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Abstract

The observation and analysis of movements of large structures, man-made as well as natural

ones, such as high-rise buildings, dams or rock slides and earthquake zones, is a highly

responsible task in engineering. Deformation monitoring is essential to public safety by

reducing the risk of structural failure. It is also an important aid in the understanding of

the behaviour of certain natural phenomena like glacial drift.

The procedure for a deformation analysis can be divided into three steps: a global congruency

test to determine in which epochs deformations occur, the localization of the deformed

points and the determination of deformations. The single-point analysis typically used in

the localization step, requires the two epochs under comparison to refer to the same datum.

If this is not the case an S -transformation to a common datum has to be carried out. This is

only possible however, if both epochs share the same reference frame, and particularly, the

same network scale.

In this dissertation a generalized model for a congruence analysis is proposed which allows

the coordinates to refer to different reference frames. This model utilizes a combinatorial

search for the largest similar point group based on the angular differences between epochs.

This is combined with a 3D Helmert transformation that allows to derive deformations

directly from the adjusted coordinates of each epoch and their, typically singular, cofactor

matrices, independent of the coordinate system they are given in.

A set of computer-based simulations are carried out to evaluate the performance of the pro-

posed algorithm. The computer simulations reveal that the proposed algorithm can reliably

locate the largest similar point group between epochs. The transformation parameters as well

as the deformations are accurately recovered. Finally, a real-world application, the Frank

Slide / Turtle Mountain, is presented where the proposed methodology was applied.
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Chapter 1

INTRODUCTION

Deformation Monitoring is a sensitive and responsible task in Geomatics Engineering. Geode-

tic monitoring surveys aim to recover geometric changes – deformations – of a structure over

time. Typical monitoring objects include bridges, large dams, towers, industrial installa-

tions (e. g. turbines) as well as natural structures such as slide-endangered slopes, glaciers

and tectonic plates.

The benefits of deformation monitoring are the improvement of safety by reduction of the

risk of structural failure and the refinement of the structural design process for future ap-

plications. Past experience has shown that these benefits have been realized when a moni-

toring scheme was carefully designed and its data properly analyzed. Past experience also

includes catastrophic failures of structures which were not monitored or improperly moni-

tored. (Teskey, 1987).

Deformation monitoring is crucial to public safety in early-warning systems for rock slides,

e. g. the Frank Slide / Turtle Mountain in Southern Alberta, (Fraser and Gründig, 1985;

Ebeling et al., 2011), or active earthquake zones, (Denli, 2004). It is also essential to guarantee

the stability and structural integrity of large buildings, such as the Calgary Tower, (Lovse

et al., 1995). The underlying problem is delicate as often the deformations to be recovered

are of the same order of magnitude as the accuracies of the observations from which they

are derived, (Gründig and Bahndorf, 1984).

The technology applied to collect geodetic observations for monitoring purposes vastly pro-

gressed in the last few decades from mechanical theodolites and levels, (Wolf and Ghilani,

2006), to automated monitoring systems utilizing self-targeting, fully-robotic, high-precision
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total stations, (Whitaker et al., 2000; Mateus, 2008), as well as GNSS receivers, (Kim et al.,

2003; Bond et al., 2008), and terrestrial laser scanners, (Monserrat and Crosetto, 2008; Lo

et al., 2013).

In a very general, sense the typical procedure of determining geometric movements of a

deforming structure can be described as follows. Discrete monitoring points are chosen on

the monitored structure which represent the object’s deformations. A set of stable control

points is established which defines the reference frame for the movements. At discrete time

intervals, or epochs, geodetic observations are collected that describe the relative geometry

between the monitoring and control points.

From these observations a set of coordinates and their accuracies are estimated that describe

the state of the monitoring network at each epoch. If data from multiple epochs is avail-

able, deformations that occurred between these epochs can be derived from a congruence

analysis.

1.1 Motivation and Objectives

The classical congruence analysis consists of three major steps. First, a global congruency

test is carried out to learn in which epochs deformations have occurred. Then, the localization

step follows in which the deformed points are identified. Typically, a single-point analysis

is applied consisting of an individual local F -test for each point based on its coordinate

differences between epochs. Finally, a re-adjustment of the combined observations of all

epochs is performed to obtain deformations for the unstable points.

The single-point analysis typically used in the localization step, requires the two epochs under

comparison to refer to the same network datum. If this is not the case, an S -transformation

to a common datum can be applied. This, however, is only possible if both epochs share the

same reference frame and particularly the same network scale.
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While in a typical monitoring scenario the analysis of all epochs is performed in the same

reference frame, the scale can often vary. The reason for the change in scale are different

atmospheric conditions in each observation campaign that cannot be accurately captured.

Often atmospheric conditions are only observed at the instrument station and the target

points, or maybe only at the instrument stations if the target points are not accessible, but

typically not along the line of observation in between them. This leads to an approximation

of the true conditions which can differ throughout the network and the time of observation,

particularly if observation lines with large height differences or across water exist. Further-

more, the use of different instruments in different epochs, which may or may not be properly

and regularly calibrated, add to the problem. If not taken into account, scale differences be-

tween epochs can cause apparent point movements in a deformation analysis. Especially in

large networks even a slight change in the scale factor can affect the outcome of a deformation

analysis significantly.

Thus, the need arises for a methodology that allows to locate and determine deformations

independent of and unaffected by a change in scale between epochs. A further independence

of the coordinate system yields a greater flexibility in the design of a monitoring network

and the choice of instrumentation.

1.2 Thesis Outline

This dissertation proposes a generalized mathematical model for a congruence analysis. It

begins with a review of the well-established methodology for a deformation analysis and

investigates alternative techniques. The proposed mathematical model is derived and ex-

plained in detail. The results from a series of simulations are presented and finally the

proposed algorithm is demonstrated on a real-world application.

In detail this thesis is divided into the following chapters:
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Chapter 2 provides an overview of the different observation types which are used to derive

deformations. The geodetic network analysis is reviewed with special emphasis on the topic

of datum definition which plays an important role in the derivation of deformations. The

classical congruence analysis is examined closely. Recent developments in the area of defor-

mation monitoring are investigated. Special attention is paid to the localization of unstable

points in the data. 3D similarity transformations as an alternative approach to determine

deformations are investigated.

Chapter 3 presents the derivation of a generalized mathematical model for a congruence

analysis consisting of an algorithm for the localization of the largest similar point group

between two epochs based on their angular differences which is independent of the scale

or coordinate system of the given coordinates. Deformations are determined using a 3D

Helmert transformation in which the adjusted coordinates from each epoch are introduced

as observations. Their fully-populated and singular cofactor matrices can be directly used

in the adjustment without any preprocessing. Then, this model is extended to allow the

comparison of multiple epochs simultaneously.

Chapter 4 shows results from two sets of computer simulations carried out to evaluate the

performance of the proposed algorithm. The first case depicts a typical scenario where all

epochs are given in the same reference frame and datum. In the second scenario the epochs

are given in two completely different coordinate systems.

Chapter 5 then presents a real-world application where the proposed methodology was

utilized to recover deformations. At the Frank Slide on Turtle Mountain, Alberta a small,

high-precision terrestrial monitoring network has been observed in four epochs to recover

long-term movements of very small magnitude.

Chapter 6 summarizes the findings from this thesis, offers conclusions drawn from the

results achieved as well as recommendations for future work.
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Chapter 2

BACKGROUND

2.1 Observation techniques

Deformations are derived from observations. Different observation techniques can be applied

to determine deformations of an object. According to Erol et al. (2004), they can be divided

into two classes, geodetic and non-geodetic techniques.

The group of non-geodetic techniques refers to geotechnical or structural measurements

where the engineering properties of soil and rock are the factors of interest. A large assort-

ment of versatile instrumentation for the monitoring of geotechnically related parameters

exists including stressmeters, inclinometers, piezometers, strain gauges and extensometers.

(Dunnicliff, 1988). Measurements from geotechnical instrumentation can only provide rel-

ative deformations, (Teskey, 1987). Generally, deformations of an object are measured di-

rectly. Thus non-geodetic measurements are not discussed any further in this thesis.

Geodetic methods include conventional terrestrial techniques such as the use of theodolites

/ total stations and levels (Guler et al., 2006), photogrammetric techniques (terrestrial,

(Fraser and Riedel, 2000; Detchev et al., 2012), as well as aerial, (Fraser and Gründig,

1985)) and laser scanning (Gielsdorf et al., 2008; Gordon and Lichti, 2007), as well as space-

based techniques, (DeLoach, 1989; Radovanovic, 2002). They allow the determination of

deformations in 3D space and in an absolute sense, i. e. with respect to a given reference

frame, (Teskey, 1987). Since geodetic observations techniques provide the data which form

the foundation for the mathematical models discussed in this thesis, their main characteristics

are briefly reviewed below.
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2.1.1 Geodetic observation techniques

Conventional terrestrial techniques, commonly employing total stations and levels, are car-

ried out with respect to the Earth’s gravity field (i. e. the geoid) by means of leveling the

instrument. They provide relative measurements between survey points (angles, distances

and height differences). If proper procedures are followed and all significant systematic errors

are taken into account, they can deliver high-precision results. (Uren and Price, 2006).

A line of sight is required between instrument and target and distances between survey

points are limited to a few kilometres, (Rüeger, 1990), or even a few hundred metres for

high-precision surveys. Observations as well as their accuracies are weather dependent.

Conventional terrestrial techniques can be applied in outdoor and indoor environments.

Space-based radio ranging systems like GPS can provide absolute positions with respect to

the Earth’s centre of mass. These positions are defined by ellipsoidal latitude, longitude

and elevation with respect to the World Geodetic System 1984 (WGS84). (Misra and Enge,

2006).

Space-based ranging systems are all-weather systems which makes them more economical.

They do not require a direct line of sight between surveyed stations. This allows for greater

flexibility in the selection of object point locations and for measurements over distances of

hundreds of kilometres. (Erol et al., 2004).

However, a clear, unobstructed view of the sky is needed. Thus, for purposes of surveying

they are limited to outdoor applications. Although three-dimensional positioning is provided,

the height component is the least accurate coordinate, mainly due to inherent geometric

weakness and atmospheric errors, (Featherstone et al., 1998).

Aerial photogrammetry can provide 3D information of large areas with high redundancy.

The data collection is weather-dependent and rather costly. Similar to GPS, the horizontal

accuracy is better than the vertical accuracy due to a weak geometry. (McGlone, 2004).
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Photogrammetric and laser scanning techniques can reconstruct entire surfaces and not just

specific, signalized target points, (Lichti et al., 2000). Furthermore, there is no need to access

the object being monitored, (Detchev et al., 2011a). Current photogrammetric systems can

be built from inexpensive, replaceable sensors, (Detchev et al., 2011a), which is desired

for monitoring systems. Close-range photogrammetry can deliver sub-millimetre accuracy

for 3D objects, (Detchev et al., 2011b), and can be applied in indoor as well as outdoor

environments.

2.1.2 Example

To illustrate the use of geodetic observations following is an example of a small two-dimensional

monitoring network consisting of five points. Figure 2.1 shows the network with arrows in-

1
2

3

4
5

Figure 2.1: 2D network with observations
indicated by arrows

From To Horizontal Horizontal
Point Point Direction Distance

[deg] [m]

1 2 92.7921 81.950
1 3 130.6414 89.920
1 4 182.1764 70.123
1 5 145.3360 91.871

2 1 272.7905 81.962
2 3 194.0300 56.261
2 4 231.9890 107.285
2 5 202.4811 77.470

4 1 2.1768 70.116
4 2 51.9859 107.281
4 3 80.7930 71.799
4 5 95.7183 55.173

Table 2.1: Relative observations between
network points

dicating the observations made between points. In this example conventional terrestrial

observations were taken, consisting of horizontal directions and horizontal distances from

points 1, 2 and 4 to all points in the network. Typically, several sets of measurements are

observed in order to identify potential outliers in the data and increase precision. Averages
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of the measurements are listed in Table 2.1.

2.2 Network analysis

To prepare the collected observations for deformation detection, a network analysis is re-

quired first. Most observations are relative measurements between points and movements

derived directly from those relative measurements would be very difficult to interpret and

inconclusive. Also, heterogeneous and redundant information from a number of different

sources with varying accuracies may be available. Thus the necessity arises to derive a ho-

mogeneous set of coordinates that describes the network geometry at time of observation.

For this to be possible a coordinate reference frame and geodetic datum are defined during

the network analysis in which then deformations are expressed.

Furthermore, a network analysis allows to account for systematic errors inherent in the data

and, with redundant information available, outliers can be detected in the observations.

The remaining random errors can then be minimized. The variance-covariance matrix for

the estimated coordinate vector is also obtained as a result of the network analysis. It is

essential for the statistical evaluation of possible movements during the deformation analysis

to follow.

Typically, a network analysis is performed using a parametric least-squares adjustment, also

referred to as a Gauss-Markov model, which can be expressed in the form, (Niemeier,

2002)
⇀

l +
⇀
v = f

(
⇀
x
)

(2.1)

where
⇀

l denotes the observation vector,
⇀
v its residuals and

⇀
x the parameter vector consisting

of the unknown coordinates and additional nuisance parameters, such as scale or orientation

offsets, as required.
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Often the functional relationship f between the observations
⇀

l and the parameters
⇀
x is non-

linear. Thus, linearization of (2.1) and initial estimates
⇀
x0 for the unknown parameters

⇀
x

are required. Given the relations
⇀
x =

⇀
x0 + ∆

⇀
x and

⇀

l = f(
⇀
x0) + ∆

⇀

l , equation (2.1) can be

linearized using a first-order Taylor series approximation:

⇀

l +
⇀
v = f

(
⇀
x
)

=
∂ f

∂
⇀
x

∣∣∣∣
⇀
x=

⇀
x 0

·
(
⇀
x − ⇀

x0

)
+ f

(
⇀
x0

)
(2.2a)

⇀

l − f
(
⇀
x0

)︸ ︷︷ ︸
= ∆

⇀

l

+
⇀
v =

∂ f

∂
⇀
x

∣∣∣∣
⇀
x=

⇀
x 0︸ ︷︷ ︸

= A

·
(
⇀
x − ⇀

x0

)︸ ︷︷ ︸
= ∆

⇀
x

(2.2b)

∆
⇀

l +
⇀
v =A ·∆⇀

x (2.2c)

where the design matrix A contains the partial derivatives of the observation equations

f with respect to to the unknown parameters
⇀
x. The vector of corrections ∆

⇀
x for the

parameters represents the actual unknowns to be solved for. Similarly, the misclosure vector

∆
⇀

l represents the actual observations introduced in the adjustment. 1

With the covariance matrix Cll for the observations
⇀

l and the a priori variance factor σ2
0,

the weight matrix P for the observations can be derived from

P = σ2
0 ·C−1

ll . (2.3)

This requires the covariance matrix Cll to be invertible. In a network analysis this is gen-

erally the case, although correlations may exist, e. g. for horizontal angles referring to the

same back-sight or for horizontal distances and height differences derived from zenith an-

gles and slope distances. Typically, the observation variances are either derived as variance

of the mean, if multiple sets of observations are available, or can be based on instrument

specifications provided by the manufacturer.

For a network with n observations and u unknowns, with n > u, a unique solution does not

exist. To obtain a unique solution an additional condition needs to be introduced. In the

1It should be noted that
⇀
x0 and f(

⇀
x0) represent the deterministic parts while ∆

⇀
x and ∆

⇀

l represent the

stochastic parts of the parameters
⇀
x and the observations

⇀

l , respectively.
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case of a least-squares estimation, this condition minimizes the weighted squared sum of the

residuals:

Φ =
⇀
v
T
P

⇀
v → min (2.4)

The least-squares normal equations for the parametric case can then be obtained by substi-

tuting
⇀
v in the variation function Φ above with the linearized observation equation (2.2c)

and setting its first derivative to zero. This yields

AT

(u×n)
P

(n×n)
A

(n×u)
· ∆

⇀
x

(u×1)
= AT

(u×n)
P

(n×n)
· ∆

⇀

l
(n×1)

(2.5)

And substituting ATPA with the normal equation matrix N, the normal equations read

N
(u×u)

· ∆
⇀
x

(u×1)
= AT

(u×n)
P

(n×n)
· ∆

⇀

l
(n×1)

(2.6)

A unique solution for the above normal equations only exists if the normal equation matrix

N is regular and thus invertible. In a network analysis, where the parameter vector consists

of the coordinates of the network points (plus required nuisance parameters), this is often not

the case, as most observations are relative measurements and do not relate to a coordinate

frame. Hence, a datum definition is required to link the observations to the coordinates of

the network points.

2.2.1 Datum definition

In a 3D network there are seven datum parameters required to define the geodetic datum

of the network completely: three rotations defining the orientation of the coordinate axes,

three translations defining the origin and a scale factor defining distances in the coordinate

system. Those datum parameters can be described by the observations themselves. Table 2.2

gives an overview of the most common geodetic observation types and the datum parameters

in a 3D network which they define. Linear observation types, such as distances, coordinate

differences or absolute coordinates can be used to define the scale of a network. Angles or
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Datum Parameters
Observation Types Rotation Translation Scale

rx ry rz Tx Ty Tz λ

Distances x x x x x x X
Horizontal directions/angles x x x x x x x
Azimuth x x X x x x x
Zenith angles X X x x x x x
GPS positions X X X X X X X
3D position differences X X X x x x X
2D position differences x x X x x x X
Height differences X X x x x x X

Table 2.2: Datum contributions of geodetic measurements, (Kuang, 1996)

directions in a horizontal plane do not carry any datum information. Azimuth observations

define the orientation in the horizontal plane while zenith angles describe the rotations about

the x- and y-axes. At least two zenith angles at different orientations are required to define

both x- and y-rotation, (Niemeier, 2002). 3D positions, as derived from GPS measurements,

are the only observation type that can fully define all seven datum parameters. Position

differences in 3D describe all three rotations but not the translations while 2D position

differences only describe the orientation in the horizontal plane. Height differences instead

define the two rotations about the x- and y-axes.

Unless at least one absolute point position has been observed to define the three transla-

tions, not all seven datum parameters are described by the observations. In this case it

is not possible to estimate coordinates from the observation vector
⇀

l alone. The resulting

normal equation matrix N = ATPA is rank-deficient by the number of undefined – or free

– datum parameters d, and is thus singular. There are several ways to define the missing,

or free, parameters. The way in which they are defined is important because the results of

a deformation analysis heavily depend on the chosen network datum. Hence, the different

options to define a network datum are discussed in detail below.

The approaches to define the geodetic datum of a network can be divided into two categories,
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namely free and constraint. Free, or inner-constraint, approaches refer to those that do not

affect the geometry of the network, whereas constraint approaches can distort the network

geometry. Figure 2.2 categorizes the different approaches.

Free
(inner-constraint) Constraint

Network Datum
Definitions

Total Trace
Minimization

Partial Trace
Minimization Weak Datum

Ordinary Minimal
Constraints

Over-Constrained

Figure 2.2: Classification of Network Datum Definitions

2.2.1.1 Inner-constraint approaches

Inner-constraint approaches are implemented by adding certain conditions for the vector

of coordinate corrections ∆
⇀
x which define the d remaining free datum parameters. The

following condition equations can be used to define the seven datum parameters for a 3D

network, the translations along the x-, y- and z-axes, rotations about the x-, y- and z-axes

and scale factor, (Teskey, 1989):∑
∆xi = 0

∑
(z0
i ∆yi − y0

i ∆zi) = 0∑
∆yi = 0

∑
(x0

i∆zi − z0
i ∆xi) = 0∑

∆zi = 0
∑

(y0
i ∆xi − x0

i∆yi) = 0∑
(x0

i∆xi + y0
i ∆yi + z0

i ∆zi) = 0 .

(2.7)

In which ∆xi, ∆yi and ∆zi are the corrections to the initial coordinates as determined in the

adjustment and x0
i , y

0
i and z0

i represent the initial coordinates of point i. This corresponds
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to a 3D Helmert transformation of the adjusted coordinates
⇀
x to the initial estimates

⇀
x0,

(Niemeier, 2002).

The first three equations on the left in (2.7) define the translations in a way so that the cen-

troid of the datum points derived from the adjusted coordinates
⇀
x coincides with the centroid

of the initial coordinates
⇀
x0 of the chosen datum points. Similarly, the three equations on

the right in (2.7) determine the rotations so that the net rotation about the centroid is zero,

i. e. the axes of the system of the adjusted coordinates are parallel to those of the system of

the initial coordinates. Finally, the last equation in (2.7) fixes the scale factor such that the

average distance from the centroid to each of the datum points computed from the initial

coordinates is equal to that computed from the adjusted coordinates, (Kuang, 1996).

In an inner-constraint approach the free datum parameters are essentially defined by the

initial coordinates
⇀
x0 which thus play a very important role in the datum definition.

A special characteristic of the inner-constraint approach is that the trace of the cofactor

matrix Qxx = N+ of the adjusted coordinates is minimized for all datum points. Mathe-

matically this is accomplished by introducing the additional requirement

∆
⇀
x
T

D ·∆
⇀
xD → min (2.8)

in the derivation of the condition equations (2.7), where ∆
⇀
xD denotes the corrections for the

datum-contributing points, (Kuang, 1996).

This allows to influence the variances of the network points by choosing which of the points

contribute to the network datum. Two cases can be distinguished, often referred to as total

trace minimization and partial trace minimization.

In the case of a total trace minimization, the conditions (2.7) are introduced for the whole

parameter vector
⇀
x. This results in a minimized trace for all elements of the cofactor matrix

Qxx, (Gründig and Bahndorf, 1984). It should be noted that this is only possible if no addi-

tional nuisance parameters, such as scale or zero error, exist and the parameter vector only
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consists of the unknown coordinates. The conditions (2.7) obviously cannot be introduced

for additional parameters and similar conditions for non-coordinate parameters cannot be

geometrically interpreted, (Niemeier, 2002).

A partial trace minimization is achieved if the datum-defining condition equations (2.7)

are only introduced for a subset of coordinates in the parameter vector
⇀
x. In this case

only the trace of the submatrix of Qxx corresponding to the participating coordinates are

minimized, (Niemeier, 2002). If the parameter vector consists of coordinates as well as

nuisance parameters, such as scale, zero error, orientation offsets, etc., typically a partial

trace minimization is applied.

A special case of a partial trace minimization exists when only the minimum number of co-

ordinates required to describe the d free datum parameters are used in the datum definition.

This is referred to as ordinary minimal constraints, (Wolf and Ghilani, 1997). It is equivalent

to fixing d coordinates and removing them from the parameter vector. For example, in a

2D network with measurements consisting of horizontal distances and horizontal directions,

there are three free datum parameters – the translations along the x- and y-axes and the

rotation about the z-axis. Assigning fixed values to the x- and y-coordinates of one point

and the x-coordinate of a second point, and thus removing those three coordinates from the

parameter vector, is sufficient to define the datum. The resulting normal equation matrix

will be invertible. At the same time this results in the variances of the three fixed coordi-

nates being zero, as they no longer participate in the adjustment. This is also referred to as

a zero-variance computational base.

This property of an inner-constraint approach becomes obvious in the case depicted above.

It does however exist for all inner-constraint scenarios. Neitzel (2004) shows that in case

of a total trace minimization, the network centroid and the net-rotation angle between the

initial and adjusted coordinates form a zero-variance computational base. The difference is

that with a total trace minimization all points contribute equally to the definition of the

14



zero-variance elements. In any case a number of elements equivalent to the number of free

datum parameters are assigned a zero variance.

For this reason the resulting cofactor matrix Qxx from an inner-constraint approach is rank-

deficient by the number of free datum parameters d. This becomes important when cofactor

matrices from a free network adjustment need to be processed, for example, in a deformation

analysis.

All inner-constraint approaches define the network datum through the use of additional con-

dition equations for the coordinate corrections ∆
⇀
x (inner-constraints). The inner geometry

of the network always remains undisturbed.

In practice, the implementation of an inner-constraint approach is achieved by linearizing

the datum conditions (2.7) at
⇀
x0. This yields the datum matrix D which contains the partial

derivatives of the datum conditions (2.7) with respect to the elements of the parameter vector

⇀
x. Given a 3D network with all d = 7 datum parameters to be defined by inner-constraints,

the datum matrix Di for a single point i has the following form

DT
i

(3×d)

=


1 0 0 0 -z0

i y0
i x0

i

0 1 0 z0
i 0 -x0

i y0
i

0 0 1 -y0
i x0

i 0 z0
i

 (2.9)

The first three columns define the translations in x, y and z, respectively. The following

three columns define the rotations about the x, y and z-axes and the last column defines

the network scale. For points not contributing to the network datum, the elements of the

corresponding submatrix are all equal to zero. The datum matrix D is obtained by concate-

nating the submatrices Di for all points. For a total trace minimization of a network with p

points and u = 3 · p unknown parameters the following datum matrix D is obtained

D
(d×u)

=

[
D1 . . . Di . . . Dp

]
(2.10)
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The extended linearized Gauss-Markov model can then be written as

∆
⇀

l +
⇀
v = A ·∆⇀

x

⇀

0 = DT ·∆⇀
x

(2.11)

The singular normal equation matrix N = ATPA is augmented with the datum matrix D

to obtain the expanded, regular normal equation system ATPA DT

D 0


(u+d)×(u+d)

·

 ∆
⇀
x

⇀

k


(u+d)×1

=

 ATP ·∆
⇀

l

0


(u+d)×1

(2.12)

where
⇀

k denotes a vector of correlates or Lagrange multipliers.

2.2.1.2 Constraint approaches

Unlike free approaches, constraint approaches can in principle distort the network geometry.

This is achieved in one of two ways.

An over-constrained approach is obtained when more coordinates than the number of free

datum parameters d are held fixed in the adjustment. This is done by removing the datum-

defining coordinates from the parameter vector
⇀
x. In the observation equations and their

derivatives, these coordinates are treated as constants.

This approach is typically applied when an existing network is densified and the coordinates

of the existing tie points are not to be changed. As a result, the inner geometry of the new

network – as defined by the observations – is adapted to fit the geometry of the existing

tie points. Depending on the quality of these tie points, the network geometry is distorted.

Variances for the tie points cannot be estimated. Thus an identity check for these points is

not possible. (Niemeier, 2002).

A so-called weak datum or adjustment with stochastic a priori information is obtained when

the coordinates of the tie points are introduced as additional observations in the adjustment
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rather than being eliminated completely. So instead of reducing the parameter vector, the

observation vector is extended. Often the tie points are only known with a certain accu-

racy, so that it is not justified to use them with zero variances (over-constrained approach).

(Niemeier, 2002).

The advantage of treating the tie points as observations is that a priori stochastic information

about their quality can be taken into account in the adjustment in the covariance matrix of

the observations. This a priori information can either be the result from a previous analysis

or merely estimates. The effect on the network geometry depends on the variances associated

with the coordinate observations. If their variances are large compared to the observation

variances, the geometry remains largely intact. If the variances of the observed coordinates

are small in comparison to the other observations, the distortion of the network geometry

increases. (Niemeier, 2002).

2.2.1.3 S -transformation

The adjusted coordinates
⇀
x and their cofactor matrix Qxx are datum-dependent, i. e. the

actual results of a network adjustment for the elements of the parameter vector and their

standard deviations will vary depending on which points have been chosen to define the

datum. In certain situations it is necessary to change the datum of a network. This can be

the case in a deformation analysis in order to maintain a stable computational base if one (or

more) of the datum points have been found to be unstable. If an inner-constraint approach

was used to define the geodetic datum during the network analysis, it is not necessary to

repeat the network adjustment with a different datum definition, instead an S -transformation

can be used to obtain the coordinate vector and its cofactor matrix with respect to the new

datum, (Gründig et al., 1985).

The following equations describe the transformation of the datum-dependent coordinate

vector
⇀
xi and its associated cofactor matrix Qxxi from any arbitrary datum i to a certain
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datum j as given in Gründig et al. (1985)

⇀
xj = Sj

⇀
xi Qxxj

= SjQxxiS
T
j (2.13)

The transformation matrix Sj is given by

Sj = I−DT (DIRDT )−1DIR (2.14)

where D is the datum matrix from (2.10), fully populated for all network points. The

selective identity matrix IR is only filled at the Rth positions of those coordinates which

will contribute to the new datum. This allows to formulate the computational base so that

it consists of all coordinates, any subset of coordinates or only the minimum number of

coordinates necessary.

It is important to point out that an S -transformation can only be applied if both, the old

datum i and the new datum j refer to the same set of initial coordinates, i. e. that the datum

matrix D in (2.14) has to be populated from the same initial coordinate vector
⇀
x0 that has

been used in the original datum definition.

2.2.2 Solution and analysis of results

For the inner-constraint case the solution of the normal equation system can be obtained

by inverting the expanded normal equation matrix and multiplying equation (2.12) with the

inverse from the left. This yields ∆
⇀
x

⇀

k


(u+d)×1

=

 ATPA DT

D 0


−1

(u+d)×(u+d)

·

 ATP ·∆
⇀

l

0


(u+d)×1

(2.15)

For a constraint case the rank defect is eliminated by either the reduction of the parameter

vector in case of an over-constrained approach or through the additional information provided

by the coordinate observations in a weak-datum approach. In either case the resulting normal
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equation system in the form of (2.6) will be regular and the solution can directly be obtained

through inversion of the normal equation matrix N and multiplication with its inverse from

the left.

∆
⇀
x

(u×1)
= N−1

(u×u)
· AT

(u×n)
P

(n×n)
· ∆

⇀

l
(n×1)

(2.16)

After the corrections ∆
⇀
x are obtained, the parameter vector is updated:

⇀
xi =

⇀
xi−1 + ∆

⇀
x (2.17)

where
⇀
xi is the estimate of the ith iteration for the parameter vector

⇀
x.2

As the original adjustment problem is a non-linear one, substituted by a linearized problem,

iteration is required until convergence to the non-linear solution is reached. Hence, the

misclosure vector ∆
⇀

l of the observations and the design matrix A need to be updated with

the updated parameter vector:

∆
⇀

l
(n×1)

=
⇀

l
(n×1)

− f
(
⇀
xi
)

(n×1)

A
(n×u)

=
∂ f

∂
⇀
x

∣∣∣∣
⇀
x=

⇀
x i

(2.18)

It is important to stress that the datum matrix D, in case of an inner-constraint approach,

must not be updated as this would correspond to a datum change in every iteration.

Now the next iteration’s solution for the parameter corrections ∆
⇀
x can be determined from

(2.15) or (2.16), respectively. This iterative process is repeated until the values for the

parameter corrections ∆
⇀
x become sufficiently small.

Once convergence is reached, the observation residuals
⇀
v are computed from

⇀
v

(n×1)
= f

(
⇀
x
)
−

(n×1)

⇀

l
(n×1)

(2.19)

where
⇀
x denotes the final estimate of the parameter vector and

⇀

l the original observation

vector. In some cases of slow convergence it is possible for the adjustment to converge but

2Note that i = 0 is represents the initial parameters
⇀
x0.
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not to the correct non-linear solution. Thus, a final check of the linearization should be

performed according to:

ATP
⇀
v < δ with |δ| > 0 , (2.20)

where
⇀
v denote the non-linear residuals from (2.19) above and δ a chosen threshold for which

the linearization error can be considered negligible.

The a posteriori variance factor σ̂2
0 then follows from

σ̂2
0 =

⇀
v
T
P

⇀
v

n− u+ d
(2.21)

where P is the weight matrix of the observations from (2.3) and n − u + d = r is the

redundancy of the adjustment problem, where n is the number of observations, u the total

number of unknown parameters and d denotes the number of free datum parameters.

To examine the validity of the obtained results, a global test of the adjustment model should

be performed. This statistical test compares the the a posteriori (empirical) variance factor

σ̂2
0 against the a priori (theoretical) variance factor σ2

0 and allows to check the functional and

the stochastical model as well as the conformity of the data with the applied models. The

test can be carried out as follows:

• Test hypothesis H0 : E
{
σ2

0

}
= E

{
σ̂2

0

}
(2.22a)

• Alternative hypothesis HA : E
{
σ2

0

}
6= E

{
σ̂2

0

}
(2.22b)

• Test statistic : Tχ =
σ̂2

0

σ2
0

· r (2.22c)

If the test statistic Tχ above falls in the interval of the χ2-distribution with the boundaries

defined by χ2
S=α/2,f=r and χ2

S=1−α/2,f=r
3, the test hypothesis H0 cannot be rejected and the

test passes. Otherwise, the alternative hypothesis must be accepted and the test fails. Failure

of this test indicates one (or more) of three things, (Niemeier, 2002):

• There are unmodelled systematic errors inherent in the data.

3Here, α denotes the chosen confidence level for the test and r the redundancy of the adjustment problem.
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• There are outliers inherent in the data.

• The assumed a priori variances for the observations are unrealistic.

When the global test of the adjustment model passes, the covariance matrix Cxx of the

estimated parameters
⇀
x can be derived from

Cxx = σ̂2
0 ·Qxx (2.23)

where Qxx denotes the cofactor matrix of the parameters which follows from the upper

left (u× u) submatrix of the inverse of the normal equation matrix in (2.15) or (2.16),

respectively. The empirical standard deviations σ̂x of the estimated parameters
⇀
x then follow

from the square root of the main diagonal elements of the covariance matrix Cxx.

2.2.3 Numerical examples

To illustrate the effect of different datum definitions on the adjusted network coordinates

and their variances, the example from Section 2.1.2 is examined again. The network shown

in Figure 2.1 shall be analyzed given the observations summarized in Table 2.1 and using

different datum definitions. As scale-defining distance measurements are available in this

2D network, three free datum parameters remain, namely the rotation about the z-axis

(orientation) and the two translations along the x- and y-axes.

A total of n = 24 observations are available, 12 horizontal directions and 12 horizontal

distances, observed from the stations 1, 2 and 4 to all points in the network. The parameter

vector consists of the coordinate pairs of the five network points and an additional orientation

offset for each of the three instrument stations. This yields a total of u = 13 unknown

parameters to be solved for. With d = 3 free datum parameters, the resulting redundancy

is r = n− u+ d = 14.

A coordinate reference frame is provided by the initial coordinates listed in Table 2.3 below.
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Point x0 y0

1 97.78 47.85
2 93.79 129.72
3 39.21 116.08
4 27.72 45.19
5 22.22 100.10

Table 2.3: Initial coordinates of network points in [m]

Total trace minimization
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Figure 2.3: Plot of network with total trace
minimization

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.780 47.852 ±1.9 ±1.9
2 93.789 129.717 ±1.8 ±1.9
3 39.211 116.080 ±1.5 ±1.7
4 27.720 45.189 ±1.6 ±1.9
5 22.220 100.101 ±1.8 ±1.5

Table 2.4: Adjusted coordinates and
their standard deviations for total
trace minimization

First, the given network is adjusted by applying a total trace minimization4 for the datum

definition, so that all five points contribute equally to the network datum. The adjusted

coordinates and their empirical standard deviations are listed in Table 2.4. Figure 2.3 shows

a horizontal plot of the network points with their error ellipses at the 1σ-level in red. The

red scale bar near the top represents the scale of the error ellipses.

The estimated standard deviations for all points are at about the same level, varying between

±1.5 mm and ±1.9 mm. For a total trace minimization the variance of a point increases with

4Technically it is a partial trace minimization since additional orientation offsets are estimated as well.
However, the results are identical with a total trace minimization where the orientation offsets are eliminated
by introducing horizontal angles rather than horizontal directions as observations.
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its distance from the centre of the network (the zero-variance computational base). Since

in this example, due to the shape of the network, all points are roughly the same distance

away from the centre, their variances are at about the same level.

Partial trace minimization
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Figure 2.4: Plot of network with partial trace
minimization

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.780 47.852 ±1.5 ±1.4
2 93.790 129.717 ±1.0 ±2.3
3 39.212 116.081 ±2.3 ±2.4
4 27.720 45.190 ±2.0 ±1.3
5 22.221 100.101 ±2.5 ±2.3

Table 2.5: Adjusted coordinates and
their standard deviations for partial
trace minimization

Now the same network is adjusted again using a partial trace minimization where only points

1, 2 and 4 contribute to the datum definition. The results of the adjustment are shown in

Figure 2.4 and Table 2.5, respectively. It can be noted that the estimated standard deviations

of the three datum points are lower than those of the remaining two points. Furthermore,

on average the standard deviations of the three datum points have decreased, compared to

the previous case, whereas the standard deviations of points 3 and 5 have increased.

Ordinary Minimal Constraints

The ordinary minimal constraints are a special case of partial trace minimization where

only the minimum number of coordinates required to define all datum defects are used to

define the datum. The identical results are obtained when the datum-defining coordinates

are eliminated from the parameter vector. In this example point 1 and the x-coordinate of
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Figure 2.5: Plot of network with ordinary min-
imal constraints

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.780 47.850 ±0.0 ±0.0
2 93.790 129.715 ±0.0 ±3.6
3 39.212 116.078 ±2.9 ±3.5
4 27.720 45.188 ±3.4 ±2.1
5 22.221 100.099 ±3.3 ±3.3

Table 2.6: Adjusted coordinates and
their standard deviations for ordinary
minimal constraints

point 2 were chosen to define the three free datum parameters of the network.

Figure 2.5 and Table 2.6 summarize the results from the adjustment. As expected, the

variances of the three datum-defining coordinates are zero. Thus point 2 has an error bar

parallel to the y-axis rather than a 2D error ellipse. The standard deviations of the points

3, 4 and 5, that are not contributing to the datum has, again, increased compared to the

previous case. They now range from ±2.1 mm to ±3.5 mm. This is almost twice as large as

their standard deviations for the total trace minimization.

Over-constrained network

For the over-constrained case the coordinates of the points 1, 2 and 4 have been fixed by

removing them from the parameter vector. This decreases the number of unknowns by three,

but at the same time the three datum defects are eliminated so that the redundancy of the

adjustment problem remains unchanged. The results for the over-constrained case are shown

in Figure 2.6 and Table 2.7, respectively.

Note that the coordinates of the three fixed points have been altered slightly (compare

with Table 2.3). This has been done intentionally to better demonstrate the effects of
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Figure 2.6: Plot of over-constrained network

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.795 47.835 ±0.0 ±0.0
2 93.795 129.725 ±0.0 ±0.0
3 39.226 116.085 ±7.4 ±6.6
4 27.725 45.195 ±0.0 ±0.0
5 22.233 100.104 ±6.3 ±8.2

Table 2.7: Adjusted coordinates and
their standard deviations for
over-constrained adjustment

an over-constrained datum on the estimated variances of the network points. Since this

is a simulation, the initial coordinates in Table 2.3 are the values that the (randomized)

observations were derived from. Naturally, these values form the expectation for the adjusted

values
(
E
{

⇀
x
}

=
⇀
x0

)
. Thus, fixing the initial coordinates would essentially represent the

ideal case of fixing the unknowns to their true values. In practice however, these true values

are not known and the available coordinates are often not of good quality. Hence, slightly

altered values have been used for the coordinates of the fixed points.

The standard deviations for the fixed points are assumed to be zero. This results in much

larger estimated standard deviations for the two remaining points, compared to the previous

cases. This is an indication that the network geometry is being distorted because the coor-

dinates of the fixed points do not agree with the observations. Further indication for this is

the fact that the global test of the adjustment model fails.

Weak datum

For the weak datum approach the initial coordinates of all points from Table 2.3 were in-

troduced as additional observations with a standard deviation of ±5 mm. This increases the

number of observations by 10 while the number of unknowns remains unchanged. At the
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Figure 2.7: Plot of network with weak datum

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.780 47.852 ±3.5 ±3.5
2 93.790 129.718 ±4.4 ±3.7
3 39.212 116.081 ±4.3 ±4.1
4 27.720 45.190 ±3.7 ±4.1
5 22.221 100.102 ±3.9 ±4.7

Table 2.8: Adjusted coordinates and
their standard deviations for network
with weak datum

same time the d = 3 datum defects are eliminated, so that an overall increase of the redun-

dancy by 7 occurs. The results are shown in Figure 2.7 and Table 2.8. Now all points have a

larger estimated standard deviations between ±3.5 mm and ±4.7 mm. In this example, dis-

tortion of the network geometry would not occur, due to the large a priori variances assigned

to the datum-defining coordinate observations. An indication is that the global test of the

adjustment model passes. On the other hand, the datum is not very accurately defined,

since all points are free to ”float” around much more than the network geometry requires

(as is evident when compared to the results from the total trace minimization). Hence, the

name weak datum.

2.2.4 Discussion

A network analysis is an important step in pre-processing a set of, often heterogeneous,

redundant observations for a deformation analysis. In the network analysis a homogeneous

set of coordinates is derived which uniquely describe the network geometry. This requires

the definition of the geodetic datum which is critical as it directly affects the results of a

deformation analysis. The different approaches to define the datum have been shown and

their effects on the adjusted coordinates and their estimated standard deviations have been
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illustrated with numerical examples in the previous section. The following conclusions can

be drawn.

Constraint approaches are generally unsuited for purposes of a deformation analysis as they

can, potentially severely, alter the network geometry. Those changes in the network geometry

can then easily be misinterpreted as deformations. In case of an over-constrained datum

definition, points are fixed at their initial positions, assuming them to have a zero variance.

This makes deformation detection at these points impossible, but can lead to apparent

deformations at other network points. In a weak datum approach coordinate observations

are used to define the datum. If the chosen variances for these observed coordinates are

overly optimistic, the same scenario exists as in the case of an over-constrained approach. If

the variances are chosen too pessimistic on the other hand, the level of detectable movements

is increased, which results in smaller deformations remaining undetectable.

Inner-constraint, or free approaches do not distort the network geometry. This makes them

better suited for monitoring applications. Ordinary minimal constraints should be avoided

though. While they do not alter the network geometry, the datum-defining coordinates form

a zero-variance computational base which it makes it impossible to detect deformations in

these coordinates. A partial or total trace minimization are most suited for monitoring

networks. A partial trace minimization minimizes the sum of variances for a chosen part

of the network. This can be useful to limit the datum definition to the control points of

a monitoring network with the disadvantage of larger variances for the monitoring points,

thus increasing the level of detectable movements. A total trace minimization will minimize

the sum of variances of all network points. This results in the lowest level of detectable

movements for all network points.

A further advantage of the inner-constraint approaches is that the computational base can

be easily changed using an S -transformation, eliminating the need for a re-adjustment of the

observations. This requires that both the old and new datum refer to the same reference
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frame, i. e. to the same set of initial coordinates
⇀
x0.

2.3 Deformation analysis

2.3.1 Classification of deformation analysis models

Monitored objects can be interpreted as dynamic systems. Dynamic systems are, in the

general sense of system theory, systems (objects) which can save energy and then emit it

time-delayed. Thus, the classification of models for deformation analysis is closely related

to system theory. The main task of system theory is to provide models for real-world

systems that allow to idealize, represent and analyze the characteristics of the system to

gain information about its behaviour. A distinction has to be made between models that

solely describe resulting deformations and models that consider the chain of cause, transfer

behaviour and effect. Including time, explicitly or implicitly, this results in four model classes

which are illustrated in Figure 2.8 and described below in more detail. (Welsch et al., 2000b).

Analysis Models for Structural Monitoring

Descriptive Models Causal Models

Congruence 
Model

Kinematic 
Model

Dynamic 
ModelStatic Model

Figure 2.8: Analysis Models for Structural Monitoring, (Welsch et al., 2000b)
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Congruence model

The focus of the analysis is the purely geometric comparison of one state (coordinate) of

an object with another state (another coordinate) of the same object. Only the identity of

the geometry of both states – congruence – is considered. Deformations are derived from

measurements at discrete locations (object points) at discrete points in time. These results

can then be generalized to describe movements of the structure as a whole.

Kinematic model

The kinematic model delivers a purely time dependent description of the behaviour of object

points, especially through use of polynomials or trigonometric functions, in which their ap-

plication already assumes knowledge of certain theoretical aspects. The goal is to determine

object movements and their parameters from measurements made at discrete points in time.

There is no connection made with any causal forces acting on the object. It is a descriptive

analysis of the motion behaviour. Again, the issue of generalization occurs as movements of

single object points represent the whole structure.

Static model

The static model describes the functional relationship between the force acting on an object

and its physical reaction determined by means of metrology. It is required that the object

is sufficiently still while measurements are taken as time is not explicitly taken into account

in the model.

Dynamic model

The dynamic model analyzes metrologically determined object reactions as a function of

time and load.
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2.3.2 Classical congruence analysis

Geodetic monitoring networks are commonly used to determine movements and distortions

of structures. They can be adapted to the requirements of a certain application in a very

flexible manner, (Welsch et al., 2000b). Specific target points, installed at critical locations

on the monitored object, represent the deformations of the structure. Together with a set of

(presumably) stable control points, which define the geodetic datum of the network, those

target or object points are observed at certain time intervals or epochs. Depending on the

available geodetic observations, one-, two-, or three-dimensional coordinates
⇀
x can then be

derived for each epoch from a least-squares network analysis as described in the previous

section. If observations from at least two epochs are available, deformations that occurred

between them can be determined using the congruence model. But before a deformation

analysis can be carried out, it has to be determined whether the results from the separate

network analyses of the two epochs are indeed comparable. This is done by examining the

a posteriori variance factors σ̂2
0i

and σ̂2
0j

of the epochs i and j using the following statistical

test.

• Test hypothesis H0 : E
{
σ̂2

0i

}
= E

{
σ̂2

0j

}
(2.24a)

• Alternative hypothesis HA : E
{
σ̂2

0i

}
6= E

{
σ̂2

0j

}
(2.24b)

• Test statistic : TF =
σ̂2

0i

σ̂2
0j

(2.24c)

If the test statistic TF fits the Fisher-distribution, i. e. if

TF ≤ FS=1−α/2,f1=ri,f2=rj
5 (2.25)

the null hypothesis H0 cannot be rejected. A deformation analysis of the two epochs can

then be performed.

5where α denotes the chosen confidence level for the test, ri and rj are the network redundancies for
epochs i and j, respectively.
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For the mathematical formulation of the congruence analysis, a variety of solutions can be

found in the literature. These, however, do not differ much in their theoretical approach,

(Welsch et al., 2000b). Summarized below is the basic model as described in Gründig et al.

(1985).

Available are the adjusted coordinate vectors
⇀
x, their corresponding cofactor matrices Qxx,

the a posteriori variance factor σ̂2
0 and the network redundancy r for two epochs i and j from

a network analysis of each epoch as discussed in the previous section. It is assumed that for

both epochs the same inner-constraint datum definition has been used.

2.3.2.1 Global congruency testing

The main task of the analysis is to test if the hypothesis, that coordinates of two different

epochs i and j are related to each other, or congruent, is valid. This hypothesis can be

expressed as conditions between the coordinates of each epoch as

B ·

 ⇀
xi

⇀
xj

 =
⇀
w (2.26)

where B describes the functional relationship between the coordinates of epoch i and epoch

j and
⇀
w is a vector of constants. For the simplest case, where the null hypothesis states

that there are no deformations between the two epochs, these conditions can be formulated

as

⇀
xi −

⇀
xj =

⇀

0 . (2.27)

If the test in (2.25) passes, the combined variance factor σ̂2
0 for both epochs can be derived

from

σ̂2
0 =

⇀
v
T

i Pi
⇀
v i +

⇀
v
T

j Pj
⇀
v j

ri + rj
=
ri · σ̂2

0i
+ rj · σ̂2

0j

ri + rj
. (2.28)

This corresponds to a common adjustment of the observations of both epochs where points

in epochs i and j are considered as not identical.
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To test if the conditions in (2.27) hold true, the vector of coordinate differences
⇀

d between

epochs i and j is derived from
⇀

d =
⇀
xi −

⇀
xj . (2.29)

Its corresponding weight matrix Pdd follows by applying the covariance law to the cofactor

matrices of epochs i and j

Pdd = (Qxxi + Qxxj)
− (2.30)

assuming no correlation between epochs. It should be pointed out again, that a generalized

inverse is used here, since typically the cofactor matrices are obtained in a free network

adjustment and are thus singular.

Consequently, the quadratic form Ω̂2 can directly be derived from the results of the individual

adjustments of each epoch

Ω̂2 =

⇀

d
T

Pdd

⇀

d

h
(2.31)

with h = b− d, where b is the number of condition equations and d reflects the rank defect

of the weight matrix Pdd. While the inverse in (2.30) may not be unique, the resulting

quadratic form (2.31) will be (Rao, 1962), so that any g-inverse can be chosen.

Another way to derive the quadratic form Ω̂2 is by the use of datum-invariant functions

of the adjusted coordinates, such as distances, angles or height differences. These can be

computed from:

d
⇀

l =
⇀

l i −
⇀

l j = FT
i

⇀
xi − FT

j
⇀
xj . (2.32)

Their corresponding cofactor matrix follows from:

Qdl = FT
i QxxiFi + FT

j QxxjFj, with rk (Qdl) = rk (Pdd) = h . (2.33)

The quadratic form Ω̂2 can then be computed from:

Ω̂2 =
d

⇀

l
T

Q−dld
⇀

l

h
(2.34)
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The two quantities σ̂2
0 and Ω̂2 are stochastically independent and can thus be compared to

each other using the following global congruency test.

• Test hypothesis H0 : E
{
σ̂2

0

}
= E

{
Ω̂2
}

(2.35a)

• Alternative hypothesis HA : E
{
σ̂2

0

}
< E

{
Ω̂2
}

(2.35b)

• Test statistic : TG =
Ω̂2

σ̂2
0

(2.35c)

If TG fits the Fisher-distribution, i. e. if

TG ≤ FS=1−α,f1=h,f2=ri+rj (2.36)

for a given confidence level α and the degrees of freedom f1 = h and f2 = ri + rj (the sum of

the network redundancies), σ̂2
0 and Ω̂2 must be considered statistically identical. This means

that Ω̂2 only exceeds σ̂2
0 by the amount of random errors inherent in the observations and

the null hypothesis (2.35a) cannot be rejected. Should this global congruency test fail on the

other hand, the existence of deformations between the two epochs must be accepted.

2.3.2.2 Localization of movements

To identify points that have deformed, a partitioning of the coordinate differences and their

corresponding weight matrix into two subsystems has to be performed. The isolated param-

eters are denoted I and the remaining parameters are denoted R.

⇀

d =

 dR

dI

 Pdd =

 PRR PIR

PIR PII

 . (2.37)

A local quantity to determine the validity of the conditions (2.27) for the parameters under

consideration can then be derived from

Ω̂2
I =

d̄TI PII d̄I
bI

(2.38)

where d̄I = dI +P−1
II PIRdR contains only the effect of the isolated parameters I and bI is the

number of conditions between them. The fully-populated weight matrix PII of the isolated
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parameters is of full rank bI and thus the regular inverse can be used here, see Gründig et al.

(1985); Welsch et al. (2000b).

Now, the following local test for the parameters I can be performed.

• Test hypothesis H0 : E
{
σ̂2

0

}
= E

{
Ω̂2
I

}
(2.39a)

• Alternative hypothesis HA : E
{
σ̂2

0

}
< E

{
Ω̂2
I

}
(2.39b)

• Test statistic : TL =
Ω̂2
I

σ̂2
0

(2.39c)

TL can be tested against the Fisher-distribution F1−α,f1,f2 with confidence level α and

degrees of freedom f1 = bI and f2 = ri + rj. This local test analyzes the conditions stated in

(2.27) with respect to a single parameter or a subset of parameters. The advantage of the

local test lies in its sensitivity. In a global test, small local deviations from the considered

distribution may be overshadowed by the effect of other parameters included in the test. For

this reason it is possible that the global test is accepted for a whole network whereas the

local test is rejected for single points.

If the local test is rejected for one of the datum points, it needs to be eliminated from the

computational base. This can be done by applying an S -transformation, as described in

Section 2.2.1.3, to the coordinate vectors of epochs i and j and their cofactor matrices.

2.3.2.3 Determination of movements

After all deformed points have been isolated and both global and local test pass for the re-

maining points, actual deformations can be derived through a network analysis, as described

in Section 2.2, using the original observations of both, epoch i and epoch j. In this analysis

the parameter vector consists of the coordinates of the remaining (stable) points
⇀
xR and the

coordinates of the isolated points in both epochs
⇀
xIi and

⇀
xIj . The linearized observation
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equations according to (2.2) can be written as ∆
⇀

l i

∆
⇀

l j

+

 ⇀
v i

⇀
v j

 =

 ARi
AIi 0

ARj
0 AIi




∆
⇀
xR

∆
⇀
xIi

∆
⇀
xIj

 . (2.40)

Resulting are, besides coordinates of the stable points and the estimated a posteriori variance

factor σ̂2
0, the adjusted coordinates of all isolated (i. e. unstable) points and their correspond-

ing cofactor matrices

⇀
xI =

 ⇀
xIi

⇀
xIj

 QII =

 QIii QIij

QIji QIjj

 . (2.41)

Deformations
⇀

dI for the isolated points can then be derived as their coordinate differences

between epochs i and j. Their associated covariance matrix CddI follows from the covariance

law.
⇀

dI = FT⇀
xI CddI = σ̂2

0 ·
(
FTQIIF

)
(2.42)

where FT = [−I I] and I denotes the identity matrix.

Alternatively, the deformations can be derived by applying an S -transformation to both

epoch i and j to change the datum to the (stable) remaining points
⇀
xR. Then, deformations

can be derived as the S -transformed coordinate differences.

It should be pointed out that the congruence analysis as described in this section assumes the

network datum to be defined by inner-constraints and to be based on the same set of initial

coordinates
⇀
x0 for both epochs, i. e. it must refer to the same reference frame. Otherwise, the

application of an S -transformation to accommodate changes from one set of datum points

to another is not possible.

2.3.2.4 Numerical examples

To illustrate the method described above, the example from Section 2.2.3 is revisited. The

same network is observed in a second epoch. For the second epoch deformations of dx =
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−30.0 mm and dy = +40.0 mm are introduced to point 3. All other points remain stable. The

datum is defined by applying inner-constraints to all five network points. The a posteriori

variance factor for epoch 2 is σ̂2
02

= (0.011831)2 with a network redundancy of 14. The

adjusted coordinates for epoch 2 and their standard deviations are listed in Table 2.9.

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.785 47.841 ±2.1 ±2.0
2 93.798 129.711 ±2.0 ±2.0
3 39.184 116.113 ±1.6 ±1.8
4 27.727 45.182 ±1.7 ±2.1
5 22.226 100.093 ±1.9 ±1.6

Table 2.9: Adjusted coordinates and their standard deviations for epoch 2

For epoch 1 the results from the total trace minimization, as listed in Table 2.4, are used as

input coordinates for the congruence analysis. The a posteriori variance factor for epoch 1

is σ̂2
01

= (0.011027)2 with a network redundancy of 14.

Before a deformation analysis of the two epochs can be performed, it has to be checked that

the estimated variance factors are indeed statistically equal. This can be achieved by the

F -test described in (2.24). The test statistic

TF =
σ̂2

02

σ̂2
01

=

(
0.011831

0.011027

)2

= 1.15

is compared against the Fisher-distribution. With a chosen confidence level of α = 5 % and

degrees of freedom f1 = f2 = 14, it follows that FS=1−α/2,f1,f2 = 2.98. Since 1.15 < 2.98, the

null hypothesis (2.24a) cannot be rejected and the test passes. Thus the combined variance

factor for both epochs follows as

σ̂2
0 =

r1 · σ̂2
01

+ r2 · σ̂2
02

r1 + r2

=
14 · (0.011027)2 + 14 · (0.011831)2

28
= 1.3078 · 10−4.

Now a deformation analysis can be performed, starting with a global congruency test de-

scribed in (2.35). For this, the quadratic form Ω̂2 is required which can be computed from
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(2.31). The test statistic for the global congruency test is then derived as follows:

TG =
Ω̂2

σ̂2
0

=
96.3670 · 10−4

1.3078 · 10−4
= 73.67.

The reference value for a chosen confidence level of α = 5 % and degrees of freedom f1 =

h = 76 and f2 = r1 + r2 = 28 is given by FS=1−α,f1,f2 = 2.36. With 73.67 � 2.36 the null

hypothesis (2.35a) has to be rejected. This indicates the presence of deformations in the

data of epoch 2.

In the next step the deformed point(s) are identified by performing a local test for each of the

network points separately according to (2.39). With the local quantities (2.38) the following

test statistics TL = Ω̂2
I/σ̂

2
0 are obtained for the five network points.

Point 1 2 3 4 5
TL 15.29 83.69 255.41 32.81 22.57

Table 2.10: Test statistics for local congruency test of all five network points

With a reference value of FS=1−α,f1,f2 = 3.34, for a chosen confidence level of α = 5 %

and degrees of freedom f1 = 2 and f2 = 28, this local test fails for all of the five points.

Consequently, the point with the largest test statistic TL has to be eliminated. In this

example point 3, the one point that deformations have been introduced to, has been correctly

identified as unstable. Since point 3 is part of the computational base in both epochs, the

datum of both, epoch 1 and 2, now has to be changed to exclude point 3. Since the datum of

both epochs is identically defined using inner-constraints and based on the same coordinate

frame, an S -transformation, as discussed in Section 2.2.1.3, can be applied to achieve the

desired datum change.

After the datum change, the global congruency test (2.35) is carried out again to check

whether any further points have experienced deformations. This time the global test statistic

6The rank of the weight matrix Pdd in (2.30)
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results in

TG =
Ω̂2

σ̂2
0

=
1.2755 · 10−4

1.3078 · 10−4
= 0.98.

With α = 5 %, f1 = 5 and f2 = 28, the corresponding reference value is FS=1−α,f1,f2 = 2.56.

Since 0.98 < 2.56 the global congruency test passes now indicating no further deforma-

tions.

Nevertheless, the local test in (2.39) is repeated to confirm the identity of each point individ-

ually. Re-computing (2.39c) yields the following local test statistics for the four remaining

network points.

Point 1 2 4 5
TL 2.01 0.54 1.73 1.01

Table 2.11: Test statistics for local congruency test of the four remaining points

Comparing the local test statistics from Table 2.11 with the reference value FS=0.95,f1=2,f2=28 =

3.34 shows that the null hypothesis (2.39a) indeed has to be accepted for all remaining net-

work points.

In the last step the actual deformations for the unstable point are derived as described in

Section 2.3.2.3. Re-adjustment of the observations of both epochs according to (2.40) yields

the following results.

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.780 47.851 ±1.3 ±1.2
2 93.790 129.718 ±1.2 ±1.5
4 27.721 45.190 ±1.2 ±1.2
5 22.220 100.101 ±1.4 ±1.1
31 39.211 116.081 ±1.8 ±1.8
32 39.178 116.121 ±1.9 ±1.8

Table 2.12: Adjusted coordinates and their standard deviations for epochs 1 and 2

For the deformed point 3 two sets of coordinates were estimated, point 31 represents the

coordinates of point 3 in epoch 1 while point 32 is its position in epoch 2. Application of
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(2.42) then yields the following deformations for point 3.

Point dx dy σ̂dx σ̂dy

3 −33.1 +39.4 ±2.3 ±2.1

Table 2.13: Deformations and their standard deviations of point 3 between epochs 1 and 2
in [mm]

The estimated values for the deformations are within a few millimetres of their true values.

Given their estimated accuracies in Table 2.13, it can be concluded that the deformations of

the unstable point could be correctly recovered.

In a second example the previous analysis shall be repeated with the modification that now

a scale factor of λ = 300 ppm is introduced to all distances of the second epoch before

the network adjustment. Again, only the coordinates of point 3 are altered by the same

amount as in the previous example. The re-adjustment with the scaled distances results in

an a posteriori variance factor of σ̂2
02

= (0.011833)2 and the network redundancy remains

unchanged at 14. The adjusted coordinates and their standard deviations are listed in Table

2.14 below.

Point x y σ̂x σ̂y
[m] [m] [mm] [mm]

1 97.797 47.829 ±2.1 ±2.0
2 93.809 129.723 ±2.0 ±2.0
3 39.179 116.122 ±1.6 ±1.8
4 27.719 45.170 ±1.7 ±2.1
5 22.216 100.097 ±1.9 ±1.6

Table 2.14: Adjusted coordinates and their standard deviations after scaling distances

Comparing the new variance factor to that of epoch 1, using the F -test in (2.24), yields the

following test statistic:

TF =
σ̂2

02

σ̂2
01

=

(
0.011833

0.011027

)2

= 1.15.

Comparing TF against the Fisher-distribution for α = 5 % and f1 = f2 = 14, it follows that

TF = 1.15 < 2.98 = FS=1−α/2,f1,f2 and hence the test passes. Thus the combined variance
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factor for both epochs now follows as

σ̂2
0 =

r1 · σ̂2
01

+ r2 · σ̂2
02

r1 + r2

=
14 · (0.011027)2 + 14 · (0.011833)2

28
= 1.3081 · 10−4.

The congruency test from (2.35) yields the global test statistic

TG =
Ω̂2

σ̂2
0

=
105.5797 · 10−4

1.3081 · 10−4
= 80.71.

The reference value for a chosen confidence level of α = 5 % and degrees of freedom f1 = h = 7

and f2 = r1 + r2 = 28 is given by FS=1−α,f1,f2 = 2.36. With 80.71 � 2.36 the null hypothesis

(2.35a) has to be rejected. Thus, as expected, the global congruency test fails again and the

presence of deformations has to be assumed.

To identify the deformed point(s), a local test for each of the network points separately is

performed according to (2.39). The local test statistics TL = Ω̂2
I/σ̂

2
0 for the five network

points are shown in Table 2.15.

Point 1 2 3 4 5
TL 21.13 70.84 265.22 27.66 19.48

Table 2.15: Test statistics for local congruency test after scaling

With a reference value of FS=0.95,f1=2,f2=28 = 3.34 the local tests fail for all five network

points. Point 3 is again the point with the highest test statistic and is thus eliminated from

the further analysis. After performing an S -transformation to the new datum defined by the

four remaining points, the global congruency test is repeated resulting in a new global test

statistic of

TG =
Ω̂2

σ̂2
0

=
9.0406 · 10−4

1.3081 · 10−4
= 6.91.

With a reference value of FS=1−α,f1=h,f2=r1+r2 = 2.56 for α = 5 %, f1 = 5 and f2 = 28, the

global congruency test fails again indicating further deformations. Thus another local test

of the four remaining points is carried out. The results are listed in Table 2.16.
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Point 1 2 4 5
TL 2.84 4.19 0.32 1.64

Table 2.16: Local test statistics for the four remaining points after scaling

With a reference value of FS=0.95,f1=2,f2=28 = 3.34, the local tests pass for all points except

for point 2, leading to its elimination. After another S -transformation to the datum defined

by the three remaining points, the global congruency test is repeated once more. With a

global test statistic of

TG =
Ω̂2

σ̂2
0

=
11.4137 · 10−4

1.3081 · 10−4
= 8.72 � 2.95 = FS=0.95,f1=3,f2=28

the test fails again. The following local test for the three remaining points yields the local

test statistics shown in Table 2.17 below.

Point 1 4 5
TL 6.71 0.55 6.65

Table 2.17: Local test statistics for the three remaining points after scaling

Given FS=0.95,f1=2,f2=28 = 3.34, the local test passes only for point 2. Point 1, having the

largest test value, is eliminated and an S -transformation is performed again followed by

another global congruency test resulting in

TG =
Ω̂2

σ̂2
0

=
16.8488 · 10−4

1.3081 · 10−4
= 12.76 � 4.20 = FS=0.95,f1=1,f2=28.

The final local test of the two remaining points yields the following local test statistics. Now,

Point 4 5
TL 6.38 6.38

Table 2.18: Local test statistics for points 4 and 5 after scaling

the test fails for both remaining points. And, since both points have the same test statistic, a

decision cannot be made which point should be eliminated next. This, of course, is expected

because of the underlying systematic error, so that the congruence analysis for this example

ultimately fails.
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2.3.3 Congruence analysis using a Multi-Parameter Transformation

A different approach to a congruence analysis has been introduced in Teskey et al. (2005).

A Multi-Parameter Transformation is utilized to relate the original and repeated measure-

ments from a single instrument station to any number of target points. The instrument sta-

tion can be realized by a total station or terrestrial laser scanner, (Teskey et al., 2006).

The mathematical model is based on a seven parameter similarity transformation using three

translations in x-, y- and z-directions (Tx, Ty, Tz) and three rotations about the x-, y- and

z-axes (ω, ϕ, κ). In addition, a scale factor (λ) relating the slope distances from the original

epoch to those of the repeated epoch as well as a refraction correction (∆R) between original

and repeated zenith angles are introduced. The mathematical model can be expressed as

follows, (Teskey et al., 2006):

xO = λ · (xR + κ · yR − ϕ · zR) + Tx

yO = λ · (−κ · xR + yR + ω · zR) + Ty

zO = λ · (ϕ · xR − ω · yR + zR) + Tz

(2.43)

with

xR = sR · sin (hR) · sin (vR + (∆R) · sR)

yR = sR · cos (hR) · sin (vR + (∆R) · sR)

zR = sR · cos (vR + (∆R) · sR)

xO = sO · sin (hO) · sin (vO)

yO = sO · cos (hO) · sin (vO)

zO = sO · cos (vO) .

(2.44)

Where hO, vO and sO are the horizontal circle, vertical circle and slope distance observations

of the original epoch, respectively and hR, vR and sR represent the horizontal circle, vertical

circle and slope distance observations of the repeated epoch, respectively. xO, yO and zO are

the x-, y- and z-coordinates computed from the observations of the original epoch and xR,

yR and zR are the x-, y- and z-coordinates computed from the observations of the repeated
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epoch. It should be noted that in (2.43) small-angle approximations were used to simplify

the mathematical model by eliminating trigonometric functions. This is justified for the

rotations about the x- and y-axes if the instrument is levelled. But it also requires that the

orientation in the horizontal plane is approximately the same in each epoch which can be

easily achieved by aligning the zero mark on the horizontal circle of the instrument with a

reference mark.

The mathematical model represented by equations (2.43) and (2.44) can be solved in an

implicit, non-linear least-squares adjustment (Gauss-Helmert model) to obtain the trans-

formation parameters ω, ϕ, κ, Tx, Ty, Tz, λ and the additional parameter ∆R. The move-

ments of each target point follow from (xT − xO), (yT − yO) and (zT − zO), respectively, in

which xT , yT and zT are transformed x-, y- and z-coordinates given by the right-hand sides

of equations (2.43), (Teskey et al., 2006). The translation parameters Tx, Ty and Tz can be

interpreted as the movements of the instrument setup point itself.

This mathematical model introduced in Teskey et al. (2005) has been significantly generalized

and extended in Ebeling et al. (2009) for the application to networks rather than a single

instrument station as will be shown in Section 3.2.

The advantage of this method is that it directly utilizes the observations, which allows to

introduce the additional parameter ∆R to account for refraction effects between epochs.

Furthermore, this also avoids the necessity of a network analysis and the issue of the datum

definition. The datum in this case is defined by the centre of the instrument, the orientation

of its vertical axis and the position of the zero mark on the horizontal circle. The scale is

defined by the observed slope distances. An additional economic benefit exists as well since

it is more time consuming to observe a multi-station network than it is to collect data from

only a single station.

The disadvantage is that there is no redundancy in the determination of the target points.
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Each point is described by a unique 3D position in form of one horizontal circle reading,

one vertical circle reading and one slope distance. This can result in a poor detectability

for deformations depending on the station - target geometry. It also makes it extremely

important to observe all targets in multiple sets, so that outliers (e. g. point misidentification)

can be found in the data and realistic values for the precision of the observations can be

derived.

2.3.4 Localization of deformed points

The most critical task in a deformation analysis is to correctly identify the unstable points

and isolate them from the stable points. Different approaches are suggested in the geodetic

literature. These include the classical approach, already described above, robust estimation

techniques and alternative techniques employing combinatorial searches. They are discussed

below.

2.3.4.1 Least-squares and single point analysis

In the classical congruence analysis described in Section 2.3.2 the localization of unstable

points between two epochs is implemented by successively performing a local significance

test for each point. The point with the largest contribution to the squared sum of residuals

is then eliminated and the process is repeated until all remaining points pass this test. This

procedure is closely related to Baarda’s method of data snooping (Welsch et al., 2000b).

That this method does not always lead to success has already been shown in the second ex-

ample in 2.3.2.4. While the reason for the failure of this method in this case is an unmodelled

systematic error (a scale change between the two epochs), the presence of multiple deformed

points can have the same effect, especially when a large number of points are experiencing

deformations of small magnitude. The problem is that each point is examined separately,

implicitly assuming that all remaining points are stable. If this assumption does not apply,
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then the test results cannot be expected to be correct.

Furthermore, the relevant test statistics are based on a least-squares estimation. Even though

the actual adjustments do not have to be carried out to compute the test statistics, the

assumptions on which a least-squares estimation is based must still apply. These assumptions

state that the data are free of gross and systematic errors and only contain random, normally-

distributed noise.

Already Baarda (1968) emphasized that data snooping ”does not give certainty, only a

supposition” and that it ”will therefore always be a risky activity”.

2.3.4.2 Robust estimation techniques

The model assumptions underlying the least-squares method do not always agree with re-

ality. Besides the choice of parameters and the functional model, this mainly concerns the

probability distribution of the observations. For normally-distributed data a least-squares

adjustment will yield the most likely results for the estimated parameters. If the assump-

tions about the model are not true, because of unmodelled systematic errors or outliers, even

of small magnitude, or correlations between the observations that cannot be described, the

chosen distribution needs to be modified. Because of missing information about the nature

of the deviations, it is unclear how this is to be done. Thus, so-called robust estimation

techniques are introduced which try to estimate the parameters without the influence of the

model deviations. (Welsch et al., 2000b).

Several estimation techniques exist which, according to Caspary (1996), can be categorized

into resistant and robust techniques.

Resistant techniques are insensitive to deviations from certain model assumptions. They are

mainly used for data analysis and diagnostics. Probability theory, assumptions about the

probability distribution and statistical criteria are of lesser or no concern. A typical example
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for a resistant technique is the L1-norm estimation.

Robust estimation techniques are resistant and additionally meet theoretically founded esti-

mation criteria such as efficiency, consistency, asymptotic normal distribution. Furthermore,

robust estimators should meet the following important objectives:

• The impact of a single observation on the estimates should be bounded,

(Welsch et al., 2000b).

• Data robustness: Estimates should be close to their ”true values”, even when

the data are contaminated. The results should be affected very little by the

contaminated data. (Niemeier, 2002).

• Model robustness: Results should mainly be based on the data conforming to

the underlying model, (Niemeier, 2002).

• Given a correct model and error-free data, a robust estimator should yield

nearly optimal results, i. e. the results should be close to those of a least-

squares estimation, (Niemeier, 2002).

• Robust estimators should be able to withstand a large number of outliers (have

a high breakdown point), (Welsch et al., 2000b; Niemeier, 2002).

Examples for robust techniques include the class of M -estimators.

Following is a brief overview of the most common estimation techniques. The class of Lp-

norm estimators minimize the Lp-norm as the objective function:

Lp =
n∑
i=1

|vi|p → min (2.45)

where the vi denote the residuals resulting from a linear estimation. The most important

Lp-norm estimators include the L1- and L2-norm. The L2-norm estimation, or method of
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least-squares, yields the well known objective function:

L2 =
n∑
i=1

vi
2 → min . (2.46)

The L2 estimator exhibits a certain robustness to outliers only through data-snooping and

other methods, but this is of an experimental nature. Difficulties arise because of the well-

known smoothing effects of outliers on the residuals of neighbouring observations. The

L2-norm is not considered a robust estimator. (Welsch et al., 2000b). Its breakdown point7

is approximately at 3 % to 5 % of the data. (Niemeier, 2002).

The L1-norm estimator minimizes the sum of absolute residuals instead:

L1 =
n∑
i=1

|vi| → min . (2.47)

The L1-norm is a resistant estimator whose results hardly vary due to large deviations of

a small fraction of the data or due to small deviations in a large number of observations,

(Welsch et al., 2000b). It has a breakdown point of about 50 %. This makes it well-suited

for the detection of outliers. On the other hand, it does not provide optimal results for

uncontaminated data and should thus not be used for parameter estimation, (Niemeier,

2002).

The class of M -estimators are generalized maximum-likelihood estimators based on a mixed

distribution, e. g. a normal distribution in the centre and an exponential distribution along

the tails. They minimize different functions ρ of the residuals vi so that, (Welsch et al.,

2000b):
n∑
i=1

ρ (vi)→ min . (2.48)

The desired properties of an estimator can be obtained by choosing the appropriate func-

tion ρ (vi). The M -estimators are a class of robust estimators with a breakdown point of

approximately 5 % to 10 %, (Niemeier, 2002).

7The largest possible fraction of contaminated data an estimator can withstand before it produces wrong
results or breaks down, (Niemeier, 2002).
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Another technique with a high breakdown point is the LMS8-estimator that can handle up to

50 % of the data being contaminated. In an LMS-estimation the u parameters are uniquely

determined from a subset of u out of n observations. From the result residuals are computed

for all observations. This is repeated for all possible combinations of u observations. The

solution is the one that meets the requirement:

median
(

⇀
v

2
)
→ min . (2.49)

The advantage of this estimator is that the solution is not affected by the geometry of the

observations. But it does require a high computational effort to compute all combinations

of possible solutions with u out of n observations. (Neitzel, 2004).

To obtain a numerical solution a non-linear equation system needs to be solved for all resis-

tant and robust estimation techniques. A closed-form solution does usually not exist. Hence,

iterative algorithms are required to compute a solution. (Neitzel, 2004). An often-used al-

gorithm repeatedly computes a least-squares solution with iteratively altered observation

weights according to some function of the residuals, which is defined by the estimator used,

(Welsch et al., 2000b). In a series of examples simulating an L1-norm estimation Neitzel

(2004) shows that the computation by iteratively altered observation weights can converge

to a wrong solution. Furthermore, the convergence rate is very slow and the obtained solution

strongly depends on the chosen termination criterion for the iteration.

The simple integration into existing software is often given as a reason for the use of the

re-weighted least-squares algorithm. For the numerical solution of the L1-estimation the

so-called Simplex -algorithm exists but for other estimators alternative solution methods

typically do not exist. (Neitzel, 2004).

Neitzel (2004) also summarizes the results from examinations of robust estimation techniques

by different authors with the conclusion that the success rate of robust estimation techniques

8Least Median Squares
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even with larger redundancies is low. In some cases outliers may be indicated where none

exist in the data. Although some estimators have a high breakdown point it is not always

guaranteed that all outliers are correctly identified. Their reliability depends on the number

of unknowns, the number, magnitude and type of outliers in the data and the geometry of the

observations. The reliability decreases rapidly with an increasing number of unknowns.

While it appears obvious to apply robust estimation techniques, especially those with a high

breakdown point, to the analysis of monitoring networks to identify unstable points, above-

mentioned conclusions of the analyses by several authors show that these techniques can

lead to unreasonable results, (Neitzel, 2004).

Finally something should be pointed out that has already been cautioned against in Caspary

(1996) and Neitzel (2004). Robust estimation techniques should not be used for parameter

estimation, but should only serve as analysis tools to identify outliers in the observations.

These observations should then be closely examined, eliminated and, if required, re-observed.

Once all outliers have been dealt with in this way, the final parameter estimation should be

performed by a least-squares estimation using the remaining, good data only.

2.3.4.3 Combinatorial Search

As has become evident from the above discussion, neither the classical least-squares-based

single point analysis nor robust estimation techniques can reliably separate stable from un-

stable points in all scenarios. While the former is simply over-powered with more than 3 %

to 5 % of outliers in the data, the latter can handle up to 50 % contaminated data but that

depends largely on the given geometry.

One of the robust estimation techniques that is outstanding from the rest is the LMS-

method. It employs a combinatorial search and thus eliminates all issues regarding the

geometry of the points. But since only a minimal configuration is computed, this method

can lead to unreasonable results, (Neitzel, 2004). The idea of a combinatorial search however,
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shall be further investigated.

In Neitzel (2004) the author suggests a new method with the idea to find the largest congruent

point group in a direct way. The ”MSS - maximum subsample method” is defined in Neitzel

(2004) as the method which employs a combinatorial search to find the maximum subsample

of all data which yield an agreeable result in a least-squares adjustment. It is noted that it

depends on the application at hand when results are agreeable. Possible criteria include the

standardized residuals of the observations or a statistical test (such as the global congruency

test in a deformation analysis).

Applied to a deformation analysis, the basic idea is to perform the global congruency test

in (2.35) for all possible combinations of points. The group with the smallest quadratic

form Ω̂2 from (2.31), for a given number of points, for which the null hypothesis cannot

be rejected is considered the largest congruent point group. To illustrate this, consider the

following example. A monitoring network, observed in two epochs, consists of ten points.

In the first step the global congruency test from (2.35) is carried out for all ten points, as

usual. If this test fails, the presence of deformations somewhere in the network must be

assumed. In the next step all possible combinations of nine out of ten points are analyzed

with the global congruency test. If none of these ten combinations leads to acceptance of

the null hypothesis, the test is repeated for all possible combinations of 8 out of 10 points.

This continues until a combination has been found that passes the test.

It is obvious that this quite easily can lead to a large number of combinations depending on

how many points remain stable. Assuming that only three points did not move, even in this

small example there would have been 10

9

+

 10

8

+

 10

7

+ . . .+

 10

3

 = 967

combinations to be computed. While this still sounds manageable given modern computing

power, for a monitoring network with 30 stable points out of a total of 50 points, the total
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number of combinations that would have to be computed until the largest congruent point

group is found is 1.1408 · 1014.

Conclusively, a method is required that allows to reduce the number of possible combinations

to a reasonable level. In Neitzel (2004) the following two strategies are proposed.

2.3.4.3.1 MSS using distance differences

For this type of pre-analysis all possible distances are computed from the adjusted coordi-

nates in both, epoch i and j. Their corresponding cofactor matrix can be derived by the

application of the covariance law.

⇀

l i = FT
i

⇀
xi, Qlli = FT

i QxxiFi and
⇀

l j = FT
j

⇀
xj, Qllj = FT

j QxxjFj (2.50)

Then the distance difference vector d
⇀

l and its cofactor matrix Qdl follow from

d
⇀

l =
⇀

l j −
⇀

l i, Qdl = Qlli + Qllj . (2.51)

With the combined variance factor of both epochs σ̂2
0, standard deviations σ̂dl for the distance

differences are available. These data can now be analyzed to identify which of the distances

have significantly changed in between epochs.

The simplest way to do this is to compare the elements dlk of the difference vector d
⇀

l against

a pre-defined value such that

|dlk| > T · σ̂dlk (2.52)

where T is a value based on experience. For T = 3 for example the well-know 3σ-criterion is

established. If the inequality in (2.52) is satisfied, the assumption E {dlk} = 0 is dismissed.

The significantly changed distance differences are eliminated and do not partake in the

further analysis.

Using the remaining distances possible congruent point groups are then identified by their

topological relations. Topological relations in a network can be described by an edge-node
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matrix. The network points are considered nodes that are connected by edges. The obser-

vations are assigned to the edges so that the topological relationships can be described in

an edge-node matrix C. For the five point network from previous examples, shown again in

Figure 2.9, the corresponding edge-node matrix is given in Table 2.19. It is of no concern

which distances were actually observed and which were not, as all distances are computed

from the adjusted coordinates of each epoch. Hence, in the example below all distances

are shown. In C the ith observation is assigned to the jth point according to the following

definition:9

cij = 1, if the ith observations originates in point j,

cij = −1, if the ith observations ends in point j,

cij = 0, in all other cases.

1
2

3

4
5

Figure 2.9: Five point network

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

l1,2 1 −1 0 0 0
l1,3 1 0 −1 0 0
l1,4 1 0 0 −1 0
l1,5 1 0 0 0 −1
l2,3 0 1 −1 0 0
l2,4 0 1 0 −1 0
l2,5 0 1 0 0 −1
l3,4 0 0 1 −1 0
l3,5 0 0 1 0 −1
l4,5 0 0 0 1 −1

Table 2.19: Edge-node matrix for
five point network

From the edge-node matrix C, the symmetric node-node matrix C̄ = CTC can be derived.

For the example of the five point network with all distances existing, the node-node matrix

is shown in Table 2.20.

9Note that the indices i and j refer to the rows and columns of the matrix C and not to the two epochs
under consideration.
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Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

Pt 1 4 −1 −1 −1 −1
Pt 2 −1 4 −1 −1 −1
Pt 3 −1 −1 4 −1 −1
Pt 4 −1 −1 −1 4 −1
Pt 5 −1 −1 −1 −1 4

Table 2.20: Node-node matrix for five point network with all distances

The elements of the node-node matrix C̄ can be interpreted as follows:10

c̄ii = number of edges meeting at point i,

c̄ij = −1, if an edge connection exists between point i and point j,

c̄ij = 0, if no edge connection exists between point i and point j.

For the identification of the largest congruent point group all possible distances are computed

in both epochs. After eliminating those distances that indicate deformations, the edge-node

matrix C is populated with the remaining distances. The corresponding node-node matrix

C̄ can then be derived. Using C̄ the localization of the largest congruent point group can

be carried out in the following steps:

1. Search all c̄ii for the largest element c̄ii = max.

2. Determine how many elements n with c̄ii ≥ max exist. If n ≥ max + 1,

congruent point groups of max+ 1 points can potentially exist.

3. If the number of points n = max+ 1, it can be checked whether all distances

(edges) exist between those points. If this is the case, then this group is a

candidate for a possible congruent point group.

4. If n > max + 1, all possible combinations of (max+ 1) out of n points have

to be checked for the existence of all edges. Those point groups that contain

10Note that the indices i and j refer to the rows and columns of the matrix C̄ and not to the two epochs
under consideration.
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all edges are candidates for congruent point groups.

5. The candidates are examined with the global congruency test in (2.35). The

candidate passing the test is the largest congruent point group. Further con-

gruent point groups can be found by eliminating all points of the largest group

from C̄ under the assumption that different congruent point groups do not

have points in common. The search for further congruent groups can then be

continued with step 1.

6. If no congruent point group could be found, the localization is continued with

step 2 with max = max− 1.

To illustrate the search for the largest congruent point group, the first example from Section

2.3.2.4 is revisited. From the adjusted coordinates for epoch 1 (see Table 2.4) all possible

distances in the network are computed. Likewise, all distances are computed for epoch 2

from the adjusted coordinates in Table 2.9. The distance differences and their standard

deviations are then derived. To evaluate the distance differences with respect to possible

changes, the 3σ-criterion is chosen as a rejection threshold. The distance differences and

their rejection thresholds are given in Table 2.21 below. A look at the table shows that

From To dl 3 σ̂dl

1 2 0.0047 0.0160
1 3 0.0546 0.0166
1 4 -0.0033 0.0148
1 5 0.0012 0.0172
2 3 0.0247 0.0133
2 4 0.0006 0.0188
2 5 0.0028 0.0153
3 4 0.0341 0.0146
3 5 0.0042 0.0104
4 5 -0.0005 0.0135

Table 2.21: Distance differences and their rejection threshold for example network in [m]

three distances exceed their rejection threshold and are thus to be eliminated. These are
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the distances from point 1 to point 3, from point 2 to point 3 and from point 3 to point 4.

Populating the edge-node matrix C with the remaining distances and deriving the node-node

matrix C̄ yields the following results.

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

l1,2 1 -1 0 0 0
l1,4 1 0 0 -1 0
l1,5 1 0 0 0 -1
l2,4 0 1 0 -1 0
l2,5 0 1 0 0 -1
l3,5 0 0 1 0 -1
l4,5 0 0 0 1 -1

Table 2.22: Edge-node matrix without
rejected distances

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

Pt 1 3 -1 0 -1 -1
Pt 2 -1 3 0 -1 -1
Pt 3 0 0 1 0 -1
Pt 4 -1 -1 0 3 -1
Pt 5 -1 -1 -1 -1 4

Table 2.23: Resulting node-node matrix
for example network

Using the node-node matrix in Table 2.23 the largest congruent point group can now be

located as follows:

• The largest diagonal element is c̄55 = max = 4 indicating the existence of a

pentagon, since four edges meet in the vertex of a pentagon.

• There is only one element n = 1 with c̄ii ≥ max, thus a pentagon cannot exist.

• Set max = max− 1 = 3.

• There are n = 4 elements with c̄ii ≥ max, which means that only one tetragon

can exist, consisting of the points 1, 2, 4 and 5.

Thus the largest congruent point group is correctly identified. The global congruency test

for this group shows that the null hypothesis indeed has to be accepted. Removing the

four points of this group from the node-node matrix leaves only point 3, so that no further

congruent point groups can exist in this example.

This small example only served the purpose of illustrating how the MSS-algorithm works.

However, it also indicates the reduced computational effort. Only one global congruency
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test had to be performed to verify the largest congruent point group, whereas a total of

five combinations of four out of five points would have had to be computed without this

pre-analysis.

2.3.4.3.2 MSS using distance ratios

Since the above approach is based on the distance differences for the elimination of impossible

combinations, it can obviously not lead to success if larger scale differences between the two

epochs are to be expected. For this reason a different approach to the pre-analysis is proposed

in Neitzel (2004).

Instead of the distance differences between epochs, the distance ratios are analyzed. Again,

all distances in both epochs are derived according to (2.50). For the kth distance lki from

epoch i and the corresponding distance lkj in epoch j, the distance ratio sk follows as:

sk =
lki
lkj

(2.53)

and, given the standard deviations σ̂ki and σ̂kj , the standard deviations for the distance ratio

sk can be derived as:

σ̂2
sk

=

(
1

lkj
· σ̂ki

)2

+

(
lki
l2kj
· σ̂2

kj

)2

. (2.54)

This expression can be simplified by assuming that lki = lkj = lk:

σ̂sk =
1

lk

√
σ̂2
ki

+ σ̂2
kj
. (2.55)

As the true scale factor between epochs i and j is unknown, the distance ratios in (2.53)

cannot be compared against a fixed value. Nonetheless, a preselection can be made to narrow

down the number of combinations. This is achieved by using an estimate for the empirical

standard deviation of the scale factor obtained from inserting the shortest distance of the

network into equation (2.55). And, choosing a tolerance factor T (e. g. T = 3), one obtains

a tolerance for the scale factor of

Ts = T · σ̂s . (2.56)
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Ts defines a search window for the scale factor. If a congruence analysis with all p points

fails, the largest similar point group can be found by sorting all distance ratios sk from (2.53)

by size in ascending order and proceeding in the following manner:

1. Compute Ts; the size of the search window in which similar point groups have

to be included.

2. Start the search window in row k = 1 in the list of sorted distance ratios.

3. Check if a similar point group of p− 1 points exists within the search window.

This can be done using topology matrices. If one (or more) point group(s)

exist, then these are candidates for a similar point group.

4. Start the search window in row k = k + 1 and perform step 3.

5. Once the end of the list of scale ratios is reached and candidates for similar

point groups were found, the search is terminated. If no group of p− 1 points

exists, the search is continued with p− 2 points with step 2.

6. Verify the candidates through a least-squares adjustment.

Unlike in the case of distance differences, a global congruency test cannot be derived directly

from the observations because the scale factor is still unknown. Hence, a least-squares

analysis that solves for the unknown scale factor is required. As mathematical model for the

adjustment one of the transformation approaches discussed in the Section 2.4 can be used.

The final solution is the one that yields the smallest standardized residuals11 |wk| ≤ c, where

c is a chosen rejection threshold12

This strategy shall be illustrated by revisiting the second example from Section 2.3.2.4. From

the coordinates in Table 2.4 for epoch 1 and the scaled coordinates in Table 2.14 all distances

11The standardized residuals are obtained by dividing the residuals by their theoretical standard deviations:
wk = vk/σvk .

12Typically, a value of 2.5 ≤ c ≤ 4 is chosen, (Niemeier, 2002).
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in the network and their corresponding distance ratios have been computed. The standard

deviation for the scale factor was computed through variance propagation of the covariance

matrices of the adjusted coordinates of each epoch. The shortest distance in the network is

23 m. The size of the search window thus follows as:

Ts = 3 · 1

23

√
0.00242 + 0.00252 = 452 ppm . (2.57)

Table 2.24 lists the computed scale ratios in ascending order and shows the search windows

k From To Distance ratios in [ppm]

1 1 3 −906.4

2 3 4 −774.7

3 2 3 −738.9

4 3 5 −478.2

5 1 2 −357.2

6 2 5 −335.7

7 1 5 −313.1

8 2 4 −306.0

9 4 5 −290.4

10 1 4 −253.1

Table 2.24: Sorted list of distance ratios with search windows

with a size of 452 ppm. On this basis the search for the largest similar point group can now

be conducted in the following manner:

• An adjustment with p = 5 points did not result in an acceptable solution.

Hence, a similar tetragon (p = 4) is now wanted.

• Starting with the first row in Table 2.24, a search window of 452 ppm is created.

As this window contains only four distances; a tetragon cannot exist.

• A new search window is created beginning in the second row. This window
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contains only five distances; a tetragon cannot exist.

• The search window starting in row three yields seven distances so that a

tetragon can possibly exist. To check this combination, the edge-node ma-

trix (Table 2.25) is populated and with it the node-node matrix (Table 2.26)

is calculated.

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

l2,3 0 1 -1 0 0
l3,5 0 0 1 0 -1
l1,2 1 -1 0 0 0
l2,5 0 1 0 0 -1
l1,5 1 0 0 0 -1
l2,4 0 1 0 -1 0
l4,5 0 0 0 1 -1

Table 2.25: Edge-node matrix for third
search window

Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

Pt 1 2 -1 0 0 -1
Pt 2 -1 4 -1 -1 -1
Pt 3 0 -1 2 0 -1
Pt 4 0 -1 0 2 -1
Pt 5 -1 -1 -1 -1 4

Table 2.26: Resulting node-node matrix
for third search window

• A look at the nod-nod matrix in Table 2.26 reveals, that this combination is

not a possible candidate for a similar group, as only in points 2 and 5 three or

more edges meet. Thus, the distances in this group cannot form a tetragon.

• Similarly, the next search window, starting in row four, does not yield a valid

candidate either. (Edge-node matrix and node-node matrix not shown.)

• The last search window, starting in row five, contains six distances, so that

a tetragon can possibly exist. The corresponding edge-node and node-node

matrices are shown in Table 2.27 and Table 2.28, respectively.

• The node-node matrix in Table 2.28 for the last search window shows that this

combination consists of four points with three edges meeting at each of them.

Thus, this combination forms the only candidate for the largest similar point

group.

• For the one candidate found, a least squares adjustment has to be computed
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Pt 1 Pt 2 Pt 3 Pt 4 Pt 5

l1,2 1 -1 0 0 0
l2,5 0 1 0 0 -1
l1,5 1 0 0 0 -1
l2,4 0 1 0 -1 0
l4,5 0 0 0 1 -1
l1,4 1 0 0 -1 0

Table 2.27: Edge-node matrix for last
search window

Pt 1 Pt 2 Pt 4 Pt 5

Pt 1 3 -1 -1 -1
Pt 2 -1 3 -1 -1
Pt 4 -1 -1 3 -1
Pt 5 -1 -1 -1 3

Table 2.28: Resulting node-node matrix
for last search window

to estimate the scale factor and verify that the candidate is indeed the correct

solution.

This example illustrates how similar point groups can be found if a change in scale has oc-

curred between epochs. Compared to Section 2.3.2.4, where the classical congruence analysis

fails, the MSS method using distance ratios succeeds in finding the correct point group, even

though a rather large scale difference of 300 ppm exists between epochs. Furthermore, in the

presented example, with help of the MSS method, the possible combinations could be nar-

rowed down to one candidate – the final solution – so that only one least-squares adjustment

is required.

2.3.5 Discussion

In Section 2.3.2 the basic mathematical model for a congruence analysis has been introduced.

It can be divided into three steps: global congruency testing, localization of deformed points

and determination of movements. The global congruency test establishes whether changes in

the overall size and shape of the network have occurred between the two epochs under con-

sideration. Interesting here is the possibility to derive this test either from the coordinates

of each epoch or datum-invariant quantities such as distances. The localization step is com-

prised of a series of localized tests examining the null hypothesis, that no deformations have

occurred, for each point individually. The point with the largest test statistic is eliminated
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first and the local tests are repeated for the remaining points. This procedure is continued

until all remaining points pass the local test. If an unstable point is part of the datum defi-

nition it has to be removed from the computational base with an S -transformation. In the

final step deformations for the unstable points are determined. This can either be achieved

through a common adjustment of the observations from both epochs or, again, through the

application of an S -transformation.

Two numerical examples were presented to illustrate this method. Two epochs of a moni-

toring network consisting of five points are analyzed. Only one of the points is subject to

deformations. The coordinates for each epoch are derived from a network analysis. Both

epochs have the same datum defined by all five network points. In the first example the

deformed point is correctly identified and realistic values are obtained for its deformations.

No other points were mistakenly identified as unstable. In the second example a scale factor

of 300 ppm is introduced to the distances of the second epoch and the analysis is repeated.

In this case the congruence analysis fails because both global and local tests are affected by

the change in scale.

An alternative method for a congruence analysis proposed by Teskey et al. (2005) is then

introduced. It is based on a 3D similarity transformation and allows for a change in scale

between epochs. It can also accommodate further parameters such as a refraction coeffi-

cient, if required. This method utilizes the observations directly thus avoiding the issues of

datum definition and S -transformation entirely. It is more economical than observation of

a multi-station network as it only requires data from a single instrument setup. However,

this results in the target points in each epoch only being uniquely determined without any

redundancy. The major disadvantage of this method is the integration of the deformation

detection with the estimation of the transformation parameters. This means that the param-

eter estimation is performed before deformed points are eliminated from the data, possibly

causing absorption of deformations in the transformation parameters. And, as well as the
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classical approach, it relies on a single point analysis to localize deformed points.

The problem with the single point analysis is the implied assumption that only the point

under consideration is presumably unstable while the remaining points are fixed. This, of

course, is often not the case. And smoothing effects of deformed points on the test statistics

of stable points can lead to wrong identification of stable points as deformed. Furthermore,

the single point analysis is based on least-squares principles which require the data to be

free of systematic influences and only to possess Gaussian noise. Then, and only then, a

small number of outliers (deformed points), typically 3 % to 5 %, can be detected in the

data. If these requirements are not met, the single point analysis cannot be expected to be

successful.

Robust estimation techniques were investigated as they have higher breakdown points. For

the class of M -estimators the breakdown point is at approximately 5 % to 10 %. For the

purpose of a deformation analysis this still is not sufficient as easily more than 10 % of

the points in a monitoring network can be subject to deformations. Some robust tech-

niques have breakdown down points as high as 50 %, such as the L1-norm estimator or the

LMS-estimator. However, these techniques can lead to wrong results as well and do not

always correctly identify all contaminated data, especially if outliers/deformations of small

magnitude are inherent in the data. Furthermore, they require iterative solution algorithms

which are typically implemented as an iterative re-weighted least-squares solution. In Neitzel

(2004) it has been shown that these do not always converge to the correct solution, that the

convergence is slow and that the results heavily depend on the chosen termination criterion

for the iteration.

After investigating the classical approach and its single point analysis as well as robust

estimation techniques it becomes evident that there is a need for an alternative methodology

that is capable of distinguishing between stable and deformed points even when a large

percentage of points is subject to deformations and even when systematic influences such as
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scale changes between epochs occur.

The method proposed in Neitzel (2004) is based on a combinatorial search and aims to find

the largest congruent point group between two epochs rather than to eliminate single de-

formed points. The great advantage of a combinatorial search is that it will always lead

to the correct solution if all possible combinations are examined. The number of possible

combinations, on the other hand, can quickly become very high, especially for large networks

with only a few stable points. Thus a pre-analysis is required to eliminate impossible com-

binations right off the bat. Neitzel (2004) suggests two methods to achieve this. The first

approach analyzes differences in the distances between epochs eliminating those distances

that show significant changes. Topological relations between the remaining distances are

then used to easily and quickly establish those point combinations that potentially could

form the largest congruent point group. The candidates that were found can be verified

with a global congruency test whose test quantity can be derived directly from the distance

differences, so that there is no need to perform a full least-squares analysis.

The second approach compares the ratios of the same distances in each epoch rather than

their differences. Unlike, the distance difference approach, this method is not affected by

changes in the scale between epochs. Since the true scale factor is unknown, however, a

direct comparison cannot be made so that this approach requires a more elaborate search

for the largest similar point group. An error estimate for the scale factor is derived which

is used to define the size of a search window. This search window is used to methodically

work through the list of sorted distance ratios to find point combinations that lie within

the window. Again, topological relations of the point combinations found lead to a quick

assessment whether they are a possible candidate for the largest similar point group or not.

To verify the candidates found a transformation-based least-squares adjustment is required

in which the unknown scale factor is estimated and the candidates can be judged by the

resulting standardized residuals.
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The major advantage of the distance ratios approach is that it is insusceptible to scale changes

between epochs, which in real-world applications often occur. But compared to the distance

differences approach it is not as computationally efficient. Because the error estimate for the

scale factor is only approximate it can lead to a rather large search window which in turn

results in more candidates for similar point groups than actually exist. Furthermore, since

the scale factor is unknown, a global congruency test cannot simply be applied as is possible

with the distance difference approach. Instead, the computation of a least-squares solution

to determine the unknown scale factor is required for each candidate found.

2.4 Solutions for the over-determined 3D Helmert transformation with

singular cofactor matrix

As has been shown in the previous section, alternative approaches for the classical congru-

ence analysis are required, specifically those that do not utilize a single point analysis to

distinguish between stable and unstable points. Two such methods, employing a combina-

torial search, have been discussed in Section 2.3.4.3. To finalize the deformation analysis

and derive movement vectors for the group of unstable points, after localization according to

Section 2.3.4.3, a transformation-based approach can be applied. Such an approach is par-

ticularly of interest if further systematic effects, such as a change in scale between epochs,

need to be taken into account. In the event that the two epochs under comparison are given

in different coordinate systems, a full 3D similarity transformation may even be applicable.

For this reason, similarity or Helmert transformations in 3D space and different solution

algorithms for over-determined transformation problems are discussed below. Particular

attention is paid to the cofactor matrices of the coordinates as they originate from a free

network adjustment and are thus singular.
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2.4.1 3D Helmert transformation

A Helmert or similarity transformation relates the coordinates of a point
⇀
x in a system j

to its coordinates in a system i through three rotations ω, ϕ, κ about the coordinate axes,

three translations Tx, Ty, Tz along the coordinate axes and a scale factor λ. In general form

this can be written as:

⇀
xi = λ ·R · ⇀xj +

⇀

T , (2.58)

where R denotes the rotation matrix and
⇀

T the vector of translations. In more explicit form

equation (2.58) can be written as, (Niemeier, 2002):


x

y

z


i

= λ ·Rz (κ) ·Ry (ϕ) ·Rx (ω) ·


x

y

z


j

+


Tx

Ty

Tz

 , (2.59)

where Rx (ω), Ry (ϕ) and Rz (κ) represent the three elementary rotations about the x-, y-

and z-axis, respectively. From the three elementary rotations the combined rotation matrix

R follows as:

R =


cos (κ) − sin (κ) 0

sin (κ) cos (κ) 0

0 0 1

 ·


cos (ϕ) 0 sin (ϕ)

0 1 0

− sin (ϕ) 0 cos (ϕ)

 ·


1 0 0

0 cos (ω) − sin (ω)

0 sin (ω) cos (ω)



=


cos (ϕ) cos (κ) sin (ω) sin (ϕ) cos (κ)− cos (ω) sin (κ) cos (ω) sin (ϕ) cos (κ) + sin (ω) sin (κ)

cos (ϕ) sin (κ) cos (ω) cos (κ) + sin (ω) sin (ϕ) sin (κ) cos (ω) sin (ϕ) sin (κ)− sin (ω) cos (κ)

− sin (ϕ) sin (ω) cos (ϕ) cos (ω) cos (ϕ)


(2.60)

or in short form:

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (2.61)
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Thus, the transformation in (2.59) can be re-written as:

xi = λ · (r11 · xj + r12 · yj + r13 · zj) + Tx

yi = λ · (r21 · xj + r22 · yj + r23 · zj) + Ty

zi = λ · (r31 · xj + r32 · yj + r33 · zj) + Tz

. (2.62)

If the seven transformation parameters ω, ϕ, κ, Tx, Ty, Tz and λ are known, equation (2.59)

allows one to determine the coordinates of point
⇀
x in system i, given the coordinates of

⇀
x

in system j. If, on the other hand, the coordinates of a set of points in system i as well

as the coordinates of the same set of points in system j are known, the transformation

parameters between the two systems can be estimated. Given the coordinates of three or

more points in both systems, an overdetermined adjustment problem exists, in which the

unknown transformation parameters can be estimated.

If the coordinates
⇀
xi and

⇀
xj were obtained in a free network adjustment, their corresponding

cofactor matrices Qxxi and Qxxj are singular. This is of importance, as the singular cofactor

matrices contain stochastic as well as deterministic information. A solution to the adjustment

problem can only be obtained if the deterministic information is included in the functional

model, (Neitzel, 2004). In the following sections different approaches to solve this adjustment

problem are discussed. It should be noted here, that only the problem is considered where

the coordinates of both, system i and system j, are introduced as observations. Each has

their own, fully populated and singular cofactor matrix. The problems where only the

coordinates in one system are considered as observations while the other set of coordinates is

considered constant along with the case where both sets of coordinates are observations but

with only a diagonal cofactor matrix, are neglected here, as these do not apply to deformation

monitoring.
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2.4.2 Solutions based on fictitious observations

In Neitzel (2004) the following two approaches are proposed in which the deterministic

and stochastic information of the singular cofactor matrices are separated by introducing a

minimal configuration of estimable quantities as fictitious observations. The deterministic

part is then incorporated into the functional model by the explicit introduction of condition

equations for the datum definition.

The estimable quantities are computed from the adjusted coordinates in both systems such

that the network geometry is uniquely determined. Whether the computed quantities de-

scribe actual measurements or not is of no concern. The simplest way to describe the network

geometry is through the use of spatial distances between the network points. Given a network

with known scale and a rank defect of d = 6 of the cofactor matrix, n = u− d distances (u

being the number of coordinates) are required to uniquely describe the geometry. Formally,

these distances can be derived from

⇀

l
(n×1)

= FT

(n×u)

⇀
x

(u×1)
, Qll

(n×n)

= FT

(n×u)
Qxx
(u×u)

F
(u×n)

(2.63)

with

lpq =

√
(xp − xq)2 + (yp − yq)2 + (zp − zq)2 . (2.64)

In (2.63) F denotes the functional matrix that links the adjusted coordinates
⇀
x to the

computed distances
⇀

l and contains the partial derivatives of (2.64) with respect to
⇀
x:

F =
∂

⇀

l

∂
⇀
x
. (2.65)

The resulting cofactor matrix Qll of the distances is regular and thus invertible since it de-

scribes a minimal configuration. Hence, the corresponding weight matrix P follows from

P = Q−1
ll . (2.66)

The distances
⇀

l and their corresponding cofactor matrices Qll and weight matrices P are

computed for both coordinate systems i and j.
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2.4.2.1 Explicit formulation of transformation

With the fictitious distance observations
⇀

l i in the target system i and
⇀

l j in the source

system j and their weight matrices Pi and Pj, respectively, the following approach for a

transformation can be derived.

The following unknown parameters are to be estimated in the adjustment:

⇀
xi . . . coordinates in the target system

⇀
xj . . . coordinates in the source system

ω, ϕ, κ . . . rotation angles about the x-, y-, z-axes

Tx, Ty, Tz . . . translations along the x-, y-, z-axes

λ . . . scale factor

The following ni observation equations can be written for the target system i:

fki : lpqi + vpqi =

√
(xpi − xqi)

2 + (ypi − yqi)
2 + (zpi − zqi)

2 (2.67)

and likewise for the source system j the following nj observation equations exist:

fkj : lpqj + vpqj =

√(
xpj − xqj

)2
+
(
ypj − yqj

)2
+
(
zpj − zqj

)2
. (2.68)

In addition to the observation above a datum definition is required in both target- and

source system. Only points that are given in both systems and are known to be stable

in both systems are allowed to contribute to the datum definition. As differences in the

configuration of the two networks are possible as well as point movements, a separation in h

datum points PD and g non-datum points PN is required. According to (2.7) the conditions

for the datum definition in the target system i can be written as

c1i :
h∑
k=1

∆xDki
= 0 c4i :

h∑
k=1

(
z0

Dki
∆yDki − y0

Dki
∆zDki

)
= 0

c2i :
h∑
k=1

∆yDki
= 0 c5i :

h∑
k=1

(
x0

Dki
∆zDki − z0

Dki
∆xDki

)
= 0

c3i :
h∑
k=1

∆zDki
= 0 c6i :

h∑
k=1

(
y0

Dki
∆xDki − x0

Dki
∆yDki

)
= 0

(2.69)

68



Accordingly, the condition equations for the datum definition in the source system j can be

written as

c1j :
h∑
k=1

∆xDkj
= 0 c4j :

h∑
k=1

(
z0

Dkj
∆yDkj − y0

Dkj
∆zDkj

)
= 0

c2j :
h∑
k=1

∆yDkj
= 0 c5j :

h∑
k=1

(
x0

Dkj
∆zDkj − z0

Dkj
∆xDkj

)
= 0

c3j :
h∑
k=1

∆zDkj
= 0 c6j :

h∑
k=1

(
y0

Dkj
∆xDkj − x0

Dkj
∆yDkj

)
= 0

(2.70)

In the above equations the conditions c1-3i/j describe the three translations whereas c4-6i/j

describe the three rotations.

The transformation from the source system to the target system for the datum points PD

can be achieved through the following condition equations based on (2.62):

tx : λ ·
(
r11 · xDj

+ r12 · yDj
+ r13 · zDj

)
+ Tx − xDi

= 0

ty : λ ·
(
r21 · xDj

+ r22 · yDj
+ r23 · zDj

)
+ Ty − yDi

= 0

tz : λ ·
(
r31 · xDj

+ r32 · yDj
+ r33 · zDj

)
+ Tz − zDi

= 0

(2.71)

This describes a Gauss-Markov model, for which the solution can be derived by lineariza-

tion at suitable initial estimates
⇀
x0 and iteration. The vector of unknowns can be expressed

as follows:

∆
⇀
x = ( ∆xD1i ∆yD1i ∆zD1i . . . ∆xDhi ∆yDhi ∆zDhi

∆xN1i ∆yN1i ∆zN1i . . . ∆xNgi ∆yNgi ∆zNgi

∆xD1j ∆yD1j ∆zD1j . . . ∆xDhj ∆yDhj ∆zDhj

∆xN1j ∆yN1j ∆zN1j . . . ∆xNgj ∆yNgj ∆zNgj

∆Tx ∆Ty ∆Tz ∆ω ∆ϕ ∆κ ∆λ )T .

(2.72)

The design matrix A1 is derived by taking the partial derivatives of the observation equations

(2.67) in the target system i. Likewise, the design matrix A2 is obtained by taking the partial

derivatives of the observation equations (2.68) in the source system j. Linearization of the

condition equations (2.69) for the datum definition and (2.70) yield the condition matrices
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B1 and B2 for the target and source system, respectively. And finally, linearization of the

transformation equation (2.71) results in the condition matrix BT.

The difference vector of the observations is given by

∆
⇀

l =



...

lpqi −
√(

x0
pi
− x0

qi

)2
+
(
y0
pi
− y0

qi

)2
+
(
z0
pi
− z0

qi

)2

...

...

lpqj −
√(

x0
pj
− x0

qj

)2

+
(
y0
pj
− y0

qj

)2

+
(
z0
pj
− z0

qj

)2

...


(2.73)

and the misclosure vector for the conditions follows from

⇀
w =



0

...

0

0

...

0

...

0−
(
λ ·
(
r11 · xDj

+ r12 · yDj
+ r13 · zDj

)
+ Tx − xDi

)
0−

(
λ ·
(
r11 · xDj

+ r12 · yDj
+ r13 · zDj

)
+ Tx − xDi

)
0−

(
λ ·
(
r31 · xDj

+ r32 · yDj
+ r33 · zDj

)
+ Tz − zDi

)
...



(2.74)

Given

A =

 A1

A2

 , B =


B1

B2

BT

 , P =

 Pi 0

0 Pj

 (2.75)
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the normal equation system for the Gauss-Markov model can be written as ATPA BT

B 0


 ∆

⇀
x

⇀

k

 =

 ATP∆
⇀

l

⇀
w

 . (2.76)

This corresponds to a common network adjustment of both epochs simultaneously combined

with a transformation in a one-step solution. The fictitious observations of a minimal con-

figuration in each system serve as input together with their regular cofactor matrices. The

results include the adjusted coordinates of both epochs as well as the adjusted transformation

parameters.

2.4.2.2 Implicit formulation of transformation

Another approach proposed in Neitzel (2004) abandons the condition equations (2.71) for the

transformation and simplifies the functional model by implicitly formulating the transforma-

tion instead. Now only the coordinates of the target system i are introduced as unknowns

reducing the parameters to be estimated in the adjustment to

⇀
xi . . . coordinates in the target system

λ . . . scale factor

The input is again given by the fictitious observations of a minimal configuration from

(2.63) in both systems, so that
⇀

l i and
⇀

l j as well as their weight matrices Pi and Pj are

available.

Using the reduced set of parameters the ni observation equations for the target system i can

be written as

fki : lpqi + vpqi =

√
(xpi − xqi)

2 + (ypi − yqi)
2 + (zpi − zqi)

2 (2.77)

while the nj observation equations for the source system j are now expressed as a function

of the coordinates in the target system i such that

fkj : lpqj + vpqj =
1

λ

√
(xpi − xqi)

2 + (ypi − yqi)
2 + (zpi − zqi)

2 . (2.78)
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The datum definition is realized using the condition equations (2.69), again separating the

coordinate vector in datum points PD and non-datum points PN. Since only one coordinate

vector is estimated, the non-datum points have to be excluded from the datum definition as

well as from the implicit formulation of the transformation. This is achieved by introducing

two different sets of coordinates with different point IDs (a and b) in the target system.

The solution for this adjustment problem can be derived by linearization at suitable initial

estimates
⇀
x0 and iteration. The vector of unknowns can be expressed as follows:

∆
⇀
x = ( ∆xD1i ∆yD1i ∆zD1i . . . ∆xDhi ∆yDhi ∆zDhi

∆xN1ai ∆yN1ai ∆zN1ai . . . ∆xNgai ∆yNgai ∆zNgai

∆xN1bi ∆yN1bi ∆zN1bi . . . ∆xNgbi ∆yNgbi ∆zNgbi

∆λ )T ,

(2.79)

where the non-datum points ending in a refer to points in the target system i while non-

datum points ending in b correspond to points transformed from the source system j into

the target system i.

The design matrix A1 is derived by taking the partial derivatives of the observation equations

(2.77) in the target system i. Likewise, the design matrix A2 is obtained by taking the partial

derivatives of the observation equations (2.78) in the target system i. Linearization of the

condition equations (2.69) for the datum definition yield the condition matrix B for the

target system.

The difference vector of the observations and the misclosure vector for the conditions are
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given by

∆
⇀

l =



...

lpqi −
√(

x0
pi
− x0

qi

)2
+
(
y0
pi
− y0

qi

)2
+
(
z0
pi
− z0

qi

)2

...

...

lpqj −
√(

x0
pi
− x0

qi

)2
+
(
y0
pi
− y0

qi

)2
+
(
z0
pi
− z0

qi

)2

...


,

⇀
w =



0

0

0

0

0

0


(2.80)

Given

A =

 A1

A2

 , P =

 Pi 0

0 Pj

 (2.81)

the normal equation system from (2.76) for the Gauss-Markov model can be solved to

obtain the unknown parameters.

As a result of the estimation coordinates in the target system are obtained. For points not

participating in the datum definition and the implicit formulation of the transformation two

sets of coordinates are obtained. One set represents the adjusted coordinates in the target

system while the other set represents the transformed coordinates from the source into the

target system. Because of the implicit formulation of the transformation, only the scale

factor has to be estimated. The translation and rotation parameters are not part of the

parameter vector but can be back-calculated exactly, if desired.

2.4.3 Gauss-Helmert model with singular cofactor matrix

The approaches considered so far are based on the Gauss-Markov model and utilize a

minimal configuration of estimable quantities as fictitious observations, thus extracting the

stochastic information from the singular cofactor matrices of the original coordinates. Fol-

lowing, another approach is discussed that utilizes the singular cofactor matrices from the

free network adjustments directly.
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Considering the adjusted coordinates
⇀
xi in the target system i as well as the adjusted co-

ordinates
⇀
xj in the source system j directly as observations, equation (2.59) yields three

condition equations for each point observed in both systems. These three condition equa-

tions for the transformation from the source system j to the target system i can be explicitly

written as:

fx : λ · (r11 · xj + r12 · yj + r13 · zj) + Tx − xi = 0

fy : λ · (r21 · xj + r22 · yj + r23 · zj) + Ty − yi = 0

fy : λ · (r31 · xj + r32 · yj + r33 · zj) + Tz − zi = 0

(2.82)

where rpq are the elements of the rotation matrix R given by (2.60). The unknowns to be

solved for in this case are the seven transformation parameters:

ω, ϕ, κ . . . rotation angles about the x-, y-, z-axes

Tx, Ty, Tz . . . translations along the x-, y-, z-axes

λ . . . scale factor.

If three or more identical points are available in both systems, equation (2.82) describes a

non-linear adjustment problem in the form of a Gauss-Helmert model:

f
(

⇀

l ,
⇀
x
)

=
⇀

0. (2.83)

With the observation vector and its cofactor matrix given by

⇀

l 0 =

 ⇀
xi

⇀
xj

 , Qll =

 Qxxi 0

0 Qxxj

 (2.84)

and the parameter vector described by

⇀
x =

(
ω ϕ κ Tx Ty Tz λ

)T
. (2.85)

The non-linear functional relationship in (2.83) needs to be linearized first. This can be
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accomplished by a first-order Taylor series with suitable approximations
⇀

l 0 and
⇀
x0 :

f
(

⇀

l ,
⇀
x
)

=
∂ f

∂
⇀
x

∣∣∣∣⇀
l 0,

⇀
x 0︸ ︷︷ ︸

= A

·
(
⇀
x − ⇀

x0

)︸ ︷︷ ︸
= ∆

⇀
x

+
∂ f

∂
⇀

l

∣∣∣∣⇀
l 0,

⇀
x 0︸ ︷︷ ︸

= B

·
(

⇀

l −
⇀

l 0

)
︸ ︷︷ ︸

=
⇀
v

+ f
(

⇀

l 0,
⇀
x0

)
︸ ︷︷ ︸

= −⇀
w

=
⇀

0

= A∆
⇀
x + B

⇀
v − ⇀

w =
⇀

0

(2.86)

Where A is the design matrix containing the partial derivatives of the condition equations

(2.82) with respect to the unknown parameters
⇀
x and B is the condition matrix consisting of

the partial derivatives of (2.82) with respect to the observations
⇀

l . The corrections for the

approximations of the unknowns are denoted as ∆
⇀
x;

⇀
v are the residuals of the observation

vector and
⇀
w represents the misclosure vector.

Introducing the vector of Lagrange multipliers
⇀

k, the variation function Φ can be formed:

Φ =
⇀
v
T
P

⇀
v − 2

⇀

k
T (

A∆
⇀
x + B

⇀
v − ⇀

w
)
→ min . (2.87)

Taking the partial derivatives of the variation function Φ with respect to the unknown quanti-

ties
⇀
v ,

⇀

k and ∆
⇀
x and simplifying the expressions yields the linearized normal equations

BQllB
T

⇀

k + A∆
⇀
x =

⇀
w

AT
⇀

k =
⇀

0.
(2.88)

Given p identical points in both systems i and j, with p ≥ 3, the dimensions of this adjust-

ment problem can be described as follows:

n = 6p . . . number of observations

b = 3p . . . number of conditions

u = 7 . . . number of unknowns

r = b− u = 3p− 7 . . . redundancy.

The (b× n) condition matrix B always has full row rank b since each set of condition equa-

tions (fx, fy, fz) in (2.82) describes the relationship between the coordinates in system i and

system j for a different point. Hence, all condition equations must be linearly independent.
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Similarly, the seven transformation parameters in (2.85) are linearly independent such that

the (b× u) design matrix A is always of full column rank q = u. The cofactor matrix of

the observations Qll has a rank defect of d as it results from a free network adjustment.

Consequently, the rank of the matrix product of B and Qll is less than the rank of B:

rk (BQll) < rk (B) . (2.89)

In Neitzel and Schaffrin (2013b) it is shown that the normal equations in (2.88), in the case

of (2.89), have a unique solution for ∆
⇀
x and

⇀

k under the conditions that

rk ([A BQll]) = r + q = rk (B) and (2.90a)

rk (A) = q = u. (2.90b)

While the ranks of A and B have already been discussed above and condition (2.90b) is

fulfilled for the parameters in (2.85), condition (2.90a) can only be checked numerically and

thus has to be evaluated for each case individually.

2.4.3.1 Iterative solution of the Gauss-Helmert model

The rigorous analysis of the Gauss-Helmert model is important in order to reach conver-

gence to the correct solution. Unfortunately, some pitfalls exist in the iterative linearization

procedure that have already been pointed out by Pope (1972). Nevertheless, some of these

pitfalls can be found in numerous least-squares textbooks, such as Wolf and Ghilani (1997)

and Niemeier (2002), for example. In Lenzmann and Lenzmann (2004) a detailed comparison

of algorithms with inapplicable approximations is provided that may converge to a solution,

but it may not be the non-linear least-squares solution. Neitzel (2010) as well as Neitzel and

Schaffrin (2013b) also point out the importance of the rigorous evaluation of the iterative

linearization.

With the approximations
⇀

l 0 and
⇀
x0, the design matrix A0 and condition matrix B0 of the

initial iteration step can be determined according to (2.86). Similarly, the initial misclosure
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vector
⇀
w0 follows by inserting the approximate values into the condition equations (2.82).

As suitable approximations for the adjusted observations the original coordinates from the

free network adjustment can be used for the first iteration step, assuming the initial residual

vector to be
⇀
v0 =

⇀

0.

For the transformation parameters approximations can be derived by computing inverses

between two points and comparing these between systems. The scale factor follows from the

ratio of a distance in system i and a distance in system j. The rotation about the z-axis

can be derived by comparing a bearing between two points in system i to the bearing of the

same two points in system j, etc. Once approximate values for the rotations and scale are

computed, the translations follow from re-arranging (2.82) and using the coordinates of a set

of identical points in both systems together with the approximations for the rotation angles

and scale factor to solve for the translation parameters.

Now, the solution for
⇀

k and ∆
⇀
x for the first iteration step can be computed from the normal

equations (2.88) by inversion of the normal equation matrix: ⇀

k1

∆
⇀
x1

 =

 B0QllB
T
0 A0

AT
0 0


−1 ⇀

w0

⇀

0

 . (2.91)

Again, the normal equation matrix is uniquely invertible if the conditions in (2.90) are

satisfied. The updates for the next iteration step then follow from:

⇀
x1 =

⇀
x0 + ∆

⇀
x1

⇀
v1 =

⇀
v0 + QllB

T
0

⇀

k1 = QllB
T
0

⇀

k1

⇀

l 1 =
⇀

l 0 +
⇀
v1

(2.92)

With the updated observation vector
⇀

l 1 and parameter vector
⇀
x1, the design and condition

matrices can be re-evaluated such that

A1 =
∂ f

∂
⇀
x

∣∣∣∣⇀
l 1,

⇀
x 1

B1 =
∂ f

∂
⇀

l

∣∣∣∣⇀
l 1,

⇀
x 1

. (2.93)
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Furthermore, the misclosure vector needs to be re-computed as

⇀
w1 = B1

⇀
v1 − f

(
⇀

l 1,
⇀
x1

)
(2.94)

where the −f
(

⇀

l 1,
⇀
x1

)
represents the linearization error and B1

⇀
v1 expresses the misfit be-

tween the coordinates of identical points in system i and system j due to the errors inherent

in the coordinate vectors.

Introducing the iteration counter k = 1, the solution for the next iteration step k + 1 can

now be obtained by inverting the normal equations (2.88): ⇀

kk+1

∆
⇀
xk+1

 =

 BkQllB
T
k Ak

AT
k 0


−1 ⇀

wk
⇀

0

 . (2.95)

The updates for the next iteration step then follow from:

⇀
xk+1 =

⇀
xk + ∆

⇀
xk+1

⇀
vk+1 =

⇀
vk + QllB

T
k

⇀

kk+1

⇀

l k+1 =
⇀

l 0 +
⇀
vk+1

(2.96)

Then, the design matrix, condition matrix and misclosure vector are re-evaluated as well as

the misclosure vector to obtain the input for the following iteration step:

Ak+1 =
∂ f

∂
⇀
x

∣∣∣∣⇀
l k+1,

⇀
x k+1

Bk+1 =
∂ f

∂
⇀

l

∣∣∣∣⇀
l k+1,

⇀
x k+1

⇀
wk+1 = Bk+1

⇀
vk+1 − f

(
⇀
xk+1,

⇀

l k+1

)
.

(2.97)

This iteration continues until a chosen termination criterion
∣∣∆⇀
xk
∣∣ < δ with δ > 0 is

reached.

The final parameter vector
⇀
x and residual vector

⇀
v are given by

⇀
x =

⇀
xk−1 + ∆

⇀
xk

⇀
v =

⇀
vk−1 + QllB

T
k−1

⇀

kk . (2.98)

The sum Ω̂2 of weighted squared residuals can be derived from, (Neitzel and Schaffrin,

2013a):

Ω̂2 =
⇀
wk−1

(
⇀

kk +
(
Bk−1QllB

T
k−1

)−
Bk−1

⇀
vk−1

)
(2.99)
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and the a posteriori variance factor then follows as

σ̂2
0 =

Ω̂2

r
. (2.100)

Finally, the covariance matrix of the adjusted parameters Cxx can be taken directly from the

inverse of the normal equation matrix for the final iteration step k, (Neitzel and Schaffrin,

2013a):  Cλλ ×

× −Cxx

 = σ̂2
0 ·

 Bk−1QllB
T
k−1 Ak−1

AT
k−1 0


−1

(2.101)

with

Cvv = QllB
T
k−1CλλBk−1Qll (2.102)

resulting as the covariance matrix of the residuals
⇀
v . Note that the ”×” for the off-diagonal

elements of (2.101) indicates that there is no correlation between the parameters and the

residuals.

2.4.4 Total Least-Squares

An alternative to the Gauss-Helmert model described above is the so-called total least-

squares (or TLS) model introduced by Golub and Van Loan (1980). The mathematical model

is derived by extending the parametric least-squares model for problems where the elements

in the design matrix A contain random errors as well, (Acar et al., 2006):

⇀

l − ⇀
e l = (A− EA) · ⇀x (2.103)

where
⇀

l denotes an (n× 1) observation vector,
⇀
e l its (n× 1) error vector; A is the (n× u)

design matrix, EA its corresponding (n× u) error matrix and
⇀
x is the (u× 1) vector of

unknowns. This model is referred to as errors-in-variables (or EIV) model, (Acar et al.,

2006).

In the basic TLS method the errors in
⇀
e l and EA are assumed to have independent and

identically distributed rows with a zero mean and the same variance. An optimization
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is performed by minimizing the elements of the error vector
⇀
e l and the error matrix EA

according to, (Golub and Van Loan, 1980; Acar et al., 2006):

∥∥[EA
⇀
e l
]∥∥

F
→ min . (2.104)

Here, ‖H‖F represents the Frobenius norm of an (m× n) matrix H as given by, (Acar et al.,

2006):

‖H‖F =

√√√√ m∑
i=1

n∑
j=1

h2
ij =

√
tr (HTH) (2.105)

where tr() denotes the trace of a matrix. The solution algorithm based on singular value

decomposition (SVD) can be found e. g. in Golub and Van Loan (1980).

So far, no weighting of the observations has been considered. In most practical applications

however, the variances of the elements of the observation vector and the design matrix are

not identical. Furthermore, not all columns of the design matrix contain errors. (Acar et al.,

2006). The following extension of the basic TLS model described above addresses these

issues, (Van Huffel, 1991).

⇀

l − ⇀
e =

[
A1 A2 − EA2

]
·

 ⇀
x1

⇀
x2

 (2.106)

Here, A1 contains the error-free columns, associated with the subset of parameters
⇀
x1 and

A2 contains the erroneous columns associated with the subset of parameters
⇀
x2. EA2 denotes

the error matrix of A2. Additionally, the (n× n) weight matrix D of the observations and

the (u2 + 1× u2 + 1) weight matrix C that reflects the relative accuracies of the observations

with respect to the elements of the design matrix elements of A2 are introduced, (Van Huffel,

1991). This leads to the extended objective function

∥∥D · [EA2

⇀
e l
]
·C
∥∥
F
→ min . (2.107)

This extended model is referred to as generalized total least-squares model (or GTLS), (Van

Huffel, 1991).
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While a complete formulation for the solution of the GTLS model with fully-populated,

non-singular weight matrices C and D is given in Van Huffel, 1991 and Mühlich and Mester,

2004, it is often dismissed in the literature as too complicated (Acar et al., 2006; Akyilmaz,

2007), thus reducing the weight matrices C and D to diagonal matrices with the justification

that ”in geodetic applications, covariance matrices are generally block-diagonal dominant

matrices”, (Acar et al., 2006).

Many more modifications of the basic TLS method exist, such as restricted TLS (Van Huffel

and Zha, 1991), constrained TLS (Abatzoglou and Mendel, 1991), weighted TLS (Schaffrin,

2006), weighted multivariate TLS (Schaffrin and Wieser, 2009), improved weighted TLS and

improved constrained weighted TLS (Tong et al., 2011).

It has been shown in Neitzel (2010) that TLS does not represent a new adjustment method,

but rather another adjustment model (EIV model) in the frame of the method of least-

squares. Also Acar et al., 2006 states that the mathematical model of the basic TLS approach

is identical to that of the generalized LS method and that (2.103) represents a non-linear GH-

model. Furthermore, Neitzel (2010) shows on the example of a 2D similarity transformation

that the EIV model can be regarded as a special case of the non-linear GH-model and that

the TLS solution can be achieved by a rigorous analysis of the non-linear GH-model if the

identical objective function is minimized subject to an identical functional relationship, i. e.

if in both cases the exact same problem is addressed. Hence, it follows that TLS can generally

be applied to solve an over-determined similarity transformation.

The advantage of TLS is that, at least for the basic model and some other variations, a closed-

form solution exists which eliminates the need for iteration, thus offering higher numerical

stability and efficiency. This is especially useful for applications with large data sets as it

can significantly reduce the computational effort.

The disadvantage of TLS is that, while there are variations such as GTLS that allow weights
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for the observations and the elements of the error matrix and even allow fully-populated

weight matrices, they all require non-singular matrices. A TLS approach that can handle

the singular covariance matrices from a free network adjustment does not exist. In case of

a deformation analysis, the input covariance matrices of the observations will typically be

derived from a free network adjustment and thus will be singular. In this scenario it is also

not acceptable to ignore the covariances and only use diagonal matrices instead. Hence, the

TLS model and its derivatives are not considered any further in this thesis.

2.4.5 Discussion

The general model for a 3D Helmert transformation has been introduced. The required

3D rotation matrix combining the three elementary rotations about the coordinate axes has

been given without any approximations. Different solution algorithms for over-determined

transformation problems have been discussed. Two methods, proposed in Neitzel (2004), are

based on fictitious observations which require the calculation of a minimal configuration of

estimable quantities such as distances to separate the deterministic and stochastic informa-

tion in the singular cofactor matrices of the adjusted coordinates in each system.

In the explicit formulation of transformation all seven transformation parameters are esti-

mated together with the coordinates in both, the target and the source system. Additional

condition equations define the datum in both systems as well as the transformation between

identical points. A set of observation equations for the fictitious observations, uniquely de-

scribing the geometry in each system, is introduced to solve for the unknown coordinates.

Thus, the problem can be solved as a Gauss-Markov model with a regular covariance

matrix for the fictitious observations. This results in a rather large normal equation system.

Considering a network of ten points where all ten points are observed in both systems and

all ten points contribute to the datum, this would result in 10 · 3 · 2 = 60 coordinate un-

knowns plus 7 unknown transformation parameters plus 6 · 2 = 12 condition equations for
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the datum definition plus 10 · 3 = 30 condition equations describing the transformation, so

that a (109× 109) normal equation matrix would need to be inverted. Furthermore, with

the rotations given by (2.60), the normal equation system is highly non-linear. This means

that good initial approximations for the unknowns are required to assure convergence to the

correct non-linear least-squares solution. Also, it can cause a rather slow convergence rate.

Hence, this approach does not offer a numerically very efficient and stable solution.

The second method proposed in Neitzel (2004) presents a very elegant solution. Through the

implicit formulation of the transformation the parameter vector can be reduced so that only

coordinates in the target system and the scale factor need to be solved for. The translation

and rotation parameters do not need to be estimated. Additional condition equations are

only required for the datum definition of the target system. Thus, the resulting normal

equation matrix of the Gauss-Markov model for the same ten-point network has the size

of 10 · 3 = 30 coordinate unknowns plus 6 condition equations for the datum definition plus

1 unknown transformation parameter (the scale factor), in total (37× 37). Furthermore, by

avoiding an explicit formulation of the rotation, the adjustment problem is numerically more

stable and now only an approximation for the scale factor is needed. In most application

λ0 = 1 will be sufficient but if necessary, a more accurate estimate can easily be obtained by

comparing (already available) distances in both systems. Hence, this approach presents a

numerically more efficient and more stable solution. And while the rotation and translation

parameters do not become available as a result of the adjustment, they can be back-calculated

exactly, if desired. Still, the computation of a minimal configuration of estimable quantities

is required in order to separate the deterministic and stochastic information contained in the

singular cofactor matrix of the coordinates.

The third method presented utilizes the Gauss-Helmert model by introducing the ad-

justed coordinates of each system directly as observations. Then, condition equations for

the transformation of each identical point from the source into the target system can be
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explicitly given. The parameter vector consists only of the seven transformation parameters.

Further condition equations for the datum definition in each system are not required since the

original, singular cofactor matrices of the adjusted coordinates in each system can directly

be processed in the adjustment, provided that the rank conditions in (2.90) are satisfied.

Hence, a separation of the deterministic and stochastic information of the cofactor matrices

through computation of a minimal configuration of estimable quantities and introduction of

fictitious observations is omitted completely. The resulting normal equation matrix for the

Gauss-Helmert model for the ten-point network has the size of 10 ·3 = 30 condition equa-

tions for the transformation plus 7 unknown transformation parameters, in total (37× 37),

which is identical to the size of the normal equation matrix of the implicit transformation.

The transformation parameters are readily available as a result of the adjustment. On the

other hand, this approach again results in a highly non-linear normal equation system due

to the explicit formulation of the rotations, for which, again, good approximate values have

to be derived. Conclusively, this method leads to a more numerically efficient but equally

unstable solution compared to the explicit formulation of the transformation.

Finally, the total least-squares method has been discussed as an alternative solution to the

Gauss-Helmert model. In the TLS approach only the coordinates in the target system

are considered observations while the coordinates in the source system are considered as

constants. This leads to errors in the design matrix for which then an error matrix is

introduced, resulting in the errors-in-variables or EIV model. As has been shown in Neitzel

(2010), the TLS method is equivalent to the Gauss-Helmert model, if the same objective

function is minimized subject to an identical functional relationship, so that in principle

total least-squares can be applied to solve transformation problems. Its advantage is an

elegant closed-form solution algorithm based on a singular value decomposition, which yields

high numerical efficiency and stability. However, this solution algorithm only exists for the

basic, unweighted approach. Algorithms that can handle fully-populated, singular cofactor
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matrices for the target and source system do not exist. Hence, the TLS approach is not

appropriate for deformation monitoring applications where correct estimates of the standard

deviations of the coordinates in each epoch and their correlations are of great importance,

as they essentially define the level of detectability of the deformations.

2.5 Summary

In Section 2.1 different observation techniques applied in deformation monitoring are given.

The focus is on geodetic techniques used in monitoring networks. Their special characteristics

are discussed.

The network analysis of geodetic observations as an important pre-analysis step is discussed

in Section 2.2. From the network analysis a homogeneous set of coordinates is obtained

that uniquely and completely describes the network geometry at time of observation. To

be able to estimate coordinates from the, mostly relative, observations, a reference frame

and datum definition are required. Both are defined during the network analysis. The

different options to define the geodetic datum of a network are discussed and its effects on

the coordinates and their accuracies are illustrated on an example network. It was concluded

that constrained approaches are generally not suitable for deformation monitoring as they

can cause distortion of the geometry which can be misinterpreted as movements. Inner-

constraints pose a better choice for deformation monitoring purposes, as they do not alter

the network geometry. Ordinary minimal constraints should be avoided however, because

then the chosen datum-defining coordinates form a zero-variance computational base, which

makes it impossible to detect deformations in. A total trace minimization minimizes the

sum of variances of all network points resulting in the lowest possible level of detectability

for the movements of all points and is thus the recommended choice. An S -transformation

allows to change the datum easily from one set of points to another without the need of
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re-adjusting the observations with a new datum definition, provided that the given datum

is defined by inner-constraints.

In Section 2.3 an overview of different deformation monitoring models is given. Then, fo-

cussing on the congruence model, the basic mathematical model for the classical congruence

analysis is discussed in detail and illustrated on two examples. It shows that, ones a change in

scale between the epochs is introduced, the analysis fails. Furthermore, different techniques

for the localization of unstable points are examined. A single point analysis, as applied

in the classical congruence model, cannot lead to correct results if a large percentage of

points is deformed or additional systematic effects occur between epochs. Robust estimation

techniques are investigated as they have a high breakdown point of up to 50 %. But these

too can lead to wrong results and are not always able to identify all deformed points. The

outcome strongly depends on the geometry, the number of points in the network, the redun-

dancy and other factors. Results from the iterative solution algorithms, often based on a

re-weighted least-squares solution, heavily depend on the chosen termination criteria for the

iteration.

Thus the need for better for better localization methods arises. Two methods, based on a

combinatorial search are introduced. They aim to find the largest congruent point group

between two epochs of a network rather than to find and eliminate single deformed points,

one at a time. A combinatorial search has the advantage that, if all combinations are tried,

eventually the correct solution will be found. However, the total number of combinations

can easily exceed a manageable level. The two methods presented are able to systematically

eliminate impossible combinations by using topological relations so that the computational

load of trying out combinations is greatly reduced. The MSS approach based on distance

ratios is even insusceptible to scale changes but requires a least-squares adjustment for every

possible candidate to solve or the unknown scale factor and verify the correct solution. It

can also easily lead to an increased number of candidate solutions as only an approximate
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error estimate for the unknown scale factor is available.

Finally, 3D Helmert or similarity transformations are discussed in Section 2.4 as they pose

a viable option for the determination of deformations once the largest congruent point group

has been correctly identified with one of the methods discussed above. After introducing the

general mathematical model, four different methods to solve the over-determined transfor-

mation problem are examined. Two approaches, based on a Gauss-Markov model , utilize

a minimal configuration of fictitious observations to separate deterministic and stochastic

information of the singular cofactor matrices of the given coordinates. The implicit trans-

formation approach presents a very elegant solution in which the scale factor is the only

transformation parameter that is estimated.

A further possible solution introduces the coordinates in both systems directly as observa-

tions in a non-linear Gauss-Helmert model based on condition equations for the transfor-

mation as functional model. This approach allows to process the singular cofactor matrices of

the coordinate vectors directly and without any pre-processing. But due to the explicit form

of the rotation it is a highly non-linear problem that requires good initial approximations

for the unknown rotation parameters.

Total least-squares is discussed as an alternative to the Gauss-Helmert model but since

this approach cannot handle the fully-populated, singular cofactor matrices resulting from a

free network adjustment, it should not be applied for the estimation of deformations.
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Chapter 3

METHODOLOGY

3.1 Localization of largest similar point group based on angles

In Section 2.3.4.3.1 a combinatorial search based on distance differences was applied to

identify the largest congruent point group between two epochs of a monitoring network.

This is a powerful and reliable method that will yield the correct solution even if a large

percentage of points are subject to deformations. But it is not applicable if a change in scale

occurs between epochs.

In that event the MSS-method based on distance ratios rather than distance differences is

proposed in Neitzel (2004) and discussed in Section 2.3.4.3.2. This approach works as reliably

as the distance-difference approach with regard to the correct results. But since the scale

factor is unknown and only an approximate error estimate is available, no firm significance

threshold for the distance ratios can be determined. Instead a search window has to be used.

This can easily lead to a large number of candidates for similar point groups. Then, for each

candidate a least-squares adjustment has to be computed to estimate the unknown scale

factor and identify the correct solution. This makes the distance-ratios approach potentially

a lot more computationally intense than the distance-difference approach.

Hence, a different approach is proposed to find the largest similar point group between two

epochs with different scales. It is based on a combinatorial search as well and thus shares the

advantages of above-mentioned methods in regards to its reliability. But it utilizes angles

rather than distances which allows a direct evaluation of angular differences between epochs

while still being independent of scale changes. This approach is explained below.

88



Given three points A (xA yA zA)T , B (xB yB zB)T and C (xC yC zC)T the angle α at A

from B to C can be derived from the two difference vectors

⇀

b =

(
xb yb zb

)T
=

(
xB − xA yB − yA zB − zA

)T
and

⇀
c =

(
xc yc zc

)T
=

(
xC − xA yC − yA zC − zA

)T (3.1)

through the scalar (or dot) product

⇀

b · ⇀c = xb · xc + yb · yc + zb · zc =
∣∣∣⇀b∣∣∣ ∣∣⇀c∣∣ · cosα

=
√
x2
b + y2

b + z2
b ·
√
x2
c + y2

c + z2
c · cosα .

(3.2)

The angle α then follows as

α = arccos

 ⇀

b · ⇀c∣∣∣⇀b∣∣∣ ∣∣⇀c∣∣


= arccos

(
xb · xc + yb · yc + zb · zc√

x2
b + y2

b + z2
b ·
√
x2
c + y2

c + z2
c

)
.

(3.3)

Given the adjusted coordinate vectors
⇀
xi and

⇀
xj from two epochs i and j together with their

singular cofactor matrices Qxxi and Qxxj , the angles
⇀
α and their cofactor matrix Qαα in each

epoch can be derived from:

⇀
αi = FT

i
⇀
xi, Qααi

= FT
i QxxiFi and

⇀
αj = FT

j
⇀
xj, Qααj

= FT
j QxxjFj (3.4)

The derivation of the functional matrix F and the error propagation for the angles is in

detail given in Appendix A.1.

Now, the vector of angular differences between epochs d
⇀
α and its cofactor matrix can be

computed from:

d
⇀
α =

⇀
αj −

⇀
αi, Qdα = Qααi

+ Qααj
. (3.5)

Together with the combined variance factor σ̂2
0 of both epochs from (2.28) and a chosen

tolerance value T , a significance threshold can be established such that the assumption

E {dαk} = 0 is dismissed if

|dαk| > T · σ̂0 ·
√
qdαkk

. (3.6)
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It should be pointed out that the value T should be chosen with care. If T is chosen too

small, some angles may be rejected for which the assumption E {dαk} = 0 is true. This

can lead to false results. If, on the other hand, T is chosen too large, fewer angles can be

eliminated resulting in a higher number of possible candidates that have to be examined. It

is thus preferred to choose T rather too large than too small. From experience, values of

3 ≤ T ≤ 5 work well.

3.1.1 The Algorithm

In a network consisting of p points, at each of the network points
p−2∑
i=1

i angles exist. After

eliminating those angles that exhibit significant changes between epochs, which are an in-

dication of point deformations, candidates for the largest similar point group can be found

through a histogram-based search in the following manner:

1. Compute the histogram listing the number of angles existing at each network

point after elimination of the significantly changed angles.

2. Start with search for group of pmax = p− 1 points.

3. Compute the number of angles maxα at each point for a group of pmax points

from maxα =
pmax−2∑
i=1

i.

4. Search histogram for all points pfound with number of angles nα ≥ maxα. If

pfound = pmax, one preliminary candidate exists. If pfound > pmax, multiple

preliminary candidates exist.

5. If pfound < pmax, no candidates exist. Set pmax = pmax−1 and continue search

with step 3.

For the preliminary candidate(s) it has to be established if all angles still exist. This can be

accomplished by populating a three-dimensional array C from the list of remaining angles.
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The array has a size of (p× p× p) where p is the total number of points in the network. The

three dimensions of the array correspond to the three points that form an angle, the origin

(at), starting point (from) and end point (to). If, for example, the angle at point 1 from point

2 to point 3 still exists, the corresponding entry in C is C (at, from, to) = C (1, 2, 3) = 1. If,

on the other hand, this angle was eliminated because it showed significant change between

epochs, the corresponding entry would be C (at, from, to) = C (1, 2, 3) = 0.

To identify if all angles for a preliminary candidate group of m points exist, first a list of all

theoretically possible m·
m−2∑
i=1

i angles is created. Then, the values in C for all the theoretically

possible angels are summed up. If this sum is equal to the number of theoretically possible

angles m·
m−2∑
i=1

i, it means that all theoretically possible angles indeed exist for this preliminary

candidate. Hence, this preliminary candidate becomes a final candidate.

Once this procedure has been carried out for all preliminary candidates, the remaining

final candidates for similar point groups can be examined with a global congruency test as

described in Section 2.3.2.1. It is advisable to compute the quadratic form Ω̂2 directly from

the angular differences in (3.5) according to (2.34). Together with the combined variance

factor σ̂2
0 from (2.28), the global congruency test for each final candidate can be carried out

as described in (2.35) without the necessity of performing a least-squares estimation.

3.1.2 Numerical example

Naturally, can this method be applied analogously to the 2D case. Hence, to illustrate the

search for the largest congruent point group using angles, the second example from Section

2.3.2.4 is revisited once more. The network consisting of p = 5 points is shown again in

Figure 3.1 with all n = p ·
p−2∑
i=1

i = 30 angles highlighted in bold. The coordinates for epoch

1 are given in Table 2.4 and the coordinates for epoch 2 can be found in Table 2.14. It

should be mentioned here again, that the distances in epoch 2 were scaled by 300 ppm and
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1
2

5
4

3

Figure 3.1: Example network with all angles shown

deformations of dx = −30.0 mm and dy = +40 mm were introduced in point 3.

After the comparison of the variance factors of both epochs and the initial global congruency

test, which have already been performed in Section 2.3.2.4, all existing angles
⇀
αi and

⇀
αj are

computed from the adjusted coordinates in each epoch along with their cofactor matrices.

Then, the angular differences between epochs are calculated from (3.5) and evaluated ac-

cording to (3.6). A tolerance factor of T = 3 was chosen, so that the 3σ-criterion is applied

as a significance threshold. After eliminating the significantly changed angles, 15 out of 30

angles remain. They are listed in Table 3.1 below.

Angle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

at 1 1 1 1 1 1 2 2 2 4 4 4 5 5 5
from 2 2 2 3 3 4 1 1 4 1 1 2 1 1 2

to 3 4 5 4 5 5 4 5 5 2 5 5 2 4 4

Table 3.1: Remaining angles after elimination

With the remaining 15 angles a histogram can be populated, listing the number of angles at

each network point. This histogram is given in tabular form in Table 3.2 below.

The search for preliminary candidates for the largest similar point group can now be con-
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Point 1 2 3 4 5
Number of angles 6 3 0 3 3

Table 3.2: Histogram of remaining angles

ducted as follows:

• Start with search for a group of pmax = p− 1 = 4 points (tetragon).

• In a tetragon maxα =
pmax−2∑
i=1

i = 3 angles exist at each point.

• Search histogram for all points with ≥ maxα = 3 angles. pfound = 4 points

exist with ≥ 3 angles.

• Since pfound = 4 = pmax, only one preliminary candidate for a similar group of

four points exists, (points 1,2,4,5).

To check whether all angles for the preliminary candidates exist, a (5× 5× 5) array C is

created in which each angle in the 5 point network is assigned a value at the position of its

”at”, ”from” and ”to” points such that C (at, from, to) = 1 for all remaining points in Table

3.1 and C (at, from, to) = 0 for angles that were eliminated. Below the array is represented

by 5 (5× 5) tables, each table showing the angles at one of the five network points.

From \To 1 2 3 4 5

1 0 0 0 0 0
2 0 0 1 1 1
3 0 0 0 1 1
4 0 0 0 0 1
5 0 0 0 0 0

Table 3.3: Angles at pt 1

From \To 1 2 3 4 5

1 0 0 0 1 1
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 1
5 0 0 0 0 0

Table 3.4: Angles at pt 2

From \To 1 2 3 4 5

1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

Table 3.5: Angles at pt 3

In a tetragon a total of twelfe angles exist, three at each point. For the preliminary candidate,

the tetragon 1,2,4,5, these twelfe angles are listed in Table 3.8.

Summing up all values of the elements in C for the angles in Table 3.8 yields a value of

twelve. That means that all twelve angles for the candidate were found in the array. Thus,
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From \To 1 2 3 4 5

1 0 1 0 0 1
2 0 0 0 0 1
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

Table 3.6: Angles at pt 4

From \To 1 2 3 4 5

1 0 1 0 1 0
2 0 0 0 1 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0

Table 3.7: Angles at pt 5

Angle 1 2 3 4 5 6 7 8 9 10 11 12

at 1 1 1 2 2 2 4 4 4 5 5 5
from 2 2 4 1 1 4 1 1 2 1 1 2

to 4 5 5 4 5 5 2 5 5 2 4 4

Table 3.8: Angles required for tetragon 1,2,4,5

the preliminary candidate becomes the only final candidate.

Finally, a global congruency test is performed to verify the candidate. The quadratic form

Ω̂2 can directly be derived from the angular differences of the angles listed in Table 3.8. The

combined variance factor σ̂2
0 is already given in Section 2.3.2.4. The test statistic follows

as:

TG =
Ω̂2

σ̂2
0

=
1.2632 · 10−4

1.3078 · 10−4
= 0.96.

The reference value for the Fisher-distribution for a confidence level of α = 5 % and degrees

of freedom f1 = h = 5 and f2 = r1+r2 = 28 is given by FS=1−α,f1,f2 = 2.56. With 0.96 ≤ 2.56

the null hypothesis cannot be rejected and the global congruency test for the candidate

solution passes.

In this example it has been shown that the MSS-method with angles presents a viable al-

ternative to the distance approaches. The advantage of utilizing angular differences are that

they are not affected by any scale changes between epochs and that the final candidates can

be verified with a global congruency test that can be derived directly from the angular dif-

ferences, so that no least-squares adjustment is necessary. In that sense, the angle approach

combines the advantages of both distance approaches.
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3.2 Determination of movements

After the largest similar point group between the two epochs has been identified, using the

method proposed above, movements have to be derived for the unstable points. This can be

accomplished by utilizing the transformation-based approach, shown in this section.

3.2.1 The approach

As starting point for the derivation, the transformation approach in Section 2.4.3, the Gauss-

Helmert model with singular cofactor matrix, is chosen. It can handle the singular cofac-

tor matrices from the free network adjustments of each epoch directly without requiring

any preprocessing. Furthermore, the coordinate vectors from both epochs are treated as

observations, leaving only the transformation parameters to be estimated.

Given are the coordinate vectors
⇀
xi and

⇀
xj, which shall now refer to two states (or epochs)

i and j of the same network, and their singular, fully-populated cofactor matrices Qxxi and

Qxxj :

⇀
xi/j =



x1

y1

z1

...

xp

yp

zp


i/j

Qxxi/j =



qx1,x1 qx1,y1 qx1,z1 · · · qx1,xp qx1,yp qx1,zp

qx1,y1 qy1,y1 qy1,z1 · · · qy1,xp qy1,yp qy1,zp

qx1,z1 qy1,z1 qz1,z1 · · · qz1,xp qz1,yp qz1,zp
...

...
...

. . .
...

...
...

qx1,xp qy1,xp qz1,xp · · · qxp,xp qxp,yp qxp,zp

qx1,yp qy1,yp qz1,yp · · · qxp,yp qyp,yp qy1,zp

qx1,zp qy1,zp qz1,zp · · · qxp,zp qyp,zp qzp,zp


i/j

(3.7)

In general form the 3D Helmert transformation relating the coordinates of epoch i to those

of epoch j can be written as:

⇀
xi = λ ·R · ⇀xj +

⇀

T , (3.8)
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where R denotes the 3D rotation matrix,
⇀

T the vector of translations and λ the scale factor.

The problem is that the rotation matrix R, shown in (2.60), consists of highly non-linear

terms, thus requiring good initial approximations for the rotation angles. Furthermore,

this can cause slow convergence and generally a numerically unstable normal equation sys-

tem.

This problem could be solved by introducing the small-angle approximations sin (θ) = θ and

cos (θ) = 1 and furthermore assuming that the product of two or more small angles θ · θ = 0.

This will reduce the rotation matrix to

R =


1 −κ ϕ

κ 1 −ω

−ϕ ω 1

 . (3.9)

If both epochs are given in the same datum, these assumptions are most likely justified,

although this should be proven for each individual case before using them. If, however, the

coordinates of both epochs are given in different coordinate systems, the above approxima-

tions may not hold true anymore. Since the goal is to develop a general model that should

also be capable of handling 3D rotations of any magnitude, the small-angle approximations

above are not applied here.

Instead, the three Euler rotations are replaced by a quaternion rotation.

3.2.2 Rotation using quaternions

Quaternions are an alternative way to describe rotations in 3D space. They were first applied

in photogrammetry by Schut (1959) and Thompson (1959). Horn (1987) derived a closed-

form solution for the absolute orientation using quaternions.

Instead of using the three elementary rotations about the coordinate axes, a single three-

dimensional rotation about the vector
⇀
r = (rx ry rz)

T is performed with the rotation angle
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θ as illustrated in Figure 3.2. This can easily be expressed using quaternions. Quaternions

z

y

x

r
z

r
x

r
y

r
θ

Figure 3.2: Rotation in 3D space using quaternions

are essentially four-dimensional complex numbers with one real part and three imaginary

parts. They can be written as follows, (Kuipers, 1996),

q̃ = q0 + iqx + jqy + kqz or q̃ =

q0,


qx

qy

qz


 (3.10)

The element q0 describes the rotation angle while the three imaginary elements (qx, qy, qz)
T

describe the rotation vector. For quaternions certain rules such as addition, multiplication

and inversion are defined similar to those for two-dimensional complex numbers. Below are

some basic rules which are important to describe a rotation using quaternions.

Addition

The addition of two quaternions p̃ and q̃ is defined by

p̃+ q̃ =

p0 + q0,


px + qx

py + qy

pz + qz


 (3.11)
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Multiplication

The multiplication of two quaternions p̃ and q̃ is defined by

p̃ · q̃ =

p0 · q0 −


px

py

pz

 ·


qx

qy

qz

 ,


px

py

pz

×


qx

qy

qz

+ p0 ·


qx

qy

qz

+ q0 ·


px

py

pz


(3.12)

Magnitude (Length)

The magnitude (length) of a quaternion q̃ is defined by

‖q̃‖ =
√
q2

0 + q2
x + q2

y + q2
z (3.13)

Inversion

The inverse of a quaternion q̃ is defined by

q̃−1 =

[
q0, (−qx − qy − qz)T

]
‖q̃‖2 (3.14)

Rotation

Unlike a rotation using three Euler angles, quaternions need four components to describe

a rotation in 3D space. Hence, the following equation, which constrains the magnitude of

the quaternion to 1, must be met in order to obtain three degrees of freedom again.

‖q̃‖ =
√
q2

0 + q2
x + q2

y + q2
z = 1 (3.15)
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Using the unit vector
⇀
r = (rx ry rz)

T and the rotation angle θ (see Figure 3.2) the compo-

nents of the unit quaternion can be determined from

q0 = cos
(
θ
2

)
qx = rx · sin

(
θ
2

)
qy = ry · sin

(
θ
2

)
qz = rz · sin

(
θ
2

)
(3.16)

The rotation of a vector
⇀
v = (vx vy vz)

T using a quaternion q̃ and its inverse q̃−1 can be

described by the following simple expression

ṽrot = q̃ · ṽ · q̃−1 (3.17)

where ṽ =
[
0,

⇀
v
]

is a quaternion representing the vector to be rotated and ṽrot =
[
0,

⇀
vrot
]

is a

quaternion representing the rotated vector
⇀
vrot. For a unit quaternion q̃ =

[
q0, (qx qy qz)

T
]
,

its inverse can simply be determined by negating the three imaginary components such that

q̃−1 =
[
q0, (−qx − qy − qz)T

]
.

It is also possible to derive a rotation matrix R (q̃) directly from the quaternion q̃:

R (q̃) =


1− 2

(
q2
y + q2

z

)
2 (qxqy − q0qz) 2 (qxqz + q0qy)

2 (qxqy + q0qz) 1− 2 (q2
x + q2

z) 2 (qyqz − q0qx)

2 (qxqz − q0qy) 2 (qyqz + q0qx) 1− 2
(
q2
x + q2

y

)
 . (3.18)

Should the Euler angles be required, they can be back-calculated from the rotation matrix

above. However, this conversion is not unique. A rotation sequence for the Euler angles

needs to be defined first. Given the rotation sequence Rx (ω)→ Ry (ϕ)→ Rz (κ), as defined

in (2.60), the three rotation angles ω, ϕ, κ can be determined through comparison of the

elements of the rotation matrices (2.60) and (3.18) as follows:

ω = arctan

(
2 (qyqz + q0qx)

1− 2
(
q2
x + q2

y

)) ϕ = arcsin (2q0qy − 2qxqz) κ = arctan

(
2 (qxqy + q0qz)

1− 2
(
q2
y + q2

z

))
(3.19)
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For more information on quaternions and their application see Kuipers (1996).

The following are some advantages of quaternions over Euler angles:

• The rotation is described directly by one vector and one angle. There is

no need to split up the rotation in three elementary components about the

coordinate axes. Hence, the issue of the order of rotations, as inherent with

Euler angles, does not exist.

• A quaternion needs only four elements to describe a rotation instead of 9

elements in a rotation matrix.

• There is no need for trigonometric functions. A rotation can be described by

a simple quaternion multiplication, see equation (3.17). This makes their use

numerically very efficient.

• The problem of the Gimbal Lock does not exist, (Kuipers, 1996).

• If required, a rotation matrix can directly be computed from the quaternion.

3.2.3 Derivation of functional model

Replacing the Euler rotation matrix in (3.8) with a quaternion rotation yields the following

quaternion equation:

x̃i = λ ·
(
q̃ · x̃j · q̃−1

)
+ T̃ (3.20)

where q̃ =
[
q0, (qx qy qz)

T
]

is the quaternion defining the rotation between systems, x̃i =[
0,

⇀
xi
]

is the quaternion representing the coordinate vector in epoch i, x̃j =
[
0,

⇀
xj
]

is the

quaternion representing the coordinate vector in epoch j and T̃ =
[
0,

⇀

T
]

is the quaternion

representing the translation vector. Multiplication of equation (3.20) with q̃ from the right

hand-side will get rid of the quadratic components of the quaternion. Then, moving all terms
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to one side of the equation yields:

λ · q̃ · x̃j + T̃ · q̃ − x̃i · q̃ = 0 (3.21)

These are four condition equations that can be written for each point that has been observed

in both epochs. The first equation exists only because of the four dimensions of the rotation

quaternion. It reduces to 0 = 0 and can thus be neglected. The remaining three equations,

describing the transformation between system i and system j, written in explicit form,

are:

fx : q0 (Tx − xi + λ · xj) + qz (Ty − yi − λ · yj) + qy (−Tz + zi + λ · zj) = 0

fy : qz (−Tx + xi + λ · xj) + q0 (Ty − yi + λ · yj) + qx (Tz − zi − λ · zj) = 0

fz : qy (Tx − xi − λ · xj) + qx (−Ty + yi + λ · yj) + q0 (Tz − zi + λ · zj) = 0

(3.22)

An additional condition equation g, following from equation (3.15), is required to obtain

three degrees of freedom for the rotation again.

g : q2
0 + q2

x + q2
y + q2

z − l‖q̃‖ = q2
0 + q2

x + q2
y + q2

z − 1 = 0 (3.23)

In the condition equation g above, the magnitude of the quaternion is introduced as a pseudo-

observation with l‖q̃‖ = 1. Via its corresponding element in the cofactor matrix Qll it can be

controlled how strictly this condition is satisfied.

The equations (3.22) clearly illustrate the advantages of quaternions over Euler angles. There

are no trigonometric functions required to describe the rotation. Instead, they are replaced

by simple multiplications and summations. As a result, observations and unknowns are only

connected multiplicatively which yields a bi-linear, numerically more stable normal equation

system. Furthermore, there is no need for the computation of approximate values for the

rotation parameters and no small-angle approximations are required. The determination of

initial estimates is critical to converge to the correct solution when Euler angles are used.

This is not the case for quaternions. Any quaternion that satisfies equation (3.23) can be

used as an initial estimate and will yield the correct solution.
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3.2.4 Solution with the non-linear Gauss-Helmert model

Given three or more identical points p in both systems, an over-determined adjustment

problem exists in which the coordinates in each system can be treated as observations and

the transformation parameters as unknowns. The dimensions of this adjustment problem

can be described as follows:

• Number of observations: n = 6p+ 1

• Number of conditions: b = 3p+ 1

• Number of unknowns: u = 8

• Redundancy: r = b− u = 3p− 7

Each point observed in both epochs contributes six coordinate observations, three in each

system, and a set of three condition equations (3.22). One additional pseudo-observation and

condition equation is given by (3.23) for the magnitude of the quaternion. The unknowns

consist of the four components of the rotation quaternion, the three translations and the

scale factor.

This constitutes an overdetermined least-squares problem in the form of a non-linear Gauss-

Helmert model as given by (2.83) where the observation vector and its cofactor matrix are

given by

⇀

l 0
(n×1)

=


⇀
xi

⇀
xi

l‖q̃‖

 , Qll
(n×n)

=


Qxxi 0 0

0 Qxxj 0

0 0 ql‖q̃‖

 (3.24)

and the unknown parameter vector is described by

⇀
xTP
(u×1)

=

(
q0 qx qy qz Tx Ty Tz λ

)T
. (3.25)

Note that the last diagonal element of the cofactor matrix ql‖q̃‖ corresponds to the pseudo-

observation for the quaternion magnitude.

Initial approximations for the elements in the parameter vector are required in order to

solve this non-linear problem. This, however, does not necessitate any computations. As
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mentioned before, for the quaternion any values satisfying (3.23) are acceptable. The trans-

lations are linear so that again any values can be chosen and for the scalar factor a value of

1 is typically a good approximation.

For the linearization, the design matrix A and condition matrix B are required as well as the

initial misclosure vector
⇀
w0. These are obtained by differentiating the condition equations in

(3.22) and (3.23) with respect to to the parameters
⇀
xTP and observations

⇀

l and computing

the values for these equations from the initial approximations, respectively:

A
(b×u)

=

 ∂
⇀

f
/
∂

⇀
xTP

∂ g
/
∂

⇀
xTP

 B
(b×n)

=

 ∂
⇀

f
/
∂

⇀

l

∂ g
/
∂

⇀

l

 ⇀
w0

(b×1)
=

 0−
⇀

f
(

⇀

l 0,
⇀
xTP0

)
0− g

(
⇀

l 0,
⇀
xTP0

)
 . (3.26)

A detailed description of the structures of A and B together with the partial derivatives

they contain is given in Appendix A.2.

Now the linearized equation system in (2.88) can be iteratively solved as shown in detail in

Section 2.4.3.1. The validity of the condition (2.90a) has to be verified. The condition (2.90b)

is satisfies thanks to the additional requirement in (3.23), yielding three degrees of freedom

for the rotation again. The cofactor element for the pseudo-observation of the quaternion

magnitude can be set to ql‖q̃‖ = 0 in order to enforce the exact adherence of the condition

equation (3.23). This is permissible as long as the condition in (2.90a) is still satisfied.

3.2.5 Derivation of deformations

After the parameters
⇀
xTP , the a posteriori variance factor σ̂2

0 and the cofactor matrix of

the parameters QxxTP
have been determined as results of the adjustment, the final task is

to derive deformations for the group of unstable points. This is accomplished by applying

the adjusted transformation parameters to the original coordinates of all points in epoch j

according to:

x̃trj = λ ·
(
q̃ · x̃j · q̃−1

)
+ T̃ (3.27)
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where, again, x̃j and T̃ are quaternion representations for the coordinate vector
⇀
xj and

the translation vector
⇀

T ; q̃ is the rotation quaternion and x̃trj =
[
0,

⇀
x
tr

j

]
is the quaternion

representation of the transformed coordinate vector
⇀
x
tr

j in the system of epoch i. Once all

coordinates are given in the same system, the deformations can simply be derived as the

coordinate differences:
⇀

dij =
⇀
x
tr

j −
⇀
xi . (3.28)

The derivation of the corresponding cofactor matrix of the deformations Qddij is shown in

detail in Appendix A.3.

3.2.6 Numerical Example

The following is an example to demonstrate the proposed transformation-based algorithm for

the determination of deformations between two epochs of a monitoring network. Again, the

five-point network from previous examples, shown in Figure 3.1, is used. This time however,

it is extended to all three dimensions. The coordinates and their standard deviations for

epoch 1, which were derived from a free network adjustment, are given in Table 3.9 below.

The a posteriori variance factor of the network adjustment is (±0.009858)2 with a network

redundancy of 22.

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

1 97.779 47.851 10.071 ±1.1 ±1.1 ±0.6
2 93.790 129.719 11.210 ±1.1 ±1.1 ±0.6
3 39.209 116.078 9.479 ±1.2 ±1.2 ±0.8
4 27.721 45.191 10.750 ±1.0 ±1.1 ±0.6
5 22.221 100.101 9.991 ±1.2 ±1.2 ±0.8

Table 3.9: Adjusted coordinates of 3D network in epoch 1

Deformations were introduced at point 3 again. Its true deformations are listed in Table

3.10.
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Point dx dy dz
[mm] [mm] [mm]

3 −30.0 40.0 −20.0

Table 3.10: True deformations of point 3 in epoch 2

Then, the coordinates of the second epoch are derived in a different coordinate system. The

adjusted coordinates for epoch 2 are shown in Table 3.11. The a posteriori variance factor

for epoch 2 is (±0.009988)2 and the network redundancy is again 22.

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

1 97.364 −27.901 1.041 ±1.2 ±1.0 ±0.7
2 148.581 32.927 −18.804 ±1.0 ±1.2 ±0.7
3 99.360 60.189 −17.072 ±1.2 ±1.1 ±0.8
4 44.467 18.078 2.308 ±1.0 ±1.1 ±0.6
5 76.487 60.513 −12.478 ±1.3 ±1.1 ±0.9

Table 3.11: Adjusted coordinates of 3D network in epoch 2

In both epochs all five points contribute to the datum definition. The free datum parameters

consist of the rotation about the z-axis and the translations along all three coordinate axes,

so that the resulting cofactor matrices have a rank defect of four.

The largest similar point group between the two epochs has been correctly identified as

the group consisting of points 1, 2, 4 and 5 using the method proposed in the previous

section. Hence, only these p = 4 identical points are used to determine the transformation

parameters. The dimensions of the adjustment problem then follow as:

• Number of observations: n = 6p+ 1 = 25

• Number of conditions: b = 3p+ 1 = 13

• Number of unknowns: u = 8

• Redundancy: r = b− u = 3p− 7 = 5 .

Initial approximations for the parameter vector are given by

⇀
xTP =

(
q0 qx qy qz Tx Ty Tz λ

)T
=

(
1 0 0 0 0 0 0 1

)T
105



so that no computations of initial approximate values are necessary.

After populating the design and condition matrices as well as the initial misclosure vector

according to (3.26), a numerical check is performed to verify that the condition in (2.90a)

is indeed satisfied. After this is confirmed the unknown parameters can be obtained by

iteratively solving the linearized equation system given in (2.88) as is described in Section

2.4.3.1.

After six iterations the termination criterion for the corrections ∆
⇀
x for the parameter vector

of ∣∣∆⇀
x
∣∣ < 10−12

is reached and the results listed in Table 3.12 are obtained for the estimated transformation

parameters. The a posteriori standard deviation, given by (2.100), is σ̂2
0 = (±0.004230)2.

From the covariance matrix of the parameters in (2.101) the standard deviations of the

transformation parameters, also listed in Table 3.12, are derived as the square root of the

main diagonal elements. Since the components of the quaternion are difficult to interpret,

they have been converted to Euler angles according to (3.19), assuming a rotation sequence

of Rx (ω)→ Ry (ϕ)→ Rz (κ).

Parameter Value σ̂ Parameter Value σ̂

q0 0.9227540829 ±6.07 · 10−7

qx 0.1202321977 ±3.35 · 10−6 ω 11.000488 ◦ ±1.4 ′′

qy −0.0467719864 ±3.03 · 10−6 ϕ −9.999752 ◦ ±1.4 ′′

qz 0.3631549290 ±1.30 · 10−6 κ 41.999442 ◦ ±0.6 ′′

Tx 7.4900 m ±0.54 mm
Ty 3.6845 m ±0.92 mm
Tz −2.6021 m ±0.56 mm
λ +196.7 ppm ±10.6 ppm

Table 3.12: Adjusted transformation parameters and standard deviations for epoch 2

For comparison the true transformation parameters are given in Table 3.13 below. The

standard deviations for the estimated rotation parameters are at about the 1 ′′-level for all
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Parameter ω ϕ κ Tx Ty Tz λ
Value 11.0 ◦ −10.0 ◦ 42.0 ◦ 7.5 m 3.7 m −2.6 m 200.0 ppm

Table 3.13: True transformation parameters for epoch 2

three rotations. Their deviations from the true rotations are between 1 ′′ and 2 ′′. Thus

the rotation parameters can be considered as accurately determined. The derived standard

deviations for the translation parameters are at the sub-millimetre level. Their deviations

from the true translations on the other hand range from 2.1 mm for the z-component to

1.55 cm for the y-component. These significant differences are attributed to a datum change,

since point 3 was omitted from the determination of the transformation parameters. The

scale factor with an estimated standard deviation of ±10.6 ppm and a deviation of only

3.3 ppm from its true value was successfully recovered. The overall high accuracies for the

estimated parameters are of course due to the high accuracies of the input coordinates which

are at the millimetre-level.

The estimated deformations of the five points together with their standard deviations are

shown in Table 3.14 below. The deformations estimated for the four stable points are at the

Point dx dy dz σ̂dx σ̂dy σ̂dz

1 −0.2 −0.1 −0.2 ±1.6 ±1.6 ±1.0
2 −0.1 0.3 0.4 ±1.6 ±1.6 ±1.0
3 −28.2 43.2 −18.4 ±1.6 ±1.7 ±1.2
4 −0.2 0.1 0.3 ±1.9 ±1.6 ±0.9
5 0.5 −0.4 −0.7 ±1.7 ±1.7 ±1.2

Table 3.14: Estimated deformations and standard deviations in epoch 2 in [mm]

sub-millimetre level while their standard deviations vary between ±1.0 mm and ±2.0 mm.

Hence, they can be considered insignificant. The estimated deformations of the unstable

point 3 deviate between 1.6 mm and 3.2 mm from their true values given in Table 3.10.

Thus, it can be said that they have been recovered successfully.
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3.3 Multiple-epoch comparison

So far only two epochs have been compared with each other. If more than two epochs are

available, multiple two-epoch comparisons, as described above, can be carried out. Given

m epochs of a monitoring network, a total of
m−1∑
i=1

i independent two-epoch transformation

adjustments can be performed. Moreover, if the deformations between different epochs are

to be compared (e. g. to analyze movement patterns and velocities), further transformations

into a common system have to be carried out. For example, given m = 3 epochs, three in-

dependent two-epoch transformation adjustments can be computed: from epoch 2 to epoch

1, from epoch 3 to epoch 1 and from epoch 3 to epoch 2. If now the deformations between

epochs 1 and 2 shall be compared to those between epochs 2 and 3, an additional transfor-

mation (e. g. of the deformations between epochs 2 and 3 into the system of epoch 1) has to

be carried out1.

Alternatively, each epoch can only be compared to a chosen base (or reference) epoch. The

deformations with respect to epochs other than the base epoch can then be calculated di-

rectly as straight differences of the coordinates transformed into the system of the base epoch.

This reduces the number of necessary transformation adjustments to m − 1. Furthermore,

the comparison of multiple epochs with respect to one base epoch can be conveniently per-

formed in one single multiple-epoch adjustment rather than a series of multiple two epoch

adjustments. How this is accomplished is explained in this section.

3.3.1 Localization of largest similar point group common to all epochs

To identify the largest similar point group between multiple epochs, the algorithm proposed

in Section 3.1 should be executed for all for all two-epoch comparisons with respect to the

1Note that no further adjustment for the determination of the transformation parameters is required, as
the transformation parameters from epoch 2 to epoch 1 have already been computed and can directly be
applied to the deformations.
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chosen reference epoch. Thus, the stable computational base for each epoch with respect to

the base epoch is obtained which is then used to determine the transformation parameters

between the base epoch and each subsequent epoch. But typically this stable computational

base is going to change over epochs due to points starting, and possibly ceasing, to move

over time. This means that, although after transformation the coordinates of all epochs are

known in the system of the base epoch, they do not necessarily refer all to the same datum.

As a result the coordinates of the different epochs cannot be compared amongst each other

but only to those of the base epoch.

To illustrate this, let’s consider the following example. A monitoring network consisting of

five points has been observed in three epochs. In epoch 2 only point 3 was found to be

unstable, so that the remaining points 1, 2, 4 and 5 can form the stable computational base

for the transformation from epoch 2 to epoch 1. In epoch 3 it has been found that in addition

to point 3 also point 5 has moved significantly. Consequently, the stable computational base

for the transformation from epoch 3 to epoch 1 can only consist of the points 1,2 and 4.

As a result the transformed coordinates of epoch 2 in the system of epoch 1 cannot directly

be compared to the transformed coordinates of epoch 3 in the system of epoch 1 since they

both relate to different datum definitions. If epochs 2 and 3 are to be compared as well,

only points 1, 2 and 4 have to be chosen as computational base for both, the transformation

from epoch 2 to epoch 1 as well as the transformation from epoch 3 to epoch 1.

This means that if multiple epochs are to be compared amongst each other and not only to

the base epoch, the stable computational base common to all epochs needs to be established.

This can only be accomplished by performing the search for the largest similar point group

for all possible
m−1∑
i=1

i two-epoch comparisons. Then, only the coordinates of the group of

similar points common to all epochs will form the input observations for the transformation

adjustment.
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3.3.2 Determination of movements

The mathematical model presented in Section 3.2 can easily be extended to solve for the

transformations of more than two epochs at a time.

3.3.2.1 Derivation of functional model

Given a monitoring network observed in m epochs and considering epoch 1 as the reference

epoch, one can write the transformation from epoch 2 to epoch 1 according to equation

(3.20) as follows:

x̃1 = λ1
2 ·
(
q̃1

2 · x̃2 ·
(
q̃1

2

)−1
)

+ T̃ 1
2 . (3.29)

Similarly, the transformation from epoch i to epoch 1 can be expressed as:

x̃1 = λ1
i ·
(
q̃1
i · x̃i ·

(
q̃1
i

)−1
)

+ T̃ 1
i . (3.30)

And finally, the transformation of the last epoch m to the base epoch 1 can be written

as:

x̃1 = λ1
m ·
(
q̃1
m · x̃m ·

(
q̃1
m

)−1
)

+ T̃ 1
m . (3.31)

Each of the three equations above represents a two-epoch comparison between the base epoch

1 and one of the following epochs. Combining all of the above equations and modifying

them according to equation (3.21) yields the following system of equations f . Note that for

reasons of readability the superscript index ”1” of the base epoch has been omitted from the

transformation parameters as epoch 1 is the base epoch for all transformations.

f :

λ2 · q̃2 · x̃2 + T̃2 · q̃2 − x̃1 · q̃2 = 0

...

λi · q̃i · x̃i + T̃i · q̃i − x̃1 · q̃i = 0

...

λm · q̃m · x̃m + T̃m · q̃m − x̃1 · q̃m = 0

(3.32)
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In addition, for each of the above transformations an additional condition equation for each

quaternion of the form (3.23) is required, to maintain the three degrees of freedom for the

rotation. This yields the following system of equations g:

g :

(q2
0)2 + (q2

x)2 +
(
q2
y

)
2

+ (q2
z)2 −

(
l‖q̃‖
)

2
= 0

...

(q2
0)i + (q2

x)i +
(
q2
y

)
i
+ (q2

z)i −
(
l‖q̃‖
)
i

= 0

...

(q2
0)m + (q2

x)m +
(
q2
y

)
m

+ (q2
z)m −

(
l‖q̃‖
)
m

= 0

(3.33)

In this interconnected transformation the two-epoch transformations from all subsequent

epochs to the reference epoch are solved in one step using all available information about

the monitoring network together.

3.3.2.2 Solution of the adjustment problem

To get an idea of the size of the equation system, let’s assume a monitoring network has

been observed in m epochs and that a stable computational base of p points is common to

all epochs. The dimensions of the adjustment problem are as follows:

• Number of transformations: t = m− 1

• Number of observations: n = 3 · p ·m+ t

• Number of conditions: b = 3 · p · t+ t

• Number of unknowns: u = 8 · t

• Redundancy: r = b− u = (m− 1) · (3 · p− 7) .

Each point contributes three coordinate observations for each epoch it has been observed

in. Furthermore, there is one additional pseudo-observation of the quaternion magnitude for

each transformation. Each point also establishes three condition equations (3.22) for each

transformation. Additionally there is one condition equation (3.23) for the magnitude of

each quaternion. For m epochs, (m− 1) transformations are performed as every subsequent
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epoch is transformed back to the base epoch. The unknowns now consist of the (m− 1)

sets of transformation parameters (q̃,
⇀

T , λ). Looking at the redundancy, it becomes obvious

that at least two epochs need to be available and that a minimum of three points need to

be observed in each epoch in order to obtain an over-determined system.

If this is the case, an adjustment problem in the form of a non-linear Gauss-Helmert

model as given by (2.83) exists, where the observation vector and its cofactor matrix are

given by

⇀

l 0
(n×1)

=



⇀
x1

...

⇀
xm

l‖q̃‖2
...

l‖q̃‖m


, Qll

(n×n)

=



Qxx1 0 0 0 0 0

0
. . . 0 0 0 0

0 0 Qxxm 0 0 0

0 0 0 q‖q̃‖2 0 0

0 0 0 0
. . . 0

0 0 0 0 0 q‖q̃‖m


(3.34)

and the unknown parameter vector is described by

⇀
xTP
(u×1)

=



(
q0 qx qy qz Tx Ty Tz λ

)T
2

...(
q0 qx qy qz Tx Ty Tz λ

)T
m

 . (3.35)

Like for the two-epoch comparison, the pseudo-observations are given with l‖q̃‖i = 1 and

their corresponding elements in the cofactor matrix can be set to q‖q̃‖i = 0 to enforce the

exact adherence of the condition equations (3.23).

Initial approximations for the transformation parameters, as before, do not have to be com-

puted but can be defined as q̃0 =
[
1, (0 0 0)T

]
for all quaternions,

⇀

T 0 = (0 0 0)T for all

translations and λ0 = 1 for all scale factors.

With that in mind the design and condition matrices A and B as well as the initial misclosure

vector
⇀
w0 can be populated according to (3.26) where f and g now represent the functions

112



in (3.32) and (3.33), respectively. The structure of the two matrices is shown in more detail

in Appendix A.4.

Now the linearized equation system in (2.88) can be iteratively solved as shown in detail in

Section 2.4.3.1. It is important to stress that the validity of the condition (2.90a) has to be

verified. The condition (2.90b) is always satisfies because of the additional requirement in

(3.23).

3.3.2.3 Derivation of deformations

After the transformation parameters are determined, the coordinates of all subsequent epochs

can be transformed into the system of the reference epoch by

x̃tr2 = λ2 ·
(
q̃2 · x̃2 · (q̃2)−1)+ T̃2

...

x̃tri = λi ·
(
q̃i · x̃i · (q̃i)−1)+ T̃i

...

x̃trm = λm ·
(
q̃m · x̃m · (q̃m)−1)+ T̃m

(3.36)

where x̃tri =
[
0,

⇀
x
tr

i

]
is the quaternion representation of the transformed coordinate vector

⇀
x
tr

i in the system of the base epoch. The deformations
⇀

d1i between the base epoch 1 and an

arbitrary epoch i then follow from:

⇀

d1i =
⇀
x
tr

i −
⇀
x1 . (3.37)

Similarly, the transformations between any two arbitrary epochs i and j can be derived

from:
⇀

dij =
⇀
x
tr

j −
⇀
x
tr

i . (3.38)

The derivation of the cofactor matrices Qxxtri
is given in Appendix A.3. The cofactor matrices

Qddij for the deformations
⇀

dij follow from:

Qddij = Qxxtri
+ Qxxtrj

. (3.39)
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3.3.2.4 Numerical example

To demonstrate the multi-epoch transformation adjustment a third epoch is added to the

example shown in 3.2.6 and all three epochs are analyzed together. The adjusted coordinates

and their standard deviations for epoch 3 are listed in Table 3.15. The a posteriori variance

factor of the third epoch is (±0.010064)2 and the network redundancy remains 22. The

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

1 −13.467 96.326 52.450 ±1.1 ±1.0 ±0.8
2 −93.086 115.581 49.876 ±1.0 ±1.1 ±0.7
3 −93.400 64.687 25.761 ±1.1 ±1.1 ±0.9
4 −28.379 34.090 23.852 ±1.1 ±1.0 ±0.7
5 −82.268 45.139 19.561 ±1.2 ±1.1 ±0.9

Table 3.15: Adjusted coordinates of 3D network in epoch 3

coordinates for epoch 1 and 2 are taken from Table 3.9 and Table 3.11, respectively. Again,

in all three epochs the datum is defined by all five points.

Applying the algorithm proposed in Section 3.1 to compare each two of the three epochs

yields the largest similar point group common to all three epochs. In this case point 3 is the

only unstable point in both, epochs 2 and 3, so that the common stable computational base

consists of points 1, 2, 4 and 5. The true deformations of point 3 for epochs 2 and 3 in the

system of epoch 1 are given in Table 3.16.

Epoch dx dy dz

2 −30.0 40.0 −20.0
3 −70.0 90.0 −30.0

Table 3.16: True deformations of point 3 in epochs 2 and 3 with respect to epoch 1 in [mm]

With p = 4 identical points and m = 3 epochs the dimensions of the adjustment problem

are:
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• Number of transformations: t = m− 1 = 2

• Number of observations: n = 3 · p ·m+ t = 38

• Number of conditions: b = 3 · p · t+ t = 26

• Number of unknowns: u = 8 · t = 16

• Redundancy: r = b− u = (m− 1) · (3 · p− 7) = 10 .

Initial approximations for the parameter vector are given by

⇀
xTP
(u×1)

=


(
q0 qx qy qz Tx Ty Tz λ

)T
2(

q0 qx qy qz Tx Ty Tz λ

) T

3

 =


(

1 0 0 0 0 0 0 1

)T
2(

1 0 0 0 0 0 0 1

) T

3

 .

After populating the design and condition matrices as well as the initial misclosure vector,

a numerical check is performed to verify that the condition in (2.90a) is indeed satisfied.

After this is confirmed the unknown parameters can be obtained by iteratively solving the

linearized equation system given in (2.88) as is described in Section 2.4.3.1.

The iteration reaches the convergence threshold of
∣∣∆⇀
x
∣∣ < 10−12 after six steps. The

a posteriori variance factor for the adjustment is σ̂2
0 = (±0.004820)2. The adjusted transfor-

mation parameters for the transformation from epoch 2 to epoch 1 and epoch 3 to epoch 1

together with their standard deviations are listed in Table 3.17. Note that for lack of space

only the geometrically interpretable Euler angles are given for the rotation parameters.

For comparison, the true transformation parameters for epochs 2 and 3 are given in Table

3.18 below.

The estimated transformation parameters for epoch 2 are almost identical to those from the

two-epoch comparison shown in Table 3.12. The differences are at the sub-arcsecond and sub-

millimetre level, respectively and can thus be considered insignificant. Again, the translation

parameters show a significant difference from the true values, which can be interpreted as a

datum change due to point 3 being eliminated from the stable computational base.
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Transformation from Ep. 2 to Ep. 1 Transformation from Ep. 3 to Ep. 1
Parameter Value σ̂ Parameter Value σ̂

ω 11.000455 ◦ ±1.7 ′′ ω −23.500005 ◦ ±1.2 ′′

ϕ −9.999728 ◦ ±1.6 ′′ ϕ 7.999975 ◦ ±1.4 ′′

κ 41.999449 ◦ ±0.7 ′′ κ −75.500246 ◦ ±0.7 ′′

Tx 7.4900 m ±0.62 mm Tx −5.0144 m ±0.77 mm
Ty 3.6845 m ±1.05 mm Ty 8.8819 m ±1.01 mm
Tz −2.6020 m ±0.64 mm Tz −1.4024 m ±0.66 mm
λ +196.7 ppm ±12.1 ppm λ +234.4 ppm ±12.1 ppm

Table 3.17: Adjusted transformation parameters and standard deviations for multi-epoch
comparison

Parameter ω ϕ κ Tx Ty Tz λ

Epoch 2 11.0 ◦ −10.0 ◦ 42.0 ◦ 7.5 m 3.7 m −2.6 m +200.0 ppm
Epoch 3 −23.5 ◦ 8.0 ◦ −75.5 ◦ −5.0 m 8.9 m −1.4 m +250.0 ppm

Table 3.18: True transformation parameters for epochs 2 and 3

For epoch 3 the estimated rotation parameters are very close to their true values with

differences at the sub-arcsecond level. Their standard deviations are at about the 1 ′′-level

which is comparable to those for epoch 2. The magnitude of the differences of the translations

vary between 2.4 mm in z-direction up to 1.8 cm in y-direction compared to the true values.

This again is similar to the translations for epoch 2 and can be explained with a datum

shift to the new computational base. The standard deviations of the translations are at the

1 mm-level; very similar to epoch 2 as well. The deviation of the scale factor from its true

value is about 15.6 ppm, which is much larger than the deviation of 3.3 ppm for the second

epoch, and exceeds its standard deviation of 12.1 ppm slightly.

The estimated deformations of the five monitoring points between epochs 1 and 2 together

with their standard deviations are shown in Table 3.19 below. Like the transformation

parameters, the deformations are identical to those from the two-epoch comparison, shown

in Table 3.14.

The estimated deformations between epochs 1 and 3 together with their standard deviations

are listed in Table 3.20. Similarly, to the previous comparison, the apparent movements
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Point dx dy dz σ̂dx σ̂dy σ̂dz

1 −0.2 −0.1 −0.2 ±1.7 ±1.6 ±1.0
2 −0.1 0.3 0.3 ±1.7 ±1.6 ±1.0
3 −28.2 43.2 −18.4 ±1.7 ±1.7 ±1.2
4 −0.2 0.1 0.4 ±1.5 ±1.7 ±0.9
5 0.5 −0.4 −0.7 ±1.7 ±1.7 ±1.2

Table 3.19: Estimated deformations and standard deviations in epoch 2 with respect to
epoch 1 in [mm]

of the stable points are at the sub-millimetre level, while the standard deviations for all

deformations are between 1 mm and 2 mm. Comparing the estimated deformations of point

3 with its true movements in Table 3.18 shows that, with deviations of less than 2 mm, they

have been accurately recovered.

Point dx dy dz σ̂dx σ̂dy σ̂dz

1 0.7 −0.3 −0.1 ±1.7 ±1.6 ±1.0
2 −0.5 −0.2 0.4 ±1.7 ±1.6 ±1.0
3 −68.4 90.4 −28.1 ±1.7 ±1.7 ±1.2
4 −0.3 0.5 0.4 ±1.5 ±1.7 ±0.9
5 −0.1 0.2 −0.9 ±1.7 ±1.7 ±1.2

Table 3.20: Estimated deformations and standard deviations in epoch 3 with respect to
epoch 1 in [mm]

Finally, the estimated deformations between epochs 2 and 3, in the system of epoch 1,

together with their standard deviations are shown in Table 3.21 below. Again, the apparent

movements of the stable points are at the sub-millimetre level while the standard deviations

for all deformations range vary between 1 mm and 2 mm. The true deformations of point 3

follow as the difference of its deformations in epoch 3 and 2 with respect to epoch 1, given

in Table 3.18. The estimated movements of point 3, with deviations of less than 3 mm from

their true values, have been accurately determined.

It should be pointed out again, that these deformations are derived directly as the differ-

ences of the transformed coordinates of epoch 3 and the transformed coordinates of epoch

2 in the system of epoch 1. Consequently, the total sum of deformations over all epochs
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Point dx dy dz σ̂dx σ̂dy σ̂dz

1 0.9 −0.2 0.1 ±1.7 ±1.6 ±1.1
2 −0.4 −0.5 0.1 ±1.8 ±1.7 ±1.1
3 −40.2 47.2 −9.7 ±1.7 ±1.7 ±1.2
4 −0.1 0.4 0.0 ±1.5 ±1.8 ±1.0
5 −0.6 0.6 −0.2 ±1.8 ±1.7 ±1.3

Table 3.21: Estimated deformations and standard deviations between epochs 2 and 3 in the
system of epoch 1 in [mm]

(
⇀

d12 +
⇀

d23 −
⇀

d13

)
equates exactly to zero, ensuring that the estimated deformations are

always consistent.

3.4 Discussion

A modified MSS-method is proposed utilizing angles rather than distances in a combinatorial

search for the largest similar point group between two epochs of a monitoring network. The

comparison of angles between epochs helps to reduce the number of combinations that have

to be examined by eliminating those angles that exhibit significant changes. The use of a

histogram of the distribution of the remaining angles in the network in combination with

a three-dimensional array to verify the existence of all required angles for a temporary

candidate, make the search very efficient.

The angle-based approach requires a higher initial computational effort to calculate the

angles in all epochs, since the number of angles in a network with p points is with p ·
p−2∑
i=1

i >

p−1∑
i=1

i, the number of distances in a network. This however, pays off later, as the statistical

test for each candidate solution can directly be derived from the angular differences between

epochs without the computation of a least-squares estimation, which is required for the

distance-ratios approach. While the distance-difference approach does not require a least-

squares adjustment either, it is not applicable if scale changes between epochs are expected.

In this regard, the angle-based MSS-approach combines the advantages of both distance-
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based MSS-methods. An example to illustrate the proposed method has been presented.

With the angle-based MSS-method the number of combinations to be analyzed could be

reduced to only one: the correct solution. A further advantage of the MSS-method in general

is that the localization of the largest similar (or congruent) point group can be carried out

independently of the coordinate system and datum definition of each individual epoch, since

only datum-invariant elements (distances or angles) are used.

A transformation-based approach is chosen to determine deformations from the adjusted

coordinates of a monitoring network in each epoch. The advantage of a transformation-

based approach is that, not only different scales between epochs can be accommodated.

Moreover, each epoch can have its own coordinate system. The approach chosen here, on

the basis of a non-linear Gauss-Markov model furthermore allows the use of the singular

cofactor matrices directly without requiring any preprocessing. Merely the compliance with

a rank condition needs to be verified.

The highly non-linear elementary rotations with Euler-angles are replaced with a quater-

nion rotation, yielding a numerically more stable normal equation system. This allows to

omit the computation of initial approximations for the unknown transformation parameters.

Furthermore, no assumptions are made that restrict the validity of the model.

If more than two epochs are available for analysis, the approach can be extended so that all

epochs can be processed simultaneously in one multiple-epoch comparison, rather than in

multiple two-epoch comparisons. In two numerical examples it is demonstrated that in a two-

epoch comparison or multiple-epoch comparison, the arbitrarily chosen 3D transformations

as well as the introduced deformations are accurately recovered.
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Chapter 4

COMPUTER SIMULATIONS

In this chapter the performance of the proposed methodologies for the search of the largest

similar point group and the transformation-based determination of deformations shall be

evaluated in comparison to other methods. For this purpose a simulated monitoring network

observed in five epochs is analyzed in two scenarios. In the first case, Scenario A, a typical

monitoring scenario is depicted where all epochs are given in the same coordinate system and

refer to the same computational base. Furthermore, no scale changes are inherent between

epochs. The second scenario describes a case where the coordinate system changes between

the base epoch and the subsequent epochs, so that a full 3D transformation, including a

scale change, is required to compare coordinates and derive deformations.

The monitoring network consists of twelve points. The 3D coordinates of the monitoring

points are simulated in a local coordinate system. The simulated (true) coordinates of the

Point x y z

101 10922.23 5081.20 97.13
102 10836.93 5332.83 98.23
103 10947.37 5568.03 101.06
104 10873.50 5786.00 103.96
105 10748.03 5481.27 96.70
106 10687.77 5474.07 99.65
107 10714.33 5544.37 105.58
108 10739.43 5710.70 98.08
109 10526.47 5804.63 101.35
110 10575.93 5539.33 104.21
111 10712.20 5171.50 100.82
112 10526.47 5028.83 99.56

Table 4.1: Simulated coordinates of network points in [m]

twelve points for the base epoch can be found in Table 4.1. A horizontal plot of the network
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points is shown in Figure 4.1. The true coordinates for the subsequent epochs are obtained
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Figure 4.1: Simulated monitoring network with observations indicated by arrows

by adding simulated deformations for each epoch to the coordinates of the base epoch. No

deformations were introduced in epoch 2, so that the true coordinates for that epoch are

identical to those of the base epoch. In epoch 3 deformations were introduced to three of

the twelve points. This number was increased to six deformed points in epoch 4 and nine

unstable points in epoch 5. The simulated deformations for the epochs 3 to 5 are listed in

Table 4.2 below.

The network points 102, 108, 110 and 111 were chosen as instrument stations from which

observations are back-calculated to all other points in the network. The observations consist

of horizontal directions, zenith angles and slope distances. Random noise was then added to

simulate observations with standard deviations of ±5 ′′ for horizontal directions and zenith

angles and ± (5 mm + 3 ppm) for the slope distances.

A network analysis is performed to determine a set of coordinates from the generated obser-
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Epoch 3 Epoch 4 Epoch 5
Point dx dy dz dx dy dz dx dy dz

101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
102 −16.0 21.0 −11.0 −32.0 32.0 −20.0 47.0 37.0 −26.0
103 0.0 0.0 0.0 0.0 0.0 0.0 23.0 18.0 −14.0
104 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
105 19.0 −17.0 −10.0 39.0 −23.0 −20.0 47.0 −39.0 −28.0
106 0.0 0.0 0.0 19.0 −23.0 −8.0 42.0 −33.0 −27.0
107 0.0 0.0 0.0 0.0 0.0 0.0 −17.0 −23.0 −11.0
108 12.0 −24.0 −14.0 33.0 −47.0 −26.0 55.0 −58.0 −38.0
109 0.0 0.0 0.0 10.0 −17.0 −12.0 19.0 −40.0 −19.0
110 0.0 0.0 0.0 0.0 0.0 0.0 −13.0 −20.0 −11.0
111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
112 0.0 0.0 0.0 −20.0 24.0 −17.0 −32.0 40.0 −51.0

Table 4.2: True deformations of network points for epochs 3 to 5 in [mm]

vations that describes the geometry of the network in each epoch. The measurements already

determine some of the datum parameters. The rotations about the x- and y-axes are defined

by zenith angle observations at different orientations and the scale factor is determined by

the observed slope distances. An inner-constraints approach is used to define the remaining

four datum parameters, the rotation about the z-axis and the three translations along the

coordinate axes. All points contribute to the network datum in every epoch. Since addi-

tional nuisance parameters in the form of orientation offsets are required, this is achieved by

performing a partial trace minimization for all coordinate unknowns.

4.1 Scenario A

The first scenario depicts a standard case in the sense that all epochs are given in the

same local reference frame and with identical datum definitions. This allows to apply the

classical congruence analysis as described in Section 2.3.2 to the data set as well. After the

global congruency testing, the localization step is carried out using four different methods: a

single-point analysis as is used in the classical approach, the MSS-method based on distance
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differences and distance ratios, proposed in Neitzel (2004), and the MSS-method based on

angles, as shown in Section 3.1. The following determination of the deformations is performed

in two ways: by a re-adjustment of the original observations, as shown in Section 2.3.2.3 and

used in the classical congruence analysis, and by the transformation-based approach proposed

in Section 3.3.

4.1.1 Results of network analyses

Before a deformation analysis can be performed, a network analysis has to be carried out to

obtain coordinates and their standard deviations for each epoch. As input for the network

adjustment serve the simulated observations and their standard deviations described above.

The observations are considered uncorrelated so that their cofactor matrix is a diagonal

and thus regular matrix. The coordinates in Table 4.1 serve as initial approximations for the

coordinate unknowns in the network adjustment for all epochs and hence define the reference

frame for the monitoring network in this scenario.

In each epoch 132 observations were collected. The parameter vector consists of 40 unknowns;

3 · 12 coordinates of the monitoring points and one orientation offset for each of the four

instrument stations. With the four additional constraint equations defining the free datum

parameters, the network redundancy for each epoch is 96. The a priori standard deviation

was chosen as σ0 = ±1 for all epochs.

The a posteriori standard deviations σ̂0k (for k = 1 . . . 5) together with the test statistics Tχ2
k

of the global test of the adjustment model from (2.22) are summarized in Table 4.3 below.

The upper and lower boundaries for the global test of the adjustment model are given by

χ2
S=0.975, r=96 = 125.00 and χ2

S=0.025, r=96 = 70.78 respectively, for a chosen confidence level of

α = 5 %. A look at Table 4.3 shows that all epochs pass the global test of the adjustment

model indicating appropriately chosen functional and stochastical models as well as the
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Epoch σ̂0k Tχ2
k

1 ±1.001125 96.22
2 ±1.092602 114.60
3 ±0.951760 86.96
4 ±0.978961 92.00
5 ±0.990137 94.12

Table 4.3: Scenario A: a posteriori standard deviations and test statistics for global test of
adjustment model for all epochs

absence of outliers in the observations.

The adjusted coordinates and their estimated standard deviations can be found in Appendix

B.1. The estimated standard deviations vary roughly between ±1 mm and ±5 mm through-

out all epochs, where points closer to the centroid of the network have better accuracies

while for points further away the accuracy decreases, due to the inner-constraints datum

definition. Finally, it should be noted that the resulting cofactor matrix of the adjusted

coordinates is rank-deficient by four.

4.1.2 Global congruency testing

Before a global congruency test can be performed to determine whether deformations have

occurred, it has to be verified that the coordinates of the five epochs are indeed comparable.

This can be done by examining the a posteriori variances with the statistical test described

in (2.24). In this simulation all subsequent epochs are compared to the base epoch 1 only,

so that a comparison of the variance factor of the base epoch with those of the following

epochs is required. The test statistics TF for these tests are given in Table 4.4 below. With

Epochs TF σ̂0

1 and 2 1.19 ±1.047862
1 and 3 1.11 ±0.976754
1 and 4 1.04 ±0.990105
1 and 5 1.02 ±0.995646

Table 4.4: Scenario A: test statistics and combined standard deviations
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the same network redundancy for all epochs and a chosen confidence level of α = 5 %, the

boundary value is constant for all epochs and is given by FS=0.975, f1=f2=96 = 1.50. Hence,

this test passes for all epochs and the combined variance factors σ̂2
0 can be derived from

(2.28). The resulting standard deviations σ̂0 are shown in Table 4.4 as well.

The global congruency test can now be carried out for epochs 2 to 5 with respect to epoch 1

according to (2.35). The quadratic forms Ω̂2 following from (2.31) and the test statistics TG

according to (2.35c) for the four congruency tests are shown in Table 4.5. The reference value

Epochs Ω̂2 TG

2 1.024820 0.93
3 18.543589 19.44
4 62.056041 63.30
5 91.588294 92.39

Table 4.5: Scenario A: quadratic forms Ω̂2 and test statistics TG for all global congruency
tests

for the test follows from the Fisher-distribution with a chosen confidence level of α = 5 %,

f1 = h = 32 and f2 = ri + rj = 192 as FS=0.95, f1=32, f2=192 = 1.50 for all epochs. A look at

Table 4.5 reveals that the global congruency test only passes for epoch 2 while it fails for

epochs 3 to 5, so that the presence of deformations in these epochs must be assumed. This,

of course, is in accordance with the simulated data.

4.1.3 Localization

With the outcome of the congruency tests in mind, the next step is now to identify stable

and unstable points in each epoch. This is done with four different methods: the traditional

single-point analysis as described in Section 2.3.2.2, the MSS-method based on distance

differences and distance ratios as shown in Section 2.3.4.3.1 and Section 2.3.4.3.2, respectively

as well as the MSS-method based on angles, introduced in Section 3.1.
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4.1.3.1 Classical congruence analysis

The single-point analysis consists of a series of localized F -tests according to (2.39) for each

epoch. Of all points that fail the test, the one with the largest local test statistic TL is

eliminated. After an S -transformation of the remaining points and their cofactor matrix to

the new computational base, reduced by the eliminated point, the global congruency test is

repeated. If it still fails, this procedure is repeated until the global congruency test passes

for all remaining points.

Epoch 2

For the epoch 1 – epoch 2 comparison the global congruency test did pass. But according to

(Gründig et al., 1985), the local test is more sensitive and may uncover small, local deviations

that may be overshadowed by the effects of other parameters included in a global test. For

this reason the local tests shall be carried out to ensure that all points pass these as well.

Table 4.6 below lists the local test statistics TL from (2.39c) for all twelve network points in

epoch 2. The boundary value for the local test is the same for all epochs and is given by

Point 101 102 103 104 105 106 107 108 109 110 111 112
TL 1.78 1.45 0.59 0.51 1.49 0.79 0.28 0.87 1.23 0.67 1.75 0.56

Table 4.6: Scenario A: local test statistics TL for all points in epoch 2

FS=0.95, f1=3, f2=192 = 2.65. In this case all twelve monitoring points pass the local test.

Epoch 3

For the comparison of epoch 3 with epoch 1 it is expected that at least one point fails the

local test, due to the outcome of the global congruency test. The local test statistics for all

points in epoch 3 are listed in Table 4.7. In epoch 3 eight points fail the local test. Point

108 is the one with the largest test statistic TL = 107.33 and is thus eliminated. After an

S -transformation to the reduced computational base, the global congruency test is repeated
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Point 101 102 103 104 105 106 107 108 109 110 111 112
TL 2.85 86.36 1.58 7.83 25.37 3.11 1.88 107.33 2.30 1.41 4.94 3.31

Table 4.7: Scenario A: local test statistics TL for all points in epoch 3

with the result:

TG = 10.34 > FS=0.95, f1=29, f2=192 = 1.53 ,

so that the local tests are re-computed for the eleven remaining points yielding the local

test statistics shown in Table 4.8 below. Now seven points fail the test and point 102 is

Point 101 102 103 104 105 106 107 109 110 111 112
TL 3.22 64.47 3.17 0.65 39.63 1.96 2.84 1.29 1.02 3.64 3.27

Table 4.8: Scenario A: local test statistics TL for remaining points in epoch 3 after elimination
of point 108

eliminated next. After an S -transformation, the global congruency test for the remaining

points fails again with:

TG = 4.10 > FS=0.95, f1=26, f2=192 = 1.55 .

The local test statistics for the next iteration are listed in Table 4.9. Point 105 has the

Point 101 103 104 105 106 107 109 110 111 112
TL 1.90 0.34 1.01 25.35 0.88 0.21 2.12 0.55 7.90 2.59

Table 4.9: Scenario A: local test statistics TL for remaining points in epoch 3 after elimination
of point 102

largest local test statistic and is thus eliminated. Now, all three points that deformations

have been introduced to in epoch 3 have been correctly identified and the repeated global

congruency test passes with:

TG = 1.33 ≤ FS=0.95, f1=23, f2=192 = 1.58 .

But when checking each point with a local test again, the results in Table 4.10 indicate that

deformations are still inherent in point 111. After the (incorrect) elimination of point 111,
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Point 101 103 104 106 107 109 110 111 112
TL 1.78 0.54 0.82 0.59 0.54 1.43 0.36 5.69 2.40

Table 4.10: Scenario A: local test statistics TL for remaining points in epoch 3 after elimi-
nation of point 105

the global congruency test passes again with:

TG = 0.67 ≤ FS=0.95, f1=20, f2=192 = 1.62 .

And finally, all local tests pass as well:

Point 101 103 104 106 107 109 110 112
TL 0.32 1.29 0.59 0.68 0.48 1.36 0.26 0.30

Table 4.11: Scenario A: local test statistics TL for remaining points in epoch 3 after elimi-
nation of point 111

Epoch 4

For the comparison of epoch 4 with epoch 1, the results of the repeated global congruency

tests and local tests are summarized in tabular form, as the analysis becomes quite lengthy.

In Table 4.12 the quantities related to the global congruency tests are listed, including the

rank h of the weight matrix of the coordinate differences Pdd in (2.30) and the global test

statistic TG from (2.35c) for each iteration of the test, starting with the initial congruency

test already shown in Table 4.5.

Iteration h TG FS=0.95, f1=h, f2=192

1 32 63.30 1.50
2 29 34.90 1.53
3 26 12.47 1.55
4 23 7.42 1.58
5 20 4.74 1.62
6 17 2.89 1.68
7 14 0.61 1.74

Table 4.12: Scenario A: results for global congruency tests for epoch 4
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A look at Table 4.12 shows that the global congruency test for epoch 3 does not pass until

the seventh iteration, which means that six points are eliminated before the remaining points

are found to be stable. The corresponding local test quantities TL for each iteration are listed

in Table 4.13, with the point being eliminated highlighted in bold. The points found to be

Point \ 101 102 103 104 105 106 107 108 109 110 111 112
Iteration

1 3.2 303.3 10.4 33.8 53.4 28.3 7.1 337.0 13.1 9.8 9.3 18.3
2 5.3 229.2 2.2 2.4 89.4 50.6 1.9 × 28.6 3.3 6.8 10.3
3 0.7 × 3.6 1.6 51.2 20.9 2.4 × 9.6 10.9 4.7 14.6
4 0.5 × 2.5 0.8 × 25.3 0.8 × 11.9 2.8 1.5 15.5
5 0.5 × 1.9 0.4 × × 0.2 × 14.0 1.0 1.0 15.2
6 0.4 × 1.9 0.3 × × 0.2 × 13.5 1.3 1.6 ×
7 0.6 × 1.7 0.4 × × 0.0 × × 0.1 1.0 ×

Table 4.13: Scenario A: local test statistics TL for all points in epoch 4

unstable, in order of elimination, are 108, 102, 105, 106, 112 and 109. These are all points

that deformations were introduced to in epoch 4, so that the single-point analysis yields the

correct results. Also, the outcome of the global and local tests agree, such that after passing

of the global congruency test, the local test passes for all points as well.

Epoch 5

Iteration h TG FS=0.95, f1=h, f2=192

1 32 92.39 1.50
2 29 51.41 1.53
3 26 36.04 1.55
4 23 30.12 1.58
5 20 24.84 1.62
6 17 19.37 1.68
7 14 14.82 1.74
8 11 9.58 1.84
9 8 7.28 1.99
10 5 4.71 2.26
11 2 1.54 3.04

Table 4.14: Scenario A: results for global congruency tests for epoch 5

The results of the global congruency test for the comparison of epoch 5 with epoch 1 are
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listed in Table 4.14, again starting with the initial iteration from Table 4.5. In this case it

takes eleven iterations of the single-point analysis before the global congruency test passes,

which means that ten points are eliminated as unstable. The local test statistics TL for each

iteration are shown in Table 4.15, with the point being eliminated in each iteration high-

lighted in bold. The ten points found to be unstable in epoch 5 are, in order of elimination,

Pt. \ 101 102 103 104 105 106 107 108 109 110 111 112
It.

1 15.7 251.4 15.0 52.4 36.1 24.6 52.6 488.5 20.2 100.0 59.9 64.2
2 6.0 184.6 9.8 5.9 79.7 47.8 31.9 × 38.9 69.6 46.6 57.4
3 6.1 × 22.2 2.4 81.5 53.8 20.3 × 29.0 63.2 32.4 52.2
4 3.9 × 25.3 2.7 × 65.3 16.5 × 35.3 44.6 21.8 54.2
5 2.7 × 30.1 3.4 × × 13.0 × 40.8 31.6 15.6 55.8
6 2.3 × 32.2 4.9 × × 11.2 × 40.6 20.5 22.4 ×
7 1.2 × 34.0 7.6 × × 11.8 × × 20.8 13.1 ×
8 1.1 × × 10.2 × × 9.7 × × 11.6 15.7 ×
9 4.8 × × 11.6 × × 5.5 × × 3.3 × ×
10 6.8 × × × × × 5.3 × × 2.6 × ×
11 × × × × × × 1.0 × × 1.0 × ×

Table 4.15: Scenario A: local test statistics TL for all points in epoch 5

108, 102, 105, 106, 112, 109, 103, 111, 104 and 101. The last three points being eliminated

are the only stable points in epoch 5. After that, both global and local tests pass, with only

two points remaining. Note that the local test statistics in the final iteration are identical for

both remaining points, similar to the second example in Section 2.3.2.4. This indicates that

with only two points remaining a decision as to which one is more likely to have deformed

cannot be made, regardless whether their deviations are significant or not.

4.1.3.2 MSS using distance differences

Next, the localization shall be performed using the MSS-method based on distance differences

proposed in Neitzel (2004) and described in detail in Section 2.3.4.3.1. For this combinatorial

search the distances between all network points are computed in each epoch together with

their corresponding cofactor matrices. The distances can then be compared between epochs,
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eliminating those whose differences exceed a certain threshold. In this example the 3σ-

criterion is chosen as a threshold, meaning that those distances are eliminated whose inter-

epochal differences exceed three times their standard deviations. Through the use of topology

matrices those point groups are identified which still have all distances. Each of these

candidates is then examined with a global congruency test. The quadratic form Ω̂2 for the

test can be derived directly from the distance differences, according to (2.34).

Epoch 2

For the comparison of epoch 2 with epoch 1 the MSS-method quickly confirms the outcome

of the global congruency test in Table 4.5. Non of the distance differences between epochs

2 and 1 differ significantly from zero, so that the only candidate group consists of all twelve

points. Repeating the global congruency test, this time derived from the distance differences,

if only for reasons of completeness, yields:

TG =
Ω̂2

σ2
0

=
1.049723

1.098015
= 0.96 ≤ 1.52 = FS=0.95, f1=h=30, f2=r1+r2=192 ,

so that the outcome is equivalent to that of the test performed with coordinate differences,

as is expected.

Epoch 3

For the comparison of epochs 3 and 1 only one candidate is found after the elimination of

the significant distance differences. The candidate consists of nine points, namely the points

101, 103, 104, 106, 107, 109, 110, 111 and 112. The global congruency test for the this point

group passes with the following result:

TG =
Ω̂2

σ2
0

=
1.369451

0.954049
= 1.44 ≤ 1.61 = FS=0.95, f1=h=21, f2=r1+r3=192 .

Thus, the maximum congruent point group could be correctly identified for epoch 3.
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Epoch 4

For the comparison of epoch 4 and epoch 1 two candidate solutions were found after the

elimination of the significantly changed distances. Both candidates consist of a group of six

points. The first candidate consists of the points 101, 103, 104, 107, 110 and 111. The global

congruency test for this candidate passes with

TG = 0.62 ≤ 1.80 = FS=0.95, f1=h=12, f2=r1+r4=192 .

The second candidate consists of the points 101, 103, 104, 107, 111 and 112. The global

congruency test in this case fails:

TG = 4.03 � 1.80 = FS=0.95, f1=h=12, f2=r1+r4=192 .

Again, the largest congruent point group was correctly identified. The only other existing

candidate could be ruled out with help of the global congruency test.

Epoch 5

For the comparison of epoch 5 and epoch 1 a total of seven candidates were found, consisting

of three points each. The candidates together with their respective global test statistics TG

can be found in Table 4.16 below. The correct solution is highlighted in bold in the table.

The boundary value for this test is given by FS=0.95, f1=h=3, f2=r1+r5=192 = 2.65. From the

Candidate TG

101, 103, 104 9.64
101, 104, 111 0.93
103, 104, 106 0.95
103, 104, 109 2.36
103, 105, 106 7.78
103, 106, 109 3.43
104, 106, 109 1.85

Table 4.16: Scenario A: results for global congruency tests for all candidates for congruent
point groups of epoch 5
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test statistics in Table 4.16 it can be seen, that now four out of seven candidates pass the

global congruency test. This indicates that now multiple congruent triangles exist which

means that for these candidates all three points must exhibit similar deformations. Under

the assumption that the group consisting of the stable points has overall smaller differences

between epochs, the candidate with the smallest global test quantity TG is accepted as the

final solution. In this case, this leads to the correct identification of the largest congruent

point group between epochs 1 and 5.

4.1.3.3 MSS using distance ratios

Now the monitoring network is analyzed with the MSS-method based on distance ratios

proposed in Neitzel (2004) and explained in detail in Section 2.3.4.3.2. Although this method

is particular meant for scenarios in which a change in scale occurs between epochs, it is

applied here for comparison with the other methods. In this approach the distance ratios

of the same distances between epochs are analyzed rather than their differences. An error

estimate for the scale factor is derived and with it a search window can be created. Again,

topology matrices are used to find those point groups for which all existing distances lie

within the same search window. These point groups form possible candidates. To verify

the candidates an adjustment based on the transformation approach introduced in Section

2.3.4.3.2 is performed. To assess the candidates the a posteriori standard deviation σ̂0 of the

adjustment is evaluated with a global test of the adjustment model, similar to the one given

in (2.22). Only in this case the alternative hypothesis is formulated as

HA : E
{
σ2

0

}
< E

{
σ̂2

0

}
,

because the presence of deformations in the candidate group will lead to an increase in

the a posteriori variance factor. This results in a one-tailed test with the boundary value

given by χ2
S=1−α, f=r. If the test passes, it can be assumed that the data conforms to the

functional and stochastical models and no outliers exist. If this test fails on the other hand,
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the existence of deformations in the data is likely, so that the candidate under consideration

is rejected.

In this example the search window for the distance ratios is created at a size of 1.5σ̂s, where

σ̂s denotes the error estimate for the scale factor. The reason for this is to reduce the number

of candidate solution to a presentable level. For the transformation adjustment an a priori

standard deviation of σ0 = 1 has been used for all epochs.

Epoch 2

Again, the method is applied to epoch 2 as well. Only one candidate consisting of all twelve

network points is found. The transformation-based adjustment yields the results listed in

Table 4.17 for the candidate solution. The test statistic for the global test of the adjustment

Candidate σ̂0 Redundancy Tχ Test outcome

All twelve points ±0.989229 29 28.38 pass

Table 4.17: Scenario A: largest congruent point group and statistical test for epoch 2

model is given by (2.22c). The boundary value for the χ2-test for a confidence level of

α = 5 % follows from χ2
S=0.95, f=r=29 = 42.56. Thus, the correct solution was found for epoch

2.

Epoch 3

For epoch 3 only one candidate is found consisting of nine points. The transformation

adjustment for the one candidate solution is carried out again and the results listed in Table

4.18 are obtained. The boundary value for the global test of the adjustment model is given by

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 106, 107, 109, 110, 111, 112 ±1.226615 20 30.09 pass

Table 4.18: Scenario A: largest congruent point group and statistical test for epoch 3

χ2
S=0.95, f=r=20 = 31.41, so that the test passes and the candidate solution reflects the largest
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congruent point group between epochs 1 and 3. Again, this decision is correct, as only the

three points 102, 105 and 108 missing from the solution were subject to deformations in

epoch 3.

Epoch 4

In epoch 4 at first one candidate consisting of eight points is found. The results of the trans-

formation adjustment for this candidate, given in Table 4.19, indicate that this candidate

does not form a congruent point group, as the global test of the adjustment model with a

boundary value of χ2
S=0.95, f=r=17 = 27.56, fails.

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 107, 109, 110, 111, 112, ±2.267622 17 87.42 fail

Table 4.19: Scenario A: candidates of eight points and statistical test for epoch 4

The search is then continued for a congruent point group of less than eight points and eight

candidates are found, each consisting of seven points. For each of these eight candidates the

transformation adjustment is performed. The results are given in Table 4.20 below. With a

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 107, 109, 110, 111 ±1.809480 14 45.84 fail
101, 103, 104, 107, 109, 110, 112 ±2.358459 14 77.87 fail
101, 103, 104, 107, 109, 111, 112 ±2.373585 14 78.87 fail
101, 103, 104, 107, 110, 111, 112 ±1.928669 14 52.08 fail
101, 103, 104, 109, 110, 111, 112 ±2.485653 14 86.50 fail
101, 103, 107, 109, 110, 111, 112 ±2.439569 14 83.32 fail
101, 104, 107, 109, 110, 111, 112 ±2.338951 14 76.59 fail
103, 104, 107, 109, 110, 111, 112 ±2.422185 14 82.14 fail

Table 4.20: Scenario A: candidates of seven points and statistical test for epoch 4

reference value of χ2
S=0.95, f=r=14 = 23.68 the global test of the adjustment model fails again

for all eight candidates. Thus, the search continues for a congruent group of less than seven

points.
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This leads to a list of 32 candidates consisting of six points. After the transformation

adjustment has been carried out for all 32 candidates, the global test of the adjustment

model, with a reference value of χ2
S=0.95, f=r=11 = 19.68, passes only for one candidate. This

candidate, together with the test results is listed in Table 4.21 below. The largest congruent

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 107, 110, 111 ±0.719884 11 5.70 pass

Table 4.21: Scenario A: largest congruent point group and statistical test for epoch 4

point group between epochs 1 and 4 has been correctly identified. A list of the rejected

31 candidates and their corresponding test results can be found in Table B.6 in Appendix

B.2.

Epoch 5

The search for the largest congruent point group between epochs 1 and 5 first results in a list

of nine candidate groups consisting of five points each. The candidates and the parameters

of the global test of the adjustment model are listed in Table 4.22. Given the boundary

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 109, 111 ±4.292742 8 147.42 fail
101, 103, 104, 111, 112 ±4.208039 8 141.66 fail
101, 104, 106, 109, 111 ±4.833361 8 186.89 fail
101, 107, 109, 110, 111 ±2.976424 8 70.87 fail
103, 104, 105, 106, 109 ±2.315300 8 42.88 fail
103, 104, 106, 109, 112 ±5.856611 8 274.40 fail
104, 106, 108, 111, 112 ±8.293931 8 550.31 fail
104, 106, 109, 111, 112 ±5.730471 8 262.71 fail
107, 109, 110, 111, 112 ±3.947802 8 124.68 fail

Table 4.22: Scenario A: candidates of five points and statistical test for epoch 5

value of χ2
S=0.95, f=r=8 = 15.51, all of theses candidates are rejected. The search continues for

a group of less than five points and yields a list of 45 candidates of four points, all of which

are rejected. The candidates and their corresponding test results can be found in Table B.7

in Appendix B.2.
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The search for congruent point groups of less than four points results in a list of 83 candidates

of three points. After performing a transformation adjustment for all candidates, the final

solution is found and given in Table 4.23. The boundary value for the global test of the

Candidate σ̂0 Redundancy Tχ Test outcome

101, 104, 111 ±1.119205 2 2.51 pass

Table 4.23: Scenario A: largest congruent point group and statistical test for epoch 5

adjustment model follows from χ2
S=0.95, f=r=2 = 5.99. The remaining candidates and their

test results are listed in Table B.8 in Appendix B.2. It should be noted that although the

correct solution was identified as the one with the smallest test statistic Tχ, other candidates

have passed this test as well, indicating that further congruent triangles exist. Reason for

this, again, are points with similar deformations.

4.1.3.4 MSS using angles

Finally, the monitoring network is examined with the MSS-method based on angular dif-

ferences, proposed in Section 3.1. Instead of distances all possible combinations of angles

are computed in each epoch and compared between epochs. Those angles whose differences

exceed the 3σ-threshold are eliminated. Utilizing a histogram of the angle distribution in

the network coupled with a three-dimensional search array, point groups for which all angles

still exist are identified and form candidate solutions. The candidates can be verified by a

global congruency test, which can directly be derived from the angular differences.

Epoch 2

One candidate solution is found for the comparison of epoch 2 and epoch 1. The candidate

consists of all twelve network points. With a boundary value of FS=0.95, f1=h=29, f2=r1+r2=192 =

1.53 the global congruency test passes, which confirms that the largest congruent point group

indeed consists of all network points. The test results are summarized in Table 4.24.
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Candidate TG Test outcome

101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 0.98 pass

Table 4.24: Scenario A: largest congruent point group and test statistic for epoch 2

Epoch 3

Similarly for the epoch 3 – epoch 1 comparison, the search for the largest congruent point

group only yields one candidate consisting of nine points. The boundary value for the global

Candidate TG Test outcome

101, 103, 104, 106, 107, 109, 110, 111, 112 1.50 pass

Table 4.25: Scenario A: largest congruent point group and test statistic for epoch 3

congruency test follows from FS=0.95, f1=h=20, f2=r1+r3=192 = 1.62, so that the test passes for

the candidate solution and again the correct point group has been identified.

Epoch 4

In epoch 4 six candidate solutions are found consisting of six points. The reference value

for the global congruency test is given by FS=0.95, f1=h=11, f2=r1+r4=192 = 1.84. The results in

Table 4.26 show that only one candidate passes the test. Again, the correct point group has

been identified.

Candidate TG Test outcome

101, 103, 104, 107, 109, 110 3.71 fail
101, 103, 104, 107, 110, 111 0.52 pass
101, 103, 104, 107, 110, 112 3.74 fail
101, 103, 107, 110, 111, 112 4.41 fail
101, 104, 107, 109, 110, 111 3.36 fail
101, 107, 109, 110, 111, 112 6.09 fail

Table 4.26: Scenario A: candidates and test statistics for epoch 4

138



Epoch 5

For the comparison of the first and the final epoch a total of 28 candidate solutions were

found. The global test of the adjustment model was performed for all candidates. The

boundary value for the test is FS=0.95, f1=h=2, f2=r1+r5=192 = 3.04. The candidate with the

Candidate TG Test outcome

101, 104, 111 0.25 pass

Table 4.27: Scenario A: largest congruent point group and test statistic for epoch 5

smallest test statistic TG is shown in Table 4.27 and is the correct solution. The remaining

candidates and their test results are shown in Table B.9 in Appendix B.3. It should be noted

that further candidates pass the gobal congruency test. As before, this is an indication for the

existence of multiple congruent triangles, caused by points with similar deformations.

4.1.4 Determination

After the largest congruent point groups have been identified, the final task is now to de-

termine values for the deformations and their standard deviations. Two different methods

are used to do that. First, a combined re-adjustment of the observations is performed as is

commonly used in the classical congruence analysis and is described in Section 2.3.2.3. Then,

the deformations are determined again using the transformation-based approach introduced

in Section 3.3.

4.1.4.1 Combined re-adjustment of observations

With this method the deformations are derived from the original observations of the two

epochs under consideration. The network analysis is repeated, combining the observations

of both epochs. The stable points are now solved using the observations from both epochs.

For the deformed points two different point IDs are introduced; one for the coordinates in
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the base epoch and one for the coordinates in the subsequent epoch. The deformations then

follow as the differences of the two sets of coordinates.

The datum definition is implemented using an inner-constraints approach again where all

stable points form the computational base. The four datum parameters to be defined are, as

before, the orientation in the horizontal plane and the three translations along the coordinate

axes. The reference frame is defined by the same approximate coordinates as were used for

the initial network analyses and which are listed in Table 4.1. The input standard deviations

for the observations remain the same as well, which are ±5 ′′ for horizontal directions and

zenith angles and ± (5 mm + 3 ppm) for slope distances. The a priori standard deviation is

chosen as σ0 = ±1 in all cases.

Epoch 2

In epoch 2 none of the monitoring points have been found to be unstable. Hence, only one

set of coordinates is estimated for each point using the observations from epoch 1 and epoch

2 together. Consequently, the deformations for all points in epoch 2 are all exactly zero.

All twelve network points contribute to the datum. The statistical results from the network

adjustment are given in Table 4.28 below. The adjusted coordinates and their respective

standard deviations can be found in Table B.10 in Appendix B.4.

Number of points in network 12
Number of observations 264
Number of unknowns 40
Redundancy 228
A posteriori standard deviation σ̂0 ±1.035552
Global test statistic Tχ 244.50
Lower boundary value χ2

S=0.025, r 188.07
Upper boundary value χ2

S=0.975, r 271.71
Outcome of global test of adjustment model pass

Table 4.28: Scenario A: summary of statistics for combined re-adjustment of epochs 1 and 2
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Epoch 3

In epoch 3 four points were found to be unstable during the single-point analysis, namely

points 102, 105, 108 and, incorrectly, point 111. For these four points two sets of coordinates

are estimated, one set for epoch 1 with point IDs starting with 1 and one set for epoch 3

with point IDs starting with 3. The differences of these two sets of coordinates represent the

deformations between epoch 3 and epoch 1.

The computational base is formed by the remaining eight stable points. The statistical

results for the network analysis are listed in Table 4.29. The adjusted coordinates and their

standard deviations can be found in Table B.11 in Appendix B.4.

Number of points in network 16
Number of observations 264
Number of unknowns 55
Redundancy 213
A posteriori standard deviation σ̂0 ±0.959819
Global test statistic Tχ 196.23
Lower boundary value χ2

S=0.025, r 174.47
Upper boundary value χ2

S=0.975, r 255.31
Outcome of global test of adjustment model pass

Table 4.29: Scenario A: summary of statistics for combined re-adjustment of epochs 1 and 3

The estimated deformations between epoch 3 and epoch 1 for the deformed points together

with their standard deviations are shown in Table 4.30. The deformations for the remaining

points are zero exactly. It can be noted that the deformation in x-direction for the incorrectly

Point dx dy dz σ̂dx σ̂dy σ̂dz

102 −18.9 17.9 −6.0 ±2.5 ±2.1 ±2.6
105 19.9 −22.6 −9.4 ±3.9 ±3.5 ±3.7
108 12.7 −27.6 −17.1 ±2.6 ±1.9 ±2.4
111 −12.3 0.9 3.6 ±3.1 ±2.0 ±3.0

Table 4.30: Scenario A: estimated deformations and standard deviations in epoch 3 in [mm]

as unstable classified point 111 is very high in magnitude, considering that no deformation
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was introduced in that point in epoch 3. This must be due to a large amount amount of

random errors accumulating in the x-coordinate of this point in epoch 3.

Epoch 4

In epoch four six points were correctly identified to be unstable. These six points are excluded

from the datum definition in the re-adjustment of this epoch. A separate set of coordinates

with an ID starting with 4 is estimated for these points in epoch 4. The adjusted coordinates

of all points can be found in Table B.12 in Appendix B.4. The statistical results are given

in Table 4.31 below.

Number of points in network 18
Number of observations 264
Number of unknowns 60
Redundancy 208
A posteriori standard deviation σ̂0 ±0.981396
Global test statistic Tχ 200.33
Lower boundary value χ2

S=0.025, r 169.95
Upper boundary value χ2

S=0.975, r 249.83
Outcome of global test of adjustment model pass

Table 4.31: Scenario A: summary of statistics for combined re-adjustment of epochs 1 and 4

The estimated deformations and standard deviations for the six unstable points are listed in

Table 4.32. Again, for the six remaining stable points the deformations are zero.

Point dx dy dz σ̂dx σ̂dy σ̂dz

102 −27.9 32.3 −15.5 ±2.6 ±2.2 ±2.6
105 39.6 −27.5 −20.8 ±4.0 ±3.5 ±3.8
106 22.6 −25.5 −2.4 ±5.0 ±3.8 ±5.1
108 37.0 −48.0 −28.8 ±2.9 ±2.0 ±2.6
109 9.4 −20.0 −12.4 ±5.6 ±4.2 ±5.7
112 −19.5 24.6 −21.6 ±5.8 ±4.2 ±6.4

Table 4.32: Scenario A: estimated deformations and standard deviations in epoch 4 in [mm]
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Epoch 5

In epoch 5 ten out of twelve points have been found to be unstable during the single-point

analysis, incorrectly eliminating the only three stable points in this epoch which are points

101, 104 and 111. This only leaves points 107 and 110 to define the computational base in

the re-adjustment. The statistical results for of the analysis are given in Table 4.33. The

adjusted coordinates and their standard deviations can be found in Table B.13 in Appendix

B.4.

Number of points in network 22
Number of observations 264
Number of unknowns 73
Redundancy 195
A posteriori standard deviation σ̂0 ±1.001951
Global test statistic Tχ 195.76
Lower boundary value χ2

S=0.025, r 158.22
Upper boundary value χ2

S=0.975, r 235.56
Outcome of global test of adjustment model pass

Table 4.33: Scenario A: summary of statistics for combined re-adjustment of epochs 1 and 5

The deformations of the points 107 and 110 is formally zero. For the points identified as

unstable the estimated deformations and standard deviations are shown in Table 4.34 below.

Point dx dy dz σ̂dx σ̂dy σ̂dz

101 16.9 25.4 6.6 ±10.7 ±7.6 ±6.2
102 60.3 52.7 −14.1 ±5.1 ±5.0 ±3.2
103 40.8 32.7 −4.0 ±4.5 ±8.0 ±5.7
104 18.0 17.9 4.4 ±7.0 ±6.5 ±5.2
105 64.5 −19.1 −17.9 ±4.4 ±4.5 ±4.0
106 59.0 −10.7 −10.2 ±4.4 ±3.7 ±3.6
108 71.0 −41.1 −28.4 ±4.6 ±3.4 ±3.0
109 28.4 −21.5 −3.8 ±7.4 ±4.5 ±5.9
111 12.4 21.1 12.8 ±8.2 ±3.1 ±3.8
112 −14.2 55.3 −31.5 ±11.8 ±4.7 ±6.9

Table 4.34: Scenario A: estimated deformations and standard deviations in epoch 5 in [mm]
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It can be noted that the standard deviations of the deformations in epoch 5 show a quite

significant increase compared to previous epochs. This is due to the datum being defined by

only two points now, which were subject to deformations.

Comparison of true and estimated deformations

In Table 4.35 the errors ε of the estimated deformations are shown, calculated as the differ-

ences of the estimated deformations and the true deformations:
⇀
ε =

⇀

dest −
⇀

dtrue.

Epoch 3 Epoch 4 Epoch 5
Point εx εy εz εx εy εz εx εy εz

101 0 0 0 0 0 0 16.9 25.4 6.6
102 −2.9 −3.1 5 4.1 0.3 4.5 13.3 15.7 11.9
103 0 0 0 0 0 0 17.8 14.7 10.0
104 0 0 0 0 0 0 18.0 17.9 4.4
105 0.9 −5.6 0.6 0.6 −4.5 −0.8 17.5 19.9 10.1
106 0 0 0 3.6 −2.5 5.6 17.0 22.3 16.8
107 0 0 0 0 0 0 17.0 23.0 11.0
108 0.7 −3.6 −3.1 4.0 −1.0 −2.8 16.0 16.9 9.6
109 0 0 0 −0.6 −3.0 −0.4 9.4 18.5 15.2
110 0 0 0 0 0 0 13.0 20.0 11.0
111 −12.3 0.9 3.6 0 0 0 12.4 21.1 12.8
112 0 0 0 0.5 0.6 −4.6 17.8 15.3 19.5

Table 4.35: Scenario A: differences between estimated and true deformations at given epoch
in [mm]

The errors for the deformations of epoch 2 are omitted from the table because they are all

exactly zero, as only one set of coordinates is estimated for the stable points, so that no

coordinate differences exist. In epoch 3 the errors are at the low millimetre level, within 2σ

of their standard deviations, with the exception of the x-deformation of point 111, which was

incorrectly identified as unstable. In epoch 4 the errors of the estimated deformations range

between 0 and about 5 mm in magnitude and are all within 2σ of their standard deviations.

In epoch 5 the errors of the estimated deformations range from about 5 mm to over 10 mm,

exceeding 3σ of their standard deviations for most of the points. The reason for this is
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the wrong result of the localization phase with the single-point analysis. As a result the

determination of movements is based on an unstable computational base which in turn leads

to incorrect deformations.

For epochs 2 to 4 the classical congruence analysis is successful, with the exception of point

11 in epoch 3. The unstable points are correctly identified, even when deformations are

introduced to half of the points in epoch 4. Furthermore, reasonable estimates for the true

deformations are obtained for epochs 2 to 4. In epoch 5, however, when only three out

of twelve points are stable, the single-point analysis cannot identify the truely stable point

group which leads to wrong results for the estimated deformations of all points, so that for

epoch 5 the classical congruence analysis fails.

4.1.4.2 Transformation-based approach

With this approach transformation parameters are estimated between the base epoch and

each of the subsequent epochs based on the largest congruent point groups identified in

Section 4.1.3.4. With the help of the estimated transformation parameters the adjusted

coordinates of each epoch can then be transformed into the system of the base epoch in a

datum defined by the congruent points. Deformations for all points are then obtained as

coordinate differences in the system of the base epoch.

The adjusted coordinates of each epoch listed in Appendix B.1 together with their fully-

populated and singular cofactor matrices can directly be used as input for the transfor-

mation. The a priori standard deviation for the transformation adjustment was chosen as

σ0 = ±1.

The statistical results for the transformation adjustment are summarized in Table 4.36 below.

The estimated transformation parameters and their standard deviations are listed in Table
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Ep 1 Ep 2 Ep 3 Ep 4 Ep 5 Total

Number of points 12 12 9 6 3 42
Number of observations 36 36 27 18 9 126
Number of conditions − 37 28 19 10 94
Number of unknowns − 8 8 8 8 32
Redundancy − 29 20 11 2 62
A posteriori standard deviation σ̂0 ±1.037771
Global test statistic Tχ 66.77
Lower boundary value χ2

S=0.025, r 42.13
Upper boundary value χ2

S=0.975, r 85.65
Test outcome pass

Table 4.36: Scenario A: summary of statistics for transformation adjustment of all epochs

4.37 for epochs 2 and 3 and in Table 4.38 for epochs 4 and 5, respectively. For epoch

2 the estimated rotation parameters are at the 1 ′′-level with standard deviations slightly

larger than the magnitude of the angles themselves. The translations are at the level of

10−12 m with standard deviations exceeding them by almost an order of magnitude and

the estimated scale factor is insignificantly small as well. Overall it can be said that the

transformation parameters are negligible. This makes sense, since both epochs are given in

the same coordinate system and share the same datum definition, so that no changes should

occur. In epoch 3 the transformation parameters are still very accurately determined but

Epoch 2 Epoch 3
Parameter Value σ̂ Value σ̂

q0 0.999999999990085 ±0.1999 · 10−10 0.999999999993265 ±0.1087 · 10−10

qx 0.0000028595 ±3.4392 · 10−6 0.0000031497 ±3.4413 · 10−6

qy −0.0000034137 ±4.9066 · 10−6 −0.0000000033 ±4.9335 · 10−6

qz −0.0000000148 ±0.0177 · 10−6 −0.0000018840 ±0.3609 · 10−6

ω 1.2 ′′ ±1.4 ′′ 1.3 ′′ ±1.4 ′′

ϕ −1.4 ′′ ±2.0 ′′ −0.0 ′′ ±2.0 ′′

κ −0.0 ′′ ±0.0 ′′ −0.8 ′′ ±0.1 ′′

Tx 0.16 · 10−12 m ±0.26 · 10−10 m 0.001535 m ±0.000449 m
Ty −0.83 · 10−12 m ±0.17 · 10−10 m −0.002260 m ±0.000391 m
Tz −0.27 · 10−16 m ±0.15 · 10−10 m −0.002727 m ±0.000468 m
λ +1.6 ppm ±3.1 ppm −1.2 ppm ±3.2 ppm

Table 4.37: Scenario A: estimated transformation parameters and standard deviations of
epochs 2 and 3 with respect to epoch 1
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now show some significance. The rotations are still at the 1 ′′-level but with the z-rotation

now eight times larger than its standard deviation. The translations vary between 1 mm and

3 mm in magnitude but have standard deviations of almost one order of magnitude smaller,

so that some small but significant translations exist, too. As before, the scale factor is still

small with a standard deviation of more than twice its magnitude and can thus be considered

insignificant. These small but significant transformation parameters can be attributed to the

change in datum between epochs 1 and 3, since now the computational base is reduced to

the nine points that form the largest congruent point group between the two epochs.

In epoch 4 the estimated transformation parameters increase in magnitude compared to the

two previous epochs. A significant rotation about the z-axis of almost 6 ′′ can be observed as

well as translations between 5 mm and 9 mm. The scale factor has increased slightly as well

but is still at a negligible level. In epoch 5 the increase in magnitude of the transformation

Epoch 4 Epoch 5
Parameter Value σ̂ Value σ̂

q0 0.9999999999 ±0.3212 · 10−10 0.9999999999 ±0.6022 · 10−10

qx 0.0000010528 ±3.7923 · 10−6 0.0000034905 ±4.5660 · 10−6

qy −0.0000034205 ±5.3104 · 10−6 −0.0000053732 ±10.7422 · 10−6

qz −0.0000140755 ±1.8330 · 10−6 −0.0000092152 ±2.6658 · 10−6

ω 0.4 ′′ ±1.6 ′′ 1.4 ′′ ±1.9 ′′

ϕ −1.4 ′′ ±2.2 ′′ −2.2 ′′ ±4.4 ′′

κ −5.8 ′′ ±0.8 ′′ −3.8 ′′ ±1.1 ′′

Tx 0.004776 m ±0.000862 m 0.012625 m ±0.001891 m
Ty −0.005001 m ±0.000709 m −0.009805 m ±0.001444 m
Tz −0.008626 m ±0.000869 m −0.017176 m ±0.002449 m
λ −6.5 ppm ±3.7 ppm +5.7 ppm ±5.1 ppm

Table 4.38: Scenario A: estimated transformation parameters and standard deviations of
epochs 4 and 5 with respect to epoch 1

parameters continues, except for the z-rotation and the scale factor. An increase in the

standard deviations can also be noted. This can be explained with the reduction of the

computational base to only three points in epoch 5 and the resulting loss in accuracy.

Looking at the transformation parameters of epochs 3 to 5, it becomes obvious that the
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significant parameters are the four free datum parameters which were defined by inner-

constraints of all twelve points in the network analyses of each epoch. These are the rotation

about the z-axis and the translations along all three coordinate axes. The more points are

eliminated from the original computational base, the more pronounced this datum change

becomes.

After the transformation parameters are determined, they can be applied to the adjusted

coordinates of epochs 2 to 4 according to (3.27) to obtain transformed coordinates in the

respective datum defined by the congruent points. Then, deformations can be derived as the

coordinate differences with respect to the coordinates of epoch 1 according to (3.28).

The estimated deformations for epoch 2 together with their standard deviations are shown

in Table 4.39 below. Since no true deformations were introduced in epoch 2, these estimated

Point dx dy dz σ̂dx σ̂dy σ̂dz

101 2.4 4.8 −6.6 ±4.4 ±4.0 ±6.4
102 −0.6 −2.9 3.9 ±2.4 ±2.1 ±2.8
103 −2.5 1.3 −0.5 ±4.2 ±4.1 ±5.7
104 2.2 3.2 −2.4 ±4.4 ±3.7 ±5.5
105 −2.8 −4.3 −4.0 ±3.9 ±3.4 ±3.6
106 2.7 0.8 5.2 ±3.9 ±3.2 ±3.5
107 −0.1 −2.3 0.7 ±3.9 ±3.2 ±3.5
108 3.2 0.7 −1.7 ±2.4 ±2.0 ±3.0
109 −1.4 −0.2 9.0 ±4.6 ±3.9 ±6.3
110 2.9 0.9 −0.7 ±2.3 ±2.1 ±2.9
111 −5.3 1.8 0.2 ±2.7 ±2.1 ±3.6
112 −0.7 −3.8 −3.2 ±4.5 ±4.0 ±7.4

Table 4.39: Scenario A: estimated deformations and standard deviations in epoch 2 in [mm]

deformations are entirely due to random errors in the coordinates from which they were

derived. This is reflected by the fact that all deformations are within 2σ of their standard

deviations, which vary roughly between ±2 mm and ±7 mm.

In epoch 3 deformations were introduced to points 102, 105 and 108. This becomes evident

from the estimated deformations for these points given in Table 4.40. For the remaining
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points the estimated deformations are at the millimetre-level with standard deviations com-

parable to those from the previous epoch. Notable is the larger x-deformation of point 111

of −10.0 mm which exceeds its standard deviation by four times and would thus be consid-

ered a significant movement. This is the same effect that could already be observed during

the classical congruence analysis, where because of it point 111 was incorrectly identified as

deformed.

Point dx dy dz σ̂dx σ̂dy σ̂dz

101 2.0 1.5 −7.2 ±4.2 ±3.8 ±6.1
102 −17.3 19.1 −6.5 ±2.3 ±2.0 ±2.7
103 1.2 −5.7 3.8 ±3.9 ±3.9 ±5.4
104 2.4 3.0 −2.5 ±4.2 ±3.5 ±5.3
105 21.8 −21.2 −9.0 ±3.7 ±3.2 ±3.4
106 2.1 4.0 3.6 ±3.7 ±3.0 ±3.2
107 2.6 −2.0 2.1 ±3.6 ±3.0 ±3.3
108 13.3 −27.1 −15.7 ±2.3 ±2.0 ±3.0
109 −7.4 −0.4 0.0 ±4.3 ±3.7 ±6.0
110 2.5 1.6 1.3 ±2.2 ±2.0 ±2.7
111 −10.0 2.0 1.4 ±2.5 ±2.0 ±3.4
112 5.3 −1.9 −4.2 ±4.2 ±3.8 ±6.9

Table 4.40: Scenario A: estimated deformations and standard deviations in epoch 3 in [mm]

The estimated deformations of epoch 4 together with their standard deviations are given

in Table 4.41 below. In this epoch the number of deformed points has increased to six,

namely points 101, 105, 106, 108, 109 and 112. Again this is reflected by their estimated

deformations. The apparent movements of the six stable points are at the millimetre-level.

Although the computational base has been reduced from twelve to six points, there is no

significant increase in the standard deviations of the deformations visible compared to epoch

2.

The estimated deformations of epoch 5 together with their standard deviations are shown in

Table 4.42. In the final epoch all points except for 101, 104 and 111 experience movements.

Again, this is clearly visible from their estimated deformations. The three stable points show
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Point dx dy dz σ̂dx σ̂dy σ̂dz

101 −1.8 −1.0 −3.4 ±4.5 ±3.9 ±6.3
102 −30.0 32.8 −14.7 ±2.5 ±2.1 ±2.9
103 3.0 5.1 1.8 ±4.1 ±4.0 ±5.5
104 −0.6 −3.0 −2.6 ±4.4 ±3.7 ±5.5
105 38.5 −28.0 −20.0 ±3.8 ±3.3 ±3.6
106 21.8 −25.4 −1.8 ±3.8 ±3.1 ±3.4
107 0.6 0.3 1.1 ±3.8 ±3.1 ±3.4
108 37.8 −49.6 −28.5 ±2.6 ±2.2 ±3.2
109 12.1 −21.1 −12.7 ±4.6 ±4.0 ±6.4
110 1.7 0.8 0.5 ±2.4 ±2.3 ±3.0
111 −4.4 1.2 −0.0 ±2.9 ±2.2 ±3.6
112 −21.3 27.9 −23.2 ±4.7 ±4.1 ±7.2

Table 4.41: Scenario A: estimated deformations and standard deviations in epoch 4 in [mm]

only apparent movements at the millimetre-level. The standard deviation of the deformations

show an increase now for only a few points, most notably in the z-components of points 109

and 110, compared to those with the full computational base in epoch 2.

Point dx dy dz σ̂dx σ̂dy σ̂dz

101 0.5 4.1 −4.2 ±4.6 ±4.0 ±7.1
102 43.7 32.7 −24.0 ±2.8 ±2.2 ±3.1
103 25.3 14.0 −11.2 ±4.5 ±4.3 ±6.2
104 2.5 0.6 −1.9 ±5.2 ±4.3 ±6.1
105 47.8 −37.8 −28.1 ±4.2 ±3.6 ±4.2
106 42.0 −29.1 −21.4 ±4.2 ±3.4 ±4.6
107 −19.9 −22.8 −5.8 ±4.3 ±3.5 ±4.6
108 54.3 −58.7 −36.4 ±3.6 ±3.0 ±4.7
109 10.8 −38.0 −14.1 ±5.5 ±4.8 ±9.8
110 −17.1 −17.4 −12.6 ±3.2 ±2.9 ±6.1
111 −5.2 0.3 0.4 ±3.1 ±2.3 ±3.8
112 −33.0 34.4 −47.0 ±4.9 ±4.3 ±8.3

Table 4.42: Scenario A: estimated deformations and standard deviations in epoch 5 in [mm]

Table 4.43 below shows the errors
⇀
ε in the estimated deformations computed as the difference

between the estimated and true deformations:
⇀
ε =

⇀

dest −
⇀

dtrue. With the exception of the

x-deformation of point 111 in epoch 3, all errors are within 2σ of their standard deviations.

Consequently, it can be concluded that the true deformations of the deformed points were
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accurately estimated throughout all epochs, even when 75 % of the monitoring points are

subject to deformations.

Epoch 2 Epoch 3 Epoch 4 Epoch 5

Point εx εy εz εx εy εz εx εy εz εx εy εz

101 2.4 4.8 −6.6 2.0 1.5 −7.2 −1.8 −1.0 −3.4 0.5 4.1 −4.2
102 −0.6 −2.9 3.9 −1.3 −1.9 4.5 2.0 0.8 5.3 −3.3 −4.3 2.0
103 −2.5 1.3 −0.5 1.2 −5.7 3.8 3.0 5.1 1.8 2.3 −4.0 2.8
104 2.2 3.2 −2.4 2.4 3.0 −2.5 −0.6 −3.0 −2.6 2.5 0.6 −1.9
105 −2.8 −4.3 −4.0 2.8 −4.2 1.0 −0.5 −5.0 −0.0 0.8 1.2 −0.1
106 2.7 0.8 5.2 2.1 4.0 3.6 2.8 −2.4 6.2 0.0 3.9 5.6
107 −0.1 −2.3 0.7 2.6 −2.0 2.1 0.6 0.3 1.1 −2.9 0.2 5.2
108 3.2 0.7 −1.7 1.3 −3.1 −1.7 4.8 −2.6 −2.5 −0.7 −0.7 1.6
109 −1.4 −0.2 9.0 −7.4 −0.4 0.0 2.1 −4.1 −0.7 −8.2 2.0 4.9
110 2.9 0.9 −0.7 2.5 1.6 1.3 1.7 0.8 0.5 −4.1 2.6 −1.6
111 −5.3 1.8 0.2 −10.0 2.0 1.4 −4.4 1.2 −0.0 −5.2 0.3 0.4
112 −0.7 −3.8 −3.2 5.3 −1.9 −4.2 −1.3 3.9 −6.2 −1.0 −5.6 4.0

Table 4.43: Scenario A: differences between estimated and true deformations at given epoch
in [mm]

4.1.5 Discussion

After checking that the epochs are indeed comparable, global congruencey tests are carried

out for all epochs with respect to the base epoch. The test only passes for epoch 2, which is

correct since epochs 3 to 5 contain deformations.

The localization of the largest congruent point group is first carried out using the traditional

single-point analysis. While successful in epochs 2 and 4, in epoch 3 point 111 is incorrectly

identified as unstable after all truly deformed points are eliminated and the global congruency

test passes. According to Gründig et al. (1985), the local test may still fail then, because

of small localized deformations. Apparently, this also can be triggered by larger random

errors when no deformations are inherent. This is concerning because all deformed points

were already eliminated, so that no smoothing effects from deformed points can be blamed.

Furthermore, the stable computational base is still sufficiently large, so that inaccuracies
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due to a poorly defined datum cannot be a cause either. In epoch 5 with only three stable

points remaining, the single-point analysis eliminates all but two unstable points for which

the global congruency test as well as the local tests are then accepted. Although the single-

point analysis is expected to fail in this case, as it has a breakdown point of only about 3 %

to 5 %, the outcome may be misleading as it indicates success.

The localization step is next performed with the MSS-method based on distance differences

and leads to the correct solution in all cases. The same results are achieved for the MSS-

method based on distance ratios and the MSS-method based on angles. Comparing the

three MSS-approaches, it is found that the distance difference approach is by far the most

efficient in the sense that it produces the fewest number of candidates. Then follows the

angle-based approach. These two have the additional advantage that candidates can be

evaluated with a global congruency test which can directly be derived from the already

available differences in distances and angles, respectively. The distance ratios approach

tends to find more candidates, especially when the congruent point groups get smaller with

respect to to the total number of points in the network. In epoch 5 for example, a total

of 137 candidates are found compared to 28 with the angle-based approach and only 7

for the distance-difference approach. Furthermore, a transformation adjustment has to be

solved to evaluate each candidate. This makes it the least efficient of the three approaches.

Something that can be observed in all three methods is that the evaluation of the candidates,

either by transformation adjustment or congruency test, sometimes passes for more than one

candidate. This is frequently the case in search for congruent triangles. The reason for it is

that points with the same deformations also form congruent groups and are thus identified

as candidates. In this scenario, however, all solutions could correctly be identified as those

candidates with the smallest test statistic.

The deformations for each epoch are determined in two ways; by the re-adjustment of the

combined observations from both epochs and by the transformation-based approach pre-
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sented in Section 3.3. The re-adjustment requires the availability of the original observations

of each epoch. For all stable points a new set of coordinates is estimated from the combined

observations of both epochs. This has the effect that the deformations for the stable points

are exactly zero. The random errors inherent in the observations do not affect the deforma-

tions but are completely absorbed by the observation residuals. In turn, the coordinates of

the stable points now change with each new epoch that is observed, for comparison see the

lists of adjusted coordinates after re-adjustment of observations in Appendix B.4.

For epochs 2 to 4 the true deformations have been accurately recovered. In epoch 5, as a

result of the wrong localization with the single-point analysis, the estimated deformations

deviate from their true values by up to 25 mm. To get an idea of the overall quality of the

solution and to be able to compare results easier with the transformation-based approach,

the overall RMS of the errors in the estimated deformations has been determined as the

square root of the sum of the squared errors from Table 4.35 for each epoch. The results are

listed in Table 4.44 below. Since no deformations have occurred in epoch 2 and all stable

Epoch 2 Epoch 3 Epoch 4 Epoch 5
RMS in [mm] 0.0 16.2 12.8 143.8

Table 4.44: Overall RMS errors of estimated deformations for all epochs

points have deformations of exactly zero, the RMS error for epoch 2 is consequently zero as

well. It is extremely large in epoch 5 which, of course, is due to the wrong localization of

the stable points.

For the transformation-based approach deformations can be derived from the adjusted coor-

dinates of each epoch together with their singular cofactor matrix through a transformation

of each subsequent epoch into the datum of the base epoch. The original observations are

not required. The transformation parameters are accurately recovered for all four transfor-

mations. Interesting is that the datum change can be observed in epochs 3 to 5 in the three

translation as well as the z-rotation and it becomes clearly more pronounced as the computa-
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tional base is reduced from twelve to nine to six to three points. In the transformation-based

approach deformations are estimated for all points including the stable ones, for which they

are insignificant. This happens because of the propagation of random errors in the coordi-

nates. But the original coordinates of each epoch remain unchanged.

The RMS of the errors of the estimated deformations from Table 4.43 are summarized in

Table 4.45 below. The RMS error is approximately the same for all epochs, varying only by

Epoch 2 Epoch 3 Epoch 4 Epoch 5
RMS in [mm] 19.3 21.5 17.9 19.8

Table 4.45: Overall RMS errors of estimated deformations for all epochs

about 4 mm. Since apparent movements are derived for the stable points, the RMS error is

not zero in epoch 2. For the same reason, it is larger for epochs 3 and 4 compared to those

from Table 4.44. In epoch 5 it has a more realistic value than the one obtained from the

re-adjustment of the observations in Table 4.44. This is, of course, because the deformations

have now been estimated on the basis of the correct congruent points.

4.2 Scenario B

The second scenario was chosen to show the strength of the methodology proposed in Chapter

3. While the coordinate system for the base epoch remains the same as in the previous

scenario, a different coordinate system was chosen for the subsequent epochs. A possible

situation where this could occur would be a monitoring application where the base epoch

is defined in a local coordinate system related to the monitored object and the subsequent

epochs consist of GPS-coordinates given in WGS84. With this in mind, the coordinate

system for epochs 2 to 5 was chosen to simulate a global 3D cartesian coordinate system.

The approximate coordinates that define the reference frame for epochs 2 to 5 are listed in

Table 4.46 below. For the local system of epoch 1 the same approximate coordinates as for
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the previous scenario are used, which are shown in Table 4.1.

Point x y z

101 −1713147.04 −3774007.53 4834108.56
102 −1713101.53 −3774263.21 4834164.70
103 −1712926.08 −3774441.87 4834095.25
104 −1712886.68 −3774663.36 4834143.83
105 −1713100.94 −3774425.95 4834223.47
106 −1713145.72 −3774438.37 4834262.50
107 −1713096.52 −3774493.24 4834247.51
108 −1713013.03 −3774638.01 4834227.81
109 −1713119.91 −3774789.67 4834368.38
110 −1713194.76 −3774532.30 4834336.96
111 −1713253.14 −3774154.85 4834247.55
112 −1713441.61 −3774083.71 4834367.02

Table 4.46: Simulated coordinates of network points in global system in [m]

The transformation parameters relating the global system to the local system are given

in Table 4.47. The coordinates for epochs 2 to 5 where derived by first adding the simu-

x y z

Rotation 37.79509270 ◦ −15.54410971 ◦ −70.93797044 ◦

Translation 5 520 429.355717 m −2 723 472.247585 m −1 657 291.941328 m
Scale −125 ppm

Table 4.47: Transformation parameters relating local and global systems

lated deformations from Table 4.2 to the approximate coordinates in the local system and

transforming these deformed coordinates to the global system. Then, to obtain randomized

coordinates with a suitable associated cofactor matrix, observations consisting of angles with

respect to to the z-axis, directions in the x, y-plane1 and slope distances are back-calculated.

Random errors of ±5 ′′ for the angular observation types and ± (5 mm + 5 ppm) for the slope

distances are then added to the observations and a network adjustment is performed to obtain

the adjusted coordinates for each epoch and their cofactor matrix. In the network analysis

the datum needs to be defined. This is done using an inner-constraint approach again with

1These are equivalent to zenith angles and horizontal directions with the difference that the global system
does not refer to the vertical or the horizontal plane.
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all network points contributing. As a result the cofactor matrices are rank deficient by four

again. This, of course, is not the case for real GPS coordinates where the datum is defined

by the reference stations and thus this issue does not occur. However, for the purpose of

the simulation, this is of no concern, so that the fully-populated and rank-deficient cofactor

matrices are used for the analysis here.

Because of the two different coordinate systems used in this scenario, the classical congruence

analysis cannot be applied to this data set without considerable pre-processing to convert the

data back to the standard case where all epochs are given in the same reference frame, datum

and scale. For this reason, the classical congruence analysis is not applied in this scenario.

After the global congruency testing, the localization step is carried out using the MSS-method

based on distance ratios and angles. The distance-difference based MSS-approach cannot

be applied either because a change in scale exists between epochs. After the largest similar

point group has been found, deformations are determined using the transformation-based

approach from Section 3.3.

4.2.1 Results of network analysis

To obtain adjusted coordinates and their associated cofactor matrices, again a network anal-

ysis is performed for every epoch. As before, 132 observations are available in each epoch

and the parameter vector consists of the 36 coordinates of the twelve monitoring points plus

one orientation offset for each of the four instrument stations. With the four additional

constraint equations that define the free datum parameters the network redundancy is again

96 for all epochs. The a priori standard deviation was chosen as ±1.

The statistical test results for the network analyses consisting of the a posteriori standard

deviations σ̂0k and the test statistics Tχ2
k

are summarized in Table 4.48. With the lower

boundary value for the global test of the adjustment model given by χ2
S=0.025, f=r=96 = 70.78
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Epoch σ̂0k Tχ2
k

1 ±1.014220 98.75
2 ±0.995742 95.18
3 ±1.008363 97.61
4 ±0.967021 89.77
5 ±1.002043 96.39

Table 4.48: Scenario B: a posteriori standard deviations and test statistics for global test of
adjustment model for all epochs

and its upper boundary given by χ2
S=0.975, f=r=96 = 125.00, the test passes for all epochs. The

adjusted coordinates and their standard deviations for all epochs can be found in Appendix

B.5.

4.2.2 Global congruency testing

Before the global congruency tests can be carried out, it has to be confirmed that the epochs

being compared refer to the same empirical standard deviation. This can be done by applying

the F -test shown in (2.24). The test statistics TF for the comparison of the reference epoch

1 with each of the subsequent epochs are given in Table 4.49. With a boundary value of

Epochs TF σ̂0

1 and 2 1.04 ±1.005023
1 and 3 1.01 ±1.011296
1 and 4 1.10 ±0.990902
1 and 5 1.02 ±1.008150

Table 4.49: Scenario B: test statistics and combined standard deviations

FS=0.975,f1=96,f2=96 = 1.50 the test passes for all epochs. Now the combined variance factors

can be derived according to (2.28). Their square root, the combined standard deviations σ̂0

are also listed in Table 4.49.

Now the global congruency tests can be performed. Because of the two different coordinate

systems the data are given in, the test statistics have to be derived from datum-invariant

(and scale-invariant) functions of the adjusted coordinates according to equations (2.32) to
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(2.34). For this reason angular differences between epochs have been chosen to compute

the quadratic forms Ω̂2 for the test, which, together with the global test statistics TG, are

shown in Table 4.50. The reference value for the test follows from the Fisher-distribution

Epochs Ω̂2 TG

2 0.933158 0.92
3 10.313794 10.08
4 35.276105 35.93
5 69.495773 68.38

Table 4.50: Scenario B: quadratic forms Ω̂2 and test statistics TG for all global congruency
tests

with a chosen confidence level of α = 5 %, f1 = h = 29 and f2 = ri + rj = 192 as

FS=0.95, f1=29, f2=192 = 1.53 for all epochs. From Table 4.50 it becomes evident that the test

passes only for epoch 2. This indicates the presence of deformations in epochs 3 to 5.

4.2.3 Localization

4.2.3.1 MSS using distance ratios

At first the localization of the largest similar point group is carried out using the MSS-

method based on distance ratios. Again, the size of the search window for the distance

ratios is chosen as 1.5σ̂s, where σ̂s refers to the error estimate for the scale factor, in order

to reduce the number of candidate solutions to a manageable level.

Epoch 2

For epoch 2 only one candidates solution consisting of all twelve points is found. After

performing a transformation adjustment followed by a global test of the adjustment model,

the results listed in Table 4.51 are obtained. The test statistic for the global test of the

adjustment model is given by (2.22c). The boundary value for the χ2-test for a confidence
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Candidate σ̂0 Redundancy Tχ Test outcome

All twelve points ±0.965865 29 27.05 pass

Table 4.51: Scenario B: largest similar point group and statistical test for epoch 2

level of α = 5 % follows from χ2
S=0.95, f=r=29 = 42.56. Thus, the correct solution was found

for epoch 2.

Epoch 3

For epoch 3 only one candidate is found as well, consisting of nine points. The results from

the transformation adjustment are shown in Table 4.52. The boundary value for the global

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 106, 107, 109, 110, 111, 112 ±1.218877 20 29.71 pass

Table 4.52: Scenario B: largest similar point group and statistical test for epoch 3

test of the adjustment model is given by χ2
S=0.95, f=r=20 = 31.41, so that the test passes and

the candidate is correctly accepted as the largest similar point group between epochs 1 and

3.

Epoch 4

In epoch 4 one candidate of eight points is found, for which the global test of the adjustment

model with a boundary value of χ2
S=0.95, f=r=17 = 27.56 fails.

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 107, 109, 110, 111, 112 ±2.246980 17 85.83 fail

Table 4.53: Scenario B: candidate of eight points and statistical test for epoch 4

Continuing the search for a similar point group of less than eight points results in eight

candidates of seven points. The results of the transformation adjustment for these candidates

are listed in Table 4.54 below. With a reference value of χ2
S=0.95, f=r=14 = 23.68 the global
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Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 107, 109, 110, 111 ±1.563117 14 34.21 fail
101, 103, 104, 107, 109, 110, 112 ±2.218565 14 68.91 fail
101, 103, 104, 107, 109, 111, 112 ±2.159360 14 65.28 fail
101, 103, 104, 107, 110, 111, 112 ±2.195159 14 67.46 fail
101, 103, 104, 109, 110, 111, 112 ±2.384479 14 79.60 fail
101, 103, 107, 109, 110, 111, 112 ±2.436107 14 83.08 fail
101, 104, 107, 109, 110, 111, 112 ±2.402702 14 80.82 fail
103, 104, 107, 109, 110, 111, 112 ±2.411263 14 81.40 fail

Table 4.54: Scenario B: candidates of seven points and statistical test for epoch 4

test of the adjustment model fails for all eight candidates, so that the search is continued

for a similar group of less than seven points.

This results in a total of 32 candidates consisting of six points. With a boundary value of

χ2
S=0.95, f=r=11 = 19.68, only one of the candidates, shown in Table 4.55, passes the global

test of the adjustment model. The 31 rejected candidates and their test results can be found

in Table B.19 in Appendix B.6. Again, the correct point group has been identified.

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 107, 110, 111 ±1.255927 11 17.35 pass

Table 4.55: Scenario B: largest similar point group and statistical test for epoch 4

Epoch 5

In epoch 5, 14 candidates consisting of five points are found first. Their test results are

listed in Table 4.56 below. Given the boundary value of χ2
S=0.95, f=r=8 = 15.51, all of the

14 candidates are rejected and the search is continued for a similar group of less than five

points.

This leads to a list of 64 candidates of four points. After performing the transformation

adjustment and global test of adjustment model, they are all rejected. Their test results can

be found in Table B.20 in Appendix B.6.
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Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 106, 109 ±3.538055 8 100.14 fail
101, 103, 104, 109, 111 ±3.567383 8 101.81 fail
101, 104, 106, 108, 111 ±7.755838 8 481.22 fail
101, 104, 106, 109, 111 ±3.161746 8 79.97 fail
101, 104, 107, 110, 111 ±2.407723 8 46.38 fail
101, 104, 109, 110, 111 ±2.575243 8 53.06 fail
101, 107, 109, 110, 111 ±2.376879 8 45.20 fail
103, 104, 105, 109, 112 ±5.964601 8 284.61 fail
103, 104, 106, 109, 112 ±5.217789 8 217.80 fail
104, 105, 109, 111, 112 ±5.802612 8 269.36 fail
104, 106, 108, 111, 112 ±8.280435 8 548.52 fail
104, 106, 109, 111, 112 ±5.115469 8 209.34 fail
104, 109, 110, 111, 112 ±5.036194 8 202.91 fail
107, 109, 110, 111, 112 ±4.754375 8 180.83 fail

Table 4.56: Scenario B: candidates of five points and statistical test for epoch 5

Finally, a total of 95 candidates of three points are found. With a boundary value of

χ2
S=0.95, f=r=2 = 5.99, multiple candidates pass the test this time. The final solution is the

one with the smallest test quantity Tχ, which is given in Table 4.57 below. The remaining

94 candidates are listed in Table B.21 in Appendix B.6. After a total of 173 candidates have

Candidate σ̂0 Redundancy Tχ Test outcome

101, 104, 111 ±0.649365 2 0.84 pass

Table 4.57: Scenario B: largest similar point group and statistical test for epoch 5

been examined with a transformation adjustment, the correct solution for the largest similar

point group between epochs 1 and 5 has finally been found.

4.2.3.2 MSS using angles

Now the search for the largest similar point group is repeated using the MSS-method based

on angular differences. As a threshold for the elimination of significantly changed angles, the

3σ-criterion is used here again. The global congruency test required to verify the candidate

solutions is again derived directly from angular differences.
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Epoch 2

One candidate solution is found for the comparison of epoch 2 and epoch 1. The candidate

consists of all twelve network points. With a boundary value of FS=0.95, f1=h=29, f2=r1+r2=192 =

1.53 the global congruency test passes, which confirms that the largest congruent point group

indeed consists of all network points. The test results are summarized in Table 4.58.

Candidate TG Test outcome

101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112 0.92 pass

Table 4.58: Scenario B: largest similar point group and test statistic for epoch 2

Epoch 3

Only one candidate is found for the comparison of epochs 1 and 3, consisting of nine points.

Given the boundary value of boundary value of FS=0.95, f1=h=20, f2=r1+r2=192 = 1.62 for the

global congruency test, the candidate is accepted as the largest similar point group between

epochs 1 and 3. Details are given in Table 4.59 below.

Candidate TG Test outcome

101, 103, 104, 106, 107, 109, 110, 111, 112 1.48 pass

Table 4.59: Scenario B: largest similar point group and test statistic for epoch 3

Epoch 4

For the epoch 1 – epoch 4 comparison the search for the largest similar point group de-

livers three candidates consisting of six points. The candidates together with their re-

sults of the global congruency test are shown in Table 4.60. Given the boundary value

of FS=0.95, f1=h=11, f2=r1+r2=192 = 1.84, only one candidate passes the test and thus is correctly

accepted as the largest similar point group between epochs 1 and 4.
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Candidate TG Test outcome

101, 103, 104, 107, 109, 111 2.12 fail
101, 103, 104, 107, 110, 111 1.56 pass
101, 103, 104, 109, 110, 111 2.40 fail

Table 4.60: Scenario B: candidates and test statistic for epoch 4

Epoch 5

For epoch 5 a total of 27 candidates consisting of three points are found. Multiple of these

candidates pass the global congruency test with a reference value of FS=0.95, f1=h=2, f2=r1+r2=192 =

3.04. The final solution is again the one with the smallest test quantity TG, which is given in

Table 4.61. The remaining candidates can be found in Table B.22 in Appendix B.7.

Candidate TG Test outcome

101, 104, 111 0.34 pass

Table 4.61: Scenario B: largest similar point group and test statistic for epoch 5

After the largest similar point groups have all been correctly identified, the deformations for

Scenario B can now be determined.

4.2.4 Determination using transformation-based approach

In order to determine the deformations a transformation as described in Section 3.3 has

been performed. As input serve the adjusted coordinates in each epoch listed in Appendix

B.5 and their fully-populated, singular cofactor matrices. To avoid numerical stability issues

caused by the large coordinate values in the global system, the coordinates in each epoch

are reduced to their respective centroids before the transformation is performed. This has

no effect on the outcome of the adjustment other than that the translations are reduced to

zero. The full translations can be recovered from the rotated centroids after the adjustment,

if desired. For the determination of deformations this is of no concern however, as they can

be derived in the reduced systems as well.
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Again, the a priori standard deviation for the adjustment has been chosen as σ0 = ±1.

The statistical results for the transformation adjustment are summarized in Table 4.62 be-

low.

The estimated transformation parameters and their standard deviations for epochs 2 and 3

are listed in Table 4.63. For epoch 2 the deviations of the rotation parameters from their

true values given in Table 4.47 are small and with −2.4 ′′, 1.7 ′′ and 0.9 ′′ for ω, ϕ and κ,

respectively, at the same level as their corresponding standard deviations. The translations

and their standard deviations are at the level of 10−10 m and can thus be considered negligible.

And the scale factor only deviates from its true value by about 4 ppm. The parameters for

epoch 2 are accurately recovered.

Ep 1 Ep 2 Ep 3 Ep 4 Ep 5 Total

Number of points 12 12 9 6 3 42
Number of observations 36 36 27 18 9 126
Number of conditions − 37 28 19 10 94
Number of unknowns − 8 8 8 8 32
Redundancy − 29 20 11 2 62
A posteriori standard deviation σ̂0 ±1.088281
Global test statistic Tχ 73.43
Lower boundary value χ2

S=0.025, r 42.13
Upper boundary value χ2

S=0.975, r 85.65
Test outcome pass

Table 4.62: Scenario B: summary of statistics for transformation adjustment of all epochs

In epoch 3 the deviations of the three rotations ω, ϕ and κ are −0.1 ′′, 3.9 ′′ and 2.8 ′′. The

translations are now at the millimetre-level with sub-millimetre standard deviations which

may be due to the change in datum between the two epochs. The scale factor is again very

accurately determined.

The estimated transformation parameters for epochs 4 and 5 are given in Table 4.64 below.

In epoch 4 the deviations of the rotation angles ω, ϕ and κ are 2.8 ′′, 0.9 ′′ and −0.1 ′′. The

translations further increase in magnitude while the scale factor deviates less than 2 ppm
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Epoch 2 Epoch 3
Parameter Value σ̂ Value σ̂

q0 0.7888697420 ±1.8639 · 10−6 0.7888705638 ±2.0287 · 10−6

qx 0.1871099138 ±4.6924 · 10−6 0.1871184940 ±5.0844 · 10−6

qy −0.2904014544 ±5.0627 · 10−6 −0.2903994661 ±5.6095 · 10−6

qz −0.5082729636 ±1.5075 · 10−6 −0.5082696655 ±1.6559 · 10−6

ω 37.79443796 ◦ ±1.9 ′′ 37.79505347 ◦ ±2.1 ′′

ϕ −15.54362579 ◦ ±1.9 ′′ −15.54302232 ◦ ±2.1 ′′

κ −70.93771165 ◦ ±1.0 ′′ −70.93720242 ◦ ±1.1 ′′

Tx 5.72 · 10−10 m ±0.22 · 10−10 m 0.001670 m ±0.000662 m
Ty 5.96 · 10−10 m ±0.26 · 10−10 m −0.001833 m ±0.000562 m
Tz −5.31 · 10−10 m ±0.32 · 10−10 m −0.002339 m ±0.000668 m
λ −128.7 ppm ±5.3 ppm −125.8 ppm ±5.8 ppm

Table 4.63: Scenario B: estimated transformation parameters and standard deviations of
epochs 2 and 3 with respect to epoch 1

from its true value. A slight increase in the standard deviations of all parameters compared

to the previous epoch can be noted. In epoch 5 the deviation for the three rotation angles

Epoch 4 Epoch 5
Parameter Value σ̂ Value σ̂

q0 0.7888663486 ±2.4051 · 10−6 0.7888612385 ±4.6764 · 10−6

qx 0.1871179021 ±5.4238 · 10−6 0.1871220946 ±7.5119 · 10−6

qy −0.2904097304 ±5.9277 · 10−6 −0.2904233202 ±13.2681 · 10−6

qz −0.5082705610 ±2.3883 · 10−6 −0.5082691839 ±4.2331 · 10−6

ω 37.79586864 ◦ ±2.2 ′′ 37.79739097 ◦ ±3.9 ′′

ϕ −15.54385565 ◦ ±2.2 ′′ −15.54473144 ◦ ±4.8 ′′

κ −70.93798710 ◦ ±1.4 ′′ −70.93872009 ◦ ±2.5 ′′

Tx 0.002692 m ±0.001246 m 0.006900 m ±0.002782 m
Ty −0.005737 m ±0.001067 m −0.011562 m ±0.002513 m
Tz −0.008671 m ±0.001228 m −0.019949 m ±0.003604 m
λ −126.6 ppm ±6.6 ppm −133.3 ppm ±8.8 ppm

Table 4.64: Scenario B: estimated transformation parameters and standard deviations of
epochs 4 and 5 with respect to epoch 1

ω, ϕ and κ are now 8.3 ′′, −2.2 ′′ and −2.7 ′′. The deviation in ω seems unusually high

compared to the previous epochs. The translations are now at the centimetre-level and the

deviation of the scale factor has increased to about 8 ppm. A further increase of all standard

deviations can be observed in epoch 5 as well. The increase of both, the magnitudes of the
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transformation parameters and their standard deviations, can be attributed to the change

of the computational base to three points only.

While the effect of the datum change is obvious in the translation parameters when comparing

results from epochs 2 to 5, it cannot be observed as clearly in the angles due to the overlapping

rotations. The scale factor does not show any significant change over the epochs and seems

unaffected by the datum change.

In Table 4.65 below the estimated deformations for epoch are listed together with their

standard deviations. Since no deformations were introduced in epoch 2, the estimated de-

formations are apparent movements due to random errors in the coordinates from which

they are derived. Although they are notably higher than in Scenario A, reaching as much as

11 mm in magnitude, they are all within 2σ of their estimated standard deviations.

Point dx dy dz σ̂dx σ̂dy σ̂dz

101 −2.9 −1.9 3.5 ±6.1 ±5.6 ±7.4
102 −3.4 3.4 0.2 ±2.9 ±3.0 ±3.3
103 10.7 −1.0 0.8 ±5.7 ±5.1 ±6.7
104 −9.5 −4.2 3.0 ±6.2 ±5.1 ±6.4
105 −1.0 6.8 −2.2 ±4.7 ±4.3 ±4.3
106 −1.0 2.2 0.2 ±4.9 ±4.1 ±4.1
107 −0.1 −4.0 −0.0 ±4.6 ±3.6 ±4.1
108 3.4 −2.7 1.0 ±3.2 ±2.9 ±3.5
109 4.4 3.4 −10.1 ±6.2 ±5.5 ±7.4
110 −4.4 2.3 2.0 ±3.1 ±2.8 ±3.4
111 −3.8 −2.7 0.3 ±3.6 ±3.2 ±4.1
112 7.6 −1.5 1.2 ±6.5 ±5.9 ±8.4

Table 4.65: Scenario B: estimated deformations and standard deviations in epoch 2 in [mm]

In epoch 3 deformations were introduced in points 102, 105 and 108 only which can be found

in Table 4.66 below. The apparent movements for the remaining points are within 2σ of

their estimated standard deviation.

The estimated deformations of epoch 4 are listed in Table 4.67 together with their standard

deviations. Half of the points are subject to deformations now. Again, the estimated defor-
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Point dx dy dz σ̂dx σ̂dy σ̂dz

101 0.3 −1.0 8.0 ±6.2 ±5.7 ±7.7
102 −14.0 25.4 −11.0 ±3.1 ±3.1 ±3.5
103 −3.8 4.4 −2.4 ±5.9 ±5.2 ±6.9
104 −2.2 −6.1 0.4 ±6.3 ±5.2 ±6.7
105 19.9 −16.5 −6.2 ±4.8 ±4.4 ±4.4
106 −1.5 −2.3 −2.4 ±5.0 ±4.2 ±4.2
107 7.6 −7.1 1.0 ±4.7 ±3.7 ±4.2
108 14.5 −28.2 −12.9 ±3.4 ±3.1 ±3.8
109 −5.6 8.6 −4.3 ±6.3 ±5.7 ±7.6
110 1.2 2.2 3.1 ±3.2 ±2.9 ±3.5
111 0.7 −3.4 −4.1 ±3.7 ±3.3 ±4.2
112 2.9 5.7 2.6 ±6.6 ±6.1 ±8.6

Table 4.66: Scenario B: estimated deformations and standard deviations in epoch 3 in [mm]

mations for the stable points are within 2σ of their standard deviations. So far, no significant

increase in the standard deviations of the deformations compared to the previous epochs can

be found.

Point dx dy dz σ̂dx σ̂dy σ̂dz

101 2.9 0.8 4.8 ±6.3 ±5.8 ±7.7
102 −32.6 34.1 −19.7 ±3.2 ±3.1 ±3.5
103 −2.0 5.1 5.2 ±5.8 ±5.2 ±6.8
104 −4.5 −7.5 −4.0 ±6.4 ±5.3 ±6.7
105 41.1 −21.8 −15.7 ±4.8 ±4.4 ±4.4
106 18.0 −26.0 −9.0 ±5.0 ±4.2 ±4.2
107 8.6 −6.3 −2.0 ±4.7 ±3.8 ±4.3
108 36.7 −53.3 −26.5 ±3.6 ±3.3 ±4.0
109 2.2 −16.8 −20.3 ±6.4 ±5.9 ±7.8
110 −0.6 2.3 2.4 ±3.4 ±3.1 ±3.8
111 −2.9 −3.3 −1.9 ±3.9 ±3.4 ±4.4
112 −33.7 25.5 −17.4 ±6.9 ±6.1 ±8.7

Table 4.67: Scenario B: estimated deformations and standard deviations in epoch 4 in [mm]

The estimated deformations of the final epoch are given in Table 4.68 below together with

their standard deviations. Now nine out of twelve points experience deformations leaving

only three points to form the stable computational base for this epoch. This results in a

notable increase in the standard deviations of the estimated deformations for most points,
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Point dx dy dz σ̂dx σ̂dy σ̂dz

101 −1.1 2.1 5.8 ±6.6 ±6.1 ±9.0
102 46.3 42.1 −18.6 ±3.8 ±3.5 ±4.1
103 21.6 24.2 −12.8 ±6.9 ±5.8 ±8.0
104 −1.8 −4.3 0.1 ±8.0 ±6.5 ±8.0
105 54.7 −41.5 −16.8 ±5.5 ±5.0 ±5.6
106 35.7 −33.1 −24.2 ±5.7 ±5.0 ±6.2
107 −6.2 −32.3 −21.5 ±5.6 ±4.7 ±6.2
108 60.1 −67.6 −42.6 ±5.3 ±4.9 ±6.6
109 19.2 −46.6 −28.3 ±7.8 ±7.8 ±13.2
110 −10.8 −19.3 −17.5 ±4.5 ±4.6 ±8.4
111 −1.2 −3.3 −1.0 ±4.3 ±3.7 ±4.9
112 −40.6 40.9 −62.3 ±7.5 ±6.6 ±10.6

Table 4.68: Scenario B: estimated deformations and standard deviations in epoch 5 in [mm]

especially in z-direction. For the three stable points 101, 104 and 111, the estimated apparent

movements are well within 2σ of their standard deviations.

The errors
⇀
ε of the estimated deformations, computed by removing the true deformations

according to
⇀
ε =

⇀

dest −
⇀

dtrue, are shown in Table 4.69. An increase of the errors in the fifth

epoch is notable. Again, this can be explained with the reduced computational base in this

epoch, consisting of three points only. But with their standard deviations also increasing the

errors are still within 2σ of their estimated standard deviations for all epochs.

Conclusively, it can be found that the deformations for all epochs are accurately recov-

ered within their given accuracies, even when 75 % of the monitoring points are subject to

deformations.

4.2.5 Discussion

After the comparison of the variances of the adjusted coordinates of each epoch, a series

of global congruency tests is performed to identify those epochs where deformations have

occurred. The test statistics cannot be derived from coordinates as the epochs refer to

different coordinate systems. Thus, datum-invariant functions of the coordinates are used
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Epoch 2 Epoch 3 Epoch 4 Epoch 5

Point εx εy εz εx εy εz εx εy εz εx εy εz

101 −2.9 −1.9 3.5 0.3 −1.0 8.0 2.9 0.8 4.8 −1.1 2.1 5.8
102 −3.4 3.4 0.2 2.0 4.4 0.0 −0.6 2.1 0.3 −0.7 5.1 7.4
103 10.7 −1.0 0.8 −3.8 4.4 −2.4 −2.0 5.1 5.2 −1.4 6.2 1.2
104 −9.5 −4.2 3.0 −2.2 −6.1 0.4 −4.5 −7.5 −4.0 −1.8 −4.3 0.1
105 −1.0 6.8 −2.2 0.9 0.5 3.8 2.1 1.2 4.3 7.7 −2.5 11.2
106 −1.0 2.2 0.2 −1.5 −2.3 −2.4 −1.0 −3.0 −1.0 −6.3 −0.1 2.8
107 −0.1 −4.0 −0.0 7.6 −7.1 1.0 8.6 −6.3 −2.0 10.8 −9.3 −10.5
108 3.4 −2.7 1.0 2.5 −4.2 1.1 3.7 −6.3 −0.5 5.1 −9.6 −4.6
109 4.4 3.4 −10.1 −5.6 8.6 −4.3 −7.8 0.2 −8.3 0.2 −6.6 −9.3
110 −4.4 2.3 2.0 1.2 2.2 3.1 −0.6 2.3 2.4 2.2 0.7 −6.5
111 −3.8 −2.7 0.3 0.7 −3.4 −4.1 −2.9 −3.3 −1.9 −1.2 −3.3 −1.0
112 7.6 −1.5 1.2 2.9 5.7 2.6 −13.7 1.5 −0.4 −8.6 0.9 −11.3

Table 4.69: Scenario B: differences between estimated and true deformations at given epoch
in [mm]

instead. As there is also a change in scale present between epochs, distances cannot be used

either. For this reason, angles are computed in each epoch and angular differences between

epochs are used to derive the test statistics. From the outcome of the global congruency

tests it becomes evident that deformations are inherent in epochs 3 to 5.

The localization of the largest similar point group is then carried out, first by the MSS-

method based on distance ratios followed by the angle-based approach. With the distance

ratios approach only one candidate is found for the largest similar point groups of epochs

2 and 3, so that the correct solution could be immediately determined through a single

transformation adjustment for each of the two epochs. In epoch 4, 40 candidates are identified

for each of which a transformation adjustment has to be run. Only the correct solution

passed this evaluation. In epoch 5, a total of 173 candidates are found. 173 transformation

adjustments later, the correct solution is identified as the candidate with the smallest test

statistic for the global test of the adjustment model.

The angle-based MSS-approach also identifies the largest similar point groups for epochs 2

and 3 with only one candidate. In epoch 4, three candidates are found but the two wrong

candidates are rejected by the global congruency test. In epoch 5 a total of 27 candidates
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are found. The correct solution is identified as the candidate with the smallest test statistic

for the global congruency test.

The deformations are then determined using the transformation-based approach introduced

in Section 3.3. Again, the transformation parameters are accurately determined. The effects

of the datum change can be observed in the three translations, but are not obvious in

the angles, due to the large rotations between the coordinate systems. The errors for the

estimated deformations are all within 2σ of their standard deviations, so that they can

be considered as accurately determined. An increase of the standard deviations of the

deformations in the last epoch is evident. This is a result of the computational base being

reduced to only three points. The RMS of the errors of the estimated deformations in

Table 4.69 are summarized in Table 4.70 below. For epochs 2 to 4 the RMS errors are at

Epoch 2 Epoch 3 Epoch 4 Epoch 5
RMS in [mm] 24.9 23.4 27.3 35.6

Table 4.70: Overall RMS errors of estimated deformations for all epochs

approximately the same level at about 25 mm. A clear increase is visible in epoch 5 to about

35 mm. This may, at least partially, be due to the reduced computational base and the

resulting loss of accuracy in epoch 5.

This scenario shows that the proposed methodology can successfully be applied to epochs

given in different coordinate systems. Angular differences are perfectly suited to derive

the test statistics for the global congruency test, as they are not only coordinate- but also

scale-invariant. For the same reason they can be used for the localization of the largest

similar point group. And, although both, the distance-ratios approach and the angle-based

approach, are very reliable in identifying the largest similar point group, the angle-based

approach is much more efficient. This is because fewer candidates are found in general and

the evaluation of the candidates can be performed by a global congruency test, so that

no additional adjustment is required. The transformation-based approach combines the
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transformation between coordinate systems with the necessary datum transformation.

4.3 Summary

The simulations have shown that all three MSS-approaches discussed here are equally re-

liable in the localization of the largest congruent point group and clearly out-perform the

traditional single-point analysis. While the approach based on distance differences is the

most efficient one in terms of the number of candidate solutions found, it cannot be applied

if the coordinates of the two epochs refer to different scales. The angle-based MSS-approach

is more efficient than the approach based on distance ratios as it produces fewer candidates

and does not require an adjustment to evaluate the candidates. Thus, it is the preferred

approach when scale changes are suspected.

The transformation-based approach for the determination of deformations introduced in

Section 3.2 has the advantage that the adjusted coordinates and their singular cofactor

matrices can directly be utilized, so that the original observations of each epoch are not

required. Furthermore, it can be applied in scenarios where different coordinate systems are

in use. Thanks to the use of a quaternion rotation, no approximate values for the rotation

parameters need to be calculated and the rotation can be arbitrarily large, as no small-angle

approximations are applied.

The re-adjustment of the combined observations of the epochs requires, obviously, the avail-

ability of the original observations of each epoch. This approach however, can be generalized

to the approach with implicit formulation of transformation proposed in Neitzel (2004) and

explained in detail in Section 2.4.2.2. Rather than using the original observations, a min-

imal configuration of observable quantities, e. g. distances, is calculated from the adjusted

coordinates together with their corresponding cofactor matrix, which will be regular. With

the introduction of a scale factor, the re-adjustment based on the fictitious observations can
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then be performed in any arbitrary system without the need to compute the transformation

parameters explicitly (other than the scale factor) or initial approximates thereof.

The difference between the two methods is that with the implicit formulation a pre-processing

of the coordinates and their singular cofactor matrices is required, whereas with the explicit

formulation a post-adjustment transformtion of all coordinates into a common coordinate

/ datum system is required to derive the deformations. Furthermore, the implicit trans-

formation provides deformations only for the unstable points while for all stable points the

resulting deformations are exactly zero, as all random errors are completely absorbed by the

observation residuals. As a consequence, the stable points obtain a new set of coordinates

in each epoch which can lead to inconsistency issues.

With the explicit transformation deformations, or apparent movements respectively, are ob-

tained for all points. This results in a higher RMS error of the estimated deformations.

However, the original coordinates remain unchanged, so that the coordinates and their de-

formations are always consistent.
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Chapter 5

CASE STUDY: The Frank Slide / Turtle Mountain,

Alberta

Turtle Mountain is located in the Crownsnest Pass in southwestern Alberta. On April

29th 1903, 30 · 106 m3 of limestone broke away from the east face of Turtle Mountain. The

rock slide killed over 70 people, buried half of the town of Frank and the Canadian Pacific

Railway line and dammed the Crowsnest River. This rock slide, the worst landslide disaster

in Canadian history, is known as the Frank Slide. (Froese et al., 2009). Figure 5.1 pictures

Turtle Mountain and the Frank Slide.

Figure 5.1: Frank Slide / Turtle Mountain, Alberta
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Since the occurrence of the Frank Slide, Turtle Mountain has been subject to extensive

monitoring and research by geologists, geophysicists and surveyors, (Froese et al., 2009;

Fraser and Gründig, 1985). South Peak and the so-called Saddle, just below South Peak to

the north (see Figure 5.2), are of particular interest. Large crevasses and fractures on Turtle

Mountain, especially in the Saddle where the Frank slide broke free, suggest that a second

slide might occur.

South Peak

The Saddle
North Peak

Figure 5.2: The Saddle area of Turtle Mountain where the Frank Slide broke free with North
and South Peak

The towns of Frank and Hillcrest, with a combined population of about 500 people, border

Turtle Mountain to the north and east, respectively. An industrial park, a public baseball

field as well as several private properties are located in the vicinity of the mountain. Hence,

there is a substantial concern for public safety. An array of mainly non-geodetic monitoring

sensors, located around South Peak and the Saddle area, forms an early warning system

which sends the collected data to the nearby Frank Slide Interpretive Centre via a radio

link.
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In May 2007 the Precise Engineering and Deformation Surveys (PEDS) group in the De-

partment of Geomatics Engineering at the University of Calgary started a new research

project in collaboration with Alberta Geological Survey (AGS). The goal of this research

project was to determine long-term movements of Turtle Mountain in order to contribute to

a better understanding of the behaviour of this natural structure and of what might have

caused the Frank Slide.

As part of this research project a high-precision terrestrial network (HPTN) was established

in the Saddle area just below South Peak. This network consists of seven intervisible moni-

toring points which are located at critical spots along the major fracture in the Saddle. The

locations for these points were carefully chosen together with the responsible geologist and

are shown in Figure 5.3. The resulting shape of the network is very elongated and thus the

network geometry is very poor. (Ebeling et al., 2011).

Figure 5.3: Top view of the Frank slide with locations of HPTN points, (Google Earth, 2012)
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The monitoring points are built from a 1 ft length of structural steel and are securely bolted

to a slab of intact rock. The structural steel pillars are topped with a galvanized steel cap that

holds a 5/8 in threaded bolt which can accommodate a tribrach. This allows for installation

of a survey target as well as a total station or other survey equipment as required. A typical

target setup is shown in Figure 5.4.

Figure 5.4: Prism on monitoring pillar (left) and Leica TCA 2003 pointing at South Peak
(right)

The collected observations consist of horizontal directions, zenith angles and slope distances

between the monitoring points, as well as height of instrument (HI) and height of target

(HT ) information. All measurements were reduced to the centre of the 5/8 in bolt at the top

of the nut which holds the bolt in place as illustrated in Figure 5.5. This is the reference

point for all derived coordinates and deformations.

Observations were collected using a Leica TCA 2003 high-precision total station with an

angular accuracy of ±0.5 ′′ for horizontal and vertical circle readings and ± (1 mm + 1 ppm)

for slope distances, according to the manufacturer. For distance measurements a standard

Leica round prism was used. The instrument and reflector can be seen in Figure 5.4. The

additive constant of the instrument / reflector combination was determined to be insignificant
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Figure 5.5: Top view (left) and side view (right) of a pillar cap showing the reference point
(red dot) for all measurements

by means of calibration. Temperature, atmospheric pressure and humidity were observed

at each instrument station to account for atmospheric refraction of the measured slope

distances. Instrument and target heights were determined as averages of three independent

tape measurements. At each instrument two to three sets of observations were collected to

all visible points in the network.

The network was observed in four epochs – in Summer 2008, Fall 2009, Fall 2010 and Fall

2011. Initially, the network was observed from four of the seven points, namely 1, 14, 15

and 17. In Fall 2009 point 13 was added as an instrument station. Further shots were added

as well by using an extension for the prism to observe otherwise invisible points. Figures

5.6 and 5.7 show the HPT-network with observation lines and arrows indicating instrument

stations and target points in Summer 2008 and Fall 2009, respectively.

A network analysis was performed, as explained in detail in Section 2.2, to obtain adjusted

coordinates and their cofactor matrices for each epoch. Before the network adjustment the

observed zenith angles and slope distances were converted to horizontal distances and height

differences and reduced to the reference point shown in Figure 5.5 using the HI and HT

measurements. The standard deviations of the averages derived from the repeated measure-
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Figure 5.6: Network in Summer 2008 with
observations indicated by arrows
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Figure 5.7: Network in Fall 2009 with
observations indicated by arrows

ments were smaller than the instrument accuracies specified by the manufacturer mentioned

above, so that the instrument accuracies were used as input standard deviations for the ob-

servations. The standard deviations of the HI /HT measurements were assumed as ±1 mm.

Error propagation was performed to obtain standard deviations and their correlations for

the horizontal distances and height differences used in the network adjustment. The a priori

standard deviation was chosen as σ0 = ±0.001 for all epochs.

The trigonometric height differences were adjusted for the effect of earth curvature by adding

the well-known correction, (see e. g. Wolf and Ghilani (2006)):

∆R =
s2
H

2R
,

where ∆R denotes the earth curvature correction, sH the horizontal distance between points
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and R the Earth’s radius. Related to this effect is the convergence of the plumb lines

illustrated in Figure 5.8 between the southernmost point 15 and the northernmost point 17 in

the HPT network. In the figure,
⇀
g denote the gravity vectors in point 15 and 17, respectively,

γ

17

15

g
15

g
17

s
S

R+H
15

R+H
17

Figure 5.8: HPTN points 15 and 17 with their corresponding gravity vectors

and γ is their intersection angle at the Earth’s centre of mass. With point elevations above

the geoid of H15 = 2200 m and H17 = 2150 m, the Earth’s radius of R = 6, 378, 000 m and a

slope distance of ss = 233 m between points 15 and 17, the intersection angle follows from

the cosine law as γ = 7.3 ′′. This significant error affects not only the height differences but

also the observations in the horizontal plane (directions and distances). However, since this

is a systematic error, constant for all epochs, it will affect the coordinates in each epoch but

not the resulting deformations. For this reason the effect is neglected and a planar model is

assumed for all further computations.

The coordinate system was established as a local level frame by assigning coordinates of

(E N H)T1 = (500.0000 1000.0000 100.0000)T1 m to point 1 and using the azimuth from point

1 to point 17 , available from GPS observations, to align it with geodetic North. A subset

of observations from the first epoch, uniquely describing the network geometry, was then

used to calculate initial approximate values for the remaining points in the network. The
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so-obtained initial coordinates for all epochs are listed in Table 5.1 An inner-constraints

approach utilizing all seven network points was applied to define the four free parameters of

the geodetic datum – the orientation in the horizontal plane and the translations along all

three coordinate axis. After the network adjustment a variance component estimation was

performed to obtain more realistic accuracy estimates for the coordinates.

Point Easting Northing Height

1 500.00 1000.00 100.00
2 486.01 1040.26 76.35
12 435.71 1081.60 44.73
13 435.95 1128.17 40.03
14 436.84 1159.60 44.74
15 466.98 982.87 92.75
17 414.33 1205.58 48.63

Table 5.1: Initial approximate coordinates of HPTN points in [m]

5.1 Results of network analyses

The statistical results from the network analyses of the four epochs are summarized in

Table 5.2, including the number of observations n, the number of unknowns u and the

redundancy r. As can be seen from the table the number of observations increases after the

first epoch due to the introduction of the additional instrument station and further lines

of observations, which leads to a significant increase in redundancy. An orientation offset

Epoch n u r σ̂0k Tχ2
k

Test outcome

1 54 25 33 ±0.001001 33.07 pass
2 75 26 53 ±0.001013 54.39 pass
3 75 26 53 ±0.000994 52.36 pass
4 75 26 53 ±0.000946 47.43 pass

Table 5.2: Statistical results of network analyses

required for the additional instrument station increases the number of unknown parameters

to 26. The a posteriori standard deviations σ̂0k (for k = 1 . . . 4), after variance component
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estimation, together with their test statistics Tχ2
k

for the global test of the adjustment model

are listed in the table as well. The test passes for all epochs.

The adjusted coordinates for all epochs and their standard deviations can be found in Ap-

pendix C.1. The estimated standard deviations of the coordinates in epoch 1 vary between

±0.4 mm and ±1.2 mm in the horizontal plane and between ±1.3 mm and ±4.4 mm in the

vertical. The standard deviations improve in epoch 2, now ranging between ±0.2 mm and

±0.4 mm horizontally and between ±0.7 mm and ±1.3 mm vertically. For epochs 3 and 4 the

estimated standard deviations can be summarized as varying from ±0.2 mm to ±0.7 mm in

the horizontal plane and from ±0.4 mm to ±0.8 mm in the vertical. These numbers clearly

reflect the high precision obtained for the network coordinates. An improvement in precision

between the first and the subsequent epochs is also notable. This is a consequence of the

increased network redundancy after the first epoch.

Due to the chosen datum definition, the estimated cofactor matrices of the adjusted coordi-

nates for all epochs are rank-deficient by four.

5.2 Global congruency testing

For this application it is of interest to compare not only the subsequent epochs with the

base epoch but also to compare all epochs among each other to gain a better insight of the

movements on a year-to-year basis. Hence, the global congruency test needs to be carried

out for all six combinations of the four epochs. Before this can be done, it has to be ensured

that all epochs refer to the same a posteriori variance factor by using the test described

in (2.24). The results from the tests are shown in Table 5.3. After it has been confirmed

that all epochs are indeed comparable, the combined variance factors for all six two-epoch

comparisons can be derived. Their square root, the combined standard deviations σ̂0 are

given in Table 5.3 as well.
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Epochs TF FS, f1, f2 Test outcome σ̂0

1 and 2 1.02 1.91 pass ±0.0010084
1 and 3 1.01 1.82 pass ±0.0009967
1 and 4 1.12 1.82 pass ±0.0009675
2 and 3 1.04 1.72 pass ±0.0010035
2 and 4 1.15 1.72 pass ±0.0009801
3 and 4 1.10 1.72 pass ±0.0009703

Table 5.3: Comparison of variances and combined standard deviations

Now the global congruency tests can be performed according to (2.32) to (2.35). The test

Epochs Ω̂2 TG FS, f1, f2 Test outcome

1 and 2 1.42 · 10−6 1.40 1.81 pass
1 and 3 3.12 · 10−6 3.14 1.81 fail
1 and 4 2.42 · 10−6 2.59 1.81 fail
2 and 3 1.60 · 10−6 15.91 1.79 fail
2 and 4 7.64 · 10−6 7.96 1.79 fail
3 and 4 5.12 · 10−6 5.45 1.79 fail

Table 5.4: Global congruency tests for all epochs

statistics are derived from angular differences between epochs again. The results are listed

in Table 5.4. The boundary values of the Fisher-distribution are given for a confidence level

of α = 5 % and degrees of freedom f1 = h = 14 and f2 = ri + rj, the sum of redundancies of

both epochs, being 86 or 106, respectively. It becomes evident from the results that, with

the exception of epoch 2, deformations have to be expected in all other epochs.

5.3 Localization

After it has been determined that deformations are inherent, the search for the largest similar

point group is conducted using the MSS-method based on distance-ratios as well as the angle-

based approach. Since scale changes between epochs are suspected, the distance-difference

approach is not applied.
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5.3.1 MSS using distance ratios

Although, the global congruency test already stated that no measurable deformations are

inherent between epochs 2 and 1, for reasons of completeness the search for the largest similar

point group is performed as well. The result is shown in Table 5.5 below. The only candidate

Candidate σ̂0 Redundancy Tχ Test outcome

1, 2, 12, 13, 14, 15, 17 ±1.18825765 14 19.77 pass

Table 5.5: Statistical evaluation of largest similar point group between epochs 1 and 2

found includes all seven points. After performing the obligatory transformation adjustment,

the outcome of the global congruency test can be confirmed. The reference value for the

χ2-test is given by χ2
S=0.95, f=r=14 = 23.68.

The results of the search for the largest similar point group between epochs 1 and 3 are listed

in Table 5.6. Two candidates consisting of six points are found. With a boundary value of

Candidate σ̂0 Redundancy Tχ Test outcome

1, 2, 12, 13, 14, 17 ±1.53263313 11 25.84 fail
2, 12, 13, 14, 15, 17 ±1.19944369 11 15.83 pass

Table 5.6: Statistical evaluation of candidates for largest similar point group between epochs
1 and 3

χ2
S=0.95, f=r=11 = 19.68, the global test of the adjustment model passes for only one of the

two, so that the final solution is found and no further searches have to be conducted.

For the comparison of epochs 1 and 4, two candidates are found as well. With the same

reference value as before of χ2
S=0.95, f=r=11 = 19.68, the global test of the adjustment model

passes for one candidate only which thus forms the final solution. The results for the two

candidates are summarized in Table 5.7 below.

For the comparison of epoch 2 and epoch 3 the search for the largest similar point group first

delivers two candidates of six points. After transformation, the global test of the adjustment
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Candidate σ̂0 Redundancy Tχ Test outcome

1, 2, 13, 14, 15, 17 ±1.62397845 11 29.01 fail
2, 12, 13, 14, 15, 17 ±1.31110192 11 18.91 pass

Table 5.7: Statistical evaluation of candidates for largest similar point group between epochs
1 and 4

model fails for both. The search is continued for a group of five points and results in 11

candidates, likewise they are all rejected. In search for a group of four points, a total of 25

Candidate σ̂0 Redundancy Tχ Test outcome

12, 14, 15, 17 ±0.89631285 5 4.02 pass

Table 5.8: Statistical evaluation of largest similar point group between epochs 2 and 3

candidates are discovered of which three candidates pass the global test of the adjustment

model. The one with the smallest test statistic forms the final solution and is given in Ta-

ble 5.8. All remaining candidates and their statistical evaluations can be found in Table C.5

in Appendix C.2.

Between epochs 2 and 4 a total of 67 candidates are found. The final solution consists of

four points and is shown in Table 5.9 below. All remaining candidates are listed in Table C.6

in Appendix C.2.

Candidate σ̂0 Redundancy Tχ Test outcome

12, 14, 15, 17 ±0.88623094 5 3.93 pass

Table 5.9: Statistical evaluation of largest similar point group between epochs 2 and 4

For the comparison of epochs 3 and 4, the distance-ratios approach provides a total of 28

candidates. The final solution consisting of four points is listed in Table 5.10 below. The

remaining solutions can be found in Table C.7 in Appendix C.2.
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Candidate σ̂0 Redundancy Tχ Test outcome

1, 12, 13, 15 ±0.56551964 5 1.60 pass

Table 5.10: Statistical evaluation of largest similar point group between epochs 3 and 4

5.3.2 MSS using angles

Now the search for the largest similar point group is repeated using the angle-based MSS-

method. For the comparison of epochs 2 and 1 only one candidate is found consisting of all

points. The global congruency test, obviously, passes again. The solution and its test results

are shown in Table 5.11 below.

Candidate TG Test outcome

1, 2, 12, 13, 14, 15, 17 1.40 pass

Table 5.11: Statistical evaluation of largest similar point group between epochs 1 and 2

For epochs 1 and 3 only two candidate solutions are found consisting of six points. With a

boundary value of FS=0.95, f1=11, f2=86 = 1.90, one candidate fails the global congruency test

while the other one passes, thus forming the final solution. The results for both candidates

are given in Table 5.12 below.

Candidate TG Test outcome

1, 2, 12, 13, 14, 17 2.37 fail
2, 12, 13, 14, 15, 17 1.45 pass

Table 5.12: Statistical evaluation of candidates for largest similar point group between epochs
1 and 3

Similarly, two candidates including six points are found for the comparison of epoch 1 and

epoch 4. With the same boundary value of FS=0.95, f1=11, f2=86 = 1.90, again one candidate

passes while the other is rejected. The test results are summarized in Table 5.13 below.

For the comparison between epochs 2 and 3 the algorithm delivers eight candidates of four

points. With a reference value of FS=0.95, f1=5, f2=106 = 2.30, two candidates pass the global
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Candidate TG Test outcome

1, 2, 12, 13, 14, 17 2.00 fail
2, 12, 13, 14, 15, 17 1.80 pass

Table 5.13: Statistical evaluation of candidates for largest similar point group between epochs
1 and 4

congruency test. The candidate with the smaller test statistic forms the final solution and

is shown in Table 5.14. The remaining candidates are listed in Table C.8 in Appendix C.3.

Candidate TG Test outcome

12, 14, 15, 17 0.81 pass

Table 5.14: Statistical evaluation of largest similar point group between epochs 2 and 3

A total of 13 candidates are produced by the angle-based MSS-method for the comparison

of epochs 2 and 4. Given the same reference value for the Fisher-distribution as before of

FS=0.95, f1=5, f2=106 = 2.30, multiple candidates pass the test. The final solution is shown in

Table 5.15 below. All remaining candidates and their test results are listed in Table C.9 in

Appendix C.3.

Candidate TG Test outcome

12, 14, 15, 17 0.77 pass

Table 5.15: Statistical evaluation of largest similar point group between epochs 2 and 4

For the comparison of epoch 3 and epoch 4, first three candidates of five points are found

which are all rejected. Continuing the search for groups of four points leads to 16 candidates.

Multiple of these candidates pass the global congruency test. The final solution is, again,

identified as the candidate with the smallest test statistic TG. The final solution and its

statistical evaluation is shown in Table 5.16 below. All other candidates and their test

results are given in Table C.10 in Appendix C.3.
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Candidate TG Test outcome

1, 12, 13, 15 0.32 pass

Table 5.16: Statistical evaluation of largest similar point group between epochs 3 and 4

5.3.3 Summary of results

After both MSS-based approaches applicable to scaled data have been applied to the Turtle

Mountain data sets, it is found that both yield identical results for the localization of the

largest similar point groups. While the approach based on distance-ratios still provides

more candidates overall than the angle-based approach, the number of candidates found has

reduced compared to the simulation from the previous chapter. Particularly, when only one

point has deformed, the number of candidates is low. This is, at least partially, related to

the lower number of points in the network. The high precision of the observations is also

beneficial.

The largest similar point groups for each two-epoch comparisons are summarized in Ta-

ble 5.17 below. Looking at the results with respect to epoch 1, it shows that only point 1

Epochs Largest similar point groups

1 and 2 1, 2, 12, 13, 14, 15, 17
1 and 3 2, 12, 13, 14, 15, 17
1 and 4 2, 12, 13, 14, 15, 17
2 and 3 12, 14, 15, 17
2 and 4 12, 14, 15, 17
3 and 4 1, 12, 13, 15

Table 5.17: Summary of largest similar point groups between all epochs

is identified as unstable in epochs 3 and 4. No movements are found in epoch 2. From the

results with respect to epoch 2 however, it becomes obvious that, in addition to point 1,

points 2 and 13 experienced deformations. The deformations of these two points were not

discovered with respect to epoch 1. This can be explained with the difference in precision of

the two epochs. Due to the additional instrument station and observation lines in epochs 2
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to 4, the standard deviations of the adjusted coordinates for these epochs have significantly

improved over those in epoch 1. In other words, epoch 1 is not determined precisely enough

to pick up deformations with a magnitude of those occurring on Turtle Mountain.

The results with respect to epoch 3 suggest that points 1 and 13 did not experience any

further deformations after epoch 3 was observed, since they are part of the largest similar

point group between epoch 3 and epoch 4. Point 2, on the other hand, appears to be moving

continuously since it is identified as unstable in both, epochs 3 and 4. Furthermore, now de-

formations are inherent in points 14 and 17 which have not shown up in the comparison with

respect to epoch 2. While the estimated standard deviations of the horizontal coordinates

in epoch 2 and 3 are at the same level, their standard deviations in the vertical are slightly

better in epochs 3 and 4 than they are in epoch 2. If the movements of points 14 and 17

occurred mainly in vertical direction, this could explain why they have not been picked up

with respect to epoch 2.

Overall, only two points, namely 12 and 15, remain stable throughout all epochs. While no

deformations were discovered in epoch 2, the only point unstable throughout the remaining

epochs is point 2.

5.4 Determination

After the stable and unstable points have been identified, the deformations occurring in

the Turtle Mountain HPTN points shall be derived from a multiple-epoch transformation

as described in Section 3.3. For this, a stable computational base for the determination of

the transformation parameters needs to be chosen. Since in this application it is of interest

to compare all epochs among each other and not only with respect to the base epoch, the

chosen computational base should include only points that are stable throughout all epochs.

In this case, only two points were found to be stable throughout all epochs but three or more
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points are required for the transformation.

Based on the results of the localization step, the point group from which the transformation

parameters are derived is chosen as 12, 14, 15 and 17. These points are stable for all compar-

isons with respect to epochs 1 and 2, so that results on their basis are comparable between

these epochs. The adjusted coordinates listed in Appendix C.1 and their singular cofactor

matrices serve as input for the transformation adjustment. The a priori standard deviation

for the adjustment was chosen as σ0 = ±1. The statistical results of the transformation

adjustment are summarized in Table 5.18 below.

Ep 1 Ep 2 Ep 3 Ep 4 Total

Number of points 4 4 4 4 16
Number of observations 12 12 12 12 48
Number of conditions − 13 13 13 39
Number of unknowns − 8 8 8 24
Redundancy − 5 5 5 15
A posteriori standard deviation σ̂0 ±1.033739
Global test statistic Tχ 16.03
Lower boundary value χ2

S=0.025, r 6.26
Upper boundary value χ2

S=0.975, r 27.49
Test outcome pass

Table 5.18: Summary of statistics for transformation adjustment of all epochs

The estimated transformation parameters and their standard deviations for epochs 2 and

3 are given in Table 5.19 and the parameters for epoch 4 and their standard deviations

follow in Table 5.20. Looking at the tables it can be noted that the estimated standard

deviations of the parameters are almost the same for all epochs. While the parameters

show larger variations than their standard deviations, they are still at about the same level

for all epochs, with the exception of the scale factor. This makes sense, since the stable

computational base is the same for all three transformations. In epoch 2 and 3 the rotation

about the x-axis clearly has the largest magnitude with about 10 ′′ while the other two

rotations are less than 5 ′′ in magnitude. In epoch four all three rotations have a magnitude
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Epoch 2 Epoch 3
Parameter Value σ̂ Value σ̂

q0 0.999999999598734 ±4.0362 · 10−10 0.999999999667881 ±3.6511 · 10−10

qx 0.0000269583 ±14.7092 · 10−6 0.0000230081 ±16.1526 · 10−6

qy 0.0000048872 ±5.4368 · 10−6 0.0000092321 ±5.2746 · 10−6

qz −0.0000072041 ±3.2954 · 10−6 −0.0000070451 ±3.6184 · 10−6

ω 11.1 ′′ ±6.1 ′′ 9.5 ′′ ±6.7 ′′

ϕ 2.0 ′′ ±2.2 ′′ 3.8 ′′ ±2.2 ′′

κ −3.0 ′′ ±1.4 ′′ −2.9 ′′ ±1.5 ′′

Tx 0.000136 m ±0.000263 m 0.000047 m ±0.000278 m
Ty 0.000116 m ±0.000344 m −0.000440 m ±0.000356 m
Tz 0.000099 m ±0.000755 m 0.000076 m ±0.000721 m
λ −0.8 ppm ±3.9 ppm +66.8 ppm ±4.0 ppm

Table 5.19: Estimated transformation parameters and standard deviations of epochs 2 and
3 with respect to epoch 1

of less than 5 ′′. The translation parameters are at the sub-millimetre level in all three epochs

with the only exception being the z-translation of epoch 4 with about −1.3 mm. An obvious

change in scale of about 67 ppm can be observed in epochs 3 and 4 with respect to epoch 1.

In epoch 2 the estimated scale factor is negligible.

With the exception of the z-rotation in epoch 2, all estimated rotation parameters are within

2σ of their standard deviations. All translations are well within 2σ of their standard devia-

tions. Hence, datum changes are not obvious in the estimated transformation parameters1.

Overall the estimated standard deviations indicate that the parameters were determined very

precisely, despite the small computational base of only four points. This is a consequence of

the high precision of the adjusted coordinates.

The estimated deformations can be found in the tables below. Points found to be unstable

in the localization step are highlighted in bold.

In epoch 2 no measurable deformations have occurred. The apparent movement of the seven

HPTN points together with their standard deviations are listed in Table 5.21. It can be

noted that the estimated movements are very small, especially in Easting. They are largest

1Again, with the exception of the scale factor in epochs 3 and 4.
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Epoch 4
Parameter Value σ̂

q0 0.999999999900845 ±2.0306 · 10−10

qx −0.0000102275 ±16.2842 · 10−6

qy 0.0000096789 ±5.3390 · 10−6

qz −0.0000001724 ±3.6459 · 10−6

ω −4.2 ′′ ±6.7 ′′

ϕ 4.0 ′′ ±2.2 ′′

κ −0.1 ′′ ±1.5 ′′

Tx 0.000148 m ±0.000293 m
Ty 0.000096 m ±0.000360 m
Tz −0.001275 m ±0.000731 m
λ +67.3 ppm ±4.3 ppm

Table 5.20: Estimated transformation parameters and standard deviations of epochs 4 with
respect to epoch 1

Point ∆Easting ∆Northing ∆Height σ̂∆Easting σ̂∆Northing σ̂∆Height

1 0.6 0.4 −5.3 ±1.0 ±0.7 ±2.4
2 0.0 2.2 1.0 ±1.3 ±1.1 ±2.7
12 −0.3 0.3 5.5 ±1.1 ±1.0 ±4.7
13 0.5 −1.7 2.3 ±1.3 ±1.0 ±2.5
14 0.0 0.3 −2.5 ±0.6 ±0.7 ±1.9
15 −0.0 −0.1 −0.1 ±0.9 ±0.6 ±2.1
17 0.0 −0.4 −0.1 ±0.8 ±0.8 ±2.1

Table 5.21: Estimated deformations and standard deviations between epochs 1 and 2 in
[mm]

in Height with several millimetres in magnitude. The same can be seen in the standard

deviations. This is not surprising since the precision of the coordinates is worst in the

vertical, especially in epoch 1.

In epoch 3 only point 1 was found to be unstable with respect to epoch 1. Point 1 exhibits

movements mainly in vertical direction accompanied by smaller horizontal movements in a

north-westerly direction. Notable are the larger movements of point 13, at the level of 2 mm

to 3 mm in all three coordinate directions, although this point was identified as part of the

largest similar point group between epochs 1 and 3.

In epoch 4, again, only point 1 shows a significant deformation with respect to epoch 1. The
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Point ∆Easting ∆Northing ∆Height σ̂∆Easting σ̂∆Northing σ̂∆Height

1 −1.2 1.5 −6.5 ±1.1 ±0.7 ±2.3
2 1.6 0.9 2.0 ±1.3 ±1.1 ±2.6
12 −0.3 0.6 6.6 ±1.2 ±1.0 ±4.5
13 −3.3 −2.3 2.2 ±1.3 ±1.1 ±2.3
14 −0.0 0.2 −1.4 ±0.6 ±0.7 ±1.6
15 0.0 −0.1 −0.6 ±0.9 ±0.7 ±2.0
17 0.1 −0.4 −1.7 ±0.8 ±0.8 ±1.8

Table 5.22: Estimated deformations and standard deviations between epochs 1 and 3 in
[mm]

movement occurs completely in vertical direction. Furthermore, an increase in the apparent

movements of the remaining points is visible compared to the previous epochs, although

none of these points were found to be unstable.

Point ∆Easting ∆Northing ∆Height σ̂∆Easting σ̂∆Northing σ̂∆Height

1 0.0 0.2 −9.2 ±1.1 ±0.8 ±2.3
2 2.4 3.0 −4.5 ±1.3 ±1.2 ±2.6
12 0.5 0.2 6.5 ±1.3 ±1.1 ±4.5
13 −1.9 −2.1 1.7 ±1.3 ±1.1 ±2.3
14 −0.4 0.8 −2.3 ±0.6 ±0.8 ±1.6
15 −0.2 −0.2 −0.3 ±0.9 ±0.7 ±2.0
17 0.2 −0.9 −0.8 ±0.8 ±0.9 ±1.8

Table 5.23: Estimated deformations and standard deviations between epochs 1 and 4 in
[mm]

The estimated deformations of epoch 3 with respect to epoch 2 are shown in Table 5.24

below. Point 1 again exhibits a movement in north-westerly direction while point 2 shows

a north-easterly trend. Point 13 moves due west. The apparent movements of the stable

points are smaller now compared to previous epochs. Likewise, the standard deviations

have improved slightly, mainly in vertical direction. This can be attributed to the increased

network redundancy in epochs 2 to 4.

In epoch 4 point 1 continues its previous downward trend with only very little horizontal

movements. Point 2 as well continues on its previous course in north-easterly direction, now
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Point ∆Easting ∆Northing ∆Height σ̂∆Easting σ̂∆Northing σ̂∆Height

1 −1.7 1.2 −1.2 ±1.3 ±0.8 ±2.5
2 1.6 1.3 1.0 ±0.8 ±0.7 ±2.2
12 0.0 0.3 1.1 ±1.1 ±0.8 ±1.8
13 −3.8 −0.7 −0.1 ±0.8 ±0.7 ±1.4
14 −0.1 −0.1 1.1 ±0.6 ±0.7 ±1.7
15 0.0 0.0 −0.5 ±1.0 ±0.7 ±2.0
17 0.1 0.0 −1.6 ±0.9 ±0.9 ±1.9

Table 5.24: Estimated deformations and standard deviations between epochs 2 and 3 in
[mm]

accompanied by a downward movement of over 5 mm in magnitude. Likewise, Point 13 shows

the same trend as before moving in a mainly westerly direction. The apparent movements

of the stable points are still very small in magnitude. The estimated standard deviations of

all points are comparable to those of the epoch 2–3 comparison.

Point ∆Easting ∆Northing ∆Height σ̂∆Easting σ̂∆Northing σ̂∆Height

1 −0.6 −0.2 −4.0 ±1.3 ±0.8 ±2.5
2 2.3 0.8 −5.5 ±0.8 ±0.8 ±2.2
12 0.8 −0.1 1.0 ±1.1 ±0.9 ±1.8
13 −2.3 −0.4 −0.6 ±0.8 ±0.8 ±1.5
14 −0.4 0.5 0.2 ±0.6 ±0.7 ±1.7
15 −0.2 −0.1 −0.2 ±1.0 ±0.8 ±2.1
17 0.2 −0.4 −0.6 ±0.9 ±0.9 ±1.9

Table 5.25: Estimated deformations and standard deviations between epochs 2 and 4 in
[mm]

Transformation between epochs 3 and 4

Epochs 3 and 4 cannot be compared in the datum defined by points 12, 14, 15 and 17,

as points 14 and 17 were found to be unstable between epochs 3 and 4. For this reason,

a separate transformation adjustment was carried out between epochs 3 and 4 with points

1, 12, 13, 15 as computational base. The statistical results are shown in Table 5.26. The

a priori standard deviation was again chosen as σ0 = ±1.
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Number of points 4
Number of observations 24
Number of conditions 13
Number of unknowns 8
Redundancy 5
A posteriori standard deviation σ̂0 ±0.565520
Global test statistic Tχ 1.60
Lower boundary value χ2

S=0.025, r 0.83
Upper boundary value χ2

S=0.975, r 12.83
Test outcome pass

Table 5.26: Summary of statistics for transformation adjustment of all epochs

The estimated transformation parameters between epoch 3 and epoch 4 and their standard

deviations are listed in Table 5.27. As before, the parameters are very precisely determined

Parameter Value σ̂

q0 0.999999999823570 ±0.6484 · 10−10

qx 0.0000062265 ±3.8612 · 10−6

qy −0.0000114750 ±2.0422 · 10−6

qz −0.0000135061 ±1.7682 · 10−6

ω 2.6 ′′ ±1.6 ′′

ϕ −4.7 ′′ ±0.8 ′′

κ −5.6 ′′ ±0.7 ′′

Tx 0.000319 m ±0.000177 m
Ty −0.001295 m ±0.000123 m
Tz −0.000195 m ±0.000211 m
λ −0.3 ppm ±2.8 ppm

Table 5.27: Estimated transformation parameters and standard deviations of epochs 4 with
respect to epoch 3

with standard deviations at about the 1 ′′-level for the rotations and at sub-millimetre level

for the translations. The rotation parameters for the y- and z-rotations exceed their standard

deviations by more than 2σ while the x-rotation is below that threshold. The y-translation

exceeds its standard deviation by an order of magnitude. The x- and z-translations on the

other hand, are within 2σ of their standard deviations. The scale factor is negligible.

The estimated deformations between epochs 3 and 4 and their standard deviations are shown

in Table 5.28 below. The three unstable points are highlighted in bold. The deformations of
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point 2, a downward movement accompanied by a mainly northerly horizontal component,

agree with those of previous epochs. The two previously stable points 14 and 17 both

show a trend mainly to the west, accompanied by smaller movements in Northing and

Height. The four stable points all show apparent movements at the sub-millimetre level. A

further improvement in the standard deviations in all three coordinate directions is apparent,

compared to those derived with respect to epoch 2. This explains why now points 14 and 17

can be identified as unstable in epoch 4 with respect to epoch 3, when they previously were

found to be part of the stable computational base.

Point ∆Easting ∆Northing ∆Height σ̂∆Easting σ̂∆Northing σ̂∆Height

1 −0.1 −0.1 0.0 ±0.4 ±0.5 ±0.7
2 −0.3 3.4 −3.8 ±0.4 ±0.6 ±0.9
12 0.7 −0.4 −0.4 ±0.9 ±0.9 ±1.1
13 −0.2 0.3 0.2 ±0.4 ±0.7 ±0.8
14 −3.6 0.5 0.7 ±0.4 ±0.7 ±0.8
15 −0.2 0.1 0.0 ±0.5 ±0.5 ±0.7
17 −5.4 −1.5 1.9 ±0.6 ±0.8 ±0.9

Table 5.28: Estimated deformations and standard deviations between epochs 3 and 4 in
[mm]

To gain a better understanding of the deformation behaviour on Turtle Mountain, the de-

formations for all epochs are graphically presented below. Figure 5.9 shows a horizontal plot

of the HPTN points together with their horizontal deformation vectors for Summer 2008 to

Fall 2009, Fall 2009 to Fall 2010 and Fall 2010 to Fall 2011. Figure 5.10 depicts in a similar

manner the elevations of the HPTN points with their vertical deformation vectors.
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Figure 5.9: Horizontal deformations of HPTN points between Summer 2008 (epoch 1) and
Fall 2011 (epoch 4)
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Figure 5.10: Vertical deformations of HPTN points between Summer 2008 (epoch 1) and
Fall 2011 (epoch 4)

196



5.5 Discussion

The monitoring application presented here differs from the two simulated scenarios shown

in Chapter 4 in several aspects. The network consists of considerably fewer points and has

a poor geometry. All network points are located in the deformation zone, so that a stable

reference frame does not exist. The high-precision terrestrial network on Turtle Mountain

was observed in four epochs between Summer 2008 and Fall 2011. Since scale changes are

expected between epochs, the global congruency tests and localization are carried out using

scale- and datum-invariant observations, so that furthermore the geodetic datum of the

epochs is of no concern. The test statistics for the global congruency tests are derived from

angular differences between epochs. The global congruency test indicates deformations in

all epochs with the exception of epoch 2.

The localization of the largest similar point group was performed using the MSS-method

with distance ratios as well as the angle-based MSS-approach. Both approaches deliver the

same results. When analyzing epochs with respect to Summer 2008 (epoch 1), only point

1 is found unstable in epochs 3 and 4. No movements were found in the second epoch,

confirming the outcome of the global congruency test. The results with respect to Fall 2009

(epoch 2), in addition to point 2, points 2 and 13 show signs of movements, which were not

discovered with respect to epoch 1. This leads to the conclusion that the coordinates in

Summer 2008 (epoch 1) are not precise enough to pick up these movements. And indeed,

a look at Table C.1 in Appendix C.1 confirms that the coordinates in epoch 1 are of lesser

precision compared to those of the following epochs. This is due to the addition of a fifth

instrument station and several observation lines starting in Fall 2009 (epoch 2).

Analyzing the Fall 2010 epoch (3) with respect to to Fall 2011 (epoch 4) indicates a change

in the deformation behaviour. The movements of points 1 and 13 appear to have ceased,

but now points 14 and 17 at the northern end of the Saddle start moving. Overall only
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two points, namely points 12 and 15, were found to be stable throughout all four epochs.

The only point experiencing deformations consistently throughout epochs 3 and 4 is point

2. Due to this change in point movements between the last two epochs, two different stable

computational bases had to be chosen to determine the deformations, as no sufficiently large

stable base exists for all four epochs.

No significant deformations were recovered in Fall 2009 (epoch 2). By Fall 2010 (epoch

3) movements can be observed in the southern and central parts of the Saddle. Point 1,

just below South Peak, shows a down-slope movement into the Saddle. Point 2 is drifting

towards the north-east. This indicates a widening of the southern part of the major fracture

running through the Saddle by Fall 2010. Point 13, located in the central area of the Saddle,

shows a due west movement, also indicating a widening of the same fracture. By Fall of 2011

movements in the southern and central parts of the Saddle have mostly ceased, except for

point 2 which continues its trend towards the slide, now coupled with a significant downward

movement. Further movements can now be observed at the northern end of the Saddle area,

where both, points 14 and 17, exhibit a strong movement in westerly direction, away from

the slide.

Two major problems exist in this monitoring network, which make it very difficult to obtain

accurate and conclusive information about the deformation behaviour on Turtle Mountain.

One is the small magnitude of the occurring movements, which makes it very difficult to

distinguish between true deformations and apparent movements, despite the high level of

precision of the observations. The second problem is the fact that all points are potentially

subject to deformations, so that no stable reference frame exists. However, certain movement

patterns become recognizable. For one, a down-slope movement of South Peak towards the

centre of the Saddle is observable in conjunction with a widening of the major fracture in

the southern part between Summer 2008 and Fall 2010. Furthermore, between Fall 2010 and

Fall 2011 a westerly movement at the northern end of the Saddle is observable.
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A comparison with results from previous analyses is difficult because the HPT network is

limited to a small area of Turtle Mountain where few other sensors, or targets respectively,

exist for the time period during which the network was actively observed. The only compar-

ison that can be made is with two photogrammetric targets, p-4 and p-6, that are located

in the Saddle near the top of the Frank Slide. For these targets 3D movements of 38 mm

and 88 mm between 1982 and 2005 have been reported in Froese et al. (2009). Point p-4

moves east-south-east and point p-6 moves in a north-easterly direction. Both points exhibit

deformations directed towards the slide which indicates a widening of the major fracture

that runs through the Saddle. This behaviour was also observed from the HPT network.

Therefore, a general agreement with movement patterns of the Saddle area from Froese et al.

(2009) exists.
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Chapter 6

CONCLUSIONS

The final chapter summarizes the findings from this thesis for each chapter and points out

the contributions to the field of deformation monitoring that have been accomplished with

this work.

6.1 Findings from this Thesis

Chapter 2 - Background

In Chapter 2 it has been shown that a variety of very different geodetic observation types

can be used to recover geometrical movements of a structure. Thus, the need of a network

analysis arises in order to combine the different heterogeneous observation types and produce

a homogeneous set of coordinates that describe the state of the monitored object at each

epoch. The effect of the datum definition on the adjusted coordinates and their standard

deviations has been illustrated in a series of examples.

The basic mathematical model for the classical congruence analysis has been discussed and

demonstrated on two examples. It becomes obvious that, if scale changes occur between

epochs, both global and local tests fails. Examination of different strategies for the localiza-

tion of deformed points leads to the conclusion that an approach based on a combinatorial

search should be applied. Two such approaches, one based on distance differences between

epochs, the other based on distance ratios, are investigated. While both reliably deliver

correct results, the distance difference approach is not applicable when scale changes occur.

The scale-ratios approach on the other hand uses only an error estimate for the unknown
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scale factor, which can lead to a large number of candidates. Moreover, a full least-squares

adjustment has to be computed to evaluate each of the candidates.

3D Helmert transformations are discussed as an alternative way to determine deforma-

tions. Two approaches based on a Gauss-Markov model utilize a minimal configuration

of fictitious observations to separate the deterministic and stochastical information inherent

in the singular cofactor matrices of the coordinates. The implicit transformation approach

presents a very elegant solution in which the scale factor is the only transformation parame-

ter that is estimated. A solution that directly uses the coordinates in both systems is offered

by the non-linear Gauss-Helmert model. This approach allows to process the singular

cofactor matrix of the coordinate vectors directly without any preprocessing. But due to the

explicit formulation of the transformation, it is a highly non-linear problem that requires

good initial approximations for the unknown parameters and can cause numerical stability

issues.

Chapter 3 - Methodology

Based on the findings of Chapter 2, a combinatorial search method for the localization of

the largest similar point group between two epochs based on angles rather than distances is

derived. The angle-based approach combines the advantages of the two distance approaches

discussed earlier. It is unaffected by scale changes and angular differences can be directly

compared between epochs, which allows the elimination of impossible combinations before

the search is conducted. Moreover, the angular differences between epochs can be used to

derive a global congruency test statistic for each candidate, so that no additional least-squares

adjustment is required to evaluate the candidates resulting from the search. Furthermore,

the angular differences between epochs can as well be used to derive the test statistic for the

initial global congruency test to identify epochs in which deformations are inherent. If scale

changes are suspected, neither coordinate nor distance differences can be used in the global

201



congruency test.

To derive the deformations a transformation-based approach is introduced in the form of a

non-linear Gauss-Helmert model. Although the transformation between the members of

the largest similar point group between epochs is formulated explicitly, there is no need for the

computation of initial approximations for the transformation parameters. Standard values

can be used and will lead to convergence independent of the magnitude of the transformation.

No assumptions that restrict the validity of the model, such as small-angle approximations,

are made. This is possible because of the use of quaternions to describe the rotations

instead of Euler-angles. This also results in a bi-linear, numerically more stable normal

equation system. Another advantage of this approach is that it directly utilizes the adjusted

coordinates of each epoch together with their fully-populated and singular cofactor matrix as

input without requiring any preprocessing. It has been shown that this approach can easily

be extended to allow for the transformation of multiple epochs into the system of a common

base epoch simultaneously in one single adjustment. In combination with the angle-based

MSS-method, this allows to locate and determine deformations independent of the reference

frame and datum of the given epochs.

Chapter 4 - Simulations

The methodology for the localization and determination of deformations proposed in Chap-

ter 3 is tested in a series of simulations and results are compared to the classical congruence

analysis as well as the distance-based MSS-methods. In the localization step of Scenario A

it is found that the angle-based MSS-approach produces the correct results in all cases, iden-

tical to the other two MSS-approaches based on distances. While the angle-based approach

provides more candidates then the distance-difference approach, it is significantly more effi-

cient than than the distance-ratios approach. The traditional single-point analysis produces

incorrect results in two out of four comparisons. In Scenario B only the MSS-methods based
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on distance-ratios and angles can be applied since a full seven-parameter transformation of

the network has been introduced in epochs 2 to 4. Again, both approaches identify the cor-

rect candidates, but the computational effort for the distance-ratios based approach is a lot

higher, so that the MSS-approach based on angles is the preferred method if scale changes

between epochs are suspected.

In Scenario A the deformations were determined using a re-adjustment of the combined

observations of the epochs under consideration as well as the transformation-based approach

proposed in Chapter 3. In the re-adjustment, for the epochs where the stable computational

base was correctly identified, also the deformations were accurately recovered. For all stable

points only one set of coordinates is estimated so no deformations for these points result. As

a consequence, the RMS error is lower than for the transformation-based approach, but the

coordinates of the stable points change with each re-adjustment.

With the transformation-based approach the transformation parameters as well as the defor-

mations could be accurately recovered in both scenarios. The RMS error of the deformations

is higher because discrepancies result for all points due to the propagation of random ob-

servation errors. However, adjusted coordinates originally estimated for each epoch remain

unchanged. In Scenario B it shows that this approach can successfully be applied between

epochs with coordinates given in completely different systems.

Chapter 5 - Case Study

In Chapter 5 a real-world application very different from the computer-simulated scenarios

was presented. The case of the Frank Slide / Turtle Mountain represents a small, high-

precision monitoring network without a stable reference frame and with the goal of detect-

ing long-term trends in the behaviour of the Saddle area. Highly-precise coordinates are

obtained for all epochs, but the existing deformations are very small which makes it difficult

to distinguish between apparent movements caused by random observation errors and real
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deformations. Because scale changes are expected, the global congruency tests were derived

from angular differences between epochs rather than coordinate- or distance differences. For

the same reason only the MSS-approaches based on distance ratios and angles were applied

for the localization of the largest similar point group. Both methods, again, deliver the

same results. The deformations were determined using the transformation-based approach

introduced in Chapter 3. The analysis reveals a changing movement pattern. A downslope

movement of South Peak coupled with a widening of the southern part of the major fracture

is recognizable between Fall 2009 and Fall 2010. While this movement ceases almost entirely

by Fall 2011, a strong westerly shift, away from the Frank Slide, at the northern part of the

Saddle can be observed.

6.2 Research Contributions

In this dissertation a generalized model for a deformation analysis has been derived that

allows one to locate and determine deformations between multiple epochs of a monitoring

network simultaneously and independent of the coordinate systems to which these epochs

refer.

In the course of this work it has been shown that only a combinatorial search method can

reliably yield the largest congruent / similar point group between two epochs of a network.

As a combinatorial search of all possible point combinations is generally not feasible, the

MSS-method proposed in Neitzel (2004) based on distance differences and distance ratios

was closely examined and applied to simulated as well as real-world data. This led to the

conclusion that a more efficient approach is required for the case that scale changes are to

be expected between the epochs under consideration.

The key contribution of this thesis lies in the development and application of a datum-,

and particularly, scale-invariant approach to the MSS-method based on angular differences
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between epochs to reduce the number of possible combinations that have to be examined

in order to locate the largest similar point group between epochs. The isolation of a scale

change achieved with this approach, here demonstrated on the example of multiple epochs

of a monitoring network, can also be applied to the integration of different data types that

refer to different scale factors.

The angle-based MSS approach may be further improved by combination with a single-point

analysis in form of a local test of either each individual point in the group or the group’s

centroid. This could potentially resolve the ambiguous solutions where multiple candidates

pass the global congruency test. A (preliminary) transformation may have to be applied in

order to ensure that the point groups in both systems refer to the same reference frame and

datum, which is a prerequisite for the local test.

A further application of the angle-based MSS-method lies in the datum-independent iden-

tification of group movements. Points that exhibit a similar deformation behaviour can be

categorized into groups whose average movements can then be determined to allow a better

understanding of the deformation behaviour of the monitored structure. The angle-based

MSS-method can be used to find not only the largest similar point group between two data

sets but all similar point groups. This can simply be accomplished by first identifying the

largest similar point group, eliminating the members of that group from the set of all points

and continuing the search for further similar point groups.

Deformations are determined by applying a transformation-based approach to the largest

similar point groups. The combination of an interconnected 3D Helmert transformation of

multiple epochs of coordinates with a quaternion rotation in a non-linear Gauss-Markov

model with singular cofactor matrix of the observations and its application in the derivation

of deformations constitute another significant contribution of this work.

205



Bibliography

Abatzoglou, T.J. and J.M. Mendel (1991). “The constrained total least-squares technique and

its applications to harmonic superresolution”. In: IEEE Transactions on Signal Processing

39.5, pp. 1070–1087.
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Appendix A

A.1 Error propagation for computation of angles from coordinates

For a network consisting of p points, n = p ·
p−2∑
i=1

i angles can be derived. Three points

contribute to each angle α as origin (at), starting point (from) and end point (to). The

table below shows the order in which the n angles αk are arranged.

k at from to

1 1 2 3
2 1 2 4
...

...
...

...
i 2 1 3

i+ 1 2 1 4
...

...
...

...
n p p− 2 p− 1

Table A.1: Order of angles αk

The angles are computed in two steps. First, the difference vectors
⇀

b and
⇀
c are computed

from the coordinate vector
⇀
x for all n angles according to (3.1). Concatenating the pairs

of difference vectors
⇀

b i,
⇀
c i for all angles in the order given in Table A.1, yields the overall

difference vector
⇀
y :

⇀
y =

(
⇀

b
T

1
⇀
c
T

1

⇀

b
T

2
⇀
c
T

2 · · ·
⇀

b
T

i
⇀
c
T

i

⇀

b
T

i+1
⇀
c
T

i+1 · · ·
⇀

b
T

n
⇀
c
T

n

)T
. (A.1)

The functional relationship between the difference vectors in
⇀
y and the coordinates

⇀
x can

then be described by

⇀
y = FT

1
⇀
x with F1 =

∂
⇀
y

∂
⇀
x
. (A.2)
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The structure of F1 in accordance with Table A.1 is given by:

⇀

b
T

1
⇀
c
T

1

⇀

b
T

2
⇀
c
T

2 · · ·
⇀

b
T

i
⇀
c
T

i

⇀

b
T

i+1
⇀
c
T

i+1 · · ·
⇀

b
T

n
⇀
c
T

n

F1
(3p×6n)

=

⇀
x1

⇀
x2

⇀
x3

⇀
x4

...

⇀
xp−2

⇀
xp−1

⇀
xp



−I −I −I −I · · · I 0 I 0 · · · 0 0

I 0 I 0 · · · −I −I −I −I · · · 0 0

0 I 0 0 · · · 0 I 0 0 · · · 0 0

0 0 0 I · · · 0 0 0 I · · · 0 0

...
...

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 0 0 0 · · · I 0

0 0 0 0 · · · 0 0 0 0 · · · 0 I

0 0 0 0 · · · 0 0 0 0 · · · −I −I



(A.3)

where I denotes a (3× 3) identity matrix.

In the second step the angles αk are computed from the difference vectors in
⇀
y according to

(3.3). Combining all angles αk in the vector
⇀
α in the order given in Table A.1, the functional

relationship between the angles and difference vectors is described by

⇀
α = FT

2
⇀
y with F2 =

∂
⇀
α

∂
⇀
y
. (A.4)

The structure of F2, again in accordance with Table A.1, is given by equation (A.6) be-

low.

Given the cofactor matrix Qxx of the coordinate vector
⇀
x, the error propagation to obtain

the cofactor matrix of the angles Qαα can now be carried out as follows:

Qαα
(n×n)

= FT

(n×3p)

· Qxx
(3p×3p)

· F
(3p×n)

with F
(3p×n)

= F1
(3p×6n)

· F2
(6n×n)

. (A.5)
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F2
(6n×n)

=



∂α1

/
∂

⇀

b1 0 · · · 0 0 · · · 0

∂α1

/
∂

⇀
c1 0 · · · 0 0 · · · 0

0 ∂α2

/
∂

⇀

b2 · · · 0 0 · · · 0

0 ∂α2

/
∂

⇀
c2 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · ∂αi

/
∂

⇀

b i 0 · · · 0

0 0 · · · ∂αi
/
∂

⇀
c i 0 · · · 0

0 0 · · · 0 ∂αi+1

/
∂

⇀

b i+1 · · · 0

0 0 · · · 0 ∂αi+1

/
∂

⇀
c i+1 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 0 0 · · · ∂αn

/
∂

⇀

bn

0 0 · · · 0 0 · · · ∂αn
/
∂

⇀
cn



(A.6)

The six partial derivatives of an arbitrary angle α with respect to the components of its two

difference vectors
⇀

b = (xb yb zb)
T and

⇀
c = (xc yc zc)

T , as contained in (A.6), are given

by

∂α
∂xb

=
−xc

(
y2
b + z2

b

)
+ xb (ybyc + zbzc)

s3
b · sc ·

√
1− (xbxc + ybyc + zbzc)

2

s2
b · s2

c

∂α
∂xc

=
xc (ybyc + zbzc)− xb

(
y2
c + z2

c

)
sb · s3

c ·

√
1− (xbxc + ybyc + zbzc)

2

s2
b · s2

c

∂α
∂yb

=
xbxcyb − x2

byc + zb (−yczb + ybzc)

s3
b · sc ·

√
1− (xbxc + ybyc + zbzc)

2

s2
b · s2

c

∂α
∂yc

=
−x2

cyb + xbxcyc + zc (yczb − ybzc)

sb · s3
c ·

√
1− (xbxc + ybyc + zbzc)

2

s2
b · s2

c

∂α
∂zb

=
(xbxc + ybyc) zb −

(
x2
b + y2

b

)
zc

s3
b · sc ·

√
1− (xbxc + ybyc + zbzc)

2

s2
b · s2

c

∂α
∂zc

=
−
(
x2
c + y2

c

)
zb + (xbxc + ybyc) zc

sb · s3
c ·

√
1− (xbxc + ybyc + zbzc)

2

s2
b · s2

c

with

sb =
√
x2
b + y2

b + z2
b and sc =

√
x2
c + y2

c + z2
c .

215



A.2 Design and condition matrices for two-epoch comparison

The structure of the design matrix A is as follows:

A
(b×u)

=



∂fx1/∂q0 ∂fx1/∂qx ∂fx1/∂qy ∂fx1/∂qz ∂fx1/∂Tx ∂fx1/∂Ty ∂fx1/∂Tz ∂fx1/∂λ

∂fy1/∂q0 ∂fy1/∂qx ∂fy1/∂qy ∂fy1/∂qz ∂fy1/∂Tx ∂fy1/∂Ty ∂fy1/∂Tz ∂fy1/∂λ

∂fz1/∂q0 ∂fz1/∂qx ∂fz1/∂qy ∂fz1/∂qz ∂fz1/∂Tx ∂fz1/∂Ty ∂fz1/∂Tz ∂fz1/∂λ

...
...

...
...

...
...

...
...

∂fxp
/
∂q0 ∂fxp

/
∂qx ∂fxp

/
∂qy ∂fxp

/
∂qz ∂fxp

/
∂Tx ∂fxp

/
∂Ty ∂fxp

/
∂Tz ∂fxp

/
∂λ

∂fyp
/
∂q0 ∂fyp

/
∂qx ∂fyp

/
∂qy ∂fyp

/
∂qz ∂fyp

/
∂Tx ∂fyp

/
∂Ty ∂fyp

/
∂Tz ∂fyp

/
∂λ

∂fzp
/
∂q0 ∂fzp

/
∂qx ∂fzp

/
∂qy ∂fzp

/
∂qz ∂fzp

/
∂Tx ∂fzp

/
∂Ty ∂fzp

/
∂Tz ∂fzp

/
∂λ

∂g/∂q0 ∂g/∂qx ∂g/∂qy ∂g/∂qz ∂g/∂Tx ∂g/∂Ty ∂g/∂Tz ∂g/∂λ


(A.7)

with the following partial derivatives:

∂fx
∂q0

= Tx − xi + λ · xj
∂fy
∂q0

= Ty − yi + λ · yj
∂fz
∂q0

= Tz − zi + λ · zj
∂fx
∂qx

= 0
∂fy
∂qx

= Tz − zi − λ · zj
∂fz
∂qx

= −Ty + yi + λ · yj
∂fx
∂qy

= −Tz + zi + λ · zj
∂fy
∂qy

= 0
∂fz
∂qy

= Tx − xi − λ · xj
∂fx
∂qz

= Ty − yi − λ · yj
∂fy
∂qz

= −Tx + xi + λ · xj
∂fz
∂qz

= 0

∂fx
∂Tx

= q0
∂fy
∂Tx

= −qz
∂fz
∂Tx

= qy

∂fx
∂Ty

= qz
∂fy
∂Ty

= q0
∂fz
∂Ty

= −qx
∂fx
∂Tz

= −qy
∂fy
∂Tz

= qx
∂fz
∂Tz

= q0

∂fx
∂λ

= q0xj − qzyj + qyzj
∂fy
∂λ

= qzxj + q0yj − qxzj
∂fz
∂λ

= −qyxj + qxyj + q0zj

(A.8)

∂g

∂q0

= 2q0
∂g

∂qx
= 2qx

∂g

∂qy
= 2qy

∂g

∂qz
= 2qz

∂g

∂Tx
= 0

∂g

∂Ty
= 0

∂g

∂Tz
= 0

∂g

∂λ
= 0

(A.9)
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The structure of the condition matrix B is as follows:

BT

(n×b)
=



∂fx1/∂x1i ∂fy1/∂x1i ∂fz1/∂x1i · · · 0 0 0 0

∂fx1/∂y1i ∂fy1/∂y1i ∂fz1/∂y1i · · · 0 0 0 0

∂fx1/∂z1i ∂fy1/∂z1i ∂fz1/∂z1i · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 · · · ∂fxp
/
∂xpi ∂fyp

/
∂xpi ∂fzp

/
∂xpi 0

0 0 0 · · · ∂fxp
/
∂ypi ∂fyp

/
∂ypi ∂fzp

/
∂ypi 0

0 0 0 · · · ∂fxp
/
∂zpi ∂fyp

/
∂zpi ∂fzp

/
∂zpi 0

∂fx1
/
∂x1j ∂fy1

/
∂x1j ∂fz1

/
∂x1j · · · 0 0 0 0

∂fx1
/
∂y1j ∂fy1

/
∂y1j ∂fz1

/
∂y1j · · · 0 0 0 0

∂fx1
/
∂z1j ∂fy1

/
∂z1j ∂fz1

/
∂z1j · · · 0 0 0 0

...
...

...
. . .

...
...

...
...

0 0 0 · · · ∂fxp
/
∂xpj ∂fyp

/
∂xpj ∂fzp

/
∂xpj 0

0 0 0 · · · ∂fxp
/
∂ypj ∂fyp

/
∂ypj ∂fzp

/
∂ypj 0

0 0 0 · · · ∂fxp
/
∂zpj ∂fyp

/
∂zpj ∂fzp

/
∂zpj 0

0 0 0 · · · 0 0 0 ∂g
/
∂l‖q̃‖


(A.10)

with the following partial derivatives:

∂fx
∂xi

= −q0
∂fy
∂xi

= qz
∂fz
∂xi

= −qy
∂fx
∂yi

= −qz
∂fy
∂yi

= −q0
∂fz
∂yi

= qx

∂fx
∂zi

= qy
∂fy
∂zi

= −qx
∂fz
∂zi

= −q0

∂fx
∂xj

= λ · q0
∂fy
∂xj

= λ · qz
∂fz
∂xj

= −λ · qy
∂fx
∂yj

= −λ · qz
∂fy
∂yj

= λ · q0
∂fz
∂yj

= λ · qx
∂fx
∂zj

= λ · qy
∂fy
∂zj

= −λ · qx
∂fz
∂zj

= λ · q0

(A.11)

∂g

∂l‖q̃‖
= −1 (A.12)
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A.3 Error propagation for derivation of deformations from coordinates and

transformation parameters

For the coordinate vector
⇀
xj consisting of the coordinates of the p network points in the

system of epoch j, the transformation into the system of epoch i can be accomplished

according to (3.27), yielding the transformed coordinate vector
⇀
x
tr

j . Formally, this can be

expressed by:

⇀
x
tr

j = FT
1

⇀
y with F1 =

∂
⇀
x
tr

j

∂
⇀
y

and
⇀
y =

(
⇀
x
T

j

⇀
x
T

TP

)T
(A.13)

where
⇀
xTP is the vector of the adjusted transformation parameters. The functional matrix

F1 has the following structure:

F1
(3p+8)×3p

=



∂xtr1j

/
∂x1j ∂ytr1j

/
∂x1j ∂ztr1j

/
∂x1j · · · 0 0 0

∂xtr1j

/
∂y1j ∂ytr1j

/
∂y1j ∂ztr1j

/
∂y1j · · · 0 0 0

∂xtr1j

/
∂z1j ∂ytr1j

/
∂z1j ∂ztr1j

/
∂z1j · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · ∂xtrpj

/
∂xpj ∂ytrpj

/
∂xpj ∂ztrpj

/
∂xpj

0 0 0 · · · ∂xtrpj

/
∂ypj ∂ytrpj

/
∂ypj ∂ztrpj

/
∂ypj

0 0 0 · · · ∂xtrpj

/
∂zpj ∂ytrpj

/
∂zpj ∂ztrpj

/
∂zpj

∂xtr1j

/
∂q0 ∂ytr1j

/
∂q0 ∂ztr1j

/
∂q0 · · · ∂xtrpj

/
∂q0 ∂ytrpj

/
∂q0 ∂ztrpj

/
∂q0

∂xtr1j

/
∂qx ∂ytr1j

/
∂qx ∂ztr1j

/
∂qx · · · ∂xtrpj

/
∂qx ∂ytrpj

/
∂qx ∂ztrpj

/
∂qx

∂xtr1j

/
∂qy ∂ytr1j

/
∂qy ∂ztr1j

/
∂qy · · · ∂xtrpj

/
∂qy ∂ytrpj

/
∂qy ∂ztrpj

/
∂qy

∂xtr1j

/
∂qz ∂ytr1j

/
∂qz ∂ztr1j

/
∂qz · · · ∂xtrpj

/
∂qz ∂ytrpj

/
∂qz ∂ztrpj

/
∂qz

∂xtr1j

/
∂Tx ∂ytr1j

/
∂Tx ∂ztr1j

/
∂Tx · · · ∂xtrpj

/
∂Tx ∂ytrpj

/
∂Tx ∂ztrpj

/
∂Tx

∂xtr1j

/
∂Ty ∂ytr1j

/
∂Ty ∂ztr1j

/
∂Ty · · · ∂xtrpj

/
∂Ty ∂ytrpj

/
∂Ty ∂ztrpj

/
∂Ty

∂xtr1j

/
∂Tz ∂ytr1j

/
∂Tz ∂ztr1j

/
∂Tz · · · ∂xtrpj

/
∂Tz ∂ytrpj

/
∂Tz ∂ztrpj

/
∂Tz

∂xtr1j

/
∂λ ∂ytr1j

/
∂λ ∂ztr1j

/
∂λ · · · ∂xtrpj

/
∂λ ∂ytrpj

/
∂λ ∂ztrpj

/
∂λ


(A.14)
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with the partial derivatives:

∂xtrj
∂xj

= λ− 2λ
(
q2
y + q2

z

) ∂ytrj
∂xj

= 2λ (qxqy − q0qz)
∂ztrj
∂xj

= 2λ (qxqz − q0qy)

∂xtrj
∂yj

= 2λ (qxqy − q0qz)
∂ytrj
∂yj

= λ− 2λ (q2
x + q2

z)
∂ztrj
∂yj

= 2λ (qyqz − q0qx)

∂xtrj
∂zj

= 2λ (qxqz − q0qy)
∂ytrj
∂zj

= 2λ (qyqz − q0qx)
∂ztrj
∂zj

= λ− 2λ
(
q2
x + q2

y

) (A.15)

∂xtrj
∂q0

= 2λ (q0xj − qzyj + qyzj)
∂ytrj
∂q0

= 2λ (qzxj + q0yj − qxzj)
∂ztrj
∂q0

= 2λ (−qyxj + qxyj + q0zj)

∂xtrj
∂qx

= 2λ (qxxj + qyyj + qzzj)
∂ytrj
∂qx

= 2λ (qyxj − qxyj − q0zj)
∂ztrj
∂qx

= 2λ (qzxj + q0yj − qxzj)
∂xtrj
∂qy

= 2λ (−qyxj + qxyj + q0zj)
∂ytrj
∂qy

= 2λ (qxxj + qyyj + qzzj)
∂ztrj
∂qy

= 2λ (−q0xj + qzyj − qyzj)
∂xtrj
∂qz

= 2λ (−qzxj − q0yj + qxzj)
∂ytrj
∂qz

= 2λ (q0xj − qzyj + qyzj)
∂ztrj
∂qz

= 2λ (qxxj + qyyj + qzzj)

∂xtrj
∂Tx

= 1
∂ytrj
∂Tx

= 0
∂ztrj
∂Tx

= 0

∂xtrj
∂Ty

= 0
∂ytrj
∂Ty

= 1
∂ztrj
∂Ty

= 0

∂xtrj
∂Tz

= 0
∂ytrj
∂Tz

= 0
∂ztrj
∂Tz

= 1

(A.16)
∂xtrj
∂λ

= qy (−qyxj + qxyj + q0zj)− qz (qzxj + q0yj − qxzj) + q0 (q0xj − qzyj + qyzj)

−qx (−qxxj − qyyj − qzzj)
∂ytrj
∂λ

= −qx (−qyxj + qxyj + q0zj) + q0 (qzxj + q0yj − qxzj) + qz (q0xj − qzyj + qyzj)

−qy (−qxxj − qyyj − qzzj)
∂ytrj
∂λ

= q0 (−qyxj + qxyj + q0zj) + qx (qzxj + q0yj − qxzj)− qy (q0xj − qzyj + qyzj)

−qz (−qxxj − qyyj − qzzj) .
(A.17)

Now the cofactor matrix of the transformed coordinates
⇀
x
tr

j from epoch j to the system of

epoch i can be determined from:

Qxxtrj
(3p×3p)

= FT
1

3p×(3p+8)

· Qyy
(3p+8)×(3p+8)

· F1
(3p+8)×3p

with Qyy
(3p+8)×(3p+8)

=


Qxxj

(3p×3p)

0

0 QxxTP

(8×8)

 . (A.18)
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With the coordinates
⇀
xi of epoch i and the transformed coordinates

⇀
x
tr

j of epoch j in the

system of epoch i and their corresponding cofactor matrices Qxxi and Qxxtrj
, the deformations

⇀

dij can be derived according to (3.28). The cofactor matrix of the deformations Qddij is given

by:

Qddij
(3p×3p)

= Qxxi
(3p×3p)

+ Qxxtrj
(3p×3p)

. (A.19)
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A.4 Design and condition matrices for multiple-epoch comparison

In a multiple-epoch comparison of m epochs and t = m − 1 transformations from epoch

2 . . .m to the base epoch 1, the design matrix A has the following structure:

A
(b×u)

=



A1 =

 ∂
⇀

f 1

/
∂

⇀
xTP1

∂g1

/
∂

⇀
xTP2

 · · · 0

...
. . .

...

0 · · · At =

 ∂
⇀

f t

/
∂

⇀
xTPt

∂gt
/
∂

⇀
xTPt




(A.20)

where each of the sub-matrices Ak with k = 1 . . . t and their partial derivatives are identical

to the design matrix of a two-epoch comparison as shown in Appendix A.2.

In a multiple epoch comparison of m epochs and with t = m−1 transformations the condition

matrix B has the following structure:

⇀

f 1 g1 · · ·
⇀

f k gk · · ·
⇀

f t gt

BT

(n×b)
=

⇀
x1

⇀
x2

...

⇀
xk+1

...

⇀
xm

l‖q̃‖1
...

l‖q̃‖k
...

l‖q̃‖t



B11 0 · · · B1k 0 · · · B1t 0

B1 0 · · · 0 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · Bk 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · 0 0 · · · Bt 0

0 −1 · · · 0 0 · · · 0 0

...
...

. . .
...

...
. . .

...
...

0 0 · · · 0 −1 · · · 0 0
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The sub-matrices B1k for k = 1 . . . t contain the partial derivatives of the conditions
⇀

f k for

the transformation of epoch k+ 1 to the base epoch 1 with respect to the coordinates of the

target system (base epoch) 1:

B1k =
∂

⇀

f k
∂

⇀
x1

=



∂fkx1
/
∂x11 ∂fky1

/
∂x11 ∂fkz1

/
∂x11 · · · 0 0 0

∂fkx1
/
∂y11 ∂fky1

/
∂y11 ∂fkz1

/
∂y11 · · · 0 0 0

∂fkx1
/
∂z11 ∂fky1

/
∂z11 ∂fkz1

/
∂z11 · · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · ∂fkxp

/
∂xp1 ∂fkyp

/
∂xp1 ∂fkzp

/
∂xp1

0 0 0 · · · ∂fkxp

/
∂yp1 ∂fkyp

/
∂yp1 ∂fkzp

/
∂yp1

0 0 0 · · · ∂fkxp

/
∂zp1 ∂fkyp

/
∂zp1 ∂fkzp

/
∂zp1


(A.22)

with the following partial derivatives:

∂fkx
∂x1

= −q0

∂fky
∂x1

= qz
∂fkz
∂x1

= −qy
∂fkx
∂y1

= −qz
∂fky
∂y1

= −q0
∂fkz
∂y1

= qx

∂fkx
∂z1

= qy
∂fky
∂z1

= −qx
∂fkz
∂z1

= −q0

(A.23)
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The sub-matrices Bk for k = 1 . . . t contain the partial derivatives of the conditions
⇀

f k for

the transformation of epoch k+ 1 to the base epoch 1 with respect to the coordinates of the

source system (epoch k + 1):

Bk =
∂

⇀

f k
∂

⇀
xk+1

Bk =



∂fkx1
/
∂x1k+1

∂fky1
/
∂x1k+1

∂fkz1
/
∂x1k+1

· · · 0 0 0

∂fkx1
/
∂y1k+1

∂fky1
/
∂y1k+1

∂fkz1
/
∂y1k+1

· · · 0 0 0

∂fkx1
/
∂z1k+1

∂fky1
/
∂z1k+1

∂fkz1
/
∂z1k+1

· · · 0 0 0

...
...

...
. . .

...
...

...

0 0 0 · · · ∂fkxp

/
∂xpk+1

∂fkyp

/
∂xpk+1

∂fkzp

/
∂xpk+1

0 0 0 · · · ∂fkxp

/
∂ypk+1

∂fkyp

/
∂ypk+1

∂fkzp

/
∂ypk+1

0 0 0 · · · ∂fkxp

/
∂zpk+1

∂fkyp

/
∂zpk+1

∂fkzp

/
∂zpk+1
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with the following partial derivatives:

∂fkx
∂xk+1

= λ · q0

∂fky
∂xk+1

= λ · qz
∂fkz
∂xk+1

= −λ · qy
∂fkx
∂yk+1

= −λ · qz
∂fky
∂yk+1

= λ · q0
∂fkz
∂yk+1

= λ · qx
∂fkx
∂zk+1

= λ · qy
∂fky
∂zk+1

= −λ · qx
∂fkz
∂zk+1

= λ · q0
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Appendix B

B.1 Scenario A: adjusted coordinates and standard deviations after network

analysis for epochs 1 to 5

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.229 5081.200 97.135 ±3.0 ±2.6 ±3.8
102 10836.930 5332.831 98.227 ±1.6 ±1.4 ±1.7
103 10947.371 5568.027 101.060 ±2.8 ±2.8 ±3.5
104 10873.497 5786.001 103.964 ±3.0 ±2.4 ±3.2
105 10748.029 5481.271 96.702 ±2.6 ±2.3 ±2.4
106 10687.767 5474.069 99.646 ±2.6 ±2.2 ±2.3
107 10714.329 5544.369 105.578 ±2.6 ±2.2 ±2.3
108 10739.428 5710.701 98.082 ±1.6 ±1.3 ±1.7
109 10526.474 5804.631 101.347 ±3.0 ±2.6 ±3.8
110 10575.931 5539.329 104.209 ±1.5 ±1.4 ±1.6
111 10712.205 5171.499 100.819 ±1.8 ±1.3 ±2.0
112 10526.469 5028.831 99.561 ±3.0 ±2.6 ±4.3

Table B.1: Scenario A: adjusted coordinates and standard deviations of epoch 1

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.231 5081.205 97.129 ±3.2 ±2.8 ±4.1
102 10836.929 5332.828 98.231 ±1.7 ±1.5 ±1.8
103 10947.368 5568.029 101.057 ±3.0 ±3.0 ±3.8
104 10873.499 5786.003 103.959 ±3.2 ±2.6 ±3.5
105 10748.026 5481.267 96.698 ±2.9 ±2.5 ±2.7
106 10687.769 5474.070 99.652 ±2.9 ±2.4 ±2.5
107 10714.329 5544.367 105.578 ±2.8 ±2.3 ±2.5
108 10739.431 5710.701 98.079 ±1.8 ±1.4 ±1.8
109 10526.473 5804.631 101.356 ±3.3 ±2.8 ±4.1
110 10575.934 5539.329 104.209 ±1.6 ±1.6 ±1.8
111 10712.200 5171.501 100.821 ±2.0 ±1.4 ±2.2
112 10526.469 5028.828 99.562 ±3.3 ±2.8 ±4.7

Table B.2: Scenario A: adjusted coordinates and standard deviations of epoch 2
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Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.231 5081.204 97.133 ±2.8 ±2.4 ±3.6
102 10836.912 5332.853 98.224 ±1.5 ±1.3 ±1.6
103 10947.371 5568.025 101.066 ±2.6 ±2.6 ±3.3
104 10873.497 5786.007 103.962 ±2.8 ±2.3 ±3.1
105 10748.049 5481.253 96.696 ±2.5 ±2.2 ±2.3
106 10687.767 5474.075 99.652 ±2.5 ±2.1 ±2.2
107 10714.330 5544.369 105.582 ±2.5 ±2.0 ±2.2
108 10739.439 5710.677 98.067 ±1.5 ±1.2 ±1.6
109 10526.464 5804.633 101.348 ±2.9 ±2.4 ±3.6
110 10575.931 5539.332 104.212 ±1.4 ±1.4 ±1.5
111 10712.195 5171.503 100.825 ±1.7 ±1.2 ±1.9
112 10526.474 5028.831 99.562 ±2.9 ±2.4 ±4.1

Table B.3: Scenario A: adjusted coordinates and standard deviations of epoch 3

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.234 5081.207 97.140 ±2.9 ±2.5 ±3.7
102 10836.900 5332.871 98.220 ±1.6 ±1.3 ±1.6
103 10947.368 5568.044 101.069 ±2.7 ±2.7 ±3.4
104 10873.484 5786.009 103.968 ±2.9 ±2.3 ±3.2
105 10748.062 5481.249 96.690 ±2.6 ±2.2 ±2.4
106 10687.783 5474.047 99.653 ±2.6 ±2.1 ±2.3
107 10714.322 5544.374 105.588 ±2.5 ±2.1 ±2.3
108 10739.454 5710.658 98.061 ±1.6 ±1.2 ±1.7
109 10526.471 5804.612 101.344 ±3.0 ±2.5 ±3.7
110 10575.924 5539.330 104.219 ±1.5 ±1.4 ±1.6
111 10712.204 5171.503 100.828 ±1.8 ±1.3 ±1.9
112 10526.454 5028.856 99.549 ±3.0 ±2.5 ±4.2

Table B.4: Scenario A: adjusted coordinates and standard deviations of epoch 4
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Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.223 5081.219 97.149 ±2.9 ±2.5 ±3.7
102 10836.963 5332.876 98.220 ±1.6 ±1.4 ±1.7
103 10947.381 5568.054 101.063 ±2.7 ±2.7 ±3.5
104 10873.480 5786.012 103.976 ±2.9 ±2.4 ±3.2
105 10748.064 5481.244 96.691 ±2.6 ±2.3 ±2.4
106 10687.796 5474.049 99.642 ±2.6 ±2.1 ±2.3
107 10714.295 5544.355 105.589 ±2.6 ±2.1 ±2.3
108 10739.465 5710.651 98.061 ±1.6 ±1.2 ±1.7
109 10526.467 5804.597 101.350 ±3.0 ±2.5 ±3.7
110 10575.900 5539.318 104.214 ±1.5 ±1.4 ±1.6
111 10712.193 5171.510 100.839 ±1.8 ±1.3 ±2.0
112 10526.433 5028.874 99.536 ±3.0 ±2.5 ±4.2

Table B.5: Scenario A: adjusted coordinates and standard deviations of epoch 5
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B.2 Scenario A: Candidates for largest congruent point group from MSS-

method using distance ratios and statistical evaluation

Epoch 4

Candidate σ̂0 Redundancy Tχ2 Test outcome

101, 103, 104, 106, 109, 111 ±2.795876 11 85.99 fail
101, 103, 104, 106, 109, 112 ±3.273539 11 117.88 fail
101, 103, 104, 107, 109, 110 ±1.925376 11 40.78 fail
101, 103, 104, 107, 109, 111 ±1.889759 11 39.28 fail
101, 103, 104, 107, 109, 112 ±2.423599 11 64.61 fail
101, 103, 104, 107, 110, 112 ±1.934068 11 41.15 fail
101, 103, 104, 107, 111, 112 ±2.093582 11 48.21 fail
101, 103, 104, 109, 110, 111 ±2.021863 11 44.97 fail
101, 103, 104, 109, 110, 112 ±2.651976 11 77.36 fail
101, 103, 104, 109, 111, 112 ±2.587089 11 73.62 fail
101, 103, 104, 110, 111, 112 ±2.173533 11 51.97 fail
101, 103, 107, 109, 110, 111 ±2.017840 11 44.79 fail
101, 103, 107, 109, 110, 112 ±2.580725 11 73.26 fail
101, 103, 107, 109, 111, 112 ±2.577236 11 73.06 fail
101, 103, 107, 110, 111, 112 ±2.100029 11 48.51 fail
101, 103, 109, 110, 111, 112 ±2.727938 11 81.86 fail
101, 104, 107, 109, 110, 111 ±1.834313 11 37.01 fail
101, 104, 107, 109, 110, 112 ±2.480814 11 67.70 fail
101, 104, 107, 109, 111, 112 ±2.478369 11 67.57 fail
101, 104, 107, 110, 111, 112 ±2.048025 11 46.14 fail
101, 104, 108, 110, 111, 112 ±7.677094 11 648.32 fail
101, 104, 109, 110, 111, 112 ±2.611387 11 75.01 fail
101, 107, 109, 110, 111, 112 ±2.467928 11 67.00 fail
103, 104, 106, 109, 111, 112 ±3.356262 11 123.91 fail
103, 104, 107, 109, 110, 111 ±1.972311 11 42.79 fail
103, 104, 107, 109, 110, 112 ±2.427648 11 64.83 fail
103, 104, 107, 109, 111, 112 ±2.562934 11 72.25 fail
103, 104, 107, 110, 111, 112 ±2.130690 11 49.94 fail
103, 104, 109, 110, 111, 112 ±2.717767 11 81.25 fail
103, 107, 109, 110, 111, 112 ±2.638031 11 76.55 fail
104, 107, 109, 110, 111, 112 ±2.505584 11 69.06 fail

Table B.6: Scenario A: candidates of six points and statistical test for epoch 4
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Epoch 5

Candidate σ̂0 Redundancy Tχ2 Test outcome

101, 102, 104, 109 ±6.537849 5 213.72 fail
101, 102, 107, 110 ±9.145285 5 418.18 fail
101, 103, 104, 109 ±3.991700 5 79.67 fail
101, 103, 104, 111 ±2.916361 5 42.53 fail
101, 103, 104, 112 ±3.624380 5 65.68 fail
101, 103, 109, 111 ±5.123925 5 131.27 fail
101, 103, 111, 112 ±4.674301 5 109.25 fail
101, 104, 106, 109 ±4.564026 5 104.15 fail
101, 104, 106, 111 ±5.661140 5 160.24 fail
101, 104, 109, 111 ±3.781701 5 71.51 fail
101, 104, 110, 111 ±3.466943 5 60.10 fail
101, 104, 111, 112 ±4.402490 5 96.91 fail
101, 106, 109, 111 ±4.539636 5 103.04 fail
101, 107, 109, 110 ±3.464338 5 60.01 fail
101, 107, 109, 111 ±2.422434 5 29.34 fail
101, 107, 110, 111 ±2.212606 5 24.48 fail
101, 109, 110, 111 ±3.599707 5 64.79 fail
102, 103, 104, 109 ±1.958538 5 19.18 fail
103, 104, 105, 106 ±2.356033 5 27.75 fail
103, 104, 105, 109 ±2.789195 5 38.90 fail
103, 104, 105, 112 ±7.451246 5 277.61 fail
103, 104, 106, 109 ±1.743114 5 15.19 fail
103, 104, 106, 112 ±6.705478 5 224.82 fail
103, 104, 109, 111 ±5.374912 5 144.45 fail
103, 104, 109, 112 ±5.982987 5 178.98 fail
103, 104, 111, 112 ±5.017315 5 125.87 fail
103, 105, 106, 109 ±2.851010 5 40.64 fail
103, 106, 109, 112 ±7.029241 5 247.05 fail

Table B.7: Scenario A: candidates of four points and statistical test for epoch 5
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Candidate σ̂0 Redundancy Tχ2 Test outcome

104, 105, 106, 109 ±2.324588 5 27.02 fail
104, 106, 108, 111 ±10.096690 5 509.72 fail
104, 106, 108, 112 ±10.390932 5 539.86 fail
104, 106, 109, 111 ±5.991099 5 179.47 fail
104, 106, 109, 112 ±6.591458 5 217.24 fail
104, 106, 111, 112 ±6.029988 5 181.80 fail
104, 108, 111, 112 ±10.357596 5 536.40 fail
104, 109, 111, 112 ±5.515072 5 152.08 fail
105, 108, 111, 112 ±3.657526 5 66.89 fail
106, 107, 108, 112 ±5.894474 5 173.72 fail
106, 108, 111, 112 ±3.043597 5 46.32 fail
106, 109, 111, 112 ±5.755020 5 165.60 fail
107, 109, 110, 111 ±2.995121 5 44.85 fail
107, 109, 110, 112 ±1.613215 5 13.01 fail
107, 109, 111, 112 ±4.095904 5 83.88 fail
107, 110, 111, 112 ±4.652050 5 108.21 fail
109, 110, 111, 112 ±4.517620 5 102.04 fail

Scenario A: candidates of four points and statistical test for epoch 5 [continued]

Candidate σ̂0 Redundancy Tχ2 Test outcome

101, 102, 104 ±8.748508 2 153.07 fail
101, 102, 107 ±13.620816 2 371.05 fail
101, 102, 109 ±9.871276 2 194.88 fail
101, 102, 110 ±12.263941 2 300.81 fail
101, 102, 112 ±3.787959 2 28.70 fail
101, 103, 104 ±3.666498 2 26.89 fail
101, 103, 109 ±5.863621 2 68.76 fail
101, 103, 111 ±2.833258 2 16.05 fail
101, 103, 112 ±1.792092 2 6.42 fail
101, 104, 106 ±6.867610 2 94.33 fail
101, 104, 108 ±14.233649 2 405.19 fail
101, 104, 109 ±4.557114 2 41.53 fail
101, 104, 110 ±4.427026 2 39.20 fail
101, 104, 112 ±3.995233 2 31.92 fail
101, 105, 108 ±1.326597 2 3.52 pass
101, 106, 108 ±1.197400 2 2.87 pass
101, 106, 109 ±5.033671 2 50.68 fail
101, 106, 111 ±5.167616 2 53.41 fail
101, 107, 108 ±11.952548 2 285.73 fail
101, 107, 109 ±3.163548 2 20.02 fail
101, 107, 110 ±2.254367 2 10.16 fail

Table B.8: Scenario A: candidates of three points and statistical test for epoch 5
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Candidate σ̂0 Redundancy Tχ2 Test outcome

101, 107, 111 ±2.626132 2 13.79 fail
101, 109, 110 ±5.394422 2 58.20 fail
101, 109, 111 ±2.553401 2 13.04 fail
101, 110, 111 ±1.785842 2 6.38 fail
101, 111, 112 ±4.521669 2 40.89 fail
102, 103, 104 ±1.884607 2 7.10 fail
102, 103, 109 ±3.027306 2 18.33 fail
102, 104, 109 ±1.639191 2 5.37 pass
102, 106, 108 ±7.510231 2 112.81 fail
102, 107, 109 ±6.802490 2 92.55 fail
102, 107, 110 ±7.710768 2 118.91 fail
103, 104, 105 ±2.740523 2 15.02 fail
103, 104, 106 ±1.196560 2 2.86 pass
103, 104, 109 ±1.135231 2 2.58 pass
103, 104, 111 ±4.239632 2 35.95 fail
103, 104, 112 ±4.995687 2 49.91 fail
103, 105, 106 ±3.403912 2 23.17 fail
103, 105, 109 ±4.282837 2 36.69 fail
103, 105, 112 ±10.257379 2 210.43 fail
103, 106, 109 ±2.211954 2 9.79 fail
103, 106, 112 ±9.640977 2 185.90 fail
103, 109, 111 ±8.003352 2 128.11 fail
103, 109, 112 ±9.160103 2 167.81 fail
103, 111, 112 ±4.779765 2 45.69 fail
104, 105, 106 ±2.821021 2 15.92 fail
104, 105, 109 ±3.043551 2 18.53 fail
104, 105, 112 ±10.342479 2 213.93 fail
104, 106, 108 ±12.333960 2 304.25 fail
104, 106, 109 ±1.640300 2 5.38 pass
104, 106, 111 ±8.136498 2 132.41 fail
104, 106, 112 ±9.471857 2 179.43 fail
104, 108, 111 ±15.773915 2 497.63 fail
104, 108, 112 ±16.317570 2 532.53 fail
104, 109, 111 ±5.718845 2 65.41 fail
104, 109, 112 ±7.182237 2 103.17 fail
104, 110, 111 ±5.200990 2 54.10 fail
104, 111, 112 ±5.017629 2 50.35 fail

Scenario A: candidates of three points and statistical test for epoch 5 [continued]
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Candidate σ̂0 Redundancy Tχ2 Test outcome

105, 106, 109 ±2.119067 2 8.98 fail
105, 108, 111 ±3.572505 2 25.53 fail
105, 108, 112 ±4.525534 2 40.96 fail
105, 111, 112 ±3.204609 2 20.54 fail
106, 107, 108 ±7.482205 2 111.97 fail
106, 107, 112 ±1.349942 2 3.64 pass
106, 108, 111 ±1.594532 2 5.09 pass
106, 108, 112 ±3.189289 2 20.34 fail
106, 109, 111 ±6.563425 2 86.16 fail
106, 109, 112 ±7.938848 2 126.05 fail
106, 111, 112 ±3.470238 2 24.09 fail
107, 108, 111 ±11.177592 2 249.88 fail
107, 108, 112 ±7.149830 2 102.24 fail
107, 109, 110 ±1.848122 2 6.83 fail
107, 109, 111 ±2.349115 2 11.04 fail
107, 109, 112 ±1.355051 2 3.67 pass
107, 110, 111 ±2.258779 2 10.20 fail
107, 110, 112 ±1.687271 2 5.69 pass
107, 111, 112 ±5.810416 2 67.52 fail
108, 111, 112 ±3.874961 2 30.03 fail
109, 110, 111 ±4.547237 2 41.35 fail
109, 110, 112 ±1.174018 2 2.76 pass
109, 111, 112 ±5.097455 2 51.97 fail
110, 111, 112 ±6.439910 2 82.94 fail

Scenario A: candidates of three points and statistical test for epoch 5 [continued]
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B.3 Scenario A: Candidates for largest congruent point group from MSS-

method using angles and statistical evaluation

Candidate TG Test outcome

101, 103, 112 3.21 fail
101, 105, 106 3.16 fail
101, 105, 108 1.76 pass
101, 106, 108 0.80 pass
101, 107, 111 6.90 fail
101, 109, 111 6.56 fail
101, 110, 111 3.19 fail
102, 103, 104 3.55 fail
102, 104, 109 2.69 pass
102, 105, 107 75.45 fail
102, 105, 109 86.40 fail
103, 104, 106 1.43 pass
103, 104, 109 1.02 pass
104, 106, 109 2.69 pass
104, 107, 110 5.50 fail
104, 107, 112 41.13 fail
105, 106, 108 2.77 pass
105, 106, 109 4.49 fail
105, 106, 111 2.52 pass
105, 106, 112 1.78 pass
105, 111, 112 10.27 fail
106, 107, 112 1.82 pass
106, 108, 111 2.54 pass
107, 109, 110 3.42 fail
107, 109, 112 1.13 pass
107, 110, 112 2.85 pass
109, 110, 112 1.38 pass

Table B.9: Scenario A: candidates and test statistics for epoch 5
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B.4 Scenario A: Adjusted coordinates and standard deviations from com-

bined re-adjustment of observations

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.230 5081.203 97.132 ±2.2 ±1.9 ±2.8
102 10836.930 5332.830 98.229 ±1.2 ±1.0 ±1.2
103 10947.370 5568.028 101.059 ±2.0 ±2.0 ±2.6
104 10873.498 5786.002 103.961 ±2.2 ±1.8 ±2.4
105 10748.028 5481.269 96.700 ±1.9 ±1.7 ±1.8
106 10687.768 5474.069 99.649 ±1.9 ±1.6 ±1.7
107 10714.329 5544.368 105.578 ±1.9 ±1.6 ±1.7
108 10739.429 5710.701 98.080 ±1.2 ±0.9 ±1.2
109 10526.474 5804.631 101.351 ±2.2 ±1.9 ±2.8
110 10575.932 5539.329 104.209 ±1.1 ±1.0 ±1.2
111 10712.202 5171.500 100.820 ±1.3 ±0.9 ±1.4
112 10526.469 5028.830 99.561 ±2.2 ±1.9 ±3.1

Table B.10: Scenario A: adjusted coordinates and standard deviations for epoch 2
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Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.230 5081.201 97.133 ±2.0 ±1.7 ±2.5
102 10836.931 5332.832 98.227 ±1.8 ±1.5 ±1.9
103 10947.372 5568.025 101.062 ±1.9 ±1.8 ±2.3
104 10873.498 5786.003 103.962 ±2.0 ±1.6 ±2.2
105 10748.030 5481.272 96.702 ±2.8 ±2.4 ±2.6
106 10687.767 5474.071 99.648 ±1.8 ±1.5 ±1.6
107 10714.330 5544.369 105.579 ±1.8 ±1.4 ±1.6
108 10739.428 5710.702 98.082 ±1.8 ±1.4 ±1.7
109 10526.470 5804.632 101.346 ±2.0 ±1.7 ±2.5
110 10575.931 5539.330 104.209 ±1.0 ±1.0 ±1.1
111 10712.206 5171.500 100.819 ±2.2 ±1.4 ±2.1
112 10526.472 5028.831 99.560 ±1.9 ±1.7 ±2.8
302 10836.912 5332.850 98.221 ±1.8 ±1.5 ±1.9
305 10748.050 5481.250 96.693 ±2.8 ±2.4 ±2.6
308 10739.440 5710.674 98.065 ±1.8 ±1.4 ±1.7
311 10712.194 5171.500 100.823 ±2.2 ±1.4 ±2.1

Table B.11: Scenario A: adjusted coordinates and standard deviations for epoch 3

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.228 5081.198 97.133 ±1.4 ±1.7 ±2.4
102 10836.929 5332.831 98.227 ±1.8 ±1.6 ±1.9
103 10947.373 5568.031 101.060 ±1.8 ±1.8 ±2.3
104 10873.498 5786.001 103.962 ±1.7 ±1.6 ±2.1
105 10748.028 5481.272 96.702 ±2.8 ±2.5 ±2.7
106 10687.766 5474.070 99.646 ±2.8 ±2.3 ±2.4
107 10714.329 5544.370 105.578 ±1.7 ±1.4 ±1.6
108 10739.428 5710.702 98.081 ±2.0 ±1.4 ±1.8
109 10526.475 5804.633 101.347 ±3.9 ±3.0 ±4.0
110 10575.931 5539.330 104.209 ±1.1 ±1.0 ±1.2
111 10712.202 5171.499 100.819 ±1.3 ±0.9 ±1.4
112 10526.467 5028.833 99.561 ±4.1 ±3.0 ±4.5
402 10836.901 5332.864 98.211 ±1.8 ±1.6 ±1.9
405 10748.068 5481.244 96.681 ±2.8 ±2.5 ±2.7
406 10687.788 5474.045 99.644 ±2.8 ±2.3 ±2.4
408 10739.465 5710.654 98.053 ±2.0 ±1.4 ±1.8
409 10526.485 5804.613 101.335 ±3.9 ±3.0 ±4.0
412 10526.447 5028.857 99.539 ±4.1 ±3.0 ±4.5

Table B.12: Scenario A: adjusted coordinates and standard deviations for epoch 4
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Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.236 5081.205 97.136 ±7.6 ±5.4 ±4.4
102 10836.934 5332.835 98.228 ±3.6 ±3.6 ±2.3
103 10947.372 5568.033 101.061 ±3.2 ±5.6 ±4.0
104 10873.495 5786.006 103.965 ±5.0 ±4.6 ±3.7
105 10748.031 5481.275 96.703 ±3.1 ±3.2 ±2.8
106 10687.768 5474.072 99.647 ±3.1 ±2.6 ±2.5
107 10714.328 5544.370 105.581 ±1.0 ±0.0 ±0.9
108 10739.426 5710.704 98.083 ±3.2 ±2.4 ±2.1
109 10526.472 5804.632 101.348 ±5.2 ±3.2 ±4.2
110 10575.932 5539.330 104.209 ±1.0 ±0.0 ±0.9
111 10712.211 5171.502 100.820 ±5.8 ±2.2 ±2.7
112 10526.477 5028.832 99.562 ±8.3 ±3.2 ±4.9
501 10922.253 5081.231 97.143 ±7.6 ±5.4 ±4.4
502 10836.994 5332.888 98.214 ±3.6 ±3.6 ±2.3
503 10947.413 5568.066 101.057 ±3.2 ±5.6 ±4.0
504 10873.513 5786.024 103.969 ±5.0 ±4.6 ±3.7
505 10748.095 5481.256 96.685 ±3.1 ±3.2 ±2.8
506 10687.827 5474.061 99.637 ±3.1 ±2.6 ±2.5
508 10739.497 5710.663 98.055 ±3.2 ±2.4 ±2.1
509 10526.500 5804.610 101.344 ±5.2 ±3.2 ±4.2
511 10712.223 5171.523 100.833 ±5.8 ±2.2 ±2.7
512 10526.463 5028.887 99.530 ±8.3 ±3.2 ±4.9

Table B.13: Scenario A: adjusted coordinates and standard deviations for epoch 5
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B.5 Scenario B: Adjusted coordinates and standard deviations after network

analysis for epochs 1 to 5

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 10922.207 5081.244 97.128 ±3.5 ±3.2 ±3.8
102 10836.918 5332.844 98.229 ±1.8 ±1.8 ±1.7
103 10947.342 5568.012 101.062 ±3.5 ±3.4 ±3.6
104 10873.484 5785.962 101.961 ±3.6 ±3.0 ±3.3
105 10748.028 5481.264 99.699 ±3.0 ±2.9 ±2.5
106 10687.775 5474.069 99.649 ±3.1 ±2.7 ±2.3
107 10714.330 5544.363 102.582 ±2.9 ±2.6 ±2.3
108 10739.427 5710.672 98.078 ±1.9 ±1.6 ±1.7
109 10526.497 5804.585 101.357 ±3.6 ±3.2 ±3.8
110 10575.951 5539.320 102.209 ±1.8 ±1.8 ±1.6
111 10712.202 5171.539 100.819 ±2.1 ±1.7 ±2.0
112 10526.499 5028.887 99.558 ±3.6 ±3.3 ±4.3

Table B.14: Scenario B: adjusted coordinates and standard deviations of epoch 1

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 -1713147.042 -3774007.522 4834108.569 ±3.3 ±4.4 ±5.9
102 -1713101.527 -3774263.209 4834164.711 ±1.9 ±2.2 ±2.7
103 -1712926.078 -3774441.862 4834095.252 ±3.8 ±3.7 ±5.4
104 -1712886.680 -3774663.356 4834143.845 ±4.4 ±3.1 ±5.4
105 -1713100.938 -3774425.958 4834223.469 ±2.6 ±3.5 ±4.1
106 -1713145.718 -3774438.375 4834262.505 ±2.5 ±3.6 ±4.0
107 -1713096.521 -3774493.244 4834247.517 ±2.8 ±2.6 ±3.9
108 -1713013.032 -3774638.013 4834227.811 ±2.1 ±1.9 ±2.7
109 -1713119.913 -3774789.678 4834368.376 ±3.4 ±4.4 ±5.9
110 -1713194.768 -3774532.305 4834336.971 ±1.9 ±2.0 ±2.6
111 -1713253.146 -3774154.853 4834247.559 ±2.2 ±2.1 ±3.2
112 -1713441.602 -3774083.712 4834367.014 ±4.4 ±3.7 ±6.7

Table B.15: Scenario B: adjusted coordinates and standard deviations of epoch 2
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Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 -1713147.038 -3774007.521 4834108.577 ±3.3 ±4.4 ±6.0
102 -1713101.532 -3774263.235 4834164.711 ±1.9 ±2.2 ±2.7
103 -1712926.089 -3774441.871 4834095.257 ±3.8 ±3.8 ±5.4
104 -1712886.679 -3774663.351 4834143.832 ±4.4 ±3.2 ±5.4
105 -1713100.935 -3774425.932 4834223.452 ±2.6 ±3.6 ±4.2
106 -1713145.721 -3774438.372 4834262.503 ±2.5 ±3.7 ±4.1
107 -1713096.517 -3774493.236 4834247.511 ±2.9 ±2.6 ±4.0
108 -1713013.043 -3774637.990 4834227.788 ±2.1 ±2.0 ±2.8
109 -1713119.912 -3774789.686 4834368.381 ±3.5 ±4.4 ±6.0
110 -1713194.762 -3774532.304 4834336.967 ±1.9 ±2.1 ±2.6
111 -1713253.145 -3774154.853 4834247.558 ±2.2 ±2.1 ±3.2
112 -1713441.598 -3774083.723 4834367.027 ±4.5 ±3.7 ±6.8

Table B.16: Scenario B: adjusted coordinates and standard deviations of epoch 3

Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 -1713147.036 -3774007.525 4834108.564 ±3.2 ±4.2 ±5.8
102 -1713101.545 -3774263.252 4834164.713 ±1.9 ±2.1 ±2.6
103 -1712926.083 -3774441.872 4834095.259 ±3.7 ±3.6 ±5.2
104 -1712886.683 -3774663.354 4834143.832 ±4.2 ±3.0 ±5.2
105 -1713100.927 -3774425.923 4834223.431 ±2.5 ±3.4 ±4.0
106 -1713145.719 -3774438.346 4834262.485 ±2.4 ±3.5 ±3.9
107 -1713096.514 -3774493.240 4834247.509 ±2.8 ±2.5 ±3.8
108 -1713013.045 -3774637.963 4834227.766 ±2.0 ±1.9 ±2.6
109 -1713119.924 -3774789.662 4834368.371 ±3.3 ±4.2 ±5.8
110 -1713194.760 -3774532.303 4834336.971 ±1.8 ±2.0 ±2.5
111 -1713253.144 -3774154.853 4834247.558 ±2.2 ±2.0 ±3.1
112 -1713441.624 -3774083.755 4834367.032 ±4.3 ±3.6 ±6.5

Table B.17: Scenario B: adjusted coordinates and standard deviations of epoch 4
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Point x y z σ̂x σ̂y σ̂z
[m] [m] [m] [mm] [mm] [mm]

101 -1713147.041 -3774007.527 4834108.561 ±3.3 ±4.4 ±6.0
102 -1713101.554 -3774263.265 4834164.722 ±1.9 ±2.2 ±2.7
103 -1712926.071 -3774441.890 4834095.228 ±3.8 ±3.8 ±5.4
104 -1712886.678 -3774663.360 4834143.835 ±4.4 ±3.1 ±5.4
105 -1713100.926 -3774425.902 4834223.423 ±2.6 ±3.5 ±4.1
106 -1713145.719 -3774438.339 4834262.466 ±2.5 ±3.6 ±4.0
107 -1713096.546 -3774493.227 4834247.506 ±2.8 ±2.6 ±4.0
108 -1713013.044 -3774637.951 4834227.743 ±2.1 ±1.9 ±2.8
109 -1713119.927 -3774789.633 4834368.364 ±3.4 ±4.4 ±6.0
110 -1713194.787 -3774532.291 4834336.969 ±1.9 ±2.0 ±2.6
111 -1713253.143 -3774154.851 4834247.558 ±2.2 ±2.1 ±3.2
112 -1713441.648 -3774083.779 4834367.006 ±4.5 ±3.7 ±6.7

Table B.18: Scenario B: adjusted coordinates and standard deviations of epoch 5
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B.6 Scenario B: Candidates for largest congruent point group from MSS-

method using distance ratios and statistical evaluation

Epoch 4

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 106, 109, 111 ±1.708940 11 32.13 fail
101, 103, 104, 106, 109, 112 ±2.620323 11 75.53 fail
101, 103, 104, 107, 109, 110 ±1.557207 11 26.67 fail
101, 103, 104, 107, 109, 111 ±1.428295 11 22.44 fail
101, 103, 104, 107, 109, 112 ±2.116667 11 49.28 fail
101, 103, 104, 107, 110, 112 ±2.115251 11 49.22 fail
101, 103, 104, 107, 111, 112 ±2.312691 11 58.83 fail
101, 103, 104, 109, 110, 111 ±1.561536 11 26.82 fail
101, 103, 104, 109, 110, 112 ±2.333914 11 59.92 fail
101, 103, 104, 109, 111, 112 ±2.328141 11 59.62 fail
101, 103, 104, 110, 111, 112 ±2.355923 11 61.05 fail
101, 103, 107, 109, 110, 111 ±1.740370 11 33.32 fail
101, 103, 107, 109, 110, 112 ±2.463407 11 66.75 fail
101, 103, 107, 109, 111, 112 ±2.380963 11 62.36 fail
101, 103, 107, 110, 111, 112 ±2.342326 11 60.35 fail
101, 103, 109, 110, 111, 112 ±2.632363 11 76.22 fail
101, 104, 107, 109, 110, 111 ±1.667433 11 30.58 fail
101, 104, 107, 109, 110, 112 ±2.410419 11 63.91 fail
101, 104, 107, 109, 111, 112 ±2.303939 11 58.39 fail
101, 104, 107, 110, 111, 112 ±2.393513 11 63.02 fail
101, 104, 109, 110, 111, 112 ±2.615803 11 75.27 fail
101, 107, 109, 110, 111, 112 ±2.633537 11 76.29 fail
102, 103, 104, 109, 110, 112 ±3.668955 11 148.07 fail
103, 104, 106, 109, 111, 112 ±2.728366 11 81.88 fail
103, 104, 107, 109, 110, 111 ±1.716117 11 32.40 fail
103, 104, 107, 109, 110, 112 ±2.275642 11 56.96 fail
103, 104, 107, 109, 111, 112 ±2.361948 11 61.37 fail
103, 104, 107, 110, 111, 112 ±2.358554 11 61.19 fail
103, 104, 109, 110, 111, 112 ±2.621946 11 75.62 fail
103, 107, 109, 110, 111, 112 ±2.669703 11 78.40 fail
104, 107, 109, 110, 111, 112 ±2.607840 11 74.81 fail

Table B.19: Scenario B: candidates of six points and statistical test for epoch 4
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Epoch 5

Candidate σ̂0 Redundancy Tχ Test outcome

101, 103, 104, 106 ±4.094482 5 83.82 fail
101, 103, 104, 109 ±3.843804 5 73.87 fail
101, 103, 104, 111 ±2.667292 5 35.57 fail
101, 103, 106, 109 ±4.271428 5 91.23 fail
101, 103, 109, 111 ±4.357430 5 94.94 fail
101, 103, 110, 111 ±3.517961 5 61.88 fail
101, 103, 111, 112 ±5.434011 5 147.64 fail
101, 104, 106, 108 ±9.014754 5 406.33 fail
101, 104, 106, 109 ±3.205931 5 51.39 fail
101, 104, 106, 111 ±3.562890 5 63.47 fail
101, 104, 107, 110 ±2.814900 5 39.62 fail
101, 104, 107, 111 ±2.765655 5 38.24 fail
101, 104, 108, 111 ±9.795991 5 479.81 fail
101, 104, 109, 110 ±3.173768 5 50.36 fail
101, 104, 109, 111 ±2.665296 5 35.52 fail
101, 104, 110, 111 ±1.641897 5 13.48 fail
101, 104, 111, 112 ±5.128177 5 131.49 fail
101, 105, 108, 111 ±3.405762 5 58.00 fail
101, 106, 107, 108 ±5.087478 5 129.41 fail
101, 106, 108, 111 ±2.654852 5 35.24 fail
101, 106, 109, 111 ±2.528894 5 31.98 fail
101, 107, 108, 111 ±5.263101 5 138.50 fail
101, 107, 109, 110 ±2.963354 5 43.91 fail
101, 107, 109, 111 ±1.598172 5 12.77 fail
101, 107, 110, 111 ±2.252421 5 25.37 fail
101, 109, 110, 111 ±2.478685 5 30.72 fail
102, 103, 104, 112 ±5.199785 5 135.19 fail
102, 103, 111, 112 ±10.381986 5 538.93 fail
102, 104, 111, 112 ±10.144118 5 514.52 fail

Table B.20: Scenario B: candidates of four points and statistical test for epoch 5
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Candidate σ̂0 Redundancy Tχ Test outcome

103, 104, 105, 109 ±3.007018 5 45.21 fail
103, 104, 105, 112 ±6.731617 5 226.57 fail
103, 104, 106, 109 ±2.296140 5 26.36 fail
103, 104, 106, 112 ±5.754963 5 165.60 fail
103, 104, 109, 111 ±4.503668 5 101.42 fail
103, 104, 109, 112 ±5.405712 5 146.11 fail
103, 104, 111, 112 ±5.693417 5 162.07 fail
103, 105, 109, 112 ±7.287213 5 265.52 fail
103, 106, 109, 112 ±6.417968 5 205.95 fail
104, 105, 109, 111 ±5.292176 5 140.04 fail
104, 105, 109, 112 ±6.644291 5 220.73 fail
104, 105, 111, 112 ±6.036243 5 182.18 fail
104, 106, 108, 111 ±9.669506 5 467.50 fail
104, 106, 108, 112 ±10.462443 5 547.31 fail
104, 106, 109, 111 ±3.968003 5 78.73 fail
104, 106, 109, 112 ±5.358530 5 143.57 fail
104, 106, 111, 112 ±5.366112 5 143.98 fail
104, 107, 110, 111 ±3.018982 5 45.57 fail
104, 108, 111, 112 ±10.426134 5 543.52 fail
104, 109, 110, 111 ±3.188368 5 50.83 fail
104, 109, 110, 112 ±4.571194 5 104.48 fail
104, 109, 111, 112 ±5.785011 5 167.33 fail
104, 110, 111, 112 ±5.918210 5 175.13 fail
105, 108, 111, 112 ±3.273066 5 53.56 fail
105, 109, 111, 112 ±5.755058 5 165.60 fail
106, 107, 108, 111 ±4.537959 5 102.97 fail
106, 107, 108, 112 ±3.723641 5 69.33 fail
106, 108, 111, 112 ±3.042563 5 46.29 fail
106, 109, 111, 112 ±4.740790 5 112.38 fail
107, 108, 111, 112 ±5.056851 5 127.86 fail
107, 109, 110, 111 ±2.772306 5 38.43 fail
107, 109, 110, 112 ±2.340996 5 27.40 fail
107, 109, 111, 112 ±4.935281 5 121.79 fail
107, 110, 111, 112 ±5.950665 5 177.05 fail
109, 110, 111, 112 ±4.574161 5 104.61 fail

Scenario B: candidates of four points and statistical test for epoch 5 [continued]

241



Candidate σ̂0 Redundancy Tχ Test outcome

101, 102, 103 ±8.118225 2 131.81 fail
101, 103, 104 ±3.601313 2 25.94 fail
101, 103, 106 ±6.297582 2 79.32 fail
101, 103, 109 ±5.869761 2 68.91 fail
101, 103, 110 ±4.947843 2 48.96 fail
101, 103, 111 ±2.191526 2 9.61 fail
101, 103, 112 ±1.717855 2 5.90 pass
101, 104, 106 ±4.618660 2 42.66 fail
101, 104, 107 ±3.544904 2 25.13 fail
101, 104, 108 ±13.853936 2 383.86 fail
101, 104, 109 ±3.690087 2 27.23 fail
101, 104, 110 ±2.156652 2 9.30 fail
101, 104, 111 ±0.649365 2 0.84 pass
101, 104, 112 ±3.766557 2 28.37 fail
101, 105, 108 ±1.129678 2 2.55 pass
101, 105, 111 ±4.907770 2 48.17 fail
101, 106, 107 ±3.929568 2 30.88 fail
101, 106, 108 ±2.002797 2 8.02 fail
101, 106, 109 ±2.532029 2 12.82 fail
101, 106, 111 ±3.266815 2 21.34 fail
101, 107, 108 ±8.036070 2 129.16 fail
101, 107, 109 ±1.576305 2 4.97 pass
101, 107, 110 ±3.374556 2 22.78 fail
101, 107, 111 ±1.430071 2 4.09 pass
101, 108, 111 ±4.169672 2 34.77 fail
101, 109, 110 ±3.855200 2 29.73 fail
101, 109, 111 ±1.493244 2 4.46 pass
101, 110, 111 ±0.687337 2 0.94 pass
101, 111, 112 ±5.266154 2 55.46 fail
102, 103, 104 ±5.775571 2 66.71 fail
102, 103, 111 ±11.777903 2 277.44 fail
102, 103, 112 ±6.692837 2 89.59 fail
102, 104, 109 ±5.741758 2 65.94 fail
102, 104, 111 ±11.980447 2 287.06 fail
102, 104, 112 ±4.964532 2 49.29 fail
102, 109, 110 ±4.573586 2 41.84 fail
102, 111, 112 ±12.306651 2 302.91 fail
103, 104, 105 ±2.915492 2 17.00 fail
103, 104, 106 ±2.336125 2 10.91 fail
103, 104, 109 ±0.739836 2 1.09 pass
103, 104, 111 ±3.885346 2 30.19 fail

Table B.21: Scenario B: candidates of three points and statistical test for epoch 5
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Candidate σ̂0 Redundancy Tχ Test outcome

103, 104, 112 ±4.410165 2 38.90 fail
103, 105, 109 ±4.618281 2 42.66 fail
103, 105, 112 ±9.649335 2 186.22 fail
103, 106, 109 ±3.597513 2 25.88 fail
103, 106, 112 ±8.790116 2 154.53 fail
103, 107, 110 ±4.786216 2 45.82 fail
103, 109, 111 ±6.900744 2 95.24 fail
103, 109, 112 ±8.482845 2 143.92 fail
103, 110, 111 ±5.379992 2 57.89 fail
103, 111, 112 ±5.810704 2 67.53 fail
104, 105, 109 ±3.099901 2 19.22 fail
104, 105, 111 ±7.686860 2 118.18 fail
104, 105, 112 ±9.124567 2 166.52 fail
104, 106, 108 ±12.491877 2 312.09 fail
104, 106, 109 ±2.284500 2 10.44 fail
104, 106, 111 ±5.249893 2 55.12 fail
104, 106, 112 ±7.457707 2 111.23 fail
104, 107, 110 ±2.642133 2 13.96 fail
104, 107, 111 ±3.950984 2 31.22 fail
104, 108, 111 ±15.286720 2 467.37 fail
104, 108, 112 ±16.297026 2 531.19 fail
104, 109, 110 ±5.002554 2 50.05 fail
104, 109, 111 ±4.146090 2 34.38 fail
104, 109, 112 ±5.714553 2 65.31 fail
104, 110, 111 ±2.434049 2 11.85 fail
104, 110, 112 ±5.680898 2 64.55 fail
104, 111, 112 ±6.002588 2 72.06 fail
105, 106, 110 ±1.828006 2 6.68 fail
105, 108, 111 ±3.124300 2 19.52 fail
105, 108, 112 ±4.637669 2 43.02 fail
105, 109, 111 ±6.290570 2 79.14 fail
105, 109, 112 ±8.047415 2 129.52 fail
105, 111, 112 ±2.514275 2 12.64 fail
106, 107, 108 ±5.527029 2 61.10 fail
106, 107, 111 ±4.227110 2 35.74 fail
106, 107, 112 ±2.706019 2 14.65 fail
106, 108, 111 ±0.697183 2 0.97 pass
106, 108, 112 ±1.708316 2 5.84 pass
106, 109, 111 ±3.559845 2 25.34 fail
106, 109, 112 ±5.685244 2 64.64 fail
106, 111, 112 ±3.652909 2 26.69 fail

Scenario B: candidates of three points and statistical test for epoch 5 [continued]
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Candidate σ̂0 Redundancy Tχ Test outcome

107, 108, 111 ±7.104928 2 100.96 fail
107, 108, 112 ±5.033745 2 50.68 fail
107, 109, 110 ±2.407674 2 11.59 fail
107, 109, 111 ±0.951328 2 1.81 pass
107, 109, 112 ±1.631059 2 5.32 pass
107, 110, 111 ±3.398431 2 23.10 fail
107, 110, 112 ±2.527212 2 12.77 fail
107, 111, 112 ±5.876108 2 69.06 fail
108, 111, 112 ±4.010775 2 32.17 fail
109, 110, 111 ±3.580341 2 25.64 fail
109, 110, 112 ±0.850427 2 1.45 pass
109, 111, 112 ±5.874974 2 69.03 fail
110, 111, 112 ±6.869511 2 94.38 fail

Scenario B: candidates of three points and statistical test for epoch 5 [continued]
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B.7 Scenario B: Candidates for largest congruent point group from MSS-

method using angles and statistical evaluation

Candidate TG Test outcome

101, 103, 111 4.50 fail
101, 103, 112 2.87 pass
101, 104, 107 12.13 fail
101, 104, 110 4.48 fail
101, 105, 108 1.26 pass
101, 106, 108 3.97 fail
101, 106, 109 6.38 fail
101, 107, 109 2.42 pass
101, 107, 111 2.01 pass
101, 109, 111 2.19 pass
101, 110, 111 0.36 pass
102, 107, 109 29.01 fail
103, 104, 109 1.18 pass
104, 106, 109 5.00 fail
104, 107, 111 15.10 fail
104, 110, 111 5.72 fail
105, 106, 109 4.29 fail
105, 106, 110 3.24 fail
105, 106, 112 7.14 fail
105, 111, 112 6.17 fail
106, 108, 111 2.08 pass
106, 108, 112 2.88 pass
107, 109, 110 5.70 fail
107, 109, 111 0.89 pass
107, 109, 112 2.59 pass
109, 110, 112 1.20 pass

Table B.22: Scenario B: candidates and test statistics for epoch 5
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Appendix C

C.1 Turtle Mountain: adjusted coordinates and standard deviations of HPTN

points after network analysis for epochs 1 to 4

Point Easting Northing Height σ̂Easting σ̂Northing σ̂Height
[m] [m] [m] [mm] [mm] [mm]

1 500.001 999.993 100.001 ±0.5 ±0.4 ±1.5
2 486.013 1040.261 76.354 ±1.2 ±1.0 ±2.2
12 435.709 1081.598 44.729 ±0.9 ±0.8 ±4.4
13 435.949 1128.172 40.023 ±1.2 ±0.9 ±2.2
14 436.843 1159.604 44.741 ±0.5 ±0.5 ±1.3
15 466.980 982.861 92.753 ±0.6 ±0.4 ±1.4
17 414.325 1205.584 48.629 ±0.5 ±0.5 ±1.4

Table C.1: Adjusted HPTN coordinates and standard deviations in Summer 2008 (epoch 1)

Point Easting Northing Height σ̂Easting σ̂Northing σ̂Height
[m] [m] [m] [mm] [mm] [mm]

1 500.003 999.992 99.993 ±0.2 ±0.2 ±0.7
2 486.013 1040.262 76.353 ±0.2 ±0.3 ±0.9
12 435.707 1081.598 44.735 ±0.4 ±0.4 ±1.3
13 435.948 1128.171 40.027 ±0.2 ±0.3 ±0.9
14 436.843 1159.604 44.740 ±0.2 ±0.3 ±1.2
15 466.980 982.860 92.751 ±0.2 ±0.2 ±0.7
17 414.326 1205.585 48.632 ±0.2 ±0.3 ±1.0

Table C.2: Adjusted HPTN coordinates and standard deviations in Fall 2009 (epoch 2)
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Point Easting Northing Height σ̂Easting σ̂Northing σ̂Height
[m] [m] [m] [mm] [mm] [mm]

1 499.998 999.999 99.989 ±0.3 ±0.3 ±0.4
2 486.013 1040.264 76.353 ±0.3 ±0.4 ±0.6
12 435.709 1081.599 44.737 ±0.6 ±0.6 ±0.8
13 435.947 1128.168 40.028 ±0.3 ±0.4 ±0.5
14 436.845 1159.600 44.743 ±0.2 ±0.4 ±0.4
15 466.979 982.867 92.748 ±0.3 ±0.3 ±0.4
17 414.330 1205.577 48.632 ±0.3 ±0.4 ±0.5

Table C.3: Adjusted HPTN coordinates and standard deviations in Fall 2010 (epoch 3)

Point Easting Northing Height σ̂Easting σ̂Northing σ̂Height
[m] [m] [m] [mm] [mm] [mm]

1 499.997 999.998 99.990 ±0.3 ±0.3 ±0.4
2 486.013 1040.267 76.350 ±0.3 ±0.5 ±0.7
12 435.711 1081.599 44.737 ±0.6 ±0.7 ±0.8
13 435.949 1128.168 40.028 ±0.3 ±0.5 ±0.6
14 436.844 1159.600 44.743 ±0.2 ±0.4 ±0.5
15 466.978 982.867 92.750 ±0.4 ±0.3 ±0.5
17 414.328 1205.575 48.632 ±0.3 ±0.5 ±0.5

Table C.4: Adjusted HPTN coordinates and standard deviations in Fall 2011 (epoch 4)
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C.2 Turtle Mountain: candidates for similar point groups from MSS-method

based on distance ratios

Candidate σ̂0 Redundancy Tχ Test outcome

1, 12, 13, 14, 15, 17, ±3.70757790 11 151.21 fail
2, 12, 13, 14, 15, 17, ±3.01817633 11 100.20 fail

1, 12, 13, 14, 15, ±4.31998870 8 149.30 fail
1, 12, 13, 14, 17, ±3.15713198 8 79.74 fail
1, 12, 13, 15, 17, ±3.28432589 8 86.29 fail
1, 12, 14, 15, 17, ±2.00972007 8 32.31 fail
1, 13, 14, 15, 17, ±4.15059794 8 137.82 fail
2, 12, 13, 14, 15, ±3.18311543 8 81.06 fail
2, 12, 13, 14, 17, ±3.10860325 8 77.31 fail
2, 12, 13, 15, 17, ±2.63885411 8 55.71 fail
2, 12, 14, 15, 17, ±1.48418403 8 17.62 fail
2, 13, 14, 15, 17, ±3.35389068 8 89.99 fail
12, 13, 14, 15, 17, ±3.04393873 8 74.12 fail

1, 12, 13, 14, ±3.35832533 5 56.39 fail
1, 12, 13, 15, ±1.79033346 5 16.03 fail
1, 12, 13, 17, ±2.36057956 5 27.86 fail
1, 12, 14, 15, ±2.18445330 5 23.86 fail
1, 12, 14, 17, ±0.97836648 5 4.79 pass
1, 12, 15, 17, ±2.42522287 5 29.41 fail
1, 13, 14, 15, ±5.22000141 5 136.24 fail
1, 13, 14, 17, ±3.35518004 5 56.29 fail
1, 13, 15, 17, ±3.73531161 5 69.76 fail
1, 14, 15, 17, ±2.36487435 5 27.96 fail
2, 12, 13, 14, ±3.35127857 5 56.16 fail
2, 12, 13, 15, ±2.96634041 5 44.00 fail
2, 12, 13, 17, ±2.55308923 5 32.59 fail
2, 12, 14, 15, ±1.69310918 5 14.33 fail
2, 12, 14, 17, ±1.11952796 5 6.27 pass
2, 12, 15, 17, ±1.75065164 5 15.32 fail
2, 13, 14, 15, ±3.56136592 5 63.42 fail

Table C.5: Statistical evaluation of candidates for largest similar point group between epochs
2 and 3
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Candidate σ̂0 Redundancy Tχ Test outcome

2, 13, 14, 17, ±3.35347656 5 56.23 fail
2, 13, 15, 17, ±2.93162327 5 42.97 fail
2, 14, 15, 17, ±1.78747571 5 15.98 fail
12, 13, 14, 15, ±2.97307878 5 44.20 fail
12, 13, 14, 17, ±3.26903430 5 53.43 fail
12, 13, 15, 17, ±2.31908232 5 26.89 fail
13, 14, 15, 17, ±3.29323215 5 54.23 fail

Statistical evaluation of candidates for largest similar point group between epochs 2 and 3
[continued]

Candidate σ̂0 Redundancy Tχ Test outcome

1, 2, 12, 13, 14, 15, ±3.20486173 11 112.98 fail
1, 2, 12, 13, 14, 17, ±3.03285573 11 101.18 fail
1, 2, 12, 13, 15, 17, ±3.04622871 11 102.07 fail
1, 2, 12, 14, 15, 17, ±2.56852615 11 72.57 fail
1, 2, 13, 14, 15, 17, ±3.17350532 11 110.78 fail
1, 12, 13, 14, 15, 17, ±1.85128539 11 37.70 fail
2, 12, 13, 14, 15, 17, ±2.27616214 11 56.99 fail

1, 2, 12, 13, 14, ±3.52379590 8 99.34 fail
1, 2, 12, 13, 15, ±3.41773932 8 93.45 fail
1, 2, 12, 13, 17, ±3.35379235 8 89.98 fail
1, 2, 12, 14, 15, ±2.97864573 8 70.98 fail
1, 2, 12, 14, 17, ±2.59561275 8 53.90 fail
1, 2, 12, 15, 17, ±2.81989328 8 63.61 fail
1, 2, 13, 14, 15, ±3.67607013 8 108.11 fail
1, 2, 13, 14, 17, ±3.49449906 8 97.69 fail
1, 2, 13, 15, 17, ±3.49232042 8 97.57 fail
1, 2, 14, 15, 17, ±2.96790492 8 70.47 fail
1, 12, 13, 14, 15, ±2.07898625 8 34.58 fail
1, 12, 13, 14, 17, ±1.90748004 8 29.11 fail
1, 12, 13, 15, 17, ±1.74045162 8 24.23 fail
1, 12, 14, 15, 17, ±1.40904752 8 15.88 fail
1, 13, 14, 15, 17, ±1.78767724 8 25.57 fail
2, 12, 13, 14, 15, ±2.43699299 8 47.51 fail
2, 12, 13, 14, 17, ±1.67180736 8 22.36 fail
2, 12, 13, 15, 17, ±2.38695973 8 45.58 fail
2, 12, 14, 15, 17, ±2.15012930 8 36.98 fail
2, 13, 14, 15, 17, ±2.47749060 8 49.10 fail
12, 13, 14, 15, 17, ±1.87709754 8 28.19 fail

Table C.6: Statistical evaluation of candidates for largest similar point group between epochs
2 and 4

249



Candidate σ̂0 Redundancy Tχ Test outcome

1, 2, 12, 13, ±3.62681160 5 65.77 fail
1, 2, 12, 14, ±2.98794287 5 44.64 fail
1, 2, 12, 15, ±3.25327496 5 52.92 fail
1, 2, 12, 17, ±2.88331549 5 41.57 fail
1, 2, 13, 14, ±4.35054492 5 94.64 fail
1, 2, 13, 15, ±4.19723341 5 88.08 fail
1, 2, 13, 17, ±4.14587722 5 85.94 fail
1, 2, 14, 15, ±3.69439126 5 68.24 fail
1, 2, 14, 17, ±2.95336143 5 43.61 fail
1, 2, 15, 17, ±3.45840191 5 59.80 fail
1, 12, 13, 14, ±2.13897767 5 22.88 fail
1, 12, 13, 15, ±1.91683378 5 18.37 fail
1, 12, 13, 17, ±1.80907496 5 16.36 fail
1, 12, 14, 15, ±1.67771763 5 14.07 fail
1, 12, 14, 17, ±1.17240757 5 6.87 pass
1, 12, 15, 17, ±1.63147662 5 13.31 fail
1, 13, 14, 15, ±1.98616934 5 19.72 fail
1, 13, 14, 17, ±1.83405980 5 16.82 fail
1, 13, 15, 17, ±1.30167265 5 8.47 pass
1, 14, 15, 17, ±1.48642214 5 11.05 pass
2, 12, 13, 14, ±1.82870027 5 16.72 fail
2, 12, 13, 15, ±2.94313512 5 43.31 fail
2, 12, 13, 17, ±1.42516685 5 10.16 pass
2, 12, 14, 15, ±2.60727593 5 33.99 fail
2, 12, 14, 17, ±1.06593491 5 5.68 pass
2, 12, 15, 17, ±2.51040965 5 31.51 fail
2, 13, 14, 15, ±2.57159565 5 33.07 fail
2, 13, 14, 17, ±1.73145009 5 14.99 fail
2, 13, 15, 17, ±2.65742479 5 35.31 fail
2, 14, 15, 17, ±2.65402974 5 35.22 fail
12, 13, 14, 15, ±2.06037820 5 21.23 fail
12, 13, 14, 17, ±1.78670561 5 15.96 fail
12, 13, 15, 17, ±1.77799488 5 15.81 fail
13, 14, 15, 17, ±1.83876104 5 16.91 fail

Statistical evaluation of candidates for largest similar point group between epochs 2 and 4
[continued]
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Candidate σ̂0 Redundancy Tχ Test outcome

1, 12, 13, 14, 15, 17, ±2.19151457 11 52.83 fail
1, 12, 13, 14, 15, ±2.46413727 8 48.58 fail
1, 12, 13, 14, 17, ±1.51563797 8 18.38 fail
1, 12, 13, 15, 17, ±1.94285597 8 30.20 fail
1, 12, 14, 15, 17, ±1.58352816 8 20.06 fail
1, 13, 14, 15, 17, ±2.55406730 8 52.19 fail
2, 12, 13, 14, 17, ±1.77735245 8 25.27 fail
12, 13, 14, 15, 17, ±1.55629790 8 19.38 fail

1, 12, 13, 14, ±1.68104631 5 14.13 fail
1, 12, 13, 17, ±0.85404243 5 3.65 pass
1, 12, 14, 15, ±1.56385338 5 12.23 fail
1, 12, 14, 17, ±0.95937816 5 4.60 pass
1, 12, 15, 17, ±1.71196917 5 14.65 fail
1, 13, 14, 15, ±3.08096739 5 47.46 fail
1, 13, 14, 17, ±1.66889526 5 13.93 fail
1, 13, 15, 17, ±2.42840539 5 29.49 fail
1, 14, 15, 17, ±1.68648657 5 14.22 fail
2, 12, 13, 14, ±2.13269054 5 22.74 fail
2, 12, 13, 17, ±1.68355815 5 14.17 fail
2, 12, 14, 17, ±1.09150480 5 5.96 pass
2, 13, 14, 17, ±1.72545911 5 14.89 fail
2, 14, 15, 17, ±2.43489756 5 29.64 fail
12, 13, 14, 15, ±1.04593884 5 5.47 pass
12, 13, 14, 17, ±1.76375176 5 15.55 fail
12, 13, 15, 17, ±0.78497415 5 3.08 pass
12, 14, 15, 17, ±1.21366683 5 7.36 pass
13, 14, 15, 17, ±1.94393809 5 18.89 fail

Table C.7: Statistical evaluation of candidates for largest similar point group between epochs
3 and 4
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C.3 Turtle Mountain: candidates for similar point groups from MSS-method

based on angles

Candidate TG Test outcome

1, 2, 13, 17 21.63 fail
1, 2, 14, 17 8.06 fail
1, 12, 13, 14 11.22 fail
1, 12, 13, 17 5.52 fail
1, 12, 14, 17 0.96 pass
2, 12, 14, 17 1.25 pass
12, 13, 14, 15 8.78 fail
12, 13, 15, 17 5.34 fail

Table C.8: Statistical evaluation of candidates for largest similar point group between epochs
2 and 3

Candidate TG Test outcome

1, 2, 14, 17 2.32 fail
1, 12, 13, 14 4.44 fail
1, 12, 13, 17 3.18 fail
1, 12, 14, 17 1.38 pass
1, 13, 14, 15 3.84 fail
1, 13, 15, 17 1.65 pass
1, 14, 15, 17 2.22 pass
2, 12, 13, 14 3.26 fail
2, 12, 13, 17 1.97 pass
2, 12, 14, 17 1.15 pass
12, 13, 14, 15 4.12 fail
12, 13, 15, 17 3.06 fail

Table C.9: Statistical evaluation of candidates for largest similar point group between epochs
2 and 4
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Candidate TG Test outcome

1, 12, 13, 14, 15 6.06 fail
1, 12, 13, 15, 17 3.76 fail
1, 12, 14, 15, 17 2.49 fail

1, 12, 13, 14 2.81 fail
1, 12, 13, 17 0.72 pass
1, 12, 14, 15 2.43 fail
1, 12, 14, 17 0.91 pass
1, 12, 15, 17 2.92 fail
1, 13, 14, 15 9.47 fail
1, 13, 15, 17 5.87 fail
1, 14, 15, 17 2.83 fail
2, 12, 13, 14 4.52 fail
2, 12, 13, 15 5.01 fail
2, 12, 13, 17 2.81 fail
2, 12, 14, 17 1.18 pass
12, 13, 14, 15 1.09 pass
12, 13, 15, 17 0.61 pass
12, 14, 15, 17 1.46 pass

Table C.10: Statistical evaluation of candidates for largest similar point group between
epochs 3 and 4
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