
UNIVERSITY OF CALGARY 

Valuation of Segregated Funds in India 

by 

Emmanuel Thompson 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

DEPARTMENT OF MATHEMATICS AND STATISTICS 

CALGARY, ALBERTA 

SEPTEMBER, 2009 

© Emmanuel Thompson 2009 



UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to the Faculty of Graduate 

Studies for acceptance, a thesis entitled "Valuation of Segregated Funds in India" 

submitted by Emmanuel Thompson in partial fulfillment of the requirement for the 

degree of Master of Science. 

R.. 
Supervisor, Dr. Rohana S. Ambagaspitiya 
Department of Mathematics and Statistics 

272 L 
Dr. Murray D. Burke 
Department of Mathematics and Statistics 

ottrell 
of Finance 

School of Business 

pf 2 /2eaS 
Date 



Abstract 

The objective of this thesis is to develop an econometric model which is less complex 

than the Wilkie' s model for valuing and managing financial risks associated with benefit 

options regarding segregated fund contracts in India 

The empirical studies conducted in this thesis revealed the following results. 

• The South Asian stock markets (Sri-Lanka, India and Pakistan) did not show 

evidence of unit-roots, but the returns are correlated. Therefore, the most 

appropriate model capable of capturing the long-term equity return process for a 

practical dynamic hedging of segregated fund contracts in India is the VAR(1) 

model. 

• Also, the security bonds with various maturities from the Indian money market 

show evidence of long-run equilibrium relationship. This characteristic makes it 

possible for the various yields to maturity (YTM) to be modeled jointly via a 

VECM representation. 

Therefore, the valuation model being proposed in this thesis, combines ideas from 

financial engineering, life contingencies and econometrics. Assessment of the model via 

simulation has shown that, the net present value of outgo for a 10 year contract under the 

combined GMMB/GMDB for a life age 50 is mostly in the negative. This is a positive 

signal that, the model has the capability of meeting all the hedge cost and leave some 

profit. 
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Chapter 1 

Introduction 

The purpose of life insurance is to provide financial compensation or protection to the 

policyholder and their dependents. Traditional actuarial practices have for a long time 

focused on evaluation and management of life contingent risks such as mortality and 

morbidity, neglecting risks associated with investment side of insurance. It is an 

undeniable fact that, insurance markets globally are experiencing swift transformation 

partly due to the growing awareness among the public as to the investment opportunities 

that lie outside insurance. Investors want to partake in the potential rewards of stock 

market as well as mortality protection. In response to these needs, insurers around the 

world have introduced equity-linked insurance contracts. These contracts are identified 

by different names in different jurisdictions. In Canada, they are known as segregated 

fund contracts which unequivocally are the central focus of this thesis. 

1.1 What are Segregated Funds? 

Segregated funds are professionally managed pooled funds, with investment potentials 

similar to mutual funds. These are only offered through individual variable deferred 

annuity contracts sold by Life Insurance companies. Governed under provincial 

regulations, segregated funds provide investors with unique features and guarantees not 

generally available in traditional market-based investments, like mutual funds. The assets 
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of a segregated fund are held separately from the general assets of the Life Insurance 

company, hence the name. 

Basically, a typical segregated fund used premiums from an investor to purchase mutual 

funds based on the investors risk preference, and the accumulated value at maturity, 

usually in 10 years, is guaranteed to be at least the initial principal. When the market 

value of the investment becomes greater than the initial principal, the investor is offered 

the choice to transfer the capital gain into the principal and reset the contract. Also, a 

guaranteed benefit amount will be paid out in the event of death of the investor prior to 

the maturity of the contract. 

Segregated funds are similar to mutual funds in many respects but provide a number of 

extra features and benefits. These extra features include a maturity guarantee and 

mortality benefit. In addition, in many cases investors have the ability to switch from one 

underlying fund to another (while maintaining their guarantee levels) and also to reset 

their guarantee. It allows the investor to lock in market gains at any time, up to a 

maximum, for example, of two or four times per year. 

1.2 Types of Segregated Funds 

There is a wide variety of segregated funds on the market. Based on investment 

objectives, funds tend to fall into three (3) broad categories. 

1.2.1 Growth Funds 

Growth funds invest mainly in the common stock of companies with good growth 

prospects in order to produce capital gain. 
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1.2.2 Fixed Income Funds 

Fixed income funds invest mainly in bonds, other debt instruments and shares of 

companies that pay dividends, in order to produce a stream of income while protecting 

investors' capital. 

1.2.3 Balanced Funds 

Balanced funds invest in a blend of stocks, debt instruments and dividend-bearing shares 

to produce a blend of capital gain and income. 

1.3 Major Benefit Types under Segregated Funds 

All segregated fund contracts offer benefits in a form of guarantees. These benefits fall 

into one of the following major categories according to Hardy (2003). 

1.3.1 Guaranteed Minimum Maturity Benefit (GMMB) 

The GMMB guarantees the policyholder a specified amount of money at the maturity of 

the contract. A simple example of GMMB might be a guaranteed return of premium if the 

stock index falls over the term of the insurance. The guarantee may be fixed or subject to 

regular or equity-dependent increases. 

1.3.2 Guaranteed Minimum Death Benefit (GMDB) 

The GMDB guarantees the policyholder a specified amount of money upon the 

occurrence of death when the contract is still in force. Here, the guarantee may be a 

simple return of premium or may increase at a fixed rate of interest. 
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1.3.3 Guaranteed Minimum Accumulated Benefit (GMAB) 

Under the GMAB package, the policyholder has the option to renew the contract at the 

end of the original term. 

1.3.4 Guaranteed Minimum Surrender Benefit (GMSB) 

The GMSB is a variation of the GMMB. A guaranteed amount on the contract is'payable 

as surrender value beyond a certain fixed date. Example of GMSB is the return of 

premium. 

1.3.5 Guaranteed Minimum Income Benefit (GMIB) 

The GMIB is a benefit package that ensures that lump sum accumulated under a separate 

account contract may be converted to an annuity at a guaranteed rate. A GMIB is 

commonly associated with variable-annuity contracts in the United States. 

1.4 Provision for Segregated Funds Liabilities 

Two quantitative approaches are widely used in practice to deal with guaranteed 

liabilities associated with segregated fund contracts. One is the dynamic hedging 

approach based on financial engineering and the other is the actuarial approach. 

1.4.1 Dynamic Hedging Approach 

This is a financial engineering technique which uses the Black-Scholes equation to find a 

replicating portfolio with payoff equivalent to the payoff of the guaranteed liabilities. The 
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replicating portfolio will change continuously, so it is frequently adjusted. This approach 

provides a powerful way of hedging the liabilities. 

1.4.2 Actuarial Approach 

This approach uses simulation to establish the underlying probability distribution of the 

guaranteed liabilities then uses a long-term fixed rate of return to discount them to their 

present values. The simulation results make provision for a sufficient amount of assets 

which are invested in fixed income securities to accumulate. At maturity, the 

accumulated amount is expected to maintain the solvency of the insurer vis-à-vis the 

guaranteed liabilities with a high probability of say 99 percent. 

1.5 Segregated Fund Contracts-Canada 

Segregated fund contracts actually became popular in Canada in the late 1990's and often 

incorporate complex guaranteed values on death or maturity. They have been one of the 

most successful Canadian financial products over the past several years in terms of sales 

volume. 

Segregated fund contracts are now very attractive to Canadians who wish to enjoy the 

perpetual up-side growth opportunity with a pre-fixed maximum loss, however, 

managing guaranteed liabilities associated with segregated fund contracts can be a very 

challenging task on the part of life insurers. 

As mutual funds products continue to develop over the years, Canadian insurance 

companies offer increasingly more innovative segregated fund products. For instance, as 

Lui (2008) has stated, not all segregated funds are managed to trace the performance of a 
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particular stock index. To gain more diversification, funds under one contract may consist 

of many sub-funds, such as a Canada equity fund, a Canadian fixed income fund or a US 

equity fund. These sub-funds are also segregated funds available to investors. 

In the light of strict capital requirements recently imposed by Office of the 

Superintendent of Financial Institutions (OSFI), some companies have begun selling 

more restricted versions of these contracts. Other companies have discontinued the sale 

of these contracts all together, deeming the capital requirements to be too onerous. 

However, large volumes of contracts already sold remain outstanding, and companies 

need to manage their risk exposure, or at least allocate sufficient capital and reserves. 

In this thesis, my objective is to develop an econometric model which is less complex 

than the Wilikie's model for managing financial risk associated with the benefit options 

mentioned above. This model will aid emerging economies valuation of segregated fund 

contracts. Therefore, understanding segregated funds in Canada provides a good starting 

point and, in particular, actuaries in North America have not come to a general consensus 

as to the form of an equity return model. However, guaranteed liabilities central to the 

valuation of a segregated funds depend on an equity return model. Also, this thesis 

revolves around India which is the biggest market in South Asia. Data for other emerging 

economies such as Pakistan is sparse. 

1.6 Segregated Funds-India 

Insurance is a big opportunity in a country like India with large population and untapped 

potential. In India, the traditional emphasis in the past regarding life insurance 

particularly, endowment plan was security of capital. However, with inflationary trends 
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witnessed all over the world, it was observed that savings through life insurance were 

becoming unattractive and not meeting the aspirations of policyholders. 

To restore the expectations and confidence policyholders place in life insurance, insurers 

in India introduced the unit linked insurance plans. These plans are separate account 

products quite similar to segregated fund contracts. Today, the Indian life insurance 

market is riding high on the unit linked insurance plans. 

Unit linked insurance plans are also insurance contracts that combine the benefit of 

investment and insurance. It provides policyholders an option to put part of their 

premium in various investment portfolios and derive the benefits depending upon the 

performance of the funds chosen by them. Unit linked insurance plans were launched at 

an opportune time when stock markets had just taken off in India. Ever since, unit linked 

plans have gained high acceptance due to the attractive features they offer. These include 

flexibility, transparency, liquidity and fund options. 

Unit linked insurance plans have broader investment choices when compared to other 

forms of insurance such as endowment. They invest across the board in stocks, 

government securities, corporate bonds and money market instruments. The common 

type of charges, fees and deductions in unit linked contracts are premium allocation 

charges, mortality charges, surrender charges just to mention but a few. 

Analysis of India's overall insurance premium from 2005 to 2008 has shown that, unit 

linked businesses are the main drivers of growth within the insurance industry. In spite of 

this impressive growth, the regulations governing unit linked products are still being 

developed to follow closely that of Canadian products. 
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1.7 Wilkie's Models 

The Wilkie's model is a stochastic asset pricing model used to detect movements of 

multiple assets and their correlations. It is also defined as a collection of models. Even 

though there are many financial and econometric models for investment returns, United 

Kingdom (UK) actuary, David Wilkie is the first person who developed stochastic 

investment model for the long-term returns of multiple assets for actuarial application. 

His model is known as the "Wilkie's Model" Wilkie (1986 and 1995). 

The Wilkie's model differs in several fundamental ways from other models. It is a 

multivariate model with several related economic variables. It is designed for a long-term 

application and is applicable to only annual data. The Wilkie's model is widely used in 

the developed world, particularly Canada, United States, UK and Australia. 

In spite of the usefulness of the Wilkie's model for actuarial application, it has been as 

well subjected to a unique level of scrutiny and criticisms. Criticisms of the model are 

well documented in Harris (1995) and Huber (1997). These criticisms reveal the 

fundamental conflict that lies at the heart of any attempt to use stochastic time series to 

model economic data series. 

In this thesis, I have employed a time series econometric model to fit the equity return 

(stock return) and the short rate (treasury bond) processes. The models are based on the 

vector autoregressive (VAR) and cointegrated VAR process developed by Johansen-

Jueselius (1990 and 1991). In Chapter 2, I provide the theory underlying the modeling of 

the long-term equity return process and empirical results of stock market indices from 

India, Pakistan and Sri Lanka. In Chapter 3, I further provide the theory behind the 

modeling of the treasury bond and empirical results of up to 14 days, 15 to 91 days, 92 to 
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182 day and 183 to 364 days yields to maturity (YTM) from India's money market. 

Chapter 4 reviews the theory of option pricing vis-à-vis the embedded guarantees and the 

hedging error. It further emphasizes practical application in the context of India. 

Chapter 5 provides the final conclusions. 
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Chapter 2 

Long-Term Equity Return Model 

This chapter is devoted to the modeling of the long-term equity return process from the 

view point of a time series econometric technique, as well as the transformation method 

employed in performing valuation for segregated funds in India. As a first step in the 

modeling process, the main stock market indices of Sri Lanka (CSE), India (BSE) and 

Pakistan (KSE) from August 1997 to July 2007 were obtained from the Bloomberg 

terminals. 

Theoretically, a security available at any market can be traded at any agreed price, so 

there is no upper bound for the price of the security. For modeling purposes however, this 

is an undesirable property since many probability distributions have bounded domain. 

This particular issue is addressed in this thesis by resorting to the logarithmic 

transformation. Particularly, to arrive at the log-returns, a consideration is given to the 

one period single return from t - 1 to t as follows: 

1+ r, St (2.1) 
St-i 

Xt =log(1+rt)=log (2.2) 

Applying the logarithm function to Eq. (2. 1), a new measure Xt can take any value on the 

positive bounded real line. 



11 

Therefore, the CSE, BSE, and the KSE are transformed to a measure similar to Xt in this 

thesis. As an example, consider the BSE for January 2000 and February 2000 to be 0.005 

and 0.008 respectively. The log-return is given as 

'\ 
xl =log(i+r')= log (0.005 

0.008)  

) 

2.1 Exploratory Analysis of South Asia Stock Markets 

We now direct our attention to the empirical results of the monthly stock returns of 

Sri Lanka, India and Pakistan stock markets from August 1997 to July 2007. In addition 

to the sample mean and standard deviation, sample skewness and kurtosis are statistics 

used to describe and compare the empirical distributions of the index returns of the three 

(3) countries. Also, a further test based on Jarque-Bera (J-B) normality test is performed. 

Assume{ X1X2,  XT } be the observed log-returns for each index series over T 

periods. 

The sample mean is 

A 

4U --- > Xt, 
T :=i 

The sample standard deviation is 

A =(T—  1  T A  z.h12 

1t=i\ 
I 

The sample skewness is 

A 1 rt A\ 3 

 EIX1-1ul 
(T_1)A3UX h1 ) 

(2.3) 

(2.4) 

(2.5) 
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The sample kurtosis is 

A 1 A 

K(x)= (X,_/t) 
(T —1) a 

The test statistic for the Jarque-Bera (J-B) test is defined as 

J— B= T (S, , (K_3)2 

4 J, 

(2.6) 

(2.7) 

where T is the number of observations, S and K are the sample skewness and kurtosis 

respectively. The statistic J-B has an asymptotic chi-square distribution with 2 degrees of 

freedom and is used to test the hypothesis that a distribution is normal. 

Table 2.1 presents the summary statistics for the monthly stock returns of Sri-Lanka, 

India and Pakistan stock markets. The table shows that, the highest mean return is 

reported for KSE followed by BSE and CSE. However, these markets exhibit higher 

volatility (conditional standard deviation) when compared with developed countries stock 

markets such as New York Stock Exchange (NYSE) where volatilities are always below 

two decimals. This is not surprising since high volatility is a common indicator of 

developing markets where market prices are more sensitive to domestic as well as foreign 

economic and political shocks. KSE exhibits the highest volatility, followed by CSE and 

BSE in that order. 

Table 2.1 further reveals that, all three (3) national stock markets are negatively skewed 

with the degree of skewness being more pronounced in KSE and BSE. The highest 

kurtosis is reported for KSE, CSE and BSE respectively. However, BSE is not heavy 

tailed as compared to KSE and CSE. 
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The normality test based on the Jarque-B era (J-B) statistics is also shown in table 2.1. 

Apart from KSE, the rest showed a probability value greater than the five (5) percent 

significant level. On the basis of this information, it can be said that KSE is not normal. 

Monthly Stock Returns-August 97 to July 07 

I 

d 

0 

q 

20 40 60 80 100 120 

Month 

Figure 2.1: Monthly Stock Return 

0 20 40 60 80 100 120 

1 

Table 2.1: Statistics of Monthly Stock Market Returns from Aug. 1997 to Jul. 2007  
Stock J-B 
Market Mean Volatility Skewness Kurtosis Statistic P-Value  
CSE 0.008604 0.074455 - 0.004597 3.535 1.4331 0.4884 

BSE 0.010701 0.071986 - 0.398787 2.589 3.9440 0.1392 

KSE 0.016103 0.098903 - 0.709801 5.380 38.3996 0.0000 
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2.2 Tests for Nonstationarity and Stationarity 

To better understand the dynamic structure of the Sri-Lankan, Indian, and Pakistani stock 

markets in the modeling process, it is essential to confirm the nonstationarity of each of 

these markets. Basically, when two or more component series exhibit nonstationarity 

property, it is most likely that they are more dependent on each other in the long run. If 

this is the case, then it is appropriate to study these series jointly and in econometric 

literature, the cointegrated VAR model is most applicable. Should each of the series be 

stationary, then it is most likely that they are not dependent on each other in the long run. 

If this is the case, it is not appropriate to study these series jointly, and the VAR model 

offers the best option in the econometric literature. 

In order to check the existence or otherwise of the nonstationarity property in the stock 

markets of Sri-Lanka, India and Pakistan, widely used tests are employed. They are the 

Augmented Dickey Fuller (ADF) by Dickey and Fuller (1981) and Phillip and Perron 

(1988) tests. 

2.2.1 ADF Test 

The ADF tests the null hypothesis that a time series y is 1(1) (there is unit-root) against 

the alternative that it is 1(0) (there is no unit-root), assuming that the data has an 

autoregressive moving average (ARMA) structure. The ADF test is based on estimating 

the test regression 

Yt = )3'D + 0 y-+ + , (2.8) 
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where D1 is a vector of deterministic terms (constant, trend etc.), p is the lagged 

difference of terms, Ly are used to approximate the ARMA structure of the errors, 

and S, are serially uncorrelated errors. The ADF test statistic is based on the least squares 

estimates of Eq. (2.8). The ADF test statistic is the usual t-test statistic. 

ADF - test =  
SE( 0) 

(2.9) 

Another important step in the implementation of the ADF test is the specification of the 

lag length p. Ng and Perron (1995, 2001) put forward the following procedure when 

confronted with the choice of appropriate lag length. The first step is to set an upper 

bound Pmax. The next step is to estimate the ADF test regression with the p = P,iax. If the 

absolute value of the t-test statistic is greater than 1.6, then set p = Pinax and the unit-root 

test is performed. Otherwise, p is reduced by 1 and the process repeated. Applying the 

ADF test (with and without drift) to the CSE, BSE, and the KSE data confirm stationarity 

of the markets, or all are not 1(1), as shown in tables 2.2 and 2.3. 

Table 2.2: Augmented Dickey Fuller (ADF) Test for Unit-Roots without Drift  

Variable Hypothesis Test Statistic Probability Value  

CSE CSEreiuni('J(l)) 4.903 7.5865 

BSE BSEretzim('I(1)) -3.882 0.002966 

KSE KSEretu,ii(I(1)) -4.184 0.001078 
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Table 2.3: Augmented Dickey Fuller (ADF) Test for Unit-Roots with Drift 

Variable Hypothesis Test Statistic Probability Value  
CSE CSEreiurn(I(1)) -5.268 1.501e-4 

BSE BSEre,u,n(1(1)) -4.075 0.009007 

KSE KSEretum('I(1)) -4.494 0.002384 

2.2.2 PP Test 

The PP test as mentioned earlier provides an alternative check for nonstationarity. 

Phillips and Perron (1988) came up with a number of unit-root tests that have become 

standard in the analysis of financial time series. The test regression for the PP test is 

(2.10) 

where e1 is 1(0) and heteroscedastic. 

The PP tests correct for any serial correlation and heteroscedasticity in the errors e, of the 

test regression by directly modifying the tet statistics t=o and Tfi. These modified 

statistics, denoted z and ZrI are respectively 

Zt - 

( A 2'\ 

0 
A 2 

zriTn 
2 A 2 

1 
•trio 2 

1 

( A 2 A 2 \ "  

2 A 2 T.SE 

2 j 

T2.SE(fl)(,2 _ A 2) 

cr 

A 

T.SE(H)  
A 2 

and 

The terms A2 and 2 are consistent estimates of the variance parameters. 

o 2 T 1 E{ 2I as T—>oo 
t=1 
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E TI as T—oo 

T 

Sr = Y_ U, 
(=1 

The sample variance of the least squares residuals ^ is a consistent estimate of a2' and Ut 

the Newey-West long-run variance estimate of ^ is a consistent estimate of A'. Ut 

Under the null hypothesis, II = 0, the PP Z, and zn statistics have the same asymptotic 

distribution as the ADF t-statistic. 

The PP test is more robust to general forms of heteroscedasticity in the error term e1 than 

the ADF test. Also, one need not specify a lag length for the test regression as opposed to 

the situation in the ADF test. 

Table 2.4 displays the PP test results. The results further confirmed the non-existence of 

unit-root nonstationarity process in the CSE, BSE and KSB data. All tests are performed 

at five (5) percent significance level. Therefore, it is not possible to perform cointegration 

test to determine whether these markets bear at least one long-run equilibrium relation or 

a common stochastic trend in the long-term. However, the VAR model readily comes to 

mind should different component series show evidence of stationarity but jointly 

dependent in a linear fashion. To comfortably endorse the VAR model as the most 

appropriate model for the long-term equity return process, it is necessary to establish if 

there exists any form of linear dependence among the 3 national stock markets. 
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Table 2.4: Phillip-Perron (PP) Test for Unit-Roots 

Variable Hypothesis Test Statistic Probability Value  
CSB CSEretuni(J(1)) -111.2 8.935e- 14 

BSE BSEretuni('I(1)) 425..2 8.969e16 

KSB KSEreii1rn(I(1)) -122.9 2.052e-15 

2.3 Linear Dependence Structure using Cross-Correlation 

Of equal importance is the degree of correlation to ascertain if there exists any form of 

linear dependence among, these markets. The dependence structure can be established 

using cross-correlation analysis. 

Mathematically, the cross-correlation matrix p1 is estimated by 

where 

A=b' f'1b', 1≥O 

A 
,1-- f(r:-7)(rz_i - ), l≥O 
T 1=1+1 

(2.11) 

i3 is the k x k diagonal matrix of the, sample standard deviations of the component series. 

Also i/ff is the asymptotic a percent critical value of the sample correlation (See Tiao 

and Box (1981)). 

The asymptotically 5 percent critical value of the sample correlation is 0.09. It is easily 

seen from table 2.5 that, significant cross-correlation at the approximate 5 percent level 
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appears at lag one (1). An examination of the sample cross-correlation matrices at this lag 

indicates strong linear dependence between BSE and KSE, and marginal linear 

dependence between CSE and BSE. 

Table 2.5: Cross-Correlation Matrices 

Lag  

CSE/BSE 

CSE/KSE 

BSE/KSE 

Zero One Two Three 

0.19 0.09 0.022 -0.1053 

0.21 0.05 0.1859 0.0407 

0.37 0.11 0.0478 -0.0422 

Four Five Six 

0.0083 -0.0639. -0.0905 

-0.0597 0.0587 0.0106 

0.109 0.0763 0.0349 

In the light of the above results, it is possible to model the long-term equity return 

process of the South Asia stock markets as a VAR model. 

2.4 The Stationary Vector Autoregressive (VAR) Model 

If Yt = (y1y2 y,)' denote an (n x 1) vector of time series variables, 

then the basic p-lag vector (VAR(p)) model has the form 

lTt = c+fliyi+H2y2+ + rip Y+e (2.12) 

where r1i are (n x n) coefficient matrices and got is an (n x 1) unobservable zero mean 

white noise vector process (serially uncorrelated or independent) with time invariant 

covariance matrix I. 
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2.4.1 Estimation 

The estimation process considers the basic VAR(p) model in Eq. (2.12). In a seemingly 

unrelated regression notation, each equation in the VAR(p) may be written as 

y=Z' j+ej, i=1, , n (2.13) 

Where y is a (Tx 1) vector of observations on the i" equation, Z is a (Tx k) matrix with 

t111 row given by Z' = i, Y'-i , y'_ k = np + 1, zi is a (k x 1) vector of 

parameters and e is a (Tx 1) error with covariance matrix o IT. 

Let ft =  ITII ,] denote the (k x n) matrix of LS coefficients of the n equations. 7CI 

Let vec(fl) = 

Under standard assumptions regarding the behaviour of stationary and ergodic VAR 

A 

models (see Hamilton (1994) or Lutkepohl (1991)), vec(H) is consistent and 

asymptotically normally distributed with asymptotic covariance matrix 

a var(vec(fl)) ® (Z'Z)', (2.14) 

where 

A iT 

E= Tk'" 

and A = - ' Z1 is the multivariate LS residuals from Eq. (2.12) at time t. 
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2.4.2 Inference on Coefficients 

Inference on the coefficients of the VAR(p) model is carried out using the following 

procedure. 

The ith element of vec(H) , .. is asymptotically normally distributed with asymptotic 

A 

standard error given by the square root of ith diagonal element of Z® (Z'Z) 1. Hence, 

asymptotically, valid t-tests on individual coefficients may be constructed-in the usual 

way. 

2.4.3 Lag Length Selection 

The lag length selection process fok a VAR(p) model is to fit VAR(p) model with orders 

= 0, ., ?njx and choose the value of p which minimizes some model selection 

criteria. In this thesis, two of the well known selection criteria are employed. They are the 

Akaike Information Criterion (AIC) and Bayesian Information (B IC). 

1. Akaike (AIC) 

AIC(p) = In(p) + pn2 

2. Schwarz-Bayesian (BIC) 

BIC(p) = In(p) + 2lnT pn 2 

where 
T 

YEW = 
t=1 

For more information on the use of model selection criteria in VAR models see 

Lutkepohl (1991). 
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In fitting the VAR model, both the BIC and AIC criteria are computed with a maximum 

lag length of 6 and  =1 minimizes both criteria as shown in table 2.6. 

Table 2.6: Choice Criteria for Selecting Lag Length for the VAR Model 

Model (BIC) (AIC) 
One -718.7848 -751.6189 

Two -687.9235 -745.3837 

Three -654.0302 -736.1161 

Four -620.7357 -727.4475 

Five -582.3687 -713.7063 

Six -558.4710 -741.4344 

The VAR(1) model is automatically re-estimated and results displayed in table 2.7. The 

second, third and fourth columns of the table gives the respective estimated coefficients' 

of CSE, BSE and KSE equations. Also, from the regression diagnostic table (Table 2.8), 

it is clear that, the fit for BSE is much better than the CSE and KSE. 

The estimated (fitted) equations for the three national stock markets are as follows: 

CSE, 0.0080 - 0.0307 0.0773 0.0111 - 

BSE, = 0.0102 + 0.0642 - 0.0533 0.0864 

KSE, 0.0182 - 0.1137 0.02920 - 0.0138 

where 

- N(0,) and E= 

CSEZ-1 

BSE,1 

KSE1 

0.0056393683 0.0009401135 0.001502121 

0.0009401135 0.0051453475 0.002632862 

0.0015021208 0.0026328623 0.009880842 

+E 
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Table 2.7 Coefficients of the VAR(1) Model 

Coefficients CSB BSE KSE 

Intercept 0.0080 0.0102 0.0182 

Standard Error 0.0070 0.0067 0.0093 

Test Statistic 1.1344 1.5250 1.9593 

CSE. Lag 1 0.0307 0.0642 -0.1137 

Standard Error 0.0955 0.0912 0.1264 

Test Statistic 0.3211 0.7032 -0.8989 

BSE. Lag 1 0.0773 -0.0533 0.0290 

Standard Error 0.1040 0.0993 0.1377 

Test Statistic 0.7431 0.5362 0.2109 

KSE. Lag 1 0.0111 0.0864 -0.0138 

Standard Error 0.0757 0.0724 0.1003 

Test Statistic 0.1462 1.1948 -0.1374 
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Table 2.8 Regression Diagnostics Table 

Item CSE BSE KSE 
R-Squared 0.0087 0.0189 0.0076 

Adjusted R-Squared -0.0172 -0.0067 -0.0183 

Standard Error 0.0751 0.0717 0.0994 

Figures 2.2 and 2.3 are the residuals and qq plots for the VAR(1) fit to the three (3) 

national stock market data. Apart from the KSE where the residuals look non-random, the 

rest look fairly random with some heteroscedasticity. Also, the qq-plot indicates that the 

residuals for the KSE are highly non-normal. However, the BSE simulated values are 

used for equity linking in chapter 4. 
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Normal Q-Q Plot 
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Figure 2.3: Normal Q-Q Plot for the fitted VAR(1) model 
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Chapter 3 

Treasury Bond Model 

The purpose of this chapter is to develop a treasury bond model using the same time 

series econometric techniques discussed in the preceding chapter. In order to construct a 

model that applies to India, four (4) different yields to maturity (YTM) from the India 

money market are studied. These comprise: up to 14 days, 15 to 91 days, 92 to 182 days 

and 183 to 364 days YTM spanning the period August 1997 to July 2007. 

3.1 Exploratory Analysis of India's Treasury Bond Market 

Taking a closer look at the India's money market, it is obvious that movements of the 

treasury bond rates stimulate further interest to investigate the applicability of all the 4 

YTM in the valuation of segregated funds in India. However, a glance at figure 3. 1, it is 

apparent that the movements of these yields exhibit rather a close relationship; it is 

possible to say that these YTM are cointegrated in the long-run. 

Also, summary statistics of the 4 YTM displayed in table 3.1 indicate that the highest 

mean YTM is the 183 to 364 days followed by the 92 to 182 days, 15 to 91 days and up 

to 14 days YTM. The largest volatility is exhibited by the 92 to 182 days, followed by the 

183 to 364 days, then 15 to 91 days and up to 14 days YTM. Table 3.1 further reveals 

that, all the 4 YTM are positively skewed. However, the only YTM which is not heavy 

tailed is the 183 to 364 days YTM. 
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Figure 3.1: India Treasury Bonds: August 97 to July 07 

Table 3.1: Statistics of India's Treasury Bond from Aug. 97 to Jul. 07 
YTM 
(Days) Mean Volatility Skewness Kurtosis  

Upto14 0.06407 0.01678 0.8447 3.709 

15 to 91 0.06869 0.01895 0.6664 3.040 

92 to 182 0.07199 0.02146 1.0388 4.665 

183 to 364 0.07390 0.02122 0.4045 2.246 

Normality checks based on the J-.B statistic performed on the YTM, show that, the 4 

YTM do not follow the normal distribution when the test is done at the 5 percent 

significant level. However, at the 1 percent level of significance, only the 15 to 91 days 

and the 92 to 182 days YTM are normally distributed. Results of this test are shown in 

table 3.2. 
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Table 3.2: Normality Test Table 
Jarque-Bera 

(JB) Test Up to 14 Days 15 to 91Days 92 to 182 Days 183 to 364 Days  
Test Statistic 16.7839 8.8895 35.4428 6.1146 

Prob. Value 0.0002 0.0117 0.0000 0.0470 

As mentioned earlier in this chapter, it is possible that these 4 YTM could bear a common 

long run equilibrium relationship or are cointegrated. 

3.2 Tests for Nonstationarity and Stationarity 

To ensure the correct specification of the treasury bond model, it is necessary to first 

check the existence of unit-root nonstationary processes. Here, both the ADF and PP tests 

are performed as before. 

3.2.1 ADF Test 

The ADF test with and without drift using p = 6 are shown in tables 3.3 and 3.4 

respectively. Both tests confirm that, all the 4 YTM under the null hypothesis of 

existence of a unit-root are not rejected at the 5 percent significant level. This means that, 

all the 4 YTM follow the unit-root nonstationarity process or are 1(1). 
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Table 3.3: Augmented Dickey Fuller (ADF) Test for Unit-Roots without Drift  
YTM 

(Days) Hypothesis Test Statistic Probability Value  

Up to 14 Up to l4return(1(1)) 4.421 0.5698 

15 to 91 15 to 91 retum(I(1)) 1.773 0.3922 

92 to 182 92 to 182reti,n(I(1)) 2.620 0.0919 

183 to 364 183 to 364re1um('J(l)) -2.362 0.1549 

Table 3.4: Augmented Dickey Fuller (ADF) Test for Unit-Roots with Drift  
YTM 
(Days) Hypothesis Test Statistic Probability Value  

Up to 14 Up to 14return('J(l)) -2.239 0.4631 

15 to 91 15 to 9l reium('4(1)) -1.239 0.8972 

92 to 182 92 to 182reiurn(J(1)) 2.086 0.5416 

183 to 364 183 to 364regurn(1(1)) 0.2237 0.9918 

3.2.2 PP Test 

To verify and confirm the preceding results, the PP test is performed at the 

5 percent level of significance and results displayed in table 3.5. It is evident from the 

table that, all the 4 YTM under the null hypothesis cannot be rejected at the 5 percent 

significant level confirming the outcome of the ADF test. 
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Table 3.5: Phillip-Perron (PP) Test for Unit-Roots 
YTM 
(Days) Hypothesis 

Up to 14 Up to 14retum(I(1)) 

15 to 91 

92 to 182 

183 to 364 

15 to 9l retuni('J(l)) 

92 to 182retur,i(I(1)) 

183 to 364,1,,,(-1(1)) 

Test Statistic Probability Value 

-13.130 0.0568 

-10.930 

-8.814 

-3.892 

0.1001 

0.1710 

0.5453 

It is clear at this stage that, all the 4 YTM follow the unit-root processes or all are 1(1), 

Therefore, modeling them jointly through cointegrated VAR process will be the most 

appropriate thing to do. 

3.3 Cointegration 

This section first outlines Johansen's approach to cointegration modeling, then a 

summary of the results from the modeling process and finally the specification of the 

treasury bond model for the valuation of segregated fund contracts in India. 

3.3.1 Cointegrated VAR Model 

Given a k-dimensional VAR(p) model Xt, then the model with possible time trend is given 

as 

X, 1+ (Di Xt1+ + x1..+a1 (3.1) 

where at the innovation is assumed to be Gaussian and at  + 4u1 t, where 1u0 and 1u1 

are k-dimensional constant vectors. Now, we write (B) = I - B -  
- 'J? B' if 
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all the zeros of the determinant I(B)I are outside the unit circle, then Xt is unit-root 

stationary. In the literature, a unit-root stationary series is said to be 1(0) process or it is 

not integrated. If I(B)I = 0, then Xt is unit-root nonstationary or at most an integrated 

process of order 1 that is an 1(1) process. 

3.3.2 Error Correction Model (ECM) for VAR(p) Process 

An ECM process for VAR(p) model xt is given as 

= II + HXg 1+1/Xt1+ + 1LXtp+l+ at 

where =(Di and j=1,  ,p-i and fl=a/3'is obtained from a 
ij+1 

(3.2) 

cointegrated VARMA (p,q) model with m cointegrating factors (m<k) with an ECM 

representation as 

aflxti + PY,'cI'i.\x, + at - (3.3) 

In Eq. (3.2), when the Rank ([I) =0 it implies fl = 0 and Xt is not cointegrated. When 

Rank (fj) = k, it implies that l(1)I 0 0 and xt contains no unit-roots (1(0)). Also, when 

0 < Rank (fl) <k, in this situation, one can write }J as aff where a and 8 are k x m 

matrices with rank (a) = rank (8) = m. The ECM of Eq. (3.2) becomes 

Axt = A + afi Xt1+ cIl /XXtl + + + a (3.4) 

This means that x is cointegrated with m linearly independent cointegrating vectors, 

wt = /3' x,, and has k - m unit-roots that give k - m common stochastic trends of x. 

This is the approach followed by Johansen (1988, 1995). The same approach is adopted 

in this thesis with a slight adjustment of the deterministic term by restricting it to a 

constant to eliminate any quadratic term in the time series Xt• Moreover, the restricted 
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constant form of the deterministic term, is appropriate for non-trending 1(1) data such as 

interest rates and exchange rates (See Zivot and Wang (2003)). The restricted constant 

VECM adopted in this thesis is of the form 

Ax, = O(fJ'Xt.l+Co)+J?LXrl+ +(J) .iAx1_+i + at (3.5) 

where CO is an rn-dimensional nonzero constant vector. The series in x, are still 1(1) 

without drift and the cointegrating relations /J'x1 have non-zero means CO. 

3.3.3 Cointegration Test 

Now, the goal is to test the rank of IT to know the number of cointegrating vectors. 

Mathematically, the rank of H is the dimension of H, and is number of nonzero 

eigenvalues of fl. 

Consider the hypotheses 

Ho Rank (fl)=m versus H,,: Rank (n) > m. 

Johansen (1988) proposes the likelihood ratio (LR) statistic 

k A 

LKtr(m)=—(T—p) ln(1-2) (3.6) 

to perform the test. If the Rank (fl) = m, then ., should be small for i> m and hence 

LKtr (m) should be small. This test is referred to as the trace cointegration test. Due to the 

presence of unit-roots, the asymptotic distribution of LKir (rn) is not chi-squared but a 

function of standard Brownian motions. Thus, critical values of LKir (m) must be 

obtained via simulation. 

Johansen (1988) also, considers a sequential procedure to determine the number of 

cointegrating vectors. Specifically, the hypotheses of interest are 
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Ho: Rank (H)=m Versus Ha: Rank (fl)=m+1 

The LK ratio test statistic, called the maximum eigenvalue statistic, is 

LK (m) = —(T - p) In(1 - (3.7) 

Again, critical values of the test statistics are nonstandard and must be evaluated via 

simulations. Critical values for these tests are provided in Osterwald-Lenum (1992). 

In performing cointegration test for the up to 14 days, 15 to 91 days, 92 to 182 days and 

183 to 364 days YTM, the lag length that minimizes both the Bayesian information 

criterion (BIC) and the Akaike information criterion (AIC) with a maximum lag of 6 are 

p =1 and  =6 respectively. However, priority is given to the BIC, hence p =1 is selected. 

The lag length for the VBCM is then  - 1 = 0. 

Table 3.6: Choice Criteria for Selecting Lag Length for the VECM 

Model (BIC) (AIC) 
One -3537.360 -2686.647 

Two -3497.833 -2673.962 

Three -3508.769 -2679.051 

Four -3478.888 -2688.445 

Five -3431.984 -2704.912 

Six -3407.565 -2708.243 

Table 3.7 focuses on the tests for cointegration ranks. To eliminate any quadratic term in 

the vector series, the Johansei likelihood ratio (LR) tests are computed by assuming the 

restricted constant. From the table, the 4 estimated eigenvalues are less than 1, indicating 



34 

that the test is stable. Both trace and maximum tests reject H (0), H (1), and H (2) but fail 

to reject H (3) at the ipercent significance level. Therefore, there exist 3 linearly 

independent cointegrating vectors (rank of fl) and 1 common stochastic trend (unit-root). 

Table 3.7: Cointegration Rank Test 

Null Bigen Trace 95% 99% Maximum 95% 99% 
Hypothesis value Statistic CV CV Statistic CV CV 

H(0)++** 0.5965 189.621 53.12 60.16 108.014 28.14 33.24 

H(1)++** 0.3364 81.6071 34.91 . 41.07 48.8048 22 26.81 

H(2)++** 0.2167 32.8024 19.96 24.6 29.0579 15.67 20.2 

H(3) 0.031 3.7445 9.24 12.97 3.7445 9.24 12.97 

+ +and + means trace statistic is significant at one ( 1) and five (5) percent respectively 
** and * means maximum statistic is significant at one (1) and five (5) percent respectively 

Now that the number of cointegrating vectors is known, the maximum likelihood 

estimates of the full VECM can be obtained. A comprehensive result of the computed 

VECM is shown in appendix B. Since the 4 YTM are cointegrated with a common 

stochastic trend, then the specified stationary series is given as 

w, x-2.94OOy1+O.96l6 +°.8846m1 and the mean of wt is about 0.004. 

where 

x = Up to 14 Days YTM 

'= 15 to 91Days YTM 

z = 92 to 182 Days YTM 

m = 183 to 364 Days YTM 
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The fitted VIECM is 

0.0038 

0.2464 

- 0.1690 

—0.0004 

= 

where 

[1_ + 0.004]+ a1 

a1 N(0,) 

0.00008407590 

0.00004352695 

0.00001672633 

0.00001570864 

0.00004352695 

0.00007684850 

0.00006086263 

0.00004765095 

0.00001672633 

0.00006086263 

0.00007990423 

0.00004476357 

0.00001570864 

0.00004765095 

0.00004476357 

0.00004513098 

(3.8) 

The adequacy of the model is examined via the residuals verses time and cointegrating 

residuals plots shown in figures 3.2 and 3.3 respectively. Some large residuals are shown 

in the plots which occurred prior to early 200 lwhen interest rates were high and volatile. 

Again, from figure 3.2, it is apparent that, the up to 14 days YTM is the most volatile, 

followed by the 15 to 91 days, 92 to 182 days then 183 to 364 days YTM. 

Finally, the fitted VECM is used to simulate 120 months YTM using July 2007 YTM as 

the initial values. 
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Figure 3.2: Residuals verses Time plots for the 4 YTM Series for India Market. 
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Figure 3.3: Cointegrating Residuals for a VECM fit to the monthly India TYM 
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However, an easy way to obtain simulated values from the VECM representation is to 

convert it to a VAR model. The VAR representation of the fitted VECM is shown as 

follows: 

xl 

yt 

ZI 

m1 

0.00001501346 

0.0009770362 

- 0.0006698636 

-1.707409e- 006 

+ 

- 0.00008407590 0.00004352695 0.00001672633 0.00001570864 

0.00004352695 0.00007684850 0.00006086263 0.00004765095 

0.00001672633 0.00006086263 0.00007990423 0.00004476357 

Xt-i 

yt-' 

Zt-1 

0.00001570864 0.00004765095 0.00004476357 0.00004513098 m1-i 

where 

+ a1 

a1 N(0,). 

The simulated values for the 15 to 91 day YTM are used as the risk-free rate to discount 

all corresponding future income (margin offset) to their present values in the next 

chapter. 
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Chapter 4 

Segregated Fund Guarantees: Dynamic Hedging Approach 

This chapter applies the models of the previous chapters and the theory of option pricing 

in the valuation of segregated fund contracts in India. It therefore provides a review of 

option pricing theory and the key role it plays in the derivation of the valuation formulae 

for the GMMB and GMDB. We include mention of the dynamic hedging approach in 

making provision for the hedged and unhedged liabilities. 

4.1 Review of Option Pricing Theory 

Since the seminal work of Black and Scholes (1973) and Merton (1973), the theory and 

practice of option valuation and risk management has expanded phenomenally. Boyle et 

al. ( 1998) and Hull (1989) are two excellent reference materials on option pricing theory. 

4. 1.1 What is an Option? 

An option is a derivative security that gives the buyer (i.e., the holder) the right, but not 

the obligation, to buy or sell the underlier at an agreed price on or before a specified date 

in the future. The price at which the underlier can be purchased or sold in the future is 

called strike price, and the up-front cost of purchasing the flexibility provided by an 

option is called the premium. The item being traded is called the underlier because its 

value is the foundation for the value of the derivative contract. 
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4.1.2 Types of Options 

Basically, there are two types of options. They are a call and a put option. A call option 

gives the option buyer the right, but not the obligation, to purchase the underlier at the 

agreed-on (strike) price in the future. If the buyer decides to go through with the deal, 

then he or she exercises the call option. There are different types of call options. The well 

known ones are the European and American call options. The difference between the two 

is that, whereas the European call option cannot be exercised until the specified future 

date, the American call option can be exercised any time before or on the specified future 

date. 

A put option gives the option buyer the right, but not the obligation, to sell the underlier 

at the agreed-on price (strike price) in the future. If the buyer decides to go through with 

the deal, then he or she exercises the put option. As with the call, there are 2 common 

types of a put option: the European and American put options. 

In this study, the European put option formula is adopted to reflect the fact that, the 

underlier is the segregated fund value instead of the usual stock price. 

4.2 The Black-Sholes-Merton (B-S-M) Theory 

In essence, the B-S-M framework for option valuation is a continuous time stochastic 

process when viewed from the real world application and is based on more sophisticated 

assumptions. 
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4.2.1 The B-S-M Assumptions 

This sub-section outlines the major assumptiOns underpinning the theory. The major 

assumptions are as follows: 

1. The asset price St follows a geometric Brownian motion (GBM) with constant 

variance cy2 . This implies, that asset returns over any period have a lognormal 

distribution, and that asset returns over two disjoint periods of equal length are 

independent and identically distributed. 

2. Markets are assumed to be "frictionless" - that is, no transaction costs or taxes 

and all securities are infinitely divisible. 

3. Short selling is allowed without restriction, and borrowing and lending rates of 

interest are the same. 

4. There are no riskless arbitrage opportunities. 

5. Trading is continuous. 

6. Interest rates are constant or predictable. 

To some extent, all of these assumptions are impracticable because, markets are not open 

continuously and trading costs money. Nevertheless, the B-S-M model has proven its 

worth ii terms of its being remarkably robust to departures from the assumptions. 

4.2.2 B-S-M Results 

The concept built from the assumptions enumerated in sub-section 4.2.1 can be used to 

value any option. The most famous equations are the Black-Scholes (B-S) equations for a 

European option. The B-S-M results are as follows: 
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1. Price 

The most general result from the B-S-M framework is that any derivative security can be 

valued using the discounted expected pay off under the artificial, risk-neutral probability 

distribution, where the force of interest for discounting is the risk-free rate, denoted r. 

That is, for a security with a payoff W at time T, where the payoff is contingent on a risky 

underlier with price process S, the cost of the replicating portfolio at t < T is 

- -r Pt - e (T_r)E[W] (4.1) 

where Q = risk neutral measure 

2. The Hedge 

The general B-S result goes beyond the price of the replicating portfolio p1 at time t by 

further providing information on how to construct a hedging portfolio. Assume 

'Pt — 
_ apt 
— 
as 

(4.2) 

The portfolio that comprises of 'P S1 in the risky asset and p1 - 'p, S1 in the risk-free 

asset at time t will exactly replicate the option, and will be self-financing, under the B-S 

assumptions. Self-financing means that, the change in value of the stock part of the hedge 

in each infinitesimal time step must be precisely adequate to service the change in bond 

price in the hedge. 

3. The Risk-Neutral Probability Distribution (Q-Measure) 

In mathematical finance, risk-neutral probability distribution is a probability 

measure that results when one assumes that the current value of all financial assets is 

equal to the expected value of the future payoff of the asset discounted at the risk free 
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rate. The concept is used in pricing of derivatives. It is called the artificial probability or 

Q-measure in financial economics. 

4.3 Derivation of the European Put Option 

In this section, the value of a put option at time t using the principle of discounted 

expected payoff under the Q-measure. Let t denote the current time; T the time to 

maturity of the contract; a2 the constant variance per unit time of the GBM; St the price 

process of the underlier on which the option is written; and ( ) the standard normal 

distribution function. The payoff is (K—ST)t Let f  ( ) denote the risk-neutral density 

for the accumulation factor AT-f. Then the price of the replicating portfolio at time t < T 

is denoted BSP1: 

BSPt = EQ L(K - ST) Je_r(T_ (4.3) 

SZEQ [(K/se - AT_i)+Je_1T_t) (44) 

Since AT-i has a lognormal distribution with mean parameter (T - t)(r - a2/2) and 

variance parameter cr.IT - t , (See Klugman, Panjer and Wilimot 1998). 

BSP {Kct{ log(K/s) - (r -  o2/2)(T - t)  J 
cT-JT—t 

- St e r(T-1) St eT(T_t) 4iog(K/5) - (r +a2/2)(T -  t) e_(T_t) 

o-VT—t 

KeT(—d2) - S, (K—di) (4.5) 

where d1 and d2 are functions: 

log(K/s,) + (T - t)(r + 

oJT—t 
(4.6) 
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log(K/51) + (T -  t)(r - v.2/2) 
d1—cT-IT—t 

cRJT—t 
(4.7) 

To establish the hedge portfolio, the stock part of the hedge portfolio is St Tt where 

a 
'P1 — BSP as, 

a(—d1)  
= -4)(— d) - S,   as, ø(— d1) + K e as, T' a( —d2) 0(— d2) 

where Ø( ) is the standard normal density function. 

(4.8) 

4.4 B-S Equation for GMMB 

The standard put option on the segregated fund is the GMMB. Assume the following 

information. 

FO = a fund value at the valuation date t = 0, 

G = the guarantee and assume first that the guarantee is fixed, 

= the insurer's liability under the GMMB at maturity in say, Tyears, 

m = monthly management charge deducted, 

S'= the stock index for equity linking. Then, 

FT = Fo(1_m)T, 

So 

Let F0 = So, then the option price is 

Po = eTEQ[(G_Fr)+j 

e TEQ{(G_Sr(1_m)T)1J 

(4.9) 

(4.10) 

Utilizing Eq. (4.10) coupled with changing so to So (1— rn)T in the standard B-S formula, 

the put option at time t = 0 is: 
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where 

po=Ge_rT?(_d2)_So(1m)T J(—d1) (4.11) 

log(s0 (1— m)T/G) + (r + u2/2)Td1= (4.12) 

UVT 

d2— 
log(s0/G) + (r + log(1+ m) + o-2/2)T = - UVT (4.13) 

This price approach makes no allowance for mortality or lapses. More over, not all 

policyholders will survive to maturity. These are situations to which the fund has an 

exposure. The effect of these exposures can be mitigated through diversification. The use 

of diversification to mitigate the risk effect attributable to lapses or exit is only possible 

so long as lapses are independent of the guarantee liabilities. 

Given the assumption that BSP0 is the option price with no allowance for lapses, and 

T p is the probability that the contract is in force at maturity, then the option price 

allowing for lapses is given as 

TPXBSPO (4.14) 

Obviously, the GMMB replicating portfolio allowing for exits maybe determined by 

taking the product of the option price and the survival probability. For instance, if the 

probability that the policyholder lapses or dies before maturity date is 'r q' = 0.27, and we 

are aware that BSP0 is the amount required for a guarantee maturity benefit with no 

allowance for exits, then the amount required allowing for exits is 

(1— 0.27) BSP0 = 0.73 BSP0. 
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4.5 B-S Equation for GMDB 

The GMDB liability is identical to that of the GMMB, except that the maturity date is 

contingent on the policyholder's death rather than his or her survival. The term of the 

option is therefore a random variable. 

Let BSP0 (T) represent the cost at time 0 of a put option that matures in T years. Under 

the GMDB, T is a random variable denoting the future lifetime of the policyholder, 

corresponding to T. let ET[ ] denote expectation over the distribution of T, then the cost 

of the hedge portfolio is simply the expected value of BSP0 (T) over the distribution of T. 

Let r denote the double decrement survival probability, as before, and let represent 

the force of mortality at time t for a life age x at time t = 0. Then the cost of the hedge 

portfolio at time t = 0 for a contract with a maximum ii time units is 

ET {BSPO (T)II = fBSP0(t) pi dt (4.15) 

This can be evaluated numerically by using the approximation 

r (d) H(0) 
1=1 

(4.16) 

where t is measured in a time step (usually monthly), - i p is the survival probability for 

t-ltime units, and i q 1 is the probability that the policyholder dies in the time interval 

t-1 to t, given that he or she has survived t-1 time units. 

The hedge portfolio can be found by splitting BSP0(t)in Eq. (4.15) into the risky asset 

part and the risk-free asset part. Therefore, the total hedge cost allowing for mortality at 

time 0 is 
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H(0) = JBSP0(t)1 p,u " dt (4.17) 
0 

fl 

= f(G e_rr d2)-  so (1— rn)t(1(— di)) p ,f'i dt (4.18) 
0 

fl 
r (d) 

= J(Ge_rTJ?(_d2)): dt 
0 

11 

+ r (d) dt 
0 

(4.19) 

The first part gives the risk-free asset portion of the hedge portfolio, whereas the second 

part gives the risky asset portion. 

Eq. (4.17) can be adapted for more complex death benefits simply by adapting the 

definition ofBSp0(T). We have assumed in Eq. (4.19) that BSP0(T) is the price of a 

standard European put option with fixed strike price G. It is possible to have contracts 

where the death benefit guarantee increases at a compound rate. For instance, suppose a 

contract with GMDB that increases at 2 percent per year. In this instance, the put option, 

contingent on time Tth month, has a strike priceGr = Go (1.02)T'12. 

4.6 Unhedged Liability and Discrete Hedging Error 

In spite of the fact that, the hedge portfolio indicated by the B-S analysis will be adequate 

to meet the liability at maturity, there are however, costs associated with transactions 

which are not considered in the B-S price. The unhedged liability, therefore are additional 

costs on top of the hedge portfolio for a practically sustainable hedging strategy. To 

better quantify unhedged liability, there is the need to first study discrete hedging error. 
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The gap between the change in the stock part and bond part of a hedge over a discrete 

time interval is called the discrete hedging error. This error is introduced when the 

assumption of continuous trading under the B-S-M approach is relaxed. 

Generally, discrete hedging error can be classified as either "with certain maturity date" 

or "with life-contingent maturity date". In this thesis, the latter is adopted since life 

contingencies are indispensible in insurance. 

Boyle and Emmanuel (1990), Boyle and Vorst (1992) and Leland (1995) did much 

analysis of discrete hedging error and transactions costs from a financial engineering 

view point. 

4.6.1 Discrete Hedging Error: Life-Contingent Maturity 

Here, consideration is given to hedging error under the combined GMMB/GMDB 

contract. Under such a contract, the death benefit (G— F)' is paid at end of the month of 

death, should death occur in the month t - 1 to t, maturity benefit (G—F,)' on survival to 

the end of the contract term. 

Let: 

P(t, w) be the B —S price at t for a put option maturity at w ≥ t. 

, q denote the probability that a life age x years t months survives as a policyholder 

for a further w - t months, and dies in the following month. 

P(t, n) be the B —S price at t for a put option maturity at n ≥ t. 

px,, denote the probability that a policyholder age x years t months survives, and does 

not lapse, for a further n - t months. 



48 

The total hedge price at time t for a GMMB/GMDB contract conditional on the contract 

being in force at t, is 

n-I 

H (t) = I IV-t% q  P(t,n) n  lvf 
(4.20) 

The total hedge price at t unconditionally is determined by multiplying p' to obtain 

n-i 

H (t) = q P(t, w) + p P(t, n) 
wt 

(4.21) 

The hedge error is obtained by calculating the difference between the hedge required at t, 

including any payout at that time, and the hedge brought forward from t - 1 to t. 

Under the conditional payments, the hedge HT) is split into the stock (St , q') and 

bond (yr) part. Therefore, the required hedge at t conditional on the policy being in force 

at that time is 

Hc (t) = yc + V St (4.22) 

where 

and Ytc  

Similarly, the unconditional payments are given as 

H(t)=y1+q'S, 

where 

(4.23) 

'P1 = 'P and y1 = 

The hedge portfolio brought forward whether the contract remain in force or otherwise at 

that time is given as 

H(() = Y1_i e' 112 + 'Pt-i S (4.24) 
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Now, consider the hedging error at t given the contract is in force at t - 1. 

• If the life survives, the hedging error is 

p(Hc (t) - Hc (fl)) 

• If the life dies or lapses, the hedging error is 

- F1) - Hc (t)) - q_1 (H' (t)) 

The total hedging error at t conditional on surviving to t - 1 is given as 

HEtcx=p,1_1 Hc (t) + q 1...1((G - F1)) - Hc (t)) (4.25) 

The unconditional hedging error at t is also as follows: 

HE1P:{P,_, Hc (t) + - - Hc (t )) } 

HE = H(t) + ,_1q ((G - F)) - H(t) 

This equation is used in arriving at the hedging error in this thesis. 

(4.26) 

4,6.2 Transaction Cost 

Transaction costs are usually proportional to the absolute change in the stock part of the 

hedge. Mathematically, it is represented as 

Also, the transaction costs at t conditional on survival to t - are 

. SI p,1_1T C - C 

Further, the unconditional transactions at t: 

r- 1p{15, p+t_1'IJ' - \II_i} 

TC1 1 StIT, (4.27) 
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where 

r is a percentage or proportion. 

4.7 Numerical Example for Joint GMMB and GMDB Contract 

The contract details are as follows: 

Mortality: See Appendix C 

Premium: $100 

Guarantee: 100 percent of premium on death or maturity 

MER: 0.25 percent per month 

Margin offset: 0.06 percent per month 

Term: 10 years 

The simulation details are as follows: 

Number of simulations: 5,000 

Volatility 20 percent per year 

Stock price process: VAR(1), with parameters from table 2.7 

Security bond process: VECM, with parameters from Appendix B 

Transactions costs: 0.2 percent of the change in the market 

value of stocks 

Rebalancing Monthly 

At the end of each month, the outgo is calculated as follows: 

i. Sum of all mortality payout (M), 

ii. plus transactions costs from rebalancing the hedge (TC), 
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iii. plus the hedge required in respect of future guarantees (HE), and 

iv. minus the hedge brought forward from the previous month (HE-). 

Outgo =M+TC+HE—Hff 

The income at the end of each month is calculated as follows: 

i. Margin offset multiplied by fund value at the end of each month, except the last, 

ii. the present value is calculated using the simulated 15 to 91 day YTM. 

At each month end, outgo and income are calculated. Since we are simulating a loss 

random variable (Outgo - Income), negative values indicate that the simulated 15 to 91. 

YTM income exceeded outgo. We can see from figure 4.1 that the bulk of the distribution 

falls in the negative part of the graph. This gives us a clue that in most cases, the margin 

offset is adequate to meet all the hedge costs and leave some profit. However, there is a 

very small part of the distribution in the positive quadrant reflecting an insignificant 

probability of a loss. 
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Simulated probability density function for net present lue of outgo 
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Figure 4.1: Simulated Probability Density Function for Net Present Value of Outgo of the 
Joint GMMB/GMD]3 Contract. 
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Chapter 5 

Conclusions 

From the results presented through out this thesis, the following conclusions can be 

drawn: 

1. The South Asian stock markets (CSE, BSE and KSE) did not show evidence of 

unit-roots, but the returns are correlated. Therefore, the most appropriate model 

capable of capturing the long-term equity return process for a practical dynamic 

hedging of segregated fund contracts in India is the VAR(1) model. 

2. The security bond market of India did provide 'evidence of unit-root and a 

long- run stochastic trend. On the basis of these, the VECM model is chosen to 

describe the security bond process in the valuation of segregated fund contracts in 

India. However, to discount all future income to their present values, the 15 to 91 

YTM simulated values are used. 

3. Also, the simulated valuation results using a life age 50, at a premium of $100 for 

a contract with combined GMMB/GMDB maturing in 10 years indicate an 

extremely high probability of a profit than a loss. 

In the light of the foregoing developments, it can finally be concluded that, abiding by 

the valuation processes in this thesis and all things being equal, profitability of 

segregated fund contracts in India is inevitable. 
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Appendix A 

Program Code 

The S-Plus code for "Modeling the long-term equity process" 

%%Data importation and descriptive statistics 
library(finmetrics) 
CSE= CIK5[,2] 
BSE= CIK5[,3] 
KSE= CIK5[,4] 
u=cbind(CSE,BSE,KSE) 
v=data.frame(u) 
surnmaryStats(u) 
par(mfrow=c(1,3)) 
seriesPlot(u, one.plot=F, strip.text=collds(v),xlab='Month',ylab="Return", 
main--"Monthly Stock Teturns-August 97 to July 07") 
normalTest(u,method='jb') 

%%Unit-root tests 
adft.cse = unitroot(CSE, trend = 'c', statistic="t", method = 'adf, lag = 6) 
summary(adft.cse) 
adft.bse = unitroot(BSE, trend 'c ', statistic="t", method = 'adf, lag = 6) 
summary(adft.bse) 
adft.kse = unitroot(KSE, trend = V, statistic="t", method = 'adf, lag = 6) 
summary(adft.kse) 
adft.cse = unitroot(CSE, trend = 'ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.cse) 
adft.bse = unitroot(BSE, trend = 'ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.bse) 
adft.kse = unitroot(KSE, trend = 'ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.kse) 
args(unitroot) 

function(CSE, trend="c", method= "adf", statistic= "t", lags = 1, bandwidth = NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(CSE, trend = "tc", method = "pp") 
unitroot(CSE, trend = "c", method = "pp", statistic = "n") 
function(BSE, trend="c", method= "adf", statistic= "t", lags = 1, bandwidth = NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(BSB, trend = "c", method = "pp") 
unitroot(BSB, trend = "c", method = "pp", statistic = "n") 
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function(KSE, trend="c", method= "adf", statistic= "t", lags = 1, bandwidth NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(KSE, trend = "c", method = "pp") 
unitroot(KSE, trend = "c", method = "pp " , statistic = 
acf(CSE, lag.n=1O, method="lb", na.rm=F) 
acf(BSE, lag.n=1O, method="lb", na.rm=F) 
acf(KSE, lag.n=1O, method="lb", na.rm=F) 
autocorTest(CSE, lag.n=6, method="lb", na.rm=F) 
autocorTest(BSE, lag.n=6, method="lb", na.rm=F) 
autocorTest(KSE, lag.n=6, method="lb", na.rm=F) 
acf(u, lag.n=1O, method="lb", na.rm=F, bycol=T) 
autocorTest(u, lag.n=6, method="lb", na.rm=F, bycol=T) 
autocorTest(u, lag.n=1O, method="lb", na.rm=F, bycol=T) 
autocorTest(u, lag.n=30, method="lb", na.rm=F, bycol=T) 

%%Lag length selection 
ord.choice=VAR(v,max.ar=6) 
ord.choice=VAR(v,max.ar=6,criterion='AIC') 
ord.choice$info 

%%Fitting a VAR(1) model 
varl.fit=VAR(u.-ar(1)) 
summary(varl.fit) 
plot(varl.fit) %Residual plots 
(varl.fit$Sigma)/1 15 %Covariance matrix 

The S-Plus code for "Modeling the security bond model" 

%%Data importation and descriptive statistics 
x= INDIA.TREASURY.TBSTDATA1[,2] 
y= INDIA.TREASURY.TESTDATA1 [,3] 
z= INDJA.TREASURY.TESTDATA1 [,4] 
m= INDIA.TREASURY.TESTDATA1 [,5] 
a=cbind(x,y,z,m) 
b=data.frame(a) 
summaryStats(b) 
par(mfrow=c(2,2)) 
seriesPlot(b, one.plot=F, strip.text=collds(b),xlab='Month',ylab="Rate", main--"India 
Treasury Rates-August 97 to July 07") 
normalTest(b,method=jb') 

%%Unit-root tests 
adft.x = unitroot(x, trend = 'c', statistic="t", method = 'adf, lag = 6) 
summary(adft.x) 
adft.y = unitroot(y, trend = V, statistic="t", method = 'adf, lag = 6) 
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summary(adft.y) 
adft.z = unitroot(z, trend = c, statistic="t", method = 'adf, lag = 6) 
summary(adft.z) 

adft.m = unitroot(m, trend = 'c, statistic="t", method = 'adf, lag = 6) 
summary(adft.m) 
adft.x = unitroot(x, trend = 'Ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.x) 
adft.y = unitroot(y, trend = 'Ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.y) 
adft.z = unitroot(z, trend = 'ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.z) 

adft.m = unitroot(m, trend = 'Ct', statistic="t", method = 'adf, lag = 6) 
summary(adft.m) 
args(unitroot) 
function(x, trend="c", method= "adf" statistic= "t" lags = 1, bandwidth = NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(x, trend = "C", method = "pp") 
unitroot(x, trend = "c", method = "pp", statistic = 
function(y, trend="c", method= "adf", statistic= "t", lags = 1, bandwidth = NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(y, trend = "C" method = "pp") 
unitroot(y, trend = " c " , method = "pp " , statistic = 
function(z, trend="c", method= "adf", statistic= "t", lags = 1, bandwidth = NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(z, trend = "C", method = "pp") 
unitroot(z, trend = "c", method = "pp", statistic = 
function(m, trend="c", method= "adf", statistic= "t", lags = 1, bandwidth = NULL, 
window = "bartlett", asymptotic = F, na.rm = F) 
unitroot(m, trend = "c", method = "pp") 
unitroot(m, trend = "c", method "pp", statistic 

%%Lag length selection 
ord.choice=VAR(b, max.ar=6) 
ord.choice=VAR(b, max.ar=6,criterion="AIC") 
ord.choice$info 

%%Cointegration rank test 
cointst.rc=coint(a, trend="rc", lag = 0) 
(cointst.rc) 

%%Fitting the VECM representation 
vecm.fit= VTECM(cointst.rc) 
summary(vecm.fit) 
plot(vecm.fit) %Residual plots 
(vecm.fit$Sigma)/1 18 %Covariance matrix 
VECM2VAR(vecm.fit) %Converting VECM to a VAR model 
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Matlab code for "Valuation of segregated fund contracts" 

%%Simulation of the stock return 
function [LSIG,mut,Phil,xtl] = stock_ind_init() 
mut = [0.008; 0.0102;0.0182]; 
Phil =[ 0.0307 0.0773 0.0111 

0.0642 -0.0533 0.0864 
-0.1137 0.0290 -0.0138]; 

SIGMA =[0.6485274 0.1081131 0.1727439 
0.1081131 0.5917150 0.3027792 
0.1727439 0.3027792 1.1362969]; 

SIGMA = SIGMA/115; 
LSIG = chol(SIGMA,'lowert); 
Burns = 1000; 
xtl= [-0.051899144; 0.059649155; -0.002393867]; 
Norms = randn(3,Burns); 
for i=1:Burns 
xt2 = mut + Phil*xtl + LSIG*Norms(:,i); 
xtl =xt2; 
end 
end 

%%Simulation of the treasury bond 
function [LSIG,rnut,Phil,xtl] = interest_rate_into 
%wt = xt - 2.94yt + 0.96 lzt + 0.8846mt 
AA = [0.0038;0.2464;-0.1690;-0.004]; 
%xtl is the rates on 5/1/2008 
xtl = [5.7524; 7.4170; 7.4500; 7.5234]; 
mut = 0.004*AA; 
BB [1 -2.94 0.9610.88461; 
BigPi = jX*BB; 
Phil = eye(4) +BigPi; 
% SIGMA estimated from S-Plus 
SIGMA =[0.009920957 0.005 136180 0.00 1973707 0.00 1853620 
0.005136180 0.009068123 0.007181791 0.005622812 
0.001973707 0.007181791 0.009428699 0.005282101 
0.001853620 0.0056228 12 0.0052821010.005325456]; 
SIGMA =SIGMA/118; 
LSIG = chol(SIGMA,'lower'); 
Burns = 1000; 
Norms = randn(4,Burns); 
for i=1:Burns 
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xt2 = mut + Phil*xtl + LSIG*Norms(:,i); 
xtl =xt2; 

end 
end 

%%Black Sholes price 
function [Stock-part, Bond_part] = Black_Schole_put_m(S,K,r,q,sigma,T) 
dl = (log(S/K) + (rq+sigmaI2/2)*T)./(sigma*T.AO.5); 
d2 = dl - sigma*T/0.5; 
Bond_part = K*exp(r*T). *noJicdf(...d2,O, 1); 
Stock_part=:-S .*exp(q*T).*normcdf(d1 ,O, 1); 
end 

function [Stock_part, Bond_part] = BS_time_O(S,K) 
if S>= K 

Stock-part =0; 
Bond_part =0; 

else 
Stock-part= -S; 
Bond_part = K; 

end 
end 

%%Joint GMMB and GMDB 
%Lines 2-12 initialize the values of the example 
MER = 0.25/100; 
Marg_offset = 0.06/100; % try a few different values for this 

tau = 0.2/100; 
q = 12*log(1MBR); % use MER as ctsly compounded dividends rate 
SO = 100; 
r=.06; 
K=100; 
sigma 0.2; 
Term = 10; % may use a different value for Term, but maximum value is 22; 
nmonths = Term* 12; 

%Mortality.txt is a text file containing mortality rates 
load Mortality.txt 
tpx = Mortality(:, I); 
tqx = Mortality(:,2); 
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% initilize stock index model variables 
% stock_indjnit() contains estimated model 

SLSIG =zeros(3,3); 
Smut zeros(3,1); 
Sphil = zeros(3,3); 
Sxtl = zeros(3,1); 
[SLSIG,Smut,SPhi1,Sxtl] = stock_ind_initO; 
Sx = zeros(3,nmonths); 
Sx(:,1) = Sxtl; 

% initialize interest rate model based on estimates 
ILSIG =zeros(4,4); 
Imut = zeros(4,1); 
IPhil = zeros(4,4); 
Jxtl = zeros(4,1); 
[ILSIG,Imut,IPhi1,Itx1] = interest_rate_intO; 
Itx = zeros(4,nmonths); 
Itx(:,1) = Itx1; 

Nsimulas = 5000; 
PV = zeros(Nsimulas, 1); 
% next 9 lines compute (8.17) of the text for t=0; it separates stock and 
% bond parts 
T =(1:nmonths)'; 
t=T/12; 
FO= 100; 
[Sp0(2:nmonths+1, 1),Bp0(2:nmonths+1, 1)] = Black_Schole_put_m(SO,K,r,q,sigma,t); 
[Sp0(1, 1),Bp0( 1,1)] = BS_time_0(SO,K); 
HSp = zeros(nmonths+1,1); 
HBp = zeros(nmonths+1,1); 
HSp(1,1) = Sp0(1:nmonths,1)'*Mortality(1:nmonths,2) + 
Sp0(nmonths+1, 1)*Mortality(nmonths+1, 1); 
HBp(1, 1)= Bp0(1:nmonths, 1)t*Mortality(1:nm onths,2) + 
Bp0(nmonths+1, 1)*Mortality(nmonths+1, 1); 

% Initialize values for simulations 
% In the simulation equation 8.17 is implemented in vectorized form. 

Values = zeros(ninonths, 1); 
SV = zeros(nmonths+1,1); 
Htm = zeros(nmonths+1,1); 
Ht = zeros(nmonths+1,1); 
TACost = zeros(nmonths+1,1); 
SV(1,1) = SO; 



60 

Time = zeros(nrnonths,nnionths); 
for i=1:nmonths-1 
for j=i+1:ninonths 

Time(i,j) = j-i; 
end 

end; 

diagonal—id = (1:nmonths:nmonths*nmonths)+(0:nmonths 1); 

non_  zero _Time 
find(Time); 

Timeu = Time(non_zero_Time)/12; 
pqs = [Mortality(2:nmonths,2);Mortality(nmonths+1, 1)]; 
Htm = zeros(nmonths+1,1); 
HE_t = zeros(nmonths+1,1); 
Psi(1,1) = HSp(1,1)/SO; 
TACost(1,1) = abs(Psi(1,1))*tau*SO; 
Income = zeros(nmonths+1,1); 
Sp = zeros(nnionths,nmonths); 
Bp = zeros(nmonths,nmonths); 
Divid = exp(q*(0:nrnonths)'/12); 

for NSims=1:Nsimulas 

% for each simulation generate one stock index return path 
Norms = randn(3,nrnonths); 
for i=1:nmonths-1 
Sx(:,i+1) = Smut+ SPhi1*Sx(:,i) + SLSIG*Norms(:,i); 

end 
Values = exp(cumsum(Sx(2,:)')); 

% generate one path of interest rates 

Norms = randn4,nmonths); 
for i=1:nrnonths-1 
Itx(:,i+1) = Imut+ lPhil*Itx(:,i) + ILSIG*Norms(:,i); 
end 

% the following would be used if the rates are cts compounded 
%Dfactors = exp(-[0 Itx(2,:)] .*(0:nmonths)I1200); 

% the following is used assuming rates are annual effective 
Dfactors = (1+[0 Itx(2,:)]/100)."(-(0:nmonths)/12); 

SV(2:nmonths+1,1) = SO* Values; 
F =FO.*[1; Values].*Divid; 
Smat = repmat(SV(2:nmonths+1, 1), 1,nmonths); 
Smatu = Smat(non_zero_Time); 



61 

[Sp(non_zero_Time),Bp(non_zero:Time)J = 
Black_Schole_put_m(Smatu,K,r,q,sigma,Timeu); 
[Sp(diagonal_ind),Bp(diagonal_ind)] = BS_time_0(SV(2:nmonths+1, 1),K); 
[Sp(nmonths,nmonths),Bp(nmonths,nmonths)] = BS_time_0(SV(nmonths+1, 1),K); 
HSp(2:mnonths+1,1) = Sp*pqs; 
HBp(2:nmonths+1,1) = Bp*pqs; 
Psi = HSp./SV; 
Ht = HSp+ HBp; 
Htm(2:nmonths+1, 1) = HBp(1:nmonths,1)*exp(r/12) + 
Psi(1 :nmonths, 1).*S V(2:nmonths+1, 1); 

TACost(2:nmonths+1, 1) = tau*SV(2:nmonths+1, 1).*abs(Psi(2:nmonths+1, 1)-
Psi(1:nmonths,1)); 
HE_t = Ht-Htm + Mortality(1:nmonths+1,2).*max(0,(KF))+ TACost; 
Income = F*Margoffset; 

Income(nmonths+1, 1) =0; 
PV(NSims, 1) = Dfactors*(HE_t - Income); 
End 

[PVx,xrange] =ksdensity(PV); 
plot(xrange,PVx); 
xlabel('PV of Outgo-Income') 
ylabel('Probability Density Function') 
title('Simulated probability density function for net present value of outgo') 
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Appendix B 

S-Plus output for the VECM representation 

Cointegrating Vectors: 
coint.1 
1.0000 

y-2.9400 
(std.err) 0.3354 
(t.stat) -8.7664 

z 0.9618 
(std.err) 0.1683 
(t.stat) 5.7 143 

m 0.8846 
(std.err) 0.2395 
(t.stat) 3.6941 

Intercept* 0.0040 

(std.err) 0.0042 
(t.stat) 0.9450 

VECM Coefficients: 

X y z In 
coint.1 0.0038 0.2464 -0.1690 -0.0004 

(std.err) 0.0639 0.0611 0.0623 0.0468 
(t.stat) 0.0593 4.0340 -2.7124 -0.0092 

Regression Diagnostics: 

X y z In 
R-squared 0.0000 0.1214 0.0584 0.0000 

Adj. R-squared 0.0000 0.1214 0.0584 0.0000 
Resid. Scale 0.0092 0.0088 0.0089 0.0067 

Information Criteria: 
logL AIC BIC HQ 

1766.214 -3530.429 -3527.650 -3529.300 

total residual 
Degree of freedom: 119 118 
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Appendix C 

Mortality and Survival Probabilities 

In this appendix, we give the mortality and survival rates used in the valuation of the 

segregated funds under the combined GMMB/GMDB contract. At t =0, the life is 

assumed to be age 50, time t is in months. Independent mortality rates are from the 

Canadian Institute of Actuaries male annuitants' mortality rates. 

T d 
iPx t 

T d 
iPx t'iqx t d 

IPx t'jqx 
0 1 0.00029 21 0.86361 0.0003 42 0.74479 0.00031 

1 0.99307 0.00029 22 0.85757 0.0003 43 0.73953 0.00031 

2 0.98618 0.00029 23 0.85157 0.0003 44 0.7343 0.00031 

3 0.97934 0.00029 24 0.84561 0.0003 45 0.72911 0.00031 

4 0.97255 0.00029 25 0.8397 0.0003 46 0.72396 0.'00031 

5 0.9658 0.00029 26 0.83382 0.0003 47 0.71883 0.00031 

6 0.95909 0.00029 27 0.82797 0.0003 48 0.71374 0.00031 

7 0.95243 0.00029 28 0.82217 0.0003 49 0.70869 0.00032 

8 0.94581 0.00029 29 0.8164 0.0003 50 0.70366 0.00032 

9 0.93923 0.00029 30 0.81067 0.00031 51 0.69867 0.00032 

10 0.9327 0.00029 31 0.80498 0.00031 52 0.69372 0.00032 

11 0.92621 0.00029 32 0.79933 0.00031 53 0.68879 0.00032 

12 0.91976 0.00029 33 0.79371 0.00031 54 0.6839 0.00032 

13 0.91336 0.00029 34 0.78813 0.00031 55 0.67903 0.00032 

14 0.907 0.0003 35 0.78259 0.00031 56 0.6742 0.00032 

15 0.90067 0.0003 36 0.77708 0.00031 57 0.66941 0.00032 

16 0.89439 0.0003 37 0.77161 0.00031 58 0.66464 0.00032 

17 0.88816 0.0003 38 0.76618 0.00031 59 0.6599 0.00032 

18 0.88196 0.0003 39 0.76078 0.00031 60 0.6552 0.00032 

19 0.8758 0.0003 40 0.75541 0.00031 61 0.65052 0.00032 

20 0.86968 0.0003 41 0.75008 0.00031 62 0.64588 0.00032 
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T d T d 
t iPx Alqx t  

63 0.64127 0.00032 101 0.48655 0.00034 

64 0.63668 0.00032 102 0.48297 0.00034 

65 0.63213 0.00032 103 0.47942 0.00034 

66 0.62761 0.00033 104 0.47589 0.00034 

67 0.62311 0.00033 105 0.47239 0.00035 

68 0.61865 0.00033 106 0.46891 0.00035 

69 0.61421 0.00033 107 0.46545 0.00035 

70 0.6098 0.00033 108 0.46201 0.00035 

71 0.60542 0.00033 109 0.45859 0.00035 

72 0.60107 0.00033 110 0.4552 0.00035 

73 0.59675 0.00033 111 0.45183 0.00035 

74 0.59246 0.00033 112 0.44848 0.00035 

75 0.5882 0.00033 113 0.44515 0.00035 

76 0.58396 0.00033 114 0.44185 0.00035 

77 0.57975 0.00033 115 0.43857 0.00035 

78 0.57557 0.00033 116 0.4353 0.00035 

79 0.57141 0.00033 117 0.43206 0.00035 

80 0.56728 0.00033 118 0.42884 0.00035 

81 0.56318 0.00033 119 0.42564 0.00035 

82 0.55911 0.00033 120 0.42247 0.00035 

83 0.55506 0.00033 121 0.41931 0.00035 

84 0.55104 0.00033 122 0.41617 0.00035 

85 0.54704 0.00034 123 0.41306 0.00035 

86 0.54307 0.00034 

87 0.53913 0.00034 

88 0.53521 0.00034 

89 0.53132 0.00034 

90 0.52745 0.00034 

91 0.52361 0.00034 

92 0.5198 0.00034 

93 0.516 0.00034 

94 0.51224 0.00034 

95 0.5085 0.00034 

96 0.50478 0.00034 

97 0.50108 0.00034 

98 0.49742 0.00034 

99 0.49377 0.00034 

100 0.49015 0.00034 
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