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ABSTRACT

A self-consistent perturbation theory is used to obtain
closed-form expressions for phe density matrix elements to
first order for the iterative procedure. The Validity of the
approximations involved to get the closed-form expressions is
tested against a few pi-electron systems. A similar analysis,
but different in mathematical approach; is carried out for
infinite networks. With the iterative method in its full form,
bond length calculations were done for alternant and non-alternant
hydrocarbons and the results are réported. The symmetry 'dilemma’
that results from these‘calculations is discussed in connection

with the 'singlet' stability of the Hertree-Fock solutions.
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CHAPTER 1

INTRODUCTION

1.10: PURPOSE

This thesis is concerned with a study of a method of obtaining
approximate values for the bond orders -(and hence bond lengths)
for conjugated T-electron systems of interest to chemists. As in
nearly all realistic chemiéal-problems, the methods of calculation
are, by necessity, approximate. There are a number of mathematical
methods available with which the problem can be attacked.
Essentially all such methods‘invglve an approximate representation
of the physics of the problem from which is extracted a solution.
This solution may then be used tq calculate the relevant property
directly or it mey be improved by successive approximations. In
the present case the method chosen (for reasons outlined in
Chapter 2) is the so-called iterative scheme that takes a simple
and readily accessible description gnd by a éuitably chosen
perturbation,properly parametrized, successively "improves" the
result. Such,a pfocess raises a number of questions. For
example, How does one choose the perturbation? What sort of
parametfization is required? Does the procedure indeed converge to
g unigue solution? How rapidly'does it converge? Can one
analyse the procedure to obtain some insight into the final self-

consistent form? All of these questions are non-trivial but not



-2 -

all are normally considered. For example, the convergence of the
self-consistent scheme in M.O. calculations is normally taken for
granted but as pointed out by Schwartz!l the convergence is not
fully understood. Another example is that until recently little
atﬁention has been directed to the stability of molecular

orbital descriptions obtained by solution of Hartree-Fock
equations. Even such é fundaméntal congept as the conservation

of symmetry in such calculations has been tacitly assumed but
again this is not always so. These questions with specifi;
reference to iterativé methods prompted the investigations leading
to mucp of the maferial reported in this thésis. In addition to
carrying out such investigations, we have also applied the method
to the calculation of & specific property of a number of conjugated

pi-electron systems.

1.20: RESUME

The iterative method described in Chapter 2 turns on two
equations, one relating the bond order to the bond length and the
other‘allowing one tq set up the hamiltonian matrix elements for
the new iteration from the bond order elements obtained in the
previous iferation. Further, to adapt the method:to several
classes of pi-electron systems, a flexible parameter, §, which can
be selected for a given class has been introduced into the second
equation on which the iterative cycle rests. The success and the
adaptability of this method requires that the procedure converges

for eppropriste § values and that it yields results in agreement
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with the experimental data. To this end, we examined the
convergence of the iterative method in some detail.

The investigation of the convergence of the iterative method
has been carried out theoretically and numerically. The
theoretical analysis follows the general perturbation theory.
Based on this, general expressions were obtained for the density
matrices at all stages of the iterative cycle under the L.C.A.0.-
M.O. approximation. The equations that led to the convergence
eriterion were then derived. The description of the analysis is
delineated in Chapter 3. To illustrate the usefulness of the
approach, continuant matrices which aré a representation of linear
polyenes were considered in Chapter L.

As a special case in our analysis we also considered infinite
periodic networks. The convergence criterion and the breakdown
point in the iterative method were treated in Chapter 5. To add
support to the theoretical énalysis, numerical investigations were
aléo.carried out for the infinite network.

In Chapter 6 we discuss the appropriate choice of vaiues for
§ for two qlasses of alternant hydrocarbons and also fqr 8 class
of non-alternant hydrocarbons and present the results of the
applications of the iterative method with these values.

In the process of our calculations, it appeared that for
certain systems, for‘example pentalene and heptalene, an initial
symetry (DZh) is lost and -the process converges to a new

symmetry (Cgh). Some discussion of this is provided in Chapter T,



in particular,the singlet instability associated with the symmetry
problem of the Hartree-Fock solutioﬁ. This investigation bears
some resemblance to that of Paldus and Cizek? who observed that
where the instability has occurred, the alternative stable
solution is found to belong to a lower symmetry. A description of
the examination of the stability of the Hartree-Fock solution for
pentalene and heptalene and a discussion of our results is

provided.



CHAPTER 2

ITERATIVE TECHNIQUES

2.10:" INTRODUCTION

Within the context of approximate schemes, methods of very
general applicability have been developed and have found ready use.
For example SCF—MO—PPP+ schemes have been used for calculating many
properties. However, schemes with the flexibility necessary to
provide a wide variety of properties with reasonable accuracy are
complex and frequently require heavy use of computing time. As a
result, simpler schemes specifically designed for the calculations
of a particular property have been developed. Such methods
generally involve two parts: an appropriately parametrized
relation between fhe observable quantity and a quantity calculated
from the approximate mathematical description of the molecule. The
latter. quantity may,in itself,be the result of an iterative
calculation wherein the quantities obtained from a given representation
of the hamiltonian are used tq define an improved hamiltonian with
which a new value may be calculated. Although numerical calculations
generally indicate that under éertain restrictions the iterative
method converges, there is a need to determine analyfically the con-
‘ditions under which the iterative method converges, to examine the
convergent fofm and for infinite systems analyse the functional
characteristics of the approach to self-consistency. To this end,
we make reference to the principle iterative methods and use the

perturbation theoretic approach to examine an iterative scheme for

1

Self-consistent field molecular orbital Parisef—Parr-Pople.



calculating bond orders.

2.20: THE NATURE OF ITERATIVE METHODS

There are many iterative methods 3

quite widely used in numerical
analysis to obtain a better solution from an approximate solution or .
to solve an inhomogeneous problem. For example , integral equatioﬁs“
are customarily solved by an iterative method; an elementary iteratioﬁ~
variation procedure for solfing the SchrSdingérvequation by the
partifioning technique suggested by lLowdin is another instance.?> The
iterative methods are, in éeneral, characterized either by éucceséive
approximations or successive substitutions. For example, to solve
linear integral equations, the successive approximation ﬁethod or the
successive substitution method has been used. In both cases, the
conditions under which the method would converge have been well demon-
strated.%

The iterative methods that we will discuss use the idea of the
successive substitution. Depending upon the propertyAwe wish to
_calculate, the nature of the method and the functional relations
involved change. In the following, we will consider two such methods

which have been used in MO calculations -~ one is the charge-dependen

and the other the bond-order dependent method. 15-20

£2,201: The Charge-Dependent Method -

In the self-consistent field theory (SCF), the diagonal Fock
matrix element, Frr’ of the effective hamiltonian at atom r depends on

the cﬁarge-density, P ., at r and on the charge-densities at all other

rx

centers and it is given by:

.. poore | )
I‘r:c‘ Hrr AP Yo T z Pes Yrs (2-1)
S¥r -7

.ts"l'-l—:



where

core _
Yy

==
|

<Xr|ﬁcore|)(r> , the core integral
and = <X (1) x (2)] EE-IX (1) X (2)> the coulomb repulsion
Yrs T s rip''Tr S > P

integral. {Xr} belong to the atomic basis set.

Thus, the dependence of Frr on Prr allows for the redistribution
of charges on all centers as the iterative cycle leading to the self-
consistent field progresses. However, this aspect is absent in the
simple Huckel representation in that‘all the diagonal hamiltonian
matrix elements,'Hrr,+ are equal for all atoms. Even if the matrix
elements, Hrr’ are different? there is no technique inherent in this
available for bringing about the charge redistribution. Therefore, a
possible improvement on the Huckel approach is to modify each
diagonal matrix element of the Huckel matrix in an iterative manner
such that it takes into consideration the charge density at that

! and

center. This idea was originally proposed by Wheland and Mann?
later developed by Streitwieser and Streitwiésér and Neir.l? This
charge-dependent procedure, also called the w-technique, is’described
by the following equation

(n)Hrr = (n—1)Hrr +‘w(1 - (npl)Prr) (2-2)11-13

T H.. = <x%|ﬁeff.lxi_> where |Xr> are the atomic orbital (A.O0.)

basis and Heff is the effective one-particle hamiltonian.



w is the perturbation parameter and Prr is the charge-density on
a particular center r. The subscript n indicates the brder of
iteration. Several modifications of this equationl® have been
suggested and yet basically all these methods involve the
principle‘indicated in equation (2-2).

The charge-dependent method has been quite widely used to
obtain a better representation of the distribution of charges in
many pi-electron systems, radicals, cations, anions and hetero-
nuclear compounds.len examination of the convergence of this
method has been carried out.l!3 For the allyl and benzyl radicals,
a slow oscillatory convergence was noticed.l? Recently,
modifications of this method to remove the oscillations and
hasten the convergence have been suggested.lq
. Similar to the éharge—dependent methods, we could envisage

the bond-order dependent methods, the nature of which is

delineated in the next section.

2.202: The Bond-Order Dependent Method

2.2021: The Description

.It is generally accepted that there is a relation between
the separation, Rrs{ between two ﬂ—penﬁers r'and s in a pi-
electron system and the so;called pi-electron bond order, Prs'
Such relations have been proposed in the past by Coulson and

Golebiewskil® and others.l® Although their applicability is



considerable, it is limited in that the equations can only be used
for certain classes of molecules, viz., linear polyenes, alternant
and non-alternant hydrocarbons. Further, the accuracy of the
resulting bond lengths would still depend on the accuracy of the
calculated bond order elements. This amounts to seeking better
solutions and hence better Prs with the approximate schemes
available. Though one of the schemes, the Pariser-Parr-Pople (PPP)
scheme without modificétion is ubiquitous in its applications for
the electronic properties of the T-electron systems, it frequently
does not give Prs which yield sufficiently accurate values of the
bond lengths. Consequently, modifications of the basic SCF
calculations have been suggested. The most natural modification is
a re-evaluation of the basic integrals to adjust for changes in
bond lengths. This Rrs dependence can be accounted for by allowing
for a dependence of the integrals on the elements of density matrix.
As such, the procedure would be second order in Prs’ and although a
more accuraté representation would be complicated. Rather than go
this route we have attempted to modify the first order Prs
dependence of the matrix.

In the bond-order dependent iterative m.ethod,lssl6 the

variation of the off-diagonal core elements with each iteration is

.1.

Both the core integrals and the coulomb repulsion integrals which
constitute the off-diagonal Fock matrix element are assumed to be
dependent on the bond order elements through a multiplicative

factor.
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such that the matrix elements are related to the bond lengths for
which new matrix elements are sought. Although a variety:of such
iterative methods have been suggested, they differ only in the
form of the equations used, and the resulting solutions do not
differ in content.

2.,2022: The Delta Technique

The iterative Huckel treatment which is easy to carry out is
one of the better known of the techniques for calculating bond
lengths. In this simple iterative procedure, the off-diagonal
matrix elements, Hrs’ are recalculated either from the bond order
matrix elements, Prs’ directly or from the bond lengths (Rrs)' To
carry out the latter step, a bond 1eng£h—bond order relation is
necessary. For exemple, Coulson and Golebiewskil® used Salem's

relationl®

(n)Hrs = (O)Hrs exp <—(n—1)(Rrs - Rstd)/o'3106) (2-3)

" along with a bond length-bond order relation

(ne1)Rps = 1+517 - 0.18 (. 1)Prs (2-4)

Dewar and Schmeising?! noted that the equation (2-3), though
successful for one cléss 6f molecules (viz., alternant aromatic
hydrocarbons), does not yield results in agreement with the
éxperimental results for another class (viz., linear polyenes).

Therefore; they suggested an alternative expression:
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= 1.485 - 0.20 [ (2-5)

(n—l)Rrs 1)Prs

for the latter class of molecules.

As is evident now, the lack of flexibility inherent in equations
(2-3) and (2-4) or (2-5) limits applicability of this procedure. To
get around this difficulty, an iterative procedure has been
developed!” in which the bond length-bond order relation remains the
same for all classes of molecules. On the other hand, it does modify
the equation fof the new matrix element. The form of the new

equation for the off-diagonal matrix element is

(n)frs = (0)ps * 6(n—-1Prs - Pstd) (2-6)

This relation recognizes the variation in the bond order matrix
elements from iteration to iteration through a perturbation on the off-
diagonal elements which is proportional to the bond order times §.

The value of the parameter § may be changed froﬁ one class of
molecules (linear polyenes) to another (polycyclic alternant hydro-
carbons) to allow for rapid convergence to accufate values of bond
lengths. In practice, it is noticed that the class of molecules,
alternant hydrocarbons, where extensive delocalizaﬁion is discernible,
requires a smaller value of § to obtain the bond lengths in agreement
ﬁith the experiment and for the class of compounds where the
phenomenon of delocalization is less predominant, a highér value of &
is necessary.17 Further discﬁssion on this will follow in the
succeeding chapters.

Even though the choice of § is fully decided by the type of
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molecular system in question, we still have to ask ourselves if there
is, indeed, any limitation on the choice of §. Furthermore, any
iterative procedure inclﬁding the one we suggested needs to be checked
for convergence. These points are investigated in the following
chapter.

2.2023: Comments on the § Technique and the SCF Treatment

We would like to point out the relation between the present
{terative method and the "restricted" SCF-ZDO scheme.22:23(Restricted in
the sense that the non-neighbour coulomb repulsion integrals are

excluded.)

The Fock matrix elements within this SCF-ZDO approximation are

given by

=
il

~
U _+L4%pP <rr|v|rr>
rr rr rr\

¢ o G

F _=H -4%P <rs[v|rs > , r and s neighbours (2-8)
rs TS rs !

where Urr is the diagbnal matrix élémént of Xr with respect to the
one—electron hamiltonian and contains the kinetic energy and the
interaction with the core of atom r. ﬁ;s is the matrix element of
the one-electron hamiltonian for motion in the field bf the two
nuclei. <rs|\'\r|rs> are the two electron repulsion integrals.

For alternant hydrocarbons, these elements reduce to
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e
il

U
rr rr

+3 (zr|v|er) (2-9)

and

-— _;’ tal _
F.=H -%P. <rs|v|rs> (2-10)

Now recall that the iterative Huckel scheme defined earlier

is characterized by the equations:

o = 0 and Hrs

H' + &P (2-11)
ry rs r

s

where

Bl = ((O)Hrs - %Pgtq ) ( 8o - GPstd.)

On assuming that the non-neighbour interactions for the repulsion
integrals are zero, the present iterative method and the SCF-ZD0
scheme become equivalent except that the eléments have a somewhat
different interpretation.

In thé casé of altérnant hydrocarbons thé variation of the
off-diagonal element will have no effect on the diagonal matrix .
elements of the density matrix.23 This implies that for a given
geometry of the system, Frr is iteration independent. This is to
be compared to H}r remaining the same at all stages of our
iterative procedure. The elements that change then are the off-~-
diagonal Fock matrix element in SCF-ZDO and Hrs’ the off-
diagona} Huckel matrix element, in our approach. In the former

case, this change comes through the exchange term
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-4 Prs <rs|$|rs> aﬁd in the latter through 6Prs. Clearly, for
the fixed geometry model, <rs|$|rs> remains the same at all
stages of the iteration. However, PrS varies. Similarly, &
remains the same; it is again Prs that changes. In the
procedure that we carried out, a constant term (-§) is added to
(O)HrsFéato give H;S; this is an initial perturbation which of
course remains the same throughout the iteration procedure.
Since § may take different values for different classes of
alternants, this allows us to introduce different H%S for the
different classes while at the same time maintaining the one
parameter character of our procedure.

From the point of view of a self-consistent field procedure in
Prs the matrix element H;S defines the initial energy. The energy
obtained after n iterations is decreased from this value
(although increased from the "unperturbed" energy defined by (O)Hrs)'
In order to make contact with the more common iterative
procedures (the procedures by Longuet-Higgins and Salem,l6
Coulson and Golebiewskils) and to enable us to develop a
perturbation treatment,. we take Hrs and pot H;S asitpe

zero order element and & (Pr - Pstd) as the perturbation in the

s
iterative self-consistent procedure.

As one goes from the alternants to the non-alternants, a
difficulty arises. While the SCF-ZDO scheme yields self-

consistent results in the charge-distribution, the § technique

does not consider this aspect explicitly. As we shall see, for
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the purpose of bond length calculstions, an appropriate choice of

§ appears to take this into consideration in an adequate manner.



CHAPTER 3

THE ITERATIVE ANALYSIS

3.10: INTRODUCTION

The iterative analysiq that will be delineated in this' chapter,
as we shall see, follows the perturbation theoretic approach based on
an independent particle model. Since in the course of the analysis,
references will be made'to the existing approaches, a brief outline of
the perturbation theories germane to the present problém is given in
the following. Succeeding this, a formulation of our approach is

presented.

L 5

Coulson and Longuet-Higgins2 and Longuet—Higginé2 introduced
the perturbation theory based on an independenf particle model to
consider the effect of varying the coulomb integral, Hrr’ or the bond
integral, Hrs’ on the total v—electron energy., Eﬂ and the bond order
natrix elements Prs' Thelr procedure was furthér developed by Dewar2®
and extensively uséd to study the éléctronic spéctra and chemical
reactivities of thé molecules containing T—-electron systems by
several others.2’ |

Recently, Tmamure 28 and Carbo?2® gave a general perturbation theory

for the ektended Hiickel scheme. McWeeny3°'presented the matrix formul-
ation for the self-consistent field perturbation theory. The McWeeny
density matrix formulation allows one to go to any order of pertur-
bation. Further, the pertufbations are not confined to one element of

the hamiltonian matrix. In all these treatments, one-particle
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perturbations are considered. Very recently, Sustmann and Binsch
extended the self-consistent perturbation theory for two interacting
closed-shell molecules where the one- and two-particle perturbations

are im.portant.31

3.20: THE ITERATIVE ANALYSIS

3.201: Formulation

For any pi-electron system, if the variation of the orbital
coefficients between two successive iterations is known, then it would
be possible to follow the process from iteration to iteration.
However, a knowledge of the effect of the variation is difficult to
achieve for most of the pi-electron systems. To surmount this diffi-
culty; an attempt was made to obtain the first order orbital
coefficients for the first iterated secular equation using the Rayleigh-
Schrodinger perturbation theory. Assuming that the Rayleigh-
Schrodinger perturbatiph treatment leads to a very fast convergent
result for the given pfoblem, we truncated the perturbafion expansion
only to first order terms. Even though truncating to a first order
term may be a serious mistake, since the interest lies in establishing
how the orbital coefficients are related to a first order approxi-
mation, the results obtained will probably act as guidelines in exami-
ning the convergence. ‘Once the first iterated secular equation is
solved, the second iterated secular equation is set up for which the
same procedure is followed. With the algebraic equations available
for the coefficients, after a detailed derivation, the analysis 1s

carried out. In the following, we derive the approﬁriate equations
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and then discuss the implicaﬁions of our results.

The equations to be solved are;
. T "
g ((1)Hrs - s Ei) Cgy =03 =1, 2,’.f.n (3-1)

Equation (3_1) is the flrst iterated secular equation where (l) g are
the hamlltonlan matrlx elements expressed as
I (I (v - . '

(1)rs ~.(0)Hrs * 8(0) Hrs | : . : (3-2)
The nature of the perturbeﬁioniis,described'in section 3.203. The
subscript on the left refers ‘to the number of iterations and the
superscript on the right refers to the order of the term. Grs is the
Kronecker delta. CSi are orbital coefficients. Since the
perturbatidn‘expansion will be truncated at first order terms, one

has:

(1) o (3-3)

- (0) ‘
(n)Hrs - (O)Hrs * 6(n-fl).I-Irs

% = (0% ) - (3-L)

o = e (0 Sy ; | o
A @ T 0% TS (3-5)

' See reference 22 for derivation.
¢« In Cﬁapters 3and 4, a multiplicative factor 2 should be included
in the definition of the zeroth order and higher order bond order

elements, P.
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where § is the perturbation parameter. The perturbed atomic orbital
coefficient of each molecular orbital can be expanded in the way
indicated in equation (3-5). Substltutlng for (1)Hrs’ (l)Ei and
(l)Csi in equation (3-1) and picking up the terms which appear as

coefficients to each power of perturbation would yield

2 (HrS(O) - sfs Ei(O)) Csi(O) =0; (r=1,2, ...n) (3-6)
s ,

(1) (1) (0)
z (Hrs Y- Srs B ) s *
) (Hrs(O) - Grs Ei(O)) Csi(l) =0; (r=1,2, ...n) (3-7)
S

Since the zeroth order molecular orbitals are normalised,

rs ri Sl

J Je c (0¢ (0 (3-8)
r S

(1)

The expression for Ei can then be written as

i rs ri - Tsi (3-9)

s gy (g (0 (O
r S

To obtain the correction to the orbital coefficient one first
(0)

multiplies (3-T7) by er , and then, on carrying out the summation

over all r, and recognizing that

} I, c % csj(°) =0 (3-10)
r S ]

we obtain:



0 .
Multiplying the above equation by ij( ) and summing over all j except

i of the resulting equation gives rise to

(0) (0) (1) (0) (0), (1)
I o3 ;zarscr.j c.n ' -C, zzs c.  C_,

si pi rs ri si

1

!

o~
K o~

§<Hrs(l/[Ej(0) _ Ei(OH) Cri(0) Csj(O) ij(O) (3-12)

In order to simplify equation (3-12) ,we need relations between the

0 .
c .(0),C ,( ),C ,(0) etc. To this end, we express the perturbed
ri sJ PJ

molecular orbitals in terms of the initial basis set as

%)

"

J o ile.) - (3-13)
r .

le> = I e, |q>s> (3-14)

)

Treating Cri as the real coefficients and using (3-5), we obtain

R 1

0 o~1
Q
2]

=
~~
(=]
g
Q

B TS
—~
o
o
S
<]
2]

o
1))

v

(\yile> =6y, =
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s ) ) Cri(l) Csj(O) <@rI®s>,
r s

Al the higher order terms in § are neglected. Using the neglect of

overlap approximation, we obtain

=
0 t~1]

o Do s sos g ye e Ms =1 (315
ri Sl. rs r s ai Sl rs

Hence, to a first order approximation,

7o (WD B =0 ) (3-16)
: i s ‘

24 z ri s
r

Substituting (3-16) into (3-12) and considering

), (o) . ;
Cos ~ Cpg = 85y | , | (3-17)

K~

and § % er(o) ij(D) Gsp = 6fs 7 (3-18)

ve get, alter some rearrangement

Cpy ' = i (CPJ(O)/<E1(O) - EJ(O))) .

=N~
0t~
=
Camny
R
——
Q
=
),
P
<o
g
(@]
~~
o
S’

.
1,
()%

. N L aed o (0) g (0)
(Jiuj(o) - Ei( > and (O)AILi = <}Li 0 - Ej )

will be used subseguently.

3.202: .The Coupling Phehomenqg

The expansicn for the matrix element can be written as
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(0) , & (1)

(l)Hrs = (O)Hrs (O)Hrs

_ (0) (0) (0)
= (0)Hes S <§ N (0% (0)%s1 " 1) (3-20)

(o) c (0)
ri (0)7si
the zeroth order problem. Similarly, the hamiltonian matrix element

where n is the occupation number and the(O)c are known for

of the second iteration is:

(0)

(1)
(z)Hrs = (0)Prs * 9 (1)Hrs

- (o)
= (s * 8 (g N ()% (1)Csi " 1) (3-21)

where the coefficients (1)Cri and (;)Csi are given by equation (3-5).
Equations (3-20) and (3-21) indicate that the matrix elements for
the nth iteration-are dependent on‘the perturbation coefficients
obtained in the previous iteration. These coefficients are of course
dependent on the matrix elements of the n-1 solution, hence the
iterations are coupled through the products of orbital coefficients,
i.e. throughrdensity matrix elements. We shall follow the iteration

through the bond order matrix elements.

3.203: Generalization

3,2031: An Expression for the Density Matrix

We have earlier obtained the expression for the first iterated

solution to a first order accuracy using the perturbation theory as
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- (0) ' (o) [rwd
(1Y% = (o)Cri * ajgi <(G)er /AEi) X

(1) (0) (o) (3-22)

) H oG c
0 (0)7pi 0 j
pq()pq )P (0)7qj
Neglecting the second order term in § in (3-22) allows one to write

the product for (1)Cri (l)Csi as:

(0) (0) ,

()% (1)%1 = (0)%1  (0)%i

(0 (0) /o) (1) 4 (0) (0)
S (0% jgi(mcsj /2) DL o 0% (0%

0 0 j 1 0
* o (o)cs§ )jéi ((O)er( )/AE‘;> % é (o)Hpé : (O)Cp:]g_ ) (o)qu(O)

(3-23)
Summing over all the occupied levels, carrying out an expansion of the
resulting expressibn and rearranging the terms, résults in the
expression for the first iterated deﬁsity matrix element:

e (0)
()P L (1)%1(1)%1™ L. (0102 (6)%1

S N IR U RN C IR O RPN ()
(0)°ri  (0)7sy T (0)7si  (0)7rj x

i=1 j=5 +1

(1) (0) (o) 5 r
~pgq ((O)Hpq (0% (0)%3 /(O)AEJq_) (3-2k)
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McWeeny, and Dierckson and McWeeny30 using the perturbation
theory obtained an expression for the first order correction to the
first order density matrix. Our expression can be shown to be
equivalent.

Extending this procedure allows us to write the expressions for
the second iterated density matrix element and the third iterated

density matrix element as
N/2

P = : —Nfz ¢ (0 o
(2)'rs i-—2=1 (2)Cri(2)csi'i=1(0) ri  (0)7si

(0)

N/2 N
(0} (0) (0) (0)y ..
) ((O)Cri (0% T (0% (0)%; ) *

i=1 j=.§+l

(1) (0) (0) J
) ((O)Hpq (O)Cpi (O)CQJ /(O)AEi>] *
P.q '

(0) (0) (0) (0)
((O)Cri (0% T (0% ()% )

| (0) (0) (0) (0)
g% ) 33 Il <(0)Cpm (0)%an  F (0%m  (0)%n ) x
‘ P.q - m n . '

N

Z <(°)Hﬁv(1) (O)Cum(O) (O)Cvn(O) OA%i) % *

U,V ‘

(0) (0)
(0)%pi (0)%q3 /OAEHH] (3-25)
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N/2 N/2 (0)

= (0)
(3) s = 121 (0%s (%1 = L (0% (0%t *

i=1

S1 rJ

“N/2 N
T L (e )

. N

(1) (0) (0 /  pod
32 ((o)Hpq (0)%i  (0)%y )/(O)AE1$J+

P.q

"N/2 N
52[ 5 (© 4 (0

‘ 12\1 ((O)Cri (O)CSJ

(0) (0)
* (0)%i (0)%r3 )
l .

i=1 J

N N2 N

(0) (0) (0) (0)
3 ) ) ) ((o)Cpk (o)CqJL * (o)ch (O)Cpﬁl )
p,q " tk=l &= T+l

LS

N

(1) (0) (0) L
) ((O)Huv 0%k (0)%e °AEk)‘ *
u,v

(o)  ~ (0)/ .3
(01 (0)%as °AEimJ

0 0) 0 0
o [’ .Z i (0% @+ % @)% )]
:2_ .

P.q
/2 N
N/2 W (0) (0) (0) (O\y ) .
) E ((O)Cpk (0)%2 ¥ (0)%x (0)pe )Z 3 ) 1§
k

t,w m=1 n=—2—+ 1
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(0) (0)

(o) (0)
((O)C’cm (0)%m * (0)%n (0)%m )

(1) (0) (0) (0) (0)
z((O)Huv (0)%m  (0)%n /(o)AEZ)E (0)%x (o)"wz/

U,V

% (0) - o (0)/ )23
OAEkE(O)CPi (0)%q /OAEif | (3-26)

3.2032: The Condensation Procedure

Because of the unwieldy nature of (3-24), (3-25) and (3-26), we
have resorted to using a condensed form for which the following
notation is used. Previously, i, J, k, %, m, n... denoted the
subscripts for the molecular orbitals; P, 45 ¥y S, t, u, v, w... the
subscripts for the centers. As the centers and the M.O.'s occur in
pairs, a notation pertaininé to the pair (pair of M.0.'s or pair of
centers) is used. Thus, for the molecular orbital pairs I, J, K, L,
M, N... symbols are used. P, Q; R, S, T... represent the paired
centers. In the following, we will demonstraté how the condenséd
forms are obtained for the corrections to the first, second and third
iterated density mafrix elements.

First, noting that

(0) (o) -t (1)
Ll ((o>cpi (03 F13 (0)ea )

- (0) (0) -t
Ll (((o)cpi (00 a3 /2) *
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(0) (0) -1 /: (1)
(%5 ~ (0Car = i / 2)> (0)%pa (3-21)

where ET% = AEQ and replacing El /é = E,, without loss of generality,
i i i i ,
the correction to the first iterated density matrix element as given

by the second term in equation (3-24) is rewritten as

N/2 W .
(1) _ o (0) (0) (0) - (o)
(s 702 L <(O)Cri (0% * (0% (0)°r )"
: (1) (0) (0) /hwd
Ll (<o>Hpq (0% (0% /AEi)
= (1) _
=9 i§j p§q ((O)Ars,ij Eij (O)qu,ij) (0)%pq (3-28)
Lo (0) (0) (0) (0)
where (0) Ars,i3 = ((O)Cri (%3 T (%1 (0% ) '

On using the 'péir—notation' defined earlier, equation (3-28 )} becomes

IQ
where (o)ATI = (0)Prs,ij

Similarly, the corrections to the second and third iterated density

(1) . PR TS
(1)Pp =8 L) QO)ATI'(O)EL(O)AQI)(O)HQ (3-29)

matrix elements as given in equation (3~25) or equation (3-26), are

written in the condensed form as
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(1)
(@ = S L L0k B (0har) (o)

(1)
SEL LD N D ) ((O)ATI Er (o)AQ£) ((o)AQJ Es (o)ARJ) (0)fiR
, I.q J R

(3-30)

and

(1)_ (1)
(3)F ((o) z F1 (o) QI) (0)

(1)
) <(0)ATI Ep (O)AQI) ((O)AQJ Er (0)Prs) (0)'R
R

+
(o]
N
HM
@M
cy 1

+ 87 D) ) ((O)ATI'EI (o)AQi) ((O)AQJ Es (o)AR&>
I Q@ J R s
(1) | i
((0) Rk Tk (0) SK) (o)s \ (3-31)

For a closed-shell N-electron problem, in general, the summation
indices I, J, K, L.;. run over (N/Q)? values and P, Q, R, S... run

over N2 values. 'Recognizing this allows equations (3-29), (3-30) and

(3-31) to be written as

(1) T (1) -
(1)Pp = 2 ATIEIAIQ) (g (3-32)
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(1) _ t (1) +
)P GIEQ ArEAg (g 8% ] (ATI E; Arg )
. i I’QQJQR
+ (1)
(AQJ E; A )(O)HR (3-33)
and

BT ICO N o), e t
P =L b oy 80 ] (ATI £ A )
o 1,Q,7,R

T (l) 3 +
(AQJ Es Asg ) (o)fg S ) (ATI Er Arg )
. I,9,J,R,K,S .

(AQJ E, AJR*) (ARK E, AKS’r) RUAR (3-31)

Since the transpose of IQ element of A is AQI’ we replaced AQI by
AIQ+ in the above equations. In this notation, the density matrix
element for a pair T (a pair of centers) at the end of the first

iteration to a first order approximation is given by

o (o) (1) (3-35)
WFr = (oFr " * 8 oFr
= (O)PT(O) + 8 y(A BH)y (3-36)
1-

where B = EA .



- 30 -

Similarly,

(1) (2)
(Z)PT ~ (0)Fp + 6 (O)P,11 + 82 (O)PT

S+ 8 () AB W+ 82 (RBABK),  (3-3D)

- (o)
(3)Fr ¥ ()Fr  * 8 () BB Rg ¥ 2 (yREABH, +

3
8 (0)(A‘B ABABH) (3-38)

#eee s 8 (VAB AR By

(3-39)
Recalling equation (3-3) that af each stage of the iteration,

the new hamiltonian matrix element is obtained from an expression
for (F&,— P;td) . Subtracting I;td from both sides of equations

(3~36), (3-37), (3-38) and (3-39) gives the ntt iterated expression

for (P‘I‘ - Pstd) as (n)(PT - Pstd) = (n)PH

= (0)2Bp *+ & (o)(BBH)p + 82 ((y(ABABH)y+ -or =

® ()R B (AR H)y | (3-ho)
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When all the pairs of the centers are considered, the nth

iterated density matrix and also the matrix made up of nA PT could
be ecast inbo a column vector. Thus, the final form of the column

vector made up of PT's is

()~ <o>§l(°) * SJE(I) + 82P(2) 4 .oy Pt (3-41)
(0) (1) _y

~ (o)P 12 (s A B)™ (o)H (3-42)
where il
mE= |2
N
Correspondingly,

(1) | (1)
@PE = (2B D AR (H (3-43)
n=1.

From (3-36), it is clear that A B = AEB_+ where E is the diagonal

matrix. Substituting AB=AE _/;\_1- into (3-42) and (3-43) and

" recognizing (o)’l‘\l’(l) with (O)AP(I), one could write (3-42) and (3-L3)

P~

respectively as

(0) (1)

Ll

E:wAEJW

=1

(0) "~
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and

AP 4 fynl ap(1) (3-45)

wAE =~ (o)2F (6AE

()~

n=1

3.2033: The Convergence Criterion

Having obtained expressions for (n )I? and (n )AI?, one can carry
out the test for convergence. To do so, the relation for (n )A]?

given by (3-45) is rewritten as

2P aP) e nE AT

()AL ® (0P

(0)

n=0

AP(Y) (3-46)

Clearly, § :(6 AE T)n-l represents & geometric series. It will
- n=0
be a converging series provided the eigenvalues of the matrix

(s A_E_A_) are less than unity3"% For the eigenvalues less than unity,

as n > ®,

I:(l)

AP = (0)AF

(1)
()2 A!i +

(0)

-1
1-8AE *f

. | (3-b7)
Since (G.A_E_AT )=l commute, equation (3-4T)

-t

yields
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(AP = (L- AR (O)AP(I) | (3-18)

The final closed form expression for (n)A}? is valid for the
linear relation used in the § technique (equation 2-6 ). It is
equally valid for the truncated form of Salem's relation
(equation 2-3 ) at the first order, after substituting into this
equation the Coulson—Golebiewski bond length-bond order -

relation.15

3.30: CONVERGENCE

3.301: The Eigenvalues of the Supermatrix, § A E A+

It can be readily shown that the eigenvalues A for the super-
matrix A_E_AT are linearly related to those (Ap) of the
polariéability matrix (EP) as A = AP/2. Hence the eigenvalues of
8 AEA are given by Ay = Ap/25. Binsch et al32 have obtained the
eigenvalues AP for many of the systems of interest to us (e.g.
condensed cyclic polyenes, linear polyenes, selectea non-

-alternants -~ see Chapter 6), and for reference, pertinent KP values
are displayed in Table 3.1. ‘Consideration of these values

indicates that, except for special cases, e.g. pentalene, the values
of A?ax are such that A8 < 1 for values of § between zero and one,
indicating convergence of the procedure. We shall return to a

discussion of this matter later.
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TABLE: 3.1

THE EIGENVALUES OF THE SUPERMATRIX, 2 A.E_AT

Butadiene Naphthalene"‘ Pentalene
0.000 0.000 _ . 0.000
0.000 0.000 0.047
0.537 | © 0.000 0.061

0.017 0.103
0.026 0.252
0.146 0.426
0.233 _ 0.550
0.273 | 0.552
0.383" 2367
0.721
1,034




CHAPTER 4

A STUDY OF THE FINITE SYSTEMS

4 ,10: INTRODUCTION

In the last chapter, we obtained the convergence criterion for
the iterative procedure applicable to T—-electron systems. According
to the criterion, the eigenvalues of the supermatrix, § A_E_A?, must
be less than unity. In addition to determining the eigenvalues, one
might examine the elements of the matrix A_E_AT as they contribute
to the nth iterated bond order. Clearly, this is unlikely to be
fruitful in the general case (because, in general, the many »
elements of A_E_A? will be different). However, the matrix (A E AT)
is reduced in particular cases to'a form amenable to analysis. For
example, the linear polyenes, which, within the scheme explained in
the section (3.20) of the last chapter, can be represented by
continuant matrices, yield a much reduced form of A_E_AT. This
reduction of A_E_AT for linear polyenes can be readily illustrated
since the orthogonal matrices that diagonalize the hamiltonian are
well-known. (For example, their usefulness is well documented in

studies of lattice dynamics problems.3u—36)

4 . 20: AN EXTENSION OF THE PERTURBATION ANALYSIS TO CONTINUANT
MATRICES

,h.201: The Eigenvalues and the Eigenvectors of the Continuant
Matrices

As indicated in section 4.10, the matrix representation of

the hamiltonian for linear polyenes can be written as a continuant
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matrixT.
[~ ]
Hya -Hyi2
Hp1  Ha " Hos
H-= . Hg,  Hgs  Hyy (4-1)
. \ \\ AN : -
-\ N
\\ N \
N N N
\ . N \\.
N ,
O N
\ \
L \ \\ <N

ﬂ_can be cast into a much simplef form, on assuming that all the

core matrix elements, H _, are identical aﬁd the bond integrals the

[670)

same. (In lattice dynamics pfoblems, a similar assumption is that‘

there is no impurity at each core element.) Thus,

Ty = x|m
r

rs eff

X
N dénotes the orderfof the matrix.
A continuant matrix model is valid for~linear polyenes only if non-

neighbour interactions are ﬁeglected and the A.O. overlap is

omitted.
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(0)By = Hyg * 2B cos [3n/N + 1]

Hou B

B H, B
8 \ HO(.OL
\ N\

N\
\

N

\

(4-2)

(4-3)

The orthogonal matrix which brings ﬂ_to the diagonal form has the

elements

(0

(O)er- ) = (2/N + ZL);5 sin ﬂﬂrj/N + 1)

4, 202: The Reduced nJGh

I’,J =1, 2, eece |

Iterated Column Vector

(4-h)

For the continuant representation of linear polyenes, we shall

only consider nearest neighbour bond orders and hence the dimension
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(n)g is reduced to (N(—)l).
1

Further, this is consistent with a representation of (o)gv in

T of the nth iterated column vector

-which the only nonzero elements are those representing the nearest
neighbour perturbations; i.e. the dimension of(o)ﬂfl) can be

reduced. Consequently in

which occurs in (nfELas given by equation (3-42), Q is reduced to a
" set of labels representing nearest neighbour pairs only and (A_E_AT)
to a square matrix of order (N - 1).

The nth iterateq super column vector, then, is

-1 (1)
<(n)£> : ((o)g) * 369(1 - %) }(0)!1 (4-5)

.i.

| wvhere C = A E

4 ,30: FORMAL SIMPLIFICATION OF THE SUPERMATRIX ELEMENTS, A E AT.

In section 4.202, we obtained an expression for the nth

iteratéd dénsity matrix as a super column vector with a reduced
dimensionélity. However, no simﬁlification of the supermatrix
elements has been effected. We consider this aspect in the
following section:

4 .301: The Parity Relations

Examining the PQ element of the supermatrix C, it can be seen

that since E is diagonal, this element results from a summation over I.
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(The significance of the pair symbolsgP,Q,"" I has been given in
section (3.2032)).For the continuant matrix model this summation in

the expanded fcrm is

. N2 X
Ty (0) (0)
L (BprErhrg ) = iil j=%ﬂ_l ((O)Cri (0)Cpt1,3  F
| ) . (o)
(0)%r1,1  (0)%py )Eij

(0) (0)
((o)Csi (0)%+1,5  *

(0) (0) '
(o)Cs+1,i (O)Csj > (4-6)

Substituting the explicit form for the coefficients as given by

equation (4~} ) into equation (4-6 ) yields

N/2 N )

Z z (sin rf; sin(r + 1)93 + sin(r + 1)8; sin rej)

i=1 Jemtl

i J 5

Ei;j (sin s6; sin(s + 1)6j + sin(s + 1)6:.L sig sej) (4=17)

where 6; = (im/w+1),0, =(Jn/N + 1) and the normalization constants

J

are absorbed in Eij for convenience. It can be readily proved that

g’

The pairs P,Q *¢°* are made up of neighbours only.
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(sin rei sin(r + 1)ej + sin(r + 1)9i sin rej)
# 0 for‘i, j odd (or even)
= 0 for.i odd,j even; or i even, j odd. : (4-8)

The parity relations of equation (4-8 ) clearly reduce the number of

terms that contribute to (A-E;AT)PQ in equation (4-6 ).

L .302: The Influence of a Single Perturbation

In addition to the above siﬁplification of the elements of the
supermatrix, A_E_AT, one might also. consider contracting the a0

iterated super-~column vector by an appropriate choice of the

(1)

perturbation, (O)EV .
We consider linear polyenes where there are two types of bonds

and impose a restriction that the initial perturbation, (O)H(l),

alternates along the chain, corresponding to the "single" and

1)

"double" bond character. Thus, (0)§£~ has the same magnitude on
each bond but differs in sign from_bbnd to bond. Clearly, imposing
- (1)

. a definite form to (O)E. is a resﬁriction on the iterative method

as defined in chapter 2. However, in order to determine how a

It should be borne in mind that in the parity relation, the values

i and J can take are cdntro;led.by ﬁhe inequaiities:

N2Zix1 and W23 2(N/2+1)
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single perturbation, defined in the above sense, would influence the

t . R . .
n h iterated super-column vector given in equation (h-—'T ), we first

(1) &

i 1
‘equate H o AP( ) and on adding the standard super-column
(0) (0)"~

vector - { P }

std to either side of the equation, we obtain:

(1) -1 1)
Pl = lop @]+ foei- a0 ] () o

N + i (1)
mPE = [ -6 AEANTT (()aF | (4-10)

where 1 is the unit matrix. Introducing the alternating

perturbation into (4-10) gives

(wAE = (O)AP(l)[Q] (4) (4-11)

vhere € = (1L - 6 AEAT)—I and

seee
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Clearly, the nth iterated change, (n)AI& for a pair T is given by

N-1
(0)2Br (_O)Ap(l) g (21, (@q (h-12)

We shgll consider the implications of Q) the inverse of the

'residual polarizability',T (l_— 8 Q), in the following section.

4.40: THE ELUCIDATION OF Q

Aside from the fact that the supermatrix C, from which the
'residual polarizability' and its inverse are constructed is

identical to its transpose, there exists an additional symmetry

about the central bond which requires that:

N/2 N , ‘
| - (0) - (0) (0) (
) ) <(0)Cri. (O)Cr+1,j + (O)Cr+l,i (o)ij 0))
i=1 j=N +1
P) .
(0) (0) (0) (0)
Fig <(O>CN—r+1,i (0%, * (0 r1 (0 Hre, >
N/2 N ;
- (0) (0) (o)
= ] ( (O)CN—r+1,i (O)CN—r,j * (0)CN-r,1 "

i=1 §=N
i=1 j==t1
J 2

‘ (0)
(O)CN-r+1,j )

T The name 'residual polarizability matrix' is given to
(L-38 A_E_AT) since the § times the polarizability matrix is

"removed from the unit matrix. WNo additional significance can be

assigned at this time.
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(0)

(0)

(o) (0)
Eij((o)ori (0°r+1,5  F (01,5 (0) Cry )(u-lsa)

and

N2 X (0) (0) (0) (o)
(0) Cet.  (0)Ce+1,5 F(0)%+1,1 () Org )Eij

i=1 j=l+1
2

(0)

(0) (0) (0)
((O)Cri (O)Cr+1,j * (O)Cr+1,i (0) Cr; )

N§2 g (0) (0)
i i=1 j+l\7_+1 ((O)CN"rsi . (O)CN—r+1 2 +
2 |
(0) (0)
(0 mr1,1 (0) T, ) Fis
(o) (o) (0) (o)
((O)CN-r,i ’ () W-r+1,5  * (0 Wr+1,1 (0)%N-r,3 ) (4-13p)

Thus , symmetry considerations indicate that certain rows (or
columns) in C are identical, zﬂaking AE f\j singular, However,
éxcépt for péﬁhological 'cases (which w?ll be referred tc;n in Chap.
.7') the nesidual matrix (L - 6§ AE _l_\_+) will be taken to be non-
singular. Hence, for both (L-6AE _l_\_f) and its inverse,

‘ 1 ,

(L-3 A_E_AT') , symmetry is conserved. Having considered the

symmetry of £, we will now consider an illustrative example.

4.501: An Illustrative Example

For butadiene, the inverse of the 'residual polarizability
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matrix', (1 - § AE AT)_I, .using the symmetry properties given in
equations (4-13a) and (4-13b) and Typ,12 = Tay,3u = Mo 3y = T3y 12,
as given by equation (4-14) is given on page 45 as equation (4-1T).
Knowing the inverse, (equaﬁion lF--l'(), the nth iterated matrix
elements for the (1-2) bond, (n)Abl, and (2-3) bond, (n)APz, can be

obtained as in equations (4-15) and (4-16).

SAEA =or (h-1k)
_ (1) 3 , . @+

(n)2P1 = (0)~AP1 | % (-1) (R)1q
= (O)AP1(1)2[1 - 8Ta3,23 = M2 23] /{(1 - 8m) || (y-15)

and

]

(n)2P2 (O)AP2(1)2[- (1 - 2 8mp, 10 - 2 8myp 23)] /|| (1 - 6m)]

(4-16)

1
In (4-12), it should be noted that due to symmetry in (0),}\1,( ) ( or

in 4), the contribution (62'”12’232 + 61712’3;., (1 - ‘"23,23)) Q31 is

cancelled by the same term of Qj3. Recognizing this, we can give a

form for the "reduced" inverse of the residual polarizability matrix as



1

- sl

[(1 - 6mp3,23)(1 = 8myp,10) = 821215 53] [6miz,23]  [6%7%12,23 + Mz 12 (1 - 8m23,23) ]

[6723,12 ] [(1 - 8ma,12)(1 - dmp,10) - 827215 15 ] [6m23,34]

[621215,5 + (1 - 8ma3,23) Smz,12)  [8msy 23]

[(1 - 8mp,12)(1 - 8Ma3,23) = 621215 23]

(4-17)

_g..-(..“
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(4-18)T

1
Q - X
—reduced . Il(l_‘ Gﬂ)ll
(1 - 8mp3,23) 8T12,23 0
6Ty3,12 (1~ 2 8mp 12) 8o 3, 3y
0 63y 23 (1 - 8mp3,23)
1—61TM —6% 0
1
= - & 1~ 4m - &7
s ss 2
[ - sm] °
where ﬂll = T3,23 = self polarizability of the central or long
bond
Mg = T12,12 = M3y, 34 = self polarizability of the terminal
or short bonds
Ty, = Tip,23 = M23,34 = mutual polarizability of the long

s .

bond by the neighbouring short bond.

q.

symmetry restrictions.

However,

—reduced (0 );I‘—

£ (k.

=  even under
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Equation (4-18) suggests that the n® iterated matrix element for
any bond in linear pélyenes has its contributions coming from the
éelf—polariza,bility of the neighbouring bond(s) and the mutual
polarizebility of the neighbouring bond with itself.

In Tables 4-1 - 4.4, we have given the values of the nth
iterated matrix elements for butédiene using the "Jacobi"
diaéonalization method and the closed-form expressions, (k-12),
(4-15), (h;16) and (4-17). In both instances, a P(standard) value
which causes 'equal—but—opposife-ih~sign' perturbations along the
bonds and a P(standard) value df,unity were used. Clearly, the
results of the calculations. indicate that for low values of § the
closed (but approximate) form of the n® iterative bond order is

very close to the self-consistent result using the Jacobi

diagonalization.
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TABLE: 4.1

THE n°® TTERATED BOND ORDER MATRTX ELEMENTE, (n)AP, FOR

BUTADIENE USING THE "JACOBI" METHOD

p ()1 7 ap AP AP, AP

s std | ~()0P2 (V7 | @7 ) 2 | T(n)" 2
0.2 | 0.6708 | 0.2236 | 0.2387 | 0.2k03 0.2550 | 0.2586
0.6 | 0.6708 | 0.2236 | 0.2635 | 0.2763 | 0.31h2 | 0.3h99
1.2 | 0.6708 | 0.2236 | 0.2000 | 0.3217 | 0.3937 | 0.548k
2.0 0.6708 | 0.2236 0.311k4 0.2936 | 0.4832 o.935i

TABLE: 4.2
THE n'® ITERATED BOND ORDER MATRTX ELEMENTS, (,)AP, FOR
. BUTADIENE USING THE CLOSED-FORM APPROXTMATTON

e @171 AP AP AP
S| Pata |ogyfPe | TP | @ T T
0.2 .| 0.6708 0.2236 0.2396 ‘O.QﬁlS 0.2556 0.259h
0.6 | 0.6708 0.2256: 0.2716 .| 0.294k | 0.3197 0.3685
1.2 | 0.6708 | 0.2236 0.3107 | o0.ho32 | 0.4157 | 0.7628
2.0 | 0.6708 | 0.2236 | 0.3837 |-1.9591 0.5438 | -4.1418
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 TABLE: 4.3
THE n® TTERATED BOND ORDER -MATRIX ELEMENTS, (n)AP’ FOR
BUTADIENE USING THE "JACOBI" METHOD.

8 | Para | (0%1] ()2 ] (1)1 | @)fPr] ()82 | ()fP2
0.2 1.0000 | -0.1056 | -0.5528 | -0.0896 | -0.0877 —0.586ﬁ -0.5905 ’
0.6 | 1.0000 | -0.1056 | -0.5528 | ~0.0581 | ~0.0397 | -0.66L40 | ~0.T7209
1.2] 1.0000 | -0.1056 -0{5528 -0.0181 | -0.0328 | ~0.8107 | -1.25k42
2.0 1.0000 | ~0.1056 | ~0.5528 | -0.0028 | ~1.9692 ~1.0668 | -1.2461

TABLE: 4 .4
THE nth ITERATED BOND ORDER MATRIX ELEMENTS, (n)AP, FOR
BUTADIENE USING THE.CLOSEb—FORM APPROXIMATTION

8| Para | (0)2P1]. (0)®P2| ()81l (8P| (1)%P2 | (m)BP2
0.2 1.0000| -0.1056 | -0.5528 | -0.0896 -0;0877 -0.5848 | -0.5886
0.6 1.0000 —0.1056_ -0.5528 | -0.0576 | ~0.0347 | -0.6489 | <0.3932
1.2 ] 1.0000 | -0.1056 | -0.5528 | 0.0095 | +0.1642 | ~0. 7449 | ©0.0553
2.0 1.0000| -0.1056 | -=0.5528 | 0.05L45 | -2.2907 | -0.8730 | -5.4733




CHAPTER 5

"~ A STUDY OF INFINITE‘SYSTEMS

5.10: INTRODUCTION

The analysis of the iterative method given in the last two
chapters was effectively limited té‘finite.systems,:for both
determination of the eigenvalues of anﬁinfinite dimensional
polarizability matrix and the ih&estigatiop of an infinite number
of contributions of (;_— G'B_E'AT)—I to (n)P are unréwarding.
However, an‘anélysis similar in spirit but differing in mathgmétical
technique can be carried out readily for infinite cyclic systems.

To illustrate the implicatioﬁs of,fhg analysis, some numerical

results will also be given.

5.20: ANALYTICAL BEXPRESSIONS FOR THE BOND ORDERS OF TNFINITE
CYCLIC POLYENES : :

A cyclic polyene with the genéral formula, Chn+2'th+2; where.
n is large is consi@efgd for the present study. The results
obtained here are equally'valid:foriinfinite linear chains.37 The
circular moqel is choseﬁ simply for mathematical copvenience,

Taking the qarbon—carbop bonds io be altefnateiy long {RZ)

and short (Rs) such that the bond integral|H£|QHSF and following

. 1‘ < n 7 C ‘ ‘ N ) \
Hp = {X |H , = :
2 2r'—17 effix2r> long gnd Hs <X2r|Hefle2r+l> short

X2r’s are the A.0. basis and ﬁeff is the one-particle effective

hamiltonian.
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Sa,lem,38 the normalised atomic orbital coefficients, CCQr 3 and
' . H

C2r +1 j,fOr two adjacent centers 2r -and 2r + 1 sebarated by a double
s , .

bond are found to be

Cj,2r+3;=. (hn + ?)—% (s e% i8J H, o3 iej/E)% .
e%'i(2r+1)ej . . o (5-2)
where
E, - (H,LZ + H 2 + 2HpHg cos ej)% _ (5-3)

and

03 = (M"fen + 9)

For the iterative e',naly'sis,' exprressions for the bond orders of
the long and the short bonds are essential. From équations (5-1)
and ( 5-2 ), the bond orders can be written as:

occupied

(O)Ps = ; n C2r,jc2r-‘i-l,,j) short

il

(1/(2:1 +J)) J'Z_n' (l + ‘(O)k. cés Gj)/
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(1 + 2 (o)k,cos Gj + (o)kz)% (5-4)

‘(O)P,Q, =(l/2n + l)ri ((O)k + cos Gj)/

=-n
(} + 2‘k0)k cos ej + (0)1{2)/2 (5-5)

where k = (Hg/Hs) is the "bond alternation parameter" and n is the
occupation number. The summation in equations (5-4) and (5-5) can

be represented analytically for n > « and yields:

P = 1l + (O)k 2 (O)k + 1l - (0)k . 2 (0)1{
o) [ " E“(o)k i S

(5-6)

(05 [l * (o)k]E 2/ - [1 - 0 g 2"
(O)k ™ 1+ (O)k (d)k T 1+ (0)k

(5-7)

and
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Here K( 2\_](0)1‘ ) and E( 2 (0)k ) are the complete elliptic

1+ (O)k 1+ (0)1:

integralé of the first and the second kind respectively. The
modulus for which the elliptic integral is evaluated is given in
parenthesis. It is quite useful if K and K for modulus
2/‘k/1+ k)
( /(0) (o))
can be expressed in terms of K and E for modulus (0)k. Using the

+.
identity

K(,[(o)k 1+ (o)k> = [1 + (o)k] K<(o)k> (5-8)

and
E(\ﬁo—)k/l ¥ (o)k> N +l(0)k]
| 2B (o) - 2 - (o)kz]K(mk)]
(5-9)
where )
t

A description of these transformations is given in "Anwendung
der Elliptischen Funktionen in Physik und Technik" by

F. Oberhettinger und W. Magnus (Springer-Verlag, Berlin 1949).



~5h—
/2

K((o)k) =f (1 - (o)kz sin? ¢)'l§ d$ and
(e]

/2
E((O)k) = J (1 - (oyk? sin? )% do

in equations (5-6) and (5-T), it can be shown that

2 Ji ok
P (0) = 2 _
(0) s(l > (o)k‘) = E(<o)k) | (5-10)
and
‘ 2 k\_. 2 K E -
e R el SOl R B

One other quantity that will be used in the functional analysis is
the bond-order difference between the long and the short bonds

which we write as:

(0)P5<?___(_9.)i.) - (O)Pz(e (0)k >
1+ (O)k 1+ (O)k

-5 (1/<o>k>(K(<°>k) ) E(‘“k)) '

(E ((ox) - (tq)A)kK((O)k)) (5-12)
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It is quite apparent that knowing the value for the bond
alternation parameter, (o)k,:one would be able to obtain any of
(o)Ps’ (O)PQ or the difference ((O)Pé _'(O)PR) .

5.30: THE n® TTERATED BOND ORDER TERMS

5.301: The Iterative Scheme

As is evident from thé section 6.10 the bond orders for the
long and the short bonas are deflned in terms of the complete‘
elliptic integrals of the first kind and the second klnd for a
bond alternation parametgr. With a knpwledge of (O)Pd and (0) .

a new bond alternation parameﬁer (1)k canrbe obtained using either

Salem's relation (equation 2-3) to give:+

(1)F = ((1>Hz /<1>Hs‘) T (o)f o ("5(<0>Pz (0) s)> (5-13)
of the relation given by equétioﬁ (2-6 ) to give

WF = (e /()% - [(o)Hz * 5_((0)% - Psta)]/

& By + 0 Qo)s - std)] o (};h)

Pstd is the bond order of a standard bond.

'AT Equation (5-13) is obtained by substituting the Coulson-

Golebiewski relation R = 1.517 - 0.18 P into Salem's equation
- (0) : : ) : :

()E = () e (f (R - R, 4)/0.3106) and then using the

resulting equation to define (15H£ and (1)HS in (1)k

. £ = 0.18/0.3106 .
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The new alternatiqnfparameter would then allow one to find the
quantities PS and Pznand this process, on repetition wouid form the
basis for the iterative analysis. In the last two chaptefs, the
iterative procedure was‘followedtw'ekamining the'nth iterated terﬁ
for the bond order of a bond or the bond order matrix cast into a
column vector. In the present ana;ysis, since the bond alternation
paraﬁeter at each stage of the iteration 1s related to the bond
orders of the long and the short Pond of the prev1ous iteration,we
follow the iterative;procedurevbyrask;ng for the difference
between two bond ordér quanﬁities, i.e. Ps - Pz , on using

Salem's relation,or Pzi;‘(ojkPé on using equation (5-1k4).

'5,302:  The Use of Salem's Relation

U51ng Salem's relatlon (equatlon 5-13), a general form for
the bond alternation parameter at the nth stage of the iteration

can be given as

7(n)k - (0)k eXp < ((n—l) 2 (n—1) s)) ' : - (5-15)

For a small value of the initial bond alternation parameter (0)
we can expand the elllptlc 1ntegrals in equatlons (5-10) and

(5-11) to give;

' (o)Pz = (0)‘1‘/2 : ' . . ' ' (-5-165)

and
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(o)Ps = 1- ((O)k/e)2 (5-16b)

Based on equations (5~l6a) and (5-16b), a new bond alternation
parameter (1)k is evalué@ed using (5—15).1'A cyclicArepetition of
(5-16a),; (5-16b) and (5-15) gives, explicitly;the basis of the
iterative procedure; it is assumed that the bond alternation
parameter,rk, reméins small at all stages of the iterative
procedure. To a first order approximation, from (5-15), (5-16a)

and (5-16b), one can immediately write that

(mps = 6P ® (s = 00P2) * E((6)% = (01%2)
(IAj (coye * (6)k2)> - (5-17)

where £ has been defined earlier. Continuing this further, it can

be shown that

((2‘)P (2) g) ((0)P (0) z) * ‘r’((o) (O)PSL) *
<4 (e * <1)k2)>



e
= ((o)P - (%) * & ((0)Pa = (0P2)

(*ﬁ (o= # n(o)”)) +E ((o>‘°s" (0)2)

(% (o + <o>k2)> (*ﬁ (o * (o)kz)) (5-18)

Following this, the nth iterated difference, ((n)Ps - (n)PQ) » is

written as

((n)Ps - (ﬁ)Pz) = ((O)Ps - (o)Pz) *

} L (*‘5(% (or * (o)kz)))nt

’ (0)Fs = (e (5-19)

Since E(% ((0)k + (0)k2)> isralways less than unity, for n - %,

equation (5-19) is immediately written as

((a)Ps - <n)Pz) = ((o)"s - <o>"z)/(1 - E(‘"‘* (coe <o>k2)>)

(5-20)

In section 5.40, the values of (n)Ps - (n)PR obtained using
the approximate form (equation 5.20 ). are indicated and compared
with results fo? ((n)Ps - (h)P2> obtained by cgrrylng out the full

iterated procedure to convergence.
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5,.303: The Use oi a linear Relation

Clearly, there appears to ﬁe no serious difficulty in
following the iterative mothod which uses Salem's relation for
the perturbation. The procedure is not so clear cut on using our
form of the perturbation in the iterative methéd.

The equation for the nth iterafed bond alternatioﬁ parameter

is given by
(¥ '“'[(o)“z * 6 (Poga - (n..l)r’z)]f

o , . T
'{(O)Hs + 9 (Pstd - ,(n..l)Ps )] - (5-21).

Without any approximation, if‘succeésive substitutions are made

at each‘stage of the iteration, we would come up with cqﬁﬁinued
fractions in the numerstor and in the denominator, which are found
"to be difiicult to resolve. lNence, approximations are made starting

with‘(l)k.

| - . : , : [ -1
(1) "[(O)HXL o °<Ps~td - (o)%)] [(O)Hs * 8 Pyia - (0)P5>J

A positive value of § here corresponds to using a negative

value in cur relation (2-6) for. (1)Hy end (1yf



-60~

Dividing the numerator and the denominator of the above equation

by (o)Hs’ considering low values of (o)k and requiring that

| (O)H (Pstd : O)Ps).

one obtains

21,

(kK (s *+ & (Pstd - (0)k Pstd)
- 8" (012 ™ (0¥ (6)s)
- 6'z(Psté). - (O)Pz)(Pstd - (O)Ps) ‘(5—22)

where ' =‘(§/(0)Hs) . Again, for a low value of (O)k’ the last

term can be neglected. rDefining

8! ((O)Pz - (0) s) and
8 (Ps‘bd - (o)k Pstd) =6t

and recognizing that the density matrix elements which are
ekpressed in terms of the complete elliptic integrals of the
first and the second kind can be simplified for s 1oﬁ value of

the alternation parameter., . the expressiocn for
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((1) 27 (0 (1) s)

is obtained as

(1)k (1)k)?
((1)Pz " (0)F (l)Ps> R ( 2= o of (V5) )
N{<<o>g+ (0)8" _ (o)g')
2 2 2

(0)k ,
- (o)k+ ((o)k+ - (0)® )2}

(5-23)
Within the approximations made earlier in this section,
(WP~ * @Pe) ® (P2 = (0 (0)7)
+ 5("2’ (x+ (o)kz))
- (0)6'(%(1 * (o) ) (5-24)

The second term on the right hand side of equation (5-24) does
not change from iteration to iteration.

The new bond élternation parameter is then obtained from
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()K= (o * 8" - (¥ (5-25)

For this bond-alternation parameter, the equation for

((2) 2~ (0)F (2) s)

is:

((2) 27 () (2) s) <( o T ()" (o) s)
+ 6"(35(1 + (o)kz))<l - g 1+ k2)>
- <o)5'( (1+ (o ))( -5 (v (o)kz)) (5-26)

Repeating this procedure, the nth iterated difference yields

((n) " (0)F (n)Ps) ~ ((o)PR = (0)* (o) s)
6'(15 (1 + (0)k2)> { y (-1)n‘l<—g-! (1 + (O)kz)) n“l} x
n=1

| ((o)Pstgi ~ (0)F Pstd)
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- 6'(1/2 (1 + (0)1{‘2)){]“21 (_l)n—1<g (1 . (0)k2))n_1}

((O)Pl - (0) s) (5-27)

(The substitution for 8" and (0) §' is made in getting (5 o7).)
For 6'( (l + kzi> < 1 and n + ®, equation (5- 27)

yields

(s~ o %) = (1= 0% (07)

(50 ) (o )

f(2 0 (s o))

(0 v ) (s = 0 o)
JRRICIR

The validity of the approximation leading to (5-28) is
checked by comparing results obtained by the iterative method.

The deteils are given in the following section.
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5.304k: Numerical Investigations

5.3041: Assessment of Approximations

Although closed form expressions were obtained for (n)P
using both Salem's relation and our 1inear relation, a number
of approximations were required. In both instances higher order
terms were droppedrsince s small valué of (O)k was invoked.
These approximetions can Eerreadily investigated for particular
cases. In addition, a truncated binomial expansion was employed
when our linear relation was used for the iterative procedure.
To assess the validity of these approximations, numerical
calculations were carried out using both the closed form
expressions and the standard expressions carried from iteration
to iteration. (Note‘that negative values only were assigned to
the perturbation parameter, §, since a positive value can
preclude the evaluation of the elliptic integral of the first
kind, K.) The results are given in Tables 5.1 and 5.2. It
would appear that for small values of (0)k (see figures 1 - L)
we could forego the iterative process and uée the closed form
expression directly.

5,.3042: Convergence

In the caléulations using our relations it was noticed that
oscilletions in the bond order elements from iteration to
iteration occurred. From the closed form expressions given by
equatlon (5-27), it is clear that this is a result of a negative

value for the ratio in ‘the geometrlc serles, Clearly equation
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(5-27) is & geometric series and converges only if
8t L(1 + (o)kz) is less than unity in magnitude. That the
oscillations and convergence rate are dependent on the value

of § can be seen by considering the curves displayed in

figures 1 - L.
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TABLE: 5.1

THE RESULTS FOR ((n)Ps - (n)Pl) USING THE

"EYACT" EQUATIONS AND THE CLOSED FORM EXPRESSION

P —/a\P
E | oF |(0Pe o)) 803 E"(é(zzoi?{{o)ﬁ)))f (o))
0.57950.10101 0.94687 0.97840 0.97038
0.5795{0.25000 0.85819 0.94363 0.92112
0.5795|0.40k40k o.'zslhzj 0.89922 0.86120
0.5795(0.66667|  0.521%0 0.76896 0.72565
0.5795{0.8571k 0.29020 6.5386h 0.57270

By the exact calculation, (use of equation (5-12)).

T By the closed form expression, (use of equation (5-28)).
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TABLE: 5 .2

THE RESULTS F.OR((n)Pz - (0)k(n)PS) USING

THE "EXACT" EQUATIONS AWD THE. CLOSED FORM EXPRESSION ™

e @ 0F ) |

K 8" (0)"% T %
(0) (0)5(0) s Mumerical Analytical

- (Elliptic Integrals)| -

.20202 0.2020 ~0.09841 | “Qo.oo991 -0.01628
.20202 | 0.hok0 | -0.09841 ‘ 0.06443 0.08788
.20202 0.6061 | --0.098k1 : ro.1é535 | . 0.22373
.20202 | 0.8081 | -0.098k1 11_‘ 0.17059 4 0.40921
.20202 1.0101 | -0.098k1 | i ©0.11033 0.67697
.20202 1.2121 ~0.09841 | ‘o;o6h52 | 1.09685
0.55556 | 0.2222 | -0.2108 1 20.1218; ~0.18158
‘.55556 0. bhhk ..—0,2198‘ o ;o.oh792 | ~0.12769
.55556 0.6666 -0.2198 "7, ~0.00280 -0.04600
.55556 | 0.8888 | -~0.2198 : ~0.22501 0.09233
.55556 | 1.1111 ~0.2198 1 ~0.30080 , 0.378k42
55556 1.3333 -0.2198 -0.34k409 1.31606

By the "exact" calculation. (Equations 5-10 and 5-11).
By the closed form exﬁression, 5;28.

n large and even is considered.
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TABLE:
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5.2 cont'd

THE RESULTS,FOR((n)Pz - o)k (n)PS)USING THE

- @2 = (0 (0)'s

X 5! (0)°4 ¥ 5

(0) (b)k(O)Ps Numerical Analytical
e (Elliptic Integrals) : .

0.777T8 | 0.2222 | -0.2132 ~0.1250k4 _0.2112h
0.77778 0. bkl ~0.2132 -0.06851 -0.12316
0.77778 | ©0.6666 | -0.2132 -0.22972 0.20280
0.77778 | 0.8888 ~0.2132 -0..35608 0.19070
0.77778 1.1111 -0.2132 - ~0.143140 0.13890
0.77T778 | 1.3333 | -0.2132 -0.148545 0.07532

T By the "exact" calculation, (equations (5-10) and (5-11)).

§

¥

By the closed form expression, (equation (5-28)).

n.large and even is considered. .
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Figure 5.1: Dependence of the matrix elements, (Py - Py), on the
number of iterations, using the Salem's relation for different
values of the bond alternation parameter.
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Figure 5.2: Dependence of the matrix elements, (Py - (O)sz) on the
pumber of iterations, using our relation for different delta values and
the bond alternation parameter value, (O)k = 0.20202. '
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Figure 5.3: Dependence of the matrix elements on the number of

iterations, using our relation for different delta values and the
bond alternation parameter value, (O)k = 0.55556."
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Figure 5.4: Dependence of the matrix elements, (Pg,* (0)¥Pg) on the
number of iterations, using our relation for different delta values
and the bond alternation parameter value, (O)k = 0.77778.



CHAPTER 6

APPLICATIONS -

6.1:- INTRODUCTION

Although such analjsis as was afforded by présentation of
fhe prévious three chapters hés been one of the aims of this
work, we have also been'very much'concerﬁed witﬁ the applications
of the iterative bond-leﬂéth ﬁethoa and.the results thereof. To
ﬁhis end we carriea oﬁt‘a number of calculations, all of which
use the variational procéduré (tﬁrough Jacobi diagoqalization)
rather than perturbation‘theory to obtain the bond orders at
each stage of the itératibnx Asrindicafed in séction (2.2022)
the first task in any applicétion is to"establish an appropriate
J valqe. For this purpoée; calculatignsrof the bond lengths for
a number of representatives of a given class (for exsmple,
polycyclic alternants) were carried out with several values of §
to determine which %alue Bestrreprodﬁced the bond lengthé ,

obtained by experimeht. Having established an appropriate
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§ value, the bond lengths for other members of the class
could be carried out. BRven though the calculations were
done for a large number of pi-electron systems, we will
quote only a selectéd few as illustrative examﬁles of
the method. (A more exhaustive report from the point of

hl)

view of applications has been published.

Both the 'analytical' method and the 'Jdacobi
diagonalization method' use the same relations to define

the iterative scheme, and an investigation of this

relation and the parameters chosen will also be considered

in the following section.

6.20: NUMERICAL INVESTIGATIONS OF THE ITERATIVE METHOD

6.201: The Bond Length-Bond Order Relation

Essentially, the relations that are used are
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(n)Rrs = a-b (n)Prs (6—l)+

and

(n)Hrs - (o)Hrs * <S((n-l)Prs - Pstd) (6-2)7

) 2042
Other relations that have been proposed ° for pi-electron systems

(alternant and non-alternant hydrocarbons) and that are an out-
come of fitting the theoretically evalua£ed quantities, Prs’ and
. tﬁe experimentally determined quantiéies, Rrs’ differ only in the
values of & and b. For example, de Bruijn:‘\3 has recently shown
that a proper consideration of the effects of m-electron
correlation suggests values of the coefficients of 2 and b which
are different from those of the Coulson-Golebiewski relation,!®
[More recently, such relations have ccmé under close scrutiny with
the result that bond length relations which are either linear or
quadratic in P have been suggested.”a’““] However, sincé in the
ensuing discussion on the characteristics of the iterative
procedure, it appears that the bond length-bond order relation

(R-P relation) does not in any respect alter the nature of our
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conclusions, we would like to confine ourselves to a single

relation, the Coulson-Golebiewski relation.

6.202: The Choice of 6 Values

The equation on which our iterative cycle rests is the
(equation 2-6) relating the hamiltonian matrix element, Hrs’ and
the bond order elemépt, Prs' ihis can be considered as a
truncated form of the Longuet-Higgins-Salem (LHS) relation to
the first order excepting:that the first order correction does not
contain (O)Hrs explicitly. Clearly, in our relation (éq- 2-6) ﬁthe
is a 'variable' parameter, §, whose choice differs from one class
of molecules (alternant hydrocarbons) to another (non-alternant
hydrocarbons). Evidently, any rationalization of the choice of §
can be made clear only if the nature of such bond order-bond
length relations is understood. This is perhaps best approached

through an investigation of the LHS relation.

6.2021: The Longuet—Higgins-Sélem Relation

Even though modifications of and explicit considerations of
the‘ﬂ—electroh interactions in the LHS approach have been mza.de,L*3’l*5
the original LHS approach is adequate for our task. (Their
initial study is limited to cyclic polyenes.)

The total electronic energy is assumed to be given as the
sum of two parts, one arising from the ¢ bonds and the other

from the m-electrons.
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T=E, + E; (6-3)

where Ec’ the 0 electron energy, is assumed to be a sum of

independent contributions from the C-C bonds:

E, = % £ (RQ) | (61)

RQ is the length of the ch bond. The pi-electron energy, Eﬂ,
based on the L.C.A.0.-M.O. theory is given.as a function of the

bond integrals within the Huckel scheme.

E'ﬂ' = ETI' (Hls‘ H29 o s HQ, ‘...) (6..5)1’

At equilibrium,

oT =
( /SRQ) equilibrium =0 (6-6)
configuration
it can be shown(le) that
£l 4P H = 0 (6-7)

Q Q Q

where PQ iz the bond order of the ch bond;

.‘.

The subscripts for H can be identified with the pair notation

used in Chapter IV.
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fé = (df/dR)Q and

HQ = (dH/dR)Q

1
As fé and.HQ o’

between the bond length and the bond order. The relation that

only depend on the length R., there is a relation.

Longuet-Higgins and Salem adopted is

Ry = 1.50 - 0.15 P , (6-8)"
Furthermore, they assumed an exponential dependence of HQ on RQ:
- ‘ §
e = (o' exp('(RQ ) Rstd)/a> (6-9)
Using equation (6-8), equation (6-9) can be written as
Hy = (o)lfq o=® (O'ls(PQ - Pota /a) (6-92)

They showed that the'relatipn (6_9a)and the equilibrium condition
given by (6-7) and (6-8) fix the function, f(RQ). From this it
follows that the potential function for the C-C stretching modes

of benzene (one member in the cyclic polyene taken for study) is

T The Coulson-Golebiewski (C.G. )relation 15(equation 2.4 ) can be

used and the value of '€' obtained would be slightly different.
(g (C.G.) = 0.58).

§ Other relations also have been proposed.20,u43
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determined by the constants '(O)HQ' and 'a'. This suggests that
they can be evaluated from the known force constants for the Alg
and By, stretching modes.

Using the value for the totally symmetric, Alg: and the
rtotally asymmetric, By, stretching modes, they were able to
obtain a value for 'a' of O.3l06.+

Clearly, this value of 'a' is dependent on the accuracy of
the force field calculations of benzene. Longuet-Higgins and
Salem made use of the force constants determined by Whiffenté
Although consistent results have been reported for the force
constant of the totally symmetric, Alg, stretching mode,L*G»L+7 a
considerable amount of uncertainty prevails as regards the value
for the totally asymmetric, Bzu,Astretching mode.*6,47 Thig aspect
can, in fact, be considered as a criticism against the use of one
value of 'a' by Longuet-Higgins and Salem. Thus, it is clear that
there exists a certain amount of arbitrgriness in the value, 'a'.
Further, the value of 'a' evaluated by Longuet-Higgins and Salem
may bé reasonably appropriate for benzene but may be less
appropriate for ofher molecules. One may in fact be better
advised to determine 'a' as an average value for several molecules
in a given class. This evaluation could, in principle, follow the

LHS procedure. Alternatively 'a' may be obtained from comparison

-'-

The details of the evaluation are found in reference 16.



~80-

of experimental bond lengths and those calculated with various
choices of 'a'.

As pointed out in section?:2022 the relation given by
equation ( 2-6) is a truncated yersion of the LHS (O)Hrs/g replaced
by a parameter, §. . In our case § was selected on the basis
of the best fit for the bond lengths of several molecules of one
class. The vaiue of § selected for the calculations of bond
lengths of polynuclear aromatic hydrocarbons OLMS—O.SO is close to the
value of 0.56 suggested by the results of Longuet-Higgins and Salem. The
calculafed results are in good agreement with the experimentally
reported values for a wide range. of molecules of this class.
Further reference to these results will be given in section(6.203.)

A high delta value (8 = 0.75) reproduces experimental
results for the linear polyenes - a different class of molecules.
In the following sectibn, we shall attempt a qualitative
exposition of the need for different § values for thé two

classes.

6.2022: § Value for ?olyenes

Although the 6 value required by our self;consistent
procedure for condensed polycyclic alternant hydrocarbons is
quite close fo the § value predicted by Longuet-Higgins and
Salem, there still exists a certain amount of arbitrariness in
the values of §, appropriate to a particular class. One might
expect that for molecules rather different from the above type,

8 could well take a different value. In particular, for linear
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polyenes, which exhibit a marked bond alternation, the § value
could well be different from that pbtained for condensed systems.
unterman and Wagniere's work%#8 sheds some light on tﬂis.
Following Hobey and McLachlan's for%hfor f(RQ), they defined the
total electroﬁic energy in terms of the equilibrium bond lengths

Rlong and RShOI"t for cyeclic polyenes CigHyg, CoyHgy and C3zgHzg. -

Gouterman and Wagniere“8 noticed that if 'a' is decreased (to 0.21
from 0.3106), there is & small trough in the potential curve for
the asymmetric distortion. Hence, a lower value of 'a' could, in
fact, lead to a stable asymmetric distortion, i.e. 'bond
alternation'. (Sevéral other workers*® have also indicated that a
low value of 'a' not only brings about bond alternation but also
lowers the critical value:of N (in chN+2 HhN+2)'at yhichhthé
alternation occurs.) 7

Ignoring the end effects;:one might consider thellinear polyenes
as behaving similarly to cyelic i)olyenes.T Hence, Gouterman and
Wagniere's work suggééts an ingreased § for linear polyenes'with

large N. Gouterman and Wagniere's value for 'a' of 0.21

However, in linear polyenes, the bond alternation always seems
to be obtained in contrast to the critical N observed for the

onset of alternation in cyeclic polyenes.
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corresponds to a § of 0.80, quite close to the § value of 0.75

which best reproduced experimental bond lengths using our

procedure (see section 6.2031).

The increased 6 suggested by Gouterman and Wagniere's work on

linear polyenes with large N and confirmed by us for finite
polyenes clearly indicates a different sensitivity of HQ to bond
length changes. Just Whgt the source of this different
sensitivity is . less clear. It may in fact be a result of a
combination of factors due basically to the "bond localization'.
We shall meke further comments on the consequences of using
larger values of § when the symmetry problem in the iterative

calqulation is discussed in Chapter T.

6.203: Applications

6.2031: Alternant Hydrocarbons

The calculations for the bond lengths of alternant hydro-

carbons were carried out for a wide range of § values to study

§ It might be worthwhile pointing out that the "localization"
model as proposed by Dewar and Schmeising?! to explain the

- physical and chemical properties appears to work well for

.finite polyenes. Vibrational spectroscopic studies coupled with
force field calculations by Popov and Kogan5° on trans—butadiené
and trans-hexatriene also seem to indicate that the localization

model in contrast to the delocalization model is appropriate.
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the sensitivity of the iterative procedure to § values and to
enable us to choose the § value for which the experimental
‘results are best reproducea. As regards‘the sensitivity, the
convergence slows down with an increase in the § value. The §
value of O}hS“appéaré to be the appropriate value.

With this § value the iterative bond length procedure was
‘applied to a number of coﬁdensed polycyclic systems of
interest for which the experimental bond lengths have not been
reported. Since a compilation of our results has been published,41
we indicate the results for only & few systems in Table 6.L.

Similarly, to illustrate the validity;of using a higher §
vaiue for linear polyenes, we give the results for butadiene and
hexatriene in Table 6.3.Again having established the appropriate
§ value for this class we applied the method to systems for which
experimental data had not been published.

6.2032: Non-alternant Hydrocarbons '

The success of this simple iterative procedure as indicated by
compariépn of the results in Table 7.1 prompted an extension to
non-alternant systems. The extension is hampered by‘the fact that
experimental bond length:data for a wide variéty of non-alternant
hydrocarbéns are not availagble. Further, in contrast to alternants
where the charge density on all centers is unity (both in Huckel
and:in the SCF-ZDO representation), for non-alternants, the charge
varies from center to‘center; Hence, in addition to self-

consistent bond orders, a self-consistent charge distribution on
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centers should be attempted;

The first difficulty was cirouﬁvented byrselecting a few non-
alternant hydrocarbons tﬁich belong to a class of strained systems.
Since the experimentalrdataf are evailable for these systems (for
rexample, acenaphthylerle,sla acepleiadjlenesslb 3,4~dimethylene-
cyclobutene51c andlfulveneSid), hopefully one‘could make a meaning-
ful choice of 8. The § value so obtained may not be sppropriate for
other classes of non—alternant hydrocarbons

mﬁe second dlfflculty is set as1de on the grounds that a one
perameter procedure in iterative calculations is more tractable.§
Perhaps more to the point, for the strained nOn—aiternants that can
be checked, the perturbation of the off—diagonal hamiltonian matrix
elements seems to be sufficient in that the results are in agreement
with those obtained_oy erperiment:(see Table 6.2). The value of §
which best represented the bond lenéths that could be checked against

eiperimental data is 0.75;

T The crystal structure studies were not made on the free molecules.
The derivatives of acenaphthylene and the TNB complex of
acepleiadylene were used for the crystal structure studies.51a,51b

§

Further Binsch, Heilbronner and Murrell3? point out that in bond
flxatlon studies on pentalene the varlatlon of the coulomb

integral does not affect the bond lengths results.
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6.30: FURTHER REMARKS ON THIS ITERATIVE PROCEDURE

6.301: Effect of Choice of Standard Bond Length

Hitherto, our discussion has been limited to the bond
length~bond order relation and the‘choice of § falues. In
addition to this we should point out that the value assigned to
Pstd is important. Clearly,variation of Pstd will affect the

way in which a given § value perturbs the core element Hré in

= go
H . '=8-¢6P

- and, as’ such, changes the relation between the

std
core element and the term GPrs in the iterative procedure.
Clearly, the choice of § appropriate to a given class depends

on the selection of Pstd' In addition, changes in Pstd can
either slow down or hasten the convergence. The Pstd value

used in our calculation is unity, cofresponding to the bond
order of ethylene. Although some calculations were carried out
for the benzene value of Pstd = 0.66T, no significant differences

were apparent.

6.302: Loss of Symmetry

We might also remarkjthat normelly at all stages of
iteration the symmetry is preserved. When § values of unity were
used in our calculations allrsystems tested reduced to a set of
linked ethylenic structures. In some instances such reduction
brings with it a reduction to a kekulé, e.g. néphthalene goes

to such a structure. The priéinal‘symmetry of linear polyenes
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undergoes no change. Since § values of unity reduce the core
element to zero this result is consistent with the results

obtained by Paldus and Cizek.53

Somewhat more intriguing was
the observation that for certain falues of § <1, e.g.
calculations on bentalene and heptalene,which belong to the
class of (strained) non—alternants,,indicafe that the starting
symmetry is lowered after several iterations and the self-
consistent resﬁlts obtained correspond to the lower symmetry.

In Chapter T we shall discuss this symmetry 'dilemma’, with

particular reference to pentalene ahd heptalene.

6.303: On Uniqueness of the Tterative Solution

In addition to the "loss of symmetry" problem, the question of
uniqueness of the nth itersted form in those cases where the
symmetry is maintained should also be considered. - For example,
when iterative bond length calculagions on naphthalene are carriéd
out using the same Huckel matfix but for two arbiffary bﬁt
differenteinitiai bond'qrder<matrices, the same nth iterated bond’
order is obtained.':The uniqueness of thosé cases in which there

is also a symmetry loss will be mentioned in Chapter T.
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TABLE: 6.1

SELF-CONSISTENT CALCULATIONS OF BOND LENGTHS (R)

POLYCYCLIC AROMATIC HYDROCARBONS

Molecule Bonda Thﬁezizgent ExpsziﬁzgtalT
1-2 1.381 1.363
Naphthalene (I) 2-3 1.415 1.415
| 1-9 l.h21 1.h21
9-10 1.118 1.418
1-2 1.385 1.378
2-3 1.h12 1.409
Benz(c )phenanthrene (II) 3-1 1.385 1.37h
. h-16 1.116 1.301
5-6 1.37h 1.352
6-17 1.430 1.430
5-16 1.430 1.443
14-15 1.433 1.L46
1-15 1.415 - 1.433
14-17 1.%05 1.412
15-16 1.h15 1.431

® Bond numbering according to "Ring Index" (American Chemical

Society, 1960); & value, 0.45 is used for the calculation of

the bond lengths.

See reference 17.
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TABLE: 6.2

SELF-CONSISTENT BOND LENGTH RESULTS IN R uwrTs

STRAINED SYSTEMS

Experimental ¥

Molecule Bond This Work Result
3,k-dimethylenecyclobutene, 1-2 1.485 1.488 + 0.009
1-h 1.343 1.357 %+ 0.005
2-3 1.488 1.516 = 0.020
2-5 1.3k2 1.335 * 0.003
Fulvene 1-2 1.345 1.340 * 0.006
1-5 1.480 1.476 £ 0.008
2-3 1477 1.462 * 0.009
5-6 1.3k5 1.347 * 0.010
Acenaphthylene 1-2 1.346 -
2-10 1.476 1.478
10-12 1.437 1.4k
3-10 1.372 1.363
3-} 1.432 1463
k-5 1.368 1.368
5-11 1.435 1.396
11-12 1.395 1.406
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TABLE: 6.2 cont'd

SELF-CONSISTENT BOND LENGTH RESULTS IN & UNITS

STRAINED SYSTEMS

Molecule Bond | This Work | rPSrimental®

Acepleiadylene 1-2 1.418 1.399+
111 | 1.382 1.383

2-12 1.382 1.406

3-12 1.469 1.h4hk

3-4 1.349 1.356

h-5 1.470 1.h27

9-10 1.350 1.36k

10-11 1.h6§ 1.457

11-15 1.430 1.k2h

12-16 1.430 1.456

15-16 1.405 1.395

5 Ref. 51. The data given in Table 6.2 correspond to the

molecule, acenaphthoquinone. Only mean values are quoted.

T Ref. 52. The experimental results indicated in Table 6.2

correspond to acepleiadylene in its complex state with
1,3,5~trinitrobenzene.

*¥ See reference L4l.
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TABLE: 6.3

SELF-~CONSISTENT BOND LENGTH RESULTS IN R UNITS

LINEAR POLYENES

. +
Molecule Bond This Work Exp;rlmental
esult
Butadiene 1-2 1.341 1.337 * 0.005
1.339
2-3 1.481 1.483 £ 0.01
1.480
Hexatriene 1-2 1.341
2-3 1.479
3-1 1.345
Octatetraene 1-2 1.3h1
2-3 1.479
3-4 1.345
h-5 1.h77

T See reference 17.
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TABLE: 6.4

SELF-CONSISTENT BOND LENGTH RESULTS IN R uniTs

Molecule Bond Thewgiisent Li;:izzuref
Dibenzo(def, mno)chrysene 1-2 1.hho§
' 1-18 1.367
2-3 1.393
2-20 1.h31
3~k 1.420
L-5 1.416
h-22 1.423
5-6 1.390
6-7 1.h04
T7-8 1.ho1
8-9 1.439
8-22 1.423
20-21 1.h415
£21-22 1.420
Benz(e )azulene 1-2 1.380* 1.383
1-14 1.418 1.415
2-3 1.h7 1.413
3-k 1.381 1.382
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TABLE: 6.4 cont'd

ot | PO e

h-5 1.k17 1.416

5-6 1.469 1.446

5-1k 1.392 1.405

6-T 1.350 1.362

T-8 1.470 1.448

8-9 1.355 1.37h

8-12 1.476 1.LL8

9-10 1.465 1.430

10-11 1.350 1.370

1l-12 1.L469 1.439

12-13 1.355 1.37h

13-14 1.465 1.445

Benz(f)azulene 1-2 1.381" 1.394
1-1k 1.416 1.41h

2-3 1.416 1.h11

3-4 1.381 1.38k

h-5 1.h17 1.113

5-é 1.k467 1.446
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TABLE: 6.4 cont'd

SELF-CONSISTENT BOND LENGTH RESULTS IN K UNITS

Molecule Bond - Thewiiisent- Li$Z§izuref
5~1k 1.392 1.405
6-T - 1.351 1.366

7-8 7 1 1.h6k _1.437
8-9 1.356 1.377
9-10 : 1.467 1.438
9-13 1.476 1.46k

10-11 1.351 1.370

11;12‘ 1.k6h i.h31

12-13 | 1.355 1.373

13-1h 1.469 | 1.451

T See reference Ll.



CHAPTER 7

THE "STABILITY" PROBLEM

T7.10: INTRODUCTION

In the last chapter, we pointed out that there is a lowering
of symmetry for pentalene and heptalene when the iterative
procedure is carried out for particular delta values. This
prevails whether the starting symmetry is D2h or C2v' Thus, for
example, we observed that for the initial Dzh'symmetry, the

final one is 02 and for sz, it is CS. In section T7.20 we shall

h
discuss this symmetry "breakdown™.

In all our.calculations on pentalene and heptalene, the
structure belonging to the lower symmetry group is a bond-
alternating structuré. The instability of the higher point
group is an example of "lattice instaebility". This instability
has been examined by Nakajima and his coworkerssl+ and den Boer55
for pentalene and heptalene from the point of view of "nuclear
perturbation" and they too found the alternating structure to be
of lower energy.

Associated with the symmetry problem but more general than
lattice instability is the "singlet" instability of the Hartree-
Fock solution.z’szlt has been observed by Paldus and Cizek?,53
that where this "instability" has occurred, the alternative

stable solution is found to belong to a lower symmetry and for
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cyclic polyenes, this is a bond alternating structure.

Recalling the parallel between the iterative Hickel scheme
and thé SCF-ZD0 scheme, as given in Chepter 3, it might be said
that an increase in § value corresponds to a lowering of the
‘matrix elemeht (O)Hrs with a concomitant increase in the pertur-
bation, GPrS. In the SCF-ZDO scheme, this is similar to lowering
the value for the core iﬁtegralslﬁgslsuch that the contribution
of‘the "exchange" term, -% Prs Ypg? is relatively larger.

Paldus and Cizek,58 in their study of the "singlet"
instability of the HartreeéF&ck solutions of cyclic polyenes,
analysed the influence of the "coupling constant", A, where Ais
the ratio of the repulsion integréls, Yrs’ to the core integral,

H;s’ on the "stability". They observed the "singlet" instability

setting in forhigh values of A, corresponding to smell values of

rs

Our observation that for a high value of §,"lattice instability"
occurs setting in for pentalene and heptalene 1s of course
equivalent to an instebility for low values of ﬁ;s relative to
what appears to be a high exchange contribution. However, it was not
- cléar Whe?herthiéhmeaﬁtthat pentalene'and heptalene :would in
fact show the "éinglet“ instability as defined by Paldus and Cizek.
So far, no attempt has been made to study the "stability" of
the HF solution of pentalene and heptalene. We shall state the
"stability" conditions and examine the nature of the HF solution

for these systems in section T.30.
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7.20: THE SYMMETRY CONSIDERATIONS

7.201: The Symmetry 'Dilemma'’ in the Present Tterative Method

Numerical investigations using the preéent iterative procedur¢
indicate+ that for small perturbations, 0 <§ < 0.40, the
symmetry (Dpy) is conserved for pentalene. For 0.40 <& < i.O,
there is a slow "change-over" from the high symmetry to the low
symmetry (for examble, if the high symmetry is Doy, the low is Czh;
if it is Coy, the;a the low one is cs'; see Tables 7.1 and T.3).
Furthermo?e, the convergence rate for'fhe lower symmetric case, once
ﬁhe changé-over has o&curred, increases with an increase in the § b
values. | | ,

For pentalene, the low symmetry configuration exhibits bond
altérnation around the periphery (in'Czh)ror within a ring (in Cs).
At § = 1, the iterative cycle leads to an essentially alternating
single bond and double‘bond gtructﬁrg. (For 6 > 1, "non-physical”
density matrix‘elements'resulf.) The- same comments can be made for
heptalene - see Table T.h. |

The loss of symmetry might be ascribed to the cumulative effect
of the random error that occurs at each stage of the iteration. To

investigate this, numerical computations were repeated in double

These observations are based on 100 iterations.
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précisioh format, the higher symmetry is.lost for § values greater
than 0.4 but at a much slower rate.

It would appear that the rounding error on even the first
iteration produces a representaﬁioniof the hamiltonian which does
not preserve symmetry exactly, i.e.-in the case of single precision
calculations symmetry is not ﬁreserved beyond, say, the sevehth
figure, even at the first iteration. Such symmetry loss is not
important in cases Whére the‘gnergy'gurface is concave to the
symmetry loss since éubgequent'iterationé and their attendant
random érrors will aiways return to the original symmetry.

However in those cases, suéh as for péntalene with § > 0.4, where
the energy surface is no£75§able to symmeiry‘loés this initial loss
of symmetry may produce oﬁ the nextIiﬁeration a siightly more
assymmetric solution and thié procedﬁre will continue until the
energy surface (in the new s&mmetry) is stable to the random error
symmetry ldss. |

In other non—alternanés, azulene\(Cgv), as—indacene (Cpy) and
dibenzpentalene (CZV),riowering of symmetry occurs only at high §
values (8§ = 0.8). Fof thé latter two, the AMEX salue is equal to
or greater than the critical Amax predicted by Binsch, Heilbronner

max
A

and Murrell3? whereas for azulene it is somewhat less ( = 1.26

'vs 1.8 for AT2E ).
crit
To investigate if this 'lowering' of symmgtry‘is characteristic

of all non-alternant hydyocarbons or not, we repeated the

calculations for two model systems (see Table.. T.4) where the largest
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eiéenvalﬁe of their polarizability‘matrix is much smaller than the
critical value.32 For both systems, the initial symmetry is
preserved (see Table T.h4).

"7.202: The Onset of Symmetry Loss

According to Binsch, Heilbronner and Murrell,32 for molecules
for which the largest eigenvaiué of the poiarizability matrix, T,
exceeds a "eritical" value, a second order bond distortion'leading
to stability of a lower symmetry is‘not uhexpected. The systems,
pentaiene, hepfalene, as~indacene and dibeniopentalene were indeed
investigéted in vieﬁ of the fact that‘the largeét eigenvalue of the
bond~bond polarizability matrix of these systems is equal to or
greater than Binsch's "criticall value of 1.80 g~L. Fo? pentalene
and heptalene, the largest eigenvalue of the polariéability matrix
is greater than the critical value, 1.80 B"l, by a wide margin.
These are the same systems which -experience lowering of symmetry in
our iterative calculations, even‘for rglatively small values of §
(i.e. down to § = 0.4).

The importance of the eigenvalues of the polarizability nmatrix,
T, to the iterative procedure may be made clearer by recalling
the eigenvalues of the § A‘E:Af should be less than unity for
convergence of the iterative procedure. This is tantamount to
saying that the largest eiggnvalue of & A_E_AT shoulé be less tﬁan
unity. Clearly, to realize "physically interpretable" density
matrix elements, § should be less than 1. For pentalene, the

largest eigenvalues of the polafizability matrix are 2.36 and
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2.5l§ respectively, thus requiring a small § value.

Naphthalene, as—indacene and dibenzpentalene have eigenvectors
equal to or less than the "critical" value (see Table 7.1) and this
suggests that § values which caused loss of symmetry in pentalene
and heptalene would not result in a symmetry loss ~ just as
observed in the present study. However, for high 6 values, i.e.

"8 > 0.8, these systems mould also emnibit instability.

T7.203: Non—analyt1c1ty

From the numerical 1nvest1gation outlined there appears to
be a ielation between AP , the value of §, and the onset of the
loss of symmetry using the iterative method with a varietional
solution of the repmesentation for each iteration. No definitive'
statement of the relation:has been.forthcoming.' Although‘no direct
comparison with tne aforementioned numerical resﬁlts can be made,
it will be recalled that the.perturbation result even in first
order, is stable only if the matrix (1 - G,A_E;Ai) is non-
singular and converges only if the eigenvalues of A_E_AT are ofra
magnitude less than 1/8. Clearly such conditions may be violated
and become pathological, even non—analytic, at SX™¥ = 1. This is
.of course somewhat similar to the non-analyticity observed by

Paldus and Cizek.S57

5 See Table 3 l The eigenvalues are of course dependent on

parametrization and higher values. have been reported
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T7.30 : STABILITY

T.301 : The Hartree-Fock Stability Conditions

Paldus and Cizek53 have reviewed the importance of the
stability of the Hartree-Fock solutions for the closed- and the
open-shell cases. They applied "stability" conditions (to be
stated iﬁ the following section) to the HF solutions of cyeclic
polyenes, linear polyacenes and odd polyene radicals.

Since the theory of the stability of Hartree-Tock states
is feirly well—knowgfasswe will not dwell at length on it.
Instead, we shall introduce the stability conditions for the
closed shell systems directiy and apply them to Hartree-TFbck

solutions of pentalene and heptalene.

The variation of the energy functional

E(®) = <®|HE| DK D|D>

is zero for the Slater determinant of the Hartree-Fock orbitals,
This stationary poiht,that the functiénal E(®D represents,can
be either é minimum, a maximum or a saddle point in the
functional space. In order to distinguish between these
alternatives, it is necessary to examine the second variation
of the energy functionai, 62E(¢9. Thouless,SL+ Fukuda -and
SawadaSS5 and others5® defined the "stability" condition within
the variational space considered as requiring 62E6b) to be

positive for a "stable" solution. This condition ensures that
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the HF single determinaent represents a local minimum of the
energy functional.

7.302 : The "Singlet" Stability Conditions

In the case of the singlet stability problem, the
variational space is spanned by single determinant functions with
doubly occupied orbitgls, i.e. by the Sléter determinants which
are singlet eigenfunctions of the operator gb.

To formulate the singlet stability conditions, the
hamiltonian of the closed-shell 2n electronic system is written

as & sum of one- and two-particle operators ﬁu and Guv

respectively.
Ho= § by + 1 vy | (7-1)
- H

Defining Y1, ¥, *++- etc. as the HF molecular orbitals where
the first n orbitals (¥;, Yo ¢+e- Tn) are occupied in the ground
state, ]CID07> , the  HF solution within a normalization constant

is written as

|®0> = det I“yl -\171 ‘{'2 ?2 seee 1yn -li}.nll (,_{_2)

where the bar indicates the spin B and no bar denotes the spin o.
One can then consider an arbitrary function, |¢>> , which is not
orthogonal to |<bo > and which lies in the neighbourhood of

| ®o >
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le> = [®> + 1 &> - (1-3)

‘Wwhere ICI):.L > is givér;, according to the equation 4 of Ref. 2
as

lo, >=tan™ ] ) ag, ||0aveeeu>  (7-0)
T UL, Upeer U\ 351 J

dU. refer to the‘mix'::.ng coefficiépté ‘ﬁhich denote thé weights
wiih which the virtuai o.ir'b‘itals, are admixed to the occupied
orbitals; |Up,Up,++U; > denotes thé determinantal function
vhich is obtained ‘fro‘m |CI>0> by replacing the occupied spin
orbital by the virtual orbital i. - -

The energy of i in |®) is
E(®) = (D|E|@>/KP| > : (7-5)

and the second varia;bion in enérgy up to second order is defined
as E(CI)) - E(Pg). It can be shown? ‘that if this variation.of
the. energy is to be poéitivé, then the eigenvalues of the

characteristic value problém:
8- S S - .S

= A L (7-6)
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+ i
ust b itive. Her the element :
mus e positive | ere, ‘e ‘ ements AUI,UZ and BUl U that
constitute the square matrices _/_\_S and §_S are essentially the
“matrix elements of the hamiltonian Agiven in (7-1) between the

monocexcited states and between the ground' and biexcited states:

A

Ul,Uz - <U1|QIU2> . : e (7—78')

and.

Bo,u, = <U1U2|§|§90> | (7-Tp)

~

where the Q operator is H - E(qu) . The D° are made up of the
mixing coefficients, dU . Arefers' to the eigenvalue,
When the matrices-AS‘ and BS are real matrices, the "singlet"

stability may be further simplified to

(a5 + B°) pf = 2 p° ‘ o (1-8)

~ However, it is equation (1-6) i:ha:tﬁ we used to examine the
singlet_stabi'lity: of -the Hartree~Fock solution for pentalene and
heptdlene. Further, in the evaluation of the matri‘x'elements of

A and E,_ no symmetry restrictions were involved.

S:ane the derlvatlon of (7-6) 1s fairly well-documented in
ll'berature,‘ (see equa‘blons 1 -1k for the derlvatlon in the

coordinate 'space represenfcation of Ref. 2 ) we omit it here.
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T7.303: The Method of Calculations

Qur concern is primarily with pentalene and
heptalene, however the calculations were also extended to the
higher homologs of ChNHhN which belong to the symmetry group,
Doy The HF calculations were carried out within the Pariser-
Parr-Pople schenme, assuming the ZDO a;pproximation.§

The calculation was set up assuming that all carbon-carbon
neighbour bond distances were identical (1.397 K). The one- and
two—pérticle integrals over the carbon 2p, orbitals were
determined using both the "theoretical" parametrization and the
Pariser-Parr parametrization which consider ¢ electron
screening and correlation in different ways - a factor in terms
of which instability has been analysed-q5’57

In M.O. calculations, 0 electron screening and correlation
effects may be absorbed, in part, in the semi-empirical values of
the coulomb repulsion integrals. For example, the one centre
repulsion integrgl Yyp in thé PPP schéme is of the ordér of 11 e.v.
whereas in the theoretical "parametrization" the same integral
takes the value of 17.23 e.v. The remaining two centre
repﬁlsion integrals, inithe two schemés, show a similar disparity.

Consequently use of the two schemes and comparison of the results

The conclusions on the stability study are restricted by this

approximation.
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allows some assessment of correlation effects.

7.3031: Theoretical "Parametrization"

The repulsion integrals are calculated with the analytical
expressions for the repulsion integrals obtained using 2p, atomic
orbita;s, with the effective nuclear charge 7 = 3.2358. We
assumed the orthogonality of the individual orbitals. (It is by
no means correct to omit the overlap in this case; however,
Paldus and Cizex’® found that the inclusion of overlap did not
materially change their conclusions. Assuming that this is valid
in our case, too, and reéogﬁizing that the neglect of overlap
simplifies the calculatién, we have followed the above
parametrization.) Following Ruedenberg, the core integrals in

the off-diagonal element are taken as B = -3.7163 e.v.

7.3032: The PériSer—Parr "Parametrization"

In the PPP representation the two centre coulomb repulsion
inteérals Yrs are calculated using the charged-sphere spproxi-
mation with Slater's effective nuclear charge value of
Z = 3.25. The one centre coulomb repulsion integral, Yrr’ is
taken as 11.0 e.v. The core integral (B) is given the value

B = ~2.39 e.v.
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7.304: The Matrix Elements of the Stability BEquation

In order to examine the "singlet" stability of the HF solution
for pentalene and heptalene obtained using the two "parametrization"
5 "and B> appearing in the
U;,U2 Ui,Us

characteristic-value problem (equation T-6) must be evaluated. As

schemes, the matrix elements A

indicéted in the section TuQO; these matrix elements are the matrix
elements of the hamiltonian (%—l) befweep~th§ monoexcited states and
between the ground‘andrbiexcited‘statés.

For convenience, we shall denoterthg singly excited

configuration by

‘:]L> (as against']CD()) for the ground state

32
ix/

The occupied orbitals from Whichrthé excitation occurs are denoted

configuration) and the double excifed configuration by

by i and k and the virtual orbitals at which the éxcitation

terminates are given the symbols j and'l;

For pentalene and hebtélene we consider only the excitations
involying the two'highest occupieq ievelé and the tﬁo‘lowest
virtual levels. In ﬁaftiéular,'we carriéd out the calculatioﬁs
for two sets of excitations. |

() All the possible monoexcited state céﬁfigurations

and the biexcited state‘coﬁfigurations arising out
of the excitations i(n) = j(n + 1); i(n) » j(n_;,Z)

and i{n - 1) > j(n + 1).
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(b) In addition to the excitations considered in (a),

we included the excitation i(n = 1) -+ j(n '+ 2).

The 'n' in parenthesis indicatés the total number of the occupied

levels, The characteristic value problems are solved within the

“type of excitations described in (a) and (b). We shall present

the results of the calculations for pentalene and heptaiene in
section T.40.

7.3042: The Effect of the Variation of the "Coupling" Constant, A

In section‘7.10 we indicated the Sfu&ies ¢éarried out by
Cizek and PaldusS3 on the use of the 'coupling" constant, A, in

examining the stablllty problem. The varlatlon of the "coupling"

" constant can be brought about by varying the value of the core

integral, Hrs’ alone Wlthout recourse to an adjustment of both

the core iﬁtegral'and the;repuls1on lptegral, Yrs' Fbllow1ng
this approach, wé a6lved fhe charaéteristicrvalue problem for'
several values of the core inteérals}afiboth levels ef truncation,
i.e. for both (a) and (b) above.‘ |

We shall con51der the results obtalned in the follow1ng

section and discuss their 1mpllcat10ns.

7.40: RESTLTS AND DISCUSSION

Clearly, an examination of the lowest eigenvalue of the
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characteristic value problem (equation 7.8 ) would indicate

whether the Hartree-Fock solution obtained for pentalene and
heptalene within the schemes explained in section 7.3

is stable or not. As the results indicate (see Tables 7.5 & 7.6),all
the eigenvalues are positive in both schemes when the standard

value of E;s s of the core integral is used. This suggests

that the Hartree-Fock solution with the above parametrization

is "singlet" stable.

When the core integral, Hrs,:is varied systematically, the
results (Taebles 7.5 and T.6)show that the lowest eigenvalue is
negative for small values of H}s in both the "theoretical
parametrization scheme and the "PPP" scheme. However, there is
a definite accentuation of the negative value in the "theoretical
parametrization scheme in comparison with the PPP scheme. This is
due to the fact that the inter-electronic repulsion is’
smaller at short distances in the PPP scheme than in the

"theoretical" scheme. Cizék and Paldus have made a similar

53

observation in their study on cyclic polyenes.

The appearance of the negative eigenvalue for small Hrs

clearly indicates that the HF solution is unstable. From the

plots of the lowest eigenvalue against the core integral, Hrs’

it can be said that the "instability" occurs at a higher value of

Hrs in the "theoretical" parametrization scheme relative to the

PPP parametrization scheme. The reasoning is the same as the one given

above - to account for the accentuation of the negative eigenvalue.
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Another aspect that can be extracted from this study is
that the magnitude of the lowest éigenvalue is dependent on the
maximum value considered for the quasimomentum transfer (see
Tables 7.5 and 7.6). In our‘problem, this is equivalent to
comparing the results obtained for the descriptions (a) and (b)
given inrsection 7.3041. As we go from (a) to (b),:it is
observed for pentalene and heptalene that the magniﬁude of all
the eigenvalues, inéluding the lowest eigenvalue, goes up.

In our investigations, however,'we noticed that the magnitude
of the eigenvalues of the charactefistic value problem in heptalene
is smaller than that in pentalene and that of the higher homolog,
nonalene, is smaller thén that of heptalene. This is quite
interesting since in the analyéis)carried out by Paldus and
CizekS3 and Tric®2 for polyenes, the tendency towards "inétability"

H

increases as the dimensionality, N, of the basic unit ChN+2 N2
increases. However, for small values of the 'coupling' constant,
i.e. approximately standard core integral values, the trend

observed by Paldus and Cizek is, indeed, found.

7.401: On Uniqueness of the Self-consistent solution

In addition to the uniéuénesg or lack thereof of the final sym-
metry, i.e. either D2h > 02h of é26~+VCS. There is also the question
of uniqueness of the nth iterated‘bond order matrix?given that the
final result is of a particular symmetry. To test this ﬁwo arbitrary
D2h symmetry first order‘bond matricesiwere taken as stérting points
for the iterative procedure on penfalene and the final results were

the same 02 bond order matrices.

h
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TABLE: 7.1

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERA'I'ION§

Density Matrix
Molecule
Bond 0 Lo 60
Pentalene 1-2 0.6540 0.6548 0.6550
§=o0.k0 | 1-8 0.5179 0.5165 0.5162
2-3 0.6540 0.6547 0.65Lh
3~k 0.5179 0.5166 0.5168
L5 0.5179 0.5164 0.5162
L8 0.5393 0.5hk22 0.5422
5-6 0.6540 0.65u4T 0.6550
6-71 | 0.6540 | 0.6547 0.65Lk
7-8 0.5179 | 0.5166 | 0.5168
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‘TABLE: 7.1 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

- STAGES OF ITERATION§

Density Matrix
Molecule
Bond 0 Lo 60
Pentalene 1-2 0.6k499 0.1647 0.1647
Doy 1-8 0.5243" 0.9585 0.9585
2.3 0.6499 0.973L 0.973k
§ = 0.80 3-L 0.5243 0.1562 0.1562
4.8 0.5309 0.1738 0.1738

§

The calculations were carried out in single precision

format in IBM 360/50K.



THE DENSITY MATRIX ELEMENTS AT SEVERAL STAGES OF ITERATION .

TABLE: 7.2

§

Density Matrix

Molecule '
Bond 0 Lo 60 80 100
Pentalene .'“1-2 o.6h98872h  0.65h723oo 0.65472300 | 0.65472300 | 0.65472300
§ =00 ‘1-8 : 6;52h3h5h7 .,50.516566ho‘ \b,516§o6ho 0.51650640 “0.516506ho
23 | 0;6h95872h_ -0.65h723oo : 0:65h723oo o@65h723oo 0.65472300 -
| 3~k | 0;52u345h7_ Q.516506h6. o.516506ho, " 0.51650640 0;516506ho “
48 Qﬂ§3088§23v fo.5h218364 -d.5h21836h o.5hé183h 0.5L421836k
Pentalene | 1-2 0.64988724 | 0.65880048 .| 0.66027546 | 0.92192368 | 0.921961Th
§=0.60 |18 | o.52u34547 | 0.50890409 | 0.50737301 0.24700069 | 0.24698299
2.3 | o0.6u8872k | 0.65880048 | ©.65732368 | 0.20076346 | 0.29065927
3~k 0.52434547 | 0.50890409 0.51043705 | 0.87027650 0.87035872
4-8 0.53088923 | 0.55438181 o.55h37791 0.32566861 | 0.325525T1

- 21T -



TABLE: 7.2 cont'd

. "THE DENSITY MATRIX ELEMENTS AT SEVERAL STAGES OF ITERATTION

§

Density Matrix

Molecule _
Bond 0 ko 60 80 100
Peﬁtalene 1-2 d.6h98872h 0.39906921 '0.973hi777 0.973417TT ‘_0.973h1777
§ = 0.80 ' 1-é - 0.524345h4T 0.23837876 0.1562330?' 0,15623307 _ 0.15623301
o3 0.6498872k | 0.36282220 0.16L686ﬁ7 0.16468847 | 0.164688k4T
3-h,; o.§2h3h5u7 0.81459590 , 0.9585k29h d.9§85h29h 0.9585429
14-8 0.53088923 0.42130409 0;1738h755 0.17384755 6.1738h755

The calcuiations were carried out in double precision format in IBM 360/50K.

- €1T -
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TABLE: 7.3

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix
Molecule
Bond 0 4o 60
Pentalene 1-2 0.7608 0.902k4 .9024
Con 1-8 0.4159 0.2670 .2670
§ = 0.k0 2-3 0.5322 0.3321 .3321
3l 0.6316 0.8207 .8207
45 0.4159 0.2670 .2670
4-8 0.5248 | 0.4083 .4083
5-6 0.7608 0.9024 .902k
6T 0.5322 | 0.3321 .3321
7-8 0.6316 0.8207 .8207
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TABLE: 7.3 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix

Horeeute Bond 0 - ko | 60
Pentalene 1-2 0.7608 0.9930 9930
Coy | 1-8 | o0.ha59 | o0.0811 .0811
§=0.80 | 2-3 0.5322 0.0850 .0850
3=k 0.6316 0.9790 .9790
4-5 0.4159 0.8110 .8110
4-8 0.5248 0.1676 L1676
5-6 0.7608 0.9930 .9930
| 6T 0.5322 0.850h .850k
7-8 1 0.6316 0.9790 9790
- Pentalene 1-2 0.6495 | 0.6511 .6511
Coy 1-8 0.5406 0.5k417 .5h1T
§ = 0.20 7-8 0.4976 0.4870 1870
6-7 0.6537 | - 0.6572 L6572
4-8 0.5425 0.5496 ). 5496
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TABLE: 7.3 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES 'OF ITERATION

Density Matrix

Hotecule Bond 0 Lo 60
Pentalene 1-2 o.6h95‘ 0.65301' 0.6530
Coy -~ |- 1-8 0.5L406 0.5kLY | 0.5443
8§ = 0.40 7-8 0.4976 - 0.h694 0.4694
6-T 0.6537 0.6626 1 0.6626
L-8 0.54k25 0.5607 0.5607
Pentalene |. 1-2 0.6495 0.31327 0.3116
Coy 1-8 0.5406 0.8738 0.8TL9
8§ = 0.60 2-3 0.6495 0.9066 | 0.907h4
3-L 0.5406 0.2888 0.2879
b5 0.4976 0.8586 0.8601
4-8 0.5425 | . 0.3468 0.3446
5-6 0.6537 0.255k4 0.2535
6-T7 0.6537 0.9k4s5) 0.9459
7-8 0.4976 0.1818 0.1822

t For & = 0.40 and 0.60, the convergence rate is very slow.
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TABLE: 7.3 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix

Molecule
Bond 0(Cyy) ko(c,) 60(Cg) .
Pemtalene | 1-2 0.6495 0.1758 0.1758
§ = 0.80 1-8 0.5406 0.9638 0.9638
| e-3 0.6495 | 0.9680 | 0.9680
3-} 0.5506 | o0.1814 | 0.181k
45 0.4976 | 0.9604 | 0.960k
4-8 0.5425 0.1873 0.1873
5-6 0.6537 0.0972 0.0972
6-7 - 0.6537 0.9916 0.9916
7-8 0.4977 0.0807 0.080T7
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TABLE: 7.3 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix

Molecule

Bond 0 Lo 60
Pentalene 1-2 0.7585 0.8969 0.8969
Cs 1-8 0.4260 0.2829 0.2829
§ = 0.40 2-3 0.5343 | 0.3396 | 0.3396
3-1 0.637h 0.8233. 0.8233
45 0.k4002 0.2h12 0.2h12
h-8 0.5311 0.h1T7h 0.h1Th
5-6 0.765T 0.9127 '0.9127
6-T 0.5303 0.3192 0.3192

7-8 0.6211 0.8146 0.81k46
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TABLE: 7.3 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

4 Density Matrix

Holeeuie Bond 0 Lo 60
Pentalene 1-2 0.7585 0.9925 0.9925
Cq 1-8 0.4260 0.0859 0.0859
8§ = 0.80 2-3 0.5343 0.0865 0.0865
3-h 0.637h 0.9802 0.9802
L-5 0.k4002 0.0k19 0.0419
L-8 0.5311 0.1743 0.17k3
5-6 0.7657 0.9980 0.9980
- 6-T 0.5303 0.4631 | 0.4631
7-8 | 0.6211 | 0.9799 | 0.9799
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TABLE: 7.4

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix

Molecule ) :
Bond 0 40 60

Azulene 1-2 0.6640 L6660 0.6660

o

§ = 0.k0 1-10 0.5858 0.5926 0.5926
2-3 0.6389 0.6382 0.6382
8-9 0.6560 0.6555 0.6555
9-10 0.5956 0.6052 0.6052
6-10 0.4009 0.3647 | 0.3647

Azulene 1-2 0.6640 0.6658 0.6658
§ = 0.60 1-10 0.5858 0.6006 0.6006
2-3 0.6389 0.6383 0.6383
8-9 0.6560 0.65hk2 0.6542

9-10 0.5956 0.61h47 0.61h47

6-10 0.4009 0.3259 0.3259
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TABLE: 7.4 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix

Molecule
Bond 0 Lo 100

Azulene 1-2 0.6640 0.6590 .10k0

§=0.80 | 1;10 0.5858 0.6203 .9496
2-3 0.6389 0.6431 .96L41
3-b 0.6389 0.6385 .1878
45 0.6640 | 0.663h .9658
5-6 0.5858 0.6159 .18k7
6-T 0.5956 0.6332 .9ko8
6-10 0.4009 0.2415 ATh2
7-8 0.6560 0.6488 .1939
8-9 0.6560 0.6532 .96khhL
9-10 0.5950 0.6288 .1855
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"TABLE: 7.4 cont'd

THE DENSITY MATRIX

ELEMENTS AT SEVERAL

ITERATION

Density Matrix

0 . 40

60

STAGES OF
Molecule

Bond

As-indacene | 1-2 70.

. 1-12 0

§=050 |23 | 0

3-L 0

h-12 0

45 0

5-6 0

11-12 0

As-indacene |} 1-2 0.

1-12 0

§ =0.80 | 2-3 0.

| 3-l 0.

y-12- | o.

45 "0

5-6 0.

11-12 0

6757 0.7920
.7905 0.866T
.388ML 0.3268
L6kl | 0.3772
.T016 | 0.795h4
503k | 0.4261

1160 0.3hk22

L6757 0.9516

.7016 0.9508

4160 0.1762

hoht 0.390L

Loht 0.1837
7905 - 0.9678
3884 0.1750

461 0.1790 .

5034 0.1945.

.390L
7920
.8667
.3268
3772
.T954
RIS
.3h22

.1837
.9516
.9678
1750
.1790
.§508
.1945
L1762
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TABLE: 7.4 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix
Molecule
Bond 0 Lo 60
Nephthalene | 1-2 0.7246 0.7493 0.7493
Don 1-9 0.5547 0.5378 0.5378
§ = 0.40 2-3 0.6032 0.5721 0.5721
9-10 0.5182 0.5448 0.5448
Naphthalene | 1-2 0.7246 0.7828 0.7828
Don 1-9 0.5547 - | 0.5083 0.5083
§ = 0.60 2-3 0.6032 0.5287 0.5287
9-10 0.5182 0.5927 0.5927
Naphthalene | 1-2 | 0.7246 0.9857 0.9857
Dop 1-9 0.5547 0.1261 0.1261
8§ = 0.90 2-3 0.6032 0.1253 0.1253
9-10 0.5182 0.9715 0.9715
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TABLE: 7.4 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix
Molecule

Bond 0 Lo 60
Heptalene 1-2 0.6722 0.6840 .6840
| 1-11 0.5357 0.5265 .5265
§ = 0.40 2-3 0.6187 0.6133 - .6133
3-h 0.6187 0.6133 .6133
45 0.6722 0.6840 .68k40
5-12 0.5357 0.5265 .5265
{11-12 0.502h 0.5120 .5120
Heptalene 1-2 0.6722 0.9381 .9381
1-11 0.5357 0.2437 .2h37
8§ = 0.70 2-3 0.6187 0.2533 .2533
3=k 0.6187 0.9322 .9322
4b-5 | 0.6722 0.2685 .2685
5-12 0.5357- o.9bh6 .90k6
11-12 0.502h 0.2k79 .2h79
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TABLE: 7.4 cont'd

THE DEﬁSITY MATRTX ELEMENTS AT SEVERAL STAGES OF ITERATION

DenSity‘Maﬁrix
Molecule -
Bond 0(Doy) - 40(Coy) 60(Cop)
Heptalene | 1-2 0.6722 | 0.991k 0.991k
§=0.90 | 1-11 | 0.5357 | 0.0925 0.0925
- 2-3 0.6187 0.0929 0.0929
3-4 | 0.6187 | 0.9913 | 0.9913
W5 0.6722 | 0.0939 | 0.0939
5212 | -0.5357 | 0.9871 0.9871
11-12 0.5024 | 0.0922 0.0922
Density Matrix'

Molecule — —1 , -

~Bond | .0 | ko - 60
Dibenz- | 1-2 | 0.6115 | 0.567T7 0.5677
pentalene “| 3¢ | 0.6896 | 0.7291 |- 0.7101
§=0.50 L o3 0.7083 | 0.7479 | 0.7479
3=k 0.5520 | 0.5172 0.5172
b-5 | 0.5727. |. 0.5968 | 0.5968
4-15 | 0.4852 | 0.4889 | 0.4889
5-6 | 0.54%05 .| -0.5310 |’ 0.5310
6-1h 0.5281 | 0.543Y4 0.543)
14-15 0.1821 0.4752 0.4751
15-16 0.5949 0.5810 0.5810

The convergence rate is slow.
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TABLE: 7.4 cont'd

THE DENSITY MATRIX ELEMENTS AT SEVERAL

STAGES OF ITERATION

Density Matrix
. Molecule - ‘ ~
' Bond -{ .0 { ko 60

Dibenz- © 12 0.6115 0.1826 0.1826
pentalene 1-16 | 0.6896 0.9667 0.966T
2-3 0.7083 0.9682 0.9681
8§ = 0.80 3-4- 0.5520 - 0.1790 0.1790
L5 | o0.5727 0.9559 0.9559
h-15 -} 0.4852 | 0.1661 0.1661
5-6 0.5405 0.1627 0.1627
. 6-~7 | 0.5405 0.9545 - 0.95L6
6-14 |- 0.5281 0.1817 0.1817
7-8 | 0.5726 0.1713 |- 0.1711
8-9 0.5520 0.3615 0.3578
8-13 | 0.4852 |-0.8676 | 0.8696.
{ 9-10 0.7083 0.8954 - 0.8973
10-11 |. 0.6115 . 0.3596 .0.3560
11-12 0.6896 |. 0.8953 0.8972
12-13- | - 0.5949 0:3618 - 0.3582
13-14 | 0.k821 0.1680 0.1678
14-15 | 0.4821 0.9380 0.9381
.15-16 .| 0.5949. 0.1865 0.1864




TABLE: .

7.4

THE DENSITY MATRIX ELEMENTS AT SEVERAL STAGES OF ITERATION FOR

MODEL NON-ALTERNANTS

Molecule

Bond

Density Matrix, § = 0.40

Density Matrix, & = 0.80

0 ko 60 0 ko 60

1-2 0.14056 0.3483 0.3483 0.4056 6.1751 0.1751

1-12° 0.8304 | 0.8753 0.8753 0.830k 0.9691 0.9691

12-3 0.6523 0.6880 0.6880 0.6523 p.8936 0.8937

2-13 - 0.5160 0.5124 0.512k4 0.5160 0.3263 0.3262

34 0.6103 0.5937 0.5937 0.6103 0.3395 0.3395

Model I , 13-1h 0.5307 ~ 0.5522 0.5522 0.5307 0.8259 '0.8259
1-2 0.5812 0.6096 0.6096 0.5812 0.943k 0.9434

1-13 0.6829 0.6642 0.6642 0.6829 0.2118 0.2118

2-3 0.52khT 0.4923 0.4923 0.52h7 0.1859 0.1859

2-1L 0.4769 0.h62h 0.k462k 0.4769 0.1903 0.1903

3-} 0.7185 1 0.7603 0.7603 ©0.7185 0.9655 0.9655

L-5 0.568k 0.5187 0.5187 - 0.5684 0.1881 ©0.1881

5-6 0.7221 - |  0.7623 0.7623 0.7221 0.96kk 0.96kk

6-7 0.5168 0.4881 0.4881 0.5168 10.1916 0.1916

Model IT T-14 0.5555 0.5919 0.5919 0 0.9291 0.9291

«5555

_La-[._



TABLE: 7.5

THE LOWEST—I;YING EIGENVALUE (IN ELECTRON VOLTS) A; OF THE CHARACTERISTIC-VALUE
. H

PROBLEM, CALCULATED USING THE "THEORETICAL" PARAMETRIZATION AND "PPP'" PARAMETRIZATION

. . . &
‘M™heoretical" Parametrization

"ppp" Parametrization-r

System — — — —
(O)Hrs; A (a) (O)Hrsx A (v) (o)HrsX A (;) : (O)Hrsx A (p)
Pentalene 0.1 -1.033 0.1 -1.598 0.1 ~0.1443 0.1 0.688
0.4 -0.416 - 0.3 -1.066 0.4 ~-0.063 0.h -0.22k
0.7 0.137 0.7 -0.176 0.7 0.281 0.7 0.163
1.0 0.675 0.9 0.618 1.0 | 0.619 1.0 0.527
- | 1.3 0.999 1.3 0.956 1.3 0.881
- 1.5 1.6 1.293 - 1.228

1.373

§“ The value of H
rs

T The value of H
rs

is =-3.716 e.v.

is -2.39 e.v.

_88'['_



TABLE: 7.6

THE LOWEST-LYING EIGENVALUE (IN ELECTRON VOLTS) A;, OF THE CHARACTERISTIC-VALUE
PROBLEM, CALCULATED USING THE "THEORETICAL" PARAMETRIZATION AND "PPP" PARAMETRIZATION

"PPP" Parametrization

"Theoretical" Parametrization
System — — ‘ — —
' (O)Hrsx A (a) ,'(O)Hrsx‘ X (p) (O)Hrsx A (a) (O)Hrsx. A (b)
Heptalene 0.1 ~0.386 0.1 ~1.153 0.1 -0.10k | 0.1 -0.475

| ' 0.4 ’_.0.065_ o |- 0.631 | 0. 0.105- | 0.k | -0.17H ',n_), :
0.7 £ 0.260. 0.7 =0.177 | o‘.‘.‘7 ', (_5.297* 6.7 | 0.086 Y
10 | o092 | 10 0.239 | 1.0 | . 0.500 | 1.0 0.33L |

1.3 0.929 | 1.3 | 0.633 1.3 | o.700 1.3 0.569

1.6 1.268 | 1.6 | 1.018 | 1.6 - 1.6 0.802

5 The value of H;s is =3.716 e.v.

The value of H;s is -2.39 é.v;”
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Figure T.1: Plot of the lowest eigenvalue, A, (e.v.), against the
core integral, “Hr's’ for pentalene. | : :
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Figure 7.2: Plot of the lowest eigenvalue, A, (e.v.), against the
core integral, H;g,‘for heptalene. : '



CHAPTER 8

CONCLUDING REMARKS

8.10: SUMMARY

Although we have restricted ourselves to first order
perturbations in the analytical study detailed in this thesis, we
have obtained a closed form expression for the nth iterated bond
order matrix. Within this context we have been able to examine
both the criteria for convergence and in an illustrative example
the contributions to the final bond order corrections. The
analysis could, of course, be extended to include seéond order
terms (but thg complexity of the expression does not auger well
for a useful analysis). We have been able to extend the work to
infinite systems and for these cases to establish not only the
convergent form of (n)Pr but also the rate of convergence and the
oscillations from iteration to iteration. Using parametrizations
obtained on a statistical basis but in reasonable agreement with
those obtained on the basis of specific-models, the application
of the method to several claéses of pi-electron systems yields
results in goqd agreement withAexperiment for a wide variety of
systems.

Finally, we have found that for certain molecules, the
initial symmetry is lost after a nuﬁber of iterations under the

conditions similar to those known to lead to "instability" in
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other systems. A more formal analysis of the "instability" in
terms of the sign of the second varigtion of the energy functional
yields an instability for essentially the same conditions, namely
a relatively large ratio of the repulsion to the core matrix
elements.

8.20: FURTHER WORK

Nétwithstanding the apparent relation between § and the
largest eigenvalue of the polarizability matrix and the onset of
loss of symmetry, this is still an ares of some concern. In
particular, an aﬁtempt to establish non-analyticity for the
"eritical" range of § would be useful in understanding just how
the symmetry is lost.

Further, in view of the apparent singléet "instability" of the
Hartree-Fock solution of pentalene (Dpp) and heptalene (Dpy) it is
perhaps useful to investigate other non-alternant hydrocarbons

which have not been subjected to any "stability" study.
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APPENDIX: 1
MATRIX ELEMENTS

“ Following Ito and I'Haya 53 and Cizek, 60 the matrix elements

of A and B are given below:

DIAGONAL ELEMENTS OF A :
<§ i> 2 (aalelan) - (aildlan)
(1 (lals) - (ala)(alals)

occe

5 (2 ettty - (oerlela))

oce

g' (2 <ia'|ﬂia'> - <ia'|€r|a'i>)

A

Q

o+

+

OFF-DIAGONAT, ELEMENTS OF A :
. <i Qlf{> 2‘<jk|w7|ij> - <jk]w“r|ji>
(313 (ilalk)

occe

) (2<ia' |c-|ka:>)

al

(ia’ |§|gvk>



S -
HERTCID SRS
RSP
¥ ( (3o ¥12ar)
- (perFlen))

Q

¢

<i Q 1&> = 2<jkl\7|i£> - <jk|?r|zi>

DIAGONAL ELEMENTS OF B :

> <JJ|V|11

OFF-DIAGONAL ELEMENTS OF B :

J f{é > = -\/2—<33|w“r|ik>
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) §‘§\®(> = \/‘2'<le6|11>

: §‘§‘®o>= <jz|%|ki> - <;jz|w“r|ik>



