A Linguistic Formalism for Specifying Visual Representations

Elena Fanea, Sheelagh Carpendale
Department of Computer Science
University of Calgary
{faneael, sheelagh}@cpsc.ucalgary.ca

Abstract

With the proliferation of access to digital media it is
becoming increasingly common for people to present
information visually. This has led to a myriad of new
types of visual representations that frequently come
into existence without an associated formalism. It is
often difficult to retroactively fit a given formalism to
an existing visual representation. We present a
formalism that provides us with tools capable of
describing visual representations. Using an analogy to
natural languages, we build an alphabet composed of
two types of ordered letters. With these letters we can
develop several languages whose grammar is
described by their morphology and syntax. Each
language thus defined is capable of describing a family
of visual representations. We illustrate this capability
by specifying the morphology and syntax necessary to
describe two different visual representations of multi-
dimensional data, parallel coordinates and glyphs.

Keywords: visual language, linguistic formalism,
visual representation, multi-dimensional data, visual
alphabet, visual morphology

1. Introduction

It is increasingly common for information to be
stored, accessed and exchanged digitally. Since digital
media is now more capable of generating and including
visuals, the ways in which information is presented are
changing. More types of visual representations and
visual/textual information integrations are being
developed and are in more active use. This includes
research fields such as information visualization and
informal uses such as the ad hoc inventive use of
punctuation in online chat. Horn has declared that
combination of all these is in fact a visual language [3].
His definition states that visual language is the
integration of words, images and shapes into a single
communication unit. While this may seem to be an
informal definition of visual language, we have used it
as a basis for a linguistic formalism.

In this paper we present a linguistic formalism that
can describe visual representations that are created in
Information Visualization. Since this formalism has
been developed to handle multi-dimensional visual
representations we refer to it as Multi-Dimensional
Visual Language (MDVL). MDVL consists of an
alphabet, 4, and specific morphologies and syntax that
use this alphabet. Most natural languages that we are
familiar with are formalized through an alphabet, which
is composed of an ordered list of letters [9]. These
letters are grouped according to a selected morphology
to form words. Each distinct language has its own
morphology. In turn these words are combined
according to syntactical rules to create sentences and
paragraphs. Our alphabet can be considered an analogy
to the Latin alphabet, which is used by English, French
and so many other languages. Similarly, our alphabet,
4, of MDVL can be used to build several visual
languages by defining different morphologies. In this
paper we define two such morphologies: a Parallel
Coordinates Visual Language (PCVL) and a Glyph
Visual Language (GVL). Both PCVL and GVL share
the same syntax.

Parallel Coordinates where originally developed by
Inselberg [4] and are a powerful and expressive
information visualization for multi-dimensional data.
However, they are initially difficult to understand and
suffer from considerable visual clutter. They have
recently received considerable research attention in the
form of improved functionally and interactions [12].

Glyphs are also used to visualize multi-dimensional
data and have the capability of providing a shape that
indicates magnitude differences either for the different
attributes of a data item or to reveal the differences in
several items across an attribute dimension.

The paper is organized as follows. The next section
outlines related research. Section 3 defines our Multi-
Dimensional Visual Language (MDVL) alphabet, 4,
and explains how we have defined letters and created
an ordered alphabet. In Section 4 we define a
morphology for Parallel Coordinates developing a
Parallel Coordinate Visual Language (PCVL). The
visual structure of Parallel Coordinates is built up

component by component as the morphology is
defined. This PCVL is just one example of a visual
language that can be built with the MDVL alphabet. A
different morphology can be based on another
visualization method of multi-dimensional data. To
demonstrate this, in Section 5 we will define the
morphology for Glyph Visual Language (GVL). Both
PCVL and GVL share the same syntax, which is
presented in Section 6 and Section 7 concludes the

paper.
2. Related Work

Visual languages are defined by Marriott et al. [8]
as sets of diagrams that have been defined as valid
sentences. They often involve both generative and
analytic aspects of formal grammar. Analytic grammars
assume that the language has been already generated
and analyze whether an arbitrary input string is
grammatically correct. They formally describe a parser
for a language. It has been suggested that there are
three main approaches to the specification of visual
languages: grammatical, logical and algebraic [1, 8].

The grammatical approaches are based on string
rewrite mechanisms. They have an initial structure, an
alphabet and a set of rewrite rules. L-systems [6, 10]
are an example of these approaches that can generate
complex structures based on rewriting rules. An
alphabet, and a set of productions are defined.
Productions are the rewriting rules for the individual
modules over an interval of time. An L-system
development has an initial structure or “axiom” and is
mainly used for describing recursive structures.

Rekers and Schiirr [11] underline the need to
complement the spatial relation graph with an abstract
syntax graph. They not only use the graph grammar as
syntax definition for formalism for visual languages,
but also provide a graphical parsing algorithm for this
grammar.

The logical approach uses logic formalisms from
mathematics or artificial intelligence. Haarslev [2] is
an example that uses artificial intelligence description
logic theory to combine topology and spatial relations.

A high-level framework for the definition of visual
programming languages is presented in [7]. The layout
perspective of the spatial relationships in that
formalism is extended to a spatial graph grammar that
introduces spatial constraints to the abstract syntax in
[5] wusing algebraic specifications of composing
functions to define and compare graphs.

Our formalism relates to the grammatical
approaches in that it has an alphabet. In differs in that it
has no initial axiom and instead of rewrite rules, we
follow a closer analogy to natural language and define

morphological units, or words, building a set of
available words or vocabulary. In contrast to rewrite
rules our words do not necessarily generate from each
other. Also, while we use algebraic formalisms we do
not rely on the composition of multiple functions to
define a grammar. Instead we use spatially located
morphological units that relate to each other through
spatial location.

3. The Alphabet

Our alphabet is based on two definitions. One, in the
Oxford English Dictionary [9] the alphabet is defined
as a set of letters or symbols in a fixed order used for
writing a language. Two, Horn [3] describes Visual
Language as any integration of shapes, images and
words but not one of these aspects independently. As a
first step we create an ordered alphabet composed of
two types of letters, MDletters and PVletters, that
integrate shapes and text.

In order to build the alphabet, we will need a set of
notations and definitions, to set up the context.

NrDim is the number of dimensions of the dataset, or
the number of columns in a data table. Rows
usually represent the data item and the columns
hold information about the item’s dimensions.

NrVisDim is the number of dimensions that are visible
at one moment. This needs to be distinct from
NrDim because it is possible that not all
dimensions will be used in all visualizations.

NrTuples is the number or rows in the table or the
number of elements in the dataset.

NrVisTuples is the number of visible elements at one
moment.

Notation: D=the set of dimensions. D={jl j=1, NrDim}

Notation: visD=the set of visible dimensions.

visD={j | j = 1, NrVisDim}

Notation: E=the set of elements. E={i | i= I,NrTuples}

Notation: visE=the set of visible elements.

VisE={ili= 1, NrVisTuples}

Let T be the set of numerical values that we want to
visualize, initially stored in the data table and RGBA =
[0, 1] x [0, 1] x [O, 1] x [0, 1] the set of possible colors,
represented by their red, green, blue and alpha
components (alpha represents the degree of opacity).

We now have sufficient notation to establish a
mapping between the natural language in use (e.g. the
data table will be written in a natural language of words
and numbers) and the space of the visual language.

Definition 3.1. We define the function fas follows:
£:T — (DxE,R* ,RGBA)
f(P):(iddP ,id[p Xp,Yp-Zp.colp),VPe T, where:

id, represents the identification number of the
dimension that contains element P (in terms of
data table, id, is the column number)

id, represents the identification number of the
multi-dimensional item that contains element P (in
terms of data table, id, is the row number)

X, y, z€ Rare the 3D coordinates of the point that
represents element P in the graphic space. Should
one want to create 2D representations z can be
dormant.

clr is this point’s RGBA color, clr=(r,g,b,a), with

r,g,b,ae[0,1]. While it is important that each

letter have color, the actual hue, saturation and
value of this color is a function of each
morphology.
From this it follows that f is a well-defined function,
which means that each element P in the data table has a
unique correspondent in the visual representation
space.

At this point we have defined a mapping from a
multi-dimensional data table to a visual representation
space. Each image f{P) thus defined is a letter in our
aplhabet as follows:

Definition 3.2. We define an MDletter as an element
(idy id, ,x,y,z,clr) € (DXE,R* ,RGBA)

Notation: MD = the set of all MDletters = {MDletter}
= { (idy.id, ,x,y,z,clr) € (D><E,R3 ,RGBA) }.

Therefore an MDletter plots an element P from a
data table 7 onto a point in a graphic space (Figure
3.1). This point has the coordinates x, y, z and is drawn
with color clr. Detailing how x, y and z are computed is
strictly dependent on the intended visualization
technique. Each visualization or family of
visualizations will require its own morphology. We
define morphology for two visualization techniques in
Sections 4 and 5.

A B © 8]
1 D flower widths heights
|2 1 325.81 114,62 78.31
| 3 | 2 340120 18223 18946
|4 3 34012 20209 13638
| 5 | 4 34012 26435 19485 -6
| B | & 283.91' 109.13! 73 .(X.V.Z,"'
7 6 36376 11462 78.31

Figure 3.1: Illustrating the mapping from the multi-
dimensional data table to a MDletter in visual
representation space

We include id, and id; in the structure of an
MDletter for two reasons. First, to comply with Horn’s
definition of a Visual Language, this combines the
graphical point with two labels that state the tuple’s
identification number, id, and the dimension’s
identification number, id,.. Second, these two numbers

provide a mean of sorting the set of MDletters,
completing thus the definition of the alphabet.

We establish the following relation of order on MD.
Definition 3.3. Vm, ,m, € MD
def
m,<m, <id, <id, OR (id, =id, ANDid, <id,)
def
m,=m, <idy =idy, AND id, =id,,
Because the MDletters are uniquely identified by their
two id numbers, which cannot be bigger than the
number of rows and columns in the table, it implies that
the set MD1s finite.
Theorem 3.1. (MD, <) is a total relation of order.
Proof: We have to prove that Vm;,m,e MD,

(m;<m,) OR (m;>m,) OR (m;=m,).
Because (R,<) is a total relation of order
= (idy, <idy,) OR (id; 2id,,)
1) if id, <id,, = m;<m,
2) ifid, 2id, =if id, >id;, = m,;>m,
if id, =id,, = 1if idy <idy, = m;<m,
if idg >idg, = m;>m,
if idg =idy, = m;=m,
In order to provide more flexibility and versatility
for various visualization methods, we extend the
alphabet with a set of special letters that depend only
on the set of dimensions, not on the elements of data
table. These additional letters can be used to create
interaction capabilities such as pivot points. They can

be made to be either visible or invisible.
Definition 3.4. We define the function g as follows:

g:D — (D,R? RGBA)

g(P):(iddP Xp,Yp-Zp.Clip),VYPe D, where:

id; represents the identification number of the
dimension that contains this element (in terms of
data table, idy is the column number)

X, y, z€ R are the 3D coordinates of the point that
represents this element P in the graphic space

clr is this point’s RGBA color, clr=(r,g,b,a), with
r,g,b,ae[0,1]

Similarly to the above-defined function f, g is also a
well-defined function. Each image g(P) thus defined is
a letter in our alphabet as follows:

Definition 3.5. We define a PVletter as an element

(idy x,y.zclr) e (D,R* RGB).

Notation: P¥ = the set of all PVletters = {PVletter} =

{ (idy.x,y.z,clr) e (D,R? ,RGB) }.

PVletters are visualized (or located) by graphical
points with coordinates x, y, z, color clr and one label
stating the id;. A color clr is assigned to all PVletters
according to morphological rules.

Similar to MD, PVrequires a relation of order that is

defined as follows:
def
Definition 3.6. Vp,.p, € PV, p,<p, <idy <idy , and

def
Pi1=P, <:>idd1 =idd2 .

The above defined relation of order on ?¥ is also
total because it strictly depends on the identification
numbers, which are natural numbers, hence totally
ordered. Because the set of id numbers of the
dimensions is finite, P/ is finite as well.

At this point we have two sets of totally ordered
letters. MDletters map a data table element into the
visual space and PVletters act as either locations or
pivot points in the visual space. The next step is to
define the alphabet, which includes both MDletters and
PVletters.

Definition 3.7. We define the alphabet, 4, as 4= PV
U MD.
Definition 3.8. We define a relation of order “<” on 4
by extending the relations of order established on PV
and MD respectively.
def

Va,,a, € 4 ,a,<a, & (a;,a, € PV AND a,<a,)

OR (a;,a, € MD AND a,<a,)
Va, € P Va, e MD =>a,<a, 3.1

_3

The relation of equality is a natural extension of
equality on PV and MD
Theorem 3.2. (4, <) is a total relation of order.

Proof: Va,,a,e 4 we can have the following
situations:
a;,a, € PV = a,;<a, OR a, 2a, (Definition 3.6)
a;,a, € MD = a ;<a, OR a; 2a, (Theorem 3.1)
(Line (3.1)).
Therefore, according to the Oxford Dictionary [9],
4 is a well-defined alphabet. To make use of this
alphabet we need to define morphologies that are

capable of describing how these letters are combined to
create visual representations.

a, € PV, a, € MD = a,<a,

4. Morphology for Parallel Coordinates

In this section we will use the alphabet 4 to build
PCVL and illustrate its descriptive capabilities with
Parallel Coordinates. As in any language, the alphabet
4 will be used to define morphological units. We called
these units words maintaining the analogy to natural

language. We start by defining a basic structure for
Parallel Coordinates, or a PCword.

Definition 4.1. PCword = (id,, (m;, m,,..., MNvisDim)»
clr) an ordered sequence of MDletters, where
idtk =idtj ,Vk,je VisD and

idy, #idg Vk # ik, je VisD

Since the tuples’ id number is common to all
components, it becomes the PCword’s id,. The color of
my is determined by idtk . Therefore, because all the

MDletters of a PCword have the same id,, all the
corresponding points are visualized with the same color
(Figure 4-1).

A | B | ¢ | D

ID | flower | widths | heights
32581 11462 78.31
34012 182.23 189.46
34012 202.09 136.38
34012 264.35 194.95
26391 109.13 73.22
36376 114.62 78.31

Figure 4-1: In the data table T the tuple 4 is
highlighted. This tuple’s PCword is drawn in
the graphic space on the right. Each MDletter
is labeled with its id; and is colored the same.

‘\I‘O)‘U\ nm‘m—\
D O BWIN —

Theorem 4.1. In any PCword each visible dimension
has a corresponding MDLetter.

Proof: By definition, a PCword w = (id,, (m;, my,...,
Mypvispim)» €1r) has MDletters with indices from 1 to
NrVisDim. Hence the set of these indices is exactly
VisD. We can define a function f:VisD — VisD,
f(k)=idy where idy is the identification number of

the dimension corresponding to my. From Definition
4.1 =>fk)=1(§),Vk # j,k,je VisD =>f is injective.
Because VisD is finite => f is injective< f is
surjective < f is bijective. Therefore f is surjective
and that means Vje VisD = 3k such that f(k)=j
= Vje VisD 3!k € VisDsuch that my corresponds to
the j"™ dimension. => any PCword has one unique letter
for each visible dimension.

Definition 4.2. p:VisD — VisD, p bijective. We say
that p is a permutation of VisD.

Notation: Let p be a permutation of VisD. Then a
PCword w = (id;, (m;, my,..., Myyvipim)> CIr) where
idy is the dimension corresponding to my can be

written (idy, My,y)Mp2). . My(NrVisDim)s clr) giVGIl that

pk)= iddk .
Notation: PCW = the set of all PCwords = { (id,,
MMy, MpyNevispimys S0 | Mgy e MD, k=1,

NrVisDim, id= 1, NrVisTuples, p= permutation of
VisD}.

As we can observe, a PCword corresponds to one
tuple in Parallel Coordinates, which visualizes one row
of the data table. A PCword is a morphological unit
based solely on MD, but using the rest of the alphabet
is essential for a proper formal description. Next we
define another type of word, which uses elements of
PV
Definition 4.3. PVword = ((v{, Va,..., VNrvisDim)» CIT) an
ordered sequence of PVletters, where
idy # iddj ,Vk # j,k,je VisD.

The color used to visualize a PVword is the same
used for each component vy (Figure 4-2).
Notation: Let p be a permutation of VisD. Then an
PVword vw = ((vy, Va,..., Varvispim)» €01) Where iddk is

the dimension corresponding to my can be written
(Vp(l)vp(Z)...Vp(NrVisDim)a clr), where p(k)= iddk .

[F
o

4
[]

o
-

/ L] L] L] L]
P Pv2 Pv3s P4

Figure 4-2 A PCword and the corresponding
PVword

Theorem 4.2. For each permutation p of VisD there is
only one PVword.

Proof: Similar with the proof of Theorem 4.1 we can
show that all the visible dimensions are represented by
a PVletter in a PVword. But we have only NrVisDim
PVletters available, hence the sole difference between
any two PVwords consists in the order the PVletters
are used.

Notation: PVW = {(Vp(l)Vp(2)...Vp(NrVisDim) , Clr)l Vp(k)
e PV, k=1, NrVisDim, p= permutation of VisD} the set
of all PVwords.

PCwords and PVwords form the main
morphological units. However, in themselves they are
not sufficient to build the Parallel Coordinate visual
representation. Next we define a PCline that together
with a PCword, formally describes a tuple in Parallel
Coordinates.

Definition 4.4. Let w = (idyy,, mMpqyMpo). MyNevisDim)s
clry) be a PCword, where p is a permutation of VisD.

We define a PCline of the PCword w = (id,
NrVisDim-1
(MG ,mp6,] clry).

i=1

The PCword’s id, and color will be assigned to the
corresponding PCline. Graphically a PCline (Figure
4-3) is the poly-line that connects all the points that
visualize the MDletters composing the PCword (Figure
3).
Notation: PCL =the set of all PClines = { PCline of the
PCword w lw e PCW }.

4

4
s
M

Figure 4-3: A PCline links the MDletters of a
PCword

In order to fully formalize the Parallel Coordinates,
we need means to describe the other elements of this
visual representation. The first is the line that connects
the pivot points.

Definition 4.5. Let vw = (Vp1)Vp2)... VpiNrvisbimys 1) be a

PVword, where p is a permutation of VisD. We define
NrVisDim-1

a PVline for PVword vw = (Ve »Vpiisny 15

i=1

clr).

Similar to a PCline, a PVline is the poly-line that
connects the points representing the PVletters that
compose the PVword and it is visualized with the same
color as the Pvletters (Figure 4-4). From Theorem 4.2
it follows that, for a given permutation p of VisD, there
is only one PVline

4

/\4
0\4
4 .
o —o—o
/ PVl PV2 PVa Pw

Figure 4-4 A PCline and the corresponding
PVline

In Parallel Coordinates the pivot line is connected
with the tuples and the points representing elements of
the data table through a set of parallel axes. Translated
into PCVL, this set of axes is defined as follows:

Deﬁnition 4.6. Let w = (idtws mp(1)mp(2)mmp(NrVisDim),
clry) be a PCword and vw = (Vp1)Vp2)... Vp(NevisDimys €Ir)
be a PVword, where p is a permutation of VisD. We

define a PCax of the PCword w =
NrVisDim

(U [Vpi) »Mpiy 15 €lta)-

i=1

Graphically, a PCax (Figure 4-5) is the set of
segments that connect each point representing an
MDletter of the PCword with the corresponding
PVletter of the PVword. The color clr,, is common to
all PCaxes, but independent of other units’ color.

\?\4

4 o

[

)/ PVl PY2 PWa P

Figure 4-5 Parallel coordinates representation

showing a PCax that connects the MDletters

of a PCline with the corresponding PVletters
of the PVline.

Notation: PCAx = the set of all PCaxes ={ PCax of the
PCword wlw ¢ PCW }.

5. Morphology for Glyphs

Glyphs based on a data table are independent visual
representations and are usually created either one per
row to create a characteristic shape indicative of the
tuple’s properties or one per column to show
comparative magnitude for one dimension across the
tuples. The Glyphs formalized here are of the letter
variety. Defining a morphology for Glyphs begins with
the basic structure for Glyphs, or a Gword. A Gword is
an analogue morphological unit to a PCword that it
visualizes one column in contrast to one row.
Definition 5.1. Gword = (idd, (ml, my,..., mNrVisTupleS),
clr) an ordered sequence of MDletters, where
idy = idGlj ,Vk,je VisE and

id, #id, ,Vk # j, kje VisE.

Because we are defining words for both Parallel
Coordinates (PCVL) and Glyphs (GVL), we establish
coherent color policy. Therefore since the MDletters
that form a Gword have different id, they will have
different colors. The Gword’s color clr is then an array
with all the components’ colors (Figure 5-1).

A B © D
1 1D flower widths | heights o
| 2 | 1| 32581] 11462 78.31 BB B
| 3 | 2| 34012 18223 189046 g
4 3| 840.12| 20200 13638 @ °
[5] 4| 340.12| 26435 194.95 B =
| 6 | 5| 26391 10013 7322
7 636376 11462 7831

Figure 5-1: On the left, the Gword’s data
dimension column; on the right, the Gword’s
MDletters, labeled according to their column

and colored uniquely according to their id;.

Theorem 5.1. In any Gword each visible tuple has a
corresponding MDLetter.

Proof: Analog to the proof of Theorem 4.1.

Notation: Let q be a permutation of VisE. Then an
Gword gw = (idg, (my, my,..., MypvisTuples), Clr) where
id is the tuple corresponding to my can be written

(idda My 1)y, 2, My (NrVisTuples)s Cll'), where (l(k)= id[k .

Notation: GgW = the set of all Gwords =
{myymye) MpNevisTuplesy | Mpay € MD, k=1,
NrVisTuples, p= permutation of VisE}.

At this point we include in GVL one of PCVL’s
morphological units, PVwords. The auxiliary
morphological units necessary to completely formalize
the Glyphs are defined as follows.

Definition 5.2, Let gw = my)Mpy2)...

(idg
ew

MpNrvisTuples)» €Ir) be a Gword, where p is a permutation

of VisD. Let v be the PVletter that corresponds to

dimensionid; .We define a Gfan of the Gword gw =
gw

NrVisTuples
(idg [V,mp(i)], clry) where the Gword’s
ew
i=1

idy is also used by the Gfan.

Graphically, a Gfan is the set of segments that
connect the pivot point corresponding to id; with
ew

each of the points that visualize the MDletters of the
Gword. These segments are visualized with the same
color colg, independent of the individual colors of the
MDletters that determine the Gfan (Figure 5-2).

Figure 5-2: An emerging Glyph showing its centre,
PV2, its multi colored Gword and its Gfan.

Notation: GF = { Gfan of the Gword gw | gw ¢ GW }
the set of all Gfans.
NrVisTuples
Definition 5.3. Let gf =(id, o [V,mp(i)] , clry)
i=1

be a Gfan of the Gword (idy o My M)
&

myNrvistuples), CIT). We define a Gglyph of the Gword
NrVisTuples-1

gw = (iddgr , AV My, 5Clr).

i=1

Naturally, the Gglyph has the same id, —as the
g
Gfan and the MDletters of the Gword.

B
B

Figure 5-3: A Gglyph

Graphically, the Gglyph represents the surface obtained
as the union of all filled-triangles, each triangle having
the corresponding pivot point, In Figure 5-3 the
PVword PV2, as one vertex and pairs of points that
visualize consecutive MDletters as the other two
vertices

Notation: GG = the set of all Gglyphs ={ Gglyph of the
Gword gw | gw ¢ GW' }.

Definition 5.4. Let gg be a Gglyph of the Gword gw =
eg=(id,

(ldd of mp(1)mp(2).4.mp(NrVisTuples), Clrg)a
NrVisTuples

avmpgme o, clr,) We define the Gborder

i=1
NrVisTuples-1
of the Gglyph gg = (iddgr > [mp(i) ,mp(i”)] >
i=1

clry).

B
/B \

B
.é\ Pv2 B
|]

Figure 5-4: A complete Glyph with its Gglyph and
Gborder

Similar to the Gglyph, the Gborder keeps the same
iddgr . The Gborder represents the poly-line that

connects all the points that visualize consecutive
MDletters of the Gglyph (Figure 5-4).
Notation: GB = the set of all Gborders ={ Gborder of

the Gglyph gglgge GG }.
6. Syntax

An important aspect for syntax of a visual
representation is the maintenance of topology. We
define acceptable transformation as those that maintain
topology or properties of the geometric configurations
as unaltered by elastic deformations such as a
stretching or a twisting. In the topology of MDVL we
consider the coordinates of the morphological units
because they form the basis for the visible shapes.
Geometric transformations of coordinates are allowed
only if they preserve the structures and the meanings of
these units.

The MDVL grammar is at this point analytic. From
a multi-dimensional data table, the data is visualized
according to set of corresponding MDVL sentences.
Definition 6.1. The MDVL topology is the geometric
configuration of the morphological units, preserved by
a specific set of permissible transformations.

Definition 6.2. The MDVL syntax is the set of rules
that describe the conditions under which a sentence is
grammatically-correct in a given topology.
Axiom 6.1. Any morphological unit is used once and
only once in a sentence.
Axiom 6.2.The only geometric transformations allowed
on the morphological units are:

1) Scaling
The only scaling allowed is on the x direction. It can be
defined on both PV and MD sets. Let
w=(idg x co)e PV and S,: PVxR = PV

woYw oLy
Sy (w,a)=w', where w'=(idy XYy Zy.cODE PV,
X, =0*x, . Similarly we define scaling for MD. Let
w=(id, .idy Xy .Yy Zy-col)€ MD,S', : MDXR — MD

S (w,o)=w', W'=(id[w 7iddw. Xy Y +Zy COl) € MD,

Xy =0*X,, . These transformations can be easily

extended to PV, and MDW by applying the scaling
to each component.

2) Rotations

3) Translation
Analog to scaling, rotations and translations in all three
directions can be defined for all morphological units.

7. Conclusions

In this paper we have presented a formal approach
to description of visual representations using an
analogy to natural languages. We have defined an
alphabet, MDVL, consisting on two types of ordered
letters that can be used as the basis for the development
of several languages. Two examples illustrate the way
the description of a family of visual representations can
be based on this alphabet with: we have elaborated the
morphology and the syntax for two visual
representations of multi-dimensional data, parallel
coordinates and glyphs.

Our linguistic formalism of visual representations
extends the influence of Chomsky grammars from
visual programming languages to information
visualization techniques. The approach we have
proposed here provides a theoretical foundation for
description of visual representations, which can be
further investigated for other techniques than those
detailed here.

Acknowledgments

We gratefully acknowledge support from Natural
Sciences and Engineering Research Council (NSERC)
and thank our colleagues at Interactions Lab,
University of Calgary, for their insightful comments.

8. References

[1] Costagliola, Gennaro, Delucia, Andrea, Orefice, S. and
Polese, Giuseppe, “A Classification Framework to Support
the Design of Visual Languages “, Journal of Visual
Languages and Computing, vol. 13, nr. 6, 2002, pp. 573-600
[2] Haarslev, Volker, “A Fully Formalized Theory for
describing Visula Notations”, in Marriott, Kim and Meyer,
Bernd editors, Theory of Visual Languages, Springer-Verlag
New-York, 1998, pp. 261-292

[3] Horn, Robert, Visual Language-Global Communication
for the 21" Century, MacroVu, Inc, Bainbridge Island,
Washington, 1998

[4] Inselberg, Alfred and Dimsdale, Bernard., “Parallel
Coordinates: A Tool for Visualizing Multi-dimensional
Geometry”, IEEE Conference on Visualization 1990, IEEE
CS Press , pp. 361-378

[S] Kong, Jun and Zhang, Kang, “On a Spatial Graph
Grammar Formalism”, IEEE Symposium on Visual
Languages and Human-Centric Computing 2004, IEEE CS
Press, pp. 102-104

[6] Lindenmayer, Aristid, “Mathematical models for cellular
interaction in development, Parts I and II”, Journal of
Theoretical Biology, vol, 18 1968, pp. 280-315

[71 Marriott, Kim, “Constraint Multiset Grammars”, /IEEE
Symposium on Visual Languages 1994, IEEE CS Press,
pp. 118-125

[8] Marriott, Kim, Meyer, Bernd, and Wittenburg, Kent B.,
“A Survey of Visual Language Specification and
Recognition”, in Marriott, Kim and Meyer, Bernd editors,
Theory of Visual Languages, Springer-Verlag New-York,
1998, pp. 5-85

[91 Oxford Advanced Learner’s Dictionary of Current
English, Oxford University Press, 2000

[10] Prusinkiewicz, Przemyslaw, “Simulation Plants and
Plant Ecosystems”, Communications of the ACM, vol. 43,
nr. 7, 2000, pp. 84-93

[11] Rekers, J., and Schrr, A., “Defining and Parsing Visual
Languages with Layered Graph Grammars”, Journal of
Visual Languages and Computing, vol.8, nr.1, 1997,
pp- 27-55

[12] Yang, Jing; Peng, Wei; Ward, Mathew. O. and
Rundensteiner, Elke A., “Interactive Hierarchical Dimension
Ordering, Spacing and Filtering for Exploration of High
Dimensional Datasets”, IEEE Symposium on Information
Visualization 2003, IEEE CS Press, pp. 105-112

