying Fractions 318
7.3 Multiplying a Whole Number and a Fraction 321
7.4 Multiplying Mixed Numbers 325
7.5 Word Problems - Multiplying Fractions 327
7.1 - 7.5 Review: Multiplying Fractions 331
7.6 Dividing Fractions 333
7.7 Dividing Mixed Numbers. 341
7.8 Word Problems - Dividing Fractions 343
Unit 7 Review - Multiplying and Dividing Fractions 347
Unit 8: Adding \& Subtracting Fractions 353
8.1 Adding Like Fractions 353
8.2 Simplify After Adding Fractions 358
8.3 Adding Mixed Numbers 360
8.4 Word Problems - Adding Mixed Numbers 362
8.1 - 8.4 Review: Adding Fractions and Mixed Numbers 364
8.5 Subtracting Like Fractions 366
8.6 Simplify After Subtracting Fractions 368
8.7 Subtracting Mixed Numbers 370
8.8 Word Problems - Subtracting Mixed Numbers 373
Rules for Adding, Subtracting, Multiplying \& Dividing Fractions 375
Unit 8 Review - Adding and Subtracting Fractions 376
Units 6, 7 \& 8 Fractions Review 381
Basic Math 1 Course Review 390
Glossary
\qquad

Unit 1: Number Introduction

1.1 Whole Numbers

We use whole numbers when counting. Whole numbers are written using digits.
The digits are 012345678 and 9.
A numeral represents a sum or quantity.
A number represents an amount or quantity of something.
Throughout this book, we will use the word number to represent both words numeral and number.

The whole numbers from 1 to 100 are:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

Even and odd numbers

A number is an even numbers if it ends in $0,2,4,6$, or 8.
These numbers are even. $12 \quad 56 \quad 1001208$

A number is odd if it ends in $1,3,5,7$, or 9 .
These numbers are odd. $5 \quad 771095899$

Place Value

This place value chart may help you to remember the place values.

Notice the pattern for the three places is repeated in each place value group. The pattern is hundreds, tens, ones. Each place in a number has a value.

Ones

The ones place tells how many ones there are.

$$
3 \text { means } 3 \text { ones }
$$

9 is the largest amount that we can express (write or say) with one digit

Tens

The tens place shows how many tens there are. The ones place must have a digit in it before there can be a digit in the tens place.

Every 10 is ten ones.

is

43 means 4 tens and 3 ones

Place Value continued

The number 99 means 9 tens and 9 ones.
Ninety-nine (99) is the largest amount that we can write or say using only two digits.

Hundreds

The hundreds place is to the left of the tens place. It shows how many hundreds there are in the number.

The ones place and the tens place must have a digit in them before there can be a digit in the hundreds place. A number written using three whole digits has a hundreds place, a tens place, and a ones place.

Every hundred is $\mathbf{1 0}$ tens.
Every hundred is the same as $\mathbf{1 0 0}$ ones.

425 means 4 hundreds, 2 tens, and 5 ones.

$\square \square \square \square \square$

576 means 5 hundreds, 7 tens, and 6 ones.

$\square \square \square$
$\square \quad \square \quad \square$

Place Value continued

Thousands

The place to the left of the hundreds place is the thousands place.

One thousand is the same as 10 hundreds.

One thousand is the same as 100 tens.

One thousand is the same as 1000 ones.
(You will have to imagine the picture of the one thousand ones!)

Place Value continued

Larger Numbers

When we write numbers that are 1, 2, 3 or 4 digits in size, we write them as follows:
$\begin{array}{llll}4 & 67 & 860 & 7812\end{array}$

When we write numbers that are 5 digits or more, a space is left between the thousands place and the hundreds place. The space makes it easier to read large numbers.
$43392 \quad 821530 \quad 1250690$
Large numbers may also be written with a comma (,) instead of a space.
$4,392 \quad 8,253 \quad 23,693 \quad 821,530 \quad 1,250,690$

2212 means 2 thousands, 2 hundreds, 1 ten, and 2 ones

Exercise 1.1a Fill in the blanks to make each sentence true. Check your work using the answer key. The first one a) is done for you.
a) $8261 \underline{8}$ thousands $\underline{2}$ hundreds $\underline{6}$ tens $\underline{1}$ one
b) 4005 _ thousands _ hundreds _ tens _o ones
c) 2931 __ thousands _ hundreds _ tens _ one
d) 1034 _ thousands _ hundreds _ tens _ ones
e) 2608 _ thousands _ hundreds _ tens _ ones
f) 7543 _ thousands _ hundreds _ tens _ ones

Answers to Exercise 1.1a
a) 8 thousands, 2 hundreds, 6 tens, 1 one
b) 4 thousands, 0 hundreds, 0 tens, 5 ones
c) 2 thousands, 9 hundreds, 3 tens, 1 one
d) 1 thousand, 0 hundreds, 3 tens, 4 ones
e) 2 thousands, 6 hundreds, 0 tens 8 ones
f) 7 thousands, 5 hundreds, 4 tens, 3 ones

		$\begin{aligned} & \text { n } \\ & \frac{0}{\bar{z}} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\sim}{\square}$	$\stackrel{\circlearrowright}{0}$

Exercise 1.1b Write the place value name for each underlined digit. Check your work using the answer key. The first one a) is done for you.
a) $2 \underline{3} 206$ thousands
b) $24 \underline{6} 8$
tens
c) $\underline{6} 22$
d) $\underline{9} 2002$
e) $92 \underline{0} 02$
f) $142 \underline{6} 2$
g) 48076
h) $5 \underline{5} 55$
i) $1224 \underline{5}$
j) $920 \underline{0} 2$
k) $1 \underline{2} 026$
l) $\underline{6} 348$

Answers to Exercise 1.1b

a) thousands	b) tens	c) hundreds	d) ten thousands
e) hundreds	f) tens	g) ten thousands	h) hundreds
i) ones	j) tens	k) thousands	i) thousands

		$\begin{aligned} & \tilde{0} \\ & \frac{0}{\Sigma} \\ & \hline \end{aligned}$					$\stackrel{\text { ® }}{\text { ¢ }}$	』

Exercise 1.1c Underline the digit for the place value named. Check your work using the answer key. The first one a) is done for you.
a) thousands
$41 \underline{6} 245$
b) hundred thousands
206145
c) ten thousands
36482
d) hundreds
1456
e) tens
g) hundreds
363482
f) thousands
63421
74322
h) ones
685413
i) thousands
221300
j) ten thousands
10000

Answers to Exercise 1.1c
a) $41 \underline{6} 245$
b) $\underline{2} 06415$
c) $\underline{3} 6482$
d) 1456
e) $3634 \underline{8} 2$
f) $6 \underline{3} 421$
g) $74 \underline{3} 22$
h) $68541 \underline{3}$
i) $22 \underline{1} 300$
j) 10000

1.2 Reading and Writing Numbers

The digits are $\begin{array}{llllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Digits are arranged as numbers so we can count larger amounts than our ten fingers!
When we use digits we call what we write the number.

328 is a number with 3 digits.
46 is a number with 2 digits.
213698 is a number with 6 digits.

The numbers from 1 to 12 are written as:

0	zero	7	seven
1	one	8	eight
2	two	9	nine
3	three	10	ten
4	four	11	eleven
5	five	12	twelve
6	six		

The numbers from 13 to 19 are written as:
13 thirteen
14 fourteen
15 fifteen
16 sixteen
17 seventeen
18 eighteen
19 nineteen

Reading and Writing Numbers continued

The word names for the numbers 20 to 90 are:

20	twenty
30	thirty
40	forty
50	fifty
60	sixty
70	seventy
80	eighty
90	ninety

The names for the numbers between groups of tens also follow a pattern. The first number tells us how many tens. The second number tells us how many ones.

	Tens Ones		Tens Ones		Tens Ones
20	twenty	30	thirty	40	forty
21	twenty-one	31	thirty-one	41	forty-one
22	twenty-two	32	thirty-two	42	forty-two
23	twenty-three	33	thirty-three	43	forty-three
24	twenty-four	34	thirty-four	44	forty-four
25	twenty-five	35	thirty-five	45	forty-five
26	twenty-six	36	thirty-six	46	forty-six
27	twenty-seven	37	thirty-seven	47	forty-seven
28	twenty-eight	38	thirty-eight	48	forty-eight
29	twenty-nine	39	thirty-nine	49	forty-nine

The written names for numbers that have tens and ones are written with a hyphen (-) between them. This pattern continues up to ninety-nine (99).

Writing Numbers into Words

When we write hundreds in words, we need two words. The first word tells us how many hundreds. The second word tells us we are counting hundreds.

> 100 one hundred
> 200 two hundred
> 300 three hundred
> 400 four hundred
> 500 five hundred
> 600 six hundred
> 700 seven hundred
> 800 eight hundred
> 900 nine hundred

1000 one thousand (this is ten hundreds but we say one thousand)

Example A

$\mathbf{3 6 7}$ is made of	$\mathbf{3}$ hundreds	$\mathbf{6}$ tens	$\mathbf{7}$ ones
Each is written:	three hundred	sixty	seven
Put the parts together:	three hundred sixty-seven		

Remember

Put a hyphen (-) between the tens and the ones.
There is no ' s ' on the hundred.
There is no 'and' between hundreds place and tens place.

Example B

$\mathbf{5 0 4}$ is made of	$\mathbf{5}$ hundreds	$\mathbf{0}$ tens	$\mathbf{4}$ ones
Each is written:	five hundred		four
Put the parts together:	five hundred four		

Writing Numbers into Words continued

Example C

$\mathbf{8 9 0}$ is made of	$\mathbf{8}$ hundreds	$\mathbf{9}$ tens	$\mathbf{0}$ ones
Each is written:	eight hundred	ninety	
Put the parts together	eight hundred ninety		

Example D

	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{4 2 3} \mathbf{7 9 6}$ is	4	2	3	7	9	6
Each is written	four hundred twenty-three thousand	seven hundred	ninety	six		
Put the parts together	four hundred twenty-three thousand seven hundred ninety-six					

423796 is four hundred twenty-three thousand seven hundred ninety-six

Example E

	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{2 6} 201$ is		2	6	2	0	1
Each is written	twenty-six thousand					two hundred
Put the parts together	twenty-six thousand two hundred one	one				

26201 is twenty-six thousand two hundred one

Writing Numbers into Words continued

Example F

	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{4 0 0 ~ 0 0 0}$ is	4	0	0	0	0	0
Each is written	four hundred thousand					
Put the parts together	four hundred thousand					

Exercise 1.2a Write the word names for the numbers. Check your work

 by using the answer key at the end of the exercise.| a) | hundred
 thousands | ten
 thousands | thousands | hundreds | tens | ones |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{9 1 2 0 0}$
 is | | | | | | |
| Each is
 written | | | | | | |
| Put the parts
 together | | | | | | |

b)	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{1 9} \mathbf{6 3 1}$ is						
Each is written						
Put the parts together						

Exercise 1.2a continued
Write the word names for the numbers. Check your work by using the answer key at the end of the exercise.

c)	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{3 4 2 1 2}$ is						
Each is written						
Put the parts together						

d)	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{3 4 2 6}$ is						
Each is written						
Put the parts together						

e)	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{2 1 8 0 0 0}$ is						
Each is written						
Put the parts together						

f)	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{6 2 3} \mathbf{0 0 9}$ is						
Each is written						
Put the parts together						

Exercise 1.2a continued Write the word names for the numbers without the place value chart.

g) 5456
h) 9099
i) 25876
j) 923001

Answers to Exercise 1.2a

a) ninety-one thousand two hundred
b) nineteen thousand six hundred thirty-one
c) thirty-four thousand two hundred twelve
d) three thousand four hundred twenty-six
e) two hundred eighteen thousand
f) six hundred twenty-three thousand nine
g) five thousand four hundred fifty-six
h) nine thousand ninety-nine
i) twenty-five thousand eight hundred seventy-six j) nine hundred twenty-three thousand one

Writing Larger Numbers in Words

Look at these very large numbers. The group to the left of the thousands group is the millions group.

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{2} 643 \mathbf{1 8 2}$ is	2	6	4	3	1	8	2
Each is written	two million	six hundred forty-three thousand	one hundred	eighty	two		
Put the parts together	two million six hundred forty-three thousand one hundred eighty-two						

Exercise 1.2b Write the word names for the large numbers. Check your work by using the answer key at the end of the exercise.

a)	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{6 5 1 0 2 3 1}$ is							
Each is written							
Put the parts together							

b)	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{2 8 5 1 2 3 4}$ is							
Each is written							
Put the parts together							

Answers to Exercise 1.2b
a) six million five hundred ten thousand two hundred thirty-one
b) two million eight hundred fifty-one thousand two hundred thirty-four

Writing Words into Numbers

Work on reading these numbers aloud by yourself or with someone else.

107	450
7800	45409
4231	4342
13000	410623
12050	24900
227695	1105576

Exercise 1.2c
Write numbers from the words. Check your work by using the answer key at the end of the exercise. The first one a) is done for you.
a) forty-one is 41

			forty-one			
millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
					4	1

b) five hundred sixty-seven is \qquad

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones	

Exercise 1.2c continued

c) sixty-eight is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

d) three hundred twenty-five is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

e) two hundred thirty-two is \qquad .

f) four hundred is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones	

Exercise 1.2c continued

g) five hundred four is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

h) three thousand two hundred fifteen is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

i) six thousand, three hundred is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

j) twenty-six thousand five hundred eighteen is \qquad -

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

Exercise 1.2c continued

k) nineteen thousand three hundred forty-five is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

1) seventy thousand two hundred is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

m) forty-eight thousand three hundred two is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

n) five hundred eighty-two thousand sixty-five is \qquad .

millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones

Answers to Exercise 1.2c

a) forty-one is 41
b) five hundred sixty-seven is 567

five hundred sixty-seven		
hundreds	tens	ones
5	6	7

c) sixty-eight is 68

d) three hundred twenty-five is 325 hundred thousands ten thousands thousands

sixty - eight		
hundreds	tens	ones
	$\mathbf{6}$	$\mathbf{8}$

e) two hundred thirty-two is 232

millions

two hundred thirty-two		
hundreds	tens	ones
$\mathbf{2}$	$\mathbf{3}$	$\mathbf{2}$

f) four hundred is 400

	hundred thousands	ten thousands	thousands	four hundred		
millions				hundreds	tens	ones
				4	0	0

g) five hundred four is 504

millions	hundred thousands	ten thousands	thousands	five hundred four		
				hundreds	tens	ones
				5	0	4

h) three thousand two hundred fifteen is 3215

millions	hundred thousands	three thousand		two hundred fifteen		
		ten thousands	thousands	hundreds	tens	ones
			3	2	1	5

Answers to Exercise 1.2c continued

i) six thousand three hundred is 6300

three hundred		
hundreds	tens	ones
$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$

j) twenty-six thousand five hundred eighteen is 26518

 twenty-six thousand hundred thousands | ten thousands | thousands |
| :---: | :---: |
| 2 | 6 |

five hundred eighteen		
hundreds	tens	ones
$\mathbf{5}$	$\mathbf{1}$	$\mathbf{8}$

k) nineteen thousand three hundred forty-five is 19345

three hundred forty- five		
hundreds	tens	ones
$\mathbf{3}$	$\mathbf{4}$	5

l) seventy thousand two hundred is 70200

m) forty-eight thousand three hundred two is 48302

n) five hundred eighty-two thousand sixty five is 582065

millions

sixty-five		
hundreds	tens	ones
0	6	5

Exercise 1.2d Write the number in each of the word problems. You do not have to write a word sentence for your final answer. Check your work by using the answer key at the end of the exercise.
a) The Nile River in Africa is the longest river in the world. Its length is two thousand five hundred sixty-nine kilometers. Write the number using digits.
b) Canada shares a border with the United States. The border's length is eight thousand eight hundred ninety-three kilometers. Write the number using digits.
c) The distance around the Earth is forty thousand seventy-six kilometers. Write the number using digits.
d) The population of Alberta in 2014 was three million seven hundred thirtytwo thousand six hundred. Write the number using digits. (Statistics Canada)
e) The population of Canada in 2014 was thirty-four million, five thousand, three hundred. Write the number using digits. (Statistics Canada)

[^0]
Telling Time

There are two types of clocks - digital and analog. Digital clocks display the time as numbers. Analog clocks are clocks with hands. The shorter hand tells the hour and the longer hand tells the minutes.

In an analog clock, the minute hand travels faster than the hour hand as it has to cover 60 minutes. The hour hand only needs to travel between the numerals in the same time it takes the minute hand to cover 60 minutes.

To tell what time it is, look at the shorter hand to figure out what hour it is. Next, look at the minute hand to figure out the minutes. Each numeral of the clock represents a certain number of minutes. Look at the chart.

AM and PM

The time from midnight to 11:59 (just before noon0 is AM.
The time from 12:00 noon to 11:59 (at night) is PM.

Numeral	Minutes
1	5
2	10
3	15
4	20
5	25
6	30
7	35
8	40
9	45
10	50
11	55
12	o'clock

Example A

The shorter hand is closer to the 7. This means that the hour is 7 . The longer hand is pointing to the 5 . This means 25 minutes (check the chart on the page before). The time would be written as 7:25.

Look at the shorter hand. It is after the 12 and not yet to the 1 , so this means that the hour is 12 . The longer hand is pointing at the 10 . This means 50 minutes (check the chart on the page before). The time would be written as 12:50.

Exercise One Write the time shown on each clock. Check the answers using the answer key.
a)

b)

Exercise Telling Time continued

c)

d)

e)

f)

g)

h)

Exercise Telling Time continued

i)

k)

m)

j)

l)

n)

Answers to Exercise One

a) $1: 35$
b) $9: 15$
c) $4: 05$
d) $12: 30$
e) $8: 10$
f) $5: 55$
g) $3: 40$
h) $2: 50$
i) $1: 20$
j) $4: 45$
k) $12: 25$

1) $6: 10$
m) $8: 50$
n) $9: 40$

Exercise Four

Under each clock is a time on a digital clock. Draw the hands on the analog clock to show the digital time. Check your work using the answer key at the end of the exercise.
a)

b)

c)

d)

e)

f)

g)

h)

i)

j)

m)

o)

Answers to Exercise Four

a)

b)

$$
9: 010
$$

c)

d)

e)

f)

g)

h)

i)

j)

k)

1)

m)

n)

o)

p)

5:00
q)

r)

Review: Place Value/Reading \& Writing Numbers

A. Write the place value for the underlined digit.
a) $87 \underline{6} 5$
b) $93 \underline{0}$ \qquad
c) 47932
d) $8 \underline{5} 421$ \qquad
e) $\underline{2} 79673$
f) $\underline{3} 97$ \qquad
B. Write the word names for these numbers.
a) 59
b) 942
c) 7378
d) 8200
e) 4005
f) 58310

C. Write the numbers in digits for these number words.

a) eight hundred forty-seven
b) four thousand three hundred eighty
c) two hundred seventy-five thousand eighty-seven \qquad
d) sixty thousand four hundred sixteen
e) fifteen thousand twenty
D. a) Write the time shown on the clock.

b) Using the digital time below the clock, draw the hands on the analog clock

Answers to Review Place Value - Reading \& Writing Numbers

A.
a) tens b) ones c) ten thousands
$\begin{array}{lll}\text { d) thousands } & \text { e) hundred thousands } & \text { f) hundreds }\end{array}$
B.
a) fifty-nine b) nine hundred forty-two
c) seven thousand three hundred seventy-eight d) eight thousand two hundred e) four thousand five f) fifty-eight thousand three hundred ten
C.
a) 847
b) 4380
c) 275087
d) 60416
e) 15020
D. a) $8: 10$
b)

1.3 Expanded and Standard Form

Expanded Form (Expanded Notation)

When we write a number in expanded form (or expanded notation), each digit is written with the value of the place it holds.

Example A five hundred ninety-eight

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{5 9 8}$ is				$\mathbf{5}$	$\mathbf{9}$	$\mathbf{8}$	
Each is written			500	90	8		
Expanded form	$\mathbf{5 0 0}+\mathbf{9 0}+\mathbf{8}$						

In this example, the 5 is in the hundreds place and has a value of 500 ; the 9 is in the tens place and has a value of 90 ; and, the 8 is in the ones place and has a value of 8 .

The total value of five hundred ninety-eight is $500+90+8=598$.

Example B one thousand sixty-five

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{1 0 6 5}$ is				1	0	6	5
Each is written				1000		60	5
Expanded form	$\mathbf{1 0 0 0}+\mathbf{6 0 + 5}$						

In this example, the 1 is in the thousands place and has a value of 1000 ;
there are zero hundreds, which has a value of the 6 is in the tens place and has a value of 60 ; and, the 5 is in the ones place and has a value of 5.

The total value of one thousand sixty five is $1000+0+60+5=1065$.
You do not need to include the $0 . \quad 1000+60+5=1065$.

Expanded Form continued

Example Corty-three thousand six hundred ninety

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{4 3 6 9 0}$ is			4	3	6	9	0
Each is written			40000	3000	600	90	0
Expanded form	$\mathbf{4 0 0 0 0}+\mathbf{3 0 0 0}+\mathbf{6 0 0} \mathbf{+ 9 0}$						

Exercise 1.3a Write each number in expanded form. Check your work using the answer key at the end of the exercise. The first one a) is done for you.
a) 329

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{3 2 9}$ is					3	2	9
Each is written					300	20	9
Expanded form	$300+20+9$						

b) 762

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{7 6 2}$ is							
Each is written							
Expanded form							

Exercise 1.3a continued

c) 1847

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{1 8 4 7}$ is							
Each is written							
Expanded form							

d) 6301

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{6 3 0 1}$ is							
Each is written							
Expanded form							

e) 16492

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{1 6 4 9 2}$ is							
Each is written							
Expanded form							

Exercise 1.3a continued

f) 74296

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{7 4} \mathbf{2 9 6}$ is							
Each is written							
Expanded form							

g) $\quad 378403$

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{3 7 8} \mathbf{4 0 3}$ is							
Each is written							
Expanded form							

h) 721834

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{7 2 1 8 3 4}$ is							
Each is written							
Expanded form							

Exercise 1.3a continued

i) 3816450

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{3 8 1 6 ~ 4 5 0}$ is							
Each is written							
Expanded form							

j) 2941678

	millions	hundred thousands	ten thousands	thousands	hundreds	tens	ones
$\mathbf{2} 941 \mathbf{9 7 8}$ is							
Each is written							
Expanded form							

Answers to Exercise 1.3a

a) $300+20+9$
b) $700+60+2$
c) $1000+800+40+7$
d) $6000+300+1$
e) $10000+6000+400+90+2$
f) $70000+4000+200+90+6$
g) $300000+70000+8000+400+3$
h) $700000+20000+1000+800+30+4$
i) $3000000+800000+10000+6000+400+50$
j) $2000000+900000+40000+1000+600+70+8$

Standard Form (Standard Notation)

Standard form uses the expanded form to create the number.

Example A $600+30+7=\mathbf{6 3 7}$

Expanded form Standard form

To change from expanded form to standard form, count how many place values the largest number holds. In $600+30+7$, the 600 is the largest number and has three places, so write down three underscores.
__ _ _ Fill in the underscores with each applicable digit.
$\underline{6}$ _ _ With 600, the 6 goes in the hundreds place.
$\underline{6} \underline{3} \quad$ With 30 , the 3 goes in the tens place.
$\begin{array}{llll}6 & 3 & 7 & \text { With } 7 \text {, the } 7 \text { goes in the ones place. }\end{array}$

$$
\begin{gathered}
\text { Example B } \\
\\
\\
\text { Expanded form }
\end{gathered} 7000+500+1=\underline{7} \underline{0}=\underset{\text { Standard form }}{7501}
$$

The 7000 has 4 digits, write out four underscores. Fill in the underscores with each applicable digit.
There are zero tens so put a zero in the tens place.

ExampleC $4000000+600000+70000+8000+900+3=4678903$ Expanded form
 Standard form

The 4000000 has 7 digits, write out seven underscores.
Fill in the underscores with each applicable digit.
There are zero tens so put a zero in the tens place.

Exercise 1.3b Write each number in standard form. Check your work using the answer key at the end of the exercise. The first one a) is done.
a) $400+10+6=\underline{4} \underline{1} \underline{6}=416$
b) $500+40+2=$
c) $5000+600+10+8=$
d) $4000+100+40+5=$
e) $20000+1000+800+10+2=$
f) $40000+200+5=$
g) $200000+50000+3000+400+80+3=$
h) $300000+50000+700+10+9=$
i) $1000000+400000+20000+3000+600+50=$

Answers to Exercise 1.3b

a) 416
b) 542
c) 5618
d) 4145
e) 21812
f) 40205
g) 253483
h) 350719
i) 1423650

Review: Expanded and Standard Form

A. Write each number in expanded form.
a) 643
b) 759
c) 4821
d) 94205
e) 367542
f) 1850643

B. Write each number in standard form.

a) $300+60+9=$
b) $700+5=$
c) $1000+400+90+1=$
d) $20000+1000+500+80+4=$
e) $500000+40000+2000+700+30+9=$
f) $3000000+900000+60000+8000+400+30+1=$

Answers to Review: Expanded and Standard Form

A.a) $600+40+3$
b) $700+50+9$
c) $4000+800+20+1$
d) $90000+4000+200+5$
e) $300000+60000+7000+500+40+2$
f) $1000000+800000+50000+600+40+3$
B. a) 369
b) 705
c) 1491
d) 21584
e) 542739
f) 3968431

1.4 Comparing Whole Numbers

To compare whole numbers, start comparing digits from the left or look at the place with the largest value. The smaller number will be closer to zero.

Example A Compare 72 and 78. Start by comparing the tens. tens are the same $\quad 72$ has 7 tens

78 has 7 tens
ones are different 72 has 2 ones
78 has 8 ones

2 ones is less than 8 ones
72 is less than 78 or 78 is greater than 72

Example B Compare 1628 and 1599. Start by comparing the thousands.
thousands are the same 1628 has 1 thousand
1599 has 1 thousand
hundreds are different 1628 has 6 hundreds
1599 has 5 hundreds

6 hundreds is more than 5 hundreds

1628 is greater than 1599 or 1599 is less than 1628

Example C Compare 13618 and 13662 Compare the ten thousands

ten thousands are the same both have 1 ten thousand thousands are the same hundreds are the same
tens are different
13618 has 1 ten
13662 has 6 tens

1 ten is less than 6 tens

13618 is less than 13662 or 13662 is greater than 13618

Comparing Whole Numbers continued
Example D Compare 675234 and 673423
hundred thousands are the same
ten thousands are the same
thousands are different 675234 has 5 thousands 673423 has 3 thousands

5 thousands is greater than 3 thousands

675234 is greater than 673423 or 673423 is less than 675234

Note: Numbers with one digit are always less than numbers with two digits.
Numbers with two digits are always less than numbers with three digits, and so on.
9 is less than 15
87 is less than 107
999 is less than 1001

Exercise 1.4a Draw a circle around the larger number in each pair. The first one a) is done for you.
a) 31
84
b) 15
51
c) 67
68
d) $274 \quad 315$
e) $932 \quad 895$
f) $792 \quad 810$

Answers to Exercise 1.4a
a) 84
b) 51
c) 68
d) 315
e) 932
f) 810

Exercise 1.4b
a) 10161316
b) 1229
1329
c) $5230 \quad 5210$
d) $2151 \quad 2159$
e) $83476 \quad 93475$
f) $31276 \quad 31576$
g) $46821 \quad 46801$
h) $343 \quad 3740$
i) 8325 8236
j) $11278 \quad 1325$
k) $4289 \quad 4230$
l) $13471 \quad 13422$

Answers to Exercise 1.4b
a) 1016
b) 1229
c) 5210
d) 2151
e) 83476
f) 31276
g) 46801
h) 343
i) 8236
j) 1325
k) 4230
l) 13422

Arranging Numbers in Order

Now use the same ideas to arrange more than two numbers in order.

Example A	6	1	616	66	61	and 16

Arrange the above numbers in order from smallest to largest.
First sort the numbers with the same number of digits into groups.

one digit	two digits	three digits
$6, \quad 1$,	$66,16,61$	616

The one-digit numbers 6 and 1 can be arranged with 1 being the smallest.
The group of two-digit numbers contains $66 \quad 61$ and 16.
Arrange these beginning with the smallest. 16, 61, 66
Finally, notice that the three digit number 616 is the largest.
The order from smallest to largest is:
$1,6,16,61,66,616$.

Exercise 1.4c \quad| Arrange these numbers in order from smallest to largest. |
| :--- |
| Check your work using the answer key at the end of the |
| exercise. The first one a) is done for you. |

a) $35 \quad 352 \quad 23 \quad 253$
\qquad
$\begin{array}{llll}23 & 35 & 253 & 352\end{array}$
b) $259 \quad 759 \quad 279 \quad 592$

Exercise 1.4c continued

c)
c) 3050
39403053
3502
d) $56719 \quad 65981 \quad 46423 \quad 64082$
e) $12546 \quad 5781 \quad 423 \quad 172901$
f) $1444 \quad 444 \quad 14 \quad 114444 \quad 44$
$\begin{array}{lllllll}\text { g) } & 777 & 17 & 71 & 7177 & 717 & 77\end{array}$

Answers to Exercise 1.4c
$\begin{array}{ll}\text { a) } 23,35,253,352 & \text { b) } 259,279,592,759\end{array}$
c) $3050,3053,3502,3940$
d) $46423,56719,64082,65981$
e) 423, 5781, 12546,172901 f) 14, 44, 444, 1444, 114444
g) $17,71,717,777,7177,77177$

Greater Than, Less Than, Equal

The sign < means less than (smaller than).

$$
\begin{aligned}
\text { less } & <\text { more } \\
5 & <12
\end{aligned}
$$

The sign > means greater than (larger than).

$6>3$

The sign $=$ means equals and is used when two amounts are the same.

The sign \neq means not equal to and is used when two amounts are not the same.
Exercise 1.4d
Write <, >, or = in each blank as needed. Check your work using the answer key at the end of the exercise. The first one a) is done for you.
a) $376>354$
b) 81
62
c) 520
530
d) 821
821
e) 3674
3296
f) 6214
6251
g) $14879 \quad 14900$
h) 78492
78429
i) $45823 \quad 54781$
j) 732591
732950

Answers to Exercise 1.4d

a) $>$
b) $>$
c) $<$
d) $=$
e) $>$
f) $<$
g) $<$
h) $>\quad$ i) $<\quad$ j) $<$

Review: Comparing Whole Numbers

A. Circle the larger number in each pair.
a) 9784
7892
b) 56663
56566
c) 13204
14420
d) 721011
721101
e) 461300
416003
f) 2879921
2987721
B. Arrange these numbers in order from smallest to largest.
a)
a) $75 \quad 754 \quad 475 \quad 5747 \quad 5774 \quad 77575$
b) $18 \quad 23070 \quad 429 \quad 7824 \quad 37 \quad 994 \quad 1120$
C. Write >, < or = in each blank to make a true statement.
a) 3678
3768
b) 14002
14000
c) 38463
38436
d) 10010
10010

Answers to Review - Comparing Whole Numbers
A a) 9784
b) 56663
c) 14420
d) 721101
e) 461300
f) 2987721
B a) 75, 475, 754, 5747, 5774, 77575
b) $18,37,429,994,1120,7824,23070$
C a) <
b) $>$
c) $>$
d) $=$

1.5 Rounding Numbers

We use numbers every day in our lives. We use numbers to identify dates, time and places. We use numbers to count and measure. List some of the ways you use numbers.

You may have written using money, shopping, time, and counting as part of your answer.

Think about time. Let's say it takes eight minutes to walk to the bus. If someone asks you how long it takes, you will probably say, "about ten minutes."

If you buy a sweater that cost $\$ 29$, you may say, "Oh, it was around thirty dollars."
How far is it from Vancouver to Calgary? The map says 970 km , but we would probably say, "about 1000 kilometres."

These are examples of rounding numbers.

We round numbers for many reasons. We may not know the exact number. The exact number may not be important for what we are doing. We may need a quick estimate.

When you are rounding numbers, use zeros to hold the places at the end of the number. Work through the following examples and exercises carefully. Rounding is an important skill.

Rules for Rounding Whole Numbers

Step 1: Locate the place value in the number to which the number is to be rounded. Draw a line under that place.

Step 2(i): Look only at the next digit to the right of the number underlined.
If it is 5 or more, increase the underlined digit by 1.
Step 2(ii): Look only at the next digit to the right of the number underlined.
If the next digit to the right is 4 or less, do not change the digit in the underlined place.

Step 3: Change all the digits to the right of the underlined place to zeros

Rounding to the tens place

Round 342 to the nearest ten.
342 Underline the digit in the tens place.
The digit to the right of the tens place is a 2 (it is less than 4)
Do not change the digit that is underlined.

340 Replace all digits to the right of the tens place with zeros.
So 342 is closer to 340 than 350.

Round 675 to the nearest ten.
675 Underline the digit in the tens place.
The digit to the right of the tens place is a 5 So, round up the 7 to an 8 in the tens place.

680 Replace all digits to the right of the tens place with zeros. So 678 is closer to 680 than 670.

Rounding to the hundreds place

Round 349 to the nearest hundred.
349 Underline the hundreds place.
The digit to the right of the hundreds place is a 4 so do not change the digit that is underlined.

300 Replace all digits to the right of the underlined digit with zeros.
So 349 is rounded to 300 .
349 is closer to 300 than 400.

Exercise 1.5a Round each number to the nearest tens place and to the nearest hundreds place. Check your work using the answer key at the end of the exercise. The first one a) is done for you.

	Round to tens	Round to hundreds
a) $\mathbf{4 2 6}$	426 rounds to 430	$\underline{4} 26$ rounds to 400
b) $\mathbf{6 8 4}$		
c) $\mathbf{8 3 4}$		
d) $\mathbf{9 7}$		
e) $\mathbf{3 4 4}$		
f) $\mathbf{5 0 2}$		

Answers to Exercise 1.5a
a) 426 tens 430 hundreds 400
b) 684 tens 680 hundreds 700
c) 834 tens 830 hundreds 800
d) 97 tens 100 hundreds 100
e) 344 tens 340 hundreds 300
f) 502 tens 500 hundreds 500

Rounding to other place values

Step 1: Locate the place value in the number to which the number is to be rounded. Draw a line under that place.

Step 2(i): Look only at the next digit to the right of the number underlined.
If it is $\mathbf{5}$ or more, increase the underlined digit by 1.
Step 2(ii): Look only at the next digit to the right of the number underlined.
If the next digit to the right is 4 or less, do not change the digit in the underlined place.

Step 3: Change all the digits to the right of the underlined place to zeros

Round 3148 to the nearest thousand.
$\underline{3} 148$ Underline the thousands place.
The digit to the right of the thousands place is a 1 so do not change the digit that is underlined.
$\underline{3} 000$ Replace all digits to the right of the underlined digit with zeros. So 3148 is rounded to 3000 . 3148 is closer to 3000 than 4000.

Round 68210 to the nearest ten thousand.
68210 Underline the ten thousands place.
The digit to the right of the ten thousands place is an 8 so round up the digit that is underlined.
$\underline{70} 000$ Replace all digits to the right of the underlined digit with zeros.
So 68210 is rounded to 70000 .
68210 is closer to 70000 than 60000 .

Rounding to other place values continued

Round 706599 to the nearest hundred thousand.
706599 Underline the hundred thousands place.
The digit to the right of the hundred thousands place is a zero, so do not change the digit that is underlined.
$\underline{700} 000$ Replace all digits to the right of the underlined digit with zeros.
So 706599 is rounded to 700000 .
706599 is closer to 700000 than 800000 .

Round 9501100 to the nearest millions.
9. 501100 Underline the millions place.

The digit to the right of the millions is a 5 so round up the digit that is underlined. (The 9 rounds up to a 10.)

10000000 Replace all digits to the right of the underlined digit with zeros. So 9501100 is rounded to 10000000 .
9501100 is closer to 10000000 than 9000000 .

The chart below shows how rounding with 9s works.

	Round to nearest tens	Round to nearest hundreds	Round to nearest thousands	Round to nearest ten thousands
$\mathbf{9}$	10	0	0	0
$\mathbf{9 9}$	100	100	0	0
$\mathbf{9 9 9}$	1000	1000	1000	0
$\mathbf{9 9 9 9}$	10000	10000	10000	10000
$\mathbf{9 9 9 9 9}$	100000	100000	100000	100000
$\mathbf{9 9 9 9 9 9}$	1000000	1000000	1000000	1000000

Exercise 1.5b For each problem, round to the number asked. Check your work

 using the answer key at the end of the exercise.Example Juan had 1094 baseball cards. Adamo has 2106 baseball cards. Alex has 1589 baseball cards. Round each number to the nearest ten.

Name	Number	Rounded Number
Juan	1094	1090
Adamo	2106	2110
Alex	1589	1590

a) Mount Logan in the Yukon is the highest mountain in Canada. It is 5959 meters. Mount Waddington is the highest mountain in British Columbia. It is 4016 meters. Mount Columbia is the highest mountain in Alberta.
It is 3747 meters. Round each number to the nearest thousands.
(Statistics Canada)

Mountain	Number	Rounded Number
Mount Logan		
Mount Waddington		
Mount Columbia		

Exercise 1.5b continued

b) The Connaught Tunnel is 8082 meters long, The Mount MacDonald Tunnel is 14700 meters long. The Deas Island Tunnel is 629 meters long. Round each number to the nearest hundred.

Tunnel	Number	Rounded Number
Connaught Tunnel		
Mount MacDonald		
Deas Island Tunnel		

c) The area of British Columbia is 944735 square kilometers. The area of Alberta is 661848 square kilometers. The area of Saskatchewan is 651036 square kilometers. Round each number to the nearest ten thousand. (Statistics Canada)

Province	Number	Rounded Number
British Columbia		
Alberta		
Saskatchewan		

Exercise 1.5b Answer Key

Mountain	Number	Rounded Number
Mount Logan	5959 meters	6000 meters
Mount Waddington	4016 meters	4000 meters
Mount Columbia	3747 meters	4000 meters

Tunnel	Number	Rounded Number
Connaught Tunnel	8082 meters	8100 meters
Mount MacDonald Tunnel	14700 meters	14700 meters
Deas Island Tunnel	629 meters	600 meters

Province	Number	Rounded Number
British Columbia	944735 square meters	940000 square meters
Alberta	661848 square meters	660000 square meters
Saskatchewan	651035 square meters	650000 square meters

Review: Rounding

A. Round your answer to the nearest hundred.
a) 329
b) 2481
c) 8065
d) 3916
B. Round your answer to the nearest thousand.
a) 5521
b) 221813
c) 46499
d) 34860
C. Round your answer to the nearest ten thousand
a) 15521
b) 36318
c) 176994
d) 864860
D. Round your answer to the nearest hundred thousand.
a) 523521
b) 821932
c) 761949
d) 464051
E. Round your answer to the nearest million.
a) 7312908
b) 6009280
c) 9152801
d) 576679

F. For each problem, round to the number asked.

a) The longest river in North America is the Mississippi River which is 6275 kilometers long. The longest river in Canada is the Mackenzie River which is 4242 kilometers long. The Yukon River is 3701 kilometers long. Round each number to the nearest hundred.

River	Number	Rounded Number
Mississippi River		
Mackenzie River		
Yukon River		

b) In 2009, the population of Shanghai, China was 13831900 . The population of Moscow, Russia was 10508 971. The population of New York City, U.S. was 8363 710. Round each number to the nearest hundred thousand.

City	Number	Rounded Number
Shanghai, China		
Moscow, Russia		
New York City, USA		

Answers to Review - Rounding

A a) 300
b) 2500
c) 8100
d) 3900
B a) 6000
b) 222000
c) 46000
d) 35000
C a) 20000
b) 40000
c) 180000
d) 860000
D a) 500000
b) 800000
c) 800000
d) 500000
E a) 7000000
b) 6000000
c) 9000000
d) 1000000

F a) Mississippi $6300 \mathrm{~km} \quad$ Mackenzie $4200 \mathrm{~km} \quad$ Yukon 3700 km
b) Shanghai 13800000 Moscow $10500000 \quad$ New York 8400000

Unit 1 Review - Number Introduction

Use this review to practice all the skills you have learned in Unit 1 - Number Introduction. Check your answers using the answer key at the end of the review.
A. Write the place value names (ones, tens hundreds, thousands, ten thousands, hundred thousands, millions) for each underlined digit.
a) $43 \underline{9} 2$ \qquad b) $76 \underline{5}$
c) $1 \underline{8} 293$ \qquad d) $56 \underline{4} 28$ \qquad
e) $\underline{4} 258$ \qquad f) $4 \underline{2} 6153$ \qquad
g) $\underline{8} 429576$
h) $3 \underline{6} 41758$ \qquad
B. Using the number 9285106 , write the digit that is in each of the following place values.
a) millions \qquad b) ones \qquad
c) ten thousands \qquad d) thousands \qquad
e) hundreds \qquad f) hundred thousands \qquad
g) tens \qquad
C. Underline the digit for the place value named.
a) hundreds
5321
b) tens
8703
c) ten thousands
34891
d) hundred thousands
e) thousands
72491
f) millions
4201856

-

D. Write the numbers in words.

a) 818
b) 1678
c) 29764
d) 1984152
e) 226917

E. Write the words in numbers.

a) twenty-five thousand one hundred thirty-two
b) one thousand two hundred seven
c) two hundred fifteen thousand twenty-four
d) one million six hundred ninety-five thousand four hundred twenty

F. Answer the questions below about Telling Time.

Write the time shown on each clock.
a)

b)

Put the hands on the analog clock to show the digital time.
c)

d)

G. Expanded and Standard Form

Write each number in expanded form.
a) 184
b) 3908
c) 61281
d) 1539587
e) 366524
H. Write each number in standard form.
a) $50000+6000+600+90+8$
b) $200000+70000+8000+200+60+1$
c) $3000+800+80+5$
d) $1000000+400000+70000+6000+100+50+3$
I. Arrange these numbers in order from smallest to largest.
a)
18
34937
727
1487
147832
b) $769 \quad 6790 \quad 697 \quad 76976 \quad 76796$
J. Write < or > or = in each blank as needed.
a) 9698
6899
b) 7542
7452
c) 34682
39421
d) $124693 \quad 124693$
e) 738423
783423
f) 45832
54123

K. Round each number to the nearest hundred.

a) 774 rounds to \qquad b) 2581 rounds to \qquad
c) 21204 rounds to \qquad
d) 479 rounds to \qquad
e) 572098 rounds to \qquad f) 7652931 rounds to \qquad
L. Round each number to the nearest thousand.
a) 1948 rounds to ___________
b) 75767 rounds to \qquad
c) 288869 rounds to
d) 999 rounds to \qquad
e) 3976 rounds to \qquad f) 5012 rounds to \qquad
M. Round each number to the nearest ten thousand.
a) 14028 rounds to \qquad b) 226917 rounds to \qquad
c) 126804 rounds to \qquad d) 9794487 rounds to \qquad
e) 87805 rounds to \qquad f) 5912 rounds to \qquad
N. Round each number to the nearest hundred thousand.
a) 687029 rounds to \qquad b) 2801052 rounds to \qquad
c) 523715 rounds to \qquad d) 9778656 rounds to \qquad
e) 8182390 rounds to \qquad f) 3102975 rounds to \qquad
0. Round each number to the nearest million.
a) 1009627 rounds to \qquad b) 28101052 rounds to \qquad
c) 894063 rounds to \qquad d) 9778656 rounds to \qquad
e) 80379591 rounds to \qquad f) 3102975 rounds to \qquad

Answers to Unit 1 Review - Number Introduction

A a) tens
b) ones
c) thousands
d) hundreds
e) thousands
f) ten thousands
g) millions
h) hundred thousands

B a) 9	b) 6	c) $8 \quad$ d) 5	e) 1
C a) $5 \underline{3} 21$	b) $87 \underline{0} 3$	c) $\underline{3} 4891$	d) $\underline{8} 91402$
e) $7 \underline{2} 491$		f) $\underline{4} 201856$	

D a) eight hundred eighteen
b) one thousand six hundred seventy-eight
c) twenty-nine thousand seven hundred sixty-four
d) one million nine hundred eighty-four thousand one hundred fifty-two
e) two hundred twenty-six thousand nine hundred seventeen
E a) 25132
b) 1207
c) 215024
d) 1695420
F a) $12: 30 \quad$ b) $3: 40$
c)

d)


```
Answers to Unit 1 Review - Number Introduction continued
\(\begin{array}{ll}\text { G a) } 100+80+4 & \text { b) } 3000+900+8\end{array}\)
    c) \(60000+1000+200+80+1\)
    d) \(1000000+500000+30000+9000+500+80+7\)
    e) \(300000+60000+6000+500+20+4\)
```

H a) 56698
b) 278261
c) 3885
d) 1476153

Ia) 18, 727, 1487, 34937,147832
b) $697,769,6790,76796,76976$

Ja) $>$ b) $>$ c) $<$ d) $=$ e) $<$ f) $<$
K a) 800
b) 2600
c) 21200
d) 500
e) 572100
f) 7652900
L a) 2000
b) 76000
c) 289000
d) 1000
e) 4000
f) 5000
M a) 10000
b) 230000
c) 130000
d) 9790000
e) 90000
f) 10000
Na) 700000
b) 2800000
c) 500000
d) 9800000
e) 8200000 f) 3100000
0. a) 1000000
b) 28000000
c) 1000000
d) 10000000
e) 80000000 f) 3000000

Unit 2: Addition

2.1 Addition

Addition puts amounts together.
The numbers being added are called addends.
The answer of addition is called the sum or the total.

The plus sign + means to add.

$$
\begin{gathered}
t \rightarrow t+\star t=5 \text { stars } \\
3+2=5
\end{gathered}
$$

says three plus two equals five or three and two is five

The sum is 5 .

Basic Addition Facts

$\mathbf{+}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	0	1	2	3	4	5	6	7	8	9
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	2	3	$\mathbf{4}$	5	6	7	8	9	10	11
$\mathbf{3}$	3	4	5	6	7	8	9	10	11	12
$\mathbf{4}$	4	5	6	7	8	9	10	11	12	13
$\mathbf{5}$	5	6	7	8	9	$\mathbf{1 0}$	11	12	13	14
$\mathbf{6}$	6	7	8	9	10	11	12	13	14	15
$\mathbf{7}$	7	8	9	10	11	12	13	14	15	16
$\mathbf{8}$	8	9	10	11	12	13	14	15	16	17
$\mathbf{9}$	9	10	11	12	13	14	15	16	17	$\mathbf{1 8}$

Exercise 2.1a Find the sums. The highest total for these number facts is 20 . Check your work using the answer key. The first one a) is done for you.
a) 6
b) 8
c) 4
d) 8
+7
+13
$+3$
$+2$

+7

e) 1
$+2$
f) 6
g) 5
h) 2
i) 7
$+6$
j) 0
$\begin{array}{r}\text { k) } \quad 9 \\ +\quad 7 \\ \hline\end{array}$
l) $\begin{array}{r}7 \\ +2 \\ \hline\end{array}$

For adding more than two numbers, regroup the numbers if there is a grouping that works better. For example in exercise m) $9+6+1$ can be regrouped as $9+1+6$ because the $9+1=10$ and then add the 6 to the 10 to get 16. This is called the Associative Property of Addition.
m) 9
n) $\begin{aligned} & 3 \\ & 4\end{aligned}$
o) $\begin{array}{r}0 \\ 2 \\ +9 \\ \hline\end{array}$
p) $\begin{array}{r}4 \\ 2\end{array}$
$\begin{array}{r}+1 \\ \hline 16\end{array}$
$+7$
6
$+3$

Answers to Exercise 2.1a
a) 13
b) 11
c) 6
d) 15
e) 3
f) 10
g) 13
h) 7
i) 13
j) 3
k) 16
l) 9
m) $16 \quad$ n) 14
o) 11
p) 15

Addition of Larger Numbers

When adding larger number, line up the corresponding place values.
Step 1: Add the ones to the ones.
Step 2: Add the tens to the tens.
Step 3: Add the hundreds to the hundreds.
Step 4: Add the thousands to the thousands.
Step 5: Add the ten thousands to the ten thousands.

$$
\text { Example A } \quad 23+56=
$$

Line up the place values.
Step 1: Add the ones to the ones. 3 ones +6 ones $=9$ ones

$$
23
$$

$+56$
9
Write the answer in line with the ones place.

Step 2: Add the tens. 2 tens +5 tens $=7$ tens

$$
23
$$

$+56$ 79

Write the answer in line with the tens place.

The sum of $23+56=79$

Exercise 2.1b

Find the sums. Check your work using the answer key. The first one a) is done for you.
a) $\begin{array}{r}37 \\ +\quad 2 \\ \hline 39\end{array}$
b) 55
$+2$
c) 70
d) 26

$+\quad 7$

$\begin{array}{r}+3 \\ \hline\end{array}$
e) 87
$+12$
f) 33
$+64$

h) 34
$+11$
i) 351
$\begin{array}{r}+\quad 3 \\ \hline\end{array}$
j) 212
$\begin{array}{r} \\ +\quad 6 \\ \hline\end{array}$
$\begin{array}{r}\text { k) } \quad 417 \\ +\quad 21 \\ \hline\end{array}$
l) 370
$\begin{array}{r}+\quad 28 \\ \hline\end{array}$
m) 154 $+123$
n) 362
$+214$
o) 715
$+214$
$\begin{array}{r}\text { p) } 445 \\ +\quad 200 \\ \hline\end{array}$

Exercise 2.1b continued Find the sums. Check your work using the answer key.
q) 2013
$\begin{array}{r}+\quad 64 \\ \hline\end{array}$
r) 3453
$\begin{array}{r}+\quad 142 \\ \hline\end{array}$
s) 3460
$\begin{array}{r}423 \\ +\quad 4 \\ \hline\end{array}$
t) 6749
$\begin{array}{r}+\quad 210 \\ \hline\end{array}$
u) 75124
$+1135$
v) 58460
1512
$+\quad$
w) 41355

+27043

x) 240456
$+139443$

Answers to Exercise 2.1b

a) 39	b) 57	c) 77	d) 29	e) 99	f) 97
g) 94	h) 45	i) 354	j) 218	k) 438	l) 398
m) 277	n) 576	o) 929	p) 645	q) 2077	r) 3595
s) 3883	t) 6959	u) 76259	v) 59972	w) 68398	x) 379899

2.2 Estimating Answers in Addition

You have learned how to round numbers. Now you can use that skill to quickly find an approximate sum by estimating using front-end rounding. Estimating is used to find a quick answer.

In front-end rounding, the number is rounded to the highest place (or the place value most left) and all the digits to the right of that place become zeros.

In these examples, the exact numbers have been front-end rounded and then the sums for the exact and estimates are provided.

Example A

22
$+\quad 67$
89
---:
$+\quad 70$
90

Example B

$$
\begin{array}{r}
345 \\
+451
\end{array} \quad \begin{aligned}
& \text { rounds to } \\
& \hline 796
\end{aligned} \quad \begin{gathered}
300 \\
+\quad 500 \\
\hline 800
\end{gathered}
$$

Example C

$\mathbf{1 7 2 5}$ | rounds to |
| ---: |
| $+\quad \mathbf{2 8 2 6 0}$ | rounds to | 2000 |
| ---: |
| 29985 |

Estimating Answers in Addition continued

Example D What would a quick estimate be for these vacation costs?
The plane ticket costs $\$ 525$, the hotel costs $\$ 195$, meals cost $\$ 175$ and spending money will be $\$ 100$.
Quickly round up the values given.
$\$ 525$ becomes $\$ 500$,
\$195 becomes \$200,
\$175 becomes $\$ 200$
and $\$ 100$ stays $\$ 100$.

The vacation will be approximately $500+200+200+100=\$ 1000$

Exercise 2.2
Round these numbers by using front-end rounding. Check your work using the answer key. The first one a) is done for you.
a) 58 rounds to $\quad 60$
b) 148 rounds to \qquad
c) 399 rounds to \qquad d) 3487 rounds to \qquad
e) 999 rounds to \qquad f) 5600 rounds to \qquad
g) $\mathbf{2 4} 987$ rounds to \qquad h) 58998 rounds to \qquad

Answers to Exercise 2.2
a) 60
b) 100
c) 400
d) 3000
e) 1000
f) 6000
g) 20000
h) 60000

2.3 Addition of More Than Two Numbers

When adding larger numbers, line up the place values beginning with the ones place.

Example

$$
1124+352+13=
$$

Step 1: Line up the place values beginning at the right or the ones place Add the ones. 4 ones +2 ones +3 ones $=9$ ones

1124
352
$+\quad 13$
9
Step 2: Add the tens. 2 tens +5 tens +1 ten $=8$ tens

Step 3: Add the hundreds. 1 hundred +3 hundreds $=4$ hundreds
1124
352
$+\quad 13$
489

Step 4: Add the thousands. 1 thousand $=1$ thousand
1124
352
$+\quad 13$
1489

Exercise 2.3 Find the exact answer and the estimate. Check your work using the answer key. The first one a) is done for you.
Estimate
a) 21
34
$\mathbf{4}$
$+\quad 49$
20
30
$\begin{array}{r}+0 \\ \hline 50\end{array}$
b) 12
35

Estimate Estimate
c) 213
142
$\begin{array}{r}140 \\ +\quad \\ \hline\end{array}$
d) 371
520
$\begin{array}{r}5 \\ +\quad 6 \\ \hline\end{array}$

	Estimate	
e)	10195	Estimate
1155		4702
4622		+3101

Estimate
Estimate
h) 15000
81601
$\begin{array}{r}+\quad 2396 \\ \hline\end{array}$
g) 1011

2622
363
$+\quad$

Answers to Exercise 2.3

a) $59 ; 20+30+0=50$
b) $48 ; 10+40+0=50$
c) 385 ; $200+100+30=330$
d) $897 ; 400+500+10=910$
e) $5989 ; 1000+5000+200=6200$
f) $17998 ; 10000+5000+3000=18000$
g) $3996 ; 1000+3000+400=4400$
h) $98997 ; 20000+80000+2000=102000$

2.1-2.3 Review - Addition

A. Find the sums. Be sure to check your answers.

Rewrite the question if required to line up the place values.
a) $\begin{array}{r}63 \\ +\quad 25 \\ \hline\end{array}$
b) 15
c) $43+54=$
d) 42

33
14
$+\quad 1$
e) 33
f) 21

22
$\begin{array}{r} \\ +\quad 52 \\ \hline\end{array}$
$\begin{array}{r}46 \\ +72 \\ \hline\end{array}$
g) 421
$\begin{array}{r}+354 \\ \hline\end{array}$
h) 832
+162
+
j) 154 $\begin{array}{r}+923 \\ \hline\end{array}$
k) 362
$\begin{array}{r}+914 \\ \hline\end{array}$
l) $10715+23213=$
i) $956+730=$

B. Add these numbers. Find the exact answers and the estimates.

a) $45+21+32=$
Exact
Estimate
b) $242+325+112=$ Exact
Estimate
c) $8013+1246+5430=$ Exact
Estimate
d) $5214+40230+2345$
Exact
Estimate

Answers to 2.1-2.3 Review - Addition
A a) 88
b) 87
c) 97
d) 89
e) 107
f) 139
g) 775
h) 994
i) 1686
j) 1077
k) 1276
l) 33928

B a) 98; estimate $50+20+30=100$
b) 679 ; estimate $200+300+100=600$
c) 14689 ; estimate $8000+1000+5000=14000$
d) 47789 ; estimate $5000+40000+2000=47000$

2.4 Addition with Carrying

When the digits of one column add up to a two digit number (10 or more), you must carry a digit to the next place value column.

Example A

Step 1
1
27
$+55$
2

Step 2
1
27
$+55$
82

Step 1: Add the ones. 7 ones +5 ones $=12$ ones

Rename 12 ones as $\mathbf{1}$ ten and $\mathbf{2}$ ones. Write the $\mathbf{2}$ ones under the ones column and carry the $\mathbf{1}$ ten (carry the 1) to the tens column.

Step 2: Add the tens. 1 ten +2 tens +5 tens $=8$ tens

Example B

Step 1
Step 2
$58+76=$

1	1
58	58
+76	
4	$+\mathbf{7 6}$
134	

Step 1: Add the ones. 8 ones +6 ones $=14$ ones

Rename the 14 ones as $\mathbf{1}$ ten and $\mathbf{4}$ ones. Write the $\mathbf{4}$ ones under the ones column and carry the $\mathbf{1}$ ten (carry the 1) to the tens column.

Step 2: Add the tens. 1 ten +5 tens +7 tens $=13$ tens

The 1 hundred can be written in the sum because there are no other hundreds to add it to.

Addition with Carrying continued

Example C

$45+37+69=$

Step 1	Step 2
2	2
45	45
37	37
$+\quad 69$	$+\quad 69$
$\mathbf{1 5 1}$	

Step 1: Add the ones. 5 ones +7 ones +9 ones $=21$ ones
Rename 21 ones as $\mathbf{2}$ tens and $\mathbf{1}$ one. Write the $\mathbf{1}$ one in the sum under the ones column and carry the 2 tens to the tens column.

Step 2: Add the tens. 2 tens +4 tens +3 tens +6 tens $=15$ tens 15 tens is 1 hundred and 5 tens.

The 1 hundred can be written in the sum because there are no other hundreds to add it to.

Exercise 2.4a Find the sums. Check your work using the answer key. Rewrite the question to line up the place values if required. The first one a) has been done.
a)
1
62
$+18$
80
b)
46
$+37$
d) $44+26=$
e)
17
$+79$
f) 23
$+82$

Exercise 2.4a continued

Find the sums.
g) $28+91=$
h) $54+58=$
i) $68+49=$
j) $66+35=$
k) $99+88=$

1) $89+74=$
m)
37
15
$+72$
n) 55
27
$\begin{array}{r}+\quad 50 \\ \hline\end{array}$

Answers to Exercise 2.4a

a) 80	b) 83	c) 91	d) 70	e) 96	f) 105	g) 119
h) 112	i) 117	j) 101	k) 187	l) 163	m) 124	n) 132

Addition with Carrying (Large Numbers)

Use the same method for carrying when you add the large numbers. Line up the place values and add the columns of ones, tens, hundreds, thousands, ten thousands, and so on. Look at these examples:

Example A	1	11	11
$374+458=$	374	374	374
	+458		
2	+458		
32	$+\quad 458$		
832			

Step 1: Add the ones.

4 ones +8 ones $=12$ ones $=1$ ten and 2 ones
Write the $\mathbf{2}$ ones in the sum. Carry the 1 ten to the tens column.

Step 2: Add the tens.
$1+7+5=13$ tens $=1$ hundred and 3 tens. Write the $\mathbf{3}$ in the tens place. Carry the 1 hundred to the hundreds column.

Step 3: Add the hundreds.
$1+3+4$ hundred $=\mathbf{8}$ hundreds. Write 8 in the hundreds place.

			22
Example B	4974		4974
$4974+2485+6890=$	2485		2485
	+ 6890	$+$	6890
			4349

Step 1: Add the ones.
$4+5+0=9$ ones
Write 9 in the ones place. There is nothing to carry.

Step 2: Add the tens.
$7+8+9=24$ tens $=2$ hundreds +4 tens
Write 4 in the tens place and carry the 2 hundreds to the hundreds column.

Step 3: Add the hundreds.
$2+9+4+8=23$ hundreds.
Write 3 in the hundreds place and carry the 2 (2 thousands) to the thousands column.

Step 4: Add the thousands. $2+4+2+6=14$ thousands
Write a 4 in the thousands and carry the 1 (10 thousand) to the ten thousands column.

Step 5: Add the ten thousands. There is only the 1.
Write a 1 in the ten thousands column.

If the numbers were larger, this process would continue until all the digits in each of the place values have been added.

Exercise 2.4b

Find the estimate and the exact sum or answer. Check your work using the answer key. The first one a) is done.

Exact 1	Estimate	Exact	Estimate
a) 235	200	b) 306	
$\begin{array}{r}\text { a } \\ +459 \\ \hline\end{array}$	+500	$\begin{array}{r}\text { b } \\ +\quad 83 \\ \hline\end{array}$	
694	700		
Exact	Estimate	Exact	Estimate
C) 5237		d) 2846	
$\begin{array}{r} \\ +\quad 549 \\ \hline\end{array}$		$\begin{array}{r}\text { + } \\ +\quad 1437 \\ \hline\end{array}$	
Exact	Estimate	Exact	Estimate
$\text { e) } \begin{array}{r} 24642 \\ +\quad 9261 \\ \hline \end{array}$		$\text { f) } \begin{array}{r} 53196 \\ +\quad 8366 \\ \hline \end{array}$	
Exact	Estimate	Exact	Estimate
g) 4624		h) 1403	
892		179561	
$\begin{array}{r}+5923 \\ \hline\end{array}$		6349	
		+ 914	

g) 4624
$+5923$
h) 1403
179561
914
$+\quad 9$

Exercise 2.4b continued Find the estimate and the exact sum or answer. Rewrite the question to line up the place values if required. Check your work using the answer key.
i) $223+848=$
Exact Estimate
j) $1453+748=$
Exact
Estimate
k) $4180+1264+341=$
Exact Estimate
l) $31453+51262+6999=$ Exact

Estimate
m) $\underset{\text { Exact }}{6795}+\underset{\text { Estimate }}{215+446+20}=\quad$ n) $99999+999+9999=$

Answers to Exercise 2.4b (est means estimate)

a) 694; est $200+500=700$
b) 389 ; est $300+80=380$
c) 5786 ; est $5000+500=5500$
d) 4283 ; est $3000+1000=4000$
e) 33 903; est $20000+9000=29000$
f) 61562 ; est $50000+8000=58000$
g) 11439 ; est $5000+900+6000=11900$
h) 188 227; est $1000+200000+6000+900=207900$
i) 1071 ; est $200+800=1000$
j) 2201 ; est $1000+700=1700$
k) 5785 ; est $4000+1000+300=5300$

1) 89714 ; est $30000+50000+7000=87000$
m) 104476 ; est $7000+100000+400+20=107420$
n) 110997 ; est $100000+1000+10000=111000$

2.4 Review - Addition with Carrying

A. Find the sums. Be sure to check your answers.
Aa) 85
$\begin{array}{r}85 \\ +\quad 57 \\ \hline\end{array}$
b) 94
$\begin{array}{r}+\quad 26 \\ \hline\end{array}$
c) 982
$\begin{array}{r}+743 \\ \hline\end{array}$
d) 829
$\begin{array}{r}\text { d } \quad 303 \\ \hline\end{array}$
e) 7834
$\begin{array}{r}+\quad 2169 \\ \hline\end{array}$
f) 5976
$\begin{array}{r}+\quad 2081 \\ \hline\end{array}$

g) 46940
\(\begin{array}{r}46502
+86
\hline\end{array}\)

h) 41801
$+39199$
i) 3742

4108
$\begin{array}{r}+\quad 7336 \\ \hline\end{array}$

j) 12350
17629
\(\begin{array}{r}176244
+2324
\hline\end{array}\)

k) 352641
432629
$+720250$
l) $\begin{array}{r}18060 \\ 62549 \\ 1375 \\ +\quad 399 \\ \hline\end{array}$
B. Rewrite the question to line up the place values if required. Then estimate and find the exact sum of these numbers.
a) $74+32+67+85=$
Exact
Estimate
b) $721+78462+968+99=$ Exact Estimate
c) $389+82517+2=$

Exact
Estimate

Answers to 2.4 Review - Addition with Carrying

A a) 142	b) 120	c) 1725	d) 1132	e) 10003
f) 8057	g) 133442	h) 81000	i) 15186	j) 53223
k) 1505520	l) 82383			
B a) 258 ; est $70+30+70+90=260$				
b) 80250 ; est $700+80000+1000+100=81800$				
c) 82908 ; est $400+80000+0=80400$				

2.5 Word Problems - Addition

The problem solving skills we learn in math can be very useful to help us solve problems we have in our day-to-day lives. To solve a problem, it is a good idea to have a plan. Consider the steps below for solving word problems.

Watch for key words when you are solving addition word problems.

> sum - the answer in an addition problem
> total - the whole amount
> all together - everything is included in total
> how much - adding amounts together
> combine - to bring together in a group
> join - to add or attach together
> accumulate - to gather or collect
> how many - to add numbers together

Problem Solving Steps

Step 1: Read the problem.
Step 2: List the information you found.
Step 3: Use key words to decide what you have to find out.
Step 4: Solve the problem.
Step 5: Does your answer make sense?
Step 6: Write your answer in a sentence.

Word Problems continued

Example A David purchased three items at a store which cost \$134, \$16 and $\$ 7$. How much did David pay for the three items all together?

The key word is all together which means to add.

David paid $\$ 157$ all together for the three items.

Example B The football team travelled 155 kilometres to their first game and 35 kilometres to their second game. How many kilometres did the football team travel in total?

The key words how many and in total means to add.

$155 \mathrm{~km}+35 \mathrm{~km}=$| 155 |
| ---: |
| $+\quad 35$ |

The football team travelled 190 kilometres in total.

Writing the answer in a sentence

To write the answer in a sentence, go back to the word problem and read the question again. Start writing your answer with words from the question. There is more than one way to write the answer in the sentence.

In Example A, the question asks:
How much did David pay for the three items all together?
David paid $\$ 157$ all together for the three items.

Example B, the question asks:
How many kilometres did the football team travel in total?
The football team travelled \qquad 90 kilometres in total.

Exercise 2.5

Solve each word problem. Give your answer in a sentence. Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) Attendance at the community picnic was 78 adults and 127 children. What was the combined number of people attending the picnic?
b) Andrea collects books for her bookstore. In January, she gathered 210. In February, she collected 165, and in March she added 137. How many books did she accumulate in those three months?
c) The floor space of an office is 126 square metres at the entrance and 1865 square metres in the work area. How many square metres is the whole office?
d) The population of Calgary at the end of 2012 was 1120225 . In 2013, the population increased by 29327 people. What was the population of Calgary by the end of 2013? (City of Calgary census)

Solve each word problem. Give your answer in a sentence. Check your work using the answer key.
e) In July, Robert earned $\$ 1987$ over Stampede week. For the remainder of the month, he earned another \$865. How much money in total did Robert earn in July?
f) The table below shows the average annual of precipitation (rain and snow) for the locations in Alberta. What is the total for Calgary, Red Deer and Edmonton combined? (Currentresults.com)

Place	Millimetres
Banff	470
Calgary	419
Edmonton	456
Jasper	393
Lloydminster	409
Red Deer	486

g) Linda studied for three hours on Monday, four hours on Tuesday, seven hours on Saturday and 10 hours on Sunday. How many hours did Linda study on those four days?

Exercise 2.5 continued

h) The daily sales for the week at Acme Printing Company are shown in the table below. What were the total sales for the days shown?

	Sales
Monday	$\$ 1204$
Tuesday	$\$ \quad 582$
Wednesday	$\$ 2987$
Thursday	$\$ \quad 127$
Friday	$\$ 1098$

Answers to Exercise 2.5- Word Problems

a) $78+127=205$ Two hundred five (205) people attended the picnic.
b) $210+165+137=512$ Andrea collected 512 books.
c) $126+1865=1991$ The office is 1991 square metres.
d) $1120225+29327=1149552$

The population of Calgary at the end of 2013 was 1149552.
e) $1987+865=2852$ Robert earned $\$ 2852$ in July.
f) $419+456+486=1361$ The combined total is 1361 millimetres of precipitation.
g) $3+4+7+10=24 \quad$ Linda studied for 24 hours over four days.
h) $1204+582+2987+127+1098=5998$

The total sales for the days shown is $\$ 5998$.

The Unit 2 Review for Addition is at the end of Unit 3 Subtraction.

Unit 3: Subtraction

3.1 Subtraction

Subtraction takes away an amount from another amount.
The answer or result of subtraction is called the difference.

The minus sign - means to subtract.

says nine minus three equals six or nine take away three is six

Subtraction is the opposite of addition. Look at these examples:

$$
\begin{array}{ll}
9-4=5 & 5+4=9 \\
9-5=4 & 4+5=9
\end{array}
$$

$$
\begin{array}{rr}
11 & 8 \\
-\quad 3 & +3 \\
\hline 8 & 11 \\
11 & 3 \\
-\quad 8 & +\quad 8 \\
\hline 3 & 11
\end{array}
$$

Exercise 3.1a
Find the difference. Check your work using the answer key. The first one a) is done for you.
a) $\begin{array}{r}5 \\ -\quad 2 \\ \hline 3\end{array}$
b) $\begin{array}{r}9 \\ -1 \\ \hline\end{array}$
c) $\begin{array}{r}12 \\ -\quad 4 \\ \hline\end{array}$
d) $\begin{array}{r}4 \\ -\quad 2 \\ \hline\end{array}$
e)

$$
\begin{array}{r}
17 \\
-\quad 7
\end{array}
$$

f) $\begin{array}{r}2 \\ -\quad 1 \\ \hline\end{array}$
g) 11 -9
h) 7
-7
i) $\begin{array}{r}14 \\ -\quad 6 \\ \hline\end{array}$
i) $\begin{array}{r}16 \\ -\quad 9 \\ \hline\end{array}$
k) $\begin{array}{r}9 \\ -\quad 3 \\ \hline\end{array}$
l) $\begin{array}{r}8 \\ -\quad 1 \\ \hline\end{array}$

$$
\begin{aligned}
& \text { m) } \\
& \\
& \\
& \\
& \\
& \\
& \\
& \text { q) } \\
& \\
& \\
& \\
& \\
& \hline
\end{aligned}
$$

n) 14
o) $\begin{array}{r}10 \\ -\quad 5 \\ \hline\end{array}$
p) $\begin{array}{r}15 \\ -\quad 8 \\ \hline\end{array}$
r) $\begin{array}{r}13 \\ -5 \\ \hline\end{array}$
s) $\begin{array}{r}6 \\ -\quad 5 \\ \hline\end{array}$
t) $\begin{array}{r}5 \\ -\quad 0 \\ \hline\end{array}$

Answers to Exercise 3.1a
a) 3
b) 8
c) 8
d) 2
e) 10
f) 1
g) 2
h) 0
i) $8 \quad$ j) 7
k) 6
l) 7
m) 9
n) 6
o) 5
p) 7
q) $3 \quad$ r) 8
s) $1 \quad$ t) 5

Subtraction of Larger Numbers

When finding the difference between larger numbers, line up the corresponding place values. Subtract the number after the minus sign from the first number.

Step 1: Subtract the ones from the ones.
Step 2: Subtract the tens from the tens.
Step 3: Subtract the hundreds from the hundreds.

Step 4: Subtract the thousands from the thousands.

Step 5: Subtract the ten thousands from the ten thousands and so on.

Example A 257 - $26=$

Line up the place values beginning at the right.
Step 1: Subtract the ones from the ones. 7 ones -6 ones $=\mathbf{1}$ one
257
-26
1 Write the answer 1 in line with the ones place.

Step 2: Subtract the tens. 5 tens -2 tens $=3$ tens

31 Write the answer 3 in line with the tens place.

Step 3: Subtract the hundreds. 2 hundreds -0 hundreds $=2$ hundreds

231 Write the answer 2 in line with the hundreds place.

The difference between 257 and 26 is 31 .

Exercise 3.1b
Find the differences. Check your work using the answer key. Rewrite the question to line up the place values if required. The first one a) is done for you.
a)

36
$-\quad 4$
32

b) $\begin{array}{r}72 \\ -\quad 2 \\ \hline\end{array}$
c) $\begin{array}{r}48 \\ -\quad 22 \\ \hline\end{array}$
d) $55-3=$
e)
73
-40
f) $\begin{array}{r}76 \\ -71 \\ \hline\end{array}$
g) 195

h) $39-25=$
i)

j) $\begin{array}{r}285 \\ -\quad 64 \\ \hline\end{array}$

k) 698 | -173 |
| :--- |

m)
$\begin{array}{r}86 \\ -\quad 50 \\ \hline\end{array}$
n) 95
-35
o) 28 -17
p) $468-5=$

Exercise 3.1b continued

q)
$\begin{array}{r}840 \\ -\quad 40 \\ \hline\end{array}$
r) $\begin{array}{r}766 \\ -\quad 500 \\ \hline\end{array}$
s) $\begin{array}{r}8628 \\ -8513 \\ \hline\end{array}$
t) $8954-531=$
u) $\begin{array}{r}48739 \\ -\quad 616 \\ \hline\end{array}$
v) 98562
w) $\begin{array}{r}89528 \\ -61017 \\ \hline\end{array}$

Answers to Exercise 3.1b

a) 32	b) 70	c) 26	d) 52	e) 33
f) 5	g) 133	h) 14	i) 461	j) 221
k) 525	l) 112	m) 36	n) 60	o) 11
p) 463	q) 800	r) 266	s) 115	t) 8423
u) 48123	v) 95561	w) 28511	x) 12705	

3.2 Checking Subtraction

You can check your subtraction using addition. Add the answer (the difference) to the number you took away (the second number). If your subtracting was correct, the result of addition will be the number you started with (the top number) in the subtraction question.
Example A

8
$-\quad 6$
2

To check using addition, add 2 to 6 to ensure you get back to 8 .

Example B

 975- 21
$954 \quad 954$ is the difference

To check using addition, add 954 to 21 to get back to 975

954
$+21$
975

Exercise 3.2
Find the difference. Then use addition to ensure your answer is correct. The first one a) is done for you.

Check
Check
a)

25	12
-13	
12	+13
25	

b) 84 -30

Check Check
c) $\quad 975$
-21
d) 863 -701

Check

,

f) 85374
-2312

Answers to Exercise 3.2

a) $12 \quad 12+13=25$
b) $54 \quad 54+30=84$
c) $954 \quad 954+21=975$
d) $162 \quad 162+701=863$
e) $5141 \quad 5141+832=5973$
f) $83062 \quad 83062+2312=85374$

3.1-3.2 Review: Subtraction

A. Find the differences. Be sure to check your answers.
a)
39
-18
b)
58
c) $72-60=$
d)
49
e) 64
f) $85-4=$
-23
-10
B. Find the differences. Be sure to check your answers.
a) 896
-385
b)
698
c) $399-22=$
d)

$$
467
$$

-124
e)
752
-231
f) $497-34=$

C. Find the differences. Be sure to check your answers.

a)
8627
$\begin{array}{r}-\quad 323 \\ \hline\end{array}$
b) 9875
c) $9751-340=$
d) 34859

- 1336
e) 37698
-12540

Answers to $\mathbf{3 . 1} \mathbf{- 3 . 2}$ Review - Subtraction					
A a) 21	b) 34	c) 12	d) 26	e) 54	f) 81
Ba) 511	b) 237	c) 377	d) 343	e) 521	f) 463
Ca) 8304	b) 624	c) 9411	d) 33523	e) 25158	f) 96320

3.3 Subtraction with Borrowing

When you subtract, you may have to borrow from another place value to ensure you have enough. The number you are taking away may be larger than the top digit in that same column. So, you must borrow from the column on the left.

Step 1: 3 ones minus 8 ones cannot be done

Borrow one ten and rename it as ten ones. Add the ten ones to the three ones.

2 hundreds

13 ones

Now you can subtract: 13 ones -8 ones = $\mathbf{5}$ ones

Step 2: Subtract the tens. 3 tens -2 tens = $\mathbf{1}$ ten

Step 3: Subtract the hundreds. 2 hundreds - 1 hundred = 1 hundred

$$
243-128=115
$$

Subtraction with Borrowing continued

Example B
350
410

- 124 350
- 124

226

Step 1: 0 ones minus 4 ones cannot be done

Borrow one ten and rename it as ten ones.

Now you can subtract 10 ones -4 ones $=6$ ones
Step 2: Subtract the tens. 4 tens -2 tens = 2 tens

Step 3: Subtract the hundreds. 3 hundreds - 1 hundred = 2 hundreds

$$
350-124=226
$$

Subtraction with Borrowing continued

Use this same method of borrowing when you subtract the hundreds, thousands, ten thousands and so on.

Step 1: Subtract the ones. 4 ones minus 5 ones cannot be done
Borrow 1 ten from the 2 tens
Now you can subtract 14 ones -5 ones =9 ones
Step 2 Subtract the tens. You used to have 2 tens but now only have 1 ten. 1 ten -1 ten $=0$ tens

Step 3: Subtract the hundreds.
6 hundreds - 8 hundreds cannot be done
Borrow 1 thousand from the 3 thousands
Now you can subtract 16 hundreds -8 hundreds $=\mathbf{8}$ hundreds
Step 4: Subtract the thousands. You used to have 3 but now only have 2.
2 thousands - 0 thousands $=\mathbf{2}$ thousands
$3624-815=2809$

Example D

with zeros
$\begin{array}{r}2000 \\ -\quad 815 \\ \hline\end{array}$

When there are as many zeros as there are in 2000, before you begin to subtract you have to borrow from the 2 thousands and then work your way back to the ones place.

Borrow from the 2 thousands (which becomes 1 thousand), hundreds become 10, then borrow from the 10 hundreds (which becomes 9 hundreds). You then have 10 tens. Borrow from the 10 tens (which becomes 9 tens) and you are left with 10 ones.

You will have enough ones, tens, and hundred from which to subtract 815.

Exercise 3.3
a)

213
 $\begin{array}{r}3 \beta \\ -\quad 7 \\ \hline 26\end{array}$

b) 82
-45
c) 37
d) $28-9=$
e)

$$
\begin{array}{r}
63 \\
-\quad 7 \\
\hline
\end{array}
$$

f) 54
g) 25
-7
i)
$\begin{array}{r}45 \\ -\quad 17 \\ \hline\end{array}$
j)
$\begin{array}{r}40 \\ -\quad 28 \\ \hline\end{array}$
k)
45 -29
l) $60-22=$

$$
\text { m) } \begin{array}{r}
445 \\
-\quad 26 \\
\hline
\end{array}
$$

n) 200
-34
o) 736
-47
p) $744-179=$

Find the difference. You may need to borrow. Check your work using the answer key. The first one a) is done for you.

Exercise 3.3 continued Find the difference. Then use addition to ensure your answer is correct. The first one a) is done for you.

Check
Check
u)
44610
$\begin{array}{r}-13071 \\ \hline\end{array}$

Answers to Exercise 3.3

a) 26	b) 37	c) 28	d) 19	e) 56	f) 49
g) 18	h) 78	i) 28	j) 12	k) 16	l) 38
m) 419	n) 166	o) 689	p) 565		
q) 638	$638+109=747$		r) 3785	$3785+215=400$	
s) 1806	$1806+834=2640$		t) 4811	$4811+1942=6753$	
u) 31539	$31539+13071=44610$	v) 18665	$18665+9578=28243$		

3.4 Estimating Answers in Subtraction

You have learned how to round numbers. Now you can use that skill in rounding numbers to find an approximate difference by estimating using front-end rounding. Estimating is used to come up with a quick answer.

In front-end rounding, the number is rounded to the highest place (or the place value most left) and all the digits to the right of that place become zeros.

In these examples, the exact numbers have been front-end rounded and then the difference for the estimates are provided.

Example A	$\mathbf{4 7}$	rounds to	50		
$-\quad 26$				\quad rounds to	-30
---:					

Example B \begin{tabular}{r}
$\mathbf{8 7 0}$

$-\mathbf{3 4 2}$

\quad

rounds to

\end{tabular}

Example C \begin{tabular}{rr}

24397 \& rounds to | 20000 |
| ---: |
| -6148 |

\& rounds to $\frac{-6000}{14000}$
\end{tabular}

Example D

What would a quick estimate be of your closing bank balance if your opening balance was $\$ 1125$ and you spent $\$ 89$ and $\$ 767$.

Round up the values given.	$\$ 1125$ becomes	$\$ 1000$	
	$\$ \quad 89$ becomes	$\$$	90
	$\$ \quad 767$ becomes	$\$ 800$	

Your bank balance would be approximately $\$ 100$.

$$
\begin{aligned}
& 1000-(100+800)=\$ 100 \\
& 1000-900=\$ 100
\end{aligned}
$$

Exercise 3.4

3.5 Word Problems - Subtraction

The problem solving skills we learn in math can be very useful to help us solve problems we have in our day-to-day lives. To solve a problem, it is a good idea to have a plan. Consider the steps below for solving word problems.

Watch for key words when you are solving subtraction word problems.

```
difference - the answer in a subtraction problem
how much more
how many more
how many fewer
find the increase
find the decrease
```


Problem Solving Steps

Step 1: Read the problem.
Step 2: List the information you found.
Step 3: Use key words to decide what you have to find out.
Step 4: Solve the problem.
Step 5: Does your answer make sense?
Step 6: Write your answer in a sentence.

Word Problems continued

Example A On Tuesday, a coffee shop had sales of \$8526. On Wednesday, the same coffee shop had sales of $\$ 6312$. What was the difference between Tuesday's sales and Wednesday's sales?

The key word is difference which means to subtract.
$\$ 8526-\$ 6312=\quad 8526$
-6312
The difference between Tuesday's and Wednesday's sales was \$2214.

Example B The football team travelled 155 kilometres to their first game and 35 kilometres to their second game. How many more kilometres did the football team travel to their first game than their second?

The key word is how many more which means to subtract.

The football team travelled 120 more kilometres to their first game than their second game.

Writing the answer in a sentence

To write the answer in a sentence, go back to the word problem and read the question again. Start writing your answer with words from the question. There is more than one way to write the answer in the sentence.

In Example A, the question asks:
What was the difference between Tuesday's sales and Wednesday's sales?
The difference between Tuesday's and Wednesday's sales was $\$ 2214$.

In Example B, the question asks:
How many more kilometres did the football team travel to their first game than to their second game?
The football team travelled \qquad 120 kilometres more to their first game than their second game.

Exercise 3.5

Solve each word problem. Give your answer in a sentence. Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) Attendance at the community picnic was 78 adults and 127 children. What was the difference between the number of adults attending and the number of children attending?
b) Andrea collects books for her bookstore. In January, she gathered 210. In February, she collected 165. How many more books did she gather in January than in February?
c) The floor space of an office is 1991 square metres in total. If the entrance is 126 square metres, how much area remains for the work area?
d) The population of Calgary at the end of 2012 was 1120225 . In 2013, the population was 1149 552. By how much did the population increase between 2012 and 2013? (City of Calgary census)

Solve each word problem. Give your answer in a sentence. Check your work using the answer key.
e) In July, Robert earned $\$ 2852$. He had to pay $\$ 485$ in deductions (taken off). How much money did Robert earn after deductions in July?
f) The table below shows the average annual of precipitation (rain and snow) for the locations in Alberta. How many fewer millimetres of precipitation occur in Jasper than in Banff? (Currentresults.com)

Place	Millimetres
Banff	470
Calgary	419
Edmonton	456
Jasper	393
Lloydminster	409
Red Deer	486

g) Linda has purchased a computer for $\$ 836$. She has paid $\$ 250$ so far. How much money does she still have to pay on the computer?

Exercise 3.5 continued

h) The daily sales for the week at Acme Printing Company are shown in the table below. What is the difference between the day with the greatest sales and the day with the least sales?

	Sales
Monday	$\$ 1204$
Tuesday	$\$ 582$
Wednesday	$\$ 2987$
Thursday	$\$ 127$
Friday	$\$ 1098$

Answers to Exercise 3.5-Word Problems

a) $127-78=49$ There were 49 more children than adults at the picnic.
b) 210-165 = 45 Andrea collected 45 more books in January.
c) $1991-126=1865$ There is 1865 square metres remaining for the work space.
d) $1149552-1120225=29327$

The population of Calgary increased by 29327 between 2012 and 2013.
e) $2852-485=2367$ After deductions, Robert earned $\$ 2367$ in July.
f) Banff (470) less Jasper (393) $470-393=77$

Jasper has 77 millimetres less precipitation than Banff.
g) $836-250=586$ Linda owes $\$ 586$ on the computer.
h) Greatest sales Wednesday $\$ 2987$ Least sales Thursday $\$ 127 \quad 2987-127=2860$ The difference in sales between the greatest and least sales days is $\$ 2860$.

Unit 2 and Unit 3 Review - Addition \& Subtraction

A. Find the sums. Check your work using the answer key at the end of the review.
a) $\begin{array}{r}23 \\ +\quad 35 \\ \hline\end{array}$
d)

823
237
$\begin{array}{r}+42 \\ \hline\end{array}$
e) 345
735
$\begin{array}{r}+70 \\ \hline\end{array}$
b)
147
c) $\begin{array}{r}62 \\ +56 \\ \hline\end{array}$
f) 416

588
$+204$
g) $\begin{array}{r}2548 \\ +\quad 470 \\ \hline\end{array}$
h) 10457
104166
$+\quad$
i) 18862
$\begin{array}{r}+56149 \\ \hline\end{array}$

B. Find the exact answer and the estimates.

 Rewrite the addition problems in a column for solving.a) $45+104=$ Exact Estimate
b) $523+364=$
Exact
Estimate
c) $5231+346=$ Exact Estimate
d) $4661+2138=$ Exact Estimate
e) $\underset{\text { Exact }}{42+707}+\underset{\text { Estimate }}{350}=$
f) $63613+45165=$
g) $22714+43267+1102=$

Exact
Estimate
h) $\underset{\text { Exact }}{72} 510+4127+\underset{\text { Estimate }}{13041=}$
C. Use the problem solving steps to estimate the following answers and then solve for the exact answer. Give your exact answer in a sentence.
a) The Plumbers' Union has 456 members. The Carpenters' Union has 875 members. The Electricians' Union has 1394 members. How many members do these three unions have all together?
b) Last year Sam shipped 42169 orders from his warehouse. So far this year, Sam has shipped 5837 orders. What was the total number of orders shipped last year and this year?
c) Amy has driven 22576 kilometres, 38342 kilometres and 14208 kilometres in the last three years. In total, how many kilometres has Amy driven in the last three years?

Answers to Unit 2 Review - Addition (est means estimate)

A a) 58
b) 221
c) 118
d) 1102
e) 1150
f) 1208
g) 3018
h) 13623
i) 75011
B a) 149 est $50+100=150$
b) 887 est $500+400=900$
c) 5577 est $5000+300=5300$
d) 6799 est $5000+2000=7000$
e) 1099 est $40+700+400=1140$
f) 108778 est $60000+50000=110000$
g) 67083 est $20000+40000+1000=61000$
h) 89678 est $70000+4000+10000=84000$

C a) $456+875+1394=2725 \quad$ est $500+900+1000=2400$
The three unions have 2725 members in total.
b) $42169+5837=48006$ est $40000+6000=46000$

Sam shipped 48006 orders in total last year and this year.
c) $22576+38342+14208=75126$ est $20000+40000+10000=70000$ Amy drove 75126 kilometres in the last three years.

Unit 3 Review - Subtraction

D. Find the difference. Check your work using the answer key at the end of the review.
a)
76
-35
c) $5546-432=$
b)
) 686
-271
d) 823
e) 345
f) $416-204=$
-42
-70
g) 1000
-436
h) 345398
$\begin{array}{r}-\quad 26737 \\ \hline\end{array}$
i) $134529-3894=$
E. Find the exact answer and check your answer through addition. Rewrite the subtraction problems in a column for solving.
a) $\underset{\text { Exact }}{45-19=}$ Check
b) $523-364=$
Exact Check
c) $5231-346=$ Exact Check
d) $54661-25138=$ Exact Check

Find the exact answer and the estimates.
Rewrite the subtraction problems in a column for solving.
e) $707-350=$
Exact Estimate
f) $63613-\underset{\text { Exact }}{65165=}$
g) $40000-1102=$
h) $672510-94127=$
Exact Estimate Exact Estimate
F. Use the problem solving steps to estimate the following answers and then solve for the exact answer. Give your exact answer in a sentence.
a) The Carpenters' Union has 875 members. The Electricians' Union has 1394 members. How many more members are there in the Electricians' Union than the Carpenters' Union?
b) Last year Sam shipped 42169 orders from his warehouse. So far this year, Sam has shipped 5837 orders. What was the difference between last year's shipments and this year's shipments to date?
c) Amy has driven 22576 kilometres in 2013 and 38342 kilometres in 2014. In which year did she drive more and by how many kilometres?

The problems below require the use of either addition or subtraction or may require the use of both addition and subtraction. Apply the skills you have learned in Units 2 and 3 to solve each question.
d) Last Friday, 1259 children and 339 parents went to the hockey game. How many children and parents were at the game?
e) The Laerdal Tunnel in Norway is the longest road tunnel in the world. It is 24510 metres long. The Zhongnanshan Tunnel in China is the second longest road tunnel in the world. It is 18040 metres long. How much longer is the Laerdal Tunnel?
f) Lin bought school clothes for her children. She spent $\$ 46$ at the department store, $\$ 40$ at the shoe store and $\$ 78$ at the discount store. How much did Lin spend altogether?
g) A truck weighed 4267 kilograms when loaded with dirt. When the truck is empty it weighed 2189 kilograms. How much did the dirt weigh?

These questions have both addition and subtraction in them.
Find the answer for each question.
h) $776+634-478=$
j) $7413-249+382=$
i) $3714-819+496=$
k) $6415+5829-1756=$

These word problems have both addition and subtraction in them. They require more than one step. Find the answer for each question.

1) Two weeks ago, Van opened a new bank account and deposited $\$ 295$. He paid $\$ 146$ for his gas bill from his account. Van then deposited $\$ 1632$ in his account. How much money is in his account?
m) Michael has 1532 metres of fencing. He wants to fence his garden which measures 253 metres long on both sides and 187 metres wide on both sides. Does he have enough fencing? How much fencing will be left over?

Answers to Unit 3 Review - Subtraction (est means estimate)

D a) 41
b) 415
c) 5114
d) 781
e) 275
f) 212
g) 564
h) 318661
i) 130635

E a) 26 check $19+26=45$
b) 159 check $159+364=523$
c) 4885 check $4885+346=5231$
d) 29523 check $29523+25138=54661$
e) 357 est $700-400=300$
f) 18448 est $60000-50000=10000$
g) 38898 est $40000-1000=39000$
h) 578383 est $700000-90000=610000$

F a) $1394-875=519 \quad$ est $1000-900=100$
The Electricians' Union has 519 more members than the Carpenters' Union.
b) $42169-5837=36332$ est $40000-6000=34000$

The difference between last year's shipments and this year's shipments to date is 36332 .
c) $38342-22576=15766$ est $40000-20000=20000$

Amy drove more in 2014. She drove 15766 kilometres more in 2014 than in 2013.

Answers to Addition and Subtraction

d) $1259+339=1598$ There were 1598 children and parents at the game.
e) $24510-18040=6470$ The Laerdal Tunnel is 6470 metres longer than the Zhongnanshan Tunnel.
f) $46+40+78=164 \quad$ Lin spent $\$ 164$.
g) $4267-2189=2078$ The dirt weighed kilograms.
h) 932
i) 3391
j) 7546
k) 10488
l) $295-146+1632=1781$ Van has $\$ 1781$ in his account.
m) length $253 \times 2=506$ width $287 \times 2=374$ Fencing required for entire garden is $506+374=880$.

Michael has 1532 metres of fencing and needs 880 metres. So, yes he has enough fencing. $1532-880=652$ He will have 652 metres left over.

Unit 4: Multiplication
 4.1 Multiplication Facts

Multiplication is repeated addition. It is a fast way to add up groups of the same number.
The times sign $\quad x \quad$ means to multiply.

How many groups are there? 4

4 groups of 3 stars is 12

This can be written as a multiplication equation.

$$
4 \times 3=12 \text { stars }
$$

Reads four times three equals twelve or four groups of three is twelve

How many groups are there? 5

5 groups of 2 stars is 10
This can be written as a multiplication equation.
$5 \mathrm{x} 2=10$ stars

Reads five times two equals ten or five groups of two is ten

Multiplication Facts continued

The answer in multiplication is called the product.
The numbers that are multiplied together are called factors.

A multiplication problem can be written side by side or in a column.

$$
4 \times 3=12 \quad 4
$$

$\times 3$
12

The product is 12 .
The factors are 4 and 3.
$5 \times 2=10$
5
5
$\times 2$
10
The product is 10 .
The factors are 5 and 2.

Try writing this multiplication fact in a column.
$7 \times 6=42$

The product is \qquad .

The factors are \qquad and \qquad .

nple	
$7 \times 6=42$	7
	+ 6
	42
The product is 42.	

Exercise 4.1a

For each drawing, write the addition equation and find the total. Then write the multiplication equation for same drawing and find the product. Check your work using the answer key.

	Drawing	Addition Equation	Multiplication Equation
a)	(ㅇ) $(\cdot) ;() ;() ;()$ ㅇㅇ (); © ; ;	$4+4+4=12$	$3 \times 4=12$
b)	000000000000		
c)			
d)	 		
e)	* * * * * * * * $\star \star \star \star \star \star \star \star$ $\star \star \star \star \star t \star t$		
f)	$\bullet \bullet \bullet \quad \bullet \bullet \bullet$		
g)			

Answers to Exercise 4.1a

a) $4+4+4=12$
$3 \times 4=12$
b) $6+6=12$
$2 \times 6=12$
c) $3+3+3+3+3=15 \quad 5 \times 3=15$
d) $5+5+5+5=20$
$4 \times 5=20$
e) $8+8+8+8=32$
$4 \times 8=32$
f) $3+3+3=9$
$3 \times 3=9$
g) $2+2+2+2+2+2+2+2+2+2+2=22 \quad 11 \mathrm{x} \quad 2=22$

Multiplication Facts continued

0 times tables
0
zero times any number $=0$
$0 \times 0=0$
$1 \times 0=0$
$2 \times 0=0$
$3 \times 0=0$
$5 \times 0=0$
$6 \times 0=0$
$7 \times 0=0$
$8 \times 0=0$
$9 \times 0=0$
$10 \times 0=0$

Memorize the multiplication facts.

Multiplication Facts continued

1 times tables

1 x any number $=$ that number
one times any number will always equal that number

$1 \times 0=0$
$1 \times 1=1$
$1 \times 2=2$
$1 \times 3=3$
$1 \times 4=4$
$1 \times 5=5$
$1 \times 6=6$
$1 \times 7=7$
$1 \times 8=8$
$1 \times 9=9$
$1 \times 10=10$

Memorize the multiplication facts.

Multiplication Facts continued

2 times tables

The answer of any number times 2 will be even.

$2 \times 0=0$
$2 \times 1=2$
$2 \times 2=4$
$2 \times 3=6$
$2 \times 4=8$
$2 \times 5=10$
$2 \times 6=12$
$2 \times 7=14$
$2 \times 8=16$
$2 \times 9=18$
$2 \times 10=20$

Practice counting by 2 s
$\begin{array}{lllllllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16 & 18 & 20\end{array}$

Memorize the multiplication facts.

Multiplication Facts continued

3 times tables

$3 \times 0=0$
$3 \times 1=3$
$3 \times 2=6$
$3 \times 3=9$
$3 \times 4=12$
$3 \times 5=15$
$3 \times 6=18$
$3 \times 7=21$
$3 \times 8=24$
$3 \times 9=27$
$3 \times 10=30$

Practice counting by 3s
$\begin{array}{lllllllllll}0 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 27 & 30\end{array}$

Memorize the multiplication facts.

Exercise 4.1b
a) $\begin{array}{r}2 \\ \times 2 \\ \hline\end{array}$
b) 3
3
\times
c) $\begin{array}{r}1 \\ \underline{4} 4\end{array}$
d) 0
x 1
e) $\begin{array}{r}1 \\ \times 7 \\ \hline\end{array}$
f) $\begin{array}{r}2 \\ \times 3 \\ \hline\end{array}$
g) $\begin{array}{r}0 \\ \times 4 \\ \hline\end{array}$
h) $\begin{array}{r}3 \\ \times 1 \\ \hline\end{array}$
i) 3
j) $\quad 1$
k) 4

1) $\begin{array}{r}2 \\ \times 5 \\ \hline\end{array}$
m) $\begin{array}{r}3 \\ \times 5\end{array}$
n) $\begin{array}{r}0 \\ \times 7\end{array}$
o) $\begin{array}{r}2 \\ \times 4 \\ \hline\end{array}$
p) $\begin{array}{r}1 \\ \times \underline{9}\end{array}$
q) $\begin{array}{r}1 \\ \times 1\end{array}$
r) $\begin{array}{r}2 \\ \times 1 \\ \hline\end{array}$
s) $\begin{array}{r}0 \\ \times 3 \\ \hline\end{array}$
t) $\begin{array}{r}3 \\ \times 2 \\ \hline\end{array}$
u) $\begin{array}{r}3 \\ \times 9\end{array}$
v) $\begin{array}{r}1 \\ \times 10 \\ \hline\end{array}$
w) $\begin{array}{r}2 \\ \times 8\end{array}$
x) $\begin{array}{r}3 \\ \times 7 \\ \hline\end{array}$

Answers to Exercise 4.1b

a) 4	b) 9	c) 4	d) 0
e) 7	f) 6	g) 0	h) 3
i) 12	j) 8	k) 12	l) 10
m) 15	n) 0	o) 8	p) 9
q) 1	r) 2	s) 0	t) 6
u) 27	v) 10	w) 16	x) 21

Multiplication Facts continued

4 times tables

$4 \times 0=0$
$4 \times 1=4$
$4 \times 2=8$
$4 \times 3=12$
$4 \times 4=16$
$4 \times 5=20$
$4 \times 6=24$
$4 \times 7=28$
$4 \times 8=32$
$4 \times 9=36$
$4 \times 10=40$

Practice counting by 4 s
$\begin{array}{lllllllllll}0 & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 & 36 & 40\end{array}$

Memorize the multiplication facts.

Multiplication Facts continued

5 times tables

Any number times 5 will end in a 5 or 0 .

$5 \times 0=0$
$5 \times 1=5$
$5 \times 2=10$
$5 \times 3=15$
$5 \times 4=20$
$5 \times 5=25$
$5 \times 6=30$
$5 \times 7=35$
$5 \times 8=40$
$5 \times 9=45$
$5 \times 10=50$

Practice counting by 5 s

0	5	10	15	20	25	30	35	40	45	50

Memorize the multiplication facts.
The answers (products) for 5 times an odd number will end in a 5 . $5 \times 1=5 \quad 5 \times 3=15 \quad 5 \times 5=25 \quad 5 \times 7=35 \quad 5 \times 9=45$

The answers (products) for 5 times an even number will end in a 0 . $5 \times 0=0 \quad 5 \times 2=10 \quad 5 \times 4=20 \quad 5 \times 6=30 \quad 5 \times 8=40 \quad 5 \times 10=50$

Multiplication Facts continued

$6 \times 0=0$
$6 \times 1=6$
$6 \times 2=12$
$6 \times 3=18$
$6 \times 4=24$
$6 \times 5=30$
$6 \times 6=36$
$6 \times 7=42$
$6 \times 8=48$
$6 \times 10=60$
64

Practice counting by 6 s
$\begin{array}{lllllllllll}0 & 6 & 12 & 18 & 24 & 30 & 36 & 42 & 48 & 54 & 60\end{array}$

Memorize the multiplication facts.

Exercise 4.1c Find the product. This exercise includes the four to six times tables. Check your work using the answer key.
a) $\begin{array}{r}5 \\ \times 3 \\ \hline\end{array}$
b) $\begin{array}{r}6 \\ \times 7 \\ \hline\end{array}$
c) $\quad 4$
d) $\begin{array}{r}5 \\ \times 5\end{array}$
e) $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$
f) $\begin{array}{r}4 \\ \times \underline{3}\end{array}$
g) $\begin{array}{r}5 \\ \underline{\mathrm{x}} 1\end{array}$
h) $\begin{array}{r}6 \\ \underline{x} 6\end{array}$
i) $\begin{array}{r}4 \\ \times 4 \\ \hline\end{array}$
j) 5
$\underline{\times}$
k) 6
x 3

1) $\begin{array}{r}4 \\ \times 5 \\ \hline\end{array}$
m) $\begin{array}{r}5 \\ \mathbf{x} 8 \\ \hline\end{array}$
n) $\begin{array}{r}6 \\ \mathbf{x} 0 \\ \hline\end{array}$
o) $\begin{array}{r}4 \\ \times 6\end{array}$
p) $\begin{array}{r}5 \\ \underline{x} 0\end{array}$
q) $\begin{array}{r}4 \\ \underline{x} 9\end{array}$
r) $\begin{array}{r}5 \\ \mathbf{x} \\ \hline\end{array}$
s) $\begin{array}{r}6 \\ \underline{x} 8\end{array}$
t) $\begin{array}{r}4 \\ \underline{9} \\ \hline\end{array}$
u) $\begin{array}{r}6 \\ \underline{x} 4\end{array}$
v) $\begin{array}{r}4 \\ \times 8\end{array}$
w) $\begin{array}{r}5 \\ \underline{9} 9\end{array}$
x) $\begin{array}{r}6 \\ \underline{x} 9\end{array}$

Answers to Exercise 4.1c

a) 15	b) 42	c) 8	d) 25
e) 12	f) 12	g) 5	h) 36
i) 16	j) 20	k) 18	l) 20
m) 40	n) 0	o) 24	p) 0
q) 36	r) 10	s) 48	t) 36
u) 24	v) 32	w) 45	x) 54

Multiplication Facts continued

$7 \times 0=0$
$7 \times 1=7$
$7 \times 2=14$
$7 \times 3=21$
$7 \times 4=28$
$7 \times 5=35$
$7 \times 6=42$
$7 \times 7=49$
$7 \times 8=56$
$7 \times 9=63$
$7 \times 10=70$
$7 \times$
7×1

Practice counting by 7s

0	7	14	21	28	35	42	49	56	63	70

Memorize the multiplication facts.

Multiplication Facts continued

8 times tables

$8 \times 0=0$
$8 \times 1=8$
$8 \times 2=16$
$8 \times 3=24$
$8 \times 4=32$
$8 \times 5=40$
$8 \times 6=48$
$8 \times 7=56$
$8 \times 8=64$
$8 \times 9=72$
$8 \times 10=80$
8×5

Practice counting by 8s
$\begin{array}{lllllllllll}0 & 8 & 16 & 24 & 32 & 40 & 48 & 56 & 64 & 72 & 80\end{array}$

Memorize the multiplication facts.

Multiplication Facts continued

9 times tables
$9 \times 0=0$
$9 \times 1=9$
$9 \times 2=18$
$9 \times 3=27$
$9 \times 4=36$
$9 \times 5=45$
$9 \times 6=54$
$9 \times 8=72$
$9 \times 9=81$
$9 \times 10=90$
9×7
9

Practice counting by 9s
$\begin{array}{lllllllllll}0 & 9 & 18 & 27 & 36 & 45 & 54 & 63 & 72 & 81 & 90\end{array}$

Memorize the multiplication facts.

Exercise 4.1d

Find the product. This exercise includes the seven to nine times tables. Check your work using the answer key.
a) $\begin{array}{r}7 \\ \times 4 \\ \hline\end{array}$
e) 9
x 6
i) $\begin{array}{r}8 \\ \times 6 \\ \hline\end{array}$
j) $\begin{array}{r}9 \\ \times 2 \\ \hline\end{array}$
f) 7
$\begin{array}{r}\mathrm{x} 0 \\ \hline\end{array}$
g) $\begin{array}{r}8 \\ \times 8 \\ \hline\end{array}$
h) $\begin{array}{r}9 \\ \times 1\end{array}$
k) $\begin{array}{r}7 \\ \times 9 \\ \hline\end{array}$

1) $\begin{array}{r}8 \\ \times 0 \\ \hline\end{array}$
m) 9
$\underline{\times}$
n) 7
$\begin{array}{r}\mathrm{x} 7 \\ \hline\end{array}$
o) $\begin{array}{r}8 \\ \times 1 \\ \hline\end{array}$
p) $\begin{array}{r}9 \\ \times 10 \\ \hline\end{array}$
q) $\quad 7$
r) $\begin{array}{r}8 \\ \times 4 \\ \hline\end{array}$
s) $\begin{array}{r}9 \\ \times 3\end{array}$
t) $\begin{array}{r}7 \\ \times 10 \\ \hline\end{array}$
u) $\begin{array}{r}8 \\ \times 8 \\ \hline\end{array}$
v) $\begin{array}{r}9 \\ \times 5 \\ \hline\end{array}$
w) $\begin{array}{r}7 \\ \times 1\end{array}$
x) $\begin{array}{r}8 \\ \times 2\end{array}$

Answers to Exercise 4.1d

a) 28	b) 24	c) 0	d) 14
e) 54	f) 0	g) 64	h) 9
i) 48	j) 18	k) 63	l) 0
m) 36	n) 49	o) 8	p) 90
q) 35	r) 32	s) 27	t) 70
u) 64	v) 45	w) 7	x) 16

Times Table Chart

Use this times table chart to learn the multiplication facts.
Follow the steps to find an answer (product).
Example $5 \times 7=35$
Locate the 5 down the side.
Locate the 7 across the top
Follow the lines of the numbers until they intersect or come together. The product is 35 .

Times Table Chart

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27	30
$\mathbf{4}$	0	4	8	12	16	20	24	28	32	36	40
$\mathbf{5}$	0	5	10	15	20	25	30	$\mathbf{3 5}$	40	45	50
$\mathbf{6}$	0	6	12	18	24	30	36	42	48	54	60
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63	70
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72	80
$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81	90
$\mathbf{1 0}$	0	10	20	30	40	50	60	70	80	90	100

Times Tables Chart

	1	2	3	4	5	6
1	$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$	$6 \times 1=6$
2	$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$	$6 \times 2=12$
3	$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$	$6 \times 3=18$
4	$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$	$6 \times 4=24$
5	$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$	$6 \times 5=30$
6	$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$	$6 \times 6=36$
7	$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$	$6 \times 7=42$
8	$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$	$6 \times 8=48$
9	$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$	$6 \times 9=54$
10	$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$	$6 \times 10=60$
11	$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$	$6 \times 11=66$
12	$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$	$6 \times 12=72$
	7	8	9	10	11	12
1	$7 \times 1=7$	$8 \times 1=8$	$9 \times 1=9$	$10 \times 1=10$	$11 \times 1=11$	$12 \times 1=12$
2	$7 \times 2=14$	$8 \times 2=16$	$9 \times 2=18$	$10 \times 2=20$	$11 \times 2=22$	$12 \times 2=24$
3	$7 \times 3=21$	$8 \times 3=24$	$9 \times 3=27$	$10 \times 3=30$	$11 \times 3=33$	$12 \times 3=36$
4	$7 \times 4=28$	$8 \times 4=32$	$9 \times 4=36$	$10 \times 4=40$	$11 \times 4=44$	$12 \times 4=48$
5	$7 \times 5=35$	$8 \times 5=40$	$9 \times 5=45$	$10 \times 5=50$	$11 \times 5=55$	$12 \times 5=60$
6	$7 \times 6=42$	$8 \times 6=48$	$9 \times 6=54$	$10 \times 6=60$	$11 \times 6=66$	$12 \times 6=72$
7	$7 \times 7=49$	$8 \times 7=56$	$9 \times 7=63$	$10 \times 7=70$	$11 \times 7=77$	$12 \times 7=84$
8	$7 \times 8=56$	$8 \times 8=64$	$9 \times 8=72$	$10 \times 8=80$	$11 \times 8=88$	$12 \times 8=96$
9	$7 \times 9=63$	$8 \times 9=72$	$9 \times 9=81$	$10 \times 9=90$	$11 \times 9=99$	$12 \times 9=108$
10	$7 \times 10=70$	$8 \times 10=80$	$9 \times 10=90$	$10 \times 10=100$	$11 \times 10=110$	$12 \times 10=120$
11	$7 \times 11=77$	$8 \times 11=88$	$9 \times 11=99$	$10 \times 11=110$	$11 \times 11=121$	$12 \times 11=132$
12	$7 \times 12=84$	$8 \times 12=96$	$9 \times 12=108$	$10 \times 12=120$	$11 \times 12=132$	$12 \times 12=144$

4.1 Review: Multiplication Facts

A. Find the products. Be sure to check your answers.

a) 1
b) 3
c) $\begin{array}{r}6 \\ \times 6\end{array}$
d) $\begin{array}{r}5 \\ \times 4\end{array}$
e) 7
f) 8
$\begin{array}{r}\mathrm{x} 7 \\ \hline\end{array}$
x 8
g) 2
x 0
h) $\begin{array}{r}4 \\ \times 1 \\ \hline\end{array}$
i) $\begin{array}{r}5 \\ \times 5 \\ \hline\end{array}$
j) $\begin{array}{r}9 \\ \times 6 \\ \hline\end{array}$
k) $\begin{array}{r}4 \\ \times 3 \\ \hline\end{array}$

1) $\begin{array}{r}9 \\ \times 9 \\ \hline\end{array}$
m) $\begin{array}{r}1 \\ \times 7\end{array}$
n) $\begin{array}{r}6 \\ \times 9 \\ \hline\end{array}$
o) $\begin{array}{r}3 \\ \times 5 \\ \hline\end{array}$
p) $\begin{array}{r}0 \\ \times 6\end{array}$
q) $\begin{array}{r}4 \\ \times 2 \\ \hline\end{array}$
r) $\begin{array}{r}2 \\ \times 1\end{array}$
s) $\begin{array}{r}1 \\ \times 5\end{array}$
t) $\begin{array}{r}7 \\ \times 9 \\ \hline\end{array}$
u) 8
v) $\begin{array}{r}0 \\ \times 2\end{array}$
w) $\begin{array}{r}5 \\ \times 1 \\ \hline\end{array}$
x) $\begin{array}{r}9 \\ \times 8 \\ \hline\end{array}$
B. Find the products. Be sure to check your answers.
a) $2 \times 6=$
b) $5 \times 4=$
c) $7 \times 3=$
d) $3 \times 6=$
e) $8 \times 5=$
f) $4 \times 7=$
g) $\quad 9 \times 2=$
h) $6 \times 5=$
i) $5 \times 3=$
j) $3 \times 8=$
k) $7 \times 7=$
2) $2 \times 9=$
m) $4 \times 6=$
n) $6 \times 9=$
o) $8 \times 8=$
p) $9 \times 4=$
q) $3 \times 9=$
r) $4 \times 4=$

Answers to Mid-Unit Review - Multiplication Facts

Aa) 2	b) 9	c) 36	d) 20	e) 49	f) 64
g) 0	h) 4	i) 25	j) 54	k) 12	l) 81
m) 7	n) 54	o) 15	p) 0	q) 8	r) 2
s) 5	t) 63	u) 32	v) 0	w) 5	x) 72
Ba) 12	b) 20	c) 21	d) 18	e) 40	f) 28
g) 18	h) 30	i) 15	j) 24	k) 49	l) 18
m) 24	n) 54	o) 64	p) 36	q) 27	r) 16

4.2 Multiplying Larger Numbers

When multiplying larger numbers line up the place values in a column.
Step 1: Multiply the ones digit in the large number by the one digit multiplier.
Step 2: Multiply the tens digit in the large number by the multiplier.
Step 3: Multiply the hundreds digit in the large number by the multiplier and so on.

Example A $62 \times 4=$

Step 1: 4 ones times 2 ones $=8$ ones \quad Write an 8 in the ones place.

62

248

Step 2: 4 ones x 6 tens $=24$ tens $=2$ hundreds and 4 tens Write the 4 in the tens place and the 2 in the hundreds place

The product of $62 \times 4=248$

Commutative Property

In multiplication, the order of the factors can be changed and the answer will remain the same. This is called the Commutative Property.

$3 \times 5=15$	and	$5 \times 3=15 \quad$ and
$4 \times 6=24$		$6 \times 4=24$
$62 \times 4=248$	and	$4 \times 62=248$

Multiplying larger numbers with carrying

Example B 517 x 3 =

$$
\begin{array}{r}
2 \\
517 \\
\times \quad 3 \\
\hline 1
\end{array}
$$

Step 1: 3 ones times 7 ones $=21$ ones
Write a 1 in the ones place and carry the 2 to the tens place.

$$
\begin{array}{r}
2 \\
517 \\
\times \quad 3 \\
\hline 51
\end{array}
$$

Step 2: 3 ones times 1 ten $=3$ and add the 2 that was carried So $3 \times 1=3$ and $3+2=5$ tens.
Write a 5 in the tens place. There is nothing to carry.

$$
\begin{array}{r}
2 \\
517 \\
\times \quad 3 \\
\hline 1551
\end{array}
$$

Step 3: 3 ones times 5 hundreds = 15 hundreds
Write a 5 in the hundreds place and a 1 in the thousands place.

The product of $517 \times 3=1551$

Multiplying larger numbers with carrying continued

Example C

$64083 \times 5=$
1
64083
645
$\times \quad 5$
5
Step 1: 5 ones times 3 ones $=15$ ones
Write a 5 in the ones place and carry the 1 to the tens place.

41
64083
$\times \quad 5$

Step 2: 5 ones times 8 tens $=40$ tens and add the $1=41$ tens
So $5 \times 8=40$ and $40+1=41$ tens.
Write a 1 in the tens place and carry the 4 to the hundreds place.
41
64083

$\mathrm{x} \quad 5$
415

415
Step 3: 5 ones times 0 hundreds $=0$ hundreds and add the $4=4$ hundreds
So $5 \times 0=0$ and $0+4=4$
Write a 4 in the hundreds place and there is nothing to carry.

241
64083
$\times \quad 5$
0415

Step 4: 5 ones times 4 thousands $=20$ thousands
Write a 0 in the thousands place and carry the 2.

241
$\quad 64083$
$\times \quad 5$
320415

Step 5: 5 ones times 6 ten thousands $=30$ ten thousands and add the 2
So $5 \times 6=30$ and 30 plus $2=32$
Write a 2 in the ten thousands and a 3 in the hundred thousands place.
The product of $64083 \times 5=320415$

Exercise 4.2a Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required. The first one a) is done for you.
a)
71
$\times 6$
b 82
$\begin{array}{r}\mathrm{x} \quad 2 \\ \hline\end{array}$
c) 37
d) $92 \times 4=$
x 3
e)
60
6
\times
f) 54

x 5

g) 25
X 8
h) $84 \times 0=$
i)

j)
$\begin{array}{r}54 \\ \times \quad 8 \\ \hline\end{array}$
k) $\begin{array}{r}25 \\ \mathrm{x} \quad 9 \\ \hline\end{array}$

1) $76 \times 2=$
m)

n)

o) $\begin{array}{r}74 \\ \times \quad 5 \\ \hline\end{array}$
p) $60 \times 4=$

Answers to Exercise 4.2a

a) 426	b) 164	c) 111	d) 368	e) 420	f) 270
g) 200	h) 0	i) 129	j) 432	k) 225	l) 152
m) 84	n) 96	o) 370	p) 240		

m) 84
n) 96
o) 370
p) 240

Exercise 4.2b Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required.
a)

b)
815

c) 605

d) $581 \times 1=$
e)

f) $\begin{array}{r}654 \\ \times \quad 5 \\ \hline\end{array}$

g) 100 | $\mathrm{x} \quad 9$ |
| :--- |

h) $760 \times 4=$
i)
j) $\begin{array}{r}704 \\ \times \quad 0 \\ \hline\end{array}$
k) 529
l) $398 \times 3=$
m)

n)

o) 961 $\begin{array}{r}\times \quad 6 \\ \hline\end{array}$
p) $400 \times 4=$

Answers to Exercise 4.2b

a) 1428	b) 4075	c) 4840	d) 581	e) 344	f) 3270
g) 900	h) 3040	i) 7536	j) 0	k) 4761	l) 1194
m) 3616	n) 5384	o) 5766	p) 1600		

m) 3616
n) 5384
o) 5766
p) 1600

Exercise 4.2c
Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required.
a)

b) 9852

c) $\begin{array}{r}2100 \\ \times \quad 8 \\ \hline\end{array}$
d) $7086 \times 7=$

e)

f) $\begin{array}{r}2654 \\ \times \quad 5 \\ \hline\end{array}$
g) $\begin{array}{r}1122 \\ \times \quad 9 \\ \hline\end{array}$
h) $6209 \times 6=$
i)

j) $\begin{array}{r}6754 \\ \mathrm{X} \quad 1 \\ \hline\end{array}$
k) 5242
l) $9001 \times 3=$
m) $\begin{array}{r}5242 \\ \mathrm{x} \quad 0 \\ \hline\end{array}$
n)

o) 3951
$\begin{array}{r}1 \\ \hline\end{array}$
p) $6785 \times 4=$

Answers to Exercise 4.2c
a) 5408
b) 49260
c) 16800
d) 49602
e) 15302
f) 13270
g) 10098
h) 37254
i) 27228
j) 6754
k) 47178
l) 27003
m) 0
n) 36920
o) 19755
p) 27140

Exercise 4.2d
Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required.
a) $\begin{array}{r}21654 \\ \mathrm{x} \quad 2 \\ \hline\end{array}$
21654
a) $\begin{array}{r}21654 \\ \mathrm{x} \quad 2 \\ \hline\end{array}$
b) 67098
x

c) 11124

$\mathrm{x} \quad 0$

d) $44711 \times 1=$
e)

f) 98654

g) 11111

h) $23691 \times 4=$
i) 90602
$\begin{array}{r}7 \\ \times \quad 7 \\ \hline\end{array}$
j) 15565
\underline{x}

k) 76567
l) $90176 \times 3=$
m) 359076

n) 312145

o) $\begin{array}{r}765409 \\ \mathrm{X} \quad 5 \\ \hline\end{array}$
p) 79021×4

Answers to Exercise 4.2d

a) 43308	b) 335490	c) 0	d) 44711	e) 169254	f) 591924
g) 99999	h) 94764	i) 634214	j) 124520	k) 153134	l) 270528
m) 1436304	n) 2497160	o) 3827045	p) 316084		

m) 1436304
n) 2497160
o) 3827045
p) 316084

4.3 Two Digit Multipliers

11 times tables
$11 \times 0=0$
$11 \times 1=11$
$11 \times 2=22$
$11 \times 3=33$
$11 \times 4=44$
$11 \times 5=55$
$11 \times 6=66$
$11 \times 7=77$
$11 \times 9=99$
$11 \times 10=110$
$11 \times 11=121$
$11 \times 12=132$
1×88
1×1

Practice counting by 11 s

0	11	22	33	44	55	66	77	88	99	110	121	132

Memorize the multiplication facts.

Two Digit Multipliers continued

$12 \times 0=0$
$12 \times 1=12$
$12 \times 2=24$
$12 \times 3=36$
$12 \times 4=48$
$12 \times 5=60$
$12 \times 6=72$
$12 \times 7=84$
$12 \times 9=108$
$12 \times 10=120$
$12 \times 11=132$
$12 \times 12=144$

Practice counting by 12s
$\begin{array}{lllllllllllll}0 & 12 & 24 & 36 & 48 & 60 & 72 & 84 & 96 & 108 & 120 & 132 & 144\end{array}$
Memorize the multiplication facts.

Two Digit Multipliers continued

When the multiplier is more than one digit, use the same process to get partial products. Repeat the steps until you have multiplied each digit and then add the partial products together.

Example A

$62 \times 14=$

$$
\begin{array}{r}
62 \\
\times 14 \\
\hline 8
\end{array} \leftarrow \text { two digit multiplier }
$$

Step 1: 4 ones times 2ones $=8$ ones. Write an 8 in the ones place.
62

$\times 14$

248
Step 2: 4 ones times 6 tens $=24$ tens.
Write a 4 in the tens place and a 2 in the hundreds place.
62
x 14 start multiplying from the tens place 248

0 placeholder zero
Step 3: Put a placeholder zero in the ones place of the second line of the product to begin multiplying from the tens place.

$$
\begin{array}{r}
62 \\
\times \quad 14 \\
\hline 248 \\
20
\end{array}
$$

Step 4: Multiply 1 ten by 2 ones. $=2$ tens Write a 2 in the tens place.
$\widehat{6}$
$\begin{array}{r}\times 14 \\ \hline 248\end{array}$
248
620

Step 5: Multiply 1 ten by 6 tens. $=6$ hundreds
Write a 6 in the hundreds place

Two digit multipliers

Example A continued

62
X 14
248
$+\quad 620$
868

Step 6: To find the total product add the two partial products together.
Add the ones. $\quad 8+0=8$ ones Write an 8 in the ones place.
Add the tens. $\quad 4+2=6$ tens \quad Write a 6 in the tens place.
Add the hundreds. $2+6=8$ hundreds Write an 8 in the hundreds place.

$$
62 \times 14=868
$$

Example B
 3
 $425 \times 36=$ 425
 $$
\begin{array}{r} \times \quad 36 \\ \hline \end{array}
$$
 0

Step 1: 6 ones times 5 ones $=30$ ones.
Write a 0 in the ones place and carry the 3 .

$$
\begin{array}{r}
13 \\
425 \\
\times \quad 36 \\
\hline 50
\end{array}
$$

Step 2: 6 ones times 2 tens $=12$ tens and add the $3.12+3=15$ tens Write a 5 in the tens place and carry the 1.

13
425
$\times \quad 36$
2550

Step 3: 6 ones times 4 hundreds $=24$ hundreds and add the 1 .
$24+1=25$ Write a 5 in the hundreds and a 2 in the thousands.

Two digit multipliers

Example B continued

13
425
$\mathrm{x} \mathbf{3 6}$ start multiplying from the tens place 2550

0 put a placeholder zero

Step 4: Put a placeholder zero in the ones place of the second line of the product to begin multiplying from the tens place.

1
13
42.5

736
$\times \quad 1$
2550
50
Step 5: Multiply 3 tens by 5 ones = 15 tens
Write a 5 in the hundreds and carry the 1.

1
13
42.5
x $\quad 36$
2550
750

Step 6: Multiply 3 tens by 2 tens $=6$ tens and add the $1=7$ tens Write a 7 in the hundreds.

> | 1 |
| ---: |
| 13 |
| 425 |
| $\times \quad 36$ |
| 2550 |
| 12750 |

Step 7: Multiply 3 tens by 4 hundreds = 12 hundreds Write a 2 in the thousands and a 1 in the ten thousands.

Two digit multipliers
 Example B continued

Step 8: To find the total product add the two partial products together.
Add the ones. $\quad 0+0=0$ ones \quad Write an 0 in the ones place.
Add the tens. $\quad 5+5=10$ tens
Write a 0 in the tens place and carry the 1.
Add the hundreds. $1+5+7=13$ hundreds Write a 3 in the hundreds place and carry the 1.

Add the thousands. $1+2+2=5$ thousands.
Write a 5 in the thousands place.
Add the ten thousands. There is only 1.
Write a 1 in the ten thousands place.
$425 \times 36=15300$

Lattice Multiplication (This is another method to try.)

Example
324×49

x

4

9

Step1) Set-up the lattice as shown, with the number of rows and columns based on the number of digits involved. Here is shown 2 rows and 3 columns but we could also set this problem up as 3 rows and 2 columns; it makes no difference.

Step 2) Complete all the multiples, such as $4 \times 4=16$, as shown.

Step 3) The final step is to add up the diagonals, where the first one on the right is the ones, then tens, hundreds, thousands. Notice that when adding up the tens $(6+3+8)$, this makes 17 so the 1 from the 17 tens has been carried over to the hundreds column.

The product of 324×49 is given around the outside as 15876 .

BM1: Unit 4 Multiplication

Exercise 4.3a

Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required. The first one a) is done for you.

$$
\text { a) } \begin{array}{r}
84 \\
\times \quad 12 \\
\hline 1168 \\
+\quad \frac{840}{1008}
\end{array}
$$

e)

$$
\begin{array}{r}
60 \\
\times \quad 37 \\
\hline
\end{array}
$$

f)
87
$\begin{array}{r}\times 41 \\ \hline\end{array}$
g)
97
$\begin{array}{r}\mathrm{x} 20 \\ \hline\end{array}$
i)
$\begin{array}{r}68 \\ \times \quad 13 \\ \hline\end{array}$
j)
$\begin{array}{r}12 \\ \times \quad 41 \\ \hline\end{array}$
k)
93
$\times 22$
$\times 2$

1) $85 \times 57=$
m)

74
$\times \quad 98$

n)

o)

p) $61 \times 44=$

Exercise 4.3a continued

q)
22
$\begin{array}{r}\times \quad 34 \\ \hline\end{array}$
r)

s) 52
$\begin{array}{r}\times \quad 47 \\ \hline\end{array}$
t) $58 \times 11=$
u)

v) $\begin{array}{r}540 \\ \times \quad 35 \\ \hline\end{array}$

x) $269 \times 94=$
y)
z) $\begin{array}{r}752 \\ \mathrm{x} \quad 63 \\ \hline\end{array}$
aa) $\begin{array}{r}152 \\ \times \quad 79 \\ \hline\end{array}$
bb) $613 \times 91=$

Answers to Exercise 4.3a

a) 1008	b) 4823	c) 4015	d) 1690	e) 2220	f) 3567
g) 1940	h) 1248	i) 884	j) 492	k) 2046	l) 4845
m) 2352	n) 1353	o) 1850	p) 2684	q) 748	r) 945
s) 2444	t) 638	u) 5504	v) 18900	w) 6818	x) 25286
y) 15600	z) 47376	aa) 12008	bb) 55783		

Exercise 4.3b Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required. The first one a) is done for you.
a)
b) 943
c) 863
d) 426×65
$\begin{array}{r}\mathrm{X} \quad 51 \\ \hline\end{array}$
$\begin{array}{r}\times \quad 70 \\ \hline\end{array}$
$\begin{array}{r}\times \quad 24 \\ \hline\end{array}$

$$
+14200
$$

e)

f) 752
$\begin{array}{r}7 \\ \times \\ \hline\end{array}$
g) 613 x 12
i) $\quad 968$
$\begin{array}{r}\times \quad 51 \\ \hline\end{array}$
j) 854
$\begin{array}{r}8 \quad 84 \\ \hline\end{array}$
k) 697
654
\times

1) $253 \times 17=$
m) 3527
$\begin{array}{r}\mathrm{X} \quad 82 \\ \hline\end{array}$
n) $\begin{array}{r}6003 \\ \mathrm{x} \quad 40 \\ \hline\end{array}$
2) $\begin{array}{r}9264 \\ \mathrm{x} \quad 12 \\ \hline\end{array}$
p) $7610 \times 73=$

Exercise 4.3b continued

q) 55222
$\begin{array}{r}\mathrm{X} \quad 34 \\ \hline\end{array}$
r) 77613

$\mathrm{x} \quad 15$

s) 19052

$\mathrm{x} \quad 47$

t) 3581×55
u)
41317
$\begin{array}{r}\mathrm{x} \quad 32 \\ \hline\end{array}$
v) 34540
$\begin{array}{r}34 \quad 39 \\ \hline\end{array}$
w) 562187
x) 112069 x 94
y) 50520
505
$\times \quad 7$
z) 43113
$\begin{array}{r}\mathrm{X} \quad 68 \\ \hline\end{array}$
aa) 19101

19
$\times \quad 79$

bb) 135613×91

Answers to Exercise 4.3b

a) 14484	b) 66010	c) 20712	d) 27690	e) 17716	f) 69936
g) 7356	h) 58656	i) 49368	j) 71736	k) 37638	l) 4301
m) 289214	n) 240120	o) 111168	p) 555530	q) 1877548	r) 1164195
s) 895444	t) 196955	u) 1322144	v) 1347060	w) 7870618	x) 10534486
y) 3687960	z) 2931684	aa) 1508979	bb) 12340783		

4.4 Three Digit Multipliers

When the multiplier is more than two digits, use the same process to get partial products. Remember to increase the placeholder zeros as the place value changes.

Example A

$234 \times 212=$

Put the placeholder zero in and then multiply by the digit in the tens place.

234
$\begin{array}{r}\times 212 \\ \hline 468\end{array}$
468
2340
00 put 2 placeholder zeros in for hundreds place

Exercise 4.4 Find the products. Check your work using the answer key. Rewrite the question to line up the place values if required. The first one a) is done for you.
e) $\begin{array}{r}970 \\ \times \quad 702 \\ \hline\end{array}$
f) 274
g) 613
h) 725×697
$\begin{array}{r} \\ \times 145 \\ \hline\end{array}$
$\begin{array}{r}\mathrm{x} 112 \\ \hline\end{array}$
i) 3658
$\begin{array}{r}3681 \\ \hline\end{array}$
j) 1209
$\begin{array}{r}1257 \\ \hline\end{array}$
k) 983
$\begin{array}{r}\times 357 \\ \hline\end{array}$
l) 1835×386

Answers to Exercise 4.4

a) 88608
b) 109125
c) 171475
d) 45375
e) 680940
f) 39730
g) 68656
h) 505325
i) 1649758
j) 310713
k) 350931

1) 708310

4.5 Multiplying by 10,100 , and 1000

When multiplying by multiples of tens, such as $10,100,1000,10000$ and so on, place as many zeros to the right of the number as there are zeros in the 10, 100, 1000, 10000 and so on.

To multiply by 10, put one zero after the number.

To multiply by 100, put two zeros after the number.

To multiply by 1000, put three zeros after the number.

Exercise 4.5

Do the following questions and see if you can find the pattern. Check your work using the answer key.
a) $9 \times 10=$
b) $9 \times 100=$
c) $9 \times 1000=$
d) $10 \times 6=$
e) $100 \times 6=$
f) $1000 \times 6=$
g) $73 \times 100=$
h) $73 \times 1000=$
i) $73 \times 10000=$
j) $125 \times 10=$
k) $405 \times 100=$
l) $1000 \times 399=$

Answers to Exercise 4.5

a) 90
b) 900
c) 9000
d) 60
e) 600
f) 6000
g) 7300
h) 73000
i) 730000
j) 1250
k) 40500
l) 399000

4.6 Estimating Products

Before you practice estimating products, look at the easy multiplication that can be done when the factors end in zeros. Count all the zeros at the end of the numbers in both factors. Write down that many zeros. Multiply the other digits in the usual way and put them before the zeros. Write your answer in groupings of three digits starting from the right side.

Example A $30 \times 500=$

How many zeros at the end of the factors? 3
Write them down. 000
Multiply the other digits $(3 \times 5=15)$ and put that answer before the zeros.

$$
30 \times 500=15000
$$

Example B $400 \times 6000=$
How many zeros at the end of the factors? $\mathbf{5}$
Write them down.
00000
Multiply the other digits $(4 \times 6=24)$ and put that answer before the zeros.

$$
400 \times 6000=2400000
$$

Example C $84028 \times 174=$

To find an estimate of a multiplication problem, front-end round each of the numbers.

84028	rounds to
80000	
$\times \quad 174$	rounds to

How many zeros at the end of the factors? 6
Write them down.
000000
Multiply the other digits $(8 \times 2=16)$ and put that answer before the zeros.

$$
80000 \times 200=16000000
$$

Exercise 4.6

a)
 $\mathrm{X} \quad 60$ Do not solve
 Do estimate only for each.

Estimate

Find an estimated product. Check your work using the answer key. Do not solve for the actual answer.
Estimate
Estimate
b) 7803
7872
$\times \quad$
d) 1795
$1 \quad 349$
$\times \quad$

Estimate
e)

12883

$\mathrm{x} \quad 6$

f) 5000

$\mathrm{x} \quad 42$

Estimate
 \section*{路}

h) 999

$\mathrm{x} \quad 78$

g) 356002

4.7 Word Problems - Multiplication

The problem solving skills we learn in math can be very useful to help us solve problems we have in our day-to-day lives. To solve a problem, it is a good idea to have a plan. Consider the steps below for solving word problems.

Watch for key words when you are solving multiplication word problems.
product - the answer in a multiplication problem
times - multiply the numbers
twice - two times the number

The words how many and how much are used in multiplication word programs and are also used in addition. So be careful how you read the word problem.

Problem Solving Steps

Step 1: Read the problem.
Step 2: List the information you found.
Step 3: Use key words to decide what you have to find out.
Step 4: Solve the problem.
Step 5: Does your answer make sense?
Step 6: Write your answer in a sentence.

Word Problems continued

Example A John buys 74 litres of gas a month. In 6 months, how many litres of gas does John buy?

The key word is how many which means to multiply.
6 months worth of gas would be $74+74+74+74+74+74=$ or $74 \times 6=$

$$
\begin{array}{r}
2 \\
74 \\
\times \quad 6 \\
\hline 444
\end{array}
$$

John buys 444 litres of gas in 6 months.

Example B Maria spent $\$ 99$ each month on a bus pass for a year. How much did it cost her to ride the bus to school for the whole year? (year = 12 months)

The key word is how much which means to multiply.

\$99 x 12 months $=$| 1 |
| ---: |
| |
| $\times \quad 99$ |
| 198 |
| $+\quad 990$ |
| 1188 |

It cost Maria $\$ 1188$ to ride the bus for one year.

Writing the answer in a sentence

In Example A, the question asks:
In 6 months, how many litres of gas does John buy?
John buys 444 litres of gas in 6 months.

Example B, the question asks:
How much did it cost her to ride the bus to school for the whole year?
It cost Mary $\$ 1188$ to ride the bus for one year.

Exercise 4.7

Solve each word problem. Give your answer in a sentence.
Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) Fred travels 121 km a day on his delivery route. How far does he travel in 5 working days?
b) An apartment building has 16 apartments, each rented for $\$ 870$ a month. What is the total monthly rental income from this building?
c) Frank bought a car and paid for it over 36 months. He made 36 monthly payments of $\$ 325$ each. How much did he pay for the car?
d) A freight train has 70 cars. Each car can hold 22680 kilograms of cargo. How much cargo can the train hold in all? (Use the zero shortcut.)

Exercise 4.7 continued

e) Bill is painting all of the 50 apartments in a building. Each apartment uses 4 litres of paint. The paint costs $\$ 8$ per litres.
How much paint will he need to paint all the apartments?

How much will it cost in total?
f) Sound travels 320 metres per second. How far does it travel in 1 minute?
(1 minutes $=60$ seconds) (Use the zero shortcut.)
g) Bob likes to exercise by running 10 km each day, rain, shine and holidays! How many kilometres does he run in one year? (1 year $=365$ days)

Exercise 4.7 continued

h) Sami is paid $\$ 15$ per hour. If she work 39 hours last week and 24 hours this week, how much did she earn for the two weeks in total?
i) A florist sells flowers for $\$ 15$ a bunch. There are 3 types of flowers in each bunch. She sells 24 bunches at the market. How much money does she make at the market from selling flowers?
j) The highway distance between Calgary and Edmonton is approximately 300 kilometres. What is the distance on a round trip (to and from) Calgary to Edmonton?
k) If John travels to Edmonton and back from Calgary 6 times each year, how much will he pay over the year if the Red Arrow bus is $\$ 76$ each direction? (Hint: how much will 1 round (to and from) trip cost?)

Exercise 4.7 continued

l) A theatre seats 1250 people. The musical performance will run for 5 nights and is a sold out show. How many people will be seated over the 5 nights if the theatre is full each night?

Answers to Exercise 4.7-Word Problems

a) $121 \times 5=605$ Fred travels 605 kilometres in 5 working days.
b) $16 \times \$ 870=\$ 13920$ The total monthly income from this building is $\$ 13920$.
c) $36 \times \$ 325=\$ 11700$ Frank paid $\$ 11700$ for the car.
d) $22680 \times 70=1587600 \quad$ The train can hold 1587600 kilograms of cargo.
e) There are two steps to solve this question. $50 \times 4=200$ Bill needs 200 litres of paint

It will cost $\$ 8 \times 200=\$ 1600 \quad$ It will cost $\$ 1600$ to paint the 50 apartments.
f) $320 \times 60=19200$ metres \quad Sound travels 19200 metres in one minute.
g) $10 \times 365=3650 \quad$ Bob runs 3650 kilometres in a year.
h) $39 \times \$ 15=\$ 585$ and $24 \times \$ 15=\$ 360$ Total $585+360=\$ 945$ Sami earned $\$ 945$ in two weeks.
i) $\$ 15 \times 24=\$ 360$ The florist will make $\$ 360$.
j) $300 \times 2=600$ The distance on a return trip from Calgary to Edmonton is 600 kilometres.
k) One trip is $\$ 76 \times 2=\$ 152 \quad \$ 152 \times 6=\$ 912$

John pays $\$ 912$ per year to travel to Edmonton from Calgary.
l) $1250 \times 5=6250 \quad$ The theatre will seat 6250 people over 5 nights.

The review for Unit 4 Multiplication is at the end of Unit 5 Division.

Unit 5: Division

5.1 Division Facts

Division is the repeated subtraction of the same number from another number.
For example $12 \div 3$ is the same as having 12 items and taking 3 items away each time until there is nothing left. $12-\mathbf{3}=9 \quad 9-\mathbf{3}=6 \quad 6-\mathbf{3}=3 \quad 3-\mathbf{3}=0$
In this example we could take 3 away from 12 four times.
So $12 \div 3=4$
Division takes the total and separates that amount into groups of equal size.

Take the 12 stars below and divide them into groups that have 3 stars each.

There will be 4 groups, each with 3 stars in the group.
There are three ways to show division.
$12 \div 3=4$

$$
\frac{4}{12}
$$

The dividend is the number you are dividing.
12 is what we are dividing (dividend)
The divisor is the number you are dividing by.
3 is what we are dividing by (divisor)
The answer in division is called the quotient. ("kwo shent")
4 is the answer (quotient)

Division is also the opposite of multiplication.
Multiplication takes equal-sized groups and puts the groups together to find the total.

Division Facts continued

Use the times table to learn division.

Example if $4 \times 7=28 \quad$ then $28 \div 7=4 \quad$ and $\quad 28 \div 4=7$

$$
\text { if } 9 \times 5=45 \quad \text { then } 45 \div 5=9 \text { and } 45 \div 9=5
$$

	1	2	3	4	5	6
1	$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$	$6 \times 1=6$
2	$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$	$6 \times 2=12$
3	$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$	$6 \times 3=18$
4	$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$	$6 \times 4=24$
5	$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$	$6 \times 5=30$
6	$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	Aミú-21	$5 \times 6=30$	$6 \times 6=36$
7	$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$	$6 \times 7=42$
8	$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$	$6 \times 8=48$
9	$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$	$6 \times 9=54$
10	$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$	$6 \times 10=60$
11	$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$	$6 \times 11=66$
12	$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$	$6 \times 12=72$
	7	8	9	10	11	12
1	$7 \times 1=7$	$8 \times 1=8$	$9 \times 1=9$	$10 \times 1=10$	$11 \times 1=11$	$12 \times 1=12$
2	$7 \times 2=14$	$8 \times 2=16$	$9 \times 2=18$	$10 \times 2=20$	$11 \times 2=22$	$12 \times 2=24$
3	$7 \times 3=21$	$8 \times 3=24$	$9 \times 3=27$	$10 \times 3=30$	$11 \times 3=33$	$12 \times 3=36$
4	$7 \times 4=28$	$8 \times 4=32$	9×4 = 30	$10 \times 4=40$	$11 \times 4=44$	$12 \times 4=48$
5	$7 \times 5=35$	$8 \times 5=40$	$9 \times 5=45$	$10 \times 5=50$	$11 \times 5=55$	$12 \times 5=60$
6	$7 \times 6=42$	$8 \times 6=48$	$9 \times 6=54$	$10 \times 6=60$	$11 \times 6=66$	$12 \times 6=72$
7	$7 \times 7=49$	$8 \times 7=56$	$9 \times 7=63$	$10 \times 7=70$	$11 \times 7=77$	$12 \times 7=84$
8	$7 \times 8=56$	$8 \times 8=64$	$9 \times 8=72$	$10 \times 8=80$	$11 \times 8=88$	$12 \times 8=96$
9	$7 \times 9=63$	$8 \times 9=72$	$9 \times 9=81$	$10 \times 9=90$	$11 \times 9=99$	$12 \times 9=108$
10	$7 \times 10=70$	$8 \times 10=80$	$9 \times 10=90$	$10 \times 10=100$	$11 \times 10=110$	$12 \times 10=120$
11	$7 \times 11=77$	$8 \times 11=88$	$9 \times 11=99$	$10 \times 11=110$	$11 \times 11=121$	$12 \times 11=132$
12	$7 \times 12=84$	$8 \times 12=96$	$9 \times 12=108$	$10 \times 12=120$	$11 \times 12=132$	$12 \times 12=144$

Exercise 5.1a Find the division equations. Check your work using the answer key. The first one a) is done for you.
a) if $3 \times 8=24$ then $\underline{24} \div \underline{8}=\underline{3}$ and $\underline{24} \div \underline{3}=\underline{8}$
b) if $2 \times 6=12$
then \qquad \div $=$ \qquad \div \qquad
c) if $5 \times 10=50$
then \qquad \div \qquad $=$ and \qquad $\div=$ \qquad
d) if $1 \times 12=12$
then \qquad \div __ $=$ and \qquad \div \qquad
\qquad
e) if $11 \times 4=44$
then \qquad $\div=$ \qquad
\qquad
f) if $7 \times 9=63$
then___ $\div{ }_{C}=$ \qquad

Answers to Exercise 5.1a

a) if $3 \times 8=24$ then $24 \div 8=3$ and $12 \div 3=8$
b) if $2 \times 6=12$ then $12 \div 6=2$ and $12 \div 2=6$
c) if $5 \times 10=50$ then $50 \div 10=5$ and $50 \div 5=10$
d) if $1 \times 12=12$ then $12 \div 12=1$ and $12 \div 1=12$
e) if $11 \times 4=44$ then $44 \div 4=11$ and $44 \div 11=4$
f) if $7 \times 9=63$ then $63 \div 9=7$ and $63 \div 7=9$

Division Facts continued
 Dividing a number by itself

Any number divided by itself will always equal 1.

Example A $\quad 4 \div 4=1$

There are 4 candies to share among 4 children.
Each child will get 1 candy.

Dividing a number by 1

Example B $9 \div 1=9$
If there are 9 apples to put in 1 bag, the bag will hold all 9 apples.

Dividing a number by 0

Example C $8 \div 0=$ undefined

If there are 8 oranges and I want to divide them into $0 . . .$.
I can't. I can't make the oranges disappear.
I can't divide the oranges into nothing.
We call this undefined. We cannot define it.
It is impossible.

Dividing 0 by a number

Example D $0 \div 5=0$

There are 0 pencils and I want to divide them into 5 groups.
Each group will get 0 .
There is nothing to divide.

Exercise 5.1b Find the quotient. Check your work using the answer key. Use the times table if required. The first one a) is done for you.
a) $2 \div 1=\underline{2}$
b) $10 \div 2=$ \qquad c) $15 \div 5=$
d) $24 \div 6=$ \qquad
e) $32 \div 4=$
f) $18 \div 2=$ \qquad
g) $42 \div 7=$
h) $21 \div 3=$
i) $36 \div 9=$ \qquad
j) $25 \div 5=$ \qquad
k) $48 \div 8=$
l) $56 \div 7=$ \qquad
m) $72 \div 9=$ \qquad
n) $12 \div 1=$
o) $24 \div 8=$ \qquad
p) $6 \div 6=$ \qquad q) $8 \div 4=$
r) $14 \div 2=$

Answers to Exercise 5.1b

a) 2	b) 5	c) 3	d) 4	e) 8	f) 9
g) 6	h) 7	i) 4	j) 5	k) 6	l) 8
m) 8	n) 12	o) 3	p) 1	q) 2	r) 7

Find the quotient. Use the times table if required. Check your work using the answer key. The first one a) is done for you.
2
a) $1 \sqrt{2}$
b) $1 0 \longdiv { 1 0 0 }$
c) $9 \longdiv { 1 8 }$
d) $5 \longdiv { 5 }$
e) $1 \longdiv { 1 2 }$
f) $4 \longdiv { 4 4 }$
g) $7 \longdiv { 6 3 }$
h) $5 \longdiv { 3 5 }$
i) $7 \longdiv { 4 2 }$
j) $1 2 \longdiv { 9 6 }$
k) $3 \longdiv { 1 5 }$
l) $1 0 \longdiv { 1 0 }$
m) $1 1 \longdiv { 7 7 }$
n) $8 \longdiv { 1 6 }$
o) 3) 27
p) $1 \overline{8}$
q) $9 \longdiv { 9 }$
r) 2) 14

Answers to Exercise 5.1c

a) 2	b) 10	c) 2	d) 1	e) 12	f) 11
g) 9	h) 7	i) 6	j) 8	k) 5	l) 1
m) 7	n) 2	o) 9	p) 8	q) 1	r) 7

a) $\frac{12}{3}=12 \div 3=4$
b) $\frac{4}{2}=$
c) $\frac{16}{4}=$
d) $\frac{20}{4}=$
e) $\frac{24}{8}=$
f) $\frac{30}{5}=$
g) $\frac{36}{4}=$
h) $\frac{45}{9}=$
i) $\frac{9}{9}=$
j) $\frac{10}{2}=$
k) $\frac{14}{2}=$
l) $\frac{16}{2}=$
m) $\frac{35}{5}=$
n) $\frac{18}{6}=$
o) $\frac{56}{8}=$
p) $\frac{60}{6}=$
q) $\frac{45}{9}=$
r) $\frac{27}{9}=$

Answers to Exercise 5.1d

a) 4	b) 2	c) 4	d) 5	e) 3	f) 6
g) 9	h) 5	i) 1	j) 5	k) 7	l) 8
m) 7	n) 3	o) 7	p) 10	q) 5	r) 3

5.2 Remainders

You have been practicing division facts that always work out evenly - nothing is left over. Sometimes in division, there will be a remainder.

Example A There are 7 candies to share among 3 children. Circle groups of 2 . How many would each child receive?

Each child would get 2 candies, and there would be 1 left over.

We call the left-over the remainder. For now, write \mathbf{R} and the left over number after your quotient.

$$
7 \div 3=2 \text { R1 }
$$

Example B There are 22 cookies. Circle groups of 5 . How many groups of 5 in 22?

You should have 4 groups with 2 left over.

$$
22 \div 5=4 \mathrm{R} 2
$$

$$
\begin{aligned}
5 \begin{array}{|c}
\frac{4}{22} \\
\text { R2 } \\
\frac{-20}{2}
\end{array} \quad \begin{array}{l}
\text { How many times does } 5 \text { go into 2 } \\
5 \times 4=20 \text { (Subtract } 20 \text { from 22) } \\
22-20=2 \text { are remaining } R 2
\end{array}
\end{aligned}
$$

Remainders continued

The remainder must be smaller than the divisor. If it is the same size or bigger, it means another group could be made. In the previous example:

Example C

$22 \div 5=\quad$ If we would have only chosen 3 groups of 5 then:

We should have chosen 4 groups of 5 as in the previous example.

Example D Here are 66 suns. Make groups of 9. How many groups?

You should have 7 groups with 3 left over.

Notice in the examples how the numbers in the answer are lined up based on place value. For example, note how the 7 in the answer is placed in the ones place because we are dividing 9 into 66 , so we begin writing the answer from the ones place.

Exercise 5.2
a) $\begin{aligned} & \left.2 \longdiv { 9 } \begin{array} { l } { \frac { 4 R 1 } { 9 } } \\ { \frac { - 8 } { 1 } } \end{array}\right]\end{aligned}$
b) $5 \longdiv { 2 9 }$
c) $4 \longdiv { 3 8 }$
d) $5 \longdiv { 4 3 }$
e) $3 \longdiv { 1 9 }$
f) $4 \longdiv { 1 4 }$
g) $7 \longdiv { 4 7 }$
h) $6 \longdiv { 5 6 }$
i) $8 \longdiv { 6 7 }$

$$
\text { j) } \quad 9 \longdiv { 7 4 }
$$

k) $8 \longdiv { 3 5 }$
l) $7 \longdiv { 5 7 }$

Answers to Exercise 5.2

a) 4 R1	b) 5 R4	c) 9 R2	d) 8 R3	e) 6 R1	f) 3 R2
g) 6 R5	h) 9 R2	i) 8 R3	j) 8 R2	k) 4 R3	l) 8 R1

a) 4 R1
h) 9 R2
i) 8 R3
j) 8 R2
k) 4 R3
l) 8 R1

5.3 Divisibility Tests for 2,3 and 5

There are some tricks you can use to test whether a number is divisible by another without a remainder. These divisibility tests will be useful in the next unit when simplifying fractions.

Divisibility by 2

A number is divisible by 2 if it is an even number and ends in $0,2,4,6$ or 8 .

Example	48	540	256	12	154	are all divisible by 2 because each number is even and ends in a $0,2,4,6$ or 8.

$\begin{array}{lllll}35 & 193 & 849 & 347 & 101\end{array}$ are not divisible by 2 because each number is odd and does not end in a $0,2,4,6$ or 8 .

Exercise 5.3a
Write yes beside the numbers that are divisible by 2.
Write no beside the numbers that are not divisible by 2 . Check your work using the answer key. The first one a) is done for you.
a) 22 yes
b) 35
c) 17
d) 10
e) 274
f) 345
g) 639
h) 456
i) 2437
j) 7548
k) 6754
l) 5543

Answers to Exercise 5.3a

a) yes	b) no	c) no
d) yes	e) yes	f) no
g) no	h) yes	i) no
j) yes	k) yes	l) no

Divisibility Tests continued

Divisibility by 3

A number is divisible by 3 if the sum (total) of the digits is divisible by 3 .
Example Let's look at the number 63. 6 and 3 are the digits. Add them together. $6+3=9$
9 is divisible by 3 , so that means 63 will be divisible by 3 .
Let's look at the number 148. 1, 4 and 8 are the digits.
Add them together. $1+4+8=13$
You could add the digits again. $1+3=4$.
Neither 4 nor 13 is divisible by 3 so that means 148 will not be divisible by 3 .

Let's look at the number 5892. 5, 8, 9 and 2 are the digits.
Add them together. $5+8+9+2=24$
You could add the digits again. $2+4=6$.
6 and 24 are divisible by 3 so that means 5892 will be divisible by 3 .
Exercise 5.3b Write yes beside the numbers that are divisible by 3.
Write no beside the numbers that are not divisible by 3 .
Check your work. The first one a) is done for you.
a) $272+7=9$ yes
b) 35
c) 81
d) 94
e) 274
f) 581
g) 564
h) 316
i) 3175
j) 1458
k) 1890

1) 3934

Answers to Exercise 5.3b					
a) yes	b) no	c) yes	d) no	e) no	f) no
g) yes	h) no	i) no	j) yes	k) yes	l) no

Divisibility Tests continued

Divisibility by 5

A number is divisible by 5 if the number ends in 0 or 5.
Example $\quad 290$ is divisible by 5 because it ends in 0 .
615 is divisible by 5 because it ends in 5 .

132 is not divisible by 5 because it does not end in 0 or 5 .

Exercise 5.3c Write yes beside the numbers that are divisible by 5.
 Write no beside the numbers that are not divisible by 5 .
 Check your work. The first one a) is done for you.

a) 45 ends in a 5-yes
b) 84
c) 72
d) 90
e) 800
f) 753
g) 672
h) 355
i) 6009
j) 6375
k) 7020
l) 1704

Answers to Exercise 5.3c

a) yes	b) no	c) no	d) yes	e) yes	f) no
g) no	h) yes	i) no	j) yes	k) yes	l) no

Exercise 5.3d Put a check mark for each number that divides evenly. Check your work using the answer key.

	Number	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$
\mathbf{a}	84			
\mathbf{b}	75			
\mathbf{c}	412			
\mathbf{d}	865			
\mathbf{e}	300			
\mathbf{f}	831			
\mathbf{g}	525			
\mathbf{h}	350			
\mathbf{i}	710			
\mathbf{j}	429			
\mathbf{k}	3906			
\mathbf{l}	2634			
\mathbf{m}	4430			
\mathbf{n}	12275			

Answers to Exercise 5.3d

	Number	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$
\mathbf{a}	84	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{b}	75		$\sqrt{ }$	$\sqrt{ }$
\mathbf{c}	412	$\sqrt{ }$		
\mathbf{d}	865			$\sqrt{ }$
\mathbf{e}	300	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$
\mathbf{f}	831		$\sqrt{ }$	
\mathbf{g}	525		$\sqrt{ }$	$\sqrt{ }$
\mathbf{h}	350	$\sqrt{ }$		$\sqrt{ }$
\mathbf{i}	710	$\sqrt{ }$		$\sqrt{ }$
\mathbf{j}	429		$\sqrt{ }$	
\mathbf{k}	3906	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{l}	2634	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{m}	4430	$\sqrt{ }$		$\sqrt{ }$
\mathbf{n}	12275			$\sqrt{ }$

5.4 Dividing Larger Numbers by One Digit Divisors

Several methods are used to divide larger numbers. This book will only teach one method.
If you have learned a different method for dividing, ask your instructor to review it with you. You can use the practice exercises in this workbook using whichever method you prefer.

Division has four steps which are repeated until the dividend is completely divided. Work through the three examples which show these steps.

Step 1: Divide
Step 2: Multiply
Step 3: Subtract and compare the remainder to the divisor
Step 4: Bring down the next digit in the dividend and repeat.
Example $\quad 294 \div 7=$

$$
\begin{gathered}
7 \longdiv { 4 } \begin{array} { c }
{ 4 9 4 } \\
{ - 2 8 } \\
{ \hline }
\end{array} .
\end{gathered}
$$

$$
14 \quad 7 \text { does not go into } 1 \text { so bring down the } 4 .
$$

Dividing Larger Numbers by One Digit Divisors continued

$$
\begin{aligned}
& \begin{aligned}
7 \lcm{294} \\
-28 \\
14
\end{aligned} \\
& \frac{\text { Does } 7 \text { go into } 14 \text { ? Yes. How many times? 2 }}{\frac{-14}{0}} \text { Write a } 2 \text { in the answer. } 7 \times 2=14 \\
& 14-14=0 \text { There is nothing left to divide. } \\
& 294 \div 7=42
\end{aligned}
$$

Check your answer with multiplication.

$294 \div 7=42$	$42 \times 7=$
	42
The answer is correct.	$\frac{\times 7}{294}$

Exercise 5.4

91
a) 4364 $-36 \downarrow$ 04
-4
0

Find the quotient. Check your work using the answer key. The first one a) is done for you.

Exercise 5.4 continued

d) 7 651
e) $8 \longdiv { 1 7 6 }$
f) $2 \longdiv { 1 6 6 }$
g) $7 \longdiv { 5 8 8 }$
h) $2 \longdiv { 1 9 6 }$
i) $5 \longdiv { 6 3 0 }$
j) $8 \longdiv { 5 9 2 }$
k) $9 \longdiv { 3 8 7 }$
l) $4 \longdiv { 2 4 8 }$

Answers to Exercise $\mathbf{5 . 4}$					
a) 91	b) 72	c) 91	d) 93	e) 22	f) 83
g) 84	h) 98	i) 126	j) 74	k) 43	l) 62

5.5 Zero as a Placeholder in Division

Example $856 \div 8=$

Bring down the 5.
8 does not go into 5 so place a 0 in the answer above the 5 .

Bring down the 6.
Does 8 go into 56? Yes How many times? 7
Write a 7 above the 6 in the answer.
$8 \times 7=56$
$56-56=0$
$856 \div 8=107$

Check your answer with multiplication.

$$
\begin{array}{rr}
\\
856 \div 8=107 & 107 \times 8= \\
& 107 \\
& \\
\text { The answer is correct. } & \times \quad 8 \\
856
\end{array}
$$

Exercise 5.5

a) $\begin{array}{r}6 \lcm{624} \\ -6 \downarrow \downarrow \\ 024 \\ -24 \\ \hline 0\end{array}$
b) $4 \longdiv { 8 3 2 }$
c) $864 \div 8=$

Find the quotients. Check your work using the answer key. The first one a) is done for you.
d) $2 \longdiv { 6 0 8 }$
e) $5 \longdiv { 5 4 5 }$
f) $749 \div 7=$
g) $9 \longdiv { 9 1 8 }$
h) $3 \longdiv { 3 0 3 }$
i) $840 \div 8=$

Exercise 5.5 continued

j) $4 \longdiv { 4 1 2 }$
k) $6 \longdiv { 6 3 0 }$

1) $963 \div 9=$
m) $3 \longdiv { 6 2 5 2 }$
n) $5 \longdiv { 5 5 4 5 }$
o) $1236 \div 6=$

Answers to Exercise 5.5						
a) 104 b) 208 c) 108 d) 304 e) 109 f) 107 g) 102 h) 101 i) 105 j) 103 k) 105 l) 107 m) 2084 n) 1109 o) 206						

5.6 One Digit Divisors with Remainders

Do the division exactly the same way that you have been learning. Often there is a remainder after the last subtraction. Write it with the quotient as you already know how to do.

Example $259 \div 8=$

$8 \longdiv { 2 5 9 } ^ { 2 5 3 }$ R3
-24

19 How many times does 8 go into 19? 2

- 16 Write a 2 in the answer. $8 \times 2=16$

3
$19-16=3$
There is nothing left to bring down.
8 does not go into 3 evenly, so 3 is the remainder.
Write R3 in the answer
$259 \div 8=32 \mathrm{R} 3$

Check your answer with multiplication and adding.
$259 \div 8=32 \mathrm{R} 3$
$32 \times 8=256 \quad$ (quotient x divisor)

Then add the remainder. $256+3=259$

Exercise 5.6

Divide and show any remainders. Check your work using the answer key. Also, check your work using multiplication and addition. The first one a) is done for you.
46 R1
a) $2 \longdiv { 9 3 }$
b) $3 \longdiv { 5 2 }$
c) $94 \div 5=$ 13
$\frac{-12}{1}$
Check
1
46
\underline{x} and
$92 \quad 92+1=93$
d) $7 \longdiv { 7 4 }$
e) $4 \longdiv { 9 5 }$
f) $79 \div 6=$

Check

Exercise 5.6 continued

g) $5 \longdiv { 5 3 8 }$
h) $8 \longdiv { 3 0 1 }$
i) $320 \div 7=$

Check

j) $3 \longdiv { 4 1 6 }$
k) $7 \longdiv { 6 5 7 }$
l) $8993 \div 9=$

Check

Answers to Exercise 5.6

a) 46 R1 check $46 \times 2=92 \quad 92+1=93$
b) 17 R 1 check $17 \times 3=51 \quad 51+1=52$
c) 18 R4 check $18 \times 5=90 \quad 90+4=94$
d) 10 R 4 check $10 \times 7=70 \quad 70+4=74$
e) 23 R3 check $23 \times 4=92 \quad 92+3=95 \quad$ f) 13 R1 check $13 \times 6=78 \quad 78+1=79$
g) 107 R3 check $107 \times 5=535535+3=538$ h) 37 R5 check $37 \times 8=296296+5=301$
i) $45 R 5$ check $45 \times 7=315 \quad 315+5=320 \quad$ j) 138 R2 check $138 \times 3=414 \quad 414+2=416$
k) 93 R6 check $93 \times 7=651 \quad 651+6=657 \quad$ l) 999 R2 check $999 \times 9=89918991+2=8993$

5.1-5.6 Review: Division

A. Find the quotient.
a) $12 \div 6=$ \qquad b) $21 \div 7=$
c) $45 \div 5=$
d) $27 \div 9=$ \qquad
e) $32 \div 8=$ \qquad
f) $14 \div 2=$ \qquad
g) $56 \div 7=$ \qquad
h) $36 \div 6=$ \qquad
i) $42 \div 6=$ \qquad
j) $20 \div 5=$ \qquad
k) $24 \div 4=$ \qquad
l) $24 \div 3=$ \qquad
B. Divide. No remainders
a) $6 \longdiv { 9 6 }$
b) $8 \longdiv { 7 3 6 }$
c) $576 \div 9=$
d) $5 \longdiv { 2 9 5 }$
e) $3 \longdiv { 4 8 6 }$
f) $3196 \div 2=$

C. Dividing with remainders. Also, check your answer using x and + .

a) $9 \longdiv { 7 0 5 }$
b) $4 \longdiv { 2 5 7 }$
c) $899 \div 7=$
check
d) $5 \longdiv { 5 3 8 }$
e) $8 \longdiv { 8 7 6 }$
f) $4628 \div 6=$

check

Answers to 5.1-5.6 Review - Division
A a) 2
b) 3
c) 9
d) 3
e) $4 \quad$ f) 7
g) 8
$\begin{array}{lllll}\text { h) } 6 & \text { i) } 7 & \text { j) } 4 & \text { k) } 6 & \text { l) } 8\end{array}$
$\begin{array}{llllll}\text { B a) } 16 & \text { b) } 92 & \text { c) } 64 & \text { d) } 59 & \text { e) } 162 & \text { f) } 1598\end{array}$
$\begin{array}{ccc}\text { C a) } 78 \text { R3 check } 78 \times 9=702 \quad 702+3=705 & \text { b) } 64 \text { R1 check } 64 \times 4=256 \quad 256+1=257\end{array}$
c) 128 R3 check $128 \times 7=896 \quad 896+3=899$ d) 107 R3 check $107 \times 5=535 \quad 535+3=538$
e) 109 R 4 check $109 \times 8=872 \quad 872+4=876$
f) 771 R2 check $771 \times 6=4626 \quad 4626+2=4628$

5.7 Dividing by Two Digit Divisors

There are no short cuts to dividing by 2 or 3 digit divisors. It is hard work. There are a few different methods to help you through the process.

Example A $630 \div 15=$
Method 1
Using multiples. The first method is to write out a few of the multiples of the divisor. In this question, $630 \div 15=$, the divisor is 15 .
Write a few of the multiples of 15 .

$$
\begin{aligned}
& 15 \times 1=15 \\
& 15 \times 2=30 \\
& 15 \times 3=45 \\
& 15 \times 4=60 \\
& 15 \times 5=75
\end{aligned}
$$

Notice if any of the multiples will be reasonable for the division.

Does 15 go into 6? No .
Does 15 go into 63? Yes. How many times? 4
Write a 4 above the 3 in the answer.
$15 \times 4=60 \quad 63-60=3$
Write down the 3 and bring down the 0 .

Does 15 go into 30? Yes. How many times? 2
Write a 2 above the 0 in the answer.
$15 \times 2=30 \quad 30-30=0$

There is nothing left to bring down and no remainder.

$$
630 \div 15=42
$$

Dividing by Two Digit Divisors continued

Example B $2709 \div 63=$
Method 2
Estimating using the first digit of the divisor. In the second method, estimate by using the first digit of the divisor. This method is not always accurate because it is an estimate.
$6 3 \longdiv { 2 7 0 9 }$

Instead of asking: Does 63 go into 2? No.
Does 63 go into 27? No.
Does 63 go into 270 ? Yes. How many times? (This is too much work!)

$$
6 3 \longdiv { 2 7 0 9 }
$$

Look at the first digit of the divisor. It is a 6.
Ask this instead. Does 6 go into 2? No.
Does 6 go into 27? Yes. How many times? 4
Now go back to the original divisor of 63 and multiply 63×4 to see if this is a reasonable amount.

189

- 189

0

Bring down the 9 and follow the same estimating process. Does 6 go into 1? No.

Does 6 go into 18? Yes. How many times? 3
$63 \times 3=189$ Write a 3 above the 9.
189-189 = 0 There is nothing left to bring down and no remainder.
$2709 \div 63=43$

Dividing by Two Digit Divisors continued

Example C $630 \div 15=$
Method 2 (not accurate)

Estimating using the first digit of the divisor. Sometimes this method will not be useful. Let's look at the question from Example A. $630 \div 15=$ Instead of asking: Does 15 go into 630 and so on?

Ask this instead. Does 1 go into 6? Yes. How many times? 6
Now multiply 15 x 6 to see if this is a reasonable amount.

So in this case it would be best to follow method 1 and find the multiples of 15 as was done in Example A.

Exercise 5.7

Divide. You can either find multiples of the divisor or use the estimation method. Check your work using the answer key. The first one a) is done for you.
$45 R 5$
a) $21 \underset{-}{950}$
110
$\begin{array}{r}-105 \\ \hline 5\end{array}$

Estimate

2 goes in to 9 about 4 times
So, $21 \times 4=84$ is reasonable.

Estimate

2 goes into 11, 5 times
So, $21 \times 5=105$
The remainder 5 is less than 21
and there is nothing left to bring down.

45 R5 is the answer.
c) $3 2 \longdiv { 3 5 2 7 }$
d) $6768 \div 42=$

Exercise 5.7 continued

e) $2 5 \longdiv { 3 0 0 }$
f) $518 \div 14=$
g) $6 1 \longdiv { 8 5 9 }$
h) $24882 \div 78=$

Exercise 5.7 continued

i) $3 1 \longdiv { 8 9 9 }$
j) $1180 \div 28=$

k) $1 9 \longdiv { 1 6 5 3 }$

1) $20183 \div 96=$

Exercise 5.7 continued

m) $5 7 \longdiv { 9 1 4 4 }$
n) $416 \div 29=$
o) $6 2 \longdiv { 3 8 1 0 }$
p) $8445 \div 42=$

Answers to Exercise 5.7

a) 45 R5	b) 61	c) 110 R7	d) 161 R6
e) 12	f) 37	g) 14 R 5	h) 319
i) 29	j) $42 R 4$	k) 87	l) 210 R23
m) 160 R24	n) 14 R10	o) 61 R28	p) $201 R 3$

5.8 Dividing by Three Digit Divisors

There are no short cuts to dividing by 3 digit divisors. It is hard work.
Just as with 2 digit divisors, you can use multiples or estimation to help you through the process.

Example A $17902 \div 381=$
Method 1
Using multiples. The first method is to write out a few of the multiples of the divisor. In this question, $630 \div 15=$, the divisor is 15 .
Write a few of the multiples of 15 .

$$
\begin{aligned}
& 381 \times 1=381 \\
& 381 \times 2=762 \\
& 381 \times 3=1143 \\
& 381 \times 4=1524 \\
& 381 \times 5=1905 \quad 381 \times 6=2286
\end{aligned}
$$

Notice if any of the multiples will be reasonable for the division.
Begin with, does 381 go into 179? No

Does 381 go into 1790? Yes.
How many times? 4 times
Write a 4 above the 0 in the answer.
$381 \times 4=1524 \quad 1790-1524=266$
Write down 266. Bring down the 2.

Does 381 go into 2662? Yes. How many times? 6
Write a 6 above the 2 in the answer.
$381 \times 6=2286 \quad 2662-2286=376$
376 is less than 381, so 376 is the remainder.
$17902 \div 381=46$ R 376

Exercise 5.8
Divide. You can either find multiples of the divisor or use the estimation method. Check your work using the answer key. The first one a) is done for you.
75 R57
a) $\begin{array}{r}1 1 5 \longdiv { 8 6 8 2 } \\ \underline{805} \downarrow\end{array}$
632
$\begin{array}{r}-\quad 575 \\ \hline 57\end{array}$

Estimate

11 goes in to 86 about 7 times
So, $115 \times 7=805$ is reasonable.

Estimate

11 goes into 63, 5 times
So, $115 \times 5=575$
The remainder is 57 which is less than 115 .
So the answer is 75 R57.
c) $3 2 5 \longdiv { 6 6 3 2 1 }$
d) $13284 \div 241=$

Answers to Exercise 5.8
a) $75 \quad \mathrm{R} 57$
b) 11 R 129
c) 204 R 21
d) 55 R 29

5.9 Dividing by Multiples of 10

Dividing by 10

Exercise 5.9a Find the quotients. Look for the pattern. Check your work using the answer key. The first one a) is done for you.
a) $1 0 \longdiv { 4 6 4 }$
-40
64
-60
4
d) $1 0 \longdiv { 8 3 2 }$
e) $1 0 \longdiv { 2 4 5 7 }$
f) $3685 \div 10=$

The pattern when dividing by 10 s is that the digit in the ones place becomes the remainder. The other numbers in the dividend stay the same but each digit is one place value less.

That is, the hundreds become tens, the tens become ones and the ones become the remainder. $464 \div 10=46 \mathrm{R} 4 \quad 75 \div 10=7 \mathrm{R} 5$

Answers to Exercise 5.9a
a) $464 \div 10=46 \mathrm{R} 4$
b) $75 \div 10=7 R 5$
c) $136 \div 10=13 \mathrm{R} 6$
d) $832 \div 10=83 R 2$
e) $2457 \div 10=245 \mathrm{R} 7$
f) $3685 \div 10=368 \mathrm{R} 5$

Dividing by 100

Exercise 5.9b

Find the quotients. Look for the pattern. Check your work using the answer key.
29 R48
a) $\begin{array}{r}1 0 0 \longdiv { 2 9 4 8 } \\ -200 \downarrow\end{array}$
948
-900
b) $1 0 0 \longdiv { 2 6 9 }$
c) $4671 \div 100=$
d) $1 0 0 \longdiv { 9 9 3 2 }$
e) $1 0 0 \longdiv { 9 2 8 2 9 }$
f) $43821 \div 100=$

The pattern when dividing by 100s is that the digits in the ones and tens places become the remainder. The other numbers in the dividend stay the same but each digit is two place values less.

That is, the thousands become tens, the hundreds become ones and the ones and tens become the remainder. $2948 \div 100=29$ R48

$$
269 \div 100=2 \text { R } 69
$$

Answers to Exercise 5.9b

a) $2948 \div 100=29 \mathrm{R} 48$
b) $269 \div 100=2$ R 69
c) $4671 \div 100=46 \mathrm{R} 71$
d) $9932 \div 100=99 \mathrm{R} 32$
e) $92829 \div 100=928 \mathrm{R} 29$
f) $43821 \div 100=438 \mathrm{R} 21$

5.10 Word Problems - Division

The problem solving skills we learn in math can be very useful to help us solve problems we have in our day-to-day lives. To solve a problem, it is a good idea to have a plan. Consider the steps below for solving word problems.

Watch for key words when you are solving division word problems.

$$
\begin{aligned}
& \text { quotient - the answer in a division problem } \\
& \text { shared - each person gets the same amount } \\
& \text { split - separate into groups of equal numbers } \\
& \text { Find the average. } \\
& \text { Find the unit price. } \\
& \text { Find the _per___ }
\end{aligned}
$$

Problem Solving Steps

Step 1: Read the problem.
Step 2: List the information you found.
Step 3: Use key words to decide what you have to find out.
Step 4: Solve the problem.
Step 5: Does your answer make sense?
Step 6: Write your answer in a word sentence.

Word Problems Division continued

The most common type of division problem gives a total amount for several things and asks you to find what the amount would be for one.

Problems may tell you...	and ask you to find...	
kilometres driven in 8 hours (hr)	km driven in one hour	$(\mathrm{km} / \mathrm{hr})$
cost for 15 kilograms	cost for one kg	$(\$ / \mathrm{kg})$
\$ pay for 40 hours	\$ pay for one hour	$(\$ / \mathrm{hr})$
rent for one year (12 months)	rent for one month \quad (rent/month)	
work done in eight hours	work done in one hour \quad (work/hr)	
kilometres driven on 55 Litres of gas	km driven on one L of gas $\quad(\mathrm{km} / \mathrm{L})$	

The word per is a Latin word meaning "for each".
For example, when asked to find the kilometres per hour, it means to find the kilometres driven in one hour.

A slash (/) also means per. kilometres/hour or km/h.
Example A John buys 444 litres of gas in 6 months. How much gas per month does John buy if he buys the same amount each month?

The key words are per month which means to find the amount per one month which is dividing.

Dividend: What are you dividing? 444 litres of gas
Divisor: What are you dividing it into? 6 months

$$
444 \div 6=
$$

74

0 John buys 74 litres of gas each month.

Word Problems Division continued

Finding the average is another way of asking to find the amount for one unit. To find the average, divide the total amount by the number of items that make up the total. You may first have to add the different items together to find the total and then divide.

Average $=$ total \div amount of items
Example B Joan and Rick have been keeping track of their household costs. They want to plan a monthly budget. Their grocery bills for five months were $\$ 605, \$ 397, \$ 530, \$ 590$ and $\$ 474$. What is their average monthly grocery cost?

The key words are average monthly which means to find the total of the amounts. Then, divide by the number of amounts.

The total amount is $\$ 605+397+530+590+474=$
21
605
397
530
590
$\begin{array}{r}473 \\ +\quad 4 \\ \hline\end{array}$
2595

Dividend: What are you dividing? $\$ 2595$
Divisor: What are you dividing it by 5 months

$$
2595 \div 5=
$$

519

45 Joan and Rick spend $\$ 519$ on average each month.
-45
0

Exercise 5.10a Solve these division word problems. Check your work using the answer key.
a) A machine shop can stamp out 360 car parts in an 8 hour working day. How many parts is that per hour?
b) Ivan paid $\$ 560$ for 4 tires. How much did each tire cost?
c) The total cost of the car Lisa bought is $\$ 14880$ including tax and interest. She will pay for it in 24 equal payments. How much will each payment be?
d) Jessica cycled $14 \mathrm{~km}, 10 \mathrm{~km}, 18 \mathrm{~km}, 22 \mathrm{~km}$ in each of four hours. What was her average speed in kilometres per hour? ($\mathrm{km} / \mathrm{hr}$)

Exercise 5.10a continued

e) Mandy spent $\$ 124, \$ 187, \$ 164, \$ 205$ and $\$ 220$ on her heating bill over 5 months. What was the average cost per month for her heating?
f) Dan worked 8 hours a day for five days and earned $\$ 560$. How much was he paid per hour?
Hint: How many hours did he work in total over the five days?

What did he earn per hour?

Answers to Exercise 5.10a - Word Problems

a) $360 \div 8=45$ The machine makes 45 parts per hour.
b) $\$ 560 \div 4=\$ 140$ Each tire cost $\$ 140$.
c) $\$ 14880 \div 24=\$ 620$ Lisa will pay $\$ 620$ per month for her car.
d) First find the total. $14+10+18+22=64 \quad$ Next, find the average $64 \div 4=16$ Jessica cycled 16 km per hour.
e) First find the total. $124+187+164+205+\$ 220=\$ 900$

Next, find the average. $\$ 900 \div 5=180$
On average, Mandy paid $\$ 180$ per month for heating.
f) $8 \times 5=40$ hours over five days.
$\$ 560 \div 40=14 \quad$ Dan earned $\$ 14$ per hour.

Word Problems Division continued

Divide to find the number of groups

Another type of division problem gives the total amount and the size of each group. The question asks you to find the number of groups. Both numbers will have the same units. The answer to the problem will give another type of unit.

Example A One necklace uses 25 beads. How many necklaces can Susan make for the craft fair if she has 525 beads?

Find how many groups of 25 beads there are in 525 beads.

$$
525 \div 25=21 \quad \text { Susan can make } 21 \text { necklaces. }
$$

Example B If you drive an average speed of 80 km an hour, how many hours will it take you to drive 560 km ?

Find how many groups of 80 km there are in 560 km .
$560 \div 80=7$ It will take 7 hours to drive 560 km .

Exercise 5.10b Solve these division word problems. Check your work using the answer key.
a) A train travels 90 km per hour. How many hours will it take the train to go 540 km ?

Exercise 5.10b continued

b) A car gets 16 km per litre of gasoline. How many litres of gasoline will the car need to go 128 km ?
c) About 8 metres is needed for one parking space. How many parking spaces can be made along a street that is 232 metres long?
d) If you spend an average of 8 minutes on one math problem, how many problems can you finish in one hour?

Will you have any time left? How much?

Exercise 5.10b continued

e) The Football Club members decided to sell home-made candy to raise money. The boxes they bought will hold 45 pieces of candy. If everyone makes a double batch of fudge they will have 2590 pieces of fudge. How many boxes can they fill?

How many pieces of fudge are left-over for them to eat?
f) A group of 334 students is going to Victoria by bus. Each bus holds 32 passengers. How many buses do they need? Will there be any empty seats? (Be careful with this one!)

Answers to Exercise 5.10b- Word Problems

a) $540 \div 90=6$ It will take 6 hours for the train to travel 540 km .
b) $128 \div 16=8$ The car will require 8 litres of gas to travel 128 km .
c) $232 \div 8=29$ Along the street they can make 29 parking spaces.
d) Convert 1 hour to minutes. 1 hour $=60$ minutes. $60 \div 8=7 \mathrm{R} 4$

I can do 7 math problems in one hour. I will have 4 minutes left over.
e) $2590 \div 45=57$ R25 They can fill 57 boxes. There will be 25 pieces of fudge left over.
f) $334 \div 32=10$ R $14 \quad$ They will require 11 buses. On the $11^{\text {th }}$ bus, there will be 18 empty seats. $(32-14=18)$

Unit 5 Review - Division

You will now practice all the skills you learned in Unit 5. Check your work using the answer key at the end of the review.
A. Find the quotient.
a) $21 \div 3=$ \qquad
b) $45 \div 9=$
d) $24 \div 8=$ \qquad
e) $30 \div 6=$
f) $12 \div 1=$
g) $2 \longdiv { 1 2 }$
h) $4 \longdiv { 3 6 }$
i) $54 \div 9=$
j)
$9 \longdiv { 2 7 }$
k) $4 \longdiv { 8 }$
l) $8 \div 8=$
c) $64 \div 8=$

B. Divide. No remainders

a) $3 \longdiv { 8 1 }$
b) $5 \longdiv { 7 3 5 }$
c) $837 \div 9=$
d) $2 \longdiv { 3 1 4 }$
e) $8 \longdiv { 3 3 6 }$
f) $576 \div 4=$
C. Dividing with remainders. Also, check your answer using x and + . (1 mark for question, 1 mark for check)
a) $7 \longdiv { 6 1 5 }$
b) $2 \longdiv { 6 4 7 }$
c) $781 \div 3=$
check
d) $5 \longdiv { 6 5 9 }$
e) $4 \longdiv { 3 4 2 }$
f) $175 \div 9=$
check
D. Put a check mark for each number that divides evenly.

	Number	2	$\mathbf{3}$	$\mathbf{5}$
\mathbf{a}	135			
\mathbf{b}	384			
\mathbf{c}	4614			
\mathbf{d}	495			
\mathbf{e}	648			
\mathbf{f}	745			

E. Find the quotients.
a) $4 2 \longdiv { 8 9 5 6 }$
b) $832 \div 34=$
c) $1 0 \longdiv { 4 9 2 3 }$
d) $24882 \div 100=$
e) $1 2 \longdiv { 3 7 2 1 }$
f) $5364 \div 51=$
g) $1 0 \longdiv { 7 6 8 }$
h) $5360 \div 100=$

F. Word Problems.

a) At the Car Factory, 4325 cars were put together in 5 days. Each day the same number of cars were built. How many cars were built each day?
b) The Basketball Company needs to make 6912 basketballs. Mr. Bounce, the foreman, says that their machines can make the balls in 12 hours. How many balls would be made in one hour?
c) The new stadium has 15960 seats divided evenly into 76 sections. How many seats are in each section?
d) Kate achieved $84 \%, 92 \%, 73 \%, 86 \%$, and 80% on her first five tests. What was her average grade on the tests?
e) The distance between Calgary and Edmonton is approximately 300 kilometres. If a person drives 100 kilometres per hour, how many hours will the drive take?
f) John collects sports cards. In 4 months, January through April, he collected 123, 287, 45, and 106 cards respectively. On average, how many sports cards did he collect per month? Were there any cards remaining?

Answers to Unit 5 Review - Division

A a) 7
b) 5
c) 8
d) 3
e) 5
f) 12
g) 6
h) 9
i) 6
j) 3
k) 2
l) 1

B a)27 b) 147
c) 93
d) 157
e) 42
f) 144

C a) 87 R6 check $87 \times 7=609 \quad 609+6=615$
c) 260 R 1 check $260 \times 3=780 \quad 780+1=781$
d) 131 R 4 check $131 \times 5=655 \quad 655+4=659$
e) 85 R2 check $85 \times 4=340 \quad 340+2=342$
f) 19 R 4 check $19 \times 9=171 \quad 171+4=175$

\mathbf{D}	Number	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$
\mathbf{a}	135		$\sqrt{ }$	$\sqrt{ }$
\mathbf{b}	384	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{c}	4614	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{d}	495		$\sqrt{ }$	$\sqrt{ }$
\mathbf{e}	648	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{f}	745			$\sqrt{ }$

E a) 213 R10
b) 24 R 16
c) 492 R 3
d) 248 R 82
e) 310 R 1
f) 105 R 9
g) 76 R8
h) 53 R60
F. a) $4325 \div 5=865$ The factory builds 865 cars per day.
b) $6912 \div 12=576$ The machine makes 576 basketballs in 1 hour.
c) $15960 \div 76=210$ Each section has 210 seats.
d) First find the total. $84+92+73+86+80=415$ Next, find the average $415 \div 5=83$

Kate achieved an 83\% on average.
e) $300 \div 100=3$ It takes about 3 hours to drive to Edmonton from Calgary.
f) First find the total. $123+287+45+106=561$ Next, find the average $561 \div 4=140$ R1 John collects on average 140 sports cards each month. There was 1 sports card remaining.

Unit 4 \& Unit 5 Review - Multiplication \& Division

Let's review the skills you learned in Unit 4 Multiplication. Check your work using the answer key at the end of the review. The review for Unit 5 Division follows the review of multiplication.

A. Solve these multiplication facts.

a) 8
b) $\quad 9$
c) 0
x 1
d) 8 $\begin{array}{r}85 \\ \hline\end{array}$
$\begin{array}{r} \\ \times \\ \hline\end{array}$
x 3
e) $\begin{array}{r}2 \\ \times 7 \\ \hline\end{array}$
f) $\begin{array}{r}6 \\ \times 1 \\ \hline\end{array}$
g) $\begin{array}{r}7 \\ \times \quad 9\end{array}$
h) $\begin{array}{r}4 \\ \times 2\end{array}$
i) $\begin{array}{r}2 \\ \times 7 \\ \hline\end{array}$
j) 4
x 1
k) $\begin{array}{r}0 \\ \times 0 \\ \hline\end{array}$
l) $\begin{array}{r}6 \\ \times 1 \\ \hline\end{array}$
m) 7
n) $\quad \begin{array}{r}2 \\ x\end{array}$
o) $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$
p) $\begin{array}{r}7 \\ \times \quad 7 \\ \hline\end{array}$
q) $2 \times 6=$
r) $\quad 5 \times 4=$
s) $7 \times 1=$
t) $0 \times 6=$
u) $8 \times 5=$
v) $2 \times 7=$
w) $9 \times 7=$
x) $6 \times 5=$
y) $\quad 5 \times 4=$
z) $3 \times 9=$
B. Find the products.
a)

b) $\begin{array}{r}441 \\ \times \quad 2 \\ \hline\end{array}$

c) 5649 | $\mathrm{x} \quad 3$ |
| :--- |

d) $67 \times 19=$
e)
581
$\times \quad 34$
f) 87
$\begin{array}{r}\times 41 \\ \hline\end{array}$
g)

h) $16 \times 78=$
i)

2805
$\times \quad 46$

j) $\begin{array}{r}7310 \\ \mathrm{x} \quad 82 \\ \hline\end{array}$
k) 6143 $\begin{array}{r}6151 \\ \hline\end{array}$
l) $85 \times 57=$
C. Find the products. Use the zero shortcut.
a)
285
b) $\begin{array}{r}731 \\ \times 100 \\ \hline\end{array}$
c) $\begin{array}{r}9693 \\ \times 1000 \\ \hline\end{array}$
d) $10 \times 850=$
e) $1000 \times 629=$
f) $10000 \times 2735=$
g) $19 \times 100=$
D. Find the estimated product only.

c)
$\begin{array}{r}\mathrm{x} \quad 507 \\ \hline\end{array}$
Estimate
d) $\begin{array}{r}21395 \\ \times \quad 599 \\ \hline\end{array}$
E. Solve each word problem. Give your answer in a sentence. Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) The theatre at Bow Valley College has 12 rows of seating. Each row has 18 seats. How many seats are there in total at the theatre?
b) Lisa pays $\$ 650$ for daycare each month. How much will Lisa pay for daycare for one year? How much will Lisa pay for daycare for two years?
c) The college cafeteria hopes to serve 95 people each day. How many meals will be served if the cafeteria is open 175 days. Find the estimate and the actual product.
d) Helen spends $\$ 2$ on coffee each day at work. She works five days a week. How much does she spend in one week on coffee? How much does she spend if she works 45 weeks each year?
e) A store keeper bought 25 ipads. He bought them for $\$ 200$ each. He sold them for $\$ 300$ each. How much did he pay for all of the ipads in total?

How much money did he make when he sold all of the ipads?

What is the difference between what he paid and what he made (profit)?

Answers to Unit 4 Review - Multiplication (est means estimate)

A a) 40 b) 45
c) 0
d) 24
e) $\begin{array}{ll}14 & \text { f) } 6\end{array}$
g) 63
h) 8
i) 14
j) 4
k) $0 \quad$ l) 6
m) 35
n) 16
o) 12
p) 49
q) 12
r) $20 \quad$ s) 7
t) 0
u) 40
v) 14
w) 63
x) 30 y) 20
z) 27
B a) 405
b) 882
c) 16947
d) 1273
e) 19754
f) 3567
g) 1940
h) 1248
i) 129030
j) 599420
k) 313293
l) 4845
C a) 2850
b) 73100
c) 9693000
d) 8500
e) 629000
f) 27350000
g) 1900
D a)3 zeros est $300 \times 10=3000$
b) 3 zeros est $600 \times 70=42000$
c) 5 zeros est $7000 \times 500=3500000$
d) 6 zeros est $20000 \times 600=12000000$

E a) 12 rows times 18 seats. $12 \times 18=216$ There are 216 seats in the theatre.
b) $\$ 650$ for 12 months $650 \times 12 \$ 7800$ Lisa will pay $\$ 7800$ for daycare for 1 year.
$\$ 7800 \times 2$ years $=\$ 15600 \quad$ Lisa will pay $\$ 15600$ for daycare for 2 years.
c) 95 people $\times 175$ days $=16625$ people estimate $100 \times 200=20000$

The cafeteria will serve 16625 people. The estimate is 20000 people.
d) $\$ 2 \times 5$ days $=\$ 10$ per week. $\$ 10 \times 45$ weeks $=\$ 450$

Helen spends $\$ 10$ on coffee each week and $\$ 450$ on coffee each year.
e) 25 ipads $x \$ 200=\$ 5000 \quad$ The iPads cost $\$ 5000$ in total.
$25 \times \$ 300=\$ 7500$ He sold the iPads for $\$ 7500$ in total.

5.11 Order of Operations

The order in which math problems are solved is important. This is the Order of Operations. There are 4 steps to solving a math equation.

Order of Operations

1) Solve inside grouping brackets or parentheses.
2) Solve exponents and square roots.
3) Solve multiplication and/or division in the order it appears starting from left to right.
4) Solve addition and/or subtraction in the order it appears starting from left to right.

You may remember the Order of Operations as BEDMAS or PEDMAS. It is important to learn that multiplication and division are equal, as are addition and subtraction. We solve them in the order they appear with division and multiplication being done first before addition and subtraction.

We will not be covering exponents at this time so will only be using steps $1,3 \& 4$ from the Order of Operations.

Order of Operations continued

Order of Operations

1) Solve inside grouping brackets or parentheses.
2) Solve exponents and square roots.
(We are not using this step.)
3) Solve multiplication and/or division in the order it appears starting from left to right.
4) Solve addition and/or subtraction in the order it appears starting from left to right.

Example A Solve using the Order of Operations.

Read the question.
There are no grouping brackets.
Solve x and \div in the order it appears starting from left to right. $5 \times 6=30$

Bring down the rest of the question. $30+18 \div 3$

6
Solve $\div 18 \div 3=6$
Bring down the rest of the question.
Solve + and - in the order it appears starting from left to right.
$5 \times 6+18 \div 3=$

30
$30+6=36$

Order of Operations continued

Example B Solve using the Order of Operations.

Read the question.

Solve grouping brackets. (8-1 = 7)

Bring down the rest of the question.

Solve x and \div in the order it appears starting from left to right.

Bring down the rest of the question.

Solve + and - in the order it appears starting from left to right.

Bring down the rest of the question.

Solve for the answer.

$$
3 \times(8-1)+10 \div 2-2=
$$

7

$$
3 \times 7+10 \div 2-2
$$

$21 \quad 5$

26

$$
26-2
$$

24

Order of Operations continued

Example C Solve using the Order of Operations.

$$
(6)(4)-(15+5) \div 2+16=
$$

(6) (4) means multiplication

Rewrite the question as such.

$$
6 \times 4-(15+5) \div 2+16
$$

Solve grouping brackets. $(15+5=20)$ 20

Bring down the rest of the question. $6 \times 4-\underline{20} \div 2+16$

Solve x and \div in the order it appears
$24 \quad 10$ starting from left to right.

Bring down the rest of the question.
$24-10+16$
Solve + and - in the order it appears starting from left to right.

Bring down the rest of the question.

$$
14+16
$$

Solve for the answer

Exercise 5.11 Solve using the Order of Operations. Check your work using the answer key. Use the previous examples to guide your work.
a) $9 \times 7-11=$
c) $4 \times 8-10 \div 2=$
e) $6+4 \times(8+3)=$
f) $(40 \div 8)+9 \times 5-18=$

Exercise 5.11 continued

g) $33 \div 3 \times(5-1)+7=$
h) $75-3 \times(5)(2)+15=$
i) $16-(2)(4) \div 2+36=$
j) $21 \times 3+5-(28-21) \times 5=$
k) $17+(18 \div 6)+3 \times 12=$
l) $(4)(5) \times(2+5)-(35-14)=$

Answers to Exercise 5.11

a) $52(63-11=52)$
b) $60(45+15=60)$
c) $27 \quad(32-5=27)$
d) $29(36-7=29)$
e) $50(6+44=50)$
f) $32(5+45-18=32)$
g) $51(11 \times 4+7=44+7=51)$
h) $60(75-30+15=60)$
i) $48(16-4+36=48)$
j) $33(63+5-35=33)$
k) $56(17+3+36=56)$
l)119 $(20 \times 7-21=119)$

Unit 1-5 Review

Practice all the skills you learned in Units 1-5. Check your work using the answer key at the end of the review.
A. Write the place value names (ones, tens hundreds, thousands, ten thousands, hundred thousands, millions) for each underlined digit.
a) $34 \underline{9} 21$
b) $\underline{5} 498$
c) $41 \underline{8}$ \qquad d) $571 \underline{2} 8$ \qquad

Using the number 41 276, write the digit that is in each of the following place values.
e) thousands \qquad f) ones \qquad
g) hundreds \qquad h) tens \qquad

Underline the digit for the place value named.
i) hundreds
25026
j) tens
3754
k) ten thousands
137192
l) hundred thousands
1291569

Write the numbers in words.

m) 725
n) 3607
o) 60710
p) 3088179

Write the words in numbers.

q) six thousand three hundred thirty-seven
r) ten thousand four hundred seventeen
s) two hundred four
t) one hundred ninety-five thousand four hundred thirty

Write each number in expanded form.
u) 925
v) 31365
w) 98008
x) 1562321

Write each number in standard form.
y) $60000+9000+400+20+6$
z) $90000+300+40+3$
aa) $1000+900+60+5$
bb) $4000000+500000+90000+3000+200+40+2$

Arrange these numbers in order from smallest to largest.

cc)	418	4018	18	487	4832

$\begin{array}{llllll}\text { dd) } & 76 & 79 & 67 & 70 & 72\end{array}$

Write < or > or = in each blank as needed.
ee) 498
458
ff) 3200
3300
gg) 35781
35807
hh) 12468
12493

B. Round each number as indicated.

a) Round 1653 to nearest tens \qquad to nearest thousands \qquad
b) Round 12581 to nearest hundreds \qquad to nearest ten thousands \qquad
c) Round 43999 to nearest hundreds \qquad to nearest tens \qquad
d) Round 572098 to nearest thousands \qquad

Adding, Subtraction, Multiplying or Dividing

Solve.
a)
368
b)
2147
c) $62+947+8=$
$\begin{array}{r}+\quad 31 \\ \hline\end{array}$

$$
\begin{array}{r}
690 \\
\hline
\end{array}
$$

d) $\begin{array}{r}2376 \\ -\quad 254 \\ \hline\end{array}$
e) $\begin{array}{r}16043 \\ -\quad 9672 \\ \hline\end{array}$
f) $6000-625=$

Find the exact answer and the estimates.
Rewrite the addition problems in a column for solving.
g) $12653+7098=$
Exact
Estimate
h) $9909+582=$
Exact
Estimate

Find the exact answer and estimate.
i) $10545-1433=$ Exact Estimate
j) $165912-58102=$

Find the product for each question.
k)
2805
$\begin{array}{r}46 \\ \times \quad \\ \hline\end{array}$
l) 7310
m) $85 \times 57=$

Find the products. Use the zero shortcut method.
n) 285
$\begin{array}{r} \\ \times \quad 10 \\ \hline\end{array}$
o) 731
$\begin{array}{r}\times 100 \\ \hline\end{array}$
p) 9693
1000
\times

Use front-end rounding to find the estimated product for each question.

	Estimate		Estimate
q)	2285	r) 25491	
$\times \quad 56$	$\times \quad 99$		
Do not solve			

Do estimate only for each.

Dividing with remainders. Also, check your answer using x and + . (Check the answers of questions s), t), and u) by multiplying the quotient with the divisor and adding back in the remainder.)
s) $6 \longdiv { 4 5 7 5 }$
t) $2 \longdiv { 8 1 2 5 }$
u) $832 \div 7=$

check

v) $2 3 \longdiv { 8 8 3 7 }$
w) $5 1 \longdiv { 1 0 4 4 7 }$
x) $8500 \div 85=$

Put a check mark for each number that divides evenly.

	Number	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$
\mathbf{a}	4132			
\mathbf{b}	33084			
\mathbf{c}	615			
\mathbf{d}	900			

C. Word Problems Solve each word problem. The word problems could be addition, multiplication, subtraction and/or division. Give your answer in a sentence. Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) If Sal drives 120 kilometres per hour for 5 hours, how far does he drive?
b) Ten workers contribute $\$ 5$ each per week to buy lottery tickets. How much do they contribute in total each week? How much do they contribute in one year? (1 year $=52$ weeks)
c) The population of Calgary in 2014 was 1195 194. The population of Calgary in 2009 was 1065 455. What is the difference in the population between 2014 and 2009. (Calgary.ca)
d) Last year Sam earned $\$ 39$ 425. He paid $\$ 6702$ in taxes. How much money did Sam have left after paying his taxes?
e) The Glenmore Reservoir provides more than half of Calgary's drinking water. It was completed in the year 1933. If it is the year 2015, how many years has the reservoir been collecting drinking water?
(www.sunsite.ualberta.ca/Projects/Alberta-Lakes)
f) Sandy has saved $\$ 151, \$ 96, \$ 15, \$ 225, \$ 39$ and $\$ 146$ in the first 6 months of the year. How much money has she saved in total? What was the average amount she saved each month?
g) How long would it take a person driving at a speed of 80 kilometres per hour to travel a distance of 1440 kilometres?
h) The Student Association is putting together welcome packages for new students. They plan on putting 10 items in 1250 bags. How many items do they have in total?
i) Beth achieved $64 \%, 83 \%, 65 \%, 72 \%$, and 76% on five assignments. What was her average grade on the assignments?
j) The distance between Calgary and Vancouver is approximately 975 kilometres. If a person drives 100 kilometres per hour, how many hours will the drive take? Round up to the nearest hour if you have a remainder.

Answers to Unit 1 - 5 Review

a) hundreds
b) thousands
c) ones d) tens
$\begin{array}{ll}\text { e) } 1 & \text { f) } 6\end{array}$
g) 2
h) 7
i) 0
j) 5
k) 3
l) 2
m) seven hundred twenty-five n) three thousand six hundred seven
o) sixty thousand seven hundred ten p) three million eighty-eight thousand one hundred seventy-nine
q) 6337
r) 10417
s) 204
t) 195430
u) $900+20+5=925 \quad$ v) $30000+1000+300+60+5=31365$
w) $90000+8000+8=98008$
x) $1000000+500000+60000+2000+300+20+1=1562321$
$\begin{array}{llll}\text { y) } 69426 & \text { z) } 90343 & \text { aa) } 1965 & \text { bb) } 4593242\end{array}$
cc) $\begin{array}{lllllllllll}18 & 418 & 487 & 4018 & 4832 & \text { dd) } & 67 & 70 & 72 & 72 & 76\end{array} \quad 79$
ee) $498>458$ ff) $3200<3300 \quad$ gg) $35781<35807$ hh) $12468<12493$

B. Rounding

a) tens 1650 thousands 2000
b) hundreds 12600 ten thousands 10000
c) hundreds 44000 tens 44000
d) thousands 572000

Adding, Subtracting, Multiplying and/or Dividing
a) 399
b) 2837
c) 1017
d) 2122
e) 6371
f) 5375
g) exact $=19751$ est $=10000+7000=17000$
h) exact $=10491$ est $10000+600=10600$
i) exact $=9112$ estimate $10000-1000=9000$
j) exact $=107810$ est $200000-60000=140000$

Answers to Unit 1-5 Review (est means estimate)

Adding, Subtracting, Multiplying and/or Dividing continued
k) 129030
l) 599420
m) 4845
n) 2850
o) 73100
p) 9693000
q) est $2000 \times 60=120000$
r) $30000 \times 100=3000000$
s) 762 R3 check $762 \times 6=4572 \quad 4572+3=4575$
t) 4062 R1 check $4062 \times 2=81248124+1=8125$
u) 118 R 6 check $118 \times 7=826 \quad 826+6=832$

	Number	2	3	5
\mathbf{a}	4132	$\sqrt{ }$		
\mathbf{b}	33084	$\sqrt{ }$	$\sqrt{ }$	
\mathbf{c}	615		$\sqrt{ }$	$\sqrt{ }$
\mathbf{d}	900	$\sqrt{ }$	$\sqrt{ }$	$\sqrt{ }$

C. Word Problems

a) $120 \times 5=600$ Sal drive 600 kilometres.
b) $10 \times 5=50 \quad 50 \times 52=2600$

The workers contribute $\$ 50$ each week. The workers contribute $\$ 2600$ each year.
c) $1195194-1065455=129739$

The difference in the population between 2014 and 2009 is 129739.
d) $39425-6702=32723$

The difference between what Sam earned and what he paid in taxes is \$32 723 .
e) $2015-1933=82$ The reservoir has been collecting drinking water for 82 years.
f) Add numbers to find the total. $151+96+15+225+39+146=\$ 672$

Next, find the average $\$ 672 \div 6=\$ 112$ Sandy saves on average $\$ 112$ each month
g) $1440 \div 80=18$

It would take 18 hours for a person to drive 1440 kilometres at a speed of 80 kilometres.
h) $1250 \times 10=12500$ The Student Association has 12500 items in total.
i) First find the total. $64+83+65+72+39+76=360$ Next, find the average $360 \div 5=72$ Beth's average arade on the assignments is 72%.
j) $975 \div 100=9$ R75 Round to 10 hours. It would take 10 hours to drive to Vancouver.

Extra Review for Whole Numbers Units 1-5

1) Write the words in numbers

Two hundred thirty \qquad

Six thousand three hundred two \qquad
One hundred fifteen thousand eight hundred forty-seven \qquad
2) Write the following numbers in words:

5002 \qquad

4237 \qquad
55171 \qquad

108438 \qquad
13362013 \qquad
3) Write the following numbers in standard form (as numbers):
eight hundred twelve \qquad
six thousand twenty-two \qquad
nine hundred thousand \qquad
eighty thousand, five hundred \qquad
one million, one hundred eleven thousand, three \qquad
4) Write the following number 45221 in expanded notation.
5) Write the place value of the 5 in each number given below:

1036925 \qquad
579 \qquad

452 \qquad
15211 \qquad
6) Look at the number below and answer the following questions 87240691

The $\mathbf{8}$ is in the \qquad place

The $\mathbf{0}$ is in the \qquad place

The $\mathbf{2}$ is in the \qquad place

The $\mathbf{7}$ is in the \qquad place

The $\mathbf{9}$ is in the \qquad place
7) Round 452 to the tens place.
\qquad

Round 63476 to the hundreds place.
\qquad

Round 543788 to the thousands place.
\qquad

Round 98776452 to the ten thousands place.
8) Arrange the numbers below in columns and add:
a) $9759+4136+3821=$
b) $301+5012+18000+14=$
9) Estimate the answer using front-end rounding. (SHOW YOUR WORK!)
a) $9821+4131+2096=$
b) $5981+4121+816=$
10)Kate went on a bus trip. She travelled 296 km on Monday, 716 km on Tuesday, and 308 km on Wednesday. How far did she travel altogether?
11)Last week William earned $\$ 592$. This week he earned $\$ 612$. How much did he earn in all? How much more money did he earn this week?
12)Find the difference for each of the following questions:

$$
843-641=
$$

13)Last week Pirate's Cove fish plant processed 338000 kg of fish. This week they processed 231209 kg. How many fewer kilograms of fish did they process this week?
14)Cindy and Fiona collect old books. Cindy had 195 books and purchased 7 more during the summer. Fiona had 172 books and purchased 15 more during the summer. What are the new totals of their collection of books? How many more books does Cindy have than Fiona at the end of summer?
15)Solve.
a) $23 \times 0=$
b) $145 \times 1=$
c) $12 \div 0=$
d) $0 \div 15=$
16)Solve:
a) $824 \times 8=$
b) $1260 \times 15=$
17) Estimate the answer by using front-end rounding.

Do not solve for the exact answer.
Estimate
$458411 \times 45=$
18)A car manufacturer can produce 1329 cars in a week. How many cars can be produced in 52 weeks?
19)Tom wants to buy a used vehicle for his son. Tom will pay $\$ 1500$ down payment and then $\$ 50$ a month for 60 months. How much will Tom pay for his son's car in total?
20)Solve:
a) $496 \div 62$
b) $15627 \div 11$
21)Dan earned $\$ 30000$ last year. How much did he earn each month? (There are 12 months in a year.)
22)Solve.
$47259 \div 450=$
23)There were 12960 cars travelling on Deerfoot Trail in 8 hours one day. On average, how many cars travelled on Deerfoot Trail per hour?
24) Dylan wants to build a fence around the perimeter of his new property. The length of his property is 25 meters and the width is 15 meters. How many meters of fence does he have to build?

25) Solve:
a) $5 \times 8 \div(12-7)=$
b) $56-28 \div 7 \times 5=$

Answers to Extra Review for the Whole Number Review

1) $230 \quad 6302 \quad 115847$
2) 5002 five thousand two 4237 four thousand two hundred thirty seven

55171 fifty five thousand one hundred seventy-one
108438 one hundred eight thousand four hundred thirty eight
13362013 thirteen million three hundred sixty two thousand thirteen
$\begin{array}{lllll}3) \\ 812 & 6022 & 900000 & 80500 & 111003\end{array}$
4) $45221-40000+5000+200+20+1$
5) 1036925 ones 452 tens 579 hundreds 15211 thousands
6) 8 is in the ten millions place. 0 is in the thousands place 2 is in the hundred thousands place.

7 is in the millions place. 9 is in the tens place
7) $450 \quad 63500 \quad 544000 \quad 98780000$
$\begin{array}{ll}\text { 8) a) } 17716 & \text { b) } 23327\end{array}$
$9 a) 10000+4000+2000=16000 \quad$ b) $6000+4000+800=10800$
10) add She travelled 1320 kilometres.
11) add He earned $\$ 1204$ in total. subtract This week he earned $\$ 20$ more than last week.
12) 202 13) subtract They processed 106791 kilograms fewer this week.
14)Cindy has 202 books. $195+7=202 \quad$ Fiona has 187 books. $172+15=187 \quad 202-187=15$

Cindy has 15 more books than Fiona.
15) a) 0
b) 145
c) undefined
d) 0
16) a) 6592
b) 18900
17) $500000 \times 50=250000000$
18) multiply $52 \times 1329=69108$ cars can be produced.
19) $50 \times 60=3000 \quad 3000+1500=\$ 4500$ Tom will pay $\$ 4500$ for the car.
20) a) $8 \quad$ b) 1420 R7 21) divide He eared $\$ 2500$ per month.
22) 105 R9 23) divide On average 1620 cars travelled on Deerfoot Trail per hour.
24) $25+15+25+15=80 \quad$ Dylan has to build 80 metres of fence.
25) a) $40 \div 5=8$
b) $56-4 \times 5=56-20=36$

Unit 6 Fraction Introduction

6.1 Introducing Fractions

A fraction is a part of a whole number.

The denominator is the bottom number. It tells how many equal parts are in the whole. The numerator is the top number. It tells how many equal parts of the whole we are dealing with.

Examples

The whole is the bunch of bananas.
The whole has 5 equal parts (5 bananas).
The denominator is 5 .
How many bananas have been eaten? 1
What fraction of the bananas have been eaten?
$\frac{1}{5}$ of the bananas (one-fifth)
$\frac{1}{5}=\frac{\text { numerator }}{\text { denominator }}$

The whole is a carton of one dozen eggs.
One dozen has 12 equal parts.
How many eggs are still in the carton? 7 What fraction of the eggs are left?
$\frac{7}{12}$ of the eggs (seven-twelfths)

A fraction is always looking at parts of a whole.
In the example of the eggs above, the whole is 12 eggs.
The part is the 7 eggs that are left. 7 is part of the whole of 12.

Introducing Fractions continued

Example A

This pizza is one whole pizza.

The pizza is cut into 8 pieces. This means the whole is 8 parts.
Five (5) parts are left. (The pieces that are shaded are the ones left.)
The fraction of how many pieces of pizza are left is $\frac{5}{8}$

Example B

Sue made a pie.

The pie was cut into 4 equal parts. The whole is 4 parts. She ate 1 piece How many pieces were left? 3 (The pieces that are shaded are the ones left.)
The fraction of how many pieces of pie are left is $\frac{3}{4}$

$$
\frac{3}{4} \frac{\text { numerator }}{\text { denominator }} \quad \frac{3 \text { pieces left over }}{\text { pie is cut into } 4 \text { pieces }}
$$

Exercise 6.1a Each shape drawn here is a whole. The shapes have been divided into equal parts. Answer the questions below. The first one a) is done for you.

a) i) How many parts make up the whole? 4
ii) How many parts are shaded?

3
iii) Write the fraction. $\frac{3}{4}$
iii) Write the fraction.

c) i) How many parts make up the whole?
ii)How many parts are shaded?
iii)Write the fraction.

d) i) How many parts make up the whole?
ii) How many parts are shaded?
iii) Write the fraction.

Exercise 6.1a continued Answer the questions below.

e) i) How many parts make the whole?
ii) How many parts are shaded?
iii) Write the fraction.

f) i) How many parts make the whole?
ii) How many parts are shaded?
iii) Write the fraction.

h) i) How many parts make the whole?
ii) How many parts are shaded?
iii)Write the fraction.
ii) How many parts are shaded?
iii) Write the fraction.

Answers to Exercise 6.1a

| a i) 4 | ii) 3 iii) $\frac{3}{4}$ | bi) 8 | ii) 5 iii) $\frac{5}{8}$ |
| :--- | :--- | :--- | :--- | :--- |
| c i) 5 | ii) 2 iii) $\frac{2}{5}$ | di) 4 | ii) 1 iii) $\frac{1}{4}$ |
| e i) 2 ii) 1 iii) $\frac{1}{2}$ | fi) 13 | ii) 5 iii) $\frac{5}{13}$ | |
| g i) 4 | ii) 2 iii) $\frac{2}{4}$ | hi) 3 | ii) 1 iii) $\frac{1}{3}$ |

Exercise 6.1b Shade in the numerator (top number) to draw fractions.

 Check your work using the answer key.Example Draw $\frac{1}{2}$ in a circle.

a) Draw $\frac{1}{4}$ in a circle.

b) Draw $\frac{1}{3}$ in a circle.

Here is a hint.

c) Draw $\frac{1}{2}$ in the rectangle.

d) Draw $\frac{2}{4}$ in the rectangle.

6.2 Reading Fractions

Fractions can be read in a few different ways.
$\frac{1}{2}$ can be called one over two or one out of two or one-half
$\frac{1}{4}$ can be called one over four or one out of four or one-fourth or one-quarter
$\frac{1}{3}$ can be called one over three or one out of three or one-third

Remember:

The numerator is read as a number.
The denominator is read as an ordinal number as follows:

If the denominator is ...	Read ...
2	half
3	Third(s)
4	fourth(s) or quarter(s)
5	fifth(s)
6	sixth(s)
7	eighth(s)
8	ninth(s)
9	tenth(s)
10	twenty-second(s)
22	

Exercise 6.2a

Write the names for these fractions. Check your work using the answer key. The first one a) is done for you.
a) $\frac{7}{8}$ is seven over eight or seven out of eight or seven-eighths
b) $\frac{2}{5}$ is
c) $\frac{1}{4}$ is
d) $\frac{2}{3}$ is
e) $\frac{1}{2}$ is
f) $\frac{4}{9}$ is
g) $\frac{5}{6}$ is
h) $\frac{9}{10}$ is

Answers to Exercise 6.2a				
a) seven over eight	or	seven out of eight	or	seven-eighths
b) two over five	or	two out of five	or	two-fifths
c) one over four	or	one-fourth	or	one-quarter
d) two over three	or	two out of three	or	two-thirds
e) one over two	or	one out of two	or	one-half
f) four over nine	or	four out of nine	or	four-ninths
g) five over six	or	five out of six	or	five-sixths
h) nine over ten	or	nine out of ten	or	nine-tenths

Using Fractions

We use fractions in our daily lives.

Example We add $\frac{1}{2}$ cup of sugar to a recipe.
In the carton of eggs, 3 out of 12 are broken. $\frac{3}{12}$

On a test, Bill answered 13 questions correct out of 15 questions. $\frac{13}{15}$

These fractions are called proper fractions.
Proper fractions - fractions where the numerator is smaller than the denominator.

Exercise 6.2b Answer the questions by writing a fraction. Check your work using the answer key. The first one a) is done for you.
a) Jill walks 20 minutes of her 30 minute lunch break. What fraction did she walk? $\frac{20}{30}$
b) Kim got 18 marks out of 25 on her test. What fraction did she get correct on her test?
c) The restaurant has 12 tables. Six of the tables are empty. What fraction are empty?
d) In the litter of 4 kittens, 3 are female. What fraction are female?
e) Of the 18 new students, 16 of them are taking math. What fraction are taking math?

Answers to Exercise 6.2b

a) $\frac{20}{30}$
b) $\frac{18}{25}$
c) $\frac{6}{12}$
d) $\frac{3}{4}$
e) $\frac{16}{18}$

6.3 Comparing Fractions

Example A

a) Which circle has more shaded parts?

The one on the right has more shaded parts.
b) Which is larger $\frac{1}{4}$ or $\frac{2}{4}$?

Answer: $\frac{2}{4}$ is larger because it fills in more parts of the circle.

The sign < means less than (smaller than).

$$
\begin{aligned}
\text { less } & <\text { more } \\
\frac{1}{4} & <\frac{2}{4}
\end{aligned}
$$

Reads: one-fourth is less than two-fourths

The sign $>$ means greater than (larger than).

$$
\begin{aligned}
\text { more } & >\text { less } \\
\frac{2}{4} & >\frac{1}{4}
\end{aligned}
$$

Reads: two-fourths is greater than one-fourth

Example B

Write the fraction for each circle and then compare the fractions. Use the $<$ or $>$ sign.

Reads: one-fourth is less than three-fourths

Comparing Fractions continued

There is a rule you can follow to compare fractions:

As the numerator gets larger and the denominator stays the same, the fraction gets larger.

$$
\frac{3}{10}<\frac{7}{10}
$$

Reads: three-tenths is less than seven-tenths

Exercise 6.3a Use the < or > symbols to show which fraction is larger. Check your work using the answer key. The questions a) and g) are done for you.

b) $\frac{9}{10} \quad \frac{1}{10}$
c) $\frac{1}{6} \frac{5}{6}$
d) $\frac{5}{8} \quad \frac{3}{8}$
e) $\frac{3}{5} \quad \frac{4}{5}$
f) $\frac{1}{5} \quad \frac{4}{5}$
g) one fourth \leq three fourths
h) five ninths two ninths
i) five sixths four sixths
j) six sevenths three sevenths
k) one eighth three eighths

1) one third two thirds

Answers to Exercise 6.3a

a) > greater than
b) > greater than
c) < less than
d) > greater than
e) < less than
f) < less than
g) < less than
h) > greater than
i) > greater than
j) > greater than
k) < less than l) < less than

Exercise 6.3b

 Compare fractions with the same denominator. Put the fractions in order from smallest to largest. Check your work using the answer key. The first one a) is done for you.a) $\frac{3}{5} \quad \frac{1}{5} \quad \frac{4}{5}$
b) $\frac{4}{8} \quad \frac{3}{8} \quad \frac{7}{8}$
answer $\frac{1}{5} \frac{3}{5} \quad \frac{4}{5}$
$\begin{array}{lllll}\text { C) } & \frac{2}{7} & \frac{1}{7} & \frac{6}{7} & \frac{5}{7}\end{array}$
d) $\frac{3}{12} \quad \frac{6}{12} \quad \frac{9}{12} \quad \frac{1}{12} \quad \frac{8}{12}$

Answers to Exercise 6.3b
a) $\begin{array}{lll}\frac{1}{5} & \frac{3}{5} & \frac{4}{5}\end{array}$
b) $\frac{3}{8} \frac{4}{8} \frac{7}{8}$
c) $\frac{1}{7} \frac{2}{7} \frac{5}{7} \frac{6}{7}$
d) $\frac{1}{12} \frac{3}{12} \frac{6}{12} \frac{8}{12} \frac{9}{12}$

Number Lines

Using a number line is another way to look at how numbers compare to each other.
Fractions can also be plotted on a number line. This number line is numbered 0 to 1.
The section between 0 and 1 is split into fractions.

Example

The distance between 0 and 1 is broken into four parts (using 3 lines).
Notice how $\frac{1}{4}$ is labeled on the number line. Notice how $\frac{2}{4}$ is labeled on the number line.
Notice how $\frac{3}{4}$ is labeled on the number line. Notice how $\frac{4}{4}$ is labeled on the number line.
Also, notice how the fractions are written above the number line. They could also be written below the number line.

Exercise 6.3c

Write the fractions on the number line. There is no answer key so check your answers with your instructor or a classmate.
a) $\frac{2}{4} \quad \frac{3}{4}$

b) $\frac{2}{3} \frac{1}{3}$

c) $\frac{5}{6} \quad \frac{1}{6} \quad \frac{2}{6} \quad \frac{4}{6}$

d) $\frac{4}{12} \quad \frac{8}{12} \quad \frac{11}{12} \quad \frac{2}{12} \quad \frac{5}{12}$

6.4 Equivalent Fractions

Equivalent means equal. Equivalent fractions mean that the fractions are equal.
Example A

$$
\frac{1}{2}=\frac{2}{4}=\frac{3}{6}
$$

The amount is the same. All of these fractions have the value of one-half. The difference is how many pieces the whole was cut into.
Example B

$$
\frac{2}{3}=\frac{4}{6}=\frac{6}{9}
$$

To find an equivalent fraction, the rule is what you do to the numerator, you have to do to the denominator.

Example C | $\frac{1}{2}$ | $=\frac{2}{4}$ | $\frac{1 \times 2}{2 \times 2}$ | $=\frac{2}{4} \frac{\text { the numerator is multiplied by } 2}{\text { the denominator is multiplied by } 2}$ |
| ---: | :--- | ---: | :--- |
| $\frac{1}{2}$ | $=\frac{3}{6}$ | $\frac{1 \times 3}{2 \times 3}$ | $=\frac{3}{6} \frac{\text { the numerator is multiplied by } 3}{\text { the denominator is multiplied by } 3}$ |

Example D Equivalent fractions can work the other way as well.

$$
\begin{array}{lll}
\frac{2}{4}=\frac{1}{2} & \frac{2 \div 2}{4 \div 2}=\frac{1}{2} & \frac{\text { the numerator is divided by } 2}{\text { the denominator is divided by } 2} \\
\frac{3}{6}=\frac{1}{2} & \frac{3 \div 3}{6 \div 3}=\frac{1}{2} & \frac{\text { the numerator is divided by } 3}{\text { the denominator is divided by } 3}
\end{array}
$$

Are the Fractions Equivalent?

If the denominators are the same, you can easily judge if the fractions are equivalent by comparing the numerators.

$$
\frac{1}{3} \neq \frac{2}{3} \quad \text { These fractions are not equal. }
$$

The \neq sign means not equal or not equivalent.
If the denominators are different, you can judge if the fractions are equivalent by using either cross multiplication or common denominators or both.

Cross Multiplication

A quick method to use to determine if fractions are equal or not equal is to cross multiply.

Example A

$$
\begin{array}{r}
\text { Multiply } 5 \times 6=30 \\
\text { Multiply } 4 \times 10=40
\end{array}
$$

The cross products are not equal so the fractions are not equal.

Example B

Multiply $3 \times 8=24$
Multiply $2 \times 12=24$
The cross products are equal so the fractions are equal.

Exercise 6.4a Use cross products to determine if the fractions are equivalent. Check your work to the answer key. If the fractions are equivalent, write equivalent ($=$). If the fractions are not equivalent, write not equivalent (\neq). Questions a) and b) are done for you.
a) $\frac{5}{6}$ and $\frac{10}{12}$ equivalent
$5 \times 12=60=$
$6 \times 10=60$
b) $\frac{2}{3}$ and $\frac{7}{9} \quad 2 \times 9=18$
$3 \times 7=21$ not equivalent
\#
c) $\frac{8}{12}$ and $\frac{2}{3}$
d) $\frac{4}{10}$ and $\frac{20}{50}$
e) $\frac{1}{3}$ and $\frac{10}{15}$
f) $\frac{6}{7}$ and $\frac{7}{8}$
g) $\frac{5}{6}$ and $\frac{15}{18}$
h) $\frac{1}{3}$ and $\frac{1}{2}$

Exercise 6.4a continued

i) $\frac{5}{4}$ and $\frac{2}{3}$
j) $\frac{7}{10}$ and $\frac{20}{50}$
k) $\frac{2}{3}$ and $\frac{16}{24}$
l) $\frac{5}{6}$ and $\frac{3}{4}$

Answers to Exercise 6.4a

a) $5 \times 12=60$ and $6 \times 10=60$ equivalent
b) $3 \times 7=21$ and $2 \times 9=18$ not equivalent
c) $12 \times 2=24$ and $8 \times 3=24$ equivalent
d) $10 \times 20=200$ and $4 \times 50=200$ equivalent
e) $3 \times 10=30$ and $1 \times 15=15$ not equivalent
f) $7 \times 7=49$ and $6 \times 8=48$ not equivalent
g) $6 \times 15=905 \times 18=90$ equivalent
h) $3 \times 1=31 \times 2=2$ not equivalent
i) $4 \times 2=85 \times 3=15$ not equivalent
j) $10 \times 20=2007 \times 50=350$ not equivalent
k) $3 \times 16=48 \quad 2 \times 24=48$ equivalent
l) $6 \times 3=185 \times 4=20$ not equivalent

6.1-6.4 Review: Fractions Introduction

Write a fraction to describe the shaded part of each whole shape.

a)

b)

c)

Draw the following fractions.
d) $\operatorname{Draw} \frac{3}{4}$ in a circle.

e) Draw $\frac{2}{5}$ in a rectangle. \square

Write the word name for the following fractions.
f) $\frac{4}{5}$ is
g) $\frac{1}{10}$ is

Re-write the statements using a fraction.
h) Jack runs 5 kilometres of his 10 kilometres exercise program.
i) Sam received 17 marks out of 20 on his assignment.
j) After lunch there were 3 out of 8 pieces of pizza remaining.

Compare the following fractions, use $>$ or $<$.
k) $\frac{5}{6} \frac{1}{6}$

1) $\frac{3}{6} \frac{5}{6}$
m) $\frac{7}{8} \quad \frac{3}{8}$
n) $\frac{5}{10} \quad \frac{2}{10}$

Put the fractions in order from smallest to largest.

o) $\frac{13}{15} \quad \frac{4}{15} \quad \frac{9}{15}$
p) $\frac{3}{8} \quad \frac{2}{8} \quad \frac{7}{8} \quad \frac{6}{8}$

Put the fractions on the number line.
q) $\frac{3}{6} \quad \frac{1}{6} \quad \frac{4}{6} \quad \frac{6}{6}$

Answers to 6.1-6.4 Review Fractions
a) $\frac{5}{8}$
b) $\frac{2}{3}$
c) $\frac{7}{9}$
d)

e)

f) four-fifths
g) one-tenth
$\begin{array}{lll}\text { h) } \frac{5}{10} & \text { i) } \frac{17}{20} & \text { j) } \frac{3}{8}\end{array}$
k) $>$
l) $<$
m) >
n) $>$
o) $\frac{4}{15} \frac{9}{15} \frac{13}{15}$
p) $\frac{2}{8} \frac{3}{8} \frac{6}{8} \frac{7}{8}$
q) compare the number line with your instructor or classmate

6.5 Types of Fractions

There are three types of fractions:
Proper fractions are a part of the whole thing. $\quad \frac{1}{2} \quad \frac{2}{3} \quad \frac{7}{9} \quad \frac{5}{12}$
In a proper fraction the numerator is smaller than the denominator.
Improper fractions are equal to 1 or are greater than $1 . \begin{array}{lllll} & \frac{4}{4} & \frac{5}{2} & \frac{7}{3} & \frac{16}{5}\end{array}$
In an improper fraction, the numerator is the same or greater that the denominator.
Mixed numbers are greater than one whole.

$$
1 \frac{1}{2} \quad 2 \frac{3}{4} \quad 3 \frac{3}{5} \quad 10 \frac{7}{8}
$$

A mixed number has a whole number and a fraction.

Example A

$\begin{array}{lllll}\frac{1}{1} & \frac{2}{2} & \frac{4}{4} & \frac{8}{8} & \text { In these improper fractions, }\end{array}$ the numerator and the denominator are the same number. These fractions will simplify or reduce to equal 1 whole.

http://en.wikibooks.org

Here are some pictures to visualize improper fractions and mixed numbers.

Example B

Three half apples are shown.
Each apple was cut into 2 pieces, so the denominator is 2 . The improper fraction is $\frac{3}{2}$.
The mixed number is 1 whole and $\frac{1}{2}$ or $1 \frac{1}{2}$

Example C

10 pieces of pizza are shown.
Each pizza was cut into 8 pieces, so the denominator is 8 .

The improper fraction is $\frac{10}{8}$.
The mixed number is 1 whole and $\frac{2}{8}$ pieces or $1 \frac{2}{8}$

Exercise 6.5a Using the above example, answer the questions below. Check your work using the answer key.
a) i) How many pieces of apple are shown?
ii) Each apple was cut into 4 pieces, so the denominator is \qquad
iii) Write the improper fraction that describes the photo.
iv) Write the mixed number that describes the apple.

b) i) How many pieces of pizza are shown?
ii) Each pizza was cut into 8 pieces, so the denominator is \qquad

iii) Write the improper fraction that describes the photo.
iv) Write the mixed number that describes the pizza.

c) i) How many pieces of pizza are shown?
ii) Each pizza was cut into 8 pieces, so the denominator is \qquad

Answers to Exercise 6.5a

a i) 7	ii) 4	iii) $\frac{7}{4}$	iv) $1 \frac{3}{4}$
b i) 13	ii) 8	iii) $\frac{13}{8}$	iv) $1 \frac{5}{8}$
c i) 19	ii) 8	iii) $\frac{19}{8}$	iv) $2 \frac{3}{8}$

Exercise 6.5b Write the improper fraction and the mixed number that describes the shaded part in each drawing. First decide on the denominator. The denominator is what the one whole shape has been divided into. The first one a) is done for you.

Answers to Exercise 6.5b
a) $\frac{3}{2}=1 \frac{1}{2}$
b) $\frac{27}{8}=3 \frac{3}{8}$
c) $\frac{32}{6}=5 \frac{2}{6}$
d) $\frac{14}{9}=1 \frac{5}{9}$
e) $\frac{11}{4}=2 \frac{3}{4}$

6.6 Writing Improper Fractions as Mixed Numbers

In the last exercise you were able to write (rename) an improper fraction as a mixed number by looking at the drawing - you could see how many whole things were represented and how many parts were left over. Without a picture, follow these steps.

Write the fraction as a division question.

$$
\begin{array}{ll}
\frac{\text { numerator }}{\text { denominator }} \quad & \frac{\text { dividend }}{\text { divisor }} \\
& \text { divisor } \longdiv { \text { dividend } }
\end{array}
$$

Example A

Method 1

	3 whole number	
$\frac{7 \text { dividend }}{2 \text { divisor }}$	$2 \longdiv { 7 }$	How many times does 2 go into 7? 3
	-6	Put a 3 in the answer. $2 \times 3=6$
	1 numerator	$7-6=1$ (2 does not go into 1 evenly, so write the mixed fraction)
$\frac{7}{2}=3 \frac{1}{2}$	minator stays the same	

Example B

Method 2
$\frac{7}{2} \quad$ How many times does 2 go into $7 ? 3$
3 becomes the whole in the mixed number.
$3 \times 2=6$ and $7-6=1$
1 is left over and becomes the numerator.
The denominator stays a 2 .
$\frac{7}{2}=3 \frac{1}{2}$
Try another.
$\frac{8}{5} \quad$ How many times does 5 go into 8? 1
1 becomes the whole in the mixed number.
$5 \times 1=5$ and $8-5=3$
3 is left over and becomes the numerator.
The denominator stays a 5 .
$\frac{8}{5}=1 \frac{3}{5}$

Changing Improper Fractions to Whole Numbers Example C

$\frac{2}{2} \quad$ How many times does 2 go into $2 ? 1$
$\frac{2}{2}=1$

There are no parts left over.
Try another.

$$
\begin{aligned}
& \frac{10}{5} \quad \text { How many times does } 5 \text { go into } 10 ? 2 \\
& 5 \times 2=10 \quad \text { There are no parts left over. } \\
& \frac{10}{5}=2
\end{aligned}
$$

Try another.

$$
\begin{aligned}
& \frac{12}{3} \quad \text { How many times does } 3 \text { go into } 12 ? 4 \\
& 3 \times 4=12 \quad \text { There are no parts left over. } \\
& \frac{12}{3}=4
\end{aligned}
$$

Exercise 6.6a Write each improper fraction as a mixed number or a whole number. Use method 1 or method 2 to find the answer. Check your work using the answer key. The first one a) is done for you.
a) $\frac{9}{2}=4 \frac{1}{2}$
b) $\frac{7}{4}=$
c) $\frac{8}{3}=$
d) $\frac{17}{5}=$
e) $\frac{3}{2}=$
f) $\frac{8}{8}=$

Exercise 6.6a continued

g) $\frac{11}{2}=$
h) $\frac{5}{4}=$
i) $\frac{5}{3}=$
j) $\frac{9}{9}=$
k) $\frac{15}{2}=$
l) $\frac{12}{5}=$
m) $\frac{8}{2}=$
n) $\frac{23}{7}=$
o) $\frac{4}{3}=$
p) $\frac{15}{5}=$

Answers to Exercise 6.6a

a) $\frac{9}{2}=4 \frac{1}{2}$
b) $\frac{7}{4}=1 \frac{3}{4}$
c) $\frac{8}{3}=2 \frac{2}{3}$
d) $\frac{17}{5}=3 \frac{2}{5}$
e) $\frac{3}{2}=1 \frac{1}{2}$
f) $\frac{8}{8}=1$
g) $\frac{11}{2}=5 \frac{1}{2}$
h) $\frac{5}{4}=1 \frac{1}{4}$
i) $\frac{5}{3}=1 \frac{2}{3}$
j) $\frac{9}{9}=1$
k) $\frac{15}{2}=7 \frac{1}{2}$

1) $\frac{12}{5}=2 \frac{2}{5}$
m) $\frac{8}{2}=4$
n) $\frac{23}{7}=3 \frac{2}{7}$
o) $\frac{4}{3}=1 \frac{1}{3}$
p) $\frac{15}{5}=3$

Writing Mixed Numbers as Improper Fractions

To write a mixed number as an improper fraction multiply the whole number by the denominator and then add the numerator.

Example A Write $2 \frac{3}{5}$ as an improper fraction.
Multiply the whole number by the denominator. $2 \times 5=10$
Add the numerator.
$10+3=13$
The denominator stays the same.

$$
2 \frac{3}{5}=\frac{13}{5}
$$

Example B Write $1 \frac{2}{3}$ as an improper fraction.
Multiply the whole number by the denominator. $1 \times 3=3$
Add the numerator. $3+2=5$
The denominator stays the same.

$$
1 \frac{2}{3}=\frac{5}{3}
$$

Changing Whole Numbers to Improper Fractions

To write a whole number as an improper fraction, put the whole number over 1.

Example C

$$
2=\frac{2}{1}
$$

Try another.

$$
10=\frac{10}{1}
$$

Exercise 6.6b Write each mixed number as an improper fraction.
Check your work using the answer key. The first one a) is done for you.
a) $2 \frac{4}{5}=\frac{14}{5}$
$2 \times 5=10$
b) $8 \frac{3}{4}=$
$10+4=14$
c) $7 \frac{2}{3}=$
d) $6=$
e) $1 \frac{8}{10}=$
f) $4 \frac{1}{5}=$
g) $5 \frac{1}{3}=$
h) $3=$
i) $4 \frac{3}{4}=$
j) $12 \frac{1}{4}=$
k) $2 \frac{1}{2}=$

1) $8 \frac{4}{5}=$

Answers to Exercise 6.6b

a) $2 \frac{4}{5}=\frac{14}{5}$
b) $8 \frac{3}{4}=\frac{35}{4}$
c) $7 \frac{2}{3}=\frac{23}{3}$
d) $6=\frac{6}{1}$
e) $1 \frac{8}{10}=\frac{18}{10}$
f) $4 \frac{1}{5}=\frac{21}{5}$
g) $5 \frac{1}{3}=\frac{16}{3}$
h) $3=\frac{3}{1}$
i) $4 \frac{3}{4}=\frac{19}{4}$
j) $12 \frac{1}{4}=\frac{49}{4}$
k) $2 \frac{1}{2}=\frac{5}{2}$
l) $8 \frac{4}{5}=\frac{44}{5}$

6.6 and 6.7 Review: Fractions

A. Circle the proper fractions.
a) $\frac{4}{5} \quad \frac{3}{2} \quad \frac{6}{6} \quad \frac{3}{4} \quad \frac{7}{8} \quad \frac{5}{3}$
B. Circle the improper fractions.
a) $\begin{array}{llllll}\frac{7}{4} & \frac{3}{2} & \frac{1}{6} & \frac{3}{3} & \frac{7}{8} & \frac{5}{2}\end{array}$
C. Circle the mixed numbers.
a) $2 \frac{4}{5} \quad \frac{3}{4}$
$7 \frac{2}{3}$
$\frac{6}{5} \quad \frac{3}{1}$
$12 \frac{7}{12}$
D. Write the improper fraction and the mixed number.
a)

b)

E. Change each improper fraction to a whole or mixed number.
a) $\frac{11}{2}=$
b) $\frac{12}{3}=$

Change each improper fraction to a whole or mixed number (continued).
c) $\frac{18}{5}=$
d) $\frac{9}{2}=$
e) $\frac{10}{4}=$
f) $\frac{8}{1}=$

F. Change to an improper fraction.

a) $2 \frac{1}{3}=$
b) $4 \frac{3}{5}=$
c) $3=$
d) $6 \frac{1}{4}=$
e) $10 \frac{2}{5}=$
f) $1 \frac{1}{2}=$

Answers to 6.6-6.7 Review Fractions
Aa) $\frac{4}{5} \quad \frac{3}{4} \quad \frac{7}{8}$
Ba) $\frac{7}{4} \quad \frac{3}{2} \quad \frac{3}{3} \quad \frac{5}{2}$
Ca) $2 \frac{4}{5} 7 \frac{2}{3} \quad 12 \frac{7}{12}$
Da) $\frac{10}{3} 3 \frac{1}{3}$
b) $\frac{7}{4} 1 \frac{3}{4}$
Ea) $5 \frac{1}{2}$
b) 4
c) $3 \frac{3}{5}$
d) $4 \frac{1}{2}$
e) $2 \frac{2}{4} \quad$ f) 8
Fa) $\frac{7}{3}$
b) $\frac{23}{5}$
c) $\frac{3}{1}$
d) $\frac{25}{4}$
e) $\frac{52}{5}$
f) $\frac{3}{2}$

Remember the times table charts from the whole numbers unit?
We can use these charts to help out in the next sections.

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18	20
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27	30
$\mathbf{4}$	0	4	8	12	16	20	24	28	32	36	40
$\mathbf{5}$	0	5	10	15	20	25	30	35	40	45	50
$\mathbf{6}$	0	6	12	18	24	30	36	42	48	54	60
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63	70
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72	80
$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81	90
$\mathbf{1 0}$	0	10	20	30	40	50	60	70	80	90	100

	1	2	3	4	5	6
1	$1 \times 1=1$	$2 \times 1=2$	$3 \times 1=3$	$4 \times 1=4$	$5 \times 1=5$	$6 \times 1=6$
2	$1 \times 2=2$	$2 \times 2=4$	$3 \times 2=6$	$4 \times 2=8$	$5 \times 2=10$	$6 \times 2=12$
3	$1 \times 3=3$	$2 \times 3=6$	$3 \times 3=9$	$4 \times 3=12$	$5 \times 3=15$	$6 \times 3=18$
4	$1 \times 4=4$	$2 \times 4=8$	$3 \times 4=12$	$4 \times 4=16$	$5 \times 4=20$	$6 \times 4=24$
5	$1 \times 5=5$	$2 \times 5=10$	$3 \times 5=15$	$4 \times 5=20$	$5 \times 5=25$	$6 \times 5=30$
6	$1 \times 6=6$	$2 \times 6=12$	$3 \times 6=18$	$4 \times 6=24$	$5 \times 6=30$	$6 \times 6=36$
7	$1 \times 7=7$	$2 \times 7=14$	$3 \times 7=21$	$4 \times 7=28$	$5 \times 7=35$	$6 \times 7=42$
8	$1 \times 8=8$	$2 \times 8=16$	$3 \times 8=24$	$4 \times 8=32$	$5 \times 8=40$	$6 \times 8=48$
9	$1 \times 9=9$	$2 \times 9=18$	$3 \times 9=27$	$4 \times 9=36$	$5 \times 9=45$	$6 \times 9=54$
10	$1 \times 10=10$	$2 \times 10=20$	$3 \times 10=30$	$4 \times 10=40$	$5 \times 10=50$	$6 \times 10=60$
11	$1 \times 11=11$	$2 \times 11=22$	$3 \times 11=33$	$4 \times 11=44$	$5 \times 11=55$	$6 \times 11=66$
12	$1 \times 12=12$	$2 \times 12=24$	$3 \times 12=36$	$4 \times 12=48$	$5 \times 12=60$	$6 \times 12=72$
	7	8	9	10	11	12
1	$7 \times 1=7$	$8 \times 1=8$	$9 \times 1=9$	$10 \times 1=10$	$11 \times 1=11$	$12 \times 1=12$
2	$7 \times 2=14$	$8 \times 2=16$	$9 \times 2=18$	$10 \times 2=20$	$11 \times 2=22$	$12 \times 2=24$
3	$7 \times 3=21$	$8 \times 3=24$	$9 \times 3=27$	$10 \times 3=30$	$11 \times 3=33$	$12 \times 3=36$
4	$7 \times 4=28$	$8 \times 4=32$	$9 \times 4=36$	$10 \times 4=40$	$11 \times 4=44$	$12 \times 4=48$
5	$7 \times 5=35$	$8 \times 5=40$	$9 \times 5=45$	$10 \times 5=50$	$11 \times 5=55$	$12 \times 5=60$
6	$7 \times 6=42$	$8 \times 6=48$	$9 \times 6=54$	$10 \times 6=60$	$11 \times 6=66$	$12 \times 6=72$
7	$7 \times 7=49$	$8 \times 7=56$	$9 \times 7=63$	$10 \times 7=70$	$11 \times 7=77$	$12 \times 7=84$
8	$7 \times 8=56$	$8 \times 8=64$	$9 \times 8=72$	$10 \times 8=80$	$11 \times 8=88$	$12 \times 8=96$
9	$7 \times 9=63$	$8 \times 9=72$	$9 \times 9=81$	$10 \times 9=90$	$11 \times 9=99$	$12 \times 9=108$
10	$7 \times 10=70$	$8 \times 10=80$	$9 \times 10=90$	$10 \times 10=100$	$\mathbf{1 1} \times 10=110$	$12 \times 10=120$
11	$7 \times 11=77$	$8 \times 11=88$	9 $\times 11=99$	$10 \times 11=110$	$11 \times 11=121$	$12 \times 11=132$
12	$7 \times 12=84$	$8 \times 12=96$	$9 \times 12=108$	$10 \times 12=120$	$11 \times 12=132$	$12 \times 12=144$

6.8 Factors

Factors are the numbers which are multiplied together to make a product. An understanding of factors is needed to express fractions in lowest terms. If needed, use the times table charts to find the factors.

Factors
3 and 4

We say, "The factors of 12 are 3 and 4."
Does 12 have any other factors? Yes.
What other numbers can be multiplied together to equal 12 ?

| $1 \times 12=12$ | or | $12 \times 1=12$ |
| ---: | :--- | ---: | :--- |
| $2 \times 6=12$ | or | $6 \times 2=12$ |
| $3 \times 4=12$ | or | $4 \times 3=12$ |

The factors of 12 are $1,2,3,4,6,12$.

Example B Find the factors of 10.

$$
\begin{aligned}
& 1 \times 10=10 \\
& 2 \times 5=10
\end{aligned}
$$

The factors of 10 are $1,2,5,10$.

Example C Find the factors of 9.

$$
\begin{aligned}
& 1 \times 9=9 \\
& 3 \times 3=9
\end{aligned}
$$

The factors of 9 are $1,3,9$.

Exercise 6.8a

a) The factors of 16 : $1,2,4,8,16$
1×16
2×8
4×4
b) The factors of 20 :
c) The factors of 15 :
d) The factors of 21:
e) The factors of 14:
f) The factors of 32:
g) The factors of 36:
h) The factors of 100 :
i) The factors of 25:

Answers to Exercise 6.8a

a) $1,2,4,8,16$
b) $1,2,4,5,10,20$
c) $1,3,5,15$
d) 1, 3, 7, 21
e) $1,2,7,14$
f) $1,2,4,8,16,32$
g) $1,2,3,4,6,9,12,18,36$
h) $1,2,4,5,10,20,25,50,100$
i) $1,5,25$

Common Factors

Common factors are factors that two or more numbers have in common.
Example A Look at the numbers 4 and 8. What are the factors of each?
$\begin{array}{cc}\text { Factors of } 4 & \text { Factors of } 8 \\ 1,2,4 & 1,2,4,8\end{array}$
Which factors do they have in common? 1, 2, 4
Which is the greatest common factor? 4
Which factor is the biggest number?

A note about the factor 1 . Even though 1 is a common factor, we do not include the 1 as a common factor when listing the common factors of whole numbers.

Example B Look at the numbers 15 and 30. What are the factors of each?

$$
\text { Factors of } 15 \quad \text { Factors of } 30
$$

Which factors do they have in common? $3,5,15$
Which is the greatest common factor? 15

Example C Look at the numbers 9 and 12 and 18.

$$
\begin{array}{ccc}
\text { Factors of } 9 & \text { Factors of } 12 & \text { Factors of 18 } \\
1,3.9 & 1,2,3,4,6,12 & 1,2,3,6,9,18
\end{array}
$$

Which factors do they all have in common? 3
Which is the greatest common factor? 3

Exercise 6.8b
Find the common factors. Write the greatest common factor in the last column. The first one a) is done for you.

Numbers	Factors	Common Factors	Greatest Common Factor
a) 10,15	$\begin{aligned} & \text {...of } 10 \text { are(1) 2(5.) } 10 \\ & \text {... of } 15 \text { are(1.) 3(5.) } 15 \end{aligned}$	1,5	5
b) 4,16			
c) 9,12			
d) 20,30			
e) 18,12			
f) 24,32			
g) 8,12			
h) 6,9			

Numbers	Factors	Common Factors	Greatest Common Factor
i) 9,15			
j) 14,28			
k) $8,12,24$			

Answers to Exercise 6.8b

Numbers	Factors	Common Factors	Greatest Common Factor
a) 10,15	$\begin{aligned} & \ldots \text { of } 10 \text { are } 1,2,5,10 \\ & \ldots \text { of } 15 \text { are } 1,3,5,15 \end{aligned}$	1,5	5
b) 4, 16	$\begin{aligned} & \ldots \text { of } 4 \text { are } 1,2,4 \\ & \ldots \text { of } 16 \text { are } 1,2,4,8,16 \end{aligned}$	1,2,4	4
c) 9, 12	$\begin{aligned} & \text {... of } 9 \text { are } 1,3,9 \\ & \ldots \text { of } 12 \text { are } 1,2,3,4,6,12 \end{aligned}$	1,3	3
d) 20, 30	$\begin{aligned} & \ldots \text { of } 20 \text { are } 1,2,4,5,10,20 \\ & \ldots \text { of } 30 \text { are } 1,2,3,5,6,10,15,30 \end{aligned}$	1,2,5,10	10
e) 18,12	$\begin{aligned} & \ldots \text { of } 18 \text { are } 1,2,3,6,9,18 \\ & \ldots \text { of } 12 \text { are } 1,2,3,4,6,12 \end{aligned}$	1,2,3, 6	6
f) 24,32	$\begin{aligned} & \ldots \text { of } 24 \text { are } 1,2,3,4,6,8,12,24 \\ & \ldots \text { of } 32 \text { are } 1,2,4,8,16,32 \end{aligned}$	1,2, 4, 8	8
g) 8,12	$\begin{aligned} & \ldots \text { of } 8 \text { are } 1,2,4,8 \\ & \ldots \text { of } 12 \text { are } 1,2,3,4,6,12 \end{aligned}$	1, 2, 4	4
h) 6,9	$\begin{aligned} & \ldots \text { of } 6 \text { are } 1,2,3,6 \\ & \ldots \text { of } 9 \text { are } 1,3,9 \end{aligned}$	1,3	3
i) 9,15	$\begin{aligned} & \ldots \text { of } 9 \text { are } 1,3,9 \\ & \ldots \text { of } 15 \text { are } 1,3,5,15 \end{aligned}$	1,3	3
j) 14, 28	$\begin{aligned} & \text {... of } 14 \text { are } 1,2,7,14 \\ & \ldots \text { of } 28 \text { are } 1,2,7,14,28 \end{aligned}$	1, 2, 7, 14	14
l) $8,12,24$	$\begin{aligned} & \text {... of } 8 \text { are } 1,2,4,8 \\ & \ldots \text { of } 12 \text { are } 1,2,3,4,6,12 \\ & \ldots \text { of } 24 \text { are } 1,2,3,4,6,8,12,24 \end{aligned}$	1, 2, 4	4

6.9 Simplifying Fractions

To simplify or reduce a fraction, we take it to its simplest form. The factor trees may remind you that a prime number can no longer be reduced or simplified.

> These all have the same meaning. (lowest equivalent fraction)
> simplify reduce lowest terms simplest form

Example A

(Greatest common factor method)
To express a fraction in its simplest form, we look for common factors in the numerator and denominator. Any common factor will do, but often we try to look for the greatest common factor (or the biggest number that goes into both the numerator and the denominator).

Step 1: \quad Find the greatest common factor (GCF) of the numerator and denominator
$\frac{4}{12}$
Factors of 4
Factors of 12
$1,2,4$
$1,2,3,4,6,12$

Which factors do they all have in common? 2, 4 Which is the greatest common factor? 4

Step 2: Divide both the numerator and the denominator by the greatest common factor.

$$
\frac{4}{12} \div 4=\frac{1}{3}
$$

Another method

You could have also started with dividing both the numerator and the denominator by 2 . Then divide each by 2 again.

$$
\frac{4}{12} \frac{\div 2}{\div 2}=\frac{2}{6} \quad \frac{2}{6} \frac{\div 2}{\div 2}=\frac{1}{3}
$$

Simplifying fractions continued

Divisibility test method

Divisibility by 2

A number is divisible by 2 if it is an even number and ends in $0,2,4,6$ or 8 .
Example $48 \quad 540 \quad 256 \quad 12 \quad 154$ are all divisible by 2 because each number
$35 \quad 193 \quad 849 \quad 347 \quad 101$ are not divisible by 2 because each number is odd and does not end in a $0,2,4,6$ or 8 .

Divisibility by 3

A number is divisible by 3 if the sum (total) of the digits is divisible by 3.

Example
Look at the number 63. 6 and 3 are the digits.
Add them together. $6+3=9$
9 is divisible by 3 , so that means 63 will be divisible by 3 .
Look at the number 148. 1,4 and 8 are the digits.
Add them together. $1+4+8=13$
You could add the digits again. $1+3=4$.
Neither 4 nor 13 is divisible by 3 so that means 148 will not be divisible by 3 .

Look at the number 5892. 5, 8, 9 and 2 are the digits.
Add them together. $5+8+9+2=24$
You could add the digits again. $2+4=6$.
6 and 24 are divisible by 3 so that means 5892 will be divisible by 3 .

Divisibility by 5

A number is divisible by 5 if the number ends in 0 or 5 .

Example $\quad 290$ is divisible by 5 because it ends in 0.
615 is divisible by 5 because it ends in 5 .
132 is not divisible by 5 because it does not end in 0 or 5 .

Simplifying fractions continued

Divisibility by 10

A number is divisible by 10 if the number ends in 0 .

Example 290 is divisible by 10 because it ends in 0.
342 is not divisible by 10 because it does not end in 0 .

Example B

Method 1: Find the greatest common factor (GCF) of the numerator and denominator

$\frac{\mathbf{1 2}}{\mathbf{3 0}}$	Factors of 12	Factors of 30
	$1,2,3,4,6,12$	$1,2,3,5,6,10,15,30$

Which factors do they all have in common? 6
Which is the greatest common factor? 6
Divide the numerator and the denominator by the greatest common factor.
$\frac{12}{\mathbf{3 0}} \frac{\div 6}{\div 6}=\frac{2}{5} \quad$ The greatest factor 12 and 30 have in common is a 6.

Method 2: Divisible by 2? Yes, because 12 and 30 are even Divisible by 3? Yes, because 12 is divisible by 3 and When the digits in $30(3+0)$ are added together they equal 3 , which is divisible by 3 .

Divide the numerator and the denominator by 2 and then by 3 .

$$
\frac{12}{30} \div \frac{2}{\div 2}=\frac{6}{15} \quad \frac{6}{15} \div \frac{3}{\div 3}=\frac{2}{5}
$$

Even though 2 and 3 are not the greatest common factor, this method still works well when simplifying or reducing fractions to the simplest form.

Note: $2 \times 3=6 \quad 6$ is the greatest common factor of 12 and 30 .

Exercise 6.9a

Reduce each fraction to its simplest form. Check your work to the answer key. The first one a) is done for you.
a) $\frac{4}{16} \frac{\div 4}{\div 4}=\frac{1}{4}$
1, 2, 4
b) $\frac{3}{9}=$
1, 2, 4, 8, 16
c) $\frac{5}{10}=$
d) $\frac{4}{20}=$
e) $\frac{9}{12}=$
f) $\frac{6}{8}=$
g) $\frac{10}{15}=$
h) $\frac{10}{30}=$
i) $\frac{12}{24}=$
j) $\frac{2}{8}=$
k) $\frac{7}{14}=$
l) $\frac{6}{9}=$

Answers to Exercise 6.9a
a) $\frac{4 \div 4}{16 \div 4}=\frac{1}{4}$
b) $\frac{3 \div 3}{9 \div 3}=\frac{1}{3}$
c) $\frac{5 \div 5}{10 \div 5}=\frac{1}{2}$
d) $\frac{4 \div 4}{20 \div 4}=\frac{1}{5}$
e) $\frac{9 \div 3}{12 \div 3}=\frac{3}{4}$
f) $\frac{6 \div 2}{8 \div 2}=\frac{3}{4}$
g) $\frac{10 \div 5}{15 \div 5}=\frac{2}{3}$
h) $\frac{10 \div 10}{30 \div 10}=\frac{1}{3}$
i) $\frac{12 \div 12}{24 \div 12}=\frac{1}{2}$
j) $\frac{2 \div 2}{8 \div 2}=\frac{1}{4}$
k) $\frac{7 \div 7}{14 \div 7}=\frac{1}{2}$
l) $\frac{6 \div 3}{9 \div 3}=\frac{2}{3}$

Factor Trees and Prime Numbers

Using a factor tree is a method to find the prime factorization of a number.
Remember that prime numbers are numbers that can be evenly divided by only 1 and itself.

The first ten prime numbers are $2,3,5,7,11,13,17,19,23,29$
The number 2 is the only even prime number. All other prime numbers are odd.
Exercise 6.9b Circle the prime numbers in each grouping. Remember a prime number is only evenly divisible by the number 1 and itself. Check you work to the answer key
a) $3 \quad 8 \quad 9 \quad 2$
b) $\begin{array}{lllll}5 & 9 & 11 & 10 & 7\end{array}$
c) $\begin{array}{llllll}6 & 15 & 8 & 3 & 13 & 17\end{array}$
d) $\begin{array}{lllll}23 \quad 9 \quad 5 \quad 11 \quad 6 \quad 3\end{array}$
e) $\begin{array}{llllll}3 & 14 & 7 & 5 & 10 & 12\end{array}$
f) $100 \quad 5 \quad 7 \quad 6 \quad 14$

Answers to Exercise 6.9b
a) 3 8 8 (2)
b) (5) 9 (11) 10 (7)
c) $6 \quad 15 \quad 8$ (3) 17
d) 23 (5) 63
e) $314 \bigcirc(5) 10 \quad 12$
f) $100(56 \quad 14$

Factor Trees

Example A Find the prime factors of 12. To begin, choose 2 factors that equal 12.

Write an equation

$$
3 \times 2 \times 2=12
$$

$$
2 \times 2 \times 3=12
$$

In both of these factor trees, the prime factors of 12 are $2 \times 2 \times 3=12$
It did not matter which two factors you started with as you will end up with the same prime factors. Write your answer from smallest to largest number.

Example B Find the prime factors of 14 and 16.

$$
4 \times 4=16
$$

Write an equation with the prime numbers.

$$
2 \times 7=14 \quad 2 \times 2 \times 2 \times 2=16
$$

Exercise 6.9c

a)

$$
2 \times 2 \times 7=28
$$

c)
c) 24
d) 49
e) 36
b) 25

Use a factor tree to find the prime factors of each number. Remember to circle the prime numbers and rewrite them as an equation. Check you work to the answer key. The first one a) is done for you.

Using the factor tree to reduce a fraction to simplest form

In the previous section you learned how to use a factor tree to write a number as a product of prime factors. Now use this skill to reduce a fraction to its simplest form or lowest terms. We can use this method as an alternative to finding common factors, or if the numerators and denominators are large numbers

Example A Reduce the fraction $\frac{18}{21}$ to simplest form.

1) Find the prime factors using a factor tree.

2) Write the equations.

$$
2 \times 3 \times 3=18
$$

$3 \times 7=21$
3) Look for common factors. $\frac{18}{21}=\frac{2 \times 3 \times 3}{3 \times 7}$
(Notice the 3 in the numerator and denominator.)
$\begin{array}{ll}\text { 4) Reduce. } \frac{18}{21}=\frac{2 \times 3 \times 3}{3 \times 7} & \begin{array}{l}\text { (What you do to the } \\ \text { you must do to the }\end{array} \\ \text { 5) Simplify. You are left with } & \frac{2 \times 3 \times 1}{1 \times 7}=\frac{6}{7}\end{array}$
6) Therefore, $\frac{18}{21}=\frac{6}{7}$

Factor trees continued

Example B Reduce the fraction $\frac{36}{42}$ to simplest form.

1) Find the prime factors using a factor tree. Circle the prime numbers.

2) Write the equations from smallest prime number to largest prime number.

$$
2 \times 2 \times 3 \times 3=36 \quad 2 \times 3 \times 7=42
$$

3) Look for common factors. $\frac{36}{42}=\frac{2 \times 2 \times 3 \times 3}{2 \times 3 \times 7}$
(Notice the 2 and 3 in the numerator and denominator.)
4) Reduce $\frac{36}{42}=\frac{\begin{array}{c}\frac{1}{8} \times 2 \times 3 \times 3 \\ 8 \times 3 \times 7 \\ 1\end{array}}{} \begin{aligned} & \text { (What you do to the numerator, } \\ & \text { you must do to the denominator.) }\end{aligned}$

When reducing or cancelling and the result is 1 , it can be left out of the equation.
5) Simplify. You are left with $\frac{2 \times 3}{7}=\frac{6}{7}$
6) Therefore, $\frac{36}{42}=\frac{6}{7}$

Note: Even though there are two 2 s and two 3 s in the numerator, you can only reduce by matching the number in the numerator with the number in the denominator. There is only one 2 in the denominator, so you can only reduce one 2 in the numerator. There is only one 3 in the denominator, so you can only reduce one 3 in the numerator.

Exercise 6.9d

a) $\frac{6}{10}=\frac{2 \times 3}{2 \times 5}=\frac{3}{5}$

b) $\frac{12}{28}=$
c) $\frac{15}{45}=$

Exercise 6.9d continued

d) $\frac{18}{30}=$
e) $\frac{25}{50}=$

Answers to Exercise 6.9d

a) $\frac{6}{10}=\frac{2 \times 3}{2 \times 5}=\frac{3}{5}$
b) $\frac{12}{28}=\frac{2 \times 2 \times 3}{2 \times 2 \times 7}=\frac{3}{7}$
c) $\frac{15}{45}=\frac{3 \times 5}{3 \times 3 \times 5}=\frac{1}{3}$
d) $\frac{18}{30}=\frac{2 \times 3 \times 3}{2 \times 3 \times 5}=\frac{3}{5}$
e) $\frac{25}{50}=\frac{5 \times 5}{2 \times 5 \times 5}=\frac{1}{2}$

Note: There are three methods that can be used when simplifying fractions, greatest common factor, common factors and prime factors. Each of the three methods will produce the same result. So, if you are given a choice, choose the method that works best for you.

Unit 6 Review Fraction Introduction

A. Write fractions for the shaded parts from the pictures.
a)

b)

c)

e)

d)

f)

Write the following fractions in words:
g) $\frac{1}{2}$
h) $\frac{3}{4}$
i) $\frac{2}{3}$ \qquad
j) $\frac{5}{7}$
\qquad

Answer the questions using a fraction.
k) There are 25 questions on a Math test. Joe answered 19 questions correctly. What fraction of the questions were answered correctly?
l) Oliver planted 8 trees in September. In the May, 5 trees blossomed. What fraction of trees blossomed?

Compare the following fractions. Use $<$ or $>$ signs.
m) $\frac{2}{7} \quad \frac{5}{7}$
n) $\frac{3}{4} \quad \frac{1}{4}$
o) $\frac{4}{5} \quad \frac{2}{5}$
p) $\frac{5}{7} \quad \frac{6}{7}$

B. Types of Fractions

Circle the proper fractions.

a) $\begin{array}{lllllll}\frac{4}{7} & \frac{1}{2} & \frac{7}{2} & \frac{4}{4} & \frac{9}{3} & \frac{12}{15}\end{array}$

Circle the improper fractions.

b) $\frac{5}{2} \quad \frac{3}{3} \quad \frac{2}{7} \quad \frac{8}{5} \quad \frac{7}{8} \quad \frac{9}{1}$

Circle the mixed numbers.
c) $\begin{array}{lllllll}4 \frac{1}{4} & 7 \frac{3}{8} & \frac{2}{3} & 12 \frac{3}{4} & \frac{3}{2} & \frac{7}{12}\end{array}$

Change each improper fraction to a whole or mixed number.
d) $\frac{8}{3}=$
e) $\frac{16}{4}=$
f) $\frac{3}{2}=$
g) $\frac{24}{5}=$

Change each mixed number to an improper fraction.
h) $3 \frac{1}{2}=$
i) $5=$
j) $6 \frac{2}{5}=$
k) $1 \frac{7}{8}=$

C. Factors and Factorization

Find the common factors and the Greatest Common Factor (GCF).

	Numbers	Factors	Common Factors	GCF
a)	12			
b)	18			
c)	6			
d)	20			
	30			

Use a factor tree to find the prime factors for each number.
e)
12
f) 30
g) $\quad 25$
h) 36

Reduce each fraction to its simplest form. Choose the method that works best for you. There are three methods that can be used when simplifying fractions, greatest common factor, common factors and prime factors. Each of the three methods will produce the same result.
i) $\frac{2}{4}$
j) $\frac{4}{12}=$
k) $\frac{10}{20}=$
l) $\frac{15}{25}=$
m) $\frac{18}{27}=$
n) $\frac{16}{18}=$

Use cross products to determine if the fractions are equivalent (=)

 or not equivalent (\ddagger).o) $\frac{2}{4}$ and $\frac{8}{16}$
p) $\frac{6}{9}$ and $\frac{10}{14}$
q) $\frac{6}{7}$ and $\frac{9}{11}$
r) $\frac{7}{8}$ and $\frac{21}{24}$

Answers to Unit 6 Review Fraction Introduction

A a) $\frac{1}{4}$
b) $\frac{2}{3}$
c) $\frac{3}{4}$
d) $\frac{1}{2}$
$\begin{array}{ll}\text { e) } \frac{2}{4} & \text { f) } \frac{4}{6}\end{array}$
g) one-half
h) three-quarters or three out of four or three-fourths
i) two-thirds or two out of three j) five-sevenths or five out of seven
k) $\frac{19}{25}$
l) $\frac{5}{8}$
m) $<$
n) >
o) $>$
p) $<$
B. a)proper $\frac{4}{7} \quad \frac{1}{2} \quad \frac{12}{15}$
b) improper $\frac{5}{2} \quad \frac{3}{3} \quad \frac{8}{5} \quad \frac{9}{1}$
c) mixed numbers $4 \frac{1}{4} \quad 7 \frac{3}{8} \quad 12 \frac{3}{4}$
d) $2 \frac{2}{3}$
e) 4
f) $1 \frac{1}{2}$
g) $4 \frac{4}{5}$
h) $\frac{7}{2}$
i) $\frac{5}{1}$
j) $\frac{32}{5}$
k) $\frac{15}{8}$

C. Factors	Factors	Common Factors	Greatest Common Factor
a) 12,18	\ldots of 12 are $1,2,3,4,6,12$ \ldots of 18 are $1,2,3,6,9,18$	$1,2,3,6$	6
b) 15,30	\ldots of 15 are $1,3,5,15$ \ldots of 30 are $1,2,3,5,6,10,15,30$	$1,3,5,15$	15
c) 6,16	\ldots of 6 are $1,2,3,6$ \ldots of 16 are $1,2,4,8,16$	1,2	2
d) 20,30	\ldots of 20 are $1,2,4,5,10,20$ \ldots of 30 are $1,2,3,5,6,10,15,30$	$1,2,5,10$	10

Ce) $2 \times 2 \times 3=12$
f) $2 \times 3 \times 5=30$
g) $5 \times 5=25$
h) $2 \times 2 \times 3 \times 3=36$
i) $\frac{1}{2}$
j) $\frac{1}{3}$
k) $\frac{1}{2}$
l) $\frac{3}{5}$
m) $\frac{2}{3}$
n) $\frac{8}{9}$
o) $2 \times 16=32,4 \times 8=32$ equal
p) $6 \times 14=84,9 \times 10=90$ not equal
q) $6 \times 11=66,7 \times 9=63$ not equal
r) $7 \times 24=168,8 \times 21=168$ equal

Unit 7: Multiplying \& Dividing Fractions

7.1 Multiplying Fractions

When asked, "What is a fraction of a fraction?" use multiplication. To multiply fractions, multiply the numerators together and then multiply the denominators. The answer may need to be reduced to lowest terms.

Example A What is $\frac{1}{2}$ of $\frac{1}{2}$?
Write the equation. $\quad \frac{1}{2} \times \frac{1}{2}=$
Multiply the numerators. $\quad 1 \times 1=1$
and

$$
\frac{1 \times 1}{2 \times 2} \times \frac{1}{4}
$$

Multiply the denominators.

$$
2 \times 2=4
$$

Here is a picture of $\frac{1}{2}$ of $\frac{1}{2}$.
Take an apple and cut it in half.

Now cut one of the halves in half.

You get $\frac{1}{4}$ of an apple. $\quad \frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$

Example B What is $\frac{2}{3}$ of $\frac{2}{5}$?

Write the equation. $\quad \frac{2}{3} \times \frac{2}{5}=$
Multiply the numerators.
$2 \times 2=4$
and

$$
\frac{2 \times 2}{3 \times 5}=\frac{4}{15}
$$

Multiply the denominators.
$3 \times 5=15$

Exercise 7.1
Multiply the fraction by the fraction. Check your work using the answer key. The first one a) is done for you.
a) $\frac{1}{5} \times \frac{2}{3}=\frac{2}{15}$
b) $\frac{1}{3} \times \frac{5}{7}=$
C) $\frac{3}{5} \times \frac{1}{4}=$
d) $\frac{2}{3} \times \frac{4}{3}=$
e) $\frac{2}{3} \times \frac{2}{3}=$
f) $\frac{5}{7} \times \frac{3}{4}=$
g) $\frac{5}{6} \times \frac{1}{4}=$
h) $\frac{7}{4} \times \frac{1}{5}=$
i) $\frac{2}{5} \times \frac{1}{3}=$
j) $\frac{1}{8} \times \frac{3}{4}=$
k) $\frac{4}{9} \times \frac{2}{3}=$
l) $\frac{1}{2} \times \frac{1}{2}=$

Exercise 7.1 continued

m) $\frac{2}{3} \times \frac{7}{5}=$
n) $\frac{1}{3} \times \frac{1}{3}=$
o) $\frac{5}{7} \times \frac{1}{2}=$
p) $\frac{3}{4} \times \frac{3}{4}=$
q) $\frac{1}{2} \times \frac{2}{3}=$
r) $\frac{3}{8} \times \frac{3}{7}=$

Answers to Exercise 7.1

a) $\frac{2}{15}$
b) $\frac{5}{21}$
c) $\frac{3}{20}$
d) $\frac{8}{9}$
e) $\frac{4}{9}$
f) $\frac{15}{28}$
g) $\frac{5}{24}$
h) $\frac{7}{20}$
i) $\frac{2}{15}$
j) $\frac{3}{32}$
k) $\frac{8}{27}$

1) $\frac{1}{4}$
m) $\frac{14}{15}$
n) $\frac{1}{9}$
o) $\frac{5}{14}$
p) $\frac{9}{16}$
q) $\frac{2}{6}$
r) $\frac{9}{56}$

7.2 Simplify Before Multiplying Fractions

In the previous exercise, the fractions do not require simplifying before multiplying. There were no common factors in the numerator and denominator.

Example A Notice there is a 2 in the numerator and in the denominator.

$$
\frac{1}{2} \times \frac{2}{3}=
$$

Before multiplying the fractions, the fractions can be simplified by dividing by the numerator and denominator by a common factor of 2 .

$$
\frac{1}{2} \times \frac{\stackrel{1}{2}_{3}^{3}}{1}=\quad \text { Divide by } 2
$$

Rewrite the equation. $\quad \frac{1}{1} \times \frac{1}{3}=\quad$ No more common factors.
Multiply the numerators. $\quad 1 \times 1=1$
and
Multiply the denominators.

$$
\frac{1 \times 1}{1 \times 3}=\frac{1}{3}
$$

$1 \times 3=3$

Example B Look for common factors between the numerators and denominators.
$\frac{3}{8} \times \frac{2}{9}=\quad$ Divide by 2 .

$$
\frac{3}{8} \times \frac{1}{2} \frac{2}{9}=
$$

$$
\frac{3}{4} \times \frac{1}{9} \quad \text { Notice the common factor of } 3 .
$$

1

$$
\frac{3}{4} \times \frac{1}{2}=\quad \text { Divide by } 3
$$

Rewrite the equation. $\quad \frac{1}{4} \times \frac{1}{3}=\quad \frac{1 \times 1}{4 \times 3}=\frac{1}{12}$

Simplify before multiplying fractions continued

Example B Simplifying the equation using prime factors

Rewrite the equation using prime factors.
Find the prime factors of each number in the numerator and denominator.
Write them out. Reduce the common factors.
Multiply the numerators. Multiply the denominators.

$$
\frac{3}{8} \times \frac{2}{9}=\frac{3}{2 \times 2 \times 2} \times \frac{2}{3 \times 3}=\frac{1}{3 \times 2}-\frac{1}{2 \times 2 \times 2 \times 3 \times 3}=\frac{1}{12}
$$

Exercise 7.2 Simplify before multiplying the fractions. Check your work using the answer key. The first one a) is done for you.
a) $\frac{1}{6} \times \frac{3}{5}=\frac{1}{2} \times \frac{3}{5}=\frac{3}{10}$
b) $\frac{2}{4} \times \frac{5}{6}=$
c) $\frac{7}{9} \times \frac{2}{7}=$
d) $\frac{4}{5} \times \frac{7}{8}=$
e) $\frac{6}{5} \times \frac{5}{8}=$
f) $\frac{9}{10} \times \frac{2}{3}=$
g) $\frac{7}{7} \times \frac{7}{14}=$
h) $\frac{5}{12} \times \frac{3}{10}=$

Exercise 7.2 continued

i) $\frac{8}{10} \times \frac{2}{3}=$
j) $\frac{11}{9} \times \frac{3}{5}=$
k) $\frac{6}{12} \times \frac{1}{6}=$

1) $\frac{2}{5} \times \frac{1}{12}=$
m) $\frac{3}{5} \times \frac{5}{12}=$
n) $\frac{5}{5} \times \frac{3}{10}$

Answers to Exercise 7.2

a)reduce by 3 to get $\frac{3}{10}$
b) reduce by 2 to get $\frac{5}{12}$
c) reduce by 7 to get $\frac{2}{9}$
d) reduce by $2 /$ reduce by 2 again to get $\frac{7}{10}$ or reduce by 4 to get $\frac{7}{10}$
e) reduce by $5 /$ reduce by 2 to get $\frac{3}{4}$
f) reduce by $3 /$ reduce by 2 to get $\frac{3}{5}$
g) reduce by $7 /$ reduce by 7 again to get $\frac{1}{2}$
h) reduce by $3 /$ reduce by 5 to get $\frac{1}{8}$
i) reduce by 2 to get $\frac{8}{15} \quad$ (only once in numerator/once in denominator)
j) reduce by 3 to get $\frac{11}{15}$
k) reduce by 6 to get $\frac{1}{12}$
l) reduce by 2 to get $\frac{1}{30}$
$\mathrm{m})$ reduce by 5 , reduce by 3 to get $\frac{1}{4}$
n) reduce by 5 to get $\frac{3}{10}$

7.3 Multiplying a Whole Number and a Fraction

When asked, "What is a fraction of a whole number?", use multiplication.
Example A Here are four equal shapes. What is $\frac{1}{4}$ of 4 ?

If $\frac{1}{4}$ of the 4 shapes are shaded, then 1 shape out of 4 would be shaded.

$$
\frac{1}{4} \times 4=1 \quad \text { or } 4 \times \frac{1}{4}=1
$$

Example B Here are five equal shapes. What is $\frac{2}{5}$ of 5 ? Shade $\frac{2}{5}$ of the shapes.

If 2 of the 5 shapes are shaded, then 2 shapes out of 5 would be shaded.

$\frac{2}{5} \times 5=2$
or $5 \times \frac{2}{5}=2$

Example C

Here are 10 equal shapes. What is $\frac{1}{2}$ of 10 ?
000
 \bigcirc

Shade in $\frac{1}{2}$ of the shapes. For every 2 shapes, shade in 1.
Five (5) shapes will be shaded.

$$
\frac{1}{2} \times 10=5 \quad \text { or } \quad 10 \times \frac{1}{2}=5
$$

Multiplying a whole number and a fraction continued

To multiply a fraction with a whole number without a picture, do the following:
Example A What is $\frac{1}{4}$ of 4 ?
Write the equation. $\quad \frac{1}{4} \times 4=$
Put the whole number over $1 . \quad \frac{1}{4} \times \frac{4}{1}=$
Reduce the numerator
and denominator by the same factor.
$\frac{1}{4} \times{ }^{\frac{1}{4}} \frac{4}{1}=\quad$ The common factor is 4.

Multiply the numerators.
$1 \times 1=1$
and

$$
\frac{1}{1} \times \frac{1}{1}=\frac{1}{1}=1
$$

Multiply the denominators.
$1 \times 1=1$

Example B What is $\frac{1}{2}$ of 8 ?
Write the equation. $\quad \frac{1}{2} \times 8=$
Put the whole number over $1 . \quad \frac{1}{2} \times \frac{8}{1}=$
Reduce the numerator and denominator by the same factor.

$$
\frac{1}{2} \times \frac{4}{8} \frac{8}{1}=\quad \text { The common factor is } 2 .
$$

Multiply the numerators.
$1 \times 4=4$
and

$$
\frac{1}{1} \times \frac{4}{1}=\frac{4}{1}=4
$$

Multiply the denominators.
$1 \times 1=1$

NOTE: Zero - any fraction multiplied by 0 will always equal $0 . \frac{1}{2} \times 0=0$

Example C What is $\frac{3}{5}$ of 10 ?

Write the equation.

$$
\frac{3}{5} \times 10=
$$

Put the whole number over $1 . \quad \frac{3}{5} \times \frac{10}{1}=$
Reduce the numerator and denominator by the same factor.

$$
\frac{3}{5} \times \frac{\stackrel{2}{0}_{1}^{1}}{1}=\quad \text { The common factor is } 5
$$

Multiply the numerators.

$$
3 \times 2=6
$$

and

$$
\frac{3}{1} \times \frac{2}{1}=\frac{6}{1}=6
$$

Multiply the denominators.
$1 \times 1=1$

Exercise 7.3a

Multiply the whole number by the fraction. Write the equation and solve. Write your answer as a whole number. Use the above example to guide you.
a) What is $\frac{1}{3}$ of 27 ?
b) What is $\frac{3}{8}$ of 16 ?
c) What is $\frac{2}{5}$ of 10 ?
d) What is $\frac{2}{4}$ of 12 ?

Answers to Exercise 7.3a

a) common factor $9 \frac{1}{3} \times \frac{27}{1}=\frac{1}{1} \times \frac{9}{1}=9$
b) common factor $8 \frac{3}{8} \times \frac{16}{1}=\frac{3}{1} \times \frac{2}{1}=6$
c) common factor $5 \frac{2}{5} \times \frac{10}{1}=\frac{2}{1} \times \frac{2}{1}=4$
d) common factor $4 \frac{2}{4} \times \frac{12}{1}=\frac{2}{1} \times \frac{3}{1}=6$

Exercise 7.3b Here is more practice. Simplify before multiplying the fractions. Check your work using the answer key.
a) $\frac{1}{4} \times \frac{6}{7}=$
b) $6 \times \frac{5}{6}=$
c) $8 \times \frac{3}{16}=$
d) $\frac{10}{12} \times \frac{4}{5}=$
e) $\frac{6}{7} \times \frac{7}{8}=$
f) $\frac{3}{5} \times 10=$
g) $\frac{4}{4} \times \frac{7}{12}=$
h) $5 \times \frac{7}{10}=$

Answers to Exercise 7.3b

a)reduce by 2 to get $\frac{3}{14}$
b) reduce by 6 to get $\frac{5}{1}=5$
c) reduce by 8 to get $\frac{3}{2}=1 \frac{1}{2}$
d) reduce by $4 /$ reduce by 5 to get $\frac{2}{3}$
e) reduce by $2 /$ reduce by 7 to get $\frac{3}{4}$
f) reduce by 5 to get $\frac{6}{1}=6$
g) reduce by 4 to get $\frac{7}{12}$
h) reduce by 5 to get $\frac{7}{1}=7$

7.4 Multiplying Mixed Numbers

When multiplying mixed numbers, first change the mixed number to an improper fraction, then multiply.

Example A

$$
\begin{aligned}
& 2 \frac{1}{4} \times 4 \frac{1}{3}= \\
& \frac{9}{4} \times \frac{13}{3}=\quad \text { change to improper fractions } \\
& 3 \\
& \frac{9}{4} \times \frac{13}{3}=\quad \text { reduce or simplify }(\div 3) \\
& \frac{3}{4} \times \frac{13}{1}=\frac{3 \times 13}{4 \times 1}=\frac{39}{4} \quad \text { multiply } \\
& \frac{39}{4}=9 \frac{3}{4} \quad \text { change to a mixed number }
\end{aligned}
$$

Exercise 7.4 Change the mixed numbers to improper fractions. Simplify before multiplying the fractions. Check your work using the answer key. The first one a) is done for you.
a) $1 \frac{1}{2} \times 2 \frac{1}{6}=\frac{1}{2} \times \frac{13}{6}=\frac{13}{4}=3 \frac{1}{4}$
b) $1 \frac{1}{4} \times 1 \frac{1}{2}=$
c) $2 \frac{2}{5} \times 1 \frac{1}{3}=$
d) $2 \frac{4}{6} \times 1 \frac{5}{7}=$

Exercise 7.4 continued

e) $6 \frac{2}{5} \times 1 \frac{3}{8}=$
f) $4 \frac{2}{10} \times 2 \frac{3}{6}=$
g) $1 \frac{2}{4} \times 1 \frac{3}{4}=$
h) $4 \frac{1}{2} \times 3 \frac{1}{3}$
i) $5 \frac{1}{5} \times 1 \frac{2}{13}=$
j) $3 \frac{6}{8} \times 2 \frac{2}{3}=$
k) $1 \frac{1}{2} \times \frac{20}{21}=$
l) $4 \frac{4}{6} \times 1 \frac{3}{7}=$

Answers to Exercise 7.4

a) $\frac{13}{4}=3 \frac{1}{4}$
b) $\frac{15}{8}=1 \frac{7}{8}$
c) $\frac{16}{5}=3 \frac{1}{5}$
d) $\frac{32}{7}=4 \frac{4}{7}$
e) $\frac{44}{5}=8 \frac{4}{5}$
f) $\frac{21}{2}=10 \frac{1}{2}$
g) $\frac{21}{8}=2 \frac{5}{8}$
h) $\frac{15}{1}=15$
i) $\frac{6}{1}=6$
j) $\frac{10}{1}=10$
k) $\frac{10}{7}=1 \frac{3}{7}$

1) $\frac{20}{3}=6 \frac{2}{3}$

7.5 Word Problems - Multiplying Fractions

The problem solving skills we learn in math can be very useful to help us solve problems we have in our day-to-day lives. To solve a problem, it is a good idea to have a plan. Consider the steps below for solving word problems.

Watch for key words when you are solving multiplication word problems.
product - the answer in a multiplication problem
double- multiply by 2
half - multiply by $\frac{1}{2}$
triple- multiply by 3
of - indicates the whole

The words how many and how much are used in multiplication word programs and are also used in addition. So be careful how you read the word problem.

Problem Solving Steps

Step 1: Read the problem.
Step 2: List the information you found.
Step 3: Use key words to decide what you have to find out.
Step 4: Solve the problem.
Step 5: Does your answer make sense?
Step 6: Write your answer in a word sentence.

Word Problems continued

Example A Maria's co-workers ate $\frac{2}{3}$ of the 24 cupcakes she made. How many cupcakes did they eat?

The key word is how many which means to multiply.

Write the equation.
$\frac{2}{3} \times 24=\quad$ Put the 24 over 1. $\frac{24}{1}$
Reduce the numerator
and denominator by the same factor.

Multiply the numerators. and
Multiply the denominators.

$$
\begin{aligned}
& \frac{2}{3} \times \frac{8}{3}=\frac{\text { 24 }}{1}=\quad \text { The common factor is } 3 . \\
& 2 \times 8=16 \\
& \quad \frac{2}{1} \times \frac{8}{1}=\frac{16}{1}=16
\end{aligned}
$$

$1 \times 1=1$
Maria's co-workers ate 16 cupcakes.

Example B John wants to prepare $\frac{1}{2}$ the smoothie recipe. Calculate the amounts for each ingredient.

Banana Smoothie Recipe:

$$
\begin{array}{ll}
1 \frac{3}{4} \text { cup of milk } & 1 \text { banana } \\
\frac{1}{2} \text { cup of yogurt } & \frac{2}{3} \text { teaspoon sugar }
\end{array}
$$

There are four calculations to do.

$$
\begin{array}{ll}
\text { Milk } \frac{1}{2} \times 1 \frac{3}{4}=\frac{1}{2} \times \frac{7}{4}=\frac{7}{8} \text { cup } & \text { Banana } \frac{1}{2} \times \frac{1}{1}=\frac{1}{2} \text { banana } \\
\text { Yogurt } \frac{1}{2} \times \frac{1}{2}=\frac{1}{4} \text { cup } & \text { Sugar } \frac{1}{2} \times \frac{2}{3}= \\
& \frac{1}{2} \times \frac{2}{3}=\frac{1}{1} \times \frac{1}{3}=\frac{1}{3} \text { teaspoon (reduce by } 2 \text {) }
\end{array}
$$

Half of the recipe would be $\frac{7}{8}$ cup of milk, $\frac{1}{2}$ banana, $\frac{1}{4}$ cup of yogurt and $\frac{1}{3}$ teaspoon of sugar.

Exercise 7.5 Read the word problem. Write the equation and solve. Reduce the answer to simplest terms. Write your answer in a sentence. Check the answer using the answer key. Use the previous examples as a guide.
a) Jay spent $\frac{2}{3}$ of his 30 minute lunch hour exercising. How many minutes did Jay exercise?
b) If $\frac{1}{2}$ of the 18 students will attend the award ceremony, how many students will attend?
c) Double the ingredients in the recipe for hot chocolate.
4 cups of milk $\quad 1 \frac{3}{4}$ tablespoons of thick cream ___ $\quad 3$ tablespoons of cocoa
$\frac{3}{2}$ teaspoons of sugar \quad.
d) Sandy had $\frac{8}{9}$ of a kilogram of rice in a bag. Over the week she used $\frac{1}{4}$ of the rice. How much rice did she use?
e) Sam had $\frac{5}{6}$ of a pie. He ate $\frac{2}{5}$ of the remaining pie. How much of the total pie did Sam eat?
f) Dan picked $2 \frac{3}{4}$ of a kilogram of strawberries. He ate $\frac{1}{4}$ of what he picked. What fraction of the strawberries did he eat?
g) A recipe asks for $\frac{2}{3}$ cup of flour. How much flour will be needed if the recipe is doubled? Write your answer as a mixed fraction in simplest form.

How much flour will be needed if the recipe is tripled? Write your answer as a whole number.

Answers to Exercise 7.5

a) $\frac{2}{3} x \frac{30}{1}=20 \quad$ Jay will exercise for 20 minutes.
b) $\frac{1}{2} \times \frac{18}{1}=9 \quad$ Nine (9) students will attend.
c) Double means times 2. $2 \times 4=8$ cups of milk
$2 \times 1 \frac{3}{4}=\frac{2}{1} \times \frac{7}{4}=\frac{7}{2}=3 \frac{1}{2}$ tablespoons of thick cream
$2 \times \frac{3}{2}=\frac{3}{1}=3$ teaspoons of sugar $2 \times 3=6$ or 6 tablespoons of cocoa
d) $\frac{8}{9} \times \frac{1}{4}=\frac{2}{9} \quad$ Sandy used $\frac{2}{9}$ of a kilogram of rice.
e) $\frac{5}{6} x \frac{2}{5}=\frac{1}{3} \quad$ Sam ate $\frac{1}{3}$ of the pie.
f) $2 \frac{3}{4} \times \frac{1}{4}=\frac{11}{4} \times \frac{1}{4}=\frac{11}{16} \quad$ Dan ate $\frac{11}{16}$ of the strawberries he picked.
g) $\frac{2}{3} \times 2=\frac{2}{3} \times \frac{2}{1}=\frac{4}{3}=1 \frac{1}{3} \quad$ If doubled, the recipe will require $1 \frac{1}{3}$ cup of flour.

Tripled means times 3
$\frac{2}{3} \times 3=\frac{2}{3} \times \frac{3}{1}=\frac{2}{1}=2 \quad$ If tripled, the recipe will require 2 cups of flour.

7.1-7.5 Review: Multiplying Fractions

A. Multiply. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) What is $\frac{2}{3}$ of $\frac{2}{3}$?
b) $\frac{1}{4} \times \frac{2}{5}=$
C) $\frac{6}{7} \times \frac{3}{4}=$
d) What is $\frac{1}{2}$ of $\frac{6}{7}$?
e) $4 \times \frac{5}{6}=$
f) $\frac{8}{9} \times 3=$
g) What is $\frac{3}{4}$ of $10 ?$
h) $0 \times \frac{1}{6}=$
i) $5 \frac{2}{5} \times 1 \frac{2}{9}=$
j) $3 \frac{1}{3} \times 1 \frac{1}{2}=$

B. Word Problems. Solve these word problems. They may be multiplication or division. Write your answer in a word sentence.

k) There are 3 pizzas left over after the party. Each pizza has $\frac{3}{8}$ pieces remaining. If combined, how much pizza is left over?
l) Maria sent out 16 invitations to her friends for her graduation ceremony. $\frac{3}{4}$ of the people responded that they would attend. How many of Maria's friends will attend the ceremony?

Answers to Mid-Unit Review - Multiplying Fractions

a) $\frac{2}{3} \times \frac{2}{3}=\frac{4}{9}$
b) $\frac{1}{4} \times \frac{2}{5}=\frac{1}{10} \quad$ reduce by 2
c) $\frac{6}{7} \mathrm{x} \frac{3}{4}=\frac{9}{14}$ reduce by 2
d) $\frac{1}{2} x \frac{6}{7}=\frac{3}{7}$ reduce by 2
e) $\frac{4}{1} \mathrm{x} \frac{5}{6}=\frac{10}{3}=3 \frac{1}{3}$ reduce by 2
f) $\frac{8}{9} x \frac{3}{1}=\frac{8}{3}=2 \frac{2}{3}$ reduce by 3
g) $\frac{3}{4} \times 10=\frac{15}{2}=7 \frac{1}{2}$
h) $0 \times \frac{1}{6}=0$
i) $\frac{33}{5}=6 \frac{3}{5}$
j) $\frac{5}{1}=5$
k) $\frac{3}{1} \times \frac{3}{8}=\frac{9}{8}=1 \frac{1}{8} \quad$ After the party there was $1 \frac{1}{8}$ pizza left over.

1) $\frac{16}{1} \times \frac{3}{4}=\frac{12}{1}=12 \quad$ Twelve of Maria's friends are attending her graduation ceremony.

7.6 Dividing Fractions

Remember what we learned about division. When dividing, take the total amount and separate it (divide it) into equal parts or groups.
dividend \div divisor $=$ quotient
$12 \div 3=4$
12 is what we are dividing (dividend), 3 is what we are dividing by (divisor), and 4 is the answer (quotient).

What are we dividing? 3
What are you dividing it into? $\frac{1}{2}$ halves
Divide each circle in half.

How many halves do you have? 6
Write the equation. $\quad 3 \div \frac{1}{2}=6$

Example B $2 \div \frac{2}{3} \quad \square$

What are we dividing? 2
What are you dividing it into? $\frac{2}{3}$
Divide each rectangle in three.

Notice there are 3 groups
of $\frac{2}{3}$ groups in the 2 rectangles.

Write the equation.
$2 \div \frac{2}{3}=3$

Reciprocals

A reciprocal is used when dividing fractions. To find a reciprocal of a fraction, flip it over. This is called inverting the fraction. When dividing with fractions, find the reciprocal of the second fraction or the divisor.

Example A Find the reciprocal of $\frac{3}{4}$
The reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$

Try another. \quad Find the reciprocal of $\frac{8}{7}$
The reciprocal of $\frac{8}{7}$ is $\frac{7}{8}$

Try another. Find the reciprocal of 5
Put 5 over $1 \quad \frac{5}{1}$
The reciprocal of $\frac{5}{1}$ is $\frac{1}{5}$

Try another Find the reciprocal of $\frac{1}{6}$
The reciprocal of $\frac{1}{6}$ is $\frac{6}{1}$ or 6

NOTE: Zero does not have a reciprocal. We don't include it in these rules.

Multiplying Reciprocals

A fraction multiplied by its reciprocal will always equal 1.
Example B The reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$

Reduce and multiply

$$
\frac{e_{1}^{3}}{\frac{3}{4}} x{ }^{1} \frac{1}{3}=\quad \text { reduce by } 3 / \text { reduce by } 4
$$

Rewrite the fraction

$$
\frac{1}{1} \times \frac{1}{1}=1
$$

Try another

$$
\text { The reciprocal of } 5 \text { is } \frac{1}{5}
$$

Reduce and multiply

$$
\frac{1}{1} \times \frac{5}{5}=\quad \text { reduce by } 5
$$

Rewrite the fraction

$$
\frac{1}{1} \times \frac{1}{1}=1
$$

Try another
The reciprocal of $\frac{1}{6}$ is $\frac{6}{1}$

Reduce and multiply

$$
\frac{1}{6} \times \frac{1}{1} \frac{6}{1}=\quad \text { reduce by } 6
$$

Rewrite the fraction

$$
\frac{1}{1} \times \frac{1}{1}=1
$$

Exercise 7.6a

Find the reciprocal. Then, multiply the fraction by its reciprocal. Write your answer as a whole number. Check your work using the answer key. The first one a) is done for you.

Fraction Reciprocal Multiplication

a) $\frac{2}{5}$
$\frac{5}{2}$
$\frac{\frac{1}{2}}{\frac{2}{5}} \times \frac{1}{\frac{5}{2}}=\frac{1}{1} \times \frac{1}{1}=1 \quad$ reduce by 5 , reduce by 6
b) $\frac{8}{3}$
c) $\frac{1}{2}$
d) 5
e) $\frac{3}{4}$
f) 10
g) $\frac{1}{3}$

Answers to Exercise 7.6a

a) $\frac{2}{5} \times \frac{5}{2}=$ reduce by 2 , reduce by $5=\frac{1}{1} \times \frac{1}{1}=1$
b) $\frac{8}{3} \times \frac{3}{8}=$ reduce by 8 , reduce by $3=\frac{1}{1} \times \frac{1}{1}=1$
c) $\frac{1}{2} \times \frac{2}{1}=$ reduce by $2,=\frac{1}{1} \times \frac{1}{1}=1$
d) $\frac{5}{1} \times \frac{1}{5}=$ reduce by $5,=\frac{1}{1} \times \frac{1}{1}=1$
e) $\frac{3}{4} \times \frac{4}{3}=$ reduce by 3 , reduce by $4=\frac{1}{1} \times \frac{1}{1}=1$
f) $\frac{10}{1} \times \frac{1}{10}=$ reduce by $10,=\frac{1}{1} \times \frac{1}{1}=1$
g) $\frac{1}{3} \times \frac{3}{1}=$ reduce by $3,=\frac{1}{1} \times \frac{1}{1}=1$

Dividing fractions by fractions

To divide fractions, multiply the first fraction by the reciprocal of the second fraction. Or we say, multiply the dividend by the reciprocal of the divisor.
Example A
Divide $\frac{3}{4}$ by $\frac{1}{2}$
Write the equation

$$
\frac{3}{4} \div \frac{1}{2}=
$$

Change the \div to x

$$
\frac{3}{4} \times \frac{2}{1}=
$$

Flip the second fraction

Reduce and multiply

$$
\frac{3}{4} \times \frac{1}{2}=\quad \text { reduce by } 2
$$

Rewrite the fraction

$$
\frac{3}{2} \times \frac{1}{1}=
$$

Multiply the numerators
and

$$
3 \times 1=3
$$

$$
\frac{3}{2} \times \frac{1}{1}=\frac{3}{2}=1 \frac{1}{2}
$$

Multiply the denominators

$$
2 \times 1=1
$$

Change to a mixed number

Example B

Write the equation x and flip

Reduce and multiply

Rewrite the fraction

$$
\text { Divide } \frac{7}{8} \text { by } \frac{3}{4}
$$

$$
\frac{7}{8} \div \frac{3}{4}=\frac{7}{8} \times \frac{4}{3}=
$$

$$
\frac{7}{8} \times \frac{1}{2} \frac{4}{3}=\quad \text { reduce by } 4
$$

$$
\frac{7}{2} \times \frac{1}{3}=\frac{7}{6}=1 \frac{1}{6}
$$

Multiply numerators
Multiply denominators
Change to mixed number

Exercise 7.6b Divide. Reduce your answer to simplest terms. Check your work using the answer key. The first one a) is done for you.
a) $\frac{5}{8} \div \frac{3}{10}=\frac{5}{8} \times \frac{5}{3}=\frac{25}{12}=2 \frac{1}{12}$
b) $\frac{7}{2} \div \frac{3}{5}=$
c) $\frac{4}{5} \div \frac{6}{5}=$
d) $\frac{5}{8} \div \frac{7}{16}=$
e) $\frac{1}{2} \div \frac{3}{8}=$
f) $\frac{2}{3} \div \frac{8}{9}=$
g) $\frac{5}{8} \div \frac{4}{3}=$
h) $\frac{1}{5} \div \frac{1}{2}$
i) $\frac{1}{4} \div \frac{3}{2}=$
j) $\frac{5}{6} \div \frac{5}{5}=$

Answers to Exercise 7.6b

a) $\frac{5}{4} \times \frac{5}{3}=\frac{25}{12}=2 \frac{1}{12}$
b) $\frac{7}{2} \times \frac{5}{3}=\frac{35}{6}=5 \frac{5}{6}$
c) $\frac{4}{5} \times \frac{5}{6}=\frac{2}{3} \quad$ reduce by 5 , reduce by 2
d) $\frac{5}{8} \times \frac{16}{7}=\frac{10}{7}=1 \frac{3}{7} \quad$ reduce by 8
e) $\frac{1}{2} x \frac{8}{3}=\frac{4}{3}=1 \frac{1}{3}$ reduce by 2
f) $\frac{2}{3} \times \frac{9}{8}=\frac{3}{4}$ reduce by 2 , reduce by 3
g) $\frac{5}{8} \times \frac{3}{4}=\frac{15}{32}$
h) $\frac{1}{5} \times \frac{2}{1}=\frac{2}{5}$
i) $\frac{1}{4} \times \frac{2}{3}=\frac{1}{6} \quad$ reduce by 2 j) $\frac{5}{6} \times \frac{5}{5}=\frac{5}{6} \quad$ reduce by 5

Dividing fractions and whole numbers

Example C
Divide 5 by $\frac{2}{3}$

Write the equation

$$
\frac{5}{1} \div \frac{2}{3}=\frac{5}{1} \times \frac{3}{2}=
$$

x and flip

Reduce and multiply

$$
\begin{aligned}
& \frac{5}{1} \times \frac{3}{2}=\quad \text { there is nothing to reduce } \\
& \frac{5}{1} \times \frac{3}{2}=\frac{15}{2}=7 \frac{1}{2}
\end{aligned}
$$

Multiply numerators
Multiply denominators
Change to mixed number

Example D

Divide $\frac{8}{9}$ by 4

Write the equation

$$
\frac{8}{9} \div \frac{4}{1}=\frac{8}{9} \times \frac{1}{4}=
$$

x and flip

Reduce and multiply

$$
\frac{2}{9} \times \frac{1}{4}=\quad \text { reduce by } 4
$$

$$
\frac{2}{9} \times \frac{1}{1}=\frac{2}{9}
$$

Multiply numerators
Multiply denominators

Exercise 7.6c
Divide. Reduce your answer to simplest terms. Check your work using the answer key. The first one a) is done for you.
a) $6 \div \frac{3}{4}=\frac{6}{1} \times \frac{4}{8}=\frac{8}{1}=8$
b) $2 \div \frac{5}{6}=$
c) $9 \div \frac{1}{3}=$
d) $5 \div \frac{10}{13}=$
e) $2 \div \frac{1}{2}=$
f) $\frac{3}{8} \div 3=$
g) $\frac{6}{11} \div 3=$
h) $\frac{2}{5} \div 10$
i) $\frac{1}{2} \div 2=$
j) $\frac{9}{5} \div 6=$

Answers to Exercise 7.6c
$\begin{array}{ll}\text { a) } \frac{6}{1} \times \frac{4}{3}=\frac{8}{1}=8 \text { reduce by } 3 & \text { b) } \frac{2}{1} \times \frac{6}{5}=\frac{12}{5}=2 \frac{2}{5}\end{array}$
c) $\frac{9}{1} \mathrm{x} \frac{3}{1}=27$
d) $\frac{5}{1} \times \frac{13}{10}=\frac{13}{2}=6 \frac{1}{2} \quad$ reduce by 5
e) $\frac{2}{1} \times \frac{2}{1}=\frac{4}{1}=4$
f) $\frac{3}{8} x \frac{1}{3}=\frac{1}{8} \quad$ reduce by 3
g) $\frac{6}{11} \times \frac{1}{3}=\frac{2}{11}$ reduce by 3
h) $\frac{2}{5} \times \frac{1}{10}=\frac{1}{25} \quad$ reduce by 2
i) $\frac{1}{2} \mathrm{x} \frac{1}{2}=\frac{1}{4}$
j) $\frac{9}{5} \times \frac{1}{6}=\frac{3}{10} \quad$ reduce by 3

7.7 Dividing Mixed Numbers

When dividing mixed numbers change the mixed number to an improper fraction, then divide.

Example A

$$
\begin{aligned}
& 6 \frac{2}{3} \div 1 \frac{2}{3}= \\
& \frac{20}{3} \div \frac{5}{3}=\quad \text { change to improper fractions } \\
& \frac{20}{3} \times \frac{3}{5}= \\
& \frac{4}{\frac{20}{3}} \times \frac{3}{5}= \\
& \frac{1}{1} \times \frac{1}{1}=\frac{4 \times 1}{1 \times 1}=\frac{4}{1} \\
& \frac{4}{1} \times 4 \\
& \frac{4}{1}=4
\end{aligned}
$$

Change the mixed numbers to improper fractions. Solve. Check your work using the answer key. The first one a) is done for you.
a) $2 \frac{1}{2} \div 1 \frac{1}{6}$
b) $4 \frac{3}{8} \div 1 \frac{1}{4}=$
$\frac{5}{2} \div \frac{7}{6}=\frac{5}{8} \times \frac{3}{7}=\frac{6}{7}=2 \frac{15}{7}$
c) $4 \frac{7}{8} \div 2 \frac{1}{6}=$
d) $8 \frac{1}{4} \div 1 \frac{5}{6}=$

Exercise 7.7 continued

e) $6 \frac{1}{2} \div 8 \frac{2}{3}=$
f) $6 \frac{2}{3} \div 7 \frac{1}{2}=$
g) $10 \frac{1}{2} \div 1 \frac{3}{4}=$
h) $1 \frac{3}{4} \div 2 \frac{1}{2}$
i) $3 \frac{1}{3} \div 2=$
change 2 to $\frac{2}{1}$
j) $8 \frac{1}{4} \div 3 \frac{2}{3}=$
k) $1 \frac{1}{2} \div \frac{1}{2}=$
l) $4 \frac{1}{5} \div 1 \frac{3}{4}=$

Answers to Exercise 7.7
a) $\frac{15}{7}=2 \frac{1}{7}$
b) $\frac{7}{2}=3 \frac{1}{2}$
c) $\frac{9}{4}=2 \frac{1}{4}$
d) $\frac{9}{2}=4 \frac{1}{2}$
e) $\frac{3}{4}$
f) $\frac{8}{9}$
g) 6
h) $\frac{7}{10}$
i) $\frac{5}{3}=1 \frac{2}{3}$
j) $\frac{9}{4}=2 \frac{1}{4}$
k) 3

1) $\frac{12}{5}=2 \frac{2}{5}$

7.8 Word Problems - Dividing Fractions

The problem solving skills we learn in math can be very useful to help us solve problems we have in our day-to-day lives. To solve a problem, it is a good idea to have a plan. Consider the steps below for solving word problems.

Watch for key words when you are solving division word problems.

separated	split
cut	shared

Problem Solving Steps

Step 1: Read the problem.

Step 2: List the information you found.

Step 3: Use key words to decide what you have to find out.

Step 4: Solve the problem.

Step 5: Does your answer make sense?

Step 6: Write your answer in a word sentence.

In division, ask
"What am I dividing?"
"What am I dividing it into?"

Word Problems continued

Example A Three friends made $\frac{1}{2}$ kilogram of cookie dough. They shared it equally. How much cookie dough did each person get?

The key word is shared which means to dividing. What are you dividing? $\frac{1}{2}$ kilogram of cookie dough What are you dividing it by? 3 friends

Write the equation.

$$
\begin{array}{ll}
\frac{1}{2} \div 3= & \text { Put the } 3 \text { over } 1 . \frac{3}{1} \\
\frac{1}{2} \times \frac{1}{3} &
\end{array}
$$

x and flip

Multiply the numerators. $1 \times 1=1$
and
Multiply the denominators.

$$
\frac{1}{2} \times \frac{1}{3}=\frac{1}{6}
$$

$2 \times 3=6$
Each person gets $\frac{1}{6}$ kilogram of cookie dough.

Example B John wants to divide the smoothie recipe in 2. Calculate the amounts for each ingredient.

Banana Smoothie Recipe:

$1 \frac{3}{4}$ cup of milk $\quad 1$ banana
$\frac{1}{2}$ cup of yogurt $\frac{2}{3}$ teaspoon sugar

There are four calculations to do.
Milk $1 \frac{3}{4} \div 2=\frac{7}{4} \div \frac{2}{1}=\frac{7}{4} \times \frac{1}{2}=\frac{7}{8}$ cup \quad Banana $1 \div 2=\frac{1}{1} \div \frac{2}{1}=\frac{1}{1} \times \frac{1}{2}=\frac{1}{2}$ banana

Yogurt $\frac{1}{2} \div 2=\frac{1}{2} \div \frac{2}{1}=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4}$ cup \quad Sugar $\frac{2}{3} \div 2=\frac{1}{1} \div \frac{2}{1}=\frac{2}{3} \times \frac{1}{2}=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3}$ tsp

Dividing the recipe by 2 would be $\frac{7}{8}$ cup of milk, $\frac{1}{2}$ banana, $\frac{1}{4}$ cup of yogurt and $\frac{1}{3}$ teaspoon of sugar.

Exercise 7.8 Read the word problem. Write the equation and solve. Check your work using the answer key. Use the previous examples as your guide.

a) A rope is 5 metres long. Jay wants to cut it into $\frac{1}{2}$ metre pieces. How many $\frac{1}{2}$ metre pieces will Jay have after he cuts the rope?
b) Jack wants to cut a $\frac{2}{3}$ metre piece of wood into 6 sections. How long will each section be after he cuts the wood?
c) Sam wants to make only half the recipe below. How much of each ingredient will Sam need for hot chocolate.
$1 \frac{1}{2}$ teaspoons of sugar______
3 tablespoons of cocoa \qquad
d) Sandy had $1 \frac{6}{10}$ of a kilogram of rice in a bag. She wants to divide the bag of rice into smaller containers that hold $\frac{1}{5}$ of a kilogram. How many containers will she need?

Exercise 7.8 continued

e) Sam had $\frac{5}{6}$ of a pie. He shared the pie with 3 friends. (4 people altogether ate pie). How much of the pie did each person get?
f) Dan picked $\frac{3}{4}$ of a kilogram of strawberries. He split the strawberries into 6 containers. How much did each container hold?
g) A recipe asks for $\frac{2}{3}$ cup of flour. How much flour will be needed if the recipe cut in half?

How much flour will be needed if the recipe is cut in 4.

Answers to Exercise 7.8

a) $5 \div \frac{1}{2}=\frac{5}{1} \times \frac{2}{1}=10$ Jay will have 10 pieces of rope.
b) $\frac{2}{3} \div 6=\frac{2}{3} \times \frac{1}{6}=\frac{1}{9} \quad$ Each section will be $\frac{1}{9}$ metres long.
c) $4 \div 2=2$ cups of milk $\quad \frac{3}{4} \div 2=\frac{3}{4} \times \frac{1}{2}=\frac{3}{8}$ tablespoons of thick cream
$\frac{3}{2} \div 2=\frac{3}{2} \times \frac{1}{2}=\frac{3}{4}$ teaspoons of sugar $\quad 3 \div 2=\frac{3}{1} \times \frac{1}{2}=\frac{3}{2}$ or $1 \frac{1}{2}$ tablespoons of cocoa
d) $1 \frac{6}{10} \div \frac{1}{5}=\frac{16}{10} \times \frac{5}{1}=\frac{16}{2}=8 \quad$ She will need 8 containers.
e) $\frac{5}{6} \div 4=\frac{5}{6} \times \frac{1}{4}=\frac{5}{24} \quad$ Each of the 4 persons will get $\frac{5}{24}$ of the pie.
f) $\frac{3}{4} \div 6=\frac{3}{4} \times \frac{1}{6}=\frac{1}{8} \quad$ Each container held $\frac{1}{8}$ of a kilogram of strawberries.
g) $\frac{2}{3} \div 2=\frac{2}{3} \times \frac{1}{2}=\frac{1}{3} \quad$ If halved, the recipe will require $\frac{1}{3}$ cup of flour.
$\frac{2}{3} \div 4=\frac{2}{3} \times \frac{1}{4}=\frac{1}{6} \quad$ If cut in 4, the recipe will require $\frac{1}{6}$ cup of flour.

Unit 7 Review - Multiplying and Dividing Fractions

You will now practice all the skills you learned in Unit 7. Check your work using the answer key at the end of the review.
A. Multiply. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) What is $\frac{2}{5}$ of $\frac{2}{3}$?
b) $\frac{7}{8} \times \frac{2}{3}=$
c) $\frac{8}{9} \times \frac{3}{2}=$
d)What is $\frac{5}{8}$ of $\frac{1}{10} ?$
e) $\frac{7}{8} \times \frac{12}{14}=$
f) $\frac{7}{4} \times \frac{8}{7}=$
g) $\frac{1}{3} \times \frac{3}{7}=$
h) $\frac{7}{4} \times \frac{1}{5}=$
i) $7 \times \frac{2}{3}=$
j) $3 \times \frac{2}{5}=$
k) What is $\frac{1}{2}$ of 14 ?
l) $\frac{3}{8} \times 4=$

Multiplying and Dividing Fractions Review continued
m) $0 \times \frac{1}{4}=$
n) $3 \times \frac{3}{4}=$
o) $\frac{12}{15} \times \frac{10}{24}=$
p) $2 \frac{2}{7} \times 1 \frac{6}{8}=$
B. Divide. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) $\frac{7}{2} \div \frac{3}{4}=$
b) $\frac{3}{10} \div \frac{6}{5}=$
c) $\frac{5}{8} \div \frac{7}{24}=$
d) $\frac{1}{8} \div \frac{3}{4}=$
e) $\frac{2}{3} \div \frac{7}{9}=$
f) $\frac{5}{8} \div 1 \frac{1}{4}=$
g) $\frac{1}{5} \div \frac{1}{4}=$
h) $\frac{11}{15} \div \frac{1}{5}$
i) $4 \div \frac{3}{2}=$
j) $8 \div \frac{4}{5}=$

Multiplying and Dividing Fractions Review continued
B. Divide. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
k) $\frac{3}{7} \div 6=$
l) $\frac{15}{9} \div 3=$
m) $2 \frac{1}{4} \div 1 \frac{2}{7}=$
n) $8 \div \frac{4}{7}=$
o) $4 \div \frac{1}{4}=$
p) $\frac{1}{2} \div \frac{1}{2}$
C. Word Problems. Solve these word problems. They may be multiplication or division. Write your answer in a word sentence.
a) There are 4 boxes of cereal in the cupboard. Each box is $\frac{3}{4}$ full. How many full boxes would there be if they were all put together?
b) At the evening GED class, $\frac{2}{3}$ of the students are attending. If there are 15 students registered, how many students are attending?

Multiplying and Dividing Fractions Review continued

C. Word Problems. Solve these word problems. They may be multiplication or division. Write your answer in a word sentence.
c) A recipe calls for $\frac{2}{3}$ cup of sugar and $\frac{1}{2}$ tablespoons of cinnamon. If the recipe is halved, how much of each ingredient would be needed?
d) Sandy had $\frac{1}{4}$ metres of fabric to make doll dresses. Each dress takes $\frac{1}{16}$ metres of fabric. How many dresses can she make from the fabric she has?
e) Joe practices piano $\frac{3}{4}$ hour each day. How much time does practice piano in one week. (Remember 7 days in 1 week)
f) Kate makes 5 pies. She wants to divide each of them into $\frac{1}{2}$ and put them in freezer containers. How many containers will she need to freeze her half pies?

[^1]
Answers to Unit 7 Review

A. Multiply continued

i) $\frac{7}{1} \times \frac{2}{3}=\frac{14}{3}=4 \frac{2}{3}$
j) $\frac{3}{1} \times \frac{2}{5}=\frac{6}{5}=1 \frac{1}{5}$
k) $\frac{1}{2} \times \frac{14}{1}=\frac{7}{1}=7$ reduce by 7

1) $\frac{3}{8} \times \frac{4}{1}=\frac{3}{2}=1 \frac{1}{2}$ reduce by 4
m) $0 \times \frac{1}{4}=0$
n) $\frac{3}{1} \times \frac{3}{4}=\frac{9}{4}=2 \frac{1}{4}$
o) $\frac{12}{15} \times \frac{10}{24}=\frac{1}{3}$ reduce by 12 , by 5 , and by 2
p) $\frac{16}{7} \times \frac{14}{8}=\frac{4}{1}=4$ reduce by 7 , reduce by 8

B. Divide.

a) $\frac{7}{2} \times \frac{4}{3}=\frac{14}{3}=4 \frac{2}{3} \quad$ reduce by $2 \quad$ b) $\frac{3}{10} \times \frac{5}{6}=\frac{1}{4} \quad$ reduce by 3 , reduce by 5
c) $\frac{5}{8} \times \frac{24}{7}=\frac{15}{7}=2 \frac{1}{7} \quad$ reduce by 8
d) $\frac{1}{8} x \frac{4}{3}=\frac{1}{6}$ reduce by 4
e) $\frac{2}{3} \times \frac{9}{7}=\frac{6}{7} \quad$ reduce by 3
f) $\frac{5}{8} \times \frac{4}{5}=\frac{1}{2}$ reduce by 4 , reduce by 5
g) $\frac{1}{5} \times \frac{4}{1}=\frac{4}{5}$
h) $\frac{11}{15} \times \frac{5}{1}=\frac{11}{3}=3 \frac{2}{3}$ reduce by 5
i) $\frac{4}{1} \times \frac{2}{3}=\frac{8}{3}=2 \frac{2}{3}$
j) $\frac{8}{1} \times \frac{5}{4}=\frac{10}{1}=10 \quad$ reduce by 4
k) $\frac{3}{7} \times \frac{1}{6}=\frac{1}{14}$
l) $\frac{15}{9} \times \frac{1}{3}=\frac{5}{9} \quad$ reduce by 3,
m) $\frac{9}{4} \times \frac{7}{9}=\frac{7}{4}=1 \frac{3}{4}$ reduce by 9
n) $\frac{8}{1} \times \frac{7}{4}=\frac{14}{1}=14 \quad$ reduce by 4
o) $\frac{4}{1} \times \frac{4}{1}=\frac{16}{1}=16$
p) $\frac{1}{2} \times \frac{2}{1}=\frac{1}{1}=1$ reduce by 2 ,

C. Word problems

a) multiply $4 \times \frac{3}{4}=\frac{4}{1} \times \frac{3}{4}=3$ There will be 3 full boxes of cereal.
b) multiply $\frac{2}{3} \times 15=\frac{2}{3} \times \frac{15}{1}=10 \quad$ Ten students are attending the GED class.
c) divide $\frac{2}{3} \div 2=\frac{2}{3} x \frac{1}{2}=\frac{1}{3}$ cup of sugar $\quad \frac{1}{2} \div 2=\frac{1}{2} x \frac{1}{2}=\frac{1}{4}$ tablespoon

If the recipe were halved, it would call for $\frac{2}{3}$ cup of sugar and $\frac{1}{2}$ tablespoon of cinnamon.
d)divide $\frac{1}{4} \div \frac{1}{16}=\frac{1}{4} \times \frac{16}{1}=\frac{4}{1}=4 \quad$ She can make 4 doll dresses.
e) multiply $\frac{3}{4} \times 7=\frac{3}{4} \times \frac{7}{1}=\frac{21}{4}=5 \frac{1}{4}$ He practices $5 \frac{1}{4}$ hours in one week.
f) $5 \div \frac{1}{2}=\frac{5}{1} \times \frac{2}{1}=\frac{10}{1}=10 \quad$ Kate needs 10 containers.

Unit 8: Adding \& Subtracting Fractions
 8.1 Adding Like Fractions

Vocabulary review

Addition puts amounts together.

Like fractions: Fractions that have the same denominator. $\frac{1}{4} \quad \frac{2}{4} \quad \frac{3}{4} \quad \frac{4}{4}$

Adding and subtracting fractions have different rules than multiplying and dividing fractions.

Example A Take a look at these fractions. How many parts do you have in total?

$$
\frac{1}{4}+\frac{2}{4} \quad=\frac{?}{4}
$$

Shade in the fractions to get the total.

$$
\begin{array}{ll}
\square & =\square \\
\hline & =\square \\
\hline & =\square \\
\hline
\end{array}+\frac{2}{4}+\frac{3}{4} \quad 4
$$

Exercise 8.1a
Add the fractions. Shade in the answer as was done in the above example and write your answer as a fraction. Check your fraction using the answer key.
a)

$$
\frac{2}{9}+\frac{3}{9} \quad=\frac{-}{9}
$$

b)

$$
\frac{2}{4}+\frac{1}{4} \quad=\quad \frac{}{4}
$$

c)

$$
\frac{1}{3}+\frac{1}{3} \quad=\frac{}{3}
$$

d)

$$
\begin{aligned}
\begin{array}{l|l|}
\hline & \\
\hline & \\
\hline & =\begin{array}{|l|l|l|}
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{array} \\
& =\frac{2}{6}
\end{array}
\end{aligned}
$$

e)

Answers to Exercise 8.1a
a) $\frac{5}{9}$
b) $\frac{3}{4}$
c) $\frac{2}{3}$
d) $\frac{5}{6}$
e) $\frac{7}{8}$

Adding Like Fractions continued

Example B What is the sum of these two fractions?

What is $\frac{1}{4}$ and $\frac{2}{4}$?
If you said $\frac{3}{4}$, you are correct.

Write the equation.

$$
\frac{1}{4}+\frac{2}{4}=
$$

Add the numerators.
and

$$
\frac{1+2}{4}=\frac{3}{4}
$$

The denominator stays the same.

Example C What is the sum of $\frac{1}{2}$ and $\frac{1}{2}$?

Write the equation.

$$
\frac{1}{2}+\frac{1}{2}=
$$

Add the numerators. and

$$
\frac{1+1}{2}=\frac{2}{2}=1
$$

Denominator stays the same.
You get 1 apple.

Adding Like Fractions continued

When adding fractions, the fractions have a common denominator. That is, each fraction must have the same denominator.

To get the total, we add the numerators and keep the denominator the same.
Example D What is $\frac{2}{5}$ and $\frac{1}{5}$? How many parts do you have in total?
Write the equation. $\quad \frac{2}{5}+\frac{1}{5}=$
Add the numerators.
and

$$
\frac{2+1}{5}=\frac{3}{5}
$$

Denominator stays the same.

Example E What is $\frac{1}{7}$ and $\frac{2}{7}$ and $\frac{3}{7}$? How many parts do you have in total?
Write the equation. $\quad \frac{1}{7}+\frac{2}{7}+\frac{3}{7}=$
Add the numerators.
and

$$
\frac{1+2+3}{7}=\frac{6}{7}
$$

Denominator stays the same.

Exercise 8.1b Add the fractions. Write your answer as a fraction. Check your work using the answer key. The first one a) is done for you.
a) $\frac{2}{4}+\frac{1}{4}=\frac{2+1}{4}=\frac{3}{4}$
b) $\frac{3}{5}+\frac{1}{5}=$
c) $\frac{1}{3}+\frac{1}{3}=$
d) $\frac{1}{7}+\frac{3}{7}=$

Exercise 8.1b continued

e) $\frac{1}{5}+\frac{1}{5}=$
f) $\frac{3}{8}+\frac{4}{8}=$
g) $\frac{2}{11}+\frac{7}{11}=$
h) $\frac{3}{22}+\frac{4}{22}=$
i) $\frac{1}{5}+\frac{2}{5}=$
j) $\frac{3}{6}+\frac{2}{6}=$
k) $\frac{14}{20}+\frac{3}{20}+\frac{2}{20}=$
l) $\frac{4}{9}+\frac{1}{9}+\frac{2}{9}=$
Answers to Exercise 8.1b

a) $\frac{3}{4}$	b) $\frac{4}{5}$	c) $\frac{2}{3}$	d) $\frac{4}{7}$
e) $\frac{2}{5}$	f) $\frac{7}{8}$	g) $\frac{9}{11}$	h) $\frac{7}{22}$
i) $\frac{3}{5}$	j) $\frac{5}{6}$	k) $\frac{19}{20}$	l) $\frac{7}{9}$

8.2 Simplify After Adding Fractions

In the previous exercise, the fractions do not require simplifying after adding them together. They were all in their simplest form at lowest terms.

Example A What is $\frac{1}{8}$ and $\frac{3}{8}$? How many parts do you have in total?
Write the equation. $\quad \frac{1}{8}+\frac{3}{8}=$
Add the numerators.
and

$$
\frac{1+3}{8}=\frac{4}{8}
$$

Denominator stays the same.

Reduce the answer to simplest form $\quad \frac{4}{8} \quad$ reduce by 4 or reduce by 2 and then 2 again.
$\frac{1+3}{8}=\frac{1_{8}^{8}}{\frac{4}{8}}=\frac{1}{2}$

Example B What is $\frac{3}{4}$ and $\frac{2}{4}$? How many parts do you have in total?

Write the equation.

$$
\frac{3}{4}+\frac{2}{4}=
$$

Add the numerators.
and

$$
\frac{3+2}{4}=\frac{5}{4}
$$

Denominator stays the same.

Reduce the answer to simplest form

$$
\begin{aligned}
& \frac{5}{4} \quad \begin{array}{l}
\text { This is an improper fraction. } \\
\text { Change it to a mixed number. }
\end{array} \\
& \frac{3+2}{4}= \frac{5}{4}=1 \frac{1}{4}
\end{aligned}
$$

Exercise 8.2

Add the fractions. Reduce the answer to simplest form. Check your work using the answer key. The first one a) is done for you.
a) $\frac{2}{3}+\frac{1}{3}=\frac{1}{\frac{3}{3}}=1$
b) $\frac{3}{5}+\frac{4}{5}=$

Divide numerator
\& denominator by 3
c) $\frac{7}{10}+\frac{1}{10}=$
d) $\frac{1}{4}+\frac{1}{4}=$
e) $\frac{1}{5}+\frac{4}{5}=$
f) $\frac{4}{6}+\frac{5}{6}=$
g) $\frac{1}{2}+\frac{3}{2}=$
h) $\frac{2}{8}+\frac{3}{8}+\frac{4}{8}=$
i) $\frac{2}{3}+\frac{2}{3}=$
j) $\frac{3}{4}+\frac{3}{4}=$

Answers to Exercise 8.2

a) $\frac{3}{3}=1$
b) $\frac{7}{5}=1 \frac{2}{5}$
c) $\frac{8}{10}=\frac{4}{5}$
d) $\frac{2}{4}=\frac{1}{2}$
e) $\frac{5}{5}=1$
f) $\frac{9}{6}=1 \frac{3}{6}=1 \frac{1}{2}$
g) $\frac{4}{2}=2$
h) $\frac{9}{8}=1 \frac{1}{8}$
i) $\frac{4}{3}=1 \frac{1}{3}$
j) $\frac{6}{4}=1 \frac{2}{4}=1 \frac{1}{2}$

8.3 Adding Mixed Numbers

When adding mixed numbers with common denominators, first add the whole numbers, then add the fractions, and finally reduce the answer to simplest form.

Example A What is $3 \frac{1}{4}$ and $1 \frac{1}{4}$?

Write the equation.

$$
3 \frac{1}{4}+1 \frac{1}{4}=
$$

Add the whole numbers. $\quad 3+1=4$ and
Add the like fractions. $\quad \frac{1+1}{4}=\frac{2}{4}$
Combine the whole number and fraction. $\quad 3 \frac{1}{4}+1 \frac{1}{4}=4 \frac{2}{4}$
Reduce to simplest form. $\quad 4 \frac{2}{4}=4 \frac{1}{2}$

Example B What is $2 \frac{5}{8}$ and $3 \frac{2}{8}$?

Write the equation.

$$
2 \frac{5}{8}+3 \frac{2}{8}
$$

Add the whole numbers. $\quad 2+3=5$
and
Add the like fractions. $\quad \frac{5+2}{8}=\frac{7}{8}$
Combine the whole number and fraction. $\quad 2 \frac{5}{8}+3 \frac{2}{8}=5 \frac{7}{8}$

Exercise 8.3

Add the mixed numbers. Reduce the answer to simplest form. Check your work using the answer key. The first one a) is done for you.
a) $1 \frac{1}{3}+2 \frac{1}{3}=3 \frac{2}{3}$
b) $4 \frac{3}{5}+3 \frac{1}{5}=$
c) $1 \frac{7}{10}+1 \frac{1}{10}=$
d) $2 \frac{1}{7}+\frac{2}{7}=$
e) $2 \frac{1}{5}+3 \frac{4}{5}=$
f) $1 \frac{4}{6}+2 \frac{3}{6}=$
g) $6 \frac{3}{4}+1 \frac{2}{4}=$
h) $3 \frac{2}{8}+2 \frac{3}{8}=$
i) $3 \frac{2}{3}+\frac{2}{3}=$
j) $1 \frac{3}{4}+1 \frac{3}{4}=$

Answers to Exercise 8.3

a) $3 \frac{2}{3}$
b) $7 \frac{4}{5}$
c) $2 \frac{8}{10}=2 \frac{4}{5}$
d) $2 \frac{3}{7}$
e) $5 \frac{5}{5}=5+1=6$
f) $3 \frac{7}{6}=3+1 \frac{1}{6}=4 \frac{1}{6}$
g) $7 \frac{5}{4}=7+1 \frac{1}{4}=8 \frac{1}{4}$
h) $5 \frac{5}{8}$
i) $3 \frac{4}{3}=3+1 \frac{1}{3}=4 \frac{1}{3}$
j) $2 \frac{6}{4}=2+1 \frac{2}{4}=3 \frac{2}{4}=3 \frac{1}{2}$

8.4 Word Problems - Adding Mixed Numbers

Example A David walked for $1 \frac{1}{4}$ hour on Saturday and $\frac{1}{4}$ of an hour on Sunday. For how long did he walk in total?

The key words are in total which means to add.
$1 \frac{1}{4}+\frac{1}{4}=1 \frac{2}{4}$
Reduce to simplest form. $\quad 1 \frac{2}{4}=1 \frac{1}{2}=1 \frac{1}{2}$
David walked for $1 \frac{1}{2}$ hours in total.

Example B Two boxes of books weigh $5 \frac{3}{8}$ kilograms and $3 \frac{2}{8}$ kilograms. All together, how much do the two boxes of books weigh?

The key words are all together which means to add.
$5 \frac{3}{8}+4 \frac{2}{8}=9 \frac{5}{8}$

The two boxes of books weigh $9 \frac{5}{8}$ kilograms.

Exercise 8.4
Solve each word problem. Give your answer in simplest form in a sentence. Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) John used $1 \frac{1}{4}$ metres of fabric to sew a shirt, and he used 2 metres of fabric to sew pants and a jacket. Combined, how much fabric did John use?

Exercise 8.4 continued

b) Ali's school is $12 \frac{1}{10}$ kilometres from her house. How far does Ali travel going to and from school in one round trip? A round trip is the distance to and from.
c) Maria studies 1 hour on Monday, $1 \frac{1}{4}$ hours on Tuesday, 2 hours on Wednesday, $\frac{2}{4}$ of an hour on Thursday. How many hours in total does she study in these four days?
d) After the bake sale, Jane had quite a few leftovers. She had $1 \frac{1}{12}$ dozen ginger cookies, $2 \frac{5}{12}$ dozen chocolate chip cookies, and $3 \frac{3}{12}$ dozen oatmeal cookies remaining. How many dozens of cookies were left over after the bake sale?

Answers to Exercise 8.4-Word Problems

a) $1 \frac{1}{4}+2=3 \frac{1}{4} \quad$ John used $3 \frac{1}{4}$ metres of fabric.
b) $12 \frac{1}{10}+12 \frac{1}{10}=24 \frac{2}{10}=24 \frac{1}{5}$ Ali travels $24 \frac{1}{5}$ kilometres to and from school.
c) $1+1 \frac{1}{4}+2+\frac{2}{4}=4 \frac{3}{4} \quad$ Maria studies $4 \frac{3}{4}$ hours in four days.
d) $1 \frac{1}{12}+2 \frac{5}{12}+3 \frac{3}{12}=6 \frac{9}{12}=6 \frac{3}{4}$ After the bake sale, there were $6 \frac{3}{4}$ dozen cookies remaining.

8.1-8.4 Review: Adding Fractions and Mixed Numbers

A. Add. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) What is $\frac{2}{5}$ and $\frac{1}{5}$?
b) $\frac{3}{4}+\frac{2}{4}=$
C) $\frac{7}{12}+\frac{2}{12}=$
d)What is $\frac{1}{2}$ and $\frac{1}{2}$?
e) $4 \frac{1}{6}+1 \frac{4}{6}=$
f) $\frac{8}{9}+0=$
g) What is $\frac{1}{4}$ and $10 \frac{2}{4}$?
h) $\frac{1}{12}+\frac{3}{12}+\frac{2}{12}=$

B. Word Problems. Solve these word problems. They may be multiplication or division. Write your answer in a word sentence.

i) A recipe for chocolate chip banana bread asks for $\frac{3}{4}$ of a cup of chocolate chips for the bread and $\frac{1}{4}$ of a cup of chocolate chips for the melted topping.

How many cups of chocolate chips are needed for the banana bread and the topping?

How many cups of chocolate chips are needed if the recipe is doubled?
j) Mark enjoys running. He runs $1 \frac{1}{4}$ hour on Friday, $\frac{2}{4}$ of an hour on Saturday and, 2 hours on Sunday. For how many hours did he run during the three days?

Answers to 8.1-8.4 Review - Multiplying Fractions

a) $\frac{2}{5}+\frac{1}{5}=\frac{3}{5}$
b) $\frac{3}{4}+\frac{2}{4}=\frac{5}{4}=1 \frac{1}{4}$
c) $\frac{7}{12} \mathrm{x} \frac{2}{12}=\frac{9}{12}=\frac{3}{4}$
d) $\frac{1}{2}+\frac{1}{2}=\frac{2}{2}=1$
e) $4 \frac{1}{6}+1 \frac{4}{6}=5 \frac{5}{6}$
f) $\frac{8}{9}+0=\frac{8}{9}$
g) $\frac{1}{4}+10 \frac{2}{4}=10 \frac{3}{4}$
h) $\frac{1}{12}+\frac{3}{12}+\frac{2}{12}=\frac{6}{12}=\frac{1}{2}$
i) $\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1 \operatorname{cup}$
One (1) cup of chocolate chips is needed. If the recipe is doubled, than 2 cups will be needed.
j) $1 \frac{1}{4}+\frac{2}{4}+2=3 \frac{3}{4} \quad$ Mark runs $3 \frac{3}{4}$ hours over the three days.

8.5 Subtracting Like Fractions

Vocabulary review

Subtraction takes away an amount from another amount.
The answer or result of subtraction is called the difference.

Like fractions: Fractions that have the same denominator. $\frac{1}{4} \begin{array}{llllll}4 & \frac{3}{4} & \frac{4}{4}\end{array}$

Adding and subtracting fractions has different rules than multiplying and dividing fractions.

Example A Take a look at these fractions. How many parts do you have in total?

$$
\frac{4}{5}
$$

Take away $\frac{3}{5}$

$$
\frac{4}{5}-\frac{3}{5}=\frac{1}{5}
$$

When subtracting fractions, the fractions must have the same denominator.
To get the total, we subtract the numerators and keep the denominator the same.

Exercise 8.5
a) $\frac{2}{4}-\frac{1}{4}=\frac{2-1}{4}=\frac{1}{4}$
b) $\frac{3}{5}-\frac{1}{5}=$
c) $\frac{3}{3}-\frac{1}{3}=$
d) $\frac{6}{7}-\frac{2}{7}=$
e) $\frac{4}{5}-\frac{2}{5}=$
f) $\frac{7}{8}-\frac{4}{8}=$
g) $\frac{10}{11}-\frac{7}{11}=$
h) $\frac{13}{22}-\frac{12}{22}=$
i) $\frac{5}{4}-\frac{2}{4}=$
j) $\frac{5}{6}-\frac{4}{6}=$
k) $\frac{14}{20}-\frac{3}{20}=$

1) $\frac{4}{9}-\frac{2}{9}=$

Answers to Exercise 8.5

a) $\frac{1}{4}$
b) $\frac{2}{5}$
c) $\frac{2}{3}$
d) $\frac{4}{7}$
e) $\frac{2}{5}$
f) $\frac{3}{8}$
g) $\frac{3}{11}$
h) $\frac{1}{22}$
i) $\frac{3}{4}$
j) $\frac{1}{6}$
k) $\frac{11}{20}$

1) $\frac{2}{9}$

8.6 Simplify After Subtracting Fractions

The answer or difference may have to be reduced to simplest form.
Example B What is the difference between these two fractions?

$$
\frac{3}{4} \text { and } \frac{1}{4} ?
$$

If you said $\frac{2}{4}$ you are correct.
But, $\frac{2}{4}$ is not in its simplest form.
Write the equation. $\quad \frac{3}{4}-\frac{1}{4}=$
Subtract the numerators.

Example C What is the difference between $\frac{1}{2}$ and $\frac{1}{2}$?
Write the equation. $\quad \frac{1}{2}-\frac{1}{2}=$
Subtract the numerators.
Denominator stays the same. $\frac{1-1}{2}=\frac{0}{2}=0 \quad$ There is nothing left.

Example D What is the difference between $\frac{7}{5}$ and $\frac{2}{5}$?

Write the equation.
$\frac{7}{5}-\frac{2}{5}=$
Subtract the numerators.
Denominator stays the same. $\quad \frac{7-2}{5}=\frac{5}{5}=1$ Change to whole number

Exercise 8.6

Find the difference. Write your answer in simplest form. Check your work using the answer key. The first one a) is done for you.
a) $\frac{5}{6}-\frac{2}{6}=\frac{5-2}{6}=\frac{1}{6}=\frac{1}{2}$
b) $\frac{7}{8}-\frac{1}{8}=$
c) $\frac{4}{3}-\frac{1}{3}=$
d) $\frac{9}{10}-\frac{3}{10}=$
e) $\frac{2}{3}-\frac{2}{3}=$
f) $\frac{7}{4}-\frac{2}{4}=$
g) $\frac{11}{12}-\frac{3}{12}=$
h) $\frac{13}{15}-\frac{8}{15}=$
i) $\frac{15}{7}-\frac{1}{7}=$
j) $\frac{5}{12}-\frac{2}{12}=$
k) $\frac{13}{20}-\frac{3}{20}=$
l) $\frac{4}{9}-\frac{1}{9}=$

Answers to Exercise 8.6

a) $\frac{1}{2}$
b) $\frac{6}{8}=\frac{3}{4}$
c) $\frac{3}{3}=1$
d) $\frac{6}{10}=\frac{3}{5}$
e) $\frac{0}{3}=0$
f) $\frac{5}{4}=1 \frac{1}{4}$
g) $\frac{8}{12}=\frac{2}{3}$
h) $\frac{5}{15}=\frac{1}{3}$
i) $\frac{14}{7}=2$
j) $\frac{3}{12}=\frac{1}{4}$
k) $\frac{10}{20}=\frac{1}{2}$

1) $\frac{3}{9}=\frac{1}{3}$

8.7 Subtracting Mixed Numbers

When subtracting mixed numbers that have common denominators, first subtract the fractions and then subtract the whole numbers. This is different than what is done when adding mixed numbers.

Example A What is $4 \frac{3}{5}$ less $3 \frac{1}{5}$?

Write the equation.

$$
4 \frac{3}{5}-3 \frac{1}{5}=
$$

Subtract the numerators. $\quad \frac{3-1}{5}=\frac{2}{5}$
and
Subtract the whole numbers. $\quad 4-3=1$

$$
4 \frac{3}{5}-3 \frac{1}{5}=1 \frac{2}{5}
$$

Example B What is $4 \frac{5}{8}$ less $1 \frac{3}{8}$?

Write the equation.

$$
4 \frac{5}{8}-1 \frac{3}{8}
$$

Subtract like fractions.

$$
\frac{5-3}{8}=\frac{2}{8}
$$

and
Subtract the whole numbers. $\quad 4-1=3$

$$
4 \frac{5}{8}-1 \frac{3}{8}=3 \frac{2}{8}
$$

Reduce to simplest form

$$
3 \frac{2}{8}=3 \frac{1}{4}
$$

Subtracting Mixed Numbers continued

Example C What is $5 \frac{2}{3}$ less 2 ?

There is no fraction (you do not have to write $\frac{0}{3}$ in)
Write the equation.

$$
5 \frac{2}{3}-2 \frac{0}{3}=
$$

Notice there is no fraction to subtract.
Subtract like fractions. $\quad \frac{2}{3}-\frac{0}{3}=\frac{2}{3}$ (There is nothing to subtract.)
and
Subtract the whole numbers. $\quad 5-2=3$

$$
5 \frac{2}{3}-2=3 \frac{2}{3}
$$

Exercise 8.7
Find the difference. Reduce the answer to simplest form. Check your work using the answer key. The first one a) is done for you.
a) $4 \frac{5}{6}-2 \frac{1}{6}=2 \frac{\stackrel{2}{4}}{6}=2 \frac{2}{3}$
b) $4 \frac{3}{5}-4 \frac{1}{5}=$
c) $7 \frac{7}{10}-1 \frac{1}{10}=$
d) $2 \frac{3}{7}-\frac{2}{7}=$

Exercise 8.7 continued

e) $12 \frac{4}{5}-\frac{4}{5}=$
f) $4 \frac{4}{6}-2 \frac{1}{6}=$
g) $6 \frac{3}{4}-1 \frac{2}{4}=$
h) $3 \frac{7}{8}-2=$
i) $4 \frac{3}{4}-1 \frac{1}{4}=$
j) $1 \frac{3}{4}-1 \frac{3}{4}=$

Answers to Exercise 8.7

a) $2 \frac{2}{3}$
b) $\frac{2}{5}$
c) $6 \frac{6}{10}=6 \frac{3}{5}$
d) $2 \frac{1}{7}$
e) 12
f) $2 \frac{3}{6}=2 \frac{1}{2}$
g) $5 \frac{1}{4}$
h) $1 \frac{7}{8}$
i) $3 \frac{2}{4}=3 \frac{1}{2}$
j) 0

8.8 Word Problems - Subtracting Mixed Numbers

Example A David had $\frac{3}{4}$ of an hour to write a quiz. He only used $\frac{2}{4}$ of an hour. How much time was remaining?

The key word is remaining which means to take away or subtract.

$$
\frac{3}{4}-\frac{2}{4}=\frac{1}{4}
$$

There was $\frac{1}{4}$ of an hour remaining.

Example B A box of books weighed $5 \frac{3}{8}$ kilograms. Some books weighing $3 \frac{1}{8}$ kilograms were removed. What is the weight of the box of books after some were removed?

The key word is removed which means to subtract.

$$
5 \frac{3}{8}-3 \frac{1}{8}=2 \frac{2}{8}
$$

$\begin{array}{ll}\text { Reduce to simplest form } & \begin{array}{c}1 \\ 2 \frac{2}{8} \\ 4\end{array}=2 \frac{1}{4}\end{array}$
After some books were removed, the box weighed $2 \frac{1}{4}$ kilograms.
Exercise 8.8
Solve each word problem. Give your answer in simplest form in a sentence. Check your work using the answer key. The sentence you write may be a little different than the sentence in the answer key.
a) John had $3 \frac{1}{4}$ metres of fabric. He used $1 \frac{1}{4}$ metres to sew a shirt. How much fabric was left over?

Exercise 8.8 continued

b) The store where Ali works is $9 \frac{7}{10}$ kilometres from her house. She takes the bus for most of the distance, except for $3 \frac{4}{10}$ kilometres when she walks. How many kilometres does she travel on the bus to get to work?
c) Maria spent $4 \frac{3}{4}$ hours at the mall on Saturday. Just after she arrived to the mall, she saw a movie that was $2 \frac{1}{4}$ hours long. How much time was remaining after she saw the movie?
d) Jane had $6 \frac{5}{12}$ dozen ginger cookies for sale at her bake sale. After the sale, she had $1 \frac{1}{12}$ dozen remaining. How many dozen ginger cookies did she sell?

Answers to Exercise 8.8 - Word Problems

a) $3 \frac{1}{4}-1 \frac{1}{4}=2 \quad$ John had 2 metres of fabric left over.
b) $9 \frac{7}{10}-3 \frac{4}{10}=6 \frac{3}{10} \quad$ Ali travels $6 \frac{3}{10}$ on the bus to work.
c) $4 \frac{3}{4}-2 \frac{1}{4}=2 \frac{2}{4}=2 \frac{1}{2} \quad$ There was $2 \frac{1}{2}$ hours remaining after Maria saw the movie.
d) $6 \frac{5}{12}-1 \frac{1}{12}=5 \frac{4}{12}=5 \frac{1}{3}$ Jane sold $5 \frac{1}{3}$ dozen ginger cookies at her bake sale.

Review of Rules for Adding, Subtracting, Multiplying \& Dividing Fractions

Addition of Fractions - A common denominator is required.

1. Find the lowest common denominator if necessary.
2. Change fractions into equivalent fractions having the lowest common denominator.
3. Add numerators.
4. Use the common denominator in the answer
5. Reduce to simplify the answer if necessary.

Subtraction of Fractions - A common denominator is required.

1. Find the lowest common denominator if necessary.
2. Change fractions into equivalent fractions having the lowest common denominator.
3. Change to improper fractions or borrow if necessary.
4. Subtract numerators.
5. Use the common denominator in the answer
6. Reduce to simplify the answer if necessary.

Multiplication of Fractions - A common denominator is NOT required

1. Change mixed numbers to improper fractions and whole numbers to fractions over 1 if necessary.
2. Cancel if possible.
3. Multiply the numerators.
4. Multiply the denominators
5. Simplify the answer if required.

Division of Fractions - A common denominator is NOT required

1. Change mixed numbers to improper fractions and whole numbers to fractions over 1 if necessary.
2. Invert the $2^{\text {nd }}$ fraction and change the \div sign to x . (kiss (x) and flip).
3. Cancel if possible.
4. Multiply the numerators.
5. Multiply the denominators
6. Simplify the answer if required.
(The source of this page is unknown.)

Unit 8 Review - Adding and Subtracting Fractions

You will now practice all the skills you learned in Unit 8. Check your work using the answer key at the end of the review.
A. Add. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) What is $\frac{1}{5}$ and $\frac{2}{5}$?
b) $\frac{3}{8}+\frac{4}{8}=$
C) $\frac{8}{9}+\frac{2}{9}=$
d)What is $\frac{5}{8}$ and $\frac{3}{8} ?$
e) $\frac{9}{14}+\frac{3}{14}=$
f) $\frac{1}{4}+\frac{1}{4}=$
g) $\frac{1}{3}+\frac{3}{3}=$
h) $2 \frac{1}{4}+\frac{1}{4}=$
i) $7 \frac{2}{5}+1 \frac{1}{5}=$
j) $3 \frac{1}{6}+2 \frac{2}{6}=$
k) What is $\frac{1}{4}$ and $3 \frac{1}{4}$?
l) $2 \frac{3}{8}+\frac{0}{8}=$

Adding and Subtracting Fractions Review continued
m) $\frac{1}{14}+\frac{6}{14}=$
n) $\frac{12}{4}+\frac{3}{4}=$
o) $\frac{2}{4}+\frac{1}{4}=$
p) $\frac{5}{9}+\frac{3}{9}=$
B. Subtract. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) $\frac{7}{8}-\frac{2}{8}=$
b) $\frac{9}{10}-\frac{6}{10}=$
c) $\frac{5}{8}-\frac{3}{8}=$
d) $\frac{3}{4}-\frac{1}{4}=$
e) $\frac{7}{9}-\frac{4}{9}=$
f) $\frac{8}{4}-\frac{4}{4}=$
g) $3 \frac{4}{5}-1 \frac{1}{5}=$
h) $4 \frac{11}{15}-1 \frac{1}{15}=$
i) $4 \frac{3}{4}-\frac{2}{4}=$
j) $\frac{4}{5}-\frac{4}{5}=$

Adding and Subtracting Fractions Review continued

k) $2 \frac{3}{7}-1 \frac{1}{7}=$

1) $4 \frac{5}{9}-3 \frac{2}{9}=$
m) $\frac{12}{14}-\frac{5}{14}=$
n) $8 \frac{7}{10}-1 \frac{7}{10}=$
o) $\frac{5}{8}-\frac{2}{8}=$
p) $\frac{11}{12}-\frac{8}{12}=$
C. Word Problems. Solve these word problems. They may be adding or subtracting. Write your fraction or mixed number in simplest form and in a word sentence.
a) Jack has a box of cereal that is $\frac{3}{4}$ full. If he eats $\frac{1}{4}$ of the box of cereal in a week, then how much remains?
b) At the evening GED class the instructor gave a test. The highest mark on the test would be $\frac{25}{25}$. Joe answered $\frac{21}{25}$ questions correctly. What fraction of questions did Joe answer incorrectly?

Adding and Subtracting Fractions Review continued

 C. Word Problems. Solve these word problems. They may be addition or subtraction. Write your answer in simplest form in a word sentence.c) A recipe calls for $\frac{2}{3}$ cup of sugar per pie. Kate is going to triple the recipe. How many cups of sugar will she need?
d) Sandy made two doll dresses which used $\frac{1}{16}$ of a metre of fabric each. How much fabric did she use in total?
e) The car trip took $3 \frac{3}{4}$ hours from start to finish. Within that time was a $\frac{1}{4}$ hour rest break from driving. How much of the time was spent driving?
f) Maria carried three boxes of books to her car. The first box weighed $6 \frac{1}{10}$ kilograms. The second box weighed $3 \frac{2}{10}$ kilograms and the third box weighed $5 \frac{2}{10}$ kilograms. How much do the three boxes weigh in total?

Answers to Unit 8 Review

A. Add.

a) $\frac{1}{5}+\frac{2}{5}=\frac{3}{5}$
b) $\frac{3}{8}+\frac{4}{8}=\frac{7}{8}$
c) $\frac{8}{9}+\frac{2}{9}=\frac{10}{9}=1 \frac{1}{9}$
d) $\frac{5}{8}+\frac{3}{8}=\frac{8}{8}=1$
e) $\frac{9}{14}+\frac{3}{14}=\frac{12}{14}=\frac{6}{7} \quad$ reduce by 2
f) $\frac{1}{4}+\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ reduce by 2
g) $\frac{1}{3}+\frac{3}{3}=\frac{4}{3}=1 \frac{1}{3}$
h) $2 \frac{1}{4}+\frac{1}{4}=2 \frac{2}{4}=2 \frac{1}{2}$ reduce by 2
continued on next page

Answers to Unit 8 Review

A. Adding continued

i) $7 \frac{2}{5}+1 \frac{1}{5}=8 \frac{3}{5}$
j) $3 \frac{1}{6}+2 \frac{2}{6}=5 \frac{3}{6}=5 \frac{1}{2}$ reduce by 2
k) $\frac{1}{4}+3 \frac{1}{4}=3 \frac{2}{4}=3 \frac{1}{2} \quad$ reduce by 2
l) $2 \frac{3}{8}+0=2 \frac{3}{8}$
m) $\frac{1}{14}+\frac{6}{14}=\frac{7}{14}=\frac{1}{2} \quad$ reduce by 2
n) $\frac{12}{4}+\frac{3}{4}=\frac{15}{4}=3 \frac{3}{4}$
o) $\frac{2}{4}+\frac{1}{4}=\frac{3}{4}$
p) $\frac{5}{8}+\frac{3}{9}=\frac{8}{9}$

B. Subtract.

a) $\frac{7}{8}-\frac{2}{8}=\frac{5}{8}$
b) $\frac{9}{10}-\frac{6}{10}=\frac{3}{10}$
c) $\frac{5}{8}-\frac{3}{8}=\frac{2}{8}=\frac{1}{4} \quad$ reduce by 2
d) $\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ reduce by 2
e) $\frac{7}{9}-\frac{4}{9}=\frac{3}{9}=\frac{1}{3}$
f) $\frac{8}{4}-\frac{4}{4}=\frac{4}{4}=1$
g) $3 \frac{4}{5}-1 \frac{1}{5}=2 \frac{3}{5}$
h) $4 \frac{11}{15}-1 \frac{1}{15}=3 \frac{10}{15}=3 \frac{2}{3}$ reduce by 5
i) $4 \frac{3}{4}-\frac{2}{4}=4 \frac{1}{4}$
j) $\frac{4}{5}-\frac{4}{5}=0$
k) $2 \frac{3}{7}-1 \frac{1}{7}=1 \frac{2}{7}$
l) $4 \frac{5}{9}-3 \frac{2}{9}=1 \frac{3}{9}=1 \frac{1}{3}$ reduce by 3
m) $\frac{12}{14}-\frac{5}{14}=\frac{7}{14}=\frac{1}{2}$ reduce by 7
n) $8 \frac{7}{10}-1 \frac{7}{10}=7$
o) $\frac{5}{8}-\frac{2}{8}=\frac{3}{8}$
p) $\frac{11}{12}-\frac{8}{12}=\frac{3}{12}=\frac{1}{4}$

C. Word problems

a) subtract $\frac{3}{4}-\frac{1}{4}=\frac{2}{4}=\frac{1}{2}$ reduce by 2 Jack will have $\frac{1}{2}$ box of cereal remaining.
b) subtract $\frac{25}{25}-\frac{21}{25}=\frac{4}{25} \quad$ Joe answered $\frac{4}{25}$ questions incorrectly.
c) add $\frac{2}{3}+\frac{2}{3}+\frac{2}{3}=\frac{6}{3}=2$ cups If the recipe were tripled, Kate will need 2 cups of sugar.
d) add $\frac{1}{16}+\frac{1}{16}=\frac{2}{16}=\frac{1}{8} \quad$ Sandy used $\frac{1}{8}$ of a metre of fabric.
e) subtract $3 \frac{3}{4}-\frac{1}{4}=3 \frac{1}{2} \quad$ Three hours were spent driving.
f) add $6 \frac{1}{10}+3 \frac{2}{10}+5 \frac{2}{10}=14 \frac{5}{10}=14 \frac{1}{2}$ The three boxes weighed $14 \frac{1}{2}$ kilograms.

Units 6, 7 \& 8 Fractions Review

1) In the fraction $\frac{2}{7}$, the 2 is called the and the 7 is called the \qquad .
2) What part of the whole is shaded? Write your answer as a fraction.
a)

b)

c)

3) Write the following fractions in words:
a) $\frac{1}{2}$ \qquad b) $\frac{3}{4}$ \qquad
4) Compare the following fractions. Use $<$ or $>$ or $=$ signs.
a) $\frac{2}{9} \quad \frac{5}{9}$
b) $\frac{3}{10}$
$\frac{1}{10}$
5) Types of Fractions
a) Circle the proper fractions. $\quad \frac{4}{7} \quad \frac{8}{3} \quad \frac{1}{2} \quad \frac{4}{4}$
b) Circle the improper fractions. $\begin{array}{lllll}\frac{5}{2} & \frac{3}{3} & \frac{2}{7} & 1 \frac{2}{9}\end{array}$
c) Circle the mixed numbers. $\begin{array}{lllll}4 & 7 & 7 \frac{3}{8} & \frac{2}{3} & \frac{14}{3}\end{array}$

Units 6, 7 \& 8 Fraction Review continued

6) Change the following improper fractions to mixed or whole numbers.
a) $\frac{7}{5}$
b) $\frac{8}{3}$
c) $\frac{5}{5}$
d) $\frac{6}{2}$
7) Change the following mixed and whole numbers to improper fractions:
a) $1 \frac{3}{5}$
b) $2 \frac{5}{7}$
c) $7 \frac{1}{4}$
d) 5 \qquad
8) Factors and Factorization

Find the common factors and the Greatest Common Factor (GCF).

	Numbers	Factors	Common Factors	GCF
a)	12			
b)	18			
30				

9) Use cross products to determine if the fractions are equivalent. If they are equivalent, write $=$. If they are not equivalent, write \neq.
a) $\frac{2}{4}$ and $\frac{8}{16}$
b) $\frac{6}{9}$ and $\frac{5}{6}$

Units 6, 7 \& 8 Fraction Review continued

10) Use a factor tree to find the prime factors for each number.

Write the prime numbers in an equation
a)
18
b) 40
11) Solve the fraction equations. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
a) $\frac{7}{8} \times \frac{2}{3}=$
b) $\frac{4}{15} \times \frac{5}{8}=$
b) $0 \times \frac{1}{4}=$
d) $5 \times \frac{3}{5}=$
d) $1 \frac{2}{7} \times 1 \frac{3}{4}=$
f) $3 \frac{1}{3} \times \frac{6}{15}=$

Units 6, 7 \& 8 Fraction Review continued

Solve the fraction equations. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
g) $\frac{7}{2} \div \frac{3}{4}=$
h) $\frac{3}{10} \div \frac{6}{5}=$
i) $\frac{3}{7} \div 6=$
j) $\frac{15}{9} \div 3=$
k) $2 \frac{1}{4} \div 1 \frac{2}{7}=$
l) $9 \div \frac{3}{7}=$

Units 6, 7 \& 8 Fraction Review continued

Solve the fraction equations. Write your answer in simplest form. If your answer is an improper fraction, change it to a mixed number.
m) $\frac{1}{3}+\frac{3}{3}=$
n) $2 \frac{1}{4}+\frac{1}{4}=$
o) $7 \frac{2}{5}+1 \frac{1}{5}=$
p) $3 \frac{1}{6}+2 \frac{2}{6}=$
q) $\frac{7}{9}-\frac{4}{9}=$
r) $\frac{8}{4}-\frac{4}{4}=$
s) $3 \frac{4}{5}-1 \frac{1}{5}=$
t) $4 \frac{11}{15}-1 \frac{1}{15}=$

Units 6, 7 \& 8 Fraction Review continued

12) Fractions in word problems. Write the answer in the simplest form. Write the answer in a sentence.
a) Kate sews tablecloths which require $1 \frac{1}{4}$ metres of fabric. How many tablecloths can she sew from 10 metres of fabric?
b) The school is $4 \frac{2}{3}$ kilometres from John's home. He has walked $\frac{1}{2}$ of the way. How many kilometres remain?
c) Karen rides her bike $5 \frac{7}{8}$ kilometers. David rides his bike $4 \frac{1}{8}$ kilometers. How many kilometers did they ride their bikes in total?

How much further did Karen ride her bike than David?

Units 6, 7 \& 8 Fraction Review continued

Fractions in word problems. Write the answer in the simplest form. Write the answer in a sentence.
d) Jack bought $5 \frac{1}{4}$ kilograms of rice. After he buys it, he separates it into $\frac{1}{4}$ kilogram containers. How many containers will he need?
e) There are 4 pie plates. Each plate contains $\frac{5}{8}$ of a pie. How many pies are there in all?
f) Linda practiced the piano for $1 \frac{3}{4}$ of an hour on Saturday and for $\frac{3}{4}$ of an hour on Sunday. How many hours did she practice altogether?
g) Mary used $3 \frac{5}{8}$ cups of flour for making bread. She used $1 \frac{4}{8}$ cups of flour for cookies. How much more flour did she use for making bread?

Units 6, 7 \& 8 Fraction Review continued

Answers to Units 6, 7 \& 8 Fractions Review

1) 2 is called the numerator and the 7 is called the denominator. 2)a) $\frac{1}{2}$ b) $\frac{2}{5}$ c) $\frac{5}{8}$
2) a) one-half, one over two or one out of two b) three-quarters, three-fourths, three out of four or three over four
4a) $\frac{2}{9}<\frac{5}{9}$
b) $\frac{3}{10}>\frac{1}{10}$
3) a) proper $\frac{4}{7} \quad \frac{1}{2}$
b) improper $\frac{5}{2} \frac{3}{3}$
c) mixed $4 \frac{1}{4} \quad 7 \frac{3}{8}$
4) a) $\frac{7}{5}=1 \frac{2}{5}$
b) $\frac{8}{3}=2 \frac{2}{3}$
c) $\frac{5}{5}=1$
d) $\frac{6}{2}=3$
5) a) $1 \frac{3}{5}=\frac{8}{5}$
b) $2 \frac{5}{7}=\frac{19}{7}$
c) $7 \frac{1}{4}=\frac{29}{4}$
d) $5=\frac{5}{1}$

8. Factors Numbers	Factors	Common Factors	Greatest Common Factor
a) 12,18	\ldots of 12 are $1,2,3,4,6,12$ \ldots of 18 are $1,2,3,6,9,18$	$1,2,3,6$	6
b) 15,30	\ldots of 15 are $1,3,5,15$ \ldots of 30 are $1,2,3,5,6,10,15,30$	$1,3,5,15$	15

9) Cross products
a) is equivalent $=2 \times 16=324 \times 8=32$
b) is not equivalent $\neq 6 \times 6=36 \quad 9 \times 5=45$
10) a) $2 \times 3 \times 3=18$ b) $2 \times 2 \times 2 \times 5=40$
11) a) $\frac{7}{8} x \frac{1}{4} \frac{7}{3}=\frac{7}{12}$
b) $\frac{1}{45} \times \frac{1}{3} \frac{1}{8}=\frac{1}{6}$
c) 0 (anything times 0 is 0)
d) $\frac{1}{5} \frac{5}{1} \frac{3}{8}=\frac{3}{1}=3$
e) $\underset{1}{\frac{9}{7}} \mathrm{x} \frac{7^{1}}{4}=\frac{9}{4}=2 \frac{1}{4}$
f) $\frac{1 \theta^{2}}{8} \times \frac{\sigma^{2}}{18}=\frac{4}{3}=1 \frac{1}{3}$

Change to multiplication and flip the second fraction
g) $\frac{7}{\frac{7}{2}} \times \frac{4^{2}}{3}=\frac{14}{3}=4 \frac{2}{3}$
h) $\frac{\frac{1}{\frac{3}{2}}}{2} \times \frac{\frac{1}{5}}{\frac{\sigma}{6}}=\frac{1}{4}$
i) $\frac{1}{7} \times \frac{1}{8}=\frac{1}{14}$
j) $\frac{5}{9} \frac{15}{9} \times \frac{1}{3}=\frac{5}{9}$
k) $\frac{1}{\frac{9}{x}} \mathrm{x} \frac{x^{1}}{\frac{x}{9}}=\frac{1}{2}$
l) $\frac{3^{3}}{1} \times \frac{7}{\frac{7}{8}}=\frac{21}{1}=21$

Answers to Units 6, 7 \& 8 Fractions Review

11) m) $\frac{4}{3}=1 \frac{1}{3}$
n) $2 \frac{2}{4}=2 \frac{1}{2}$
o) $8 \frac{3}{5}$
p) $5 \frac{3}{6}=5 \frac{1}{2}$
q) $\frac{3}{9}=\frac{1}{3}$
r) $\frac{4}{4}=1$
s) $2 \frac{3}{5}$
t) $3 \frac{10}{15}=3 \frac{2}{3}$

Word problems

12) a) divide $10 \div 1 \frac{1}{4}=8$ Kate can sew 8 tableclothes.
b) multiply $4 \frac{2}{3} \times \frac{1}{2}=\frac{7}{3}=2 \frac{1}{3}$ John has $2 \frac{1}{3}$ km left to walk.
c) add $5 \frac{7}{8}+4 \frac{1}{8}=9 \frac{8}{8}=9+1=10$ They rode their bikes 10 kilometres in total. subtract $5 \frac{7}{8}-4 \frac{1}{8}=1 \frac{6}{8}=1 \frac{3}{4} \quad$ Karen rode her bike $1 \frac{3}{4}$ kilometres more than David.
d) divide $5 \frac{1}{4} \div \frac{1}{4}=21$ Jack will need 21 containers.
e) multiply $4 \times \frac{5}{8}=\frac{5}{2}=2 \frac{1}{2} \quad$ In total there are $2 \frac{1}{2}$ pies.
f) add $1 \frac{3}{4}+\frac{3}{4}=1 \frac{6}{4}=1 \frac{3}{2}=1+1 \frac{1}{2}=2 \frac{1}{2}$ In total she practiced $2 \frac{1}{2}$ hours.
g) subtract $3 \frac{5}{8}-1 \frac{4}{8}=2 \frac{1}{8} \quad$ She used $2 \frac{1}{8}$ cups more flour when making bread.

Basic Math 1 Course Review

Part 1: Whole Numbers

1) Write the following numbers in words:
a) 3008 \qquad
b) 5324 \qquad
c) 66023 \qquad
d) 201111 \qquad
e) 27263303
2) Write the following numbers in standard form:
a) seven hundred twenty-four \qquad
b) eleven thousand twelve \qquad
c) six hundred thousand
d) five thousand eight hundred \qquad
e) three million two hundred three thousand five \qquad
3) Write the following number in expanded notation.

42135
4) Write the place value of the 5 in each number given below:
a) 45
b) 52113 \qquad
c) 6503 \qquad d) 711569 \qquad
5) Look at the number below and answer the following questions

68370542196
The 8 is in the \qquad place

The 0 is in the \qquad place

The 2 is in the \qquad place

The 7 is in the \qquad place

The 9 is in the \qquad place
6) Round the number below to the tens place.
a) 254 \qquad
Round the number below to the hundreds place.
b) 67463 \qquad
Round the number below to the thousands place.
c) 887345 \qquad
Round the number below to the ten thousands place.
d) 52467789 \qquad

Round the number below to the hundred thousands place.
e) 1723271 \qquad
Round the number below to the millions place.
f) 1723271 \qquad
7) Arrange the numbers below in columns and add:
a) $9579+614+11283+64=$
b. $1032+4+23130+798+31=$
8) Provide the actual and the estimated sum for each of the following two questions.
a) $1289+5697+1314+912=$

Actual

Estimated

b) $564+3214+68=$

Actual

Estimated

9) John went on a cycle tour for 4 days. He cycled 119 km on the first day, 82 km on the second day, 108 km on the third day, and only 24 km on the fourth day. How far did he cycle altogether?
10)Last week Leon earned $\$ 789$. This week he earned $\$ 812$. How much did he earn in all? How much more money did he earn this week?
11)Find the difference for each of the following questions:
a) $900-394=$
b) $73483-20261=$
12)Find the actual and the estimated sum for each of the following two questions.
a) $641-348=$

Actual Estimated
b) $653747-103916=$

Actual

Estimated

13)Last week Jane's Potatoes plant processed 229000 kilograms of potatoes. This week they processed 102132 kilograms. How many fewer kilograms of potatoes did they process this week?
14) Kate collects fancy scarves. She has 195 of them and over the holidays added 10 to her collection. Betty also collects fancy scarves. She has 172 of them and over the holidays added 13 to her collection. How many more scarves does Kate have than Betty at the end of the holidays?
15) $37 \times 0=$
16) $541 \times 1=$
17)Rewrite the following questions in columns and solve:
a) $814 \times 3=$
b) $786 \times 15=$
c) $5200 \times 795=$
18)Find the actual and the estimated answer for the following question.

Estimated

19)A television distributor, distributes 16460 televisions in a week. How many televisions can be distributed in 15 weeks?
20)Chung wants to buy a used vehicle. The bank has told him that he needs to put $\$ 5,000$ down and then pay the rest over the next 4 years. Chung will pay $\$ 400$ a month for 48 months. How much will Chung end up paying for his car in total?
21)Provide the solutions to the following four questions:
a) $12 \div 0=$
b) $17 \div 17=$
c) $0 \div 15=$
d) $131 \div 1=$
22) Rewrite each of the following questions and solve. Show the remainder.
a) $752 \div 5=$
b) $9654 \div 8=$
c) $694 \div 26=$
d) $72652 \div 11=$
23)Maluth earned $\$ 4472$ last year delivering morning papers. How much did he earn each week? (There are 52 weeks in a year.)
24)Rewrite and solve the following question and use multiplication to check your answer. $7425 \div 225=$
25)Give the correct term for the following:
a) What is the answer to an addition question? \qquad
b) What is the answer to a subtraction question? \qquad
c) What is the answer to a multiplication question? \qquad
d) What is the answer to a division question? \qquad
26)There were 9420 seats in a concert hall. There were 30 seats in each row. How many rows were there in the concert hall?
27)Ira wants to build a fence around the perimeter of his corn field. The length of his field is 150 meters and the width is 75 meters. How many meters of fence does he have to build?
28)Solve:
a) $2+3 \times 8=$
b) $55-28 \div 7 \times(36 \div 4)=$
c) $10+(10-2) \div 2+4=$

PART 2: Fractions

1) In the fraction $\frac{3}{4}$
a) the numerator is
b) the denominator is \qquad
2) In the fraction below, what is the fraction represented by the shaded part?

3) Simplify the following fractions:
a) $\frac{3}{3}$
b) $\frac{7}{1}$
c) $\frac{0}{4}$
d) $\frac{5}{0}$
4) Show the following numbers as products of prime factors:
a) 48
b) 55
5) Write the number 8 as a fraction. \qquad
6) Place the following fractions in order from smallest to largest.

$\frac{3}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{8}{8}$

7) Reduce each of the following fractions to simplest form:
a) $\frac{12}{30}$
b) $\frac{10}{15}$
c) $\frac{6}{18}$
d) $\frac{3}{4}$
8) Prove whether these fractions are equal or not. Write $=$ or \neq between the fractions.
a) $\frac{3}{4} \quad \frac{7}{8}$
b) $\frac{2}{3} \quad \frac{8}{12}$
c) $\frac{1}{5} \quad \frac{4}{20}$
d) $\frac{3}{8} \quad \frac{7}{16}$
9) Identify the following fractions as proper, improper or mixed.
$\frac{1}{8} \quad \frac{11}{6}$

$$
2 \frac{1}{3}
$$

$\frac{4}{9}$
$\begin{array}{lll}\frac{22}{5} & \frac{1}{1} & \frac{0}{8}\end{array}$
$12 \frac{11}{18}$
proper \qquad
improper \qquad
mixed \qquad
10)Change the following improper fractions below to mixed numbers. Reduce the fraction to simplest form if necessary.
a) $\frac{14}{7}$
b) $\frac{26}{3}$
c) $\frac{18}{4}$
11)Change the following mixed numbers to improper fractions.
a) $10 \frac{3}{5}$
b) $2 \frac{1}{4}$
c) $2 \frac{11}{12}$
12)Multiple the following fractions. Reduce to lowest terms.
a. $\frac{3}{4} \times \frac{8}{9}$
b. $1 \frac{1}{2} \times 4 \frac{3}{4}$
c) $8 \times \frac{15}{16}$
d. $\frac{2}{5} \times \frac{10}{11} \times 2 \frac{1}{5}$
e. $\frac{6}{7} \times \frac{2}{3} \times \frac{7}{8}$
f. $1 \frac{1}{6}$ of $2 \frac{2}{5}$
g. $2 \frac{7}{8} \times 1 \frac{1}{3}$
h. $\frac{2}{5}$ of 500
13)On Tuesday Erin brought in $\$ 5000$ of sales for the company she works for. She earns $\frac{2}{5}$ of the money she makes on sales. How much does she earn?
14)A hotel has 100 rooms. Of these rooms $\frac{9}{10}$ are for non-smokers. How many rooms are for non-smokers?
15) On the blanks below the fractions, give the reciprocals of each of the following numbers:
a. $\frac{1}{4}$
b. $\frac{2}{3}$
c. $\frac{3}{5}$
d. 8
16)Divide the following fractions. Reduce to lowest terms.
a. $10 \div \frac{1}{2}$
b. $\frac{7}{8} \div \frac{15}{16}$
c. $4 \frac{2}{3} \div 1 \frac{3}{4}$
d. $3 \frac{3}{5} \div 9$
e. $\frac{2}{5} \div \frac{3}{4}$
f. $3 \frac{1}{5} \div 1 \frac{3}{5}$

Give your answer to the all word problems as a fraction in simplest form in a word sentence.
17) How many $\frac{3}{4}$ liter fuel tanks can be filled from 15 liters of fuel?
18)How many $\frac{2}{3}$ liter sprayers can be filled from 36 liters of insect spray?
19)There are 18 meters of material. Saba requires $2 \frac{1}{4}$ meters for each skirt she wishes to make. How many skirts can Saba make?
20)Last week Moira worked for 10 hours at her part time job. She makes $12 \frac{1}{2}$ dollars for each hour she works. How much money did Moira make last week?
21)If a car requires $2 \frac{5}{8}$ liters of paint to have it painted, find the number of liters needed to paint 8 cars.
22)Add the following fractions. Reduce to lowest terms.
a) $\frac{3}{4}+\frac{1}{4}=$
b) $\frac{1}{5}+\frac{3}{5}=$
c) $\frac{3}{27}+\frac{6}{27}=$
d) $\frac{16}{30}+\frac{4}{30}=$
e) $\frac{10}{12}+\frac{1}{12}=$
f) $8 \frac{1}{7}+2 \frac{3}{7}=$
g) $3 \frac{2}{15}+1 \frac{9}{15}=$
h) $1 \frac{4}{12}+2 \frac{5}{12}=$
23)Marie and Sharifa both bought tomatoes. Marie bought $2 \frac{1}{4}$ kilograms and Sharifa bought $3 \frac{1}{4}$ kilograms. How many kilograms did they purchase in total together?
24)Subtract the following fractions. Reduce to lowest terms.
a. $\frac{7}{8}-\frac{3}{8}=$
b. $13 \frac{11}{12}-10 \frac{7}{12}=$
C. $\frac{28}{2}-\frac{1}{2}=$
d. $\frac{4}{10}-\frac{3}{10}=$
e. $\frac{8}{14}-\frac{3}{14}=$
f. $7 \frac{15}{20}-4 \frac{3}{20}=$
25)Charles ordered $8 \frac{3}{4}$ cases of bananas from his distributor on last week. This week he is ordering $6 \frac{1}{4}$ cases. How many more cases did he order last week than this week?

Answers to Basic Math 1 Course Review
 Whole Numbers

1) a) three thousand eight
b) five thousand three hundred twenty-four
c) sixty-six thousand twenty-three
d) two hundred one thousand one hundred eleven
e) twenty-seven million two hundred sixty-three thousand three hundred three
2) a) 724
b)11 012
c) 600000
d) 5800
e) 3203005
3) $40000+2000+100+30+5$

4) a) 45 , ones	b) 52113 , ten thousands,	c) 6503 , hundreds	d) 711569 , hundreds	
5) 8 , billions, 0, millions 2, thousands 7, ten millions 9, tens				
6) a) 250 b) 67500 c) 887000 d) 52470000 e) 1700000	f) 2000000			
7) a) 21540	b) 24995			
8) a) 9212	$1000+6000+1000+900=8900$	b) 3846	$600+3000+70=3670$	

9) 333 km John rode 333 km altogether.
10) Leon earned $\$ 1601$ in total. This week he earned $\$ 23$ more. 11) a) 506 b) 53222
12)a) $293 \quad$ b) $549831 \quad 700-300=300-100000=600000$
13)229 000-102 $132=126868$ There were 26868 fewer kilograms of potatoes produced.
11) $195+10=205 \quad 172+13=185 \quad 205-185=20$ pounds. Kate has 20 more scarves.
12) 0
13) 541
17)a) 2442
b)11 790
c) 4134000
14) $262849560000 \times 50=3000000$
15) 246900
16) $400 \times 48=19200$
$19200+5000=24200$ Chung will pay $\$ 24200$ for the car.
17) a) undefined
b) 1
c) 0
d) 131
18) a) 150 R 2
b) 1206 R6
c) 26 R 18
d) 6604 R 8
19) divide. Maluth earned $\$ 86$ per week. 24) $33 \quad$ Check $33 \times 225=7425$
20) a) sum
b) difference
c) product
d) quotient
26)divide 314 rows There were 314 rows in the concert hall.
21) $150+75+150+75=450 \mathrm{~m} \quad$ He has to build 450 metres of fence.
22) a) $2+24=26$
b) $55-4 \times 9=55-36=19$
c) $10+8 \div 2+4=10+4+4=18$

Answers to Basic Math 1 Course Review Fractions

1) a) numerator is 3
b) denominator is 4
2) $\frac{2}{4}$
3) a) 1
b) 7
c) 0
d) undefined
4)a) $2 \times 2 \times 2 \times 2 \times 3=48$
b) $11 \times 5=55$
4) $\frac{8}{1}$
5) $\frac{1}{8} \quad \frac{3}{8} \quad \frac{5}{8} \quad \frac{8}{8}$
6) a) $\frac{2}{5} \quad$ b) $\frac{2}{3}$
c) $\frac{1}{3}$
d) $\frac{3}{4}$
7) $a) \neq b)=$
c) $=$
d) \neq
8) proper $\frac{1}{8} \frac{4}{9} \frac{0}{8} \quad$ improper $\quad \frac{11}{6} \quad \frac{22}{5} \quad \frac{1}{1} \quad$ mixed $2 \frac{1}{3} 12 \frac{11}{18}$
9) a) 2
$\begin{array}{ll}\text { b) } 8 \frac{2}{3} & \text { c) } 4 \frac{1}{2}\end{array}$
10) a) $\frac{53}{5}$
b) $\frac{9}{4} \quad$ c) $\frac{35}{12}$
11) a) $\frac{2}{3}$
b) $7 \frac{1}{8}$
c) $7 \frac{1}{2}$
d) $\frac{4}{5}$
e) $\begin{array}{ll}\frac{1}{2} & \text { f) } 2 \frac{4}{5}\end{array}, ~$
g) $3 \frac{5}{6}$
h) 200
12) multiply Erin earned $\$ 2000$. 14) multiply There are 90 rooms for non-smokers.
13) a) $\frac{4}{1}$ b) $\frac{3}{2}$
c) $\frac{5}{3}$
d) $\frac{1}{8}$
14) a) 20
b) $\frac{14}{15}$
c) $2 \frac{2}{3} \quad$ d) $\frac{2}{5}$
$\begin{array}{ll}\text { e) } \frac{8}{15} & \text { f) } 2\end{array}$
15) $15 \div \frac{3}{4}=20 \quad$ Twenty fuel tanks can be filled.
16) $36 \div \frac{2}{3}=54$ They can fill 54 sprayers.
17) $18 \div 2 \frac{1}{4}=8 \quad$ Saba can make 8 dresses.
18) $12 \frac{1}{2} \times 10=125$ Moira made $\$ 125$.
19) $2 \frac{5}{8} \times 8=21$ They need 21 litres of paint.
20) a) $\frac{4}{4}=1$
b) $\frac{4}{5}$
c) $\frac{9}{27}=\frac{1}{3}$
d) $\frac{20}{30}=\frac{2}{3}$

22e) $\frac{11}{12}$
f) $10 \frac{4}{7}$
g) $4 \frac{11}{15}$
h) $3 \frac{9}{12}=3 \frac{3}{4}$
23) $2 \frac{1}{4}+3 \frac{1}{4}=5 \frac{2}{4}=5 \frac{1}{2}$ They purchased $5 \frac{1}{2}$ kilograms of tomatoes.
24) a) $\frac{4}{8}=\frac{1}{2}$
b) $3 \frac{4}{12}=3 \frac{1}{3}$
c) $\frac{28}{2}-\frac{1}{2}=\frac{27}{2}=13 \frac{1}{2}$
d) $\frac{1}{10}$
e) $\frac{5}{14}$
f) $3 \frac{12}{20}=3 \frac{3}{5}$
25) $8 \frac{3}{4}-6 \frac{1}{4}=2 \frac{2}{4}=2 \frac{1}{2}$ Charles purchased $2 \frac{1}{2}$ cases more last week than this week.

Glossary

Addends The numbers to be added together in an addition question.
In $3+5=8$, the addends are 3 and 5 .
Balance Balance has many meanings. In money matters, the balance is the amount left over. It might be the amount left in a bank account (bank balance) or it might be the amount you still must pay on a bill (balance owing).

Cross multiply Multiply the numerator of the first fraction by the denominator of the second fraction. Then multiply the denominator of the first fraction by the numerator of the second fraction. In a true proportion, the products of the cross multiplication are equal.

Cross product The answer after cross multiplying in a proportion.
Denominator The bottom number in a fraction; the denominator tells into how many equal parts the whole thing has been divided.

Difference The result of a subtraction question, the answer. Subtraction gives the difference between two numbers.

Digit Any of the ten numerals (0 to 9) are digits. This term comes from our ten fingers which are called digits. The numerals came to be called "digits" from the practice of counting on the fingers!

Divide To separate into equal parts.
Dividend The number or quantity to be divided; what you start with before you divide.
Divisor The number of groups or the quantity into which a number (the dividend) is to be separated.

Equal = Equal means "the same as".
Equation A mathematical statement that two quantities are equal. An equation may use numerals with a letter to stand for an unknown quantity. $6+Y=9$.

Equivalent Equal in value; equivalent numbers (whole or fractions) can be used interchangeably; that is, they can be used instead of each other.

Estimate Make an approximate answer. Use the sign \approx to mean approximately equal.

Factors The numbers or quantities that are multiplied together to form a given product. $5 \times 2=10,1 \times 10=10$ So $5,2,1$ and 10 are factors of $10.1,2,510$ are factors of 10 .

Fraction Part of the whole; a quantity less than one unit.
Horizontal In a flat position, eg. we are horizontal when we lie in a bed. A horizontal line goes across the page. The sun dips below the horizon.

Improper fraction The numerator is equal to or greater than the denominator. An improper fraction has a value equal to 1 or more than 1.

Invert To turn upside down. A fraction is inverted when finding the reciprocal.
Like fractions Like fractions have the same denominators.
Lowest terms The fraction is in lowest terms (also called simplest form). The fraction can not be reduced any more. There are no more factors in the numerator and denominator.

Minuend The first number in a subtraction question.
Mixed number A whole number and a fraction. $1 \frac{1}{2}$
Multiple If a certain number is multiplied by another number, the product is a multiple of the numbers. Think of the multiplication tables.
For example, 2, 4, 6, 8, 10, 12, 14...are multiples of 2.
Multiplicand The number to be multiplied.
Multiplier The number you multiply by.
Numbers Numbers represent the amount, the place in a sequence; number is the idea of quantity or order.

Numerals The digits $1,2,3,4,5,6,7,8,9,0$ are also called numerals. These ten digits are combined to make infinite numerals. Digits are like letters, numerals are like words, and numbers are the meaning.

Numerator The top number in a fraction; the numerator tells how many parts of the whole thing are being considered.

Percent (\%) Percent means per hundred. All percents are out of one hundred.

Place value We understand numbers by the way the digits (numerals) are arranged in relationship to each other and to the decimal point. Each position has a certain value. Our number system is a decimal system. The place value is based on ten.

Prime number A number that can only be divided evenly by itself and 1.
Product The answer in multiplication.
Proper fraction In a proper fraction, the numerator is less than the denominator. A proper fraction will have a value less than one.

Quotient The answer to a division question.
Reciprocal A reciprocal is a fraction flipped. Eg. The reciprocal of $\frac{3}{4}$ is $\frac{4}{3}$
When multiplied together, $\frac{3}{4} \times \frac{4}{3}=1$
Reduce Write a fraction in lowest terms or simplify. Divide the numerator and denominator by the same factor.

Remainder The amount left when a divisor does not divide evenly into the dividend. The remainder must be less than the divisor.

Simplify Write a fraction in lowest terms or reduce. Divide the numerator and denominator by the same factor.

Subtrahend The amount that is taken away in a subtraction question.
Sum The result of an addition question, the answer to an addition question.
Symbol A written or printed mark, letter, abbreviation etc. that stands for something else.
Total The amount altogether.
Transaction One piece of business. A transaction often involves money. When you
pay a bill, take money from the bank or write a cheque, you have made a transaction.
Unit A unit of measure. Eg. 50 kilometres, 4 people, $\$ 75.00$, 5 books.
Kilometer, people, \$, books are types of units. The word unit can also mean one.
Unit price The price for one unit. Eg. price per one litre, price per one gram.
Unlike fractions Fractions that have different denominators.

Vertical In an up and down position, eg. we are vertical when we are standing up. On a page, a vertical line is shown from the top to the bottom of the page.

Glossary continued Write down any words and definitions on this page.

Multiplication Fact practice

a) 4
b) $\begin{array}{r}3 \\ \times 6 \\ \hline\end{array}$
c) $\begin{array}{r}1 \\ \times 0\end{array}$
d) $\begin{array}{r}2 \\ \times 6\end{array}$
e) $\begin{array}{r}3 \\ \times 3\end{array}$
f) $\begin{array}{r}4 \\ \times 2 \\ \hline\end{array}$
g) $\begin{array}{r}2 \\ \times 7\end{array}$
h) $\begin{array}{r}1 \\ \times 3\end{array}$
i) $\begin{array}{r}2 \\ \times 10 \\ \hline\end{array}$
j) $\begin{array}{r}3 \\ \times 7 \\ \hline\end{array}$
k) $\begin{array}{r}1 \\ \times 5 \\ \hline\end{array}$

1) $\begin{array}{r}6 \\ \times 6 \\ \hline\end{array}$
m) $\begin{array}{r}9 \\ \times 9\end{array}$
n) $\begin{array}{r}1 \\ \times 6 \\ \hline\end{array}$
o) $\begin{array}{r}3 \\ \times 8\end{array}$
p) $\begin{array}{r}2 \\ \underline{x} 0\end{array}$
q) $\begin{array}{r}4 \\ \times 6\end{array}$
r) $\begin{array}{r}2 \\ \times 9 \\ \hline\end{array}$
s) $\begin{array}{r}2 \\ \times 4 \\ \hline\end{array}$
t) $\begin{array}{r}3 \\ \times 7 \\ \hline\end{array}$
u) 9
$\begin{array}{r}2 \\ \times 4 \\ \hline\end{array}$
w) 3
x) $\begin{array}{r}1 \\ \times 5 \\ \hline\end{array}$
y) $\begin{array}{r}2 \\ \times 8 \\ \hline\end{array}$
z) $\begin{array}{r}0 \\ \mathrm{x} 0 \\ \hline\end{array}$
aa) $\begin{array}{r}1 \\ \times 10 \\ \hline\end{array}$
bb) $\begin{array}{r}3 \\ \times 8 \\ \hline\end{array}$

Answers to Self-Test Multiplication Facts

a) 36	b) 18	c) 0	d) 12	e) 9	f) 8	g) 14	h) 3	i) 20	j) 21
k) 5	l) 36	m) 81	n) 6	o) 24	p) 0	q) 24	r) 18	s) 8	t) 21
u) 90	v) 8	w) 30	x) 5	y) 16	z) 0	aa) 10	bb) 24		

Multiplication Fact practice

a) $\begin{array}{r}2 \\ \times 3\end{array}$
b) $\begin{array}{r}3 \\ \times 9 \\ \hline\end{array}$
c) $\begin{array}{r}2 \\ \times 5\end{array}$
d) $\begin{array}{r}2 \\ \times 7\end{array}$
e) $\begin{array}{r}3 \\ \times 3 \\ \hline\end{array}$
f) $\begin{array}{r}1 \\ \times 9 \\ \hline\end{array}$
g) $\begin{array}{r}0 \\ \times 8 \\ \hline\end{array}$
h) $\begin{array}{r}2 \\ \times 6 \\ \hline\end{array}$
i) $\begin{array}{r}1 \\ \times 1\end{array}$
j) $\begin{array}{r}2 \\ \times 10 \\ \hline\end{array}$
k) $\begin{array}{r}3 \\ \times 9\end{array}$

1) $\begin{array}{r}5 \\ \times 5 \\ \hline\end{array}$
m) $\begin{array}{r}2 \\ \times 7 \\ \hline\end{array}$
n) $\begin{array}{r}6 \\ \times 5 \\ \hline\end{array}$
o) $\begin{array}{r}0 \\ \times 2 \\ \hline\end{array}$
p) $\begin{array}{r}3 \\ \times 5 \\ \hline\end{array}$
q) $\begin{array}{r}6 \\ \times 9\end{array}$
r) 3
x 6
s) 2
$\times 2$
t) $\quad 1$
$\times 7$
u) $\begin{array}{r}3 \\ \times 4 \\ \hline\end{array}$
v) $\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$
w) $\begin{array}{r}1 \\ \times 4 \\ \hline\end{array}$
x) $\begin{array}{r}2 \\ \times 8 \\ \hline\end{array}$
y) $\begin{array}{r}1 \\ \times 8 \\ \hline\end{array}$
z) $\begin{array}{r}0 \\ \times 4 \\ \hline\end{array}$
aa) $\begin{array}{r}2 \\ \times 1\end{array}$
bb) $\begin{array}{r}3 \\ \times 2 \\ \hline\end{array}$
Answers to Self-Test Multiplication Facts

a) 6	b) 27	c) 10	d) 14	e) 9	f) 9	g) 0	h) 12	i) 1	j) 20
k) 27	l) 25	m) 14	n) 30	o) 0	p) 15	q) 54	r) 18	s) 4	t) 7
u) 12	v) 42	w) 4	x) 16	y) 8	$) ~$	0	aa) 2	bb) 6	

Multiplication Fact practice

a) $\begin{array}{r}5 \\ \times 6 \\ \hline\end{array}$
b) $\begin{array}{r}6 \\ \times 1 \\ \hline\end{array}$
c) $\begin{array}{r}4 \\ \times 7\end{array}$
d) 5
e) $\begin{array}{r}6 \\ \times 10 \\ \hline\end{array}$
f) $\begin{array}{r}4 \\ \times 2\end{array}$
g) $\begin{array}{r}5 \\ \times 4\end{array}$
h) $\begin{array}{r}6 \\ \times 3\end{array}$
i) $\begin{array}{r}4 \\ \times 4 \\ \hline\end{array}$
j) $\begin{array}{r}5 \\ \times 6 \\ \hline\end{array}$
k) $\begin{array}{r}6 \\ \times 4\end{array}$

1) $\begin{array}{r}4 \\ \times 7 \\ \hline\end{array}$
m) 6
n) $\begin{array}{r}4 \\ \times 5 \\ \hline\end{array}$
o) $\begin{array}{r}5 \\ \times 2\end{array}$
p) $\begin{array}{r}6 \\ \times 0 \\ \hline\end{array}$
q) $\begin{array}{r}5 \\ \times 7 \\ \hline\end{array}$
r) $\begin{array}{r}6 \\ \times 6 \\ \hline\end{array}$
s) $\begin{array}{r}4 \\ \times 0\end{array}$
t) $\begin{array}{r}5 \\ \times 10 \\ \hline\end{array}$
u) $\begin{array}{r}4 \\ \times 9\end{array}$
v) $\begin{array}{r}5 \\ \times 1 \\ \hline\end{array}$
w) $\begin{array}{r}6 \\ \times 5\end{array}$
x) $\begin{array}{r}4 \\ \times 3\end{array}$
y) $\begin{array}{r}5 \\ \times 9 \\ \hline\end{array}$
z) $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$
aa) $\begin{array}{r}4 \\ \mathrm{x} 1 \\ \hline\end{array}$
bb) $\begin{array}{r}5 \\ \times 0 \\ \hline\end{array}$

Answers to Self-Test Multiplication Facts

a) 30	b) 6	c) 28	d) 35	e) 60	f) 8	g) 20	h) 18	i) 16	j) 30
k) 24	l) 28	m) 54	n) 20	o) 10	p) 0	q) 35	r) 36	s) 0	t) 50
u) 36	v) 5	w) 30	x) 12	y) 45	f) 12	aa) 4	bb) 0		

a)
,
n) 20
o) 10
q) 35
r) 36 s) 0
t) 50
u) $36 \quad$ v) $5 \quad$ w) 30
x) 12
y) \quad) 12
aa) 4
bb) 0

Multiplication Fact practice

a) 6
b) $\begin{array}{r}5 \\ \times 3 \\ \hline\end{array}$
c) $\begin{array}{r}4 \\ \times 8\end{array}$
d) $\begin{array}{r}6 \\ \times 1\end{array}$
e) $\begin{array}{r}4 \\ \times 6 \\ \hline\end{array}$
f) 5
g) $\begin{array}{r}6 \\ \times 7 \\ \hline\end{array}$
h) $\begin{array}{r}4 \\ \times 10 \\ \hline\end{array}$
i) 5
j) $\begin{array}{r}6 \\ \times 10 \\ \hline\end{array}$
k) $\begin{array}{r}4 \\ \times 7 \\ \hline\end{array}$

1) $\begin{array}{r}5 \\ \times 6 \\ \hline\end{array}$
m) 4
n) 5
o) $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$
p) $\begin{array}{r}4 \\ \times 4\end{array}$
q) $\begin{array}{r}6 \\ \times 9\end{array}$
r) $\begin{array}{r}4 \\ \times 3 \\ \hline\end{array}$
s) $\begin{array}{r}5 \\ \times 4 \\ \hline\end{array}$
t) $\begin{array}{r}6 \\ \times 1 \\ \hline\end{array}$
u) $\begin{array}{r}5 \\ \times 9 \\ \hline\end{array}$
v) $\begin{array}{r}6 \\ \times 6 \\ \hline\end{array}$
w) $\begin{array}{r}4 \\ \times 8 \\ \hline\end{array}$
x) $\begin{array}{r}5 \\ \times 2 \\ \hline\end{array}$
y) $\begin{array}{r}6 \\ \times 8 \\ \hline\end{array}$
z) $\begin{array}{r}4 \\ \times 5 \\ \hline\end{array}$
aa) $\begin{array}{r}5 \\ \times 3 \\ \hline\end{array}$
bb) $\begin{array}{r}6 \\ \times 0 \\ \hline\end{array}$

Answers to Self-Test Multiplication Facts

a) 48	b) 15	c) 32	d) 6	e) 24	f) 40	g) 42	h) 40	i) 25	j) 60
k) 28	l) 30	m) 4	n) 25	o) 12	p) 16	q) 54	r) 12	s) 20	t) 6
u) 45	v) 36	w) 32	x) 10	y) 48	z) 20	aa) 15	bb) 0		

Multiplication Fact practice

a) 3 x 8
c) $\begin{array}{r}4 \\ \times 7\end{array}$
d) 3
b) $\begin{array}{r}1 \\ \times 6 \\ \hline\end{array}$
$\begin{array}{r}\mathrm{x} 6 \\ \hline\end{array}$
e) $\begin{array}{r}4 \\ \times 4 \\ \hline\end{array}$
f) $\begin{array}{r}6 \\ \times 2 \\ \hline\end{array}$
g) $\begin{array}{r}3 \\ \times 1 \\ \hline\end{array}$
h) $\begin{array}{r}5 \\ \times 5\end{array}$
i) $\begin{array}{r}4 \\ \times 8 \\ \hline\end{array}$
j) $\begin{array}{r}1 \\ \times 1 \\ \hline\end{array}$
k) $\begin{array}{r}5 \\ \times 3\end{array}$

1) $\begin{array}{r}3 \\ \times 9 \\ \hline\end{array}$
m) 2
n) 6
o) 4
p) $\begin{array}{r}5 \\ \times 6 \\ \hline\end{array}$
q) $\begin{array}{r}1 \\ \mathrm{x} 8\end{array}$
r) $\begin{array}{r}0 \\ \times 5\end{array}$
s) $\begin{array}{r}5 \\ \times 9\end{array}$
t) $\begin{array}{r}1 \\ \times 7 \\ \hline\end{array}$
u) $\begin{array}{r}5 \\ \times 4\end{array}$
v) $\begin{array}{r}2 \\ \times 8 \\ \hline\end{array}$
w) $\begin{array}{r}6 \\ \times 3\end{array}$
x) $\begin{array}{r}5 \\ \times 10 \\ \hline\end{array}$
y) $\begin{array}{r}2 \\ \times 0 \\ \hline\end{array}$
z) $\begin{array}{r}6 \\ \times 8 \\ \hline\end{array}$
aa) $\begin{array}{r}5 \\ \times 2\end{array}$
bb) $\begin{array}{r}4 \\ \times 5 \\ \hline\end{array}$

Answers to Self-Test Multiplication Facts

a) 24	b) 6	c) 28	d) 18	e) 16	f) 12	g) 3	h) 25	i) 32	j) 1
k) 15	l) 27	m) 14	n) 0	o) 12	p) 30	q) 8	r) 0	s) 45	t) 7
u) 20	v) 16	w) 18	x) 50	y) 0	$) ~$	48	aa) 10	bb) 20	

Multiplication Fact practice

a) $\begin{array}{r}1 \\ \times 1\end{array}$
b) $\begin{array}{r}6 \\ \times 10 \\ \hline\end{array}$
c) $\begin{array}{r}4 \\ \times 1 \\ \hline\end{array}$
d) $\begin{array}{r}0 \\ \times 0\end{array}$
e) $\begin{array}{r}5 \\ \times 7\end{array}$
f) $\begin{array}{r}4 \\ \times 10 \\ \hline\end{array}$
g) $\begin{array}{r}2 \\ \times 1 \\ \hline\end{array}$
h) $\begin{array}{r}1 \\ \times 7\end{array}$
i) 3
j) $\begin{array}{r}6 \\ \times 4 \\ \hline\end{array}$
k) $\begin{array}{r}1 \\ \times 2\end{array}$
l) $\begin{array}{r}0 \\ \times 10 \\ \hline\end{array}$
m) 1
n) $\begin{array}{r}5 \\ \times 8 \\ \hline\end{array}$
o) $\begin{array}{r}6 \\ \times 7 \\ \hline\end{array}$
p) $\begin{array}{r}4 \\ \times 5 \\ \hline\end{array}$
q) $\begin{array}{r}6 \\ \times 5\end{array}$
r) $\begin{array}{r}3 \\ \times 10 \\ \hline\end{array}$
s) $\begin{array}{r}5 \\ \times 0\end{array}$
t) $\begin{array}{r}1 \\ \times 10 \\ \hline\end{array}$
u) 5
v) 6
x 3
w) $\begin{array}{r}4 \\ \times 7 \\ \hline\end{array}$
x) $\begin{array}{r}4 \\ \times 8 \\ \hline\end{array}$
y) $\begin{array}{r}6 \\ \times 6 \\ \hline\end{array}$
z) $\begin{array}{r}5 \\ \times 5 \\ \hline\end{array}$
aa) $\begin{array}{r}3 \\ \times 9 \\ \hline\end{array}$
bb) $\begin{array}{r}6 \\ \times 8 \\ \hline\end{array}$

Answers to Self-Test Multiplication Facts

a) 1	b) 60	c) 4	d) 0	e) 35	f) 40	g) 2	h) 7	i) 18	j) 24
k) 2	l) 0	m) 3	n) 40	o) 42	p) 20	q) 30	r) 30	s) 0	t) 10
u) 30	v) 18	w) 28	x) 32	y) 36		z) 25	aa) 27	bb) 48	

Multiplication Fact practice

a) 8
b) $\begin{array}{r}9 \\ \times 8\end{array}$
c) $\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$
d) $\begin{array}{r}8 \\ \times 10 \\ \hline\end{array}$
e) $\quad 9$
f) $\begin{array}{r}7 \\ \times 3 \\ \hline\end{array}$
g) $\begin{array}{r}8 \\ \times 6 \\ \hline\end{array}$
h) $\begin{array}{r}9 \\ \times 1\end{array}$
i) $\begin{array}{r}9 \\ \times \quad 6 \\ \hline\end{array}$
j) $\begin{array}{r}8 \\ \times 10 \\ \hline\end{array}$
k) $\begin{array}{r}3 \\ \times 4 \\ \hline\end{array}$

1) $\begin{array}{r}5 \\ \times 10 \\ \hline\end{array}$
m) $\begin{array}{r}8 \\ \times 2\end{array}$
n) $\begin{array}{r}7 \\ \times 8 \\ \hline\end{array}$
o) $\begin{array}{r}9 \\ \times 2 \\ \hline\end{array}$
p) $\begin{array}{r}1 \\ \times 9 \\ \hline\end{array}$
q) 7
r) $\quad 9$
s) $\begin{array}{r}8 \\ \times 2 \\ \hline\end{array}$
t) $\begin{array}{r}7 \\ \times 2 \\ \hline\end{array}$
u) $\begin{array}{r}8 \\ \times 8\end{array}$
v) $\begin{array}{r}7 \\ \times 1 \\ \hline\end{array}$
w) $\begin{array}{r}9 \\ \times 7 \\ \hline\end{array}$
x) $\begin{array}{r}8 \\ \times 4 \\ \hline\end{array}$
y) $\begin{array}{r}7 \\ \times 4 \\ \hline\end{array}$
z) $\begin{array}{r}9 \\ \times 3 \\ \hline\end{array}$
aa) $\begin{array}{r}8 \\ \mathrm{x} 0 \\ \hline\end{array}$
bb) $\begin{array}{r}7 \\ \times 10 \\ \hline\end{array}$
Answers to Self-Test Multiplication Facts

a) 56	b) 72	c) 42	d) 80	e) 63	f) 21	g) 48	h) 9	i) 54	j) 80
k) 12	l) 50	m) 16	n) 56	o) 18	p) 9	q) 63	r) 81	s) 16	t) 14
u) 64	v) 7	w) 63	x) 32	y) 28		z) 27	aa) 0	bb) 70	

Multiplication Fact practice

a) 9
b) 8
c) $\quad 7$
d) $\quad 9$ $\begin{array}{r}\mathrm{x} 0 \\ \hline\end{array}$
$\begin{array}{r}7 \\ \hline\end{array}$
$\times 5$
$\times 5$
e) $\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$
f) $\quad 9$
g) $\begin{array}{r}8 \\ \times 5 \\ \hline\end{array}$
h) $\begin{array}{r}7 \\ \times 8 \\ \hline\end{array}$
i) $\begin{array}{r}9 \\ \times 8 \\ \hline\end{array}$
j) $\begin{array}{r}8 \\ \times 10 \\ \hline\end{array}$
k) $\begin{array}{r}7 \\ \times 4 \\ \hline\end{array}$
l) $\begin{array}{r}9 \\ \times 10 \\ \hline\end{array}$
m) $\begin{array}{r}8 \\ \times 6 \\ \hline\end{array}$
n) $\begin{array}{r}7 \\ \times 7 \\ \hline\end{array}$
o) $\begin{array}{r}9 \\ \times 3 \\ \hline\end{array}$
p) $\begin{array}{r}8 \\ \times \quad 9\end{array}$
q) $\begin{array}{r}9 \\ \times 4 \\ \hline\end{array}$
r) $\begin{array}{r}8 \\ \times 3 \\ \hline\end{array}$
s) $\begin{array}{r}7 \\ \times 3\end{array}$
t) $\begin{array}{r}9 \\ \times 8\end{array}$
u) $\begin{array}{r}8 \\ \times 8\end{array}$
v) $\begin{array}{r}9 \\ \times 9 \\ \hline\end{array}$
w) $\begin{array}{r}7 \\ \times 2\end{array}$
x) $\begin{array}{r}8 \\ \times 2 \\ \hline\end{array}$
y) $\begin{array}{r}7 \\ \times 9 \\ \hline\end{array}$
z) $\begin{array}{r}8 \\ \mathrm{x} 1 \\ \hline\end{array}$
aa) 9
bb) $\begin{array}{r}7 \\ \times 0 \\ \hline\end{array}$

Answers to Self-Test Multiplication Facts

a) 0	b) 56	c) 35	d) 45	e) 42	f) 72	g) 40	h) 56	i) 72	j) 80
k) 28	l) 90	m) 48	n) 49	o) 27	p) 72	q) 36	r) 24	s) 21	t) 72
u) 64	v) 81	w) 14	x) 16	y) 63	z) 8	aa) 54	bb) 0		

Multiplication Fact practice

a) $\begin{array}{r}3 \\ \times 1\end{array}$
b) $\begin{array}{r}5 \\ \times 2 \\ \hline\end{array}$
c) $\begin{array}{r}0 \\ \times 9\end{array}$
d) $\begin{array}{r}4 \\ \times 8 \\ \hline\end{array}$
e) $\begin{array}{r}6 \\ \times 5\end{array}$
f) $\begin{array}{r}1 \\ \times 3 \\ \hline\end{array}$
g) $\begin{array}{r}7 \\ \times 6 \\ \hline\end{array}$
h) $\begin{array}{r}1 \\ \times 4 \\ \hline\end{array}$
i) $\begin{array}{r}8 \\ \times 7 \\ \hline\end{array}$
j) $\begin{array}{r}9 \\ \times 0 \\ \hline\end{array}$
k) $\begin{array}{r}3 \\ \times 6 \\ \hline\end{array}$

1) $\begin{array}{r}5 \\ \times 7 \\ \hline\end{array}$
m) $\begin{array}{r}1 \\ \times \quad 9\end{array}$
n) $\begin{array}{r}8 \\ \times 3\end{array}$
o) 2
p) 0
$\times 5$
x 1
q) $\begin{array}{r}7 \\ \times 7\end{array}$
r) $\begin{array}{r}4 \\ \times 2 \\ \hline\end{array}$
s) $\begin{array}{r}6 \\ \times 8\end{array}$
t) $\begin{array}{r}9 \\ \times 4\end{array}$
u) 4
v) 6
w) $\begin{array}{r}7 \\ \times 1 \\ \hline\end{array}$
x) $\begin{array}{r}5 \\ \times 8 \\ \hline\end{array}$
y) 3
z) 9
aa) $\begin{array}{r}1 \\ \times 3 \\ \hline\end{array}$
bb) $\begin{array}{r}4 \\ \times 4 \\ \hline\end{array}$
Answers to Self-Test Multiplication Facts

a) 3	b) 10	c) 0	d) 32	e) 30	f) 3	g) 42	h) 4	i) 56	j) 0
k) 18	l) 35	m) 9	n) 24	o) 10	p) 0	q) 49	r) 8	s) 48	t) 36
u) 20	v) 12	w) 7	x) 40	y) 27	$) ~$	6	aa) 3	bb) 16	

Multiplication Fact practice

a) 5 $\begin{array}{r}\mathrm{x} 9 \\ \hline\end{array}$
b) 6
c) $\quad 1$
x 8
d) 2
$\times 2$
x 3
e) $\begin{array}{r}4 \\ \times 7 \\ \hline\end{array}$
f) $\begin{array}{r}0 \\ \times 5 \\ \hline\end{array}$
g) $\begin{array}{r}7 \\ \times 4\end{array}$
h) $\begin{array}{r}9 \\ \times 6 \\ \hline\end{array}$
i) $\begin{array}{r}8 \\ \times 1 \\ \hline\end{array}$
j) $\begin{array}{r}3 \\ \times 0 \\ \hline\end{array}$
k) $\begin{array}{r}4 \\ \times 4\end{array}$

1) $\begin{array}{r}7 \\ \times 8 \\ \hline\end{array}$
m) $\begin{array}{r}9 \\ \times 5 \\ \hline\end{array}$
n) $\begin{array}{r}5 \\ \times 3 \\ \hline\end{array}$
o) $\begin{array}{r}0 \\ \underline{9} 9 \\ \hline\end{array}$
p) $\begin{array}{r}6 \\ \times 6\end{array}$
q) $\begin{array}{r}3 \\ \times 2\end{array}$
r) $\begin{array}{r}1 \\ \times 1 \\ \hline\end{array}$
s) $\begin{array}{r}8 \\ \times 6\end{array}$
t) $\begin{array}{r}2 \\ \times 7 \\ \hline\end{array}$
u) $\begin{array}{r}2 \\ \times 9 \\ \hline\end{array}$
v) $\begin{array}{r}5 \\ \times 1 \\ \hline\end{array}$
w) $\begin{array}{r}9 \\ \times 3 \\ \hline\end{array}$
x) $\begin{array}{r}7 \\ \times 5 \\ \hline\end{array}$
y) $\begin{array}{r}1 \\ \times 10 \\ \hline\end{array}$
z) $\begin{array}{r}3 \\ \times 8 \\ \hline\end{array}$
aa) $\begin{array}{r}0 \\ \times 7 \\ \hline\end{array}$
bb) $\begin{array}{r}6 \\ \times 4 \\ \hline\end{array}$
Answers to Self-Test Multiplication Facts

a) 45	b) 18	c) 8	d) 4	e) 28	f) 0	g) 28	h) 54	i) 8	j) 0
k) 16	l) 56	m) 45	n) 15	o) 0	p) 36	q) 6	r) 1	s) 48	t) 14
u) 18	v) 5	w) 27	x) 35	y) 10	z) 24	aa) 0	bb) 24		

$\begin{aligned} & 11 \\ & 0 \\ & x \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & \underset{x}{x} \\ & 0 \end{aligned}$	$\begin{gathered} 11 \\ N \\ x \\ 0 \end{gathered}$
$\begin{aligned} & 11 \\ & m \\ & x \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & \dot{x} \\ & 0 \end{aligned}$	$\begin{gathered} 11 \\ 1 \\ x \\ 0 \end{gathered}$
$\begin{aligned} & 11 \\ & 0 \\ & x \\ & 0 \end{aligned}$	$\stackrel{11}{N}$	$\begin{gathered} 11 \\ \infty \\ x \\ 0 \end{gathered}$

Front page

Back page

$\begin{aligned} & 11 \\ & 0 \\ & x \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & 0 \\ & \underset{x}{x} \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & \underset{\sim}{x} \\ & \underset{\sim}{x} \end{aligned}$
$\begin{gathered} \text { II } \\ \underset{\sim}{x} \\ \underset{x}{0} \end{gathered}$	11 + \sim	$\begin{gathered} 11 \\ N \\ \times \\ \sim \end{gathered}$
$\begin{gathered} 11 \\ m \\ x \\ \cdots \end{gathered}$	11 + ¢ -	11 \sim \sim \sim

11	11	11
0	N	∞
x	x	x
\checkmark	\cdots	\leftharpoondown
11	11	11
0	\bigcirc	$\stackrel{\rightharpoonup}{\square}$
¢	x	x
\cdots	\leftharpoondown	\square
II	11	11
N	\sim	m
x	\star	\star
	N	N

11	11	11
ナ	ט	0
x	\star	x
\sim	N	\sim
11	11	II
N	∞	の
x	\propto	x
N	N	\sim
II	11	11
0	∇	N
\square	σ	\cdots
x	\cdots	x
\cdots	\cdots	\cdots

$\stackrel{N}{\sim}$	$\underset{\sim}{\nabla}$	00
$\begin{aligned} & \infty \\ & \end{aligned}$	$\stackrel{0}{\square}$	$\stackrel{\rightharpoonup}{\nabla}$
$\underset{\sim}{\sim}$	N	\bigcirc

11	11	11
m	ψ	n
x	x	x
m	m	m
11	11	11
0	n	∞
x	x	x
m	m	m
	n	11
n	0	11
x	\cdots	\square
m	m	x
	m	m

$\xrightarrow[\square]{\square}$	$\underset{\sim}{N}$	0
$\begin{aligned} & \underset{\sim}{*} \end{aligned}$	$\underset{\sim}{N}$	$\stackrel{\infty}{\infty}$
m	e_{n}	N

$\begin{gathered} \stackrel{\prime \prime}{N} \\ \underset{\sim}{x} \\ m \end{gathered}$	$\begin{aligned} & I I \\ & \underset{~}{\star} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 11 \\ & \omega \\ & x \\ & + \end{aligned}$
$\begin{aligned} & 11 \\ & 0 \\ & x \\ & \underset{\sim}{x} \end{aligned}$	$\underset{\underset{\sim}{x}}{\underset{\sim}{\prime \prime}}$	$\begin{aligned} & \text { II } \\ & \infty \\ & \underset{~}{\star} \end{aligned}$
$\begin{aligned} & 11 \\ & o \\ & x \\ & + \end{aligned}$	11 0 + +	11 \cdots $\underset{\sim}{1}$ $\underset{\sim}{4}$

\bigcirc	$\underset{\sim}{6}$	o
$\begin{aligned} & N \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \sim \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \end{aligned}$
$\underset{\sim}{\nabla}$	$\underset{V}{ }$	$\begin{aligned} & 0 \\ & m \end{aligned}$

0	$\stackrel{\mathrm{L}}{\mathrm{~N}}$	$\stackrel{\infty}{+}$
$\stackrel{\square}{\square}$	$\underset{\downarrow}{\odot}$	$\begin{aligned} & \text { Q } \\ & \text { n } \end{aligned}$
0	صـ	\bigcirc

$\underset{\downarrow}{\infty}$	$\stackrel{\sim}{\sim}$	m
6	0	+
Q	$\underset{\sim}{6}$	N

$\begin{aligned} & 11 \\ & o \\ & x \\ & \end{aligned}$	$\begin{aligned} & 11 \\ & 0 \\ & \underset{x}{x} \\ & \end{aligned}$	$\begin{aligned} & \\| \\ & \underset{\sim}{x} \\ & \underset{\sim}{\prime} \end{aligned}$
$\begin{gathered} \text { II } \\ \underset{\sim}{x} \\ \underset{\sim}{n} \end{gathered}$	$\begin{gathered} 11 \\ \infty \\ \times \\ \infty \end{gathered}$	$\begin{aligned} & 11 \\ & \alpha \\ & \infty \\ & \infty \end{aligned}$
$\begin{aligned} & 11 \\ & 0 \\ & \underset{\sim}{\infty} \\ & \infty \end{aligned}$	11 \sim \sim ∞ ∞	11 \sim \sim \times ∞

N	\bigcirc	6
N	V	$\underset{\infty}{\dot{\infty}}$
0 0	$\begin{aligned} & \infty \\ & \infty \end{aligned}$	0

$\begin{aligned} & 11 \\ & o \\ & x \\ & 0 \end{aligned}$	$\begin{aligned} & 11 \\ & 0 \\ & \underset{\sim}{x} \\ & 0 \end{aligned}$	$\begin{aligned} & I I \\ & \underset{\sim}{1} \\ & \underset{\sim}{x} \end{aligned}$
$\begin{aligned} & 11 \\ & N \\ & \underset{\sim}{1} \\ & \cdots \end{aligned}$	$\begin{aligned} & 11 \\ & \underset{H}{x} \\ & \times \\ & \underset{\sim}{6} \end{aligned}$	$\begin{gathered} 11 \\ F \\ \underset{\sim}{1} \\ \underset{\sim}{0} \end{gathered}$
$\begin{aligned} & 11 \\ & N \\ & \underset{\sim}{1} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & 11 \\ & \underset{\sim}{4} \\ & \underset{\sim}{4} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & 11 \\ & N \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$

[^0]: Answers to Exercise 1.2d
 a) 2569 kilometres
 b) 8893 kilometres
 c) 40076 kilometres
 d) 3732600 people e) 34005300 people

[^1]: Answers to Unit 7 Review

 ## A. Multiply.

 a) $\frac{2}{5} \times \frac{2}{3}=\frac{4}{15}$
 b) $\frac{7}{8} \times \frac{2}{3}=\frac{7}{12} \quad$ reduce by 2
 c) $\frac{8}{9} \times \frac{3}{2}=\frac{4}{3}=1 \frac{1}{3}$ reduce by 4 , reduce by 3
 d) $\frac{5}{8} \times \frac{1}{10}=\frac{1}{16}$ reduce by 5
 e) $\frac{7}{8} \times \frac{12}{14}=\frac{3}{4} \quad$ reduce by 7 , reduce by 4
 f) $\frac{7}{4} \times \frac{8}{7}=\frac{2}{1}=2$ reduce by 7 , reduce by 2
 g) $\frac{1}{3} \times \frac{3}{7}=\frac{1}{7}$
 h) $\frac{7}{4} \times \frac{1}{5}=\frac{7}{20}$
 continued on the next page

