
THE UNIVERSITY OF CALGMY

The Applicability of Mobile Agents: A Comparative Study

by

YunBo Wang

-4 THESIS

SUBbIITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE

D E G U E OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

CALGARY, ALBERTA

m, 2000

OYunBo Wang 2000

National Library If 1 of Canada
Bibliotheque nationale
du Canada

Acquisitions and ,~.cquisitions et
Bibliographic Services services bibliographiques

395 Wellington Street 395, rue Wellington
Ottawa ON KIA ON4 Ottawa ON K1 A ON4
Canada Canada

Your hkr Vorre relefsnce

Our fib Notre reterence

The author has granted a non- L'auteur a accorde une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliotheque nationale du Canada de
reproduce, loan, distribute or sell reproduire, preter, distribuer ou
copies of h s thesis in microform, vendre des copies de cette thQe sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
electronique.

The author retains ownership of the L'auteur conserve la propriete du
copyright in this thesis. Neither the droit d'auteur qui protege cette these.
thesis nor substantial extracts &om it Ni la these ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent Stre imprimes
reproduced without the author's ou autrement reproduits sans son
permission. autorisation.

Abstract

Mobile agents offer different opportunities From the clientlsever mechanism for

structuring and implementing distributed systems. 4s an emerging technology. it is

widely applied in various applications, including electronic commerce and network

management. The benefits of mobile agents have been discussed a lot, but very little

effort has been made to verify their claimed advantages over the traditional client/server

paradigm.

This research aims to develop an in-depth understanding of the mobile agent mechanism

by designing and implementing mobile agent based applications, and to evaluate the

applicability of mobile agent applications based on comparisons between the

clientlserver mechanism and the mobile agent mechanism. Real and concrete example

applications are developed to provide the basis of verification. The final discussion after

implementation concludes that mobile agents are appealing as a design paradigm as a

whole, even though the author cannot find ovenvhelming reasons to apply mobile

agents in the individual verification examples.

Acknowledgements

The thesis is to the memory of my mother, QinDi, Yang, whose love was never

sufficiently acknowledged, and to my father ShunSheng Wang who inspires me to be

my best in all I can do. Without them, I could never make it possible.

My gratitude is extended to everyone who contributed to making this thesis successful: to

Dr. John Kendall, who is my supervisor, for his timely advice. consultations and

encouragement; to Dr. Kremer who gave me valuable advice; to Dr. Shaw and Dr. Gaines

who made criticism and encouragement at the beginning of the research work; and to

Zhong Zhang for the thoughtful discussions we had during the work. They together have

been great sources of support throughout my graduate program.

I would also like to thank people at the Sotbvare Engineering Group. Computer Science

Department at the University of Calgary. Special thanks go to Roberto Flores-Mendez.

who spent tremendous efforts in reading the thesis. and Andy Kremer, who always helps

me figure out system problems as I pursued my project.

Table of Contents

. . Approval Page ... 11

. . . Abstract .. 111

Acknowledgements iv

...
List of Figures .. v111

List of Tables .. ix

Chapter I . Introduction .. I

1.1 Aim .. I
1.2 Motivations ... I

7 1.3 Mobile Agents -
I .J Objectives 3

1 . 5 Imp [ementation of the Research 4

1.6 Research Evaluation .. 6

1.7 Thesis Structure ... 6

1.8 Summary 7

Chapter 2. Mobile Agents and the Client/Server Paradigm S

Introduction.. ,. S

2.2 The Concepts of Agents and Mobile Agents 9
2.2.1 Agents 9
2.2.2 Mobile Agents ... 1 1
2.2.3 The Controversy about Mobile Agents .. 15

2.3 Agent infrastructures and Agent Architectures ... 17
2.3.1 Infiastruc tures 1 7
2.3.2 Agent Architecture .. 20

37 2.4 Mobile Agent Applications ... --

.. 2.4.1 Mobile Agent Application Models 22
.. 2.4.2 Mobile Agent Design Patterns 23

2.5 Mobile Agent Development Environments .. 16
2.5.1 Telescript Technology ... 26
2.5.2 Agent TcL (Tool Communication Language) .. 27
2.5.3 Java-Based Agent Development Environment .. 28

... 2.5.3.1 Aglet Development Environment 31
2.5.3.2 Voyager .. 36

2.6 The ClientIServer Paradigm .. 37
2.6.1 Concept ... 37
2.6.2 The ClienilServer Architecture .. 35

2.7 Java W l I ... 39

2.8 Summary .. 41

Chapter 3 Requirements Analysis .. 42

3.1 Objectives of Research .. 42

... 3.2 Problem Description 44
3.2.1 Support of disconnected network ... 44
3.2.2 Flexibility and Simplicity of Server ... 47
3.2.3 Improved Performance in Communication ... 48

3.3 Required Aglet System Properties ... 5 1
3.3.1 Mobility .. 51
3.3.2 Communication .. 52

.. 3.3.3 Security 53
. .

3.4 Requirements of Appl~cat~ons ... 54
.. 3.4.1 Genera1 Requirements 54

3.4.2 Traveler Application .. 54 - -
3.4.3 Watcher Application .. 3 3 . . - -
3.4.3 File Search Applicat~on .. 33

... 3.5 Summary 57

Chapter 4 System Design and Result Analysis ... 5s

4.1 The Overview of the System ... 58

4.2 Traveler Application ... 59
4.2.1 Design: Master - Slave Pattern .. 59
4.2.3 Implementation Result Analysis .. 61

4.3 Watcher Application ... 64
4.3.1 Design: Notitier Aglet ... 64
4.3.2 Implementation Result Analysis ... 64

4.4 Performance Comparison: File Searcher Application .. 67
4.4.1 Application Design .. 67
1.4.2 Implementation Result Analysis ... 70

4.5 Summary ... 74

.. Chapter 5 Conclusions 76

1 Addressing the Aim and Objectives ..

2 Contributions .
3 Future Directions
5.3.1 System Extensions

.......... 5 -3.2 Performance Comparisons

... 5.4 Summary 52

... References 53

vii

List of Figures

Figure 2.1 Relationship among Agent System ... 21

Figure 2.2 Aglet Architecture .. 32

Figure 2.3 Aglet Object Model ... 33

Figure 2.4 RMI Architecture .. 40

Figure 3.1 Client/Server Paradigm vs . Mobile Agent Paradigm 13

Figure 3.2 Disconnected Operation in a Mobile Agent System 46

Figure 3.3 Remote Procedure Call ... 19

Figure 3.4 Mobile Agent in Distributed Computing .. 50

Figure 4.1 Class Diagram for Traveler Application .. 61

.. Figure 4.2 Class Diagram for Watcher Application 64

.. Figure 4.3 Response Time for Three Models 72

List of Tables

Table 2.1 Agent Properties ... I O

TabIe2.2 Mobile Code Paradigms ... 13

Table 4.1 Experiment Data in Three Models .. 71

Chapter 1 Introduction

1.1 Aim

The aim of this research is to develop an in-depth understanding of the mobile agent

mechmism by d ~ s i ~ i n m 3 md implementing mobile agent based a~pfications, md :O

evaluate the applicability of mobile agent applications based on comparisons between

the client/server mechanism and the mobile agent mechanism.

In the past few years. mobile agent based technology has become more and more popular

for filtering information, automating the computing process. and even for buying and

selling on the internet using e-commerce. The mobile agent is an emerging technology

that claims to facilitate the design, development and maintenance of distributed systems.

It has been claimed that the mobile agent is a shift in the distributed computing p a r a d i * ~

with appealing advantages: reduced bandwidth usage. flexible and extensible server API,

and improved fault tolerance. Despite the promising features agent technology can

deliver, some concerns have been raised such as network security and reliability in

agent applications. Today, people are still arguing about the possibility of wide

deployment of mobile agents on the network. Will mobile agents really replace the

traditional client/server technology? Or are they just optimizations of the client/server

architecture? Exactly in what fields does the mobile agent Eramework outperform the

clientiserver approach? Even the author herself is a little skeptical about the feasibility of

mobile agent systems because there are very few publications which actually

systematically discuss the applicability problem and validate the claimed benefits From

mobile agents advocates. Being that the problem is still open and opinions are divergent,

it is definitely necessary to investigate further the applicability of mobile agents for

typical mobile agent applications.

The basic idea of this thesis is to demonstrate the mobile agent applicability potential

through comparisons between the clientiserver design paradigm and the mobile agent

paradigm. Several real and concrete implementations of mobile agent applications will

be provided to support the analysis of their applicability.

1.3 Mobile Agents

There are many definitions of agents. Different definitions reflect different viewpoints of

agents. A generic operational definition might be as follows (Knapik. M. and Johnson. J..

1998):

Autonomy: Agents operate without direct intervention from humans.

Social ability: Agents interact with other agents.

Reactivity: Agents perceive and respond to their environment.

Proactivity: Agents exhibit goal-directed behavior.

In short, agents can be thought of as "active objects with some special properties

tailored to open environment1' (Jain, A.K., Aparico M., and Singh M. P., 1999). An agent

is mobile if it can move. A mobile agent can move to execute on more than one

processor, or move in a network in order to use other resources in the most advantageous

way. For example, a server can send a mobile agent to a remote host to perform some

data processing on the remote host.

There are many examples given as the advantages of mobile agents:

Elimination of continuous network usage since the mobile agent only occupies

the network during the migration phase.

Real-time updating of sewices on remote devices.

Improvement of performance in the network communication mechanism.

1.4 Objectives

The primary objective of writing this thesis is to evaluate the applicability of mobile

agents. The actual approaches to reach this objective use the design and implementation

of typical mobile agent based applications. and investigation of the advantages and

disadvantages of the mobile agent paradigm.

Because the mobile agent mechanism can be applied to many application domains, which

can be very broad and complex, the research work will not focus on developing a fully

Functional multi-agent system from scratch. The IBM Aglets was chosen to be the

mobile agent development environment and several application scenarios were designed

with simplicity in mind. Though the applications are intended to be test cases lor

evaluating purposes, it is also possible to integrate these applications into an interactive

multi-agent system in the future.

The following objectives are going to be discussed again in chapter 3 when discussing

the requirements of mobile agent applications.

Objectives:

To broadly review literature on mobile agent applications.

To select typical application scenarios which demonstrate advantages of

the mobile agents over the clientlserver paradigm.

To develop a mobile agent based application as well as client .'server

based applications for the purpose of performance comparisons.

To carry on an evaluation of the applicability of mobile agents based on

the application design, implementation result analysis and performance

comparisons.

1.5 Implementation of the Research

Since the aim of this research is to evaluate the applicability of the mobile agent

paradigm in distributed computing, the research will use the folloiving approaches:

Select typical mobile agent application scenarios to reflect the properties of

mobile agents. Mobile agent applications, though implemented differently, share

common features. Mobile agent applications seek to utilize the distributed

nehvork resource in order to accomplish certain tasks. They migrate to a remote

host, send information, retrieve information or exchange information, then reside

on the remote host for a fixed term or go back to the original host.

Design and implement the mobile agent applications, as well as an equivalent

client/server solution. The term "equivalent" here means the two implementations

will result in the same functionality for the communication mechanism

comparisons. Concerning the "extended server" functionality and "disconnected

network" functionality, the implementation will only provide for mobile agent

application.

Collect relevant data to support the detailed analysis of the pros and the cons of

mobile agent communication mechanism. The intended performance data include

bandwidth usage.

Conduct analysis of the applicability of the mobile agent paradigm based on the

experiments of mobile agent applications and Client /Server solutions.

1.6 Research Evaluation

The thesis design illustrates the outline of the project. The evaluation of the thesis work is

going to follow the criteria below:

Whether the aim and goals of the thesis are appropriately addressed. Actually, the

most important rule for carrying on the research is to follow the aim and

objectives of the thesis. So it is necessary to check out whether the outcome and

the procedure of the research is actually focusing on accomplishing the aim and

objectives.

Whether the application scenarios are a typical representation of the properties of

mobile agents. The application scenarios are the basis of the analysis, so it is

expected that those scenarios are representative, embodying the common fealures

of mobile agents, for example, mobility and autonomy.

1.7 Thesis Structure

Chapter 2 covers major background knowledge about mobile agents and paves the way to

further development in this thesis. It covers the definition of "agent" as well as "mobile

agent" and digs into various research aspects about mobile agents. General knowledge

about the clientrsenter paradigm and Java RMI is also presented.

Chapter 3 analyzes three problem situations and summarizes the hnctional requirements

for each individual application. The requirements listed above are based on the overall

objective of the project, which is to validate the applicability of the mobiie agents.

Chapter 1 vaiidat~s the illobi12 agcnt dppiicabiiity by ii~rec cli lrereni appiicaliuns; ~ravcier,

watcher, and file searcher. These three prototypes and their designs are used to better

understand mobile agent applicability aspects. Some conclusions are drawn from the

experiments.

Chapter 5 describes the overall research work that evaluates the applicability of mobile

agents. based on the application scenarios and performance comparisons. This chapter

concludes the thesis work, summarizes the contributions and points out the future

directions for this research.

1.8 Summary

This chapter outlines the main theme of the thesis. The aims and objectives of the thesis

are introduced and the research approaches are specified. Mobile agents, as an emerging

technology, is appealing but controversial. The thesis will identify some strengths and

weaknesses claimed by the mobile agent technology based on a comparison with

traditional client /server technology.

Chapter 2. Mobile Agents and the CIient/Server Paradigm

2.1 Introduction

:\kit is z t a g n t ? Thcrz w many Jiffereni oyiniirns ;ud debaiea utl [itis ques~io~i.

"Agents are active. persistent (software) components that perceive, reason, act, and

cc?mrnunicate." (Huhns, Singh, 1997).

For the "mobile agent" concept, there is also terminological confusion. This term is used

somewhat differently with overlapping semantics in both the distributed system and

artificial intelligence research communities (Fuggetta, -4.- Picco, G.P., and Viyna, G..

1998). A software "mobile agent" is the opposite term of a "stationary agent". which

executes only on the system where it begins execution (Lange, D.B. and Oshima. M.,

1999). A mobile agent is not bound to the system on which it begins execution.

"Mobility" can be explained as "the degree to which agents themselves travel through the

network." (Bradshaw, 1997) The mobile agent paradigm is based on the idea that the

whole public network is a platform on which developers can build their applications.

Mobile Agents are a competitive concept of clientlserver computing and are especially

suitable in constantly changing mobile environments characterized by low bandwidth

communication facilities and ad /lot co~ections/disconnections to stationary systems.

They are proposed as a suitable paradigm for performing operations in a distributed

information space.

As already mentioned above, this thesis is motivated by the need to evaluate the

applicability of mobile agents as an emerging distributed design paradigm. It has been

claimed that mobile agents are able to personalize the services, reduce nehvork traffic,

overcome network latency, and most importantly, construct robust and fault tolerant

systems by utilizing the asychronization and autonomy nature of mobiie agents. The idea

of the thesis is to evaluate the claimed potential applicability of mobile agents by

comparing them to client/server design, the most popular distributed design mechanism

today.

2.2 The Concepts of Agents and Mobile Agents

2.2.1 Agents

"Agent" is a term which we are very familiar with such as "real estate agent". For people

in computer science, it represents a new paradigm due to the proliferation of computing

and networking.

Recently, various kinds of software programs have been called agents. There are a

number of definitions of what a software agent is and there is no consensus about it. For

some, the term "agent" means only "autonomous, intelligent" agent. Franklin and

Graesser (Franklin, S. and Greesser, A., 1996) illustrate this type of definition in their

paper "Is it an Agent, or just a Program? A Taxonomy for Autonomous Agents". Their

work is convincing because they surveyed different views of "agent definitions" and

classified the agents' property as shown in Table 2.1 :

Table 2.1 Agent Properties

*

They made an attempt to capture the essence of agency in a "formal definition" which

allows a clear distinction between a soft~vare agent and an arbitrary program. Their

definition is (Franklin, S. and Greesser, A., 1996): "An alitononrotrs agent is n system

sittcated within and o part of an erzvironment that senses that envirormzent czntl czcts 0)2 it,

over time, in plrrstcit of its own age~tda and so as to effect what if senses in t/zefiitlrre."

The Franklin and Graesser's definition equates being an agent with the quality of

"autonomous". In the paper "Agent-Based Engineering, the Web, and Intelligence"

I

Meaning

responds in a timely fashion to changes
in the environment
exercises control over its own actions
does not simply act in response to the
environment

is a continuously running process or not

Property

rcaziiv3

autonomous

goal-oriented

temporally
continuous

Other

Names

sensing and
acting

pro-active
purposeful

communicative

learning
I

mobile

flexible
1

character

ommunicates with other agents, socially able
erhaps including people

adaptive hanges its behavior based on its
previous experience
able to transport itself From one machine
to another
actions are not scripted
believable "personality" and emotional
state.

(Petrie, C.J., 1996), Petrie enhanced the view of Franklin and Grasser, arguing that

"intelligence" is not a necessary property of useful agents and is not helpful in

distinguishing agents from other kinds of software.

in this thesis, the author is not trying to identify the various types of definitions of the

term "agent". No matter how controversial these definitions are, there are common

attributes of programs called "agents" such as reactivity, autonomy. collaborative

behavior, and communication ability.

2.2.2 Mobile Agents

As the author have stated. the terminological confusion about "mobile agent" comes from

two different research communities (Fuggetta, A., Picco, G.P., and Vigna. G., 1998). In

the distributed community, the term "mobile agent" is to denote a sofhvare program that

is able to move between different execution environments. While in the artificial

intelligence community, there is a tendency to blend the notion of "a~ent", which is

illustrated in the above section, with the definition from the distributed community. This

mix assumes implicitly that a mobile agent is also intelligent.

In this thesis, the concept "mobile agent" follows the definition of the distributed system

community. Code mobility can be defined informally as the capability to dynamically

change the bindings between code fragments and the location where they execute

(Carzaniga, A., Picco, G.P., and Vigna, G., 1997). In the distributed system community,

the main problem for code mobility is to support the migration of active processes and

objects. The process migration allows the transfer of an operating system process from

the machine where it is running to a different one. Object migration makes it possible to

migrate objects among address spaces (Fuggetta, A., Picco, G.P., and Vigna, G.. 1998).

Those migration techniques provide a starting point lor mobile agent systems.

Three mobile computation design paradigms have been identified: Remote Evaluation

(REV), Code on Demand (COD) and Mobile Agent (MA) (Ghezzi. C, and Vigna. G..

1997). These design paradigms differ in how the code, which is necessary to

accomplish the computation and is called " know-lrorv" . the resotrrces, which are the

inputs/outputs of the computation, and the processor. which is the abstract machine that

executes the code and holds the state of computation, are distributed in the two

interacting components of distributed architecture. The following table shows the

locations of "know-how". "processor" and "resources" before and aRer the interaction

happens between tsvo sites.

Paradigm

I I processor I / resources I

Remote Evaluation

Before After

Code on Demand

I processor 1 processor
I i

A Site

know-how

Mobile Agent
I

resources i
!

B Site

resources

A Site

resources

I t
j processor i
1 I

B Site

know-how

I

know-how

Table2.2 iMobile Code Paradigms

know-how

processor 1 f
I
I
I

resources i processor 1 know-how ;
I I

A concept of Remote Evahtation introduced by Stamos and Gifford (Starnos. J. and

Gifford, D., 1990) views the remote server as a programmable interface. In the REV.

resources and the processor are offered b y B; it is A that sends the knorv-how to B. The

know-how will be executed on B (Gheui, C. and Vigna, G., 1997). The A host sends the

code describing the service to be executed to B. Upon execution on the B host, the code

will be allowed to access resotirces and use processor. Hence, the A host owns the code,

while the B host o m s the resozirces and processor.

1 processor

know-how I

In the COD paradigm. A is unable to execute the task until B provides the code, the

knotv-how. Once A receives the code, the computation is carried out on A (Ghezzi, C.

and Vigna, G., 1997). The A host can download the code from the B host to perform a

given task. In a COD paradigm, the A host owns the resources needed to perform a

service and processor, but is short of code to implement the service.

In the mobile agent paradigm. A has the k,zolr*-lrotv and processor capabilities. The

computation takes place on B where the resources and another processor involved

(Ghezzi, C . and Vigna, G.. 1997). Hence. the agents in a mobile agent paradigm own the

code and processor to perform a service. but do not own resoiirces to accomplish it.

Mobile agents are soRware programs. that may be dispatched from a computer and

transported to a remote computer for execution. (Harrison. C.G.. Chess. D.M..

Kenhenbaum, A.K., 1995). In other words. a mobile agent is a program that can suspend

itself during execution. For the purpose of brevity, the benefits of mobile agents can be

listed as follows(Danny, L., 1998):

Mobile agent technology reduces nehvork traffic because it is relatively

convenient to send an agent to a data resource than to send all intermediate data to

the remote host. In other words, the mobile agent does not require a permanent

connection from the starting server to the destination server.

Mobile agents can overcome network latency since they can be dispatched to act

locally and directly execute the controller's directions.

Mobile Agents encapsulate protocols. We all know that it is pretty hard to

upgrade a protocol if there are security and efficiency requirements on the

network, but mobile agents are able to roam on the host server to establish

"channels" based on proprietary protocols.

Mobile agents have the ability to sense their execution environment and react

autonomously to changes.

Mobile agents are generally independent of the computer and the transport layer.

and dependent only on their execution environment. So, in essence, mobiie agents

are compatible with the heterogeneous nehvork computing environment.

Mobile agents have the ability to react dynamically to unfavorable situations

making it easier to build robust and fault tolerant distributed systems.

2.2.3 The Controversy about Mobile Agents

Although the mobile agent community has experienced a strong increase in research

activity during the past several years, the use of mobile agents also raises some difficult

issues. The research report "Mobile Agents: Are they a good idea?" (Harrison, C.G.,

Chess, D.M., Kershenbaum, A.,1995) From IBM's T.J. Waston Research Center

evaluates mobile agents in a comparing way. An alternative choice is RPC (Remote

Procedure Call), which is compared to the mobile agent technique with respect to the

protocol they utilize.

RPC is synchronous; the client process suspends itself, maintaining the entire

process state until the server returns the call.

Mobile agents employ a messaging framework for transport. and hence. they have

the ability to be asynchronous. Once the client hands off a message. it can

continue its execution.

The benefit of RPC is that it has high efficiency and low network latency.

The benefit of messaging is its robustness.

The paper also suggested several problems of mobile agents; namely (Harrison. C.G..

Chess, D.M., Kershenbaum, A.,1995) :

Efficiency -- The agent execution environment can require significant incremental

computational resources.

Flexibility -whether the mobile agent provides a more flexible and robust method

of communication than RPC (Remote Procedure Call)or REV (Remote

Evaluation); Is it possible that the agent execution environment could be rapidly

deployed on network servers?

Security -- If the host server can not prevent a malicious agent or an agent can

not identify a malicious server. In other words, if the security mechanism is not

considered, mobile agent technology could never be successful.

The advantages offered by mobile agents are assessed against alternate methods of

achieving the same function. The individual advantages appear to be (Harrison. C.G..

Chess, D.M., Kershenbaum, A., 1995) :

High bandwidth remote interactions.

Support for disconnected operations.

Support for mobile clients.

Lower overhead for secure transactions.

Robust remoteinteractions.

2.3 Agent Infrastructures and Agent Architectures

2.3.1 Infrastructures

The term "Infrastructure" layer is often used to refer to a layer in the middle of the

operating system, networking software or application specific software. This middleware

services have standard programming interfaces and protocols (Knapik, M. and Johnson

J., 1998) Examples of irbastructure software includes:

Inter application communications or interoperability mechanism and h e work,

such as RPC (Remote Procedure Call) and compliant products.

Standard programming language implementation or standard class libraries.

The definition of an infrastructure is "The software that, while not having functions

produced directly for the purpose of supporting agent development. can nevertheless be

directly useful to the implementation of certain agent-specific mechanisms. " (Knapik. M.

and Johnson J., 1998):

For agent infrastructure, the focus is on the following categories (Huhns. M.N.. and

Singh, M.P., 1997):

Ontologies: Agents need a common representation of knowledge. which referred

as common ontologies, to mediate among the semantic representations of

different agents.

Communication Protocols: The interoperation of multi-agent systems covers the

basic communications and cooperation needs for agent systems. The

communication and cooperation of agents is approached through the use of an

Agent Communication Language (ACL). The Knowledge Query and

Manipulation Language (KQML) (Finn, T., University of Maryland, Technical

Report, 1994, see http://www.cs.umbc.edu/agentsl) describes the design of and

experimentation with KQML, a language and protocol for exchanging

information and knowledge. KQML is part of a larger effort, which was

originally aimed at developing techniques and methodologies for building large-

scale knowledge bases which are sharable and reusable. KQML is both a message

format and a message handling protocol to support run-time knowledge sharing

among agents. Together with other particular conversation policies or patterns.

KQML forms the basis of agent cooperation and coordination. KQML can be

used as a language for a specific application program to interact with an

intelligent system or for two or more intelligent systems to share knowledsc in

support of cooperative problem solving. KQML is the most prominent emerging

agent standard.

Interaction protocols. Sometimes agent interaction can result in conflicts because

agents are usually designed with self-interest in mind. Interaction protocols are to

maintain globally coherent performance without violating autonomy. The

important aspects include the determination of shared seals and solution for

unnecessary conflicts.

The infrastructure that supports the agent application usually offers the following typical

services (Knapik, iM. and Johnson J., 1998):

Computation: Sorting, math senices

Information management: Directory services, log manager, file manager, record

manager

Communication: Peer to peer messaging. RPC, message queuing, Electrical Data

Interchange support.

Control: Thread manager, transaction manager, resource broker.

The services that the agent infrastructure offers is very similar to those needed for a

complex application. For agent infrastructure. the key services are messaging, remote

operation invocation, tasking, scheduling, persistence, resources allocation and

deallocation. In addition. mobile agents need specific services like mobility. security and

authorization.

2.3.2 Agent Architecture

An agent architecture is the way that agents are put together. that is, the forrn or structure

of their relationship and interactions. (Knapik. M. and Johnson J.. 1998) The relationship

between the agent, agent architecture and other system components is below (Figure

2.1):

OS services

Agent and Agent
Architecture

\

/ '\ Use

system

Networking
Standards

Figure 2.1 Relationship among Agent System (Knapik. M. and
Johnson J.. 1998)

Figure 2.1 illustrates that the fine line between infrastructure and architecture. The agent

and agent architecture can be seen as a component in the overall system that utilizes

inhtructures and other high level components. Agent architecture depends heavily on

the available computing and network resources assumed to be part of the infrastructure.

On top of these infrastructures and system components lays an agent architecture that

directly supports agents.

MASIF

MASIF represents "Mobile Agent System Interoperability Facility", which is a a joint

submission of GMD FOKUS, IBM, Crystaliz, General Magic, and the Open Group.

It is an effort to standardize various mobile agent svstems and facilitate the

interoperabili ty and proliferation of the agent technology. It is a collection of definitions

and interfaces which enable the interoperability of multi agent systems. (Milojicic, D..

Breugst, M.. Busse, I., Campbell, J., Covaci, S.. Friedman, S.. Kosaka. K., Lange. D..

Ono, K., Oshima, M., Tham, C., Virdhadriswaran. S.. and White. J., 1998. see

ht tp :Nwww.fokus .gmd.de/research/cc/ im~-old .html) . MASIF specifies two

interfaces: MAFAgent System and MAFFinder. MASIF tries to standarize the following:

Agent Management

Agent Transfer

Agent and Agent System Names

Agent System Type and Location Syntax

The MASIF has not been successfully implemented yet.

2.4 Mobile Agent Applications

2.4.1 Mobile Agent Application Models

In this section several typical mobile agent application models are illustrated (Chess D.,

Grosof, B., Hamson, C., Levine, D., Panis, C., and Tsudik, G., 1997); namely:

An information retrieval model -- This model represents an "asklreceive"

paradigm between an itinerant agent and a static agent, for instance, when a user

sends his agent to various host servers to retrieve some information;

A collaborative model --This model represents a more complicated interaction in

the sense that agents are required to not only to ask for and receive information,

but to evaluate and compromise based on a range of preferences. In this case, the

itinerant agents convey not only the specified task, but relevant knowledge from

the rule bases of the requesters.

A procedural model -- This model represents a complex interaction controlled by

certain protocols in which the agent's goal and resources are hidden from other

agents. The example of this model can be an open-bidding auction in which the

itinerant agents attempt to bid for goods or services offered by an auctioneer,

which is a static agent.

2.4.2 Mobile Agent Design Patterns

Because "agent" technology is a relatively new and emerging field, agent based

application design is still a pioneering discipline. From the development of Aglet, an

agent development environment, a number of recurrent patterns were recognized

(Aridor, Y. and Lange, D.B., 1998).

The patterns they suggested can be divided into three categories: tmvefbtg, task, and

interaction. The division is primarily from the domain and application perspectives in

each pattern. Travelins is the essence of mobile agents. The traveling category controls

the movement of mobile agents and it mainly consists of three patterns:

Itinerary -- Objectifies agents' itineraries and routing among destinations. An

itinerary maintains a list of destinations and defines a routing scheme.

Forwarding -- Provides a way for a destination host to fonvard an arrived agent to

another destinations.

Ticket -- Objectifies a destination address and encapsulates the quality of service

and permissions needed to dispatch an agent. A ticket is an enriched version of

WRLs that embody requirements concerning quality of services, permissions and

other data. For example, it may include time out information so that a dispatched

agent is able to make reasonable decisions in certain circumstances.

The task category is concerned with the breakdown of tasks and the arrangement of

those tasks. The following patterns are fundamental pattems in this category:

Master-Slave -- It allows a master agent to delegate the tasks to a slave agent. The

slave agent will move to a destination to perform certain tasks before it returns or

disposes of itself.

Plan --The plan pattern is more complex and it adopts a workflow concept to

arrange multiple tasks to perform in sequence or in parallel.

The interaction pattems deal with the cooperation of multiple agents. The following are

examples:

Meeting -- This provides a way for two or more agents to initiate 3 local

interaction at a given host. Agents can be dispatched to a specific meeritlg place

where they are able to engage in local interaction.

Locker -- Agents can exploit a locker pattem to temporarily store data in private.

It defines a private storage space for data leR by an agent before it is temporarily

dispatched to another host.

Messenger -- Agents establish communication by employing messenger pattems.

which objectify messages in the form of agents that carry and deliver messages

behveen agents.

Facilitator -- This is a naming and locating service for agents. It is generally

convenient to assign a name to an agent in order to locate it.

Organized Group -- This pattern is used to compose several agents into a group in

which all members of the group travel together. This pattern is seen as a

fundamental element of collaboration among multiple agents.

2.5 Mobile Agent Development Environments

The idea for mobile agent based computing has been popularized most notably by James

White (White, J.E. 1994, see http://www.genmagic.corn/technologiy) at General Magic.

as well as by the research done by Dartmouth Transportable Agents Laboratory, which

is partly supported by the Navy and Air Force. Now Java based mobile agents are

becoming more and more popular.

2.5.1 Telescript Technology

The Telescript technology is considered to be the first commercial implementation of

mobile agents. In telescript technology, the following principle concepts are employed

(White, J.E. 1994):

Places-- A place offers a service to the mobile agents that enter it

Agent-- Each agent occupies a particular place.

Travel --Travel lets agent get service from a remote server and return to its

starting place.

Meetings- A meeting lets two agents in the same place meet.

Connections-- A connection lets two agents on different computers communicate.

Authorities-- Telescript lets one place or agent discern the authority of another.

Permits--Telescript lets the authorities limit what agents and places can do by

assigning permission to them.

Telescript posseses three major components: the language, the interpreter or engine, and

the communication protocol. It has been primarily used in relation to network

management, active mail, electronic commerce and business process management. But

the details of how exactly the Telescript agents travel through mobile hosts is not in the

public domain and is not easily understood.

2.5.2 Agent TcL (Tool Communication Language)

Agent TcL (Rus, D.. Gray, R., and Kotz, D, 1997) is a research project being pursued a1

the Dartmouth Transportable Agents Laboratory in Dartmouth. This project has the

following attributes:

It finishes migration in a single instruction.

It provides simple communication among agents.

It supports multiple languages and transport mechanism.

It runs on different platforms.

It provides effective security, fault tolerance and performance.

Agent TcL is currently implemented in the Tool Communication Language (TcL), a high

level scripting language. Thus, a mobile agent is simply a TcL script that runs on the TcL

interpreter. To move to another computer, the agent issues a command, suspending the

current execution, capturing and saving the internal state of the script. and sending the

state image to the destination server , where the agent (TcL Script) continues its

execution.

Agents in this system will sense three major external states: hardware, software and other

agents in order to remain efficient. Agents can detect whether a network site is

reachable. These agents also use information retrieval techniques to detect so h a r e

changes.

Agents in Agent TcL use an implicit scheme that provides a system of rpirzrrul ~ * e l i o ~ ?

pages to help agents find their navigation route. These yellow pages contain lists of

service and resources. By consulting the yellow page. an agent can select services

relevant to its tasks and get an applicable navigation plan. The agents are able to

formulate and reformulate their routing plan by consulting their external state sensors and

adapt on-line to changes in network configuration and software content. For instance, if

an agent's original plan is to visit three remote hosts, A, B and C, and if the host A is

down by accident, the agent is able to adjust its route to B and C.

2.5.3 Java-Based Agent Development Environment

The mobile agent development environment used to be considered for implementation in

a script language; but now, the Java platform is becoming more and more popular. The

reasons leading to this change can be summarized as follows:

Java is designed to be a portable, clean and easy- to- learn objected oriented

language, which has been re-targeted by the growth of internet. The key success

factor is its integration with World Wide Web technology.

Java is a platform independent language. It is designed to operate in

heterogeneous networks. As the mobile agent based application is basically

network-centric, so Java which offers platform-independent feature is suitable for

this heterogeneous environment.

The java platform has some disadvantages, though. some are listed below:

Java can not limit the occupation of processor and memory resources by a given

object or thread.

It is currently impossible in Java to retrieve the full execution state of an agent.

The dynamic class loading mechanism only supports to retrieve code fragments.

not entire execution state such as program counters and call stacks.

Currently, there are several Java based mobile agent environments (Lange, D.B., 1998):

Aglets: Aglets are Java-based autonomous agents developed by the IBM Tokyo

Research lab. Aglets were originally designed to bring the flavor of mobility to

the appiet. So the term "aglet" actually is the combination of "agent" and "applet".

Aglets provide the basic requirements for mobility and each aglet has a globally

unique name. In order for an aglet to run on a specific host, the host should install

an aglet server.

Odt~ssey: Odyssey is a set of Java class libraries from General Magic. When

incorporated in a network application, the libraries enable one to erect agent-

accessible places in your network, to station agents in those places. and to let

agents travel between places whenever they need to. Whenever an agent travels

from one place to another, Odyssey calls upon a transport API designed by

General Magic for that purpose.

Voyager: Voyager is an agent-enhanced Object Request Broker tiom

Objectspace, Inc. An ORB provides the capability to create objects on a remote

system and to invoke operations on those objects. Voyager agents have mobility

and autonomy.

The reason to choose the aglet implementation environment as the tool to build the

system presented in this thesis is that:

Aglets is a pure agent oriented environment, which is good to the thesis work

because the author wants to focus on mobile agent related issues. Voyager is a

good alternative but it uses concept "object" as building block, which creates a lot

of object oriented issues.

Odyssey is less popular than Aglets and Voyager, and there seems not enough

documentation on the system from General Magic.

2.5.3.1 Aglet Development Environment

The Aglets Software Development Kit is an environment for programming mobile

Internet agents in Java and was developed by IBM research Toyko Lab. As mentioned. an

Aglet actually is a combination of "agent" and "applet". Aglets are Java objects that can

move from one host on the Internet to another. That is. an aglet that executes on one host

can suddenly halt execution, dispatch itself to a remote host. and resume execution there.

When the aglet moves, it takes along its program code as well as its data.

Aglet Architecture

The Aglet architecture consists of two layers and hvo APIs that define the interfaces

necessary for accessing their functions. The Aglets runtime layer is the implementation

of the Aglet API, and defines the fundamental classes of the API components, such as

AgletProxy and AgletContext. It provides the basic functions required for aglets to be

created, managed, and dispatched to remote hosts. The communication layer is for

transferring a serialized agent as an object to a destination and receiving it. The

relationship between the run time layer and the communication layer is described in the

following Figure 2.2 (D M Tokyo Lab, 1999,see http://~w.trl.ibm.co.jp/aglets/spec

I 1 .html):

Aglet API

Aglets Runtime Layer
Core Framework

SecurityManager
CacheManager
PersistenceManager

Communication API / Communication Layet-
ATP, CORBA, RMI, etc ...

Figure 2.2 Aglet Architecture (IBM Tokyo Lab. 1999)

Aglet Object Model

Aglets Software Development Kit defines the fundamental functionality of mobile

agents. Figure2.3 is a simple illustration of aglet common interfaces and APts (IBM

Tokyo Lab, 1999, see http://www.trl.ibm.co.jp/aglets/spec 1 1 .html):

Figure 2.3 Aglet Object Plodel (IBM Tokyo Lab. 1999)

The Aglet abstract class contains the basic methods used to control the mobility and

life cycles of mobile agents. All mobile agents defined in the Aglet development

environment have to extend this abstract class,

The AgletPro.~ interface object acts as a mask for an aglet and provides a common

way of accessing the aglet behind it. For security reasons, an aglet class has several

public methods that should not be accessed directly From other aglets, any aglet that

wants to communicate with other aglets has to first obtain the proxy object, and then

interact through this interface. In this way, the aglet proxy object protects an agent

from being destroyed.

The ~~~~~~~~~~~rt class provides an interface to the runtime environment that the aglet

occupies. The aglet context concept actually is an abstraction of the aglet

computation environment.

Objects of the Message class are used for communication between aglets. A message

object has a String object to spec@ the kind of the message and arbitrary objects as

arguments.

Mobility

[n the Aglets execution environment, mobility is realized by the dynamic class loading

and transferring. The class loader is invoked by the java virtual machine (JVbI) when the

code currently in execution contains an unresolved class name (IBM Tokyo Lab, 1999.

see http://~vww.trl.ibm.co.ip/a.p;lets/spec 1 1 .html).

Communication

The Aglets runtime uses the communication -4PI. In this API, there are methods defined

for transferring agents, tracking agents, and managing agents. The aglet system presented

in this thesis uses the Agent Transfer Protocol (ATP) as the default implementation of

the communication layer. The ATP is an application layer protocol for transmission of

mobile agents and it is based on the HTTP protocol.

Security

Security is the most important concern for mobile agent systems. The following security

features are supported in the latest Aglets version of runtime authentication of users and

domains (IBM Tokyo Lab. 1999. see http://www.trl.ibm.co.jp/aglets/spec 1 1 .html).

Integrity checked communication between servers within a domain.

Fine-grained authorization similar to the JDKI .Z security model.

For security reasons, agents must provide proper user identities so that agent systems can

control them according to the access rights of the users and the agent's builders. The

domain authorization is also important since aglets from certain organizations can be

trusted. Here "domainft means the builder or manufactures of the aglet. Aglet servers are

able to determine and authenticate whether the contacting server belongs to a given

domain.

Advantages of Aglets

The following is summarized advantages for Aglets (Kiniry J. and Zimmerman, 1997):

Aglets is very easy to learn. It is well documented and every component of the

system comes with GUI.

Aglets has a clean design. IBM makes the system mirror several models in Java:

applets, AWT callbacks, and Java Beans.

2.5.3.2 Voyager

Voyager is a mobile agent development platform developed by ObjectSpace. It provides

the flexibility to use both traditional and agent-enhanced distributed programming

techniques to create sophisticated agent applications. Voyager philosophy is that an agent

is simply a special kind of object that has the ability to move itself and continue to

execute as it moves.

It has following properties (ObjectSpace, 1997):

Voyager uses Java 1.1 and it uses serialization extensively. Voyage was designed

to use regular Java message syntax to construct remote objects. send them

messages and move them between applications.

Voyager is a single, unified platform providing mobility and autonomy. In

Voyager, an agent is a special kind of object. Voyager supports object mobility

using object serialization. Objects can be moved to a new program even when

they are receiving messages. Voyager takes care of all the synchronization and

message -forwarding issues.

Voyager supports different communication facilities: one way, future and

synchronous message using TCP communications. Voyager allows you to send a

regular Java message to a stationary or moving agent

Voyager comes complete with a VoyagerSecurityManager that can be optionally

installed to restrict the operations mobile agents can perform.

2.6 The ClientfServer Paradigm

2.6.1 Concept

There seems to be a general agreement that Client/server computing is the logical

extension of modular programming. Moduiar programming has as its fundamental

assumption the division of large pieces of soRware into constituent parts of "modules"

and creates the possibility for easier development and better maintainability. As

mentioned by Larry T. Vaughn, "the clientkerver architecture is an application design

approach that results in the decomposition of an information system into a small number

of server functions, executing on one or more hardware platforms. that provide

commonly used services to a larger number of client functions, executing on one or more

different but interconnected hardware plat forms, that perform more narrowly defined

work in reliance on the common services provided by the server Functions. " (Vaughn, L.,

1994)

Therefore, cIient/server can be seen as a design approach that distributes the functional

processing of an application across two or more different processing platforms. In short,

the client is a process that requests services from a server process. Client processes

usually manage the user-interface portion of the application, validate data entered by the

user, dispatch requests to server programs, and sometimes execute business logic. Server

programs generally receive requests fiom client progarns, execute database retrieval and

updates, and manage data integrity and dispatch responses to client requests.

2.6.2 The Client/Server Architecture

The client/senrer architecture may be summarized as follows:

Two-tier architecture: where a client talks directly to a server, with no intervening

server. This is typically used in small environments.

Three-tier architecture: This introduces another server between the client and the

server. The role of the middle server is manifold. It can provide translation

services (as in adapting a legacy application on a mainkame to a client/sen;er

environment) or metering services (as in acting as a transaction monitor to limit

the number of simultaneous requests to a given server). and so on.

The basic characteristics of clientlserver architectures are:

The client and server processes have different requirements for computing

resources such as processor speeds, memory, disk speeds and capacities, and

inputloutput devices. The server processes require more system resources.

Clientlserver applications can be scaled in different ways. Scalability is a

characteristic which describes how easily a given system solution can be scaled

upward to maintain an acceptable response. It is easy to add or remove client

workstations with only a slight performance impact or to migrate to a larger and

faster server machine or multi servers.

2.7 Java RlMI

Remote Method Invocation (RMI) is a technology intended to create distributed Java

applications, in which the methods of remote Java objects can be invoked from other lava

virtual machines, even on different hosts. A Java program can make a call on a remote

object once it obtains a reference to that remote object. RMI is a remote procedure call

For objects. RPC (Remote Procedure Call) means calling a function in a library. RMI is

the natural progression when moving the same notion into the 00 worid.

From the architectural view, a remote method invocation from a client to a remote servcr

object travels down through the layers of the RMI system to the client-side transport. then

up through the server-side transport to the server. The RMI consists of three layers (Sun

Microsystems, Inc. see http:l/java.sun.comlproducts/jdW l . l /docs/guide/ i / as the

following Figure2.J shows:

Application

t t
Stubs I Skeletons I

Transport

RMr
System

Figure 2 .4 W I I Architecture

I

Remote Reference Layer

The stubhkeleton layer is actually a proxy layer for the client and the server.

When a client makes a remote call to a server object, the stub or proxy of the

remote object on the local client acts as a channel to the remote object. A stub can

transfer a request to the reference layer using object serialization. A skeleton For

a remote object is a server-side proxy that contains a method which dispatches

calls to the actual remote object. The stub and skeleton classes are determined

and dynamically Loaded at run time.

The remote reference layer handles the transport interfaces and also transfers data

to the transport layer.

The transport layer takes care of the connection details. It is responsible for

setting up the connection and managing the connection.

2.8 Summary

This chapter covers major background knowledge about mobile agents and paves the

way to hrther development in this thesis. It covers the definition of "agent" as well as

"mobile agentf' and digs into various research aspects about mobile agents. The general

knowledge about client server paradigm and Java RMI is also introduced.

Chapter 3 Requirements Analysis

This chapter analyzes three problem situations which show the advantages of the mobile

agent paradigm over the clienVsenter paradigm according to objectives of the research,

and summarizes the requirements of the typical mobile agent applications and

clientlserver applications.

3.1 Objectives of Research

Mobile agents are intelligent programs that can migrate through computer networks. The

concept of having mobile agents carrying out tasks and traveling through a network is

creating a new paradigm for nehvork-enabled distributed computing. Now an

understanding is just emerging of the potential brought by this technology and of various

arguments surrounding it. In contrast, the clientlsewer approach is a mature distributed

computing paradigm which is broadly applied in today's network computing.

For example, in Figure 3.l(Lange, D.B.,1998), the comparison of c1ienVserver paradigm

and mobile agenr paradigm From the perspective of system developer is shown. In the

client server paradigm, the server possesses a set of services that "know how" to access

the resources and the services code is hosted on the server itself. So far, most distributed

systems have been based on this paradigm. in the mobile agent paradigm, a mobile agent

holds the "know how" , has the ability to move from one host to another, and access

their resources. So the client and server have merged and become a host and "Know

Howy' is not tied to a single host but available throughout the network. This is a high level

advantage.

Network a
I Client

.
1 I

Network

b

E Host
Host

I etwork U

Figure 3.1 Client/Server Paradigm vs. Mobile Agent Paradigm

As mentioned in Chapter I , there are disputes about what kind of benefits mobile agents

can generate and little systematic work has been done around this problem. So the

comparison of these two paradigms should bring out an in-depth understanding of the

mobile agent technology. The thesis work will focus on evaluating the applicability

potential of the mobile agent system through real and concrete examples.

Now at this stage, in order to discuss the basic requirements of the thesis work, I will

review the objectives of the thesis:

To broadly review literature on mobile agent applications.

To select typical application scenarios which demonstrate the advantages

of mobile agents over the clientiserver paradigm.

To develop a mobile agent based application as well as a Client /Server

based application for the purpose of performance comparisons.

To carry out an evaluation of the applicability of mobile agents based on

the application design. implementation result analysis and performance

comparisons.

3.2 Problem Description

3.2.1 Support of disconnected network

Motivation

In a real distributed environment, mobile devices like laptops have become more and

more popular. The mobile devices are usually light equipped with resources, which

makes it is impossible to run some complex computations locally. Those computations

can run at a remote host with more specialized resources. The traditional client/server

relies on the continuous network connections. which is fragile and inconvenient for

people holding the mobile devices.

Mobile Agent Solution

The autonomy and asynchronization nature of mobile agents make it possible to resolve

this problem. The merits of mobile agent are described in figure 3.2 (Lange.

D.B.,1998). The mobile agents can be dispatched into the network. thus the network can

be disconnected From client in order to reduce the dependency on fragile network

connections. After being dispatched, the mobile agents become independent of the

creating process and operate asynchronously and autonomous1y. The client can reconnect

later when the agent finishes the task. During the execution of the task. if the remote

server is not responding due to some unpredictable reasons, the task agent can

dynamically adjust its visiting plan, either changing its route or returning to its origin.

- - - - - - - - - - - -

Reconnect
and return

Figure 3.2 Disconnected Operation in r Mobile Agent System

Problem 1 : Traveler Scenario

This scenario is an example of a disconnected network situation. The application is to

verify whether the mobile agent can be a solution in supporting fragile network

connections and mobile devices.

In the traveler application, an agent sends a travel agent to a remote site. The travel

agent is required to fetch certain documents back. Once the travel agent finds the

documents and prepares to come back, it may not able to find his original host because it

is off from his work or the host is disconnected from the network. Then the travel agent

has to wait on the remote site, check whether the original host is back Frequently, and

return to the original host with the document when the original host is back.

3.2.2 Flexibility and Simplicity of Server

Motivation

In a distrihr~ted appl icntion hased nn c l ien t/cerver stnicturing techniques, c!ien~s depend

on the static application API (Application Program Interface) offered by a server. If the

.4PI is not rich enough, one problem exists. The client may need several interactions

with the server to get a final result, which means more utilization time for network

connections and the reliability of the network needs to be guaranteed during the

transactions. If we place a rich API on the server which provides more services. the

maintenance and any upgrading of the server MI are going to be more difficult than the

non-rich API server for programmers. especially when user requirements for server API

services change over time.

Mobile Agent Solution

Mobile agent technology is claimed to solve the above basic API problems. The point

here is that the server offers some basic APIs and Client expands the APIs by binding the

mobile agent to server. That means the server can receive, install and execute the client-

side code. Therefore, users will have the freedom to personalize server behavior and on

the server side, the goals of flexibility and simplicity can be reached.

The trade off of this approach is that a security model must be established to address

behavioral concerns. For instance, the application of authentication to establish trust.

Although the idea of extended servers is still very controversial today, it is worth

consideration because the flexibility it emphasizes is a very valuable new capability.

Problem 2: Watcher Scenario

This scenario is to install a server API using a mobile agent. The purpose of this

application is to see whether mobile agents are a good way for enriching the services on

the network.

There are times when changes in certain documents at a remote site need to be tracked.

But on the remote site there is not this kind of service: for example, the ability to inform

users about when changes happen to the documents. The question is. can mobile agent

help with this?

A watcher agent sends a task agent to this remote site, and this task agent resides at this

remote host, watching for any changes . If changes happen, the task agent will send a

message back, notifying the watcher of' these change.

3.2.3 Improved performance in Communication

Motivation

Currently. the network communication is dominated by the principle of the renzore

procedrire call, which transfers the communication between two computers to procedure

calls from one computer to another computer. This paradigm requires that both

computers should understand the content of each message and the types of arguments

transported by message, which means a protocol is needed For the communication.

Another significant feature of this paradigm is that once the interaction between hvo

computers begins, the hvo computers never stop communication until all interactions

finish. Figure 3.3 illustrates the Remote Procedure Call mechanism (White, J.E.. 1994).

The client /server paradigm has a unique alternative to achieve these objectives, which is

to raise the granularity level of the service offered by the server. That means. a single

interaction between client and server is sufficient to specify a high number of low level

operations, which are performed locally on the server without involving communication

over the physical link. Nevertheless. this unique solution brings out other problems such

as increased server complexity and size. as well as reduced flexibility of the server. More

importantly, the upgrade and maintenance of the server become more difficult.

SQCV6f

Figure 3.3 Remote Procedure Call

Mobile Agent Solution

Once again, mobile agents come to rescue. The approach allows one running procedure

to continue its process after being sent to another computer. In another words. one

running procedure can save its state and finish its tasks at a destination computer. And

bulii computers understand instrucrions and data types of this procedure. as described in

Figure 3.4 (White, J.E., 1994). Among the most compelling advantages that mobile agents

can provide over traditional client/server computing are:

I . overall network traffic reduction

2. limited network latency.

Figure 3.4 Mobile Agent in Distributed Computing

Problem 3: File Search Scenario

Reduced network traffic is often referred as a benefit potential for the mobile agent

paradigm. The author is to verify this by using comparisons of three models: a mobile

agent model, a traditional clientlserver model, and a RMI model. The file search

application is designed to test this performance issue. In this comparison, three

applications will complete exactly the same functionality: search a file on the remote host

according to key words. The execution time to finish the search is the performance data

collected to compare bandwidth usage.

3.3 Required Aglet System Properties

h agent system is a platform that can create, transfer and terminate agents. Agent

applications are built on different agent system platforms. For the specific purposes of the

thesis, the author has chosen IBM aglet as the agent system platform for implementing

agent applications. From the functional view, this agent application should utilize the

aglet system properties in three functional blocks: mobility, communication and security.

3.3.1 Mobility

A mobile agent is not bound to the system where it begins its execution, since it has the

ability to move From one host in a network to another host.

The system should support the creation of mobile agents. The creation of an agent

means the instantiation of an agent class within a default place or a place specified

by a user. AAer the creation takes place, the agent is assigned an unique identifier

and must be initialized.

The system should support the disposal of an agent. The disposal of an agent

means that instance of an agent class ceases to exist and the agent will halt its

current execution and be removed from its current place.

The system will dispatch an agent From one place to another destination where it

restarts its execution. The agent's state and code should be transported when

agents travel. This functional requirement turns out to make the class transfer

between hosts in a network. The source (sender) agent system sends all j a m

classes necessary to execute the agent to another host.

Each agent should posses its own thread of execution. As agents are often

executed as parallel processes, threads are employed to keep the agents under

control.

3.3.2 Communication

For the purpose of cooperation, mobile agents must establish communication

relationships kom time to time. The agents system prototype should offer a

communication mechanism for both local and remote communication. There are various

options for mobile agent communication, the messaging mechanism is widely adopted

due to its efficiency and simplicity. IBM AgIets also uses messaging as its

communication mechanism.

The system should allow sending, receiving and handling message operations.

These operations are basic messaging Functions.

The communication system should be able to identify a communication partner.

For instance, a message sender should be able to identify the message recipients.

The communication process should support both synchronous and asynchronous

message passing. The synchronous passing of a message means that the message

will block all current execution until the receiver has completed the handling of

the incoming message. Asynchronous message passing means that the message

will not block the current execution of the receiver. This requirement is needed

for the purposes of disconnected operation.

3.3.3 Security

Despite mobile agent 's many practical benefits, the technology results in significant new

security threats From malicious agents and hosts. So security factors will also be

considered in this thesis, although they are not as important as the previous system

properties.

The system should be able to give privileges needed for an agent to carry on a

task. A simple example is that an agent with read permission can not write to a

specific file.

The agent system should be able to identify the original host of the agent, and

only agents from recognized hosts can access another host. This domain

authorization is convenient for the implementation of the applications being

examined and discussed in this thesis.

3.4 Requirements of Applications

3.4.1 General Requirements

Requirement I The task agent should be able to go to any destination host

assigned by the user.

Requirement 2 The agents should be able to print out the results From the remote

host on the screen.

3.4.2 Traveler Application

To achieve the specific functionalities for the traveler application. the mobile agent

prototype must meet the following requirements:

Requirement 3 The agent should be able to fetch specified documents from either

the local machine or the remote machine.

Requirement 4 The task agent which is dispatched to a remote host should be

able to check the state of the original host if it wants to get back after it finishes its

task. If the original host is still available, it goes back directly; if not, the agent

can wait on the remote host until the original host is available.

3.4.3 Watcher Application

The specific requirements for the watcher application are:

Requirement 1 The agent should be able to reside on the remote host to monitor a

document; if the document gets modified, the agent should send back a message.

notimng its owner of the change.

Requirement 2 The implementation should be able to set the time interval For

monitoring frequency.

3.4.3 File Search Application

For the file searcher applications, the specific requirements are:

Requirement 1 The agent should be able to search files using key words at a

remote host or a local host in any open directory. Text file retrieval is a major

task for the agents in this application.

Requirement 2 In client server and RMI implementations, the client should be

able to send search request, including key word and search directory requests to

the server-

Requirement 3 In the client server model, the client should be able to download

data From the server and implement a local search.

Requirement 4 In the mobile agent implementation and the RMI implementation.

the actual search should occur on the server

Requirement 5 The three implementations should be able to record execution

time for the file search operation.

Requirement 6 The three implementations should use the same file operation class

and search methods in order to reduce deviations.

Requirement 7 The three implementations should also use the same time counting

method in order to reduce deviations.

3.5 Summary

This chapter analyzes three problem situations and summarizes the functional

requirements for the individual application. The requirements listed above are based on

the overall objectives of the project which is to validate the applicability of the mobile

agents.

Chapter 4 System Design and Result Analysis

4.1 The Overview of the System

This section descr;.bes the systex ~ c h i t e r h ~ r e nf the m o h i ! ~ .gt'r?t ?pp!icz!icns 2nd :he

cl ient /se~er applications.

The mobile agent system mainly consists of three applications that were chosen to verify

the applicability of mobile agents: Traveler. Watcher and File Reader. The Traveler

application is designed to verify the ability of mobile agents that can travel on many

different hosts, even when the original host is temporarily unavailable. the aglet can still

return aRer the original host is connected to network again. The watcher is an aglet that

can reside on a remote machine and act as an extra server application interface. notiFying

the owner of the changes occuning to a specific document. The file reader application is

for comparing with the equivalent client/server application for performance criteria.

1. The traveler application is the implementation of problem 1 detailed in Chapter

3. The purpose of this application is to verify the ability to transfer information in

the case of network trouble, such as a disconnection, and to identify whether

the mobile agent is able to improve the fault tolerance and support information

transmission in the network emergency.

2. The watcher application is intended to illustrate that mobile agents can function as

an additional API on the server and show the extensibility and flexibility brought

by mobile agents. This implementation is to implement the problem 2 in Chapter

3. The file search application is designed for performance comparisons in three

different models: client/server, mobile agent and Remote Method Invocation

(hh4I). It is claimed that mobile agents improve the system performance in terms

of reducing network traffic. The comparison is not limited between clientlserver

and mobile agent but includes RMI. because the MI is a combination of

traditional clientlserver paradigm and object oriented technology.

4.2 Traveler Application

4.2.1 Design: Master - Slave Pattern

The implementation work of this thesis utilizes the master-slave pattern. In fact. the

master slave pattern is widely used in aglet implementations. The master slave pattern

defines a scheme in which a master agent can assign a task to a slave. The reasons why

many aglets implementations utilize the master slave pattern are two fold (Aridor. Y. and

Lange, D.B., 1998) :

1. A master agent can continue to perform tasks in parallel with the slave agent. This

feature offers convenience for agent applications because most agent applications

require a communication center to which traveling agents can send back information.

retrieve information From or exchange information with. In the master- slave pattern.

the communication role can simply be replaced by a master agent.

2. A master -slave pattern can provide a GUI (Graphic User Interface) for inputting data

and displaying results and messages from remote agents. If there is only one travel

agent in the application, it is not possible to maintain a GUI aRer the agent leaves the

original hosts.

The master slave pattern in aglet packages utilize the abstract classes of .-lglet and S h e .

which localize the invariant parts of delegating a task between the master aglet and slave

aglet. The invariant parts include dispatching a slave aglet to a remote site and initiating

the task's execution. The following figure (Figure 4.1) is a simplified class diagram for

this design.

TravelA ent rt

Figure 4.1 Class Diagram for Traveler Application

In this design, the TravelAgent class acts as a master class and aTraveler class is a slave

class. The travel agent is inherited from the .piglet class and creates the traveler and sends

it to various destinations to finish a file reading task. The traveler is a task aglet and is

inherited From slave class. The dotted line from aTraveler to TravelAgent indicates the

dependency relationship. A traveler has to go to the destination according to the Travel

Agent's instructions. It should be noted that. for the sake of simplicity, the methods and

classes shown here are not complete.

4.2.3 Implementation Result Analysis

The implementation of this application is done on hvo Windows NT 4.0 workstations,

with 64 MB RAM and Pentiurn 200 Mhz CPU. The application runs on the Aglet 1.1

beta 1 and Jbuilder 2. One of the intentions of this work is on verifying the support which

agents can provide for the mobile client or disconnected operation. A travel agent creates

a traveler which needs to perform a file access operation on a remote host. After the

traveler is sent out to the remote host, the connection between the sender host and

receiver host is cut. When the traveler finishes its task, it tries to return the sender host

which is now not available. The traveler then tries to dispatch itself back periodically.

Once the original host is back. the dispatch operation is considered successful. The

application shows the traveler can successfully return from the remote host to the original

host after a disconnect and a re-connect.

The application verifies the claim that agents can provide better support for the mobile

clients such as laptop and notebook computers. as well as for thin client devices like

personal communicators. There are several convincing technical features demonstrated

here, namely:

1. The mobile agent solution tends to be more asynchronous in nature. Once the

agent is dispatched, the sending host can continue to work on other tasks until

the agent comes back. Unlike traditional client/server, the connection between

two hosts can be closed during the process until it is needed again. The

asynchronous computing model supported in the agent execution environments

enables the agent to be less dependent on the length of the network sessions.

2. The mobile agent can perform both information retrieval and filtering on the

network nodes where the needed resources resides, which will relieve the resource

usage on the mobile devices. Usually laptops and personal communicators have

limited storage and processing capacity.

3. Enhanced fault tolerance. Due to weak nehvork connections, some network

transactions could lost ; the mobile agent application proved to be efficient in this

case.

The problems appearing during this application are:

I . It is argued that each host of the entire network needs to have an agent server

installed to meet the mobile agent application needs. In the application. both the

original host and remote host need to install an aglet server. If this is the case, the

computational resources required by the execution environment of agent

applications is a negative factor for the deployment of'the "agent " technology.

2. The fundamental problem is how vital the "agents" are to solve the particular

mobile clients problem. It is argued that the problem can be solved by using other

mechanisms such as remote shell facilities or even manual operations. The author

could not find any strong arguments that are only applicable to agents.

4.3 Watcher Application

4.3.1 Design: Notifier Aglet

The Notifier is the class of aglet pattern package. It is widely used for agent applications

and can be seen as special slave aglet implementation. The benefit of the notifier is that it

provides an easy way to extend the server application interface, in another word, to install

client s o h a r e on a remote host.

The following is a class diagram (Figure 4.2) of the application:

Aglet '

*createSlaveO
'goo

+docheck()

+ h a n d l e ~ e s s a g e ~
*initializecheck()

Notifrer

* d o ~ h e c k ~

Watcher

Figure 4.2 Class Diagram for Watcher Application

I\ , *initialize~hecko

1

1 WatcherNotifier I

4.3.2 Implementation Result Analysis

The Watcher application runs on the same workstation as described in the traveler

application. Watcher is an aglet-based implementation for monitoring a specific file

update status. It consists of two aglets, one stationary watcher aglet and one mobile

watcher notifier aglet. The latter is dispatched by the watcher aglet to a remote location

where it stays and keeps watching a file being updated. Watcher Notifier usually sleeps

and periodically gets up and checks if the file was updated or not. Whenever the file is

updated, the Watcher Notifier notifies the Watcher.

The application verifies that the mobile agent can go to the remote host and provide

notifying service to its master agent. If the specific document is updated. it will send back

a message, indicating the modification time. The implementation illustrates the following

points:

I . Agents are a convenient way to install software on remote hosts. in another word,

using agents as an extensible server has the potential to be implemented widely.

This benefit perhaps is the most appealing feature in some proposed application

models (Johansen, D.. I 998):

Server API patching: the agent is installed as a patch to provide a new

API. The original host can access this remote agent through the regular

network communication interface. The installation is more or less

permanent and agents can act periodically or around the clock.

Task Agent: the agent is dispatched to a remote host on behalf of the

sending host, and either returns the potential results to the sending host or

continues traveling on the network according to a route plan.

Some concerns about the applicability ofthis remote sever application exist:

1. The first question is whether the agent is the only solution in the extensible server

application. The answer is no. Some old techniques also provide the structured

facilities such as remote shells and remote evaluations. There are some new ideas

such as extensible kernel which utilize process migration at the system kernel

level. (Johmsen, D., 1998)

2. The second question is the performance issue. Does the agent solution offer

improved performance among those alternatives such as remote shells'? There is

no obvious evidence which can provide convincing results.

3. Security is the key. In most of existing system security implementations, there

are several underlying assumptions (Chess, D.M., 1998):

Most of the systems assert that the intensions of users are identical to the

action of the program. That means when a program attempts some actions.

users usually have the rights to decide whether or not the action should be

taken by checking the details of the program.

Some systems specially mark the rights granted to some users for running the

program. This assumes only persons who are known to system can execute

programs.

All programs are obtained From easily identifiable and generally trusted

sources.

Mobile agent systems violate all assumptions laid out above:

Since the mobile agent programs may not reflect the intent of the user. we can

not determine whether or not the actions should be taken.

An unknown user may run mobile agent programs if they can obtain the

mobile agent services from the network.

In mobile agent systems, many programs may be fkom unknown sources.

There are three major security issues in the mobile agent system:

Protecting the host from malicious agents.

Protecting an agent from malicious hosts.

Protecting one agent From another agent during their interactions.

1.4 Performance Comparison: File Searcher Application

4.4.1 Application Design

The file search implementation in the thesis is to compare the performance in three

different modes: mobile agent, traditional clienthewer model, and remote method

invocation (RMI). It is claimed that agents potentially improve the performance in terms

of bandwidth usage. A simple straightfonvard file searcher application is ideal for

performance comparison.

In a distributed environment, it is common to store data in a server. and client computers

pull data for local processing. The client/server implementation is designed in this way.

The RMI implementation invokes the search method from the client. conducts searching

on the server and return results to the client. The agent application ships an agent over the

network to the destination host, completes the task on the host, and return the results to

the original host.

The reason for using RMI as another implementation to compare performance is

mmi fold:

RMI is still considered as a clientlserver technology.

RMI is not limited to traditional client/server and it also provides the ability to

transfer objects to multiple servers.

RMI uses techniques such as object serialization and dynamic class loading

which are also fundamental technologies used by mobile agents.

For the purpose of consistency, the author employs the same Java classes and methods in

three models in order to avoid deviation caused by actual code. The file search

functionality is fulfilled by methods in class java.io.RandomAccessFi1e.

The author implements the timing using System.currentTimeMillis() to measure the

response time between two workstations. In the aglet application. the response time is

measured according to the following criteria:

I . The measurement begins with dispatching the file search aglet to the network.

1. The response time includes the time of installing and running the aplet on the

destination workstation.

3. The measurement also includes the time spent by the aglet on returning to the host

workstation and printing out the results on the screen.

For the clienuserver implementation, the end to end response time is measured in the

Following way:

1. The measurement starts from client downloading data from the server.

2. The measurement includes the time of processing data on the local client

workstation.

3. The time of printing results on the screen is also included.

For the RMI implementation, the response time includes the following time frame:

I . The time counting starts with initiating a search call to a remote object.

2. The time for processing includes: the stub transfers arguments to the reference

layer, the reference layer passes on the request to the transport layer. then the

skeleton reads the arguments from the reference layer in the server side, and the

skeleton makes a call to the actual remote object implementation.

3. The results are returned in the same way but opposite direction. and the program

prints out search results on the screen.

4.4.2 Implementation Result Analysis

The following is a table (Table 4.1) of experiment results, indicating the average response

time for various data size in the three different applications. The experiments are

conducted on two Windows NT 4.0 workstations with 128 M byte RAM and 200 Mhz

CPU . The two workstations are connected by a 100 Mbyte Ethernet. This work reports

the experiment results from 12 samples. The response time data in each cell is the

average value of three experiments conducted with same size data.

Table 4.1 Experiment Data in Three Models

Data Size

(MB)

0.62

1.19

t .83

2.48

3.12

3.78

4.39

7.57

11.4

15.1

18.9

20.1

From the performance data illustrated in the above table, we can see that the mobile

agent model and RMI model outperform client server model a lot and there is not much

difference between the mobile agent implementation and the RMI implementation. This

is shown clearly in the following figure (Figure 4.3):

CIS Response

Time (s)

34.54

69.12

105.76

142.97

MIA Response

Time (s)

1 1.57

2 1.48

RMI Response

Time (s)

9.83

19.52

50.85

61.53

7 1.45

121.57

182.96

248.04

299.49

3 19.03

180.06

2 17.54

251.18

437.62

657.83

887.94

1 102.87

3 1.80

5 1.69

61.52

70.93

122.50

182.18

250.24

3 10.5 1

29.95

1 177.33

41.55

325.80

40.46

CIS, MIA and RMI Model Response Time

I t k i p f i f i ~ i : T;;nio jij
+ M/A Response Time (s)

-+ RMI Response Time (s) i
0 2 4 6 8 10 12 14 16 18 20 22

Data Size (MB)

Figure 4.3 Response Time for Three Models

From the comparison results, the mobile agent approach really seems to reduce

the network traffic. This is not surprising, since in the client/server application. i t

has chosen the worst-case scenario in which all the data must be carried across the

network to the client for processing. Now client/server technology is more

flexible than the case chosen and a rich server API can help relieve this situation.

For instance, in some client server applications, the server handles data processing

and returns the results to the client.

The RMI model also can achieve the same effects as mobile agents. Almost in all

cases, the RMI model even outperforms the mobile agent model. How to define

the RMI technology is a little bit controversial. RMI is basically Remote

Procedure Call's evolution and in this sense, it is a client server technology; but it

also does a couple of additional things:

o RMI performs network dynamic class loading. It is intended for loading

the stub classes for the remote objects. That means, if' the client host does

not have the code for the remote proxy, RMI can send them to the client.

o RMI uses standard serialization technology to pass the arguments of the

method.

Both of these feature make E2MI "kind oP' mobile asent technology. Whether i t

"is" a mobiie agent technology brought up the controversy and the argument that

is still going on. Depending on how one defines "mobile agent", some people

view RMI as a mobile agent technology. In this thesis, the author does not want

to continue the argument but just wants to verify that RMI provides the ability to

transfer an object to a server and reduce the network traffic. From the experiment

results, we know that pure mobile agent technology is not the only way to

improve the performance.

In the three cases, the same information about the remote host are required, such

as the location of the files the user wants to search through, or how to connect to a

database on the host etc. Mobile agents can not work that out for themselves.

From this view, mobile agents do not offer any advantages.

In the response time measurements of the RMI implementation and the mobile

agent implementation, the dominant Factor has been the

serialization/deseriaiization delay and not the transmission delay. The Aglet uses

standard Java Object Serialization to marshal and unmarshal the state of agents

and tries to marshal all the objects that are reachable From the Aglet Object. RMI

also employs the standard Java Object Serialization but usually it just

serializes/deserializes arguments or returns a value. So this may be considered as

the major reason that affects the response time. Of course, there are several other

factors that may affect the transmission delay (apart From the transmission rate)

such as the transmission protocol. MI uses the TCP while .4glet uses ATP

(Agent Transfer Protocol), which is an application level protocol above TCPIIP.

4.5 Summary

The chapter validates the mobile agent applicability by three different applications:

traveler, watcher and file searcher. These three prototypes and their designs are used to

better understand mobile agent applicability aspects. From the implementations, some

conclusions are drawn:

The Traveler application shows that the mobile agent can be off loaded from network

in a controlled manner, which means mobile agent do improve the fault tolerance and

support information transfer in temporally disconnected network.

The Watcher application indicates that mobile agent is a convenient way to install

client specific software even though security is a big concern. The extensible server

is a promising feature offered by mobile agents in a sense that mobile agents is an

easier and more straightforward way to implement this functionality than other

approaches.

From the implementation results, it is not very convincing that the improved

performance in terms of bandwidth usage is a good reason to deploy mobile agent

technology.

Chapter 5 Conclusions

This chapter draws conclusions from the research work and evaluates future possible

research directions related to the thesis. The evaluation addresses the objectives of the

research and explains how these objectives were reached by the thesis. The evaluation

also discusses the contributions of this research work compared to the contemporary

research work in this field.

5.1 Addressing the Aim and Objectives

The aim and primary objectives of the research work were stated in Chapter I :

Aim:

The aim was to develop an in-depth understanding of the mobile agent mechanism by

designing and implementing mobile agent based applications. and to evaluate the

applicability of mobile agent applications based on comparisons between the clienv'server

mechanism and the mobile agent mechanism.

Objectives were:

To broadly review literature on mobile agent applicability.

To select typical application scenarios which demonstrate advantages of

mobile agents over cIient/semer.

To develop a mobile agent based application as well as a client/server

based application for the purpose of performance comparisons.

To carry on the evaluation olthe applicability of mobile agents based on

the application design, implementation result analysis and performance.

Chapter 2 gave a brief introduction about mobile agents and the current state of this

research field. The disadvantages and controversy surrounding mobile agents were also

discussed. Based on the background introduction. typical application scenarios were

selected:

Traveler application verified the supportive role a mobile agent can play in the

emergent event of lost network connection. The improved Fault tolerance a mobile

agent can offer in the %agile network connection is often referred as a major

credit of mobile agent paradigm.

Watcher scenario was chosen to verify that whether mobile agent technology is a

good way to enrich services on the network. A mobile agent is able to Function as

an additional service provider on the network. This advantage is a main claim

from the supporter of mobile agents.

The above two application scenarios are both typical mobile agent applications,

demonstrating the major two advantages over client server paradigm. So objective 2 was

accomplished.

Objective 3 was reflected in the File Searcher application scenario. Reduced network

traffic is olten referred to as an advantage brought by mobile agents. The performance

comparisons between traditional clientiserver, JAVA RMI and mobile agents were to

verify this claim.

Chapter 3 discussed the requirements for the three application scenarios and Chapter 4

discussed the design and the implementation of the applications. Based on the design

and the implementation of those three applications. the evaluation of mobile agent

applicability was realized. which satisfied the last objective, and the major conclusions

From the experiments are:

1. Small, resource limited computing devices may not be able to remain "connected"

for the duration of services. The mobile agent solution tends to be more

asynchronous in nature than the traditional client server technology; since mobile

agents act asynchronously without requiring a permanent connection.

2. Agents are a robust way to facilitate and automate information distribution; and

they are also convenient for installation of services on a remote host, in other

words, using agents as extensible servers has the potential to be deployed widely.

3. The support of high bandwidth interaction is the most often cited reason to use

mobile agents. From the author's work, it is hard to prove that the reduced

network traffic is a major advantage of mobile agents. For example, we can see

that Java R i i I can actually create very marginally improved results than mobile

agents. Reduced network traffic is not a convincing reason for people to choose

mobile agents instead of the client server paradigm.

4. Since most of current mobile agents are written in relatively slow interpreted

languages like Java for portability reasons on the internet. current mobile agent

systems save network bandwidth at the cost of higher loads on the host machines.

The mobile agent applications require computational resources such as the agent

server, which will increase the difficulty of deploying this technique widely. As

mentioned before, in mobile agent applications, the hosts visited by the agents

require an agent server, which is an additional resource load to the machine.

5. The most important non-technical problem with the mobile agents is that there is

no "killer" application for mobile agents. Though the mobile agent is a new

design paradigm in many respects, most applications can be implemented with

traditional techniques. The author can not see a convincing reason for applying

mobile agents from each of the experiments conducted. For example, a mobile

agent is not the only way to support fragile network and to extend server services.

Some old techniques like remote shells are also widely used by people. It is really

hard to find an example that there is something that can be done with mobile

agents which can not be done by other means.

6. Security problems are a major concern in mobile agent technology. The agent

execution environment needs a high level of security management to assure users

of the safety of their data and their privacy.

The above description clearly shows that the objectives of the thesis have been

accomplished. Based on the process of the whole thesis work. the overall aim is also

reached.

5.2 Contributions

Mobile agents have been an intensive Focus recently. With the rmersing understanding

of this technology, people are trying to dig out the potential usage and deploy the new

paradigm quickly. Despite the popular support for this new distributed computation

paradigm, there are lots of arguments around mobile agents. The controversy focuses on

its applicability. People are asking whether it can be a successful replacement for client/

server technology.

Though there are many articles for the mobile agent and agent technology, many of them

are trying to build an agent architecture and infrastructure, facilitating the application

building, and modeling agency. We still only have mainly qualitative arguments for the

benefits of mobility. There are relatively few quantitative results out there. And no real

solid argument For why mobility is any more than 'a good thing'. Very few articles

actually try to validate the applicability of mobile agents.

Contributions of the thesis work are:

Built mobile agent based system prototypes to verify the mobile agent

applicabiiity potentials.

Made performance comparisons based on bandwidth usage For traditional

client/server paradigm, Java RMI and mobile agent paradigm. and get quantitative

results to veri fy the mobile agent benefit argument.

5 3 Future Directions

5.3.1 System Extensions

For the study, three typical mobile agent applications are chosen and simple system

implementations show something that mobile agents are really good at. The experiments

based on these applications focus on the objectives of the research. Though the research

is complete, there is still much room to improve.

It would be interesting to evaluate a more complete and complex mobile agent system to

get a more generalized idea . Even a real life study would be worthwhile. For example, an

agent system with a broker or mediator architecture can be a good example, since it

represents a widely-used agent system structure or an agent system with more agent

interactions and communications.

5.3.2 Performance Comparisons

In the research. the communication effects on the network traffic caused by mobile agents

has been verified. The evaluation for bandwidth usage is measured by the response time

from sending request to receiving results in three models. There is more to be measured

than just bandwidth usage in order to show the complete impact to the system caused by

mobile agents. For example, there is an impact that mobile agents and mobile agent

servers have on a host while a mobile agent is executing. The impact of a single mobile

agent maybe negligible, but once large number of mobile agents are performing

transactions, then we need to consider the requirements in terms of CPU. I/O and

memory. So a more accurate and detailed study can be conducted.

5.4 Summary

The thesis describes the research work that evaluates the applicability of mobile agents,

based on the application scenarios and performance comparisons. Ths chapter concludes

the thesis work, summarizes the contributions and points out the Future directions of

continuing research work.

References

Aridor, Y. and Lange, D.B., Agent Design Pattern, Proceedings of Autonomous Agents
'98, see http ://www.genmagic.comlasaldanny/. Minneapolis, Minnesota, USA, ACbL
Press. May 1998

Bndshaw, I.M., Software Agents, AAAI Press/The MIT Press, Menlo Park. California.
1997

Carzaniga, A., Picco, G.P., and Vigna, G., Designing Distributed Applications with
Mobile Code Paradigms. Proceedings of the 1 91h Intemational Conference on Software
Engineering. ACM Press. Minneapolis. Minnesota, 1997

Chess D., Grosof, B., Harrison, C., Levine, D., Parris, C., and Tsudik, G., Itinerant
Agents for Mobile Computing, in Readings in Agents. Huhns. M.N., Singh. M.P., (eds.),
pp. 267-282.1997

Chess. D.M., 1998, Security Issues in Mobile Code Systems, in Mobile Agents and
Security (edited by G. Vigna), pp. 1-13, Springer, 1998

Finin. I., Technical Repon, see http://wvw.cs.umbc.edu/agents/ . 1994

Franklin, S., and Graesser,A., Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. See htrp:N~v.msci.memphis.edu/-franklin/AgentProg.html.
Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, Berlin. 1996.

Fuggetta, A*, Picco. G.P.. and Vigna, G.. Understanding Code Mobility, IEEE
Transactions on Software Engineering, VOL.24, i 998

Ghezzi, C. and Vigna, G.,1997, Mobile Code Paradigms and Technologies: A case Study,
Proceedings of the First International Workshop of Mobile Agents, pp. 39-49, Springer,
Berlin, Germany, April, 1997

Harrison, C.G., Chess, D.M., Kershenbaum, A.K., Mobile Agents: Are they a good idea?
IBM Research Report, see http://www.cetus-links.org/oo~mobile~agents.html, 1995

Huhns, M.N., Singh, M.P., Readings In Agents, San Francisco, CA, Morgan
Kauhann, 1998

IBM Tokyo Lab, see http:/./www.trl.ibm.co.jp/aglets/spec 1 1 .html, 1999

Jain, A.K., Aparico M., and Singh M. P., Agents for Process Coherence in Virtual
Enterprise, pages 62-69, March 1999-Volume 42, Communications of the ACM, 1999

lohansen, D., Mobile Agent Applicability, 1998, Proceedings of Second International
Workshop, MA'98, , Rothermel, K. and Hohl, Fritz, (eds.), Springer, 1998

Kiniry J. and Zimmerman, A hands-on look at Java Mobile Agents, IEEE Internet
Computing, JuiyiAugust, 1997

Knapik, M. and Johnson J., Develop~ng Intelligent Agents for Distnbuted Systems,
McGraw-Hill, New York, 1998

Lange, D.B., Mobile Objects and lMobile Agents: The Future of Distributed Computing'?
see http ://w .genmagic .corn/asa/danny/, 1 998

Lange, D.B., Present and Future Trends of Mobile Agent Technology, see
http:/lwww.genmagic.corn/asa/danny/, 1998

Lange, D.B. and Oshima, M., Seven Good Reasons for Using Mobile Agents.
Communication of ACM, pp. 88-89, March, 1999

Milojicic, D., Breugst, M., Busse, I., Campbell, J.. Covaci, S., Friedman, S.. Kosaka. K..
Lange, D., Ono, K., Oshima, M., Tham, C., Virdhadriswaran. S.. and White. J., see
http:/lwww.fokus.gmd.de/reseu~h/cc/imalma~iE/entry-old.html, 1998

ObjectSpace Voyager, General Magic Odyssey, IBM Aglets: A Comparison by
ObjectSpace, ObjectSpace, 1997

Petrie, C.J., Agent-Based Engineering, the Web, and Intelligence, see http://wnv-
cdr.stanford.edu/NextLink/Expert.html, IEEE Expert, December, 1 996

Rothermel, K., Hohl, F., (eds.) Mobile agents : Proceedings of the Second International
Workshop, MA '98, Stuttgart, Germany, September 9-1 1. Springer, 1998

Rus, D., Gray, R., and Kotz, D., Transportable Information Agents, in the International
Conference on Autonomous Agents, Feb, 1997, in Readings In Agents, pp.283-29 1,
Huhns, M.N., Singh, M.P., (eds.), 1997

Stamos, J. and Gifford, D., Remote execution in ACM Transactions on Programming
Languages and Systems, 12(4): pp. 537-565, October, 1990

Sun Microsystems, Inc. see http://java.suun. com/products

Vaughn, L., Client/Server System Design & Implementations, McGraw-Hill Inc. New
York, NY, 1994

Vigna, G., (ed.), Mobile Agents and Security, Springer, 1998

White, J.E., Mobile Agents, see
h t t p : / / w w w . g e n m a g i c . c o r n / t e c h n o l o g y / t e c h ~ l , 1994

