
University of Calgary

PRISM Repository https://prism.ucalgary.ca

The Vault Open Theses and Dissertations

2015-06-26

Kernel-assisted Pattern Analysis of

Memory Events

Laing, Sarah

Laing, S. (2015). Kernel-assisted Pattern Analysis of Memory Events (Master's thesis,

University of Calgary, Calgary, Canada). Retrieved from https://prism.ucalgary.ca. doi:10.11575/PRISM/26698

http://hdl.handle.net/11023/2319

Downloaded from PRISM Repository, University of Calgary



UNIVERSITY OF CALGARY

Kernel-assisted Pattern Analysis of Memory Events

by

Sarah Laing

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GRADUATE PROGRAM IN COMPUTER SCIENCE

CALGARY, ALBERTA

June, 2015

c� Sarah Laing 2015



Abstract

Memory interception is used to create a record of a program’s execution. Filtering

the intercepted memory events enables one to find patterns in the memory accesses

of a target program, patterns that can be used to find errors or vulnerabilities in the

program.

We present Cage, a kernel-level mechanism for intercepting and filtering the mem-

ory events of a user-level process. Cage uses a technique that generates a page fault

for every instruction level memory access. The filtering component of Cage extends

and uses the Berkeley Packet Filter infrastructure to filter memory events that have

been intercepted. In the page fault handler, information related to the memory event

is composed into a packet-like format and exported over a specialized memory net-

work device. Standard network packet capture tools such as Wireshark can be used

to capture from the memory network device to retrieve the information about each

memory event.

i



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Overview of Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Overview of Cage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Memory Interception Techniques . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Standard or “built-in” Approaches . . . . . . . . . . . . . . . 10
2.1.2 Extracting Memory Events from Hardware and Hardware Mod-

ifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.3 Binary Instrumentation . . . . . . . . . . . . . . . . . . . . . 12
2.1.4 Emulation and Virtualization . . . . . . . . . . . . . . . . . . 13
2.1.5 Reuse of Hardware Facilities . . . . . . . . . . . . . . . . . . . 13

2.2 Page Fault Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Finding Patterns in the Memory Event Stream . . . . . . . . . . . . . 16
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Cage Mechanism Design . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Page Fault Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Memory Event Packet Format and Generation . . . . . . . . . . . . . 29
3.3 Memory Network Device and Wireshark Dissector . . . . . . . . . . . 30
3.4 Filter Mechanism and Modifications to BPF . . . . . . . . . . . . . . 33
3.5 Working Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Creating Caged Programs . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6.1 Instrumented mmap System Call . . . . . . . . . . . . . . . . . 37
3.6.2 The chmem System Call . . . . . . . . . . . . . . . . . . . . . . 38
3.6.3 The Cage Library . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.4 Executing Caged Programs . . . . . . . . . . . . . . . . . . . 39

3.7 Vm area Creation Packets . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 Performance of Cage . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Capturing Memory Event Packets . . . . . . . . . . . . . . . . . . . . 51
4.3 Generality of Cage Mechanism to Di↵erent x86 Platforms . . . . . . . 53
4.4 Comparing Memory Event Packet Traces . . . . . . . . . . . . . . . . 56

4.4.1 Di↵erences in Memory Event Packet Traces Between Machines 60
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5 Applications of Cage . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.1 BPF Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2 Pattern Finding Program . . . . . . . . . . . . . . . . . . . . . . . . . 72

ii



5.3 Pattern Finding/Enforcing BPF Filters . . . . . . . . . . . . . . . . . 75
5.4 Limitations of Finding Patterns/BPF Filters . . . . . . . . . . . . . . 76
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 79
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A Raw BPF Filter Code . . . . . . . . . . . . . . . . . . . . . . . . . . 91

iii



List of Figures and Illustrations

1.1 Simple example C program . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 Comparison of work related to Cage . . . . . . . . . . . . . . . . . . . 20

3.1 Flow Diagram of the Cage Mechanism Workflow. . . . . . . . . . . . 24
3.2 PTE diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Structure of memory event packet. . . . . . . . . . . . . . . . . . . . 31
3.4 Wireshark view of an instruction fetch memory event packet. . . . . . 32
3.5 PTE contents for the workflow example. . . . . . . . . . . . . . . . . 35
3.6 Workflow example memory event viewed in Wireshark. . . . . . . . . 36

4.1 Run times of standard kernel vs Cage kernel . . . . . . . . . . . . . . 44
4.2 Non-caged programs as compared to baseline . . . . . . . . . . . . . . 45
4.3 Run time of libquantum and mcf . . . . . . . . . . . . . . . . . . . . 46
4.4 100% caged compared with baseline . . . . . . . . . . . . . . . . . . . 47
4.5 Performance test results . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.6 Run time of no memory network device and BPF filter . . . . . . . . 49
4.7 BPF filter as compared with no memory network device . . . . . . . . 50
4.8 Performance of caging only the stack . . . . . . . . . . . . . . . . . . 51
4.9 Stack performance as percentage of 100% caging . . . . . . . . . . . . 52
4.10 Number of memory event packet for stack . . . . . . . . . . . . . . . 53
4.11 Cage running on Intel hardware. . . . . . . . . . . . . . . . . . . . . . 55
4.12 Cage running on AMD hardware. . . . . . . . . . . . . . . . . . . . . 55

5.1 Temporal BPF filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Data-overwriting BPF filter . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Viewing a bu↵er allocated at runtime BPF filter . . . . . . . . . . . . 66
5.4 Finding bu↵ers in a program BPF filter . . . . . . . . . . . . . . . . . 67
5.5 Write, followed by reads pattern BPF filter . . . . . . . . . . . . . . . 68
5.6 Range-Checking pattern BPF filter . . . . . . . . . . . . . . . . . . . 69
5.7 Always read/written pattern BPF filter . . . . . . . . . . . . . . . . . 69
5.8 Write, read, repeat pattern BPF filter . . . . . . . . . . . . . . . . . . 70
5.9 Short list of instructions pattern BPF filter . . . . . . . . . . . . . . . 71
5.10 Monotonically increasing/decreasing pattern BPF filter . . . . . . . . 72

iv



Chapter 1

Introduction

Modern computers use a form of volatile or non-persistent storage - memory - to store

information that is necessary for the computer to run but that does not need to be

saved. Computers use memory for just about everything. Every program that runs

uses its own section of memory to store its data and instructions that tell the program

what to do. Every operation a program performs can contain multiple instructions.

Each instruction must be read from memory before it can be executed. Instructions

can also read or write to a program’s data generating yet more memory accesses.

Figure 1.1 is a simple C program that just prints the value of a piece of program

data. The program data labelled as “variable” on line one is stored in the memory

of the program. Both printing the contents of this program’s data, and returning

its value on lines three and four respectively, requires that memory be accessed and

read. Furthermore, the “main” function declaration on line two writes more data

in the memory of the program and reads more data from memory. The “printf”

statement on line three is a call to a shared library. This shared library has its own

section of memory that must be read from and written to. Each line of this simple

program is translated into multiple low-level instructions. This requires that multiple

instructions must be read from memory in order to execute each line of this program.

1. int variable = 0;

2. int main(int argc, char *argv[]){

3. printf("Variable = %d\n", variable);

4. return variable;

5. }

Figure 1.1: An example C program.

1



In addition, there is start up and tear down code that is executed for every program

that is not shown here. This additional code must also read and write from memory.

Our simple test program produces 108120 memory events in its entirety where a

“memory event” is a read or write operation to memory. This shows the magnitude

of memory events that are generated, even by seemingly simple programs.

1.1 Motivation

Memory interception is a technique that monitors a target program and watches all

of the memory events that the target program generates. The motivation behind

memory interception is that it provides a method of determining exactly what a

program is doing during its execution. The combination of instruction fetch memory

events and data accesses shows a clear picture of the control flow path the program is

taking as well as the contents of the data that brought the program along this control

flow path. The memory events of a process form a record of its execution. This record

can be used for many purposes from debugging to vulnerability detection.

The memory event stream is the combination of all of the memory events generated

by a program. As demonstrated by our simple program in Figure 1.1, the memory

event stream can contain a large number of memory events even for a small program.

To deal with the volume of memory events, we filter the memory event stream. The

motivation behind filtering the memory event stream is that it provides a method of

detecting memory errors or vulnerabilities. Di↵erent errors or vulnerabilities present

as di↵erent patterns within the memory event stream. For example, a double fetch

of a piece of data within the same semantic context can be indicative of a “time of

check to time of use” vulnerability where the data may have been modified between

the two fetches. This presents as a specific pattern in the memory event stream that

a filter can detect.

2



1.2 Overview of Problem

Memory interception exists as a challenging problem in computer science. The ability

to intercept the read and write memory events of a process has been attempted many

times. Many solutions to intercepting the memory events of a process exist such as

creating specialized hardware [31, 54, 53], emulation [4, 45, 18], or instrumentation [6,

33]. Each of these solutions has some drawbacks associated with it such as reliability

or performance. The memory events generated by a process is essentially a high rate,

high event data stream. It is the speed with which the memory events occur and

the magnitude of these memory events that makes intercepting and capturing these

memory events di�cult.

Intercepting and capturing the memory events of a process is only half the prob-

lem. The other half is dealing with the large volume and velocity of data that is

produced. A process produces a memory event each time it fetches an instruction

to be executed and each time it reads or writes to a location in memory. These

are memory events produced at the instruction level. Intercepting memory events

at the microcode level or from the cache is outside the scope of this thesis. Larger,

more complex programs would logically produce more memory events than simpler

programs. Bzip2 for example, produces over 3 billion memory events from the stack

alone. This large amount of data must be filtered in some fashion in order to pick

out the memory events of interest. Many of the filtering techniques rely on finding

patterns within the memory event stream. These often rely on maintaining a piece of

state for each portion of memory within the memory of the target process [50, 54, 33].

This has the side e↵ect of increasing the memory consumption of the target process

which is not scalable to significantly large programs.

The challenges facing memory interception and filtering of the memory event

stream can be thought of as analogous to an intrusion detection system for a high

3



speed network. Both systems must be able to intercept all of the memory events or

network packets in order to get a clear picture of what is happening. Both systems

must also be able to filter the memory events or network packets and make some

decision regarding the memory event or network packet. The goal of an intrusion

detection system is to intercept and filter network packets at a speed that as closely

resembles line speed as possible, yet still be reliable and complete. Memory intercep-

tion and filtering of the memory event stream have the same goals as an intrusion

detection system.

To state the problem more formally, a memory event m is a tuple of elements,

(t, a, ea, ip, dea, i, lea, lip) where t is the time that the memory event occurs, a is the

access type of the memory event, either read or write, ea is the e↵ective address that

is being accessed by the memory event, ip is the address of the instruction being

executed, dea is the data contained at the e↵ective address, i is the instruction being

executed, lea is the label for the page containing the e↵ective address, and lip is the

label for the page containing the instruction address.

A memory event stream is an ordered list of memory events such that

M = {m0 . . .mn} where n is a possibly infinite number.

Memory interception is a function over M such that each memory event mi is

intercepted and captured. More information on the memory interception function

can be found in Section 3.1.

A filter is a function over M that takes as input a memory event mi from M and

a state = s and produces an answer ai = {accept, ignore, reject} and a potentially

new state s

0 for each mi. More information on the filtering function can be found in

Section 3.4.

The memory interception function and the filtering function must behave in a

principled fashion. That is, they must have the following properties:

4



1. Speed

2. Transparency

3. Reliability

4. Completeness

The speed of both the memory interception function and the filtering function must

be taken into account. In the ideal case, neither the memory interception function nor

the filtering function should inhibit the runtime speed of the target process. With the

exception of hardware solutions, where both the memory interception function and

the filtering function are a component of the hardware, the ideal case is not possible.

There will always be some amount of overhead imposed by the memory interception

function and the filtering function.

The transparency of the memory interception function and the filtering function

must also be taken into account. In the ideal case, neither the presence of a memory

interception function nor a filtering function would modify the behaviour of the tar-

get process. This would mean that both the memory interception function and the

filtering function would not be detectable by the target process through any means.

Currently we know of no solution that meets this ideal case. Transparency can also

mean that the memory interception function and the filtering function require no

modifications to the target program’s source code or binary image. This lighter form

of transparency also has the goal of not modifying the behaviour of the target process

but does not guarantee that the target process cannot detect the monitoring. If the

memory interception function and the filtering function are not at least lightly trans-

parent to the target process they will not be able to create the record of the target

program’s execution.

The reliability of the memory interception function and the filtering function

means that the memory event stream is identical for multiple executions of the target

5



program with the same inputs and on the same hardware.1 The memory interception

function and the filtering function must reliably intercept and filter each memory

event mi from the memory event stream where i occurs at the same place in the

memory event stream across executions of the target program and the tuple elements

of mi are identical. The only exception to this is the element time because it is pos-

sible for the memory event mi to occur at a di↵erent time because of di↵erences in

the scheduling of the target process. If the memory interception function and the

filtering function are not reliable they will fail at producing the record of the target

program’s execution.

The completeness of the memory interception function and the filtering function

refer to their vantage points on the memory event streamM . In order to be considered

complete the memory interception function must intercept each mi from M . In order

for the filtering function to be considered complete it must filter eachmi from M . Put

more simply, the memory interception function and the filtering function must work

on each memory event within the memory event stream to be considered complete.

Without being considered complete, the record of the target program’s execution

would not be complete, which goes against the motivation for memory interception.

1.3 Overview of Cage

This thesis presents a new mechanism referred to as Cage or the Cage mechanism

throughout this thesis that has two main components. The first component is a

mechanism to intercept the memory events of a process and the second component

is a mechanism to filter the memory events of a process. Both of these mechanisms

work together to intercept the instruction level memory events of a process and to

filter these memory events as they occur during the execution of a process. Both

1“Identical” does not take into account multi-threaded programs. We leave multi-threaded pro-
grams to future work.

6



mechanisms exist as a series of modifications to the 3.9.4 version of the Linux kernel

as well as supporting loadable kernel modules and user-level programs.

Thesis Statement: It is possible to create a memory interception and filtering

mechanism which adheres to the aforementioned principles of being lightly transparent,

reliable and complete.

The memory interception mechanism intercepts memory events by generating a

page fault for each memory event within a certain range of memory. This memory

range may be as small as one page or as large as the entire process address space. This

memory interception approach is lightly transparent to the target process. There are

no modifications required to the target program’s source code or binary image. This

memory interception technique reliably and completely intercepts all of the memory

events within a certain range of memory. Information about each memory event

is gathered and composed into a packet-like format referred to as a memory event

packet. These memory event packets can be captured and stored to form a record of

the execution of the target process. There is also no additional hardware required and

this memory interception technique can run on commodity hardware and operating

systems.

The Cage filtering mechanism extends and uses a well-known filtering tool called

the Berkeley Packet Filter. This filtering mechanism does not require that state be

stored within the memory of a target process. The filtering occurs during the page

faults that the memory interception mechanism generates. This allows the ability to

filter memory events as they occur. The location of the filtering mechanism allows a

decision to be made about a memory event as it occurs. This grants the opportunity

to disallow a memory event that violates the filter and terminate the target process

accordingly. The location of the filtering mechanism also means that it remains

lightly transparent to the target process and requires no modifications to the target

7



program’s source code. The location of the filtering mechanism also ensures that it is

reliable and complete. As long as the memory interception mechanism is guaranteed

to intercept each memory event, the filtering mechanism is guaranteed to filter each

memory event.

Cage is a dual-use security tool meaning that it is not inherently o↵ensive or

defensive. Similar to other tools, such as gdb, it has many uses, some of which can

be considered o↵ensive and some of which can be considered defensive. There are

multiple features of Cage. As mentioned previously, Cage can be used to intercept

and filter the memory events for a range of memory as small as the size of a page

to the entire process address space. Cage can target an already executing process

or execute a process with a targeted range of memory, such as the stack, .text, or

.data sections. Cage can also execute a process with the entire process address space

targeted so that every memory event the process makes is intercepted. The filtering

mechanism can filter the memory events from a single address or from an address

range that can be as large as the entire process address space. Any memory event

that is intercepted can be filtered. The filtering mechanism can also be disabled to

allow the capturing of every memory event within the targeted area. This allows a

record to be generated of exactly which memory events occurred within the targeted

area.

An earlier version of this work was published at the 8th USENIX Workshop on

O↵ensive Technologies (WOOT) in 2014 [20].

1.4 Overview of Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses work that is related

to Cage both in terms of memory interception and memory filtering. The Cage

mechanism is described in detail in Chapter 3 as well as the supporting mechanisms

8



that have been created to target programs. The evaluation of Cage including its

performance and generality to various platforms is discussed in Chapter 4. Chapter 5

discusses the applications of Cage focusing on the filtering aspect and its capabilities

and limitations. Finally, Chapter 6 concludes and discuses future work.

9



Chapter 2

Related Work

Two major aspects of Cage are the memory interception mechanism and the ability

to find patterns in the memory event stream. Correspondingly, this chapter discusses

related work in two major parts. In the first two sections, work related to memory

interception techniques in general, and work most closely related to Cage’s memory

interception mechanism is discussed. The third section discusses work that uses one

of the memory interception techniques and focuses on finding patterns in the memory

event stream.

2.1 Memory Interception Techniques

There are numerous techniques to intercepting memory events, each with their own

advantages and disadvantages. This section discusses a general overview of exist-

ing techniques beginning with standard “built-in” approaches, and continuing with

hardware modifications and extracting memory events from hardware, binary instru-

mentation, emulation and virtualization, and the reuse of existing hardware facilities.

2.1.1 Standard or “built-in” Approaches

Most commodity platforms come with tools similar to gdb [12] and strace [38]. Sys-

tem call tracing via strace examines memory events at the system-call level and is a

read-only view of this event stream. Library interception, using LD PRELOAD [22],

of the C library’s malloc and other memory management functions o↵ers finer gran-

ularity and the possibility of rewriting the events that strace lacks, but it still misses

instruction-level memory events (this lack of fine-grained instruction-level detail is

10



the stated motivation behind many projects, including Fenris [52]). Basic debuggers

like gdb o↵er fine-grained observation and control of a running program, including

the memory of that program. However, they are primarily intended to provide inter-

active debugging sessions and therefore may require some scripting to support o✏ine

or automated analysis. The gdb debugger o↵ers Python bindings and its own native

command set [11, section 23.2 and 23.3] in support of this. Some other debuggers,

such as IDA [14], o↵er facilities more specialized to reverse engineering, such as prop-

agation of labels and tags to group common pieces of functionality in a program.

Generally, the ptrace [32] or dtrace [41] mechanisms support the ability to implement

custom debuggers or other methods of program supervision, but this requires that

analysts implement their own userspace C or D code. Pin [24] and Valgrind [29] make

use of the ptrace API to aid in instrumenting binaries.

2.1.2 Extracting Memory Events from Hardware and Hardware Modifications

One approach to capturing memory accesses is extracting memory events directly from

the hardware. Work such as CoPILOT [31] uses an additional PCI card to request

memory accesses from the DMA controller at the hardware level. Other work such

as MemTracker [50] modifies the processor pipeline to intercept instruction-level load

and store memory events. Accmon [53] and iWatcher [54] use a simulated architecture

in which the L1 and L2 caches are modified to tag cache lines with “WatchFlags”

indicating memory addresses to be watched. Large ranges of memory addresses to

be watched are also stored in an added bu↵er referred to as a “Range Watch Table”.

The reorder bu↵er of the processor is augmented with a “Trigger” bit, as well as each

load-store queue entry with “WatchFlag” information. As a triggering load or store

reaches the head of the reorder bu↵er, a monitoring function is invoked. All of these

require extra hardware or specialized/simulated hardware in order to extract memory

events and may not be practical when used on commodity systems.

11



2.1.3 Binary Instrumentation

Another approach used to intercept memory events is dynamic binary instrumenta-

tion (DBI). This is the act of instrumenting (adding analysis code to) a program at

runtime. The inserted code allows information about the program to be gathered but

does not interfere with the normal functioning of the program. In contrast to the

previous section on extracting memory events from hardware, DBI requires no mod-

ifications or additions to the hardware allowing DBI tools to function on commodity

systems. Systems such as Pin [24], Valgrind [29], Dyninst [7] and DynamoRIO [42]

are examples of DBI systems. Valgrind’s Memcheck [33] tool uses Valgrind to check

for memory errors in programs such as undefined value error detection. Dr. Mem-

ory [6] uses DynamoRIO to check for similar memory errors such as memory leaks.

IBM’s Rational Purify [16] tool performs the same sort of check for memory errors in

Windows applications. DYBOC [35] instruments binaries to check for bu↵er overflow

attacks and attempts to recover from the bu↵er overflow without terminating the pro-

gram. DBI can have a high overhead associated with it: for example under Valgrind’s

Memcheck, programs run 20 – 30 times slower than normal [33] while DynamoRIO’s

Dr. Memory runs on average two times faster than Valgrind’s Memcheck [6]. This

overhead makes the use of these types of tools suitable for debugging purposes only.

A complement to dynamic rewriting or runtime recompilation is static rewriting

or instrumentation of program binaries. Static binary instrumentation (SBI) inserts

additional code and data before the execution of a process. Systems such as the

ERESI project’s elfsh [43], PEBIL [21], and PSI [26] are examples of SBI systems.

To the best of our knowledge there are no SBI systems that have attempted memory

interception.

12



2.1.4 Emulation and Virtualization

Approaches like emulation and virtualization are common solutions for providing an

environment for data collection and analysis of program or guest behaviour. Popular

platforms for such work include Bochs [4] and QEMU [45] because they o↵er a way

to easily modify CPU behaviour in novel ways. For example, Bochs has the ability

to emulate di↵erent x86 CPU models ranging from Intel’s 386 to x86 64 processors

as well as AMD processors. It also has the ability to emulate a generic CPU type

which allows the user to specify settings in the CPU [40]. Supervision environments

and virtualization also o↵er the ability to support time-travel debugging [19] because

of snapshot facilities included in the platform. Time-travel debugging is the ability

to debug either forwards (as a regular debugger does) or backwards in time to replay

crucial moments in the execution of a program such as an operating system.

Bochspwn [18] instrumented Bochs in order to spot time-of-check-to-time-of-use

(more generally known as double-fetch) vulnerabilities in the Windows kernel. In-

terestingly, they mention the approach Cage uses as a potential design option but

dismiss it in favour of using Bochs, the “simplest to quickly implement” [18, page 17].

Hobbes [8] uses an interpreter along with shadow memory to perform run-time type

checking for memory and register locations. While Hobbes does not use an emulator

like Bochs or QEMU, it does use an interpreter to interpret each instruction before

that instruction is executed. Because emulation and virtualization can introduce sig-

nificant performance limitations, they su↵er drawbacks similar to DBI when used for

this type of memory interception.

2.1.5 Reuse of Hardware Facilities

Most interception techniques need to rely on some physical component of the system

in order to function reliably. Hardware debug registers provide an e�cient mechanism

13



for “watching” a small number of memory locations and can even be used for stealthy

supervision [15]. Unfortunately, given the small number of these debug registers

available (only four are available on Intel processors [17]), watching a large set of

addresses is infeasible.

Overloading the bits in the Page Table Entry (PTE) to trigger a page fault is an-

other common approach and has been used or proposed by a variety of projects [36,

39, 37, 2, 30, 28, 3] and will be discussed in more detail in the following section.

Finally, despite its utility, few systems make use of the hardware memory segmenta-

tion and the overloading of the Descriptor Privilege Level (DPL) bits. SegSlice [5]

overloads the DPL bits to force a trap to the operating system on any memory access.

This trap occurs because the privilege level represented by the DPL bits is incorrect,

resulting in a privilege violation. Memalyze [36] proposes the use of the null selector

loaded into the segment registers to generate a general protection fault on each in-

struction that executes a memory access. This general protection fault can then be

handled specially by the operating system. Vx32 [13] uses segmentation to provide

sandboxing of a process’ data. The data sections for a process are placed in a sep-

arate segment and any accesses outside of this segment will produce a segmentation

violation. While not concerned with intercepting memory accesses, Vx32 is neverthe-

less an example of using segmentation to monitor memory accesses. Unfortunately,

segmentation is rarely used to its full potential in commodity operating systems, such

as the Linux OS we chose to work with, resulting in its deprecation as seen in the

Intel Documentation.

“In 64-bit mode, segmentation is generally (but not com-

pletely) disabled, creating a flat 64-bit linear-address space.

The processor treats the segment base of CS, DS, ES, SS

as zero, creating a linear address that is equal to the

14



e↵ective address. The exceptions are the FS and GS seg-

ments, whose segment registers (which hold the segment

base) can be used as additional base registers in some

linear address calculations.” [17, Section 3.7.4.1]

2.2 Page Fault Mechanism

Cage makes use of existing hardware facilities. This approach was chosen because

of its ability to function on commodity systems without the need to modify a pro-

gram binary or emulate an execution environment. Specifically, Cage overloads the

User/Supervisor bit in a page table entry (PTE) to generate a page fault when the

page corresponding to the PTE is accessed. This page fault mechanism has been

proposed and used in previous work such as Memalyze [36], OllyBonE [37], grsecu-

rity’s PAGEEXEC [39], ELFbac [2] and the Linux kernel’s own kmemcheck [30] and

mmiotrace [28]. Indeed, the Page Fault Weird Machine [3] demonstrates how much

power lurks in the paging circuitry.

Memalyze [36] proposes the page fault mechanism as a way to trap memory events

and also proposes the use of mirrored page tables as a way to allow the user mode

access to memory without the need to reset the bit in the PTE. Cage implements a

variation of the proposed page fault mechanism but does not implement mirrored page

tables. (Cage does not need mirrored page tables because it resets the bit in the PTE

before allowing the instruction to execute.) The grsecurity team’s PAGEEXEC [39]

used the page fault mechanism to implement non-executable pages in Linux before the

execute disable (XD) bit was added to the PTE. The Linux kernel’s kmemcheck [30]

uses the page fault mechanism to debug kernel code for memory errors much in the

same way as Valgrind’s Memcheck does for user level processes. The mmiotrace [28]

tool is used to debug memory-mapped IO and was created for use with the Nouveau

15



project [44] (an open source Linux video driver for nVidia cards) in mind. Cage’s

page fault mechanism is inspired by the design proposed in Memalyze and the imple-

mentation done by grsecurity’s PAGEEXEC and the Linux kernel’s kmemcheck and

mmiotrace.

OllyBonE [37] is a plugin for OllyDbg [51]. The two work together to produce

a semi-automatic tool for unpacking malware. OllyBonE uses a similar method to

grsecurity’s PAGEEXEC to set pages as non-executable. This causes the first attempt

to execute a code section to return control to OllyDbg. The code section to watch

is specified through OllyDbg and contains the unpacked code. While Cage does have

the ability to intercept memory events on a page level granularity, through the added

chmem system call, it focuses mainly on intercepting the memory events for an entire

process. Cage can also intercept both instruction execute and data access memory

events while OllyBonE focuses only on the instruction executions.

ELFbac [2] describes how to combine ELF section names, using a similar page

fault mechanism, to trap certain code-data ownership relationships. ELFbac focuses

primarily on the access control and labelling scheme behind marking pages. While

Cage does have the ability to label pages it does not yet implement access control

schemes built on these page labels.

2.3 Finding Patterns in the Memory Event Stream

Much of the work discussed above intercepts memory events with the goal of watching

the memory event stream for patterns. These patterns can express memory bugs or

errors in the program such as memory leaks, memory corruption, and bu↵er overflows

and can be used for debugging purposes. Many of these memory errors are indicative

of vulnerabilities in the program which is demonstrated by [18, 53, 54, 33] which

use programs with known vulnerabilities as tests to evaluate the e↵ectiveness of the

16



mechanisms proposed.

MemTracker [50] uses a memory interception mechanism to watch for heap bu↵er

overflows from sequential accesses, modifications of return addresses on the stack,

and reads from uninitialized heap data. The above is achieved by maintaining three

bits of state for each word of memory corresponding to uninitialized, initialized and

unallocated data. The memory allocation and deallocation libraries are modified

separately to implement the three types of patterns and set the state bits accordingly.

Patterns are identified/enforced during execution of a program by updating the state

bits accordingly and ensuring that no memory access occurs to an invalid state. For

example, reads from uninitialized heap data are noticed by observing a memory read

to a word of memory whose state is uninitialized.

iWatcher [54] tests programs for memory leaks, memory corruption, bu↵er over-

flow, stack-smashing attacks, value invariant violations and out-of-bound pointers.

The above is achieved by using customized monitoring functions for each di↵erent

type of pattern. (It is unclear what computational power these monitoring functions

contain.) Each memory access to a watched location is referred to as a “triggering

access” and causes the monitoring function specified for that range of memory ad-

dresses to be invoked. For example, to detect bu↵er overflows, padding is added to all

bu↵ers and the addresses of the padding are monitored. Any access to the addresses

of the padding is considered an instance of a bu↵er overflow.

Valgrind’s Memcheck [33], IBM’s Rational Purify [16], and DynamoRIO’s Dr.

Memory [6] check for similar memory errors as iWatcher. Valgrind achieves this by

associating a “V” or “valid-value” bit with each bit in memory and an “A” or “valid-

address” bit with every byte of memory. The A bits are checked on every memory

access to determine if that location in memory is valid to access at that particular

time. For example, all the bytes in an allocated array are marked as accessible but

17



any access beyond the end of the array accesses memory marked as inaccessible. The

V bits track whether or not a bit in memory is initialized. When a value in a CPU

register is a memory address or is used in a conditional branch statement the V bits

are checked to ensure that all of them are initialized.

AccMon [53] uses iWatcher to find and enforce what it refers to as “Program

Counter-Based Invariants”, which are the set of instructions that access a particular

memory location, referred to as an “AccSet”. This AccSet is designed to represent

the relationship between a memory address and the set of instructions that access it.

A training run, on bug-free input, is used to establish the AccSets of the program.

An enforcement run uses the established AccSets to detect instructions that access

a memory address but are not contained in the AccSet. These types of accesses are

indicative of memory errors such as bu↵er overflows, stack-smashing attacks, dangling

pointers and memory corruption. Indeed, AccMon is shown to be able to successfully

detect these types of errors in programs.

Hobbes [8] identifies two types of patterns which are referred to as “access errors”

and “type errors.” A memory access error is defined as a read to an invalid memory

location such as accessing an unallocated or uninitialized memory address. A type

error is defined as an operation performed on operands whose types are not compatible

such as adding a real number to a pointer, dereferencing an integer, and calling

a function with the wrong number or type of arguments. The types represented

are primitive C language types and the type information is extracted from symbol

and debug tables in a program binary. Each byte of memory is associated with

its type represented as a byte in shadow memory. These types are updated by the

memory management library routines which have been modified. When an instruction

is interpreted by the interpreter, the types of the source and destination memory

locations are checked to ensure that the instruction being executed can be performed

18



with those operands.

Bochspwn [18] focuses on checking for time-of-check-to-time-of-use vulnerabilities

in the Windows kernel. It has both an o✏ine and online analysis mode. In the o✏ine

analysis mode, information about every instruction is stored in a separate log file

that can then be processed later to find patterns. In the online analysis mode, the

time-of-check-to-time-of-use pattern specified is identified during the runtime of the

system. Other online patterns may be specified, but they would have to be built into

Bochspwn itself, requiring modifications and additional runtime overhead. Bochspwn

identifies other patterns of interest but leaves the implementation of searching for

these patterns as future work.

MUVI (MUlti-Variable Inconsistency) [34] focuses on checking for multi-variable

related inconsistent updates and concurrency bugs. MUVI performs static analysis

of program source code and uses data mining techniques to detect variables that are

consistently updated together, and are therefore correlated, with the goal of detecting

instances where these variables are not updated together. In addition, MUVI also

checks for multi-variable concurrency bugs by ensuring that the same lock covers

accesses to correlated variables and that the ordering of the accesses is consistent

indicating that no race condition exists.

All of the above work focuses on detecting memory errors by searching for pre-

defined patterns. The majority of the work requires that the patterns be specified as

a part of the mechanism. Any modification or additions to the patterns requires the

mechanism to be recompiled at the least. Cage allows the patterns to be specified

separately from the mechanism and so allows new patterns to be specified without

the need to modify the mechanism. Cage also has the ability to make a run-time

decision regarding a memory access based on the pattern specified. This means that

during the execution of a program Cage can evaluate each memory access against the

19



Related Work Speed Full Transparency Light Transparency Reliability Completeness
Bochspwn X X X
Memcheck X
MemTracker X X X
iWatcher X X
Cage X X X

Figure 2.1: A comparison of the work most closely related to Cage in terms of its
filtering capabilities.

specified filter, allowing Cage to decide whether a particular memory access matches

the pattern specified. If the memory access violates the pattern, Cage can raise a

segmentation fault to the running program indicating that a memory violation has

occurred and that the program should be terminated. Cage also has the ability not

only to intercept the memory event stream but also to modify the event stream. While

other work also has this ability, the focus of the other work has been on observing

the memory event stream with the goal of detecting specific patterns.

Based on the above work we have selected four of the most closely related pieces of

work in terms of the filtering aspect, and compared these based on the principles we

defined in Chapter 1. Figure 2.1 shows our interpretation of this comparison based on

the information available from the referenced papers. Only Bochspwn [18] and Cage

meet the lightly transparent principle as neither require modifications to the source

code or binary image of the target program. We consider binary instrumentation to

be a modification of the binary and so do not count this as adhering to the lightly

transparent principle. We also do not count binary instrumentation to be complete

as it cannot intercept and filter each instruction level memory event generated by the

target process. While both MemTracker [50] and iWatcher [54] are hardware level

solutions we believe that only MemTracker achieves the principle of speed. While

MemTracker does have some amount of overhead, this overhead is relatively small in

comparison with iWatcher. From this comparison it is clear that Cage is most closely

comparable to Bochspwn based on the principles achieved by each mechanism.

20



2.4 Summary

In this chapter, related work was discussed in two parts. The first part discussed

memory interception techniques and focused on the page fault mechanism that Cage

uses. Memory interception can be done using a variety of methods including standard

or “built-in” tools such as gdb [12], hardware additions or modifications such as those

used in CoPILOT [31] and MemTracker [50], dynamic binary instrumentation such

as Valgrind’s Memcheck [33], emulation or virtualization uses such as Bochspwn [18],

and reusing existing hardware features such as the page fault mechanism that Cage

uses.

The second part focused on the ability to find patterns in the memory event

stream. While there are many di↵erent techniques used to find patterns in the memory

event stream, the commonality across all of the work is the motivation behind it.

The goal behind all of the work was to detect varying types of memory errors such

as memory leaks, memory corruption, bu↵er overflows, stack-smashing attacks, value

invariant violations, out of bound pointers, and type errors.

In general, as demonstrated by the related work discussed here, there is no solu-

tion to intercepting memory events that is readily available on commodity systems.

All of the techniques discussed involve using an additional tool or functionality of the

system to achieve memory interception. In some cases, the techniques used are an

abuse of pre-existing hardware features demonstrating that the hardware is capable

of this type of memory interception. Unfortunately, as demonstrated by techniques

using hardware additions or modifications, it is expensive, computationally and finan-

cially, to introduce an additional set of hardware primitives tailored to intercepting

memory events. However, introducing a commodity mechanism for intercepting mem-

ory events would allow further work to be accomplished in detecting patterns in the

memory event stream. Recognizing patterns in the memory event stream is a non-

21



trivial task and often involves maintaining a significant amount of state. However,

recognizing patterns in the memory event stream has been shown to be useful in

detecting memory errors such as memory leaks, memory corruption, bu↵er overflows,

stack-smashing attacks, value invariant violations, out of bound pointers, and type

errors. The next chapter discusses the main Cage mechanism in detail.

22



Chapter 3

Cage Mechanism Design

In order to intercept the memory events of a process, Cage uses a page fault mecha-

nism that consists of a series of modifications to the memory management subsystem

of the Linux kernel. This page fault mechanism triggers a page fault given any at-

tempt by a “caged” user-level process to access its process address space. (“Caged”

is used to refer to any page or process that is being supervised by the Cage mecha-

nism.) The steps outlined below are an overview of the steps the Cage mechanism

takes. Figure 3.1 illustrates the flow of the Cage mechanism and begins at step 2.

1. Mark vm areas and all pages within a vm area as caged (3.1)

2. Trigger a page fault by a user-level access to a caged page (3.1)

3. Ensure that the page fault was triggered by the Cage mechanism (3.1)

4. Evaluate BPF filter over the memory event (3.4)

5. Generate memory event packet for the memory event (3.2 and 3.3)

6. Mark the page as un-caged (3.1)

7. Store the faulting addresses (3.1)

8. Enter single step mode, disable interrupts, and restart instruction (3.1)

9. Trigger a debug fault at the beginning of the next instruction (3.1)

10. Mark the page as re-caged (3.1)

11. Flush the entries for the faulting addresses out of the TLB (3.1)

12. Exit single step mode, enable interrupts, and continue execution (3.1)

The discussion of the steps outlined above are divided into the following four

major sections, as indicated by the italicized section numbers above. Steps 1-3 and

6-12 are discussed in Section 3.1, which discusses the page fault mechanism. Step 5

23



CPU/MMU Page/PTE Bits Page/Debug!
Fault Handler

BPF Net Device
Fetch

Page Fault

PTE Entry

Fetch PTE Bits

PTE Entry
Filter

Result

Emit Packet

To 
User  

SpaceFix PTE (UnCage)

Restart Instruction

Single Step Trap

Set PTE (ReCage)

Continue Execution

Page Fault Handler

Debug Fault Handler

Figure 3.1: Flow Diagram of the Cage Mechanism Workflow.

is discussed in Sections 3.2 and 3.3. Section 3.2 discusses the memory event packet

format and the creation of these memory event packets while Section 3.3 discusses

the memory network device and the Wireshark [47] dissector that views the memory

event packets. Step 4 is discussed in Section 3.4, which discusses the modifications

that we made to the Linux implementation of the Berkeley Packet Filter (BPF) [25]

and the filter mechanism that Cage uses. Section 3.5 describes a working example

of the operation of Cage. The remaining sections discuss the supporting mechanisms

that have been created including varying mechanisms to cage di↵erent vm areas as

well as special memory event packets showing the creation of vm areas.

24



3.1 Page Fault Mechanism

In addition to the modifications we made to the Linux kernel’s memory management

subsystem, the page fault handler of the Linux kernel has also been modified with

Cage-specific code to correctly handle page faults resulting from the Cage mechanism.

This section details the steps involved in the Cage mechanism’s memory interception

technique.

Step 1: Mark vm areas and all pages within a vm area as caged

Virtual memory areas (vm areas) are caged by modifying the page protection bits of

the vm area to be in a unique state. The vm area struct is a C structure that con-

tains metadata about a vm area including the vm page prot field. The vm page prot

field is a 64-bit field containing information about the page protections such as

read, write, and execute permissions. Figure 3.2 shows the layout of the bits in

the vm page prot field as well as in the page table entry (PTE) for a page. The

vm page prot field also contains a bit indicating whether the pages are user or su-

pervisor pages (U/S bit) (user pages are user-level pages whereas supervisor pages

are kernel-level pages). Pages inherit the information contained in the vm page prot

field in their PTE. Thus, any new page created in a vm area will have the informa-

tion from the vm page prot field in their PTE and will be marked as caged without

requiring further intervention. In order to mark a vm area as caged, the U/S bit is

cleared indicating that the pages will be supervisor pages. Any access to this vm area

by the owner user-level process will trigger a page fault because it is an attempt by

a user-level process to access a kernel-level page. In addition to clearing the U/S bit,

caged pages are also identified by setting bit nine (Cage bit). This bit is labelled as

being unused (it actually is used to indicate a special mapping that should not be

associated with a struct page). It is the combination of the U/S bit being cleared

and the Cage bit being set that indicates a caged vm area or page. In addition to

25



63 62. . . 52 51. . . 12 11. . . 9 8. . . 3 2 1 0
XD ignored physical frame address ignored status U/S R/W P

Cage label (high bits reserved) Cage bit 9 bits

Figure 3.2: PTE diagram, based on [17]. Cage reserves bits 52–62 as a “label”. Like
previous approaches to such trapping, it overloads the User/Supervisor bit (2). We
also overload bit 9 (to help distinguish a “Cage” page from other uses of bit 2), which
is supposedly unused (but is actually used by the kernel).

modifying the U/S bit and the Cage bit of the vm page prot field, bits 52 – 62 are

unused and provide the opportunity to label a vm area or a page with an 11 bit long

identifier. While we have explored the ability to label vm areas and pages, Cage does

not make use of these labels at this time.

Step 2: Trigger a page fault by a user-level access to a caged page

Page faults that are triggered by Cage occur in two cases. In the first case, the page

fault is the result of an instruction fetch to a code page. An instruction fetch is

an attempt to read the opcode for the next instruction to be executed from a page

containing code. The read event in a caged code page is what triggers the page fault.

In the second case, the page fault is the result of an attempt to read or write from/to

a data page. A read or write access to a data page occurs when data used by a

process is either read or updated. For example, an update to a global variable within

a process creates a write event to a data page. A read or write event in a caged data

page triggers a page fault. For the purposes of Cage, any page that is marked as

executable is considered a code page and any page that is marked as non-executable

is considered a data page. This means that vm areas such as the heap and the stack

are considered to contain data pages.1

Step 3: Ensure that the page fault was triggered by the Cage mechanism

Once a page is marked as caged and a page fault is triggered, the page fault handler

1This is assuming an x86 architecture and that code and data do not reside on the same page.

26



must correctly recognize the cause of this page fault as originating from the Cage

mechanism and allow the Cage functions to handle the page fault. In addition, the

Cage functions must also recognize page faults from a caged page that must first

be handled by the regular page fault handler and return control to the page fault

handler. For example, accesses to a non-present page or a copy on write must first

be handled by the regular page fault handler before they can be handled by the Cage

functions. In this respect the page fault handler and the Cage mechanism must work

seamlessly with each other to allow page faults triggered by Cage and normal page

faults to be handled without one inhibiting the functionality of the other.

Step 6: Mark the page as un-caged

Once it has been determined that the page fault is indeed caused by an access to a

caged page, the next step in the page fault mechanism is to mark the page as un-

caged. This is done by setting the U/S bit in the PTE for the page that triggered the

page fault. An un-caged page is therefore a page in which both the U/S bit and the

Cage bit in the PTE are set. Setting the U/S bit in the PTE will allow the access to

the page to complete when it is restarted because it will once again be labelled as a

user-level page that can be accessed by a user-level process.

Step 7: Store the faulting addresses

Before the access to a page is allowed to complete by returning from the page fault

handler, the faulting address or addresses must be stored. The faulting address

is the virtual memory address that was being accessed when the page fault was

triggered. A distinction is made between faulting addresses that were the result of

an instruction fetch and those that were the result of data accesses. The faulting

addresses from both an instruction fetch and a data access must be stored for later

use. The distinction between an instruction fetch and a data access is to ensure that

the faulting addresses for both are stored if the same instruction causes both to occur.

27



In total up to six faulting addresses must be stored in some cases. These are cases

in which an instruction crosses a page boundary and two faulting addresses must be

stored, and/or the instruction causes either or both of the source and destination

operands to cross a page boundary requiring up to four more addresses to be stored.2

Step 8: Enter single step mode, disable interrupts, and restart instruc-

tion

Once the faulting addresses are stored, the processor is placed in single-step mode and

interrupts are disabled. The mechanism then returns from the page fault handler.

This causes the processor to restart the current instruction or memory access which

will succeed normally at this point.

Step 9: Trigger a debug fault at the beginning of the next instruction

The beginning of the next instruction will trigger a debug fault because the processor

is in single-step mode. The debug fault handler has also been modified to detect this

specific case of a debug fault and allow the Cage functions to handle it accordingly.

Step 10: Mark the page as re-caged

While in the debug fault handler, the page or pages that were un-caged in the page

fault handler must be re-caged. The stored faulting addresses are used to achieve

this. The PTEs for the pages containing the faulting addresses are re-caged, that is,

the U/S bit is cleared as it was in the initial state.

Step 11: Flush the entries for the faulting addresses out of the TLB

At this point the faulting addresses are also flushed out of the translation lookaside

bu↵er (TLB). This step is necessary because the restarted instruction or memory

access that was allowed to occur normally will have caused an entry containing the

2The x86 string instructions appear in the output of Cage to be a series of identical instructions
whose e↵ective addresses di↵er and these instructions do not span more than one page boundary for
either or both of the source and destination operands.

28



faulting address to be placed in the TLB. If that entry is not flushed out of the

TLB, then any future access to that page will not result in a page fault and will

occur normally because the entry in the TLB takes precedence. The act of flushing

the entry from the TLB e↵ectively means that for a process that has every vm area

caged the TLB is essentially unused, which forces a page table walk to occur for every

memory access for that process.

Step 12: Exit single step mode, enable interrupts, and continue execu-

tion

After flushing the TLB of up to six faulting addresses the processor is removed from

single-step mode and interrupts are again enabled. The mechanism then returns from

the debug fault handler and the next instruction begins. If that instruction also ac-

cesses a caged page then the whole process is repeated beginning with another page

fault (Step 2). Figure 3.1 (page 24) shows an overview of the steps necessary for the

Cage mechanism to function.

3.2 Memory Event Packet Format and Generation

While in the page fault handler context, Cage is able to extract the following metadata

about the memory event:

1. the instruction pointer . . . bytes 0–7

2. the e↵ective address (faulting address) . . . bytes 8–15

3. the instruction label (Cage “label”, if any, of the page containing the

faulting instruction) . . . bytes 16–17, 11 bits

4. the e↵ective address label (Cage “label”) . . . bytes 17–19, 11 bits

5. the PTE meta-data for the e↵ective address

(first 10 bits of the PTE) . . . bytes 19–20, 10 bits

29



6. type of access: r/w/x . . . byte 21

7. the instruction at the instruction pointer . . . bytes 22–36

8. the PID and UID . . . bytes 37–40 and 41–44

9. the data at the e↵ective address . . . bytes 45–52

The italicized text above indicates where the information is placed within the

memory event packet structure. The memory event packet structure is a C structure

that contains the above information, whose structure is shown in Figure 3.3.

Step 5: Generate memory event packet for the memory event

The above information is extracted before the page is marked as un-caged, as de-

scribed in the previous section. The extraction of this information is dependent on

the memory network device, described in the next section, being loaded and set to

“up”. If the memory network device is not loaded and “up”, the packet generation

will not occur and no memory event packet structures will be produced. Once the

information extracted is placed in an instance of a struct memevent packet, the

memevent packet is placed on a queue and the net device struct associated with

the memory network device is found. The transmit function for the memory network

device is called and the page fault mechanism continues by un-caging the page (Step

6).

3.3 Memory Network Device and Wireshark Dissector

The memory network device is a Linux loadable kernel module (LKM) that creates

a new network device within the operating system that can be used exclusively for

memory event packets. This memory network device di↵ers from traditional network

devices in that it does not handle regular network tra�c and all functionality of the

device is tailored specifically to handle memory event packets. When this LKM is

30



struct memevent_packet {

unsigned long src;

unsigned long dest;

unsigned int src_dest_pte;

unsigned char rwx;

unsigned char instruction[15];

unsigned int pid;

unsigned int uid;

unsigned long data;

}

Figure 3.3: Structure of memory event packet.

loaded and the memory network device it creates is “up” it allocates a packet queue

that is 10 memevent packet structs in length. This is the same queue that the page

fault mechanism places the newly formed memevent packet in after it creates the

memevent packet.

The transmit function that is called from the page fault mechanism first de-

queues the memevent packet struct from the packet queue. It then encapsulates this

memevent packet struct in an Ethernet header. This encapsulated memevent packet

struct is referred to as a memory event packet. A memory event packet appears to the

operating system as a normal network packet and is treated as such by the operating

system. A struct sk buff is created and the memory event packet is placed in the

sk buff. The function netif rx is then called to pass the sk buff to the receive

network path of the kernel. (It could easily be transmitted over the network at this

point but doing so is outside the scope of this work.) This arrangement e↵ectively

turns this memory network device into a loopback device.

The memory event packets can then be captured from the memory network device

using any standard network packet capture utility such as Wireshark [47], dump-

cap [46], or tcpdump [49]. As Wireshark provides a graphical interface that can

display network packet contents and could be extended to support memory event

31



Figure 3.4: Wireshark view of an instruction fetch memory event packet.

packets, it was chosen as the primary network capture utility. To that end, a spe-

cially created Wireshark dissector is used to dissect the memory event packets so that

Wireshark can display their contents. This Wireshark dissector takes the information

contained in the memevent packet struct shown in Figure 3.3 and displays it without

modification. The only exception to this is the 15-byte instruction opcode. For the

instruction opcode, the Wireshark dissector uses the libudis86 [48] library, for disas-

sembling x86 and x86 64 instruction opcodes, to disassemble the 15-byte instruction

opcode into a text string. This text string is then displayed in the packet view with

the rest of the information from the memory event packet. Figure 3.4 shows an exam-

ple of the Wireshark view of a memory event packet that contains information about

an instruction fetch.

32



3.4 Filter Mechanism and Modifications to BPF

The Berkeley Packet Filter (BPF) [25] framework is a filtering mechanism for network

packets that is included in the Linux kernel. Using the BPF framework to filter

memory event packets allows the use of an already established filtering mechanism. In

addition, the use of BPF for processing (and modifying) streams of memory events is

a design alternative to the practice of inserting arbitrary C or x86 code into dynamic

memory analysis. This kind of pattern has many precedents: consider the use of

SystemTap built on top of kprobes. While inserting raw C or x86 code provides a

great deal of control, it also entails some risk (the inserted code may be buggy or

hard to maintain). In contrast, BPF o↵ers a still–powerful interface for analysis, but

avoids some of the risks of inserting arbitrary computation into the instrumented

memory event sequence.

In order to use BPF to filter memory event packets and provide flexibility in the

types of filters available, it was necessary to extend BPF in three ways. First, the

Linux kernel implementation of BPF was originally intended to only process 32-bit

values. Since Cage was designed to work on 64-bit systems it was necessary to extend

the implementation of BPF to support 64-bit values. This allowed the load and store

of 64-bit memory addresses. The one exception to this is the size of “K” in the BPF

filters which remains a 32-bit value. K is used to pass arguments to BPF instructions

in the filters and the extension of K to 64-bits for use by Cage could impair the

functionality of other BPF filters.

The second modification to BPF was the addition of a load instruction that was

specific to Cage. This load instruction is able to load in values about a memory event

such as:

1. The instruction pointer

2. The e↵ective address (faulting address)

33



3. The value contained in the rax register

4. The value of the rwx flags

5. The 8-byte value of the data contained at the e↵ective address

6. The value contained in one of the five storage locations

This was done so that BPF filters can be created which compare these values to

a given constant or range of values and allow a decision to be made based on the

current memory event. Adding in the ability to load the current value in rax allows

the ability to capture the return value of a function call. For example, this allows the

ability to capture the address returned by a call to malloc() and store this address to

allow any future memory events that involve this bu↵er to be noticed. This becomes

important because, in some cases, the compiler could optimize the code such that

the bu↵er address is never written to memory and is thus not viewable as a memory

event.

The third modification to BPF was the addition of a store instruction that was

specific to Cage. This store instruction allows the ability to store up to five di↵erent

values across runs of the filter. This allows information or state that is a↵ected by

one memory event to be used to make a decision about future memory events. A

more in-depth discussion about the types and capabilities of BPF filters is deferred

until Chapter 5.

The BPF filters are specified in an LKM which must be loaded before the caged

process being filtered is executed. This provides one global filter that is applied to any

caged process that is executed. While it is possible to specify filters on a per-process

basis, Cage does not attempt to do so at this time. It is assumed that the main use

case for Cage will be in caging and monitoring one process at a time although there

is nothing preventing multiple processes from being caged at the same time.

34



63 62. . . 52 51. . . 12 11. . . 9 8. . . 3 2 1 0
XD label physical frame xx 1 status 0 0 1

11111111111 address bits

Figure 3.5: PTE contents for the workflow example.

Step 4: Evaluate BPF filter over the memory event

The BPF filter is evaluated in the page fault mechanism of Cage before the page

is un-caged and prior to the memory event packet being generated. As mentioned

previously, the actions Cage performs in the page fault mechanism occur before the

instruction or memory access actually occurs. Evaluating the filter at this point allows

a decision to be made regarding the memory event that is about to occur. The result

of this decision takes three forms. First, the BPF filter can indicate (via the return

value of sk run filter) that a memory event packet should be generated and the

memory event should be allowed to proceed normally. Second, the BPF filter can

indicate that no memory event packet should be generated and the memory event

should be allowed to proceed normally. Third, that no memory event packet should

be generated and that the memory event should not be allowed to proceed. In this

case a segmentation fault is raised and the executing caged process is terminated. (It

is also possible to take other steps at this point such as issuing a warning to a log

instead of raising a segmentation fault.) Filtering in this fashion, where the filter is

evaluated on each memory event, allows a decision to be made on each memory event

and e↵ectively filters the memory event stream of a caged process as a whole.

3.5 Working Example

To illustrate Cage’s workflow, consider the instruction mov rax, [rbx+0x60014c] as

an example. The memory location 0x60014c, a constant in the .data section, has the

page table entry shown in Figure 3.5. Bit nine in the page table entry is set and the

35



Figure 3.6: Workflow example memory event viewed in Wireshark.

user/supervisor bit (bit 2) is cleared indicating that this is a caged page. This results

in a user access to a supervisor page which triggers a page fault. Once in the page

fault handler the page fault is recognized as being caused by the Cage mechanism by

the unique combination of PTE bits. Once in the Cage functions the BPF filter is

first evaluated over this memory event. If there is no filter or if the memory event

matches the filter a memory event packet is generated. This memory event packet is

then sent to the network using the process described previously. The user/supervisor

bit is then set in the page table entry (un-caging the page), the processor is placed

in single step mode and Cage returns from the page fault handler. The execution of

the instruction mov rax, [rbx+0x60014c] completes normally, and the beginning of

the next instruction results in a debug trap. Here the user/supervisor bit is cleared

(caging the page and returning the PTE to its starting state seen in Figure 3.5), the

36



processor is taken out of single step mode and the single entry corresponding to the

page table entry for the address 0x60014c is flushed out of the TLB. The resulting

packet generated from this instruction can be seen in Figure 3.6. Note that if the text

segment containing the instruction were also caged, then two events would be seen:

one for the instruction’s page, followed by one for the data page.

3.6 Creating Caged Programs

Four di↵erent mechanisms exist that can be used for caging a vm area or a process.

The first of these mechanisms is a modified mmap system call [27] that can be used for

creating a caged vm area. The second mechanism is a new chmem system call that

can be used to modify the caged state of the vm areas of a running process. The

third mechanism is a library that can be used in conjunction with LD PRELOAD

to cage specific vm areas. The fourth mechanism is a wrapper program for a clone

system call [9] that cages every vm area in the process that is executed.

3.6.1 Instrumented mmap System Call

The mmap system call [27] allows a program to create a new vm area within its process

address space. This vm area can be used to map in the contents of a file or can be

left as an empty “anonymous” vm area. The mmap system call also allows a program

to specify the protections on the new vm area, such as read, execute, and write

permissions, as a set of flags that are passed to mmap. Cage specifies a new flag

(PROT CAGE) that can additionally be passed to the system call, requesting the created

vm area to be caged. This modified mmap system call can be used to selectively create

caged vm areas within a process. This gives the programmer the ability to selectively

create a special caged vm area which could be used to hold a critical piece of data,

such as a private key. This would allow the programmer to observe any memory

37



events that access this piece of data.

3.6.2 The chmem System Call

We created the chmem system call to allow the ability to modify the caged state

of selected vm areas of a currently executing process. We also created a user-level

utility, chmem user, to act as a front end to the chmem system call. The vm area to

be modified is specified as a parameter to chmem user and is passed as an address

to the chmem system call. The vm area that contains this address is found and the

vm area page protection bits are modified accordingly along with the PTEs of all

the pages within that vm area. There are six modifications that the chmem system

call can make. The first is to cage the vm area specified so that all future accesses

to this vm area trigger the Cage mechanism. The second is to un-cage the vm area

specified so that no future access to this vm area will trigger the Cage mechanism.

The third is to modify the label of the vm area. The fourth is to Cage only a specified

address range. This does not Cage an entire vm area but only the pages contained

in the specified range. The fifth is to Cage a single page. The sixth is to Cage only

the stack. The combination of the chmem system call and chmem user allows easy

modification of the caged state of any currently executing process without requiring

access or modification to the source code of the executing process. This allows a

programmer to target an already executing process and cage vm areas or pages of

interest, such as the stack in order to view the memory events for the caged region of

the program.

3.6.3 The Cage Library

The Cage library libcage is designed to only cage a specific ELF section. The

libcage program uses the libelf API to find the address and size of a specified

ELF section, such as the .text or .data sections. The chmem system call is then

38



used to cage the address range corresponding to the specified ELF section. The

libcage program is a shared library that is used in conjunction with LD PRELOAD

to cage only the specified section of the program that is executed. Another version

of libcage will cage only the stack of the executed program. This version makes

use of the chmem system call’s ability to cage the stack. The Cage library allows the

ability to cage specific ELF sections while executing a program from its beginning.

Unlike the chmem system call, it does not require the target program to be running

and unlike the instrumented mmap system call, it does not require modification to the

source code. This allows the programmer to again target a memory region of interest

such as the stack or .text sections and view the memory events generated by memory

accesses to that region. This also executes the target program from the beginning

allowing the programmer to view all memory events for the specified region over the

life time of a process.

3.6.4 Executing Caged Programs

The cage wrapper utility is a wrapper for a clone system call. The clone system

call creates a child process of the cage wrapper program. A special flag, CLONE CAGE,

is passed by cage wrapper to the clone system call. This flag tells the instrumented

clone system call to set a flag in the task struct of the child process indicating

that this process is to be a caged process. We modified the ELF loader in the Linux

kernel to check for the flag in the task struct during the creation of the vm areas of

a process. If the caged process flag in the task struct is set then each vm area that

is created for the child process is created as a caged vm area. Thus, the child process

created by the clone system call is created as a caged process that has every vm area

and page caged. The cage wrapper executes the process given as an argument, as

a caged process. This allows a programmer to execute any program as an entirely

caged process from its beginning, allowing a record of the entire program’s execution

39



to be created.

3.7 Vm area Creation Packets

Vm areas are created or modified at di↵erent points during the lifespan of a process.

Some vm areas, such as the heap, are created when they are first needed and expanded

as required. Other vm areas, such as the .text segment, are created by the ELF loader

while the process is being loaded and before its execution begins. The ability to notice

the creation or expansion of vm areas is important because it provides a reference for

correlating the e↵ective address of a memory event with its vm area. For example, the

ability to recognize the creation of the heap allows any future access to the heap to be

found in the packet trace simply by using the post-filtering functionality of Wireshark.

To that end, we instrumented the vm area management functions of the Linux kernel

to produce a special memory event packet on any creation or modification to a caged

vm area. An unused bit of the rwx flags byte in the memevent packet struct was

used to signify the creation or modification of a vm area. (See Figure 3.3 on page 31

for the memevent packet struct.) The beginning and end addresses of the vm area

are contained in the vm area creation packet as well as the vm area page protection

bits which indicate the caged status of the vm area.

3.8 Summary

In this chapter the twelve steps that the Cage mechanism goes through to handle

each memory event were discussed in detail. In Section 3.1, steps 1-3 and 6-12 were

discussed as they relate to the steps that the Cage specific page fault handler and

debug fault handler take to handle each memory event. Step five was discussed in

Sections 3.2 and 3.3, which outlined the information contained in the memory event

packet, the creation of the memory event packet, and the viewing of the memory

40



event packets in Wireshark. Step four was discussed in Section 3.4, which detailed

the modifications made to BPF and the process of evaluating the BPF filter over a

memory event. Section 3.5 outlined a working example demonstrating how a spe-

cific instruction would be handled. The remaining sections discussed the supporting

mechanisms that Cage uses, including various mechanisms to cage the vm areas of a

user-level process and the usage of extra bits in the memevent packet struct to show

the creation of new vm areas. The next chapter will discuss our evaluations of the

Cage mechanism.

41



Chapter 4

Evaluation

This chapter discusses the evaluations that we have performed on the varying aspects

of the Cage mechanism. The first section discusses the performance of the Cage

mechanism using the SPEC CPU2006 suite [10] as a benchmark. The second section

discusses capturing the memory event packets. The third section covers the generality

of the Cage mechanism to di↵erent platforms. Finally, the fourth section details our

attempt at comparing two memory event packet traces. We defer the discussion

relating our results to the principles outlined in Chapter 1 until Chapter 6.

4.1 Performance of Cage

We tested the performance of Cage across various potential use cases for the mech-

anism as well as tests that highlight the overhead of di↵erent parts of the Cage

mechanism. The test programs are the integer benchmarks from the SPEC CPU2006

suite [10].1 The SPEC benchmarks were chosen because they provide a standard,

well-recognized set of programs with which to test the functionality and reliability of

Cage.

All of the tests were performed on two identical machines. A baseline control test

was performed on each machine and the results are compared with the baseline of

the machine the test was performed on. Each machine contains a 3.10GHz Intel i5

processor with 4 cores and 8 GB of RAM, running CentOS 6.4. Both machines run

identical versions of the 3.9.4 Linux kernel modified with Cage code. All programs

were tested with the “test” (smallest) inputs and the time measured was the “real”

1The perlbench benchmark is omitted due to mismatched libraries not allowing it to compile,
while the h264ref benchmark is omitted due to observed instability.

42



time as reported by /usr/bin/time. Unless otherwise noted, each program was run

once under each of the test cases due to the length of time required to run some

programs. The baseline tests performed on each machine were performed on an

unmodified version of the 3.9.4 Linux kernel. The baseline tests were performed three

times and an average2 of the three runs was taken as the baseline measurement.

There were five di↵erent tests performed in total. Test 1 compares the baseline

with the runtime of the Cage version of the Linux kernel with none of the test pro-

grams caged. Test 2 compares the baseline with the runtime of the test programs

entirely caged and the entire Cage mechanism active. Test 3 compares the baseline

with the runtime of the test programs entirely caged but without the memory network

device activated. This eliminates the overhead of the memory event packet creation

and filtering aspects of the mechanism. Test 4 compares the runtime of the baseline

with all of the test programs entirely caged and a BPF filter active that only allows

memory event packets to be generated for the .data section. Test 5 compares the

baseline with the runtime of only the stack of the test programs being caged.

Test 1: Baseline kernel as compared with Cage kernel

The first test, comparing the baseline kernel with the Cage version of the Linux kernel

with none of the programs caged, is designed to test the overhead that the Cage

mechanism has when it is not active. Even while inactive, there are still extra lines of

code that are executed during each page fault and memory allocation that occur. This

test was performed three times and the average of the runs was compared with the

baseline. The average of the runs as well as the standard deviations for each of the test

programs are shown in Figure 4.1. In the majority of cases the runtime of the baseline,

or standard, kernel is within one standard deviation of the runtime of the Cage kernel.

This indicates that there is not a significant di↵erence between the runtime of the

2“average” as used throughout this thesis refers to the arithmetic mean.

43



SPEC Benchmark Standard Kernel Std Dev Cage Kernel Std Dev
bzip 4.84 0.10 4.77 0.06
gcc 1.07 0.11 1.08 0.10
mcf 2.23 0.02 2.07 0.01
gobmk 15.35 0.29 14.99 0.47
hmmer 2.32 0.04 2.33 0.02
sjeng 3.25 0.23 3.19 0.02
libquantum 0.03 0.01 0.04 0.01
omnetpp 0.33 0.03 0.33 0.03
astar 7.88 0.03 7.86 0.05
xalancbmk 0.13 0.12 0.12 0.10

Figure 4.1: Average run time in seconds over three runs for standard kernel and Cage
kernel with no caged program as well as standard deviations for both.

baseline kernel and the runtime of the Cage kernel. (The anomalous behaviour of mcf

is examined in more detail later on.) The performance of the Cage kernel as compared

with the baseline kernel can be seen in Figure 4.2. This comparison highlights how

close the runtime of the baseline kernel and the Cage kernel are to each other as

evidenced by the values for each program closely approaching 1.0. We examined the

two outlier programs, mcf at 0.93 and libquantum at 1.09, in more detail as shown

in Figure 4.3. Both mcf and libquantum were run a total of 12 times and the mean

and standard deviation of each is reported. With regards to libquantum, the baseline

and the Cage kernel both have an average runtime of 0.04 seconds indicating that

there is a negligible di↵erence between the two cases. However, the runtime of mcf

shows a significant improvement when run on the Cage kernel as compared with the

baseline. On the Cage kernel mcf runs on average for 2.06 seconds while the baseline

runs for 2.24 seconds. The mcf program is designed to simulate single-depot vehicle

scheduling in public mass transportation [23]. We conjecture that the improvement

seen in the runtime of mcf may be due to a possible cache alignment created by the

Cage kernel. Part of our future work will be to investigate this further. Overall, with

the exception of mcf, there is not a significant di↵erence in the runtime of the SPEC

programs between the baseline kernel and the Cage kernel.

44



Figure 4.2: Programs are not caged, as compared to baseline SPEC runs

Test 2: Baseline as compared with 100% Caging

The second test, comparing the baseline with the entirely caged version of the SPEC

programs, is designed to show the worst case scenario in terms of performance. We

expect caging 100% of the process address space to have a large impact on the per-

formance of a program. When a program is 100% caged, there is e↵ectively no TLB

because a TLB flush is performed for every memory access, as previously discussed.

Also, instruction prefetching is e↵ectively disabled because a prefetch is not able

to handle the page faults. Handling a page fault on every memory access is also

extremely intensive and we expect this to produce a large overhead. The SPEC

benchmarks are also known to be extremely memory intensive [1]. We would expect

less memory intensive programs to perform better than the SPEC benchmarks. Fig-

ure 4.4 shows the performance in seconds of the SPEC programs as compared with

the baseline. The performance ranges from the fastest program, mcf at 2540 sec-

onds slower (about 42 minutes), to the longest running program which is hmmer at

45



Run # Standard libquantum Cage libquantum Standard mcf Cage mcf
1 0.04 0.04 2.25 2.06
2 0.05 0.04 2.23 2.08
3 0.03 0.03 2.22 2.06
4 0.04 0.03 2.27 2.06
5 0.03 0.04 2.25 2.06
6 0.04 0.04 2.23 2.06
7 0.03 0.04 2.26 2.06
8 0.04 0.04 2.23 2.05
9 0.03 0.04 2.23 2.06
10 0.03 0.04 2.23 2.05
11 0.03 0.04 2.24 2.07
12 0.04 0.04 2.23 2.05
Mean 0.04 0.04 2.24 2.06
Std Dev 0.004 0.001 0.02 0.01

Figure 4.3: Run time in seconds of the libquantum and mcf benchmarks across 12
runs on the standard kernel and the Cage kernel with no programs caged. The mean
and standard deviation of both are reported.

12454 seconds slower (about 207 minutes). We expect this rather significant overhead

based on the reasons outlined above. The range of values seen is an indication of how

memory intensive a particular program is. In general, the more memory intensive

the program, the longer the runtime will be when the program is caged. Figure 4.5,

column two, shows the results for each program as compared with the baseline.

Test 3: Baseline as compared with 100% Caging but no memory network

device

In the third test, all of the programs are 100% caged but there is no memory network

device installed. This results in a page fault being generated for every memory access

but there are no memory event packets created. While not a probable use case

for the Cage mechanism, this test is designed to investigate the overhead required

to generate the memory event packets. In addition, this test also investigates the

overhead produced from just handling a page fault on every memory access. The black

bars in Figure 4.6 show the results of this test. The y-axis scale is kept the same as

the scale from the previous test in order to compare the di↵erence in the performance

of the two tests. In general, the performance of having no memory network device

46



Figure 4.4: Programs are 100% caged, as compared with baseline SPEC runs (lower
is better)

installed is about 50% – 60% of the performance of having the programs 100% caged.

This indicates that the overhead of producing the memory event packets is almost as

great as the overhead of handling a page fault for every memory event. Figure 4.5,

column three, shows the results of this test.

Test 4: Baseline as compared with 100% Caging but with a BPF filter for

the .data section

In the fourth test, all of the programs are 100% caged, the memory network device

is active and there is a BPF filter that is only allowing memory event packets to

be created for the .data section of the benchmark programs. This test is designed to

show the di↵erence in the performance of having no memory network device installed,

as in the third test, and the performance of having a BPF filter for only one section

of memory. This test also highlights how e↵ective using a BPF filter can be to

reduce the overhead that the second test showed while 100% caged. The grey bars

47



SPEC Benchmark 100% Caged No Network Device BPF Filter Stack Only
bzip 9906.99 5209.93 5327.88 882.18
gcc 6554.43 3806.10 3919.45 993.14
mcf 2540.24 1302.77 1329.22 59.22
gobmk 6830.52 3447.02 3575.00 965.11
hmmer 12454.61 6194.52 6393.37 1350.07
sjeng 7976.68 4038.66 4139.52 853.57
libquantum 10063.81 5365.46 5482.61 189.69
omnetpp 9305.03 4922.89 5102.30 1507.48
astar 6097.69 3026.51 3104.48 660.26
xalancbmk 3440.90 2590.56 2680.56 368.89

Figure 4.5: Runtime in seconds as compared to baseline of standard kernel for 100%
Caged, 100% Caged but no memory network device, 100% Caged with a BPF filter
for .data section, and only Stack Caged.

in Figure 4.6 show the results of this test. In general, there is not a significant

increase in runtime between test three, with no memory network device, and this

test. Figure 4.7 highlights the di↵erence between having a BPF filter for the .data

section and having no memory network device. In the worst case, having a BPF

filter for the .data section is only 1.04 times worse than having no memory network

device. This is an expected result because the BPF filter limits the memory event

packets that are being created to those corresponding to the .data section only. Since

this is a relatively small section of memory when compared with the entire process

address space, we expect that producing memory event packets for it will only incur

a slightly larger overhead than producing no memory event packets. In general, the

more restrictive the BPF filter, the lower the performance overhead will be. This

test also demonstrates the usefulness of using a BPF filter to narrow the range of

memory that will produce memory event packets when compared with the results of

the second test. Once again, the performance of having a BPF filter for the .data

section is about 50% – 60% of the performance of having the programs 100% caged,

as in the second test. The fourth column of Figure 4.5 shows the results of this test.

48



Figure 4.6: The black lines show programs that are 100% Caged but there is no
memory network device, as compared to baseline. The grey lines show programs that
are 100% Caged with a BPF filter that only produces packets for the .data section,
as compared to baseline SPEC runs (lower is better)

Test 5: Baseline as compared with caging only the stack

In this test the stack version of the Cage library, libcage (discussed in Section 3.6.3,

page 38) is used to cage only the stack of the benchmark programs. This test is

designed to demonstrate the performance benefit of only caging the ranges of memory

that one is interested in watching. We used libcage to perform this test as it provides

a way of easily caging the stack that is consistent across all of the programs in the

benchmark. Figure 4.8 shows the results of this test. The y-axis is kept on the same

scale as that of Figure 4.4, showing 100% caging, so that the results may be compared.

In general, caging only the stack shows a significant performance benefit. In the best

case, caging only the stack has a runtime that is 2.33% of the runtime of caging

100% of the process address space. In the worst case, the runtime is 16.20% of the

runtime of caging 100% of the process address space. Figure 4.9 shows the runtime

49



Figure 4.7: The run time in seconds for the BPF filter for the .data section as com-
pared with the runtime in seconds of having no memory network device.

of caging the stack only as a percentage of caging 100% of the process address space.

As expected, the amount of stack utilization plays a large role in the performance of

this test. This explains the widely varying results in Figure 4.9. The fifth column of

Figure 4.5 shows the results of this test.

While testing libcage’s ability to cage an address range we noticed that there

was a mismatch between the state of the pages as reported by the kernel versus the

user-level program. Since libcage is loaded and executed early on in the loading of

a program it was attempting to cage the pages in the address range specified before

the kernel had allocated those pages. This is a form of lazy allocation that the kernel

performs where it only allocates pages when they are requested by the user-level

program. To fix this issue we had to access all of the pages in the range we want to

cage from libcage by either reading from them or using mlock to lock the pages in

the range into memory while they are being caged. This caused the kernel to allocate

50



Figure 4.8: Only the stack is caged, as compared to baseline SPEC runs (lower is
better)

the pages so that they could be caged. We do not test the performance of caging a

range of memory using libcage as we believe that its performance would be similar

to that of caging only the stack.

4.2 Capturing Memory Event Packets

In attempting to capture 100% of the memory event packets of a caged process using

Wireshark, we realized some limitations in Wireshark’s capturing capability. Wire-

shark, by default, maintains a small pcap bu↵er (2MB) to bu↵er un-processed packets.

This pcap bu↵er size is not large enough to accommodate the volume of the memory

event stream. Even increasing this pcap bu↵er size to be 200 – 500 MB was insu�-

cient to capture 100% of the memory event packets. Wireshark also performs some

analysis on the packets as it receives them, further inhibiting its capture speed. Fi-

nally, the disk I/O bu↵er is a fixed size and the disk I/O also contributes to inhibiting

51



SPEC Benchmark Percentage of 100% Caged result
bzip 8.90
gcc 15.15
mcf 2.33
gobmk 14.13
hmmer 10.84
sjeng 10.70
libquantum 1.88
omnetpp 16.20
astar 10.83
xalancbmk 10.72

Figure 4.9: Caging the stack only runtime as a percentage of 100% caging.

the capture speed. To that end, we created a special bare-bones packet capture utility

in an attempt to capture 100% of the memory event packets of a caged process. In

contrast to Wireshark’s default, this capture utility includes a 200 MB pcap bu↵er

that can also be modified as needed. In addition, there is no processing performed on

the captured packets, which are placed immediately on the disk I/O bu↵er. The disk

I/O bu↵er is modifiable and by default is set to hold 5000 memory event packets. As

it is the disk I/O that is the bottleneck, having a modifiable disk I/O bu↵er allows

the ability to tailor the capture utility to the caged process by adjusting the bu↵er

size based on the number of memory events expected. The capture utility saves the

captured packets as a pcap file which can then be opened and viewed later in Wire-

shark to make use of the visual representation of the memory event packets given by

Wireshark.

We attempted to capture the memory event packets of our SPEC benchmark pro-

grams. In doing so we noticed that the amount of disk space required to capture 100%

of the memory event packets would overwhelm our test system’s hard drive space.

The program bzip2 alone produces over 3 billion memory event packets when only

the stack is caged. This would require greater than 274GB of disk space. Longer run-

ning programs would produce more memory event packets and require larger amounts

of disk space. Therefore we report the memory event packets generated from only

52



SPEC Benchmark Runtime (Seconds) Number of Packets Number of Packets / Runtime
bzip 4,351.82 3,242,148,737 745,010.70
gcc 1,234.48 908,173,674 735,676.04
mcf 133.02 96,649,176 726,592.66
gobmk 14,378.26 10,643,471,067 740,247.45
hmmer 3,175.37 2,321,753,877 731,176.78
sjeng 2,804.82 2,078,825,279 741,161.48
libquantum 6.83 4,936,173 722,825.16
omnetpp 532.14 388,473,712 730,021.63
astar 5,227.94 3,804,618,130 727,747.23
xalancbmk 70.83 52,075,395 735,237.41

Figure 4.10: Runtime of caging only the stack along with the number of memory event
packets for the SPEC benchmark programs. The third column shows the number of
memory event packets produced per second when the stack is caged.

caging the stack in Figure 4.10. When compared with the runtime of the SPEC

benchmark programs with only the stack caged, as seen in column two, it is clear

that longer running programs, such as gobmk, produce more memory event packets.

The third column of Figure 4.10 shows the number of memory event packets produced

per second of execution time.

4.3 Generality of Cage Mechanism to Di↵erent x86 Platforms

Cage was tested on a variety of virtual machine software and running natively on both

AMD and Intel processors. The goal of this test was to demonstrate the applicability

and usability of Cage across di↵erent environments. It is assumed that the main

use case for Cage will be running inside a virtual machine environment. Therefore,

it is important to determine which virtual machine software is capable of running

Cage. In each test case the modifications to the 3.9.4 version of the Linux kernel

were made and an identical version of Wireshark was used to capture the packets. A

test program was created that used the modified mmap system call to create a caged

vm area. A loop was used that generated a set number (100) of memory events in this

caged vm area. Wireshark was set to capture from the memory network device and

the test program was executed. The number of packets captured was noted as well

53



as the number of packets dropped, according to the statistics reported by Wireshark.

(Tcpdump was also used to double check the statistics reported by Wireshark.) A

visual inspection was also made of the memory event packets produced to ensure the

correctness of the information contained in the memory event packets. The kernel

error log was also checked to ensure that no errors had been reported. Figure 4.11

shows the results running on Intel hardware and Figure 4.12 shows the results running

on AMD hardware.

54



A
rc
h
it
ec
tu
re

V
ir
tu
al

M
ac
h
in
e

H
os
t
S
ys
te
m

G
u
es
t
S
ys
te
m

D
ro
p
p
ed
/M

is
si
n
g
P
ac
ke
ts

O
th
er

Is
su
es

In
te
l

N
/A

C
en
to
s
6.
5

N
/A

N
o

N
o

V
ir
tu
al

B
ox

4.
2.
16

M
ac

O
S
X

C
en
to
s
6.
5

Y
es

N
o

C
en
to
s
6.
5

C
en
to
s
6.
5

Y
es

N
o

V
ir
tu
al

B
ox

4.
3.
8

C
en
to
s
6.
5

C
en
to
s
6.
5

N
/A

T
ra
ce
/B

re
ak

p
oi
nt

T
ra
p

V
m
W
ar
e
F
u
si
on

5.
0.
0

M
ac

O
S
X

C
en
to
s
6.
5

N
o

N
o

P
ar
al
le
ls

M
ax

O
S
X

C
en
to
s
6.
5

N
o

N
o

X
en

(f
u
ll
-v
ir
t
an

d
p
ar
a-
vi
rt
)

C
en
to
s
6.
5

C
en
to
s
6.
4

N
/A

T
ra
ce
/B

re
ak

p
oi
nt

T
ra
p

Q
E
M
U

C
en
to
s
6.
5

C
en
to
s
6.
5

N
o

N
o

F
ig
u
re

4.
11
:
C
ag
e
ru
n
n
in
g
on

In
te
l
h
ar
d
w
ar
e.

A
rc
h
it
ec
tu
re

V
ir
tu
al

M
ac
h
in
e

H
os
t
S
ys
te
m

G
u
es
t
S
ys
te
m

D
ro
p
p
ed
/M

is
si
n
g
P
ac
ke
ts

O
th
er

Is
su
es

A
M
D

N
/A

C
en
to
s
6.
5

N
/A

N
o

N
o

V
ir
tu
al

B
ox

4.
2.
16

K
u
b
u
nt
u
12
.0
4

C
en
to
s
6.
5

N
o

N
o

C
en
to
s
6.
5

C
en
to
s
6.
5

N
o

N
o

V
ir
tu
al

B
ox

4.
3.
8

C
en
to
s
6.
5

C
en
to
s
6.
5

N
o

N
o

V
m
W
ar
e
W
or
ks
ta
ti
on

K
u
b
u
nt
u
12
.0
4

C
en
to
s
6.
5

N
o

N
o

X
en

(f
u
ll
-v
ir
t
an

d
p
ar
a-
vi
rt
)

C
en
to
s
6.
5

C
en
to
s
6.
5

N
/A

T
ra
ce
/B

re
ak

p
oi
nt

T
ra
p

Q
E
M
U

C
en
to
s
6.
5

C
en
to
s
6.
5

N
o

N
o

F
ig
u
re

4.
12
:
C
ag
e
ru
n
n
in
g
on

A
M
D

h
ar
d
w
ar
e.

55



The results show that Cage is stable while running natively on both Intel and

AMD hardware as well as when running on some virtual machine software such as

VmWare, Parallels and QEMU. Of interest is the result of Cage running on the Xen

hypervisor. On both Intel and AMD hardware, Cage experiences an unexpected

trace/breakpoint trap on the first caged memory event which halts the execution of

the test program. This same behaviour was also seen with Virtual Box 4.3.8 running

on Intel hardware. Virtual Box 4.2.16 running on Intel hardware does not produce

the correct amount of memory event packets. These memory event packets are not

reported as being dropped. Indeed, a closer inspection revealed that the memory

event packets for these memory events were not even generated. While it is clear

that Cage is stable while running natively on both Intel and AMD hardware as well

as when running on some virtual machine software it is also clear that Cage is not

stable while running on other virtual machine software such as Xen and Virtual Box.

In spite of the issues with both Xen and Virtual Box we consider Cage to be stable

based on its ability to run without issue natively on both Intel and AMD hardware.

4.4 Comparing Memory Event Packet Traces

Cage was tested to determine whether or not it is possible to compare two memory

event packet traces from the same process to each other in order to validate the

correctness of the packet trace. The goal of this test was to determine if it was

possible to develop a “good” or “trusted” set of memory event packet traces for a set

of processes in order to detect any future deviations from these trusted executions. In

particular, this test was designed to be used as a test for the stability of Cage when

run under di↵erent virtual machine software.

To determine whether or not it is possible to compare two memory event packet

traces from the same process to each other, the same program, whoami, was executed

56



using the cage wrapper to cage 100% of the process address space. The memory

event packets from whoami were captured using Wireshark and the resulting file was

saved. The whoami program was then executed again on the same machine and the

memory event packets were again captured using Wireshark and saved. In each case,

the number of packets captured was verified to be the same and no packets were

reported as having been dropped by Wireshark. We created a program diff cage

that opened both files and compared the contents of each memory event packet in

one file to the corresponding memory event packet in the other file. The items from

the memory event packet that were compared were the following:

1. Instruction pointer

2. E↵ective address

3. Instruction pointer label

4. E↵ective address label

5. PTE meta-data

6. Read/write/execute flags

7. Instruction

8. Data contained at the e↵ective address

The remaining elements of the memory event packet are known to either change, such

as the PID, or not change, such as the UID, between executions of the same program.

The first approach to comparing the memory event packets to each other was

to directly compare the values of the fields outlined above. This resulted in di↵er-

ences being noticed in the instruction pointer, the e↵ective address, and in the data

contained at the e↵ective address. These results were expected because of address

space layout randomization (ASLR). Indeed, when the test was performed with ASLR

disabled there were no di↵erences between the instruction pointers and the e↵ective

addresses in the memory event packet traces. The challenge then, was to compare

57



the memory event packet traces to each other while ASLR was enabled. The first

attempt at managing ASLR was to take the o↵set for the instruction pointer or the

e↵ective address from the beginning of the vm area the address was in. The vm area

creation packets were used to determine the start and end address of the vm areas.

The o↵sets were then compared to each other and the instruction pointer or e↵ective

address was considered the same if the o↵sets matched. This resulted in some, but

not all of the instruction pointers and e↵ective addresses matching between memory

event packet traces.

The next approach was to store the first address accessed in a vm area and take

the o↵set between the first address and the current address. These o↵sets were again

compared and the instruction pointer or the e↵ective address was considered the same

if the o↵sets matched between memory event packet traces. The result was that all of

the instruction pointer addresses now matched between memory event packet traces

and more of the e↵ective addresses matched but not all. The remaining e↵ective

addresses that did not match were addresses on the stack. The final approach was

to apply a combination of both techniques. In this approach all instruction pointer

addresses and e↵ective addresses were matched successfully. The combination of both

taking the o↵set from the beginning of the vm area and taking the o↵set from the

first address accessed in the vm area was su�cient to manage ASLR when comparing

memory event packet traces.

The data contained at the e↵ective address that di↵ered was mainly composed

of addresses as well as large values. In comparing the large values we noticed that

the low byte of these values always matched. The di↵erences between memory event

packet traces seen in this case is caused by Cage arbitrarily reading eight bytes of

the data contained at the e↵ective address regardless of the size of the data actually

contained at the e↵ective address. If the size of the data contained at the e↵ective

58



address is only one byte in length then Cage will still read eight bytes of data and

will therefore have one byte of actual data and seven bytes of unknown data. The

unknown data could be the contents of another variable or it could be unallocated

memory.

The remaining memory event packets that do not compare with regards to the

data contained at the e↵ective address were composed of addresses. An attempt was

made to compare these values by once again taking the o↵set from the first time an

address in a vm area was in the data contained at the e↵ective address to the current

data contained at the e↵ective address and comparing the o↵sets. The result was that

some of the addresses in the data contained at the e↵ective address could be compared

in this fashion. The o↵set between the addresses in the data contained at the e↵ective

address and the start of the vm area containing that address were also compared in

combination with the first result. The result of comparing both the o↵set from the

current address seen in the data at the e↵ective address with the first address seen

and with the start of the vm area containing the current address was that most of

the di↵erences between the data at the e↵ective address in the memory event packet

traces were accounted for. The remaining addresses that could not be accounted for

contained in the data at the e↵ective address were high memory addresses which did

not belong to a caged vm area.

The results of attempting to compare two memory event packet traces show that

it is inherently di�cult because of ASLR. In particular the di�culties in comparing

the data contained at the e↵ective address show that while it is possible to account

for the di↵erences seen, it is not possible to determine for certain that two memory

event packet traces are identical.

59



4.4.1 Di↵erences in Memory Event Packet Traces Between Machines

The problem of comparing memory event packet traces is made even more di�cult

when the process is executed on di↵erent machines. We performed another test in

which we created a C program that simply returned from the main function on two

identical native machines. The program was compiled separately on each machine

and was dynamically linked on both machines. Both machines had ASLR enabled and

prelinking enabled. When the memory event packets were captured on each machine,

the number of memory event packets produced di↵ered for the same program between

the machines. The statistics reported by Wireshark were checked to ensure that

neither machine was dropping packets. (These statistics were backed up by results

from tcpdump.) An analysis of the packets showed that during the glibc startup

code, di↵erent branches were being taken on one machine than on the other. These

branches all corresponded to features of the processor, such as SSE, being present.

A closer examination of our native machines revealed that while the machines were

identical, the processors had slightly di↵erent revision numbers which accounted for

some features of the processor being available on one machine but not the other

machine. This created a di↵erent number of memory event packets being produced

for the same program across di↵erent machines.

4.5 Summary

This chapter discussed the evaluations that were performed on the Cage mechanism.

The first section discussed the results of five di↵erent performance tests that were

performed. These tests highlighted the performance of various use cases of the Cage

mechanism as well as demonstrating the overhead of di↵erent components of the

mechanism. The second section detailed our attempts at capturing 100% of the

memory event packets and the relative magnitude of information contained within a

60



memory event packet trace. The third section discussed the generality of the Cage

mechanism to various platforms including di↵erent virtual machines and running

natively on machines. The fourth section discussed our attempts at comparing two

memory event packet traces and the di�culties we had due to ASLR. The next chapter

will discuss the applications of the Cage mechanism including the di↵erent BPF filters

that we created.

61



Chapter 5

Applications of Cage

As an application of the Cage mechanism, we have developed eleven di↵erent BPF

filters that can be used to detect varying types of patterns in the memory event stream.

Section 5.1 describes these eleven BPF filters in detail. We have also developed a

program that can automatically find specific patterns in the memory event stream

and output relevant information about these patterns as discussed in Section 5.2.

In Section 5.3 we discuss how the BPF filters and our pattern finding program can

be combined to enforce patterns in the memory event stream at runtime. Finally

Section 5.4 discusses some limitations to finding patterns with the Cage mechanism

as well as possible solutions for these limitations.

5.1 BPF Filters

This section details the varying BPF filters that we have created. It is important to

understand the types of filters that have been created as well as their strengths and

limitations. The remaining sections of this chapter refer to these filters. All of these

filters are designed to look for specific patterns in the memory event stream. While

these filters may seem simplistic, i.e. we aren’t looking for a bu↵er overflow or other

such memory errors, we view the filters we have created as building blocks for larger,

more complex filters. We believe it is important to firmly establish the reliability of

these building block filters before attempting to compose them into a larger filter.

Temporal Filtering

The purpose of this filter is to induce a type of rate limiting on the number of memory

event packets that are generated. There are three di↵erent types of this filter. One

62



L1: A = current effective address

L2: (A >= begin_address) ? goto L3 : goto L10

L3: (A > end_address) ? goto L10 : goto L4

L4: A = A - end_address

L5: (A > end_address) ? goto L7: goto L6

L6: (A == end_address) ? goto L7: goto L10

L7: A = current number of events

L8: (A == num) ? goto L9 : goto L11

L9: return 1

L10: return 0

L11: return -1

Figure 5.1: Temporal filter. This filter will emit a memory event packet for every n

th

packet as specified by num provided that memory event falls into a specific range of
addresses specified by begin address and end address.

that watches for only read accesses, one that watches for only write accesses, and one

that watches for either read or write accesses. This can be used to only produce a

packet every n

th event. For example, if we know that the n

th write to an array is

important we can ignore the first n-1 events. This filter watches for memory events

that fall into a specified range of addresses. If the memory event falls within this

range, the filter loads the current number of memory events that have been seen that

fall within that range. If this stored value is equal to the number of events we are

waiting for, then a memory event packet is created. Since BPF has no facility for a

“jump less-than” we are forced to check the address range by checking to see if the

current e↵ective address minus the end address is greater than the end address. If it

is greater than the end address then the current e↵ective address is within the range

we are looking for. If it is not greater than the end address than the current e↵ective

address is outside the range we are looking for. This filter is supported by code in

Cage that maintains a piece of state storing how many events of this type have already

occurred. Each time the specified number of events is reached, the stored number of

events is set to zero by supporting code in Cage. Figure 5.1 shows the logic of this

BPF filter.

63



L1: A = current effective address

L2: (A == address) ? goto L3 : goto L4

L3: return num

L4: return 0

Figure 5.2: Data-overwriting filter. This filter will overwrite the data stored at the
e↵ective address specified by address with the value num.

Overwriting Data at an E↵ective Address

The purpose of this filter is to overwrite the data contained at a specific e↵ective

address with a di↵erent specified value. This can be used to change the contents

of the memory of a program at runtime. This filter watches for a memory event

corresponding to a specific e↵ective address. When this e↵ective address is accessed

during program execution, the filter returns the value that will be used to overwrite

the data contained at the e↵ective address. This is supported by code in Cage that

watches for a non-zero return from the filter. (It is assumed that the value used

for overwriting the data contained at the e↵ective address will not be zero.) Cage

then takes the value returned by the filter and overwrites the data contained at the

current e↵ective address, using a Cage-specific “copy to user” function, with this

value. Figure 5.2 shows an example of the logic of this BPF filter.

Overwriting an Instruction

The purpose of this filter is to overwrite an instruction at a specific instruction pointer

with a di↵erent specified instruction. This can be used to modify the executing in-

struction of a program at runtime. The new instruction must be the same size as

the old instruction to prevent overwriting subsequent instructions. Overwriting an

instruction in this way has the side e↵ect of modifying the binary so that each sub-

sequent run of the binary executes the new instruction. This filter watches for a

memory event corresponding to a fetch of a particular instruction specified by the

given instruction pointer. When this memory event occurs, the filter returns the

64



number of bytes contained in the new instruction. This is the number of bytes that

will be written to the location of the current instruction pointer. The new instruction

is passed to Cage through a filter structure that contains the BPF instructions along

with the type of BPF filter we are executing. This is supported with code in Cage

that recognizes the non-zero return value from the filter and overwrites the instruction

contained at the current instruction pointer with the new instruction. This overwrit-

ing occurs during the memory event corresponding to the fetch of the instruction.

This BPF filter is identical to Figure 5.2 except that we load the instruction pointer

in the first step instead of the e↵ective address.

Viewing a Bu↵er Allocated at Runtime

The purpose of this filter is to view all the memory events corresponding to a specific

bu↵er that has been allocated at runtime. In this instance we cannot know the

e↵ective address to search for ahead of time. This filter gives us the ability to locate

a dynamically allocated data structure of interest and recover all the memory events

from the point of its creation on. This filter relies on the input of a specific instruction

pointer. The value contained in the register rax at this instruction must be the address

of a bu↵er. This filter watches for the memory event corresponding to the execution

of a specific instruction pointer. When this memory event occurs, the value contained

in the rax register at this time is loaded into the BPF filter and this value is returned.

Supporting code in Cage then recognizes this return value and stores the returned

value in a piece of state. The rest of the filter is executed any time the current

instruction pointer does not match the specified instruction pointer. This part of the

filter loads the stored rax value and checks to see if the current e↵ective address is

within the range of the stored rax value plus a specified value which is the length of

the bu↵er to search for. If it is within this range then the memory event corresponds

to the bu↵er we are looking at and a packet is emitted. We have used this filter to

65



L1: A = current instruction pointer

L2: (A == address) ? goto L3 : goto L5

L3: A = current value of rax

L4: return A

L5: A = stored value of rax

L6: X = A

L7: A = current effective address

L8: (A >= X) ? goto L9 : goto L15

L9: A = X

L10: A = A + num

L11: X = A

L12: A = current effective address

L13: (A > X) ? goto L15 : goto L14

L14: return 1

L15: return 0

Figure 5.3: Viewing memory events for a bu↵er allocated at runtime. This filter will
produce memory event packets for every memory event corresponding to a dynami-
cally allocated bu↵er.

recover the ssh private key from the ssh client while it is connecting to an ssh server.

Figure 5.3 shows an example of the logic of this BPF filter.

Capturing the Bu↵ers in a Program

The purpose of this filter is to produce memory event packets corresponding to every

bu↵er in a program that gets accessed sequentially. There are two types of this filter,

one that looks for successive reads from a bu↵er and one that looks for successive

writes to a bu↵er. This filter compares the stored e↵ective address with the current

e↵ective address and produces a packet if the two addresses are eight bytes away from

each other. Eight bytes was chosen under the assumption that most sequential reads

and writes to a bu↵er are optimized to read or write eight bytes at a time on a 64-bit

system. This filter is supported by code in Cage that updates the value of the stored

e↵ective address each time the filter completes. Figure 5.4 shows an example of the

logic of this BPF filter.

66



L1: A = stored value of effective address

L2: X = A

L3: A = current value of effective address

L4: A = A - X

L5: (A == 0x8) ? goto L6 : goto L7

L6: return 1

L7: return 0

Figure 5.4: Filter to find bu↵ers in a program. This filter will search for sequential
read or write accesses to bu↵ers within a program and emit memory event packets
for these bu↵ers.

Write, Followed by Reads

The purpose of this filter is to produce memory event packets for an e↵ective address

that is accessed in the pattern of a write followed by some number of reads. It

is assumed that the e↵ective address is either known by the filter or that each new

e↵ective address encountered is the e↵ective address to look at for the pattern. Unlike

the previous filters, there is no code in Cage that supports this filter. This filter is able

to run using only the extensions that were made to BPF. We created a test program

that produced exactly the pattern of one write to an e↵ective address followed by

some number of reads. This filter correctly produced memory event packets for only

the pattern specified. Figure 5.5 shows an example of the logic of this BPF filter and

represents a finite state machine.

Range-Checking Filter

The range-checking filter will ensure that the data contained at the e↵ective address

is within a certain range. As an example, the filter in Figure 5.6 is checking to ensure

that the data contained at the e↵ective address is within the range of 0–10. The

e↵ective address is not checked in this example; checking the e↵ective address has

been demonstrated in previous filters and can be added on if necessary. We created

a test program that produced memory events that modified the data contained at

67



L1: A = R/W/X flags

L2: (A == Write) ? goto L3 : goto L9

L3: A = stored value 1

L4: X = A

L5: A = current value of effective address

L6: (A == X) ? goto L17 : goto L7

L7: Stored value 1 = current effective address

L8: return 1

L9: A = stored value 1

L10: X = A

L11: A = current value of effective address

L12: (A == X) ? goto L13: goto L16

L13: A = R/W/X Flags

L14: (A == Read) ? goto L15: goto L17

L15: return 1

L16: return 0

L17: return -1

Figure 5.5: Filter of the pattern write, followed by reads. This filter produces memory
event packets for the pattern of one write followed by any number of reads.

the e↵ective address within the specified range. The range-checking filter correctly

produced the memory event packets for only the pattern specified. In constructing this

filter and testing it we noticed that when attempting to monitor the data contained at

the e↵ective address, write events showed the previous value for the data contained

at the e↵ective address and not the value that was being written. This is due to

the location in the program control flow where memory event packets are created.

Specifically, as discussed previously, memory event packets are created before the

instruction that is executing is allowed to complete. This means that the write to

the data at the e↵ective address has not occurred when the memory event packet

is created. This results in an “o↵ by one” error in the range-checking filter. If the

last memory event is a write event that writes a value larger than 10 into the data

contained at the e↵ective address the range-checking filter will not be able to detect

this. At the beginning of the filter logic, A is loaded with the value 0xFFFFFFFF

and then left-shifted by 32. This is necessary to create a 64-bit value in A because the

68



L1: A = 0xFFFFFFFF

L2: A = A left-shifted by 32

L3: A = A | 0xFFFFFFF6

L4: X = A

L5: A = data contained at effective address

L6: (A == 0) ? goto L10: goto L7

L7: A = A - 10

L8: (A == 0) ? goto L10: goto L9

L9: (A >= X) ? goto L10: goto L11

L10: return 1

L11: return -1

Figure 5.6: Range-Checking filter. This filter produces memory event packets while
the data contained at the e↵ective address is within the range 0–10.

L1: A = R/W/X flags

L2: (A == write) ? goto L3: goto L4

L3: return 1

L4: return -1

Figure 5.7: Always Read/Written Filter. This filter produces memory event packets
if the e↵ective address is either always read from or written to. In this example the
e↵ective address is always written to.

value of K is only 32 bits. The value of 0xFFFFFFFF is the value of K. Figure 5.6

shows an example of the logic of the range-checking filter.

Always Read/Written Filter

The always read or always written filter produces memory event packets if the e↵ective

address is either always read from or always written to. It is assumed that we are told

whether we are watching for always reads or always writes. Once again the e↵ective

address is not checked and it is assumed that the first e↵ective address is the one we

are watching for the pattern of always read from or always written to. Figure 5.7

shows an example of the logic of the filter when watching for writes.

69



L1: A = stored value 2

L2: (A == 0) ? goto L5: goto L3

L3: (A == 1) ? goto L11: goto L4

L4: (A == 2) ? goto L5: goto L10

L5: A = R/W/X flags

L6: (A == write) ? goto L7: goto L10

L7: A == 1

L8: Stored value 2 = A

L9: return 1

L10: return -1

L11: A = R/W/X flags

L12: (A == read) ? goto L13: goto L16

L13: A = 2

L14: Stored value 2 = A

L15: return 1

L16: return -1

Figure 5.8: Write, Read, Repeat. This filter produces memory event packets if the
e↵ective address is accessed in alternating write and read events beginning with a
write.

Write, Read, Repeat Filter

The write, read, and repeat filter produces memory event packets if the e↵ective

address is accessed in an alternating pattern of writes and reads beginning with either

a write or a read. This filter makes use of the stored memory locations that were

created as an extension of BPF to create a flag indicating the type of the previous

memory event. Again, the e↵ective address is not checked and it is assumed that

the first e↵ective address is the one we are watching for the pattern of writes and

reads. This filter requires that the stored memory locations are cleared after the end

of each program execution to prevent the previous program interfering with the next

program to be executed. Figure 5.8 shows an example of the logic of this filter where

the pattern begins with a write.

70



L1: A = instruction pointer

L2: (A == 0x400513) ? goto L7: goto L3

L3: (A == 0x40051e) ? goto L7: goto L4

L4: (A == 0x400537) ? goto L7: goto L5

L5: (A == 0x40053e) ? goto L7: goto L6

L6: (A == 0x400552) ? goto L7: goto L8

L7: return 1

L8: return -1

Figure 5.9: Short list of instructions. This filter produces memory event packets if the
instruction pointer is in the list of instructions that accesses a given e↵ective address.

Short List of Instructions Filter

The short list of instructions filter watches for specific instruction pointers access-

ing the same e↵ective address. It is assumed that the instruction pointer values are

known and so may be hard-coded into the filter. This is similar to AccMon’s [53]

“Program Counter-Based Invariants”, which are the set of instructions that access

a particular e↵ective address, referred to as an “AccSet”. This filter watches for in-

struction pointers that are in the e↵ective addresses AccSet. The instruction pointers

hard-coded into the example are taken from the test program that we wrote to create

this pattern. Figure 5.9 shows an example of the logic of this BPF filter.

Monotonically Increasing/Decreasing Filter

The monotonically increasing or decreasing filter watches the data contained at a

specific e↵ective address to determine if it is monotonically increasing or decreasing.

As with the range-checking filter, the monotonically increasing or decreasing filter also

has the problem of a write memory event not showing the value being written. This is

especially problematic if the first memory event is a write event. Before the first write

memory event occurs, the data contained at the e↵ective address appears to be zero.

It is not until after the first write memory event that this value is updated. Not being

able to determine the first value that was written to the data contained at the e↵ective

71



L1: A = stored value 1

L2: (A == 0) ? goto L3: goto L6

L3: A = data contained at the effective address

L4: Stored value 1 = A

L5: return 1

L6: X = A

L7: A = data contained at the effective address

L8: (A > X) ? goto L10: goto L9

L9: (A == X) ? goto L11, goto L12

L10: Stored value 1 = A

L11: return 1

L12: return -1

Figure 5.10: Monotonically increasing/decreasing. This filter produces memory event
packets if the data contained at the e↵ective address is monotonically increasing.

address prevents us from noticing what the data contained at the e↵ective address

was initialized by the first write memory event. This interferes with determining if

the value contained in the data at the e↵ective address is monotonically increasing

or decreasing as it always appears to start at zero. Further adding to the complexity

of this filter is the inability to determine when an overflow or underflow has occurred

in the data contained at the e↵ective address. Without knowing that an overflow

or underflow has occurred it appears to the BPF filter that the value contained in

the data at the e↵ective address is suddenly zero again which will fail the check for

monotonicity. Figure 5.10 shows the logic for the monotonically increasing BPF filter.

5.2 Pattern Finding Program

In addition to creating the above BPF filters to recognize patterns in the memory

event stream we also created a program that will find the following patterns in the

memory event stream.

1. Write, followed by some number of reads

2. Range of the data contained at the e↵ective address

72



3. Always read from or written to

4. Alternating write and read events

5. Short list of instructions

6. Monotonicity

This pattern finding program find patterns does o✏ine analysis on the memory

event packets that have been captured and saved from a previous run of a program.

O✏ine analysis was chosen because detecting patterns while capturing the memory

event packets of a currently executing program would inhibit the capture speed,

possibly to the point that our capture utility would not be able to capture 100%

of the memory event packets.

For each e↵ective address in the memory event stream, the previous list of patterns

are evaluated to determine if that pattern resides at the current e↵ective address. Any

memory event that does not match the pattern being evaluated moves that pattern

into a fail state for that e↵ective address indicating that the pattern does not reside

at that e↵ective address. The program find patterns also prints out the patterns

contained at each e↵ective address as well as relevant information about the pattern

such as the instruction pointers that accessed the e↵ective address or the range of

values contained in the data at the e↵ective address.

For each type of pattern listed above, we created a test program that produces

exactly the pattern of memory event packets listed. These test programs were used

to aid in constructing the BPF filters discussed previously as well as the pattern

matching code of find patterns. In addition, both find patterns and the BPF

filters were tested on the memory event packets captured during the execution of

these test programs to ensure that the patterns could be recognized.

As a larger test, find patterns was also run over the memory event packets saved

from an execution of the program whoami. This test demonstrated that multiple

73



patterns can reside at the same e↵ective address. For example, it is possible for an

e↵ective address to be always written to and be monotonically increasing or decreasing

at the same time. This makes it di�cult or impossible to narrow down the patterns

contained at an e↵ective address to one pattern which indicates that either multiple

BPF filters must be used or a single larger filter that can watch for all of the patterns

at the e↵ective address. In addition, some e↵ective addresses are only accessed once

which does not match any of the above patterns. Also, each e↵ective address has

a short list of instructions that access it. In whoami this list of instructions was

relatively short (2–5 instructions) for each e↵ective address, reinforcing the idea of

AccMon’s [53] “Program Counter-Based Invariants” in that it is possible to create a

short list of instructions that access each e↵ective address.

As discussed in Section 5.1 some filters or patterns are hard to match exactly be-

cause of the limitations of the memory event packets. The program find patterns

has the same limitations regarding overflow and write events. Overflow or under-

flow cannot be detected which means that when either of these occur it appears to

find patterns as if the value suddenly went to zero instead of a larger or smaller

number. This creates a problem in detecting the range of values contained at the

e↵ective address as well as in detecting monotonicity. Write events also a↵ect these

patterns as the memory event packet does not contain a field indicating what value is

about to be written. This can create an “o↵ by one” error in detecting these patterns

as find patterns has to wait for the next memory event at that e↵ective address to

notice what was written. If the write event writes a value that breaks the pattern it

will still be noticed, provided that it was not the last memory event packet for that

e↵ective address, but it will break the pattern one memory event packet too late. The

inability to see what value is being written also a↵ects determining what an e↵ective

address is being initialized to by the first write event. The data at the e↵ective ad-

74



dress appears to be zero until it is initialized. This can also confuse the range-checking

pattern and the monotonically increasing or decreasing pattern as it appears that the

data at the e↵ective address always begins at zero. Nevertheless find patterns can

successfully identify the varying patterns at the e↵ective addresses and output infor-

mation relevant to each pattern. This information can then be used with the BPF

filters to fine tune them for a specific e↵ective address.

5.3 Pattern Finding/Enforcing BPF Filters

The BPF filters we created and find patterns gives us the ability to find patterns

in the memory event stream. However, the BPF filters can also give us the ability

to enforce the patterns during the execution of a process. The position at which

the BPF filter is evaluated, before the instruction executes, gives us the ability to

prevent instructions from executing that do not match the pattern. Knowing that a

specific pattern exists at an e↵ective address allows us to use the BPF filters to watch

for events that do not conform to that pattern. In the example BPF code shown

in previous figures, the BPF filters return -1 when a memory event does not match

the pattern. This return value will cause a segmentation fault to be raised and the

executing program will be terminated.

We used the test programs that were created for each BPF filter to produce

memory events corresponding to a specific pattern to test the enforcement capability

of the BPF filters. We modified the test programs slightly so that they produced at

least one memory event that did not match the pattern the BPF filter was watching

for. In each case the BPF filter correctly identified the out of place memory event and

returned a -1 causing a segmentation fault to be raised. The combination of the BPF

filters and find patterns produces a work flow wherein find patterns can be used

to find the patterns contained at an e↵ective address and output relevant information

75



about the pattern such as its range. This information can be used to inform the BPF

filters of the correct parameters for the pattern. The BPF filters can then be used to

enforce these patterns during the execution of the process.

5.4 Limitations of Finding Patterns/BPF Filters

In the sections above, we encountered and mentioned some limitations that occur

with some of the patterns. In this section we will discuss these limitations as well as

possible solutions for these limitations.

Overflow and Underflow

As mentioned previously, Cage has no facility to detect either overflow or underflow in

the data contained at the e↵ective address. This plays a significant role in the ability

of find patterns and the BPF filters to determine things like the true range of values

contained in the data at the e↵ective address as well as monotonically increasing or

decreasing values. A solution to this limitation would be the addition of a new

type of memory event packet. This memory event packet would be generated from

the debug fault handler. At this point the execution of the current instruction has

already occurred, and the flags in the EFLAGS register will indicate the occurrence

of an overflow or an underflow. Checking for the overflow or underflow condition and

creating a memory event packet that indicates if an overflow or underflow occurred

will allow both find patterns and the BPF filters to recognize when an overflow or

underflow occurs.

Addresses Changing Over Runs of a Program

Up until this point we have not mentioned the issues of the e↵ective address changing

between runs of a program due to ASLR. Clearly this poses a significant limitation

with regards to enforcing the patterns that find patterns has detected in that the

76



e↵ective addresses reported by find patterns will not be the same when the BPF

filters are used to enforce these patterns. While we have not attempted to account for

di↵ering e↵ective addresses in our BPF filters, we believe our work on comparing two

memory event packet traces (Section 4.4, page 56) can inform us of how this could be

done. While attempting to compare two memory event packet traces we determined

that the e↵ective addresses could be compared by using two methods. The first is to

compare the current e↵ective address with the first e↵ective address seen to access the

same vm area. The second is to compare the current e↵ective address with the start

of the vm area. When comparing memory event packet traces we determined that

the combination of these two methods allowed us to compare the e↵ective addresses

across di↵erent runs of the same program. We believe that a BPF filter could be

created that can do this comparison thus allowing us to use the BPF filters to enforce

the patterns that are found by find patterns.

“O↵ by One” Errors

In some filters, such as the range checking filter, an “o↵ by one” error can occur

because the last value that is written to the data contained at the e↵ective address

is not shown. This is because the memory event packets contain the current value

of the data contained at the e↵ective address; they do not show what value is being

written to the data at the e↵ective address. This limitation can also be overcome by

adding in a second memory event packet on a write memory event that is generated

in the debug fault handler. At this point the execution of the current instruction has

already taken place and the data contained at the e↵ective address will already be

modified by the write memory event. This second write memory event packet will

contain the new value of the data contained at the e↵ective address. This would allow

find patterns and the BPF filters to accurately detect what value is being written

to the data contained at the e↵ective address which would eliminate the “o↵ by one”

77



error.

5.5 Summary

This chapter discussed the eleven BPF filters that we created in detail in Section 5.1.

Section 5.2 discussed our program to find patterns in the memory event stream while

Section 5.3 discussed how to combine the pattern finding program and the BPF filters

to enforce patterns in the memory event stream. Finally, Section 5.4 discussed some

limitations to finding patterns in the memory event stream as well as some possible

solutions for these limitations. The next chapter will conclude.

78



Chapter 6

Conclusion and Future Work

In this thesis we presented Cage, a kernel-level mechanism for both intercepting and

filtering the memory events of a user-level process. As described in Chapter 3, Cage

exists as a series of modifications to the Linux kernel. These modifications cover 23

di↵erent files and over 1000 lines of additional code in the Linux kernel in addition

to supporting loadable kernel modules and user-level programs. In the next section

we discuss some future work and finally, Section 6.2 concludes.

6.1 Future Work

There are many areas where we would like to expand or improve Cage. Currently

Cage has not been tested with more than one program caged at a time. We would

like to cage multiple programs to ensure that the Cage mechanism still functions

as expected under these conditions. We also have not tested a program that uses

multiple threads during execution. While we do not foresee any di�culties with these

two test cases, we would still like to test them to ensure our expectations are met.

At this point in time Cage has the ability to label the pages of a caged region of

memory. This gives us a label for the page containing the e↵ective address as well

as a label for the page containing the instruction pointer. Currently, these labels are

not used other than to demonstrate that it is possible to label a page using unused

bits in the PTE. We would like to expand the mechanisms that currently label these

pages to be more usable and programmable. We would also like to use these labels

in some fashion, for example, as a way to enforce a security policy on memory.

Cage currently employs a global BPF filter to filter the memory event stream of a

79



process. This is a limiting design because it means that only one filter can be in place

at a time and that filter will apply to all caged processes. We would like to employ

filters on a per-process basis. That is, there would be one filter per process. This

would allow multiple caged programs to execute concurrently using di↵erent filters.

As mentioned in Section 4.1, the mcf benchmark executes faster on the Cage

kernel then it does on the standard kernel. We would like to investigate this case

further and attempt to determine a cause for this behaviour.

Finally, we would like to perform an analysis to determine exactly which memory

vulnerabilities Cage is able to detect.

6.2 Conclusion

In Chapter 1 we described four properties that define a principled approach to memory

interception and filtering. The first property was the speed of the memory interception

function and the filtering function. Ideally there would be no detectable slow-down

of the target process. However, this ideal case would require a hardware solution to

memory interception and filtering that, to our knowledge, currently does not exist.

The second property was the transparency of the memory interception function and

the filtering function. Again, in the ideal case the memory interception and the

filtering function would be undetectable by the target process and so would not a↵ect

the behaviour of the target process. A more lightly transparent approach would

require no modifications to the source code or binary image of the target process with

the goal of not modifying the behaviour of the target process. The third property

was the reliability of the memory interception function and the filtering function.

Given the same program with the same inputs and executed on the same hardware,

the memory interception function and the filtering function should produce the same

record of execution across multiple runs of the program. The fourth property was

80



completeness and refers to the vantage point of the memory interception function

and filtering function on the memory event stream. To be considered complete, the

memory interception function and the filtering function must work on each instruction

level memory event within the memory event stream. We maintain that Cage meets

the principles of being lightly transparent, reliable, and complete.

In Chapter 4 we evaluated the performance of Cage and saw a significant slow-

down in the runtime of the caged process. We expected this slow-down because of

the overhead of handling a page fault for every memory access. In addition, the TLB

flush that is required each time a page is re-caged e↵ectively disables the TLB when

a process is fully caged. Also, instruction prefetches are unable to handle a page

fault and so instruction prefetching is e↵ectively disabled as well if the .text section

is caged. For this reason we do not claim that Cage meets the principle of speed, nor

did we expect it to.

Cage does meet the principle of being lightly transparent, however. Cage exists

as a series of modifications to the 3.9.4 version of the Linux kernel. In Chapter 3 we

described the memory interception mechanism and the filtering mechanism that Cage

uses. The memory interception mechanism causes a page fault to be generated for

each memory event within a caged region of memory. The filtering mechanism uses a

BPF filter to filter each memory event within the page fault handler. Neither the fil-

tering mechanism nor the memory interception mechanism require any modifications

to the caged program’s source code or binary image. Also described in Chapter 3

are the supporting mechanisms that we have developed to create a caged process.

With the exception of the instrumented mmap system call, none of the mechanisms to

create a caged process require the modification of the target program’s source code

or binary image. We do not consider the instrumented mmap system call to be in

violation of the principle of being lightly transparent because Cage does not require

81



its use to function. It is an option to developers should they wish to create a special

caged region of memory.

Cage meets the principle of reliability. In Chapter 4, Section 4.4 we compared two

memory event packet traces that were generated from the same program with the

same inputs and on the same hardware. While there were challenges in comparing

the memory event packet traces due to ASLR, it was also clear that the two memory

event packet traces had the same memory event packets in the same order. If this

was not the case then there would have been more di↵erences between the memory

event packet traces that we could not account for with ASLR. From this analysis it

is clear that Cage is reliable.

Cage meets the principle of completeness. The mechanism of generating a page

fault on every memory access including instruction fetches and read or write accesses

to data ensures that every memory event is intercepted. The filtering mechanism

exists within the page fault handler and is guaranteed to filter each memory event

that is intercepted. Since the page fault memory interception mechanism guarantees

that every instruction level memory event is intercepted, Cage is guaranteed to meet

the principle of completeness in that Cage intercepts and filters every memory event

from the memory event stream.

While Cage meets the principles of being lightly transparent, reliable and com-

plete, ideally there would be a memory interception and filtering mechanism that

meets the principles of speed, full transparency, reliability and completeness. This

would require hardware primitives built into the memory management unit that pro-

vided the ability to intercept each memory event and filter each memory event. Until

this support is added to commodity hardware, memory interception mechanisms and

filtering mechanisms of the memory event stream will remain less than ideal.

Cage’s ability to specify arbitrary BPF filters gives it a wide range of capabilities.

82



In Chapter 5 we showed examples of eleven di↵erent types of BPF filters that we

have created. This is by no means the extent of the capabilities of the BPF filters.

In general, the only limitation on the BPF filters is that of the Cage-extended form

of BPF itself. This provides the ability to not only detect a wide range of patterns

in the memory event stream but to enforce those patterns as well. This, combined

with Cage’s ability to run on commodity hardware and operating systems without

requiring modifications to a target program’s source code or binary image makes Cage

a valuable security tool.

83



Bibliography

[1] Aamer Jaleel. Memory Characterization of Workloads Using Instrumentation-

Driven Simulation. http://www.jaleels.org/ajaleel/publications/

SPECanalysis.pdf. Date Accessed, June 18, 2015.

[2] Julian Bangert, Sergey Bratus, Rebecca Shapiro, Michael E. Locasto, Jason

Reeves, Sean W. Smith, and Anna Shubina. ELFbac: Using the Loader Format

for Intent-Level Semantics and Fine-Grained Protection. In Dartmouth College

Computer Science Technical Report TR2013-727, June 2013.

[3] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W. Smith. The

Page-Fault Weird Machine: Lessons in Instruction-less Computation. In the 7th

USENIX Workshop on O↵ensive Technologies, Berkeley, CA, 2013. USENIX.

[4] Bochs. http://bochs.sourceforge.net. Date Accessed June 18, 2015.

[5] Sergey Bratus, Michael E. Locasto, and Brian Schulte. SegSlice: Towards a

New Class of Secure Programming Primitives for Trustworthy Platforms. In

International Conference on Trust and Trustworthy Computing (TRUST 10),

pages 228–245, 2010.

[6] Derek Bruening and Qin Zhao. Practical Memory Checking with Dr. Memory.

In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’11, pages 213–223, Washington, DC, USA,

2011. IEEE Computer Society.

[7] Bryan Buck and Je↵rey K. Hollingsworth. An API for Runtime Code Patching.

Int. J. High Perform. Comput. Appl., 14(4):317–329, November 2000.

84



[8] Michael Burrows, Stephen N. Freund, and Janet L. Wiener. Run-time type

checking for binary programs. In Proceedings of the 12th International Confer-

ence on Compiler Construction, CC’03, pages 90–105, Berlin, Heidelberg, 2003.

Springer-Verlag.

[9] The clone Team. clone - create a child process. Centos 6.4 man page, section 2,

July 2009.

[10] Standard Performance Evaluation Corporation. SPEC CPU2006. https://www.

spec.org/cpu2006/, 1995 - 2015.

[11] The GDB developers. Debugging with GDB. Project website. http://

sourceware.org/gdb/current/onlinedocs/gdb/. Date Accessed June 18,

2015.

[12] The GDB developers. GDB: The GNU Project Debugger. Project website.

http://www.gnu.org/software/gdb/. Date Accessed June 18, 2015.

[13] Bryan Ford and Russ Cox. Vx32: Lightweight User-level Sandboxing on the x86.

In USENIX 2008 Annual Technical Conference on Annual Technical Conference,

ATC’08, pages 293–306, Berkeley, CA, USA, 2008. USENIX Association.

[14] The Hex-Rays group. Hex-Rays IDA. Project website. https://www.hex-rays.

com/products/ida/. Date Accessed June 18, 2015.

[15] halfdead. Mistifying the debugger, ultimate stealthiness. In Phrack 65:8.

[16] IBM. Rational Purify for Windows. Project website. http://www-03.ibm.com/

software/products/en/ratpurwin. Date Accessed June 18, 2015.

[17] Intel Corporation. Intel R� 64 and IA-32 Architectures Software Developer’s Man-

ual. Number 325462-046US. March 2013.

85



[18] Mateusz Jurczyk and Gynvael Coldwind. Identifying and Exploiting Windows

Kernel Race Conditions via Memory Access Patterns. White paper, presentation

at SyScan 2013, http://vexillium.org/dl.php?bochspwn.pdf, 2013.

[19] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging Operating

Systems with Time-traveling Virtual Machines. In Proceedings of the Annual

Conference on USENIX Annual Technical Conference, ATEC ’05, pages 1–1,

Berkeley, CA, USA, 2005. USENIX Association.

[20] Sarah Laing, Michael E. Locasto, and John Aycock. An Experience Report

on Extracting and Viewing Memory Events via Wireshark. In 8th USENIX

Workshop on O↵ensive Technologies (WOOT 14), San Diego, CA, August 2014.

USENIX Association.

[21] Michael A. Laurenzano, Mustafa M. Tikir, Laura Carrington, and Allan Snavely.

PEBIL: E�cient Static Binary Instrumentation for Linux. In IEEE International

Symposium on Performance Analysis of Systems Software (ISPASS), 2010.

[22] The ld.so Team. ld.so - dynamic linker/loader. Centos 6.4 man page, section 8,

January 2009.

[23] Andreas Lobel. 429.mcf SPEC CPU2006 Benchmark Description. https://

www.spec.org/auto/cpu2006/Docs/429.mcf.html. Date Accessed: June 19,

2015.

[24] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

o↵ Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building Customized Program Analysis Tools with Dynamic Instrumentation.

In Proceedings of Programming Language Design and Implementation (PLDI),

pages 190–200.

86



[25] Steven McCanne and Van Jacobson. The BSD Packet Filter: A New Archi-

tecture for User-level Packet Capture. In Proceedings of the USENIX Winter

1993 Conference, USENIX’93, pages 2–2, Berkeley, CA, USA, 1993. USENIX

Association.

[26] Mingwei Zhang and Rui Qiao and Niranjan Hasabnis and R. Sekar. A Platform

for Secure Static Binary Instrumentation. In Proceedings of the 10th ACM SIG-

PLAN/SIGOPS International Conference on Virtual Execution Environments,

VEE ’14, pages 129–140, New York, NY, USA, 2014. ACM.

[27] The mmap Team. mmap - map or unmap files or devices into memory. Centos

6.4 man page, section 2, September 2009.

[28] Je↵ Muizelaar and Pekka Paalanen. In-kernel memory-mapped I/O tracing.

https://www.kernel.org/doc/Documentation/trace/mmiotrace.txt, 2007.

[29] Nicholas Nethercote and Julian Seward. Valgrind: A Framework for Heavy-

weight Dynamic Binary Instrumentation. In Proceedings of ACM SIGPLAN

2007 Conference on Programming Language Design and Implementation, pages

89–100, 2007.

[30] Vegard Nossum. kmemcheck. https://www.kernel.org/doc/Documentation/

kmemcheck.txt. Date Accessed, June 18, 2015.

[31] Nick L. Petroni, Timothy Fraser, Jesus Molina, and William A. Arbaugh. Copi-

lot – a Coprocessor-based Kernel Runtime Integrity Monitor. In 13th USENIX

Security Symposium, pages 179–194, 2004.

[32] The ptrace Team. Ptrace - process trace. Centos 6.4 man page, section 2, March

2009.

87



[33] Julian Seward and Nicholas Nethercote. Using Valgrind to Detect Undefined

Value Errors With Bit-Precision. In Proceedings of the USENIX 2005 Annual

Technical Conference, pages 17–30, April 2005.

[34] Shan Lu and Soyeon Park and Chongfeng Hu and Xiao Ma and Weihang Jiang

and Zhenmin Li and Raluca A. Popa and Yuanyuan Zhou. MUVI: Automatically

Inferring Multi-variable Access Correlations and Detecting Related Semantic and

Concurrency Bugs. In Proceedings of Twenty-first ACM SIGOPS Symposium on

Operating Systems Principles, SOSP ’07, pages 103–116, New York, NY, USA,

2007. ACM.

[35] Stylianos Sidiroglou. Software Self-healing Using Error Virtualization. PhD

thesis, Columbia University, 2008.

[36] Skape. Memalyze: Dynamic Analysis of Memory Access Behavior in Software.

http://uninformed.org/?v=7&a=1&t=sumry, 2007. Date Accessed, June 18,

2015.

[37] Joe Stewart. OllyBone: Semi-Automatic Unpacking on IA-32. In DEFCON 14,

2006.

[38] The strace Team. Strace - trace system calls and signals. Centos 6.4 man page,

section 1, January 2003.

[39] PaX Team. PAGEEXEC. http://pax.grsecurity.net/docs/pageexec.old.

txt, 2003. Date Accessed, June 18 2015.

[40] The Bochs team. Bochs User Manual. Project website. http:

//bochs.sourceforge.net/cgi-bin/topper.pl?name=New+Bochs+

Documentation&url=http://bochs.sourceforge.net/doc/docbook. Date

Accessed: December 9, 2014.

88



[41] The DTrace Team. DTrace: illumos Dynamic Tracing Guide. http://dtrace.

org/guide/bookinfo.html. Date Accessed, June 18 2015.

[42] The DynamoRIO Team. DynamoRIO Dynamic Instrumentation Tool Platform.

http://www.dynamorio.org/home.html. Date Accessed, June 18 2015.

[43] The ERESI team. The ERESI Reverse Engineering Software Interface. Project

website. http://www.eresi-project.org/wiki/. Date Accessed June 18, 2015.

[44] The Nouveau Team. Nouveau: Accelerated Open Source driver for nVidia cards.

http://nouveau.freedesktop.org/wiki/. Date Accessed June 18, 2015.

[45] The QEMU team. QEMU: Open Source Processor Emulator. Project website.

http://wiki.qemu.org/Main_Page. Date Accessed June 18, 2015.

[46] The Wireshark Team. Dumpcap - dump network tra�c. Project man page

https://www.wireshark.org/docs/man-pages/dumpcap.html. Date Accessed

June 18, 2015.

[47] The Wireshark Team. Wireshark. Project Website https://www.wireshark.

org/. Date Accessed June 18, 2015.

[48] Vivek Thampi. Udis86 - disassembler library for x86 and x86 64. https://

github.com/vmt/udis86. Date Accessed, June 18, 2015.

[49] Steven McCanne Van Jacobsen, Craig Leres. Tcpdump - dump tra�c on a

network. Centos 6.4 man page, section 8, March 2009. Currently maintained by

tcpdump.org.

[50] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Milos Prvulovic. Mem-

Tracker: E�cient and Programmable Support for Memory Access Monitoring

and Debugging. In IEEE 13th International Symposium on High Performance

Computer Architecture. HPCA 2007, pages 273–284, Feb 2007.

89



[51] Oleh Yuschuk. OllyDbg. http://www.ollydbg.de/, 2000 - 2014.

[52] Michal Zalewski. Fenris - Program Execution Path Analysis Tool. Project web-

site. lcamtuf.coredump.cx/fenris/README. Date Accessed: June 16, 2015.

[53] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel Mid-

ki↵, and Josep Torrellas. AccMon: Automatically Detecting Memory-Related

Bugs via Program Counter-Based Invariants. In Proceedings of the 37th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 37, pages

269–280, Washington, DC, USA, 2004. IEEE Computer Society.

[54] Pin Zhou, Feng Qin, Wei Liu, Yuanyuan Zhou, and Josep Torrellas. iWatcher:

E�cient Architectural Support for Software Debugging. In Proceedings of the

31st Annual International Symposium on Computer Architecture, ISCA ’04,

pages 224–236, Washington, DC, USA, 2004. IEEE Computer Society.

90



Appendix A

Raw BPF Filter Code

Temporal Filter (cf. Figure 5.1)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EA)

BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, begin_address,0,7)

BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, end_address,6,0)

BPF_STMT(BPF_ALU+BPF_SUB+BPF_K, end_address)

BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, end_address, 1, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, 0, 3)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_CURRENT_EVENTS)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, num, 0, 2)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, 0)

BPF_STMT(BPF_RET+BPF_K, -1)

Data-Overwriting Filter (cf. Figure 5.2)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EA)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, address, 1, 0)

BPF_STMT(BPF_RET+BPF_K, 0)

BPF_STMT(BPF_RET+BPF_K, num)

Instruction-Overwriting Filter (cf. Section 5.1)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EIP)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, address, 1, 0)

BPF_STMT(BPF_RET+BPF_K, 0)

BPF_STMT(BPF_RET+BPF_K, num)

Bu↵er-Viewing Filter (cf. Figure 5.3)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EIP)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, address, 0, 2)

91



BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_RAX)

BPF_STMT(BPF_RET+BPF_A, 0)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_STORED_EA)

BPF_STMT(BPF_MISC+BPF_TAX, 0)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EA)

BPF_JUMP(BPF_JMP+BPF_JGE+BPF_X, 0, 0, 6)

BPF_STMT(BPF_MISC+BPF_TXA, 0)

BPF_STMT(BPF_ALU+BPF_ADD+BPF_K, num)

BPF_STMT(BPF_MISC+BPF_TAX, 0)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EA)

BPF_JUMP(BPF_JMP+BPF_JGT+BPF_X, 0, 1, 0)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, 0)

Bu↵er-Finding Filter (cf. Figure 5.4)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_STORED_EA)

BPF_STMT(BPF_MISC+BPF_TAX, 0)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_GET_EA)

BPF_STMT(BPF_ALU+BPF_SUB+BPF_X, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x8, 0, 1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, 0)

Write, Followed by Reads Filter (cf. Figure 5.5)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_RWX)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x02, 0, 6)

BPF_STMT(BPF_MISC+BPF_LDC, BPF_LOAD_STORED_1)

BPF_STMT(BPF_MISC+BPF_TAX,0)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_EA)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_X,0,10,0)

BPF_STMT(BPF_MISC+BPF_STC,1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_LOAD_STORED_1)

92



BPF_STMT(BPF_MISC+BPF_TAX,0)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_EA)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_X,0,0,3)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_RWX)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x00, 0, 2)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, 0)

BPF_STMT(BPF_RET+BPF_K, -1)

Range-Checking Filter (cf. Figure 5.6)

BPF_STMT(BPF_LD+BPF_IMM,0XFFFFFFFF)

BPF_STMT(BPF_ALU+BPF_LSH+BPF_K, 32)

BPF_STMT(BPF_ALU+BPF_OR+BPF_K, 0XFFFFFFF6)

BPF_STMT(BPF_MISC+BPF_TAX,0)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_DATA_EA)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, 3, 0)

BPF_STMT(BPF_ALU+BPF_SUB+BPF_K, 10)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, 1, 0)

BPF_JUMP(BPF_JMP+BPF_JGE+BPF_X, 0, 0, 1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, -1)

Always Read/Written (cf. Figure 5.7)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_RWX)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x02, 0, 1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, -1)

Write, Read, Repeat (cf. Figure 5.8)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_LOAD_STORED_2)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, 2, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 1, 7, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 2, 0, 5)

93



BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_RWX)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x02, 0, 3)

BPF_STMT(BPF_LD+BPF_IMM,1)

BPF_STMT(BPF_MISC+BPF_STC,2)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, -1)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_RWX)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x00, 0, 3)

BPF_STMT(BPF_LD+BPF_IMM,2)

BPF_STMT(BPF_MISC+BPF_STC,2)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, -1)

Short List of Instructions (cf. Figure 5.9)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_EIP),

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x400513, 4, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x40051e, 3, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x400537, 2, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x40053e, 1, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x400552, 0, 1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, -1)

Monotonically Increasing/Decreasing (cf. Figure 5.10)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_LOAD_STORED_1)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, 0, 3)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_DATA_EA)

BPF_STMT(BPF_MISC+BPF_STC,1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_MISC+BPF_TAX,0)

BPF_STMT(BPF_MISC+BPF_LDC,BPF_GET_DATA_EA)

BPF_JUMP(BPF_JMP+BPF_JGT+BPF_X, 0, 1, 0)

BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_X, 0, 1, 2)

94



BPF_STMT(BPF_MISC+BPF_STC,1)

BPF_STMT(BPF_RET+BPF_K, 1)

BPF_STMT(BPF_RET+BPF_K, -1)

95


