
THE UNIVERSITY OF CALGARY 

ANALYSIS AND APPLICATION OF THE 

ITERATIVE METHOD AND RELATE) STABILITY PROBLEMS 

IN M.O. CALCULATIONS 

by 

ISHNASWANY VASUDEVAN 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE 

OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF CHEMISTRY 

CALGARY, ALBERTA 

JULY, 1971 

© KRISHNASW.M4Y VASUDEVAI'T 
1971 



THE UNIVERSITY OF CALGARY 

FACULTY OF GRADUATE STUDIES 

The undersigned certify that they have read, and recommend to 

the Faculty of Graduate Studies for acceptance, a thesis entitled 

"Analysis and Application of the Iterative Method and Related 

Stability Problems in M.O. Calculations" submitted by Krishnaswamy 

Vasudevan in partial fulfilment of the requirements for the degree 

of Doctor of Philosophy. 

W. G. Laidlaw, Dept. of Chemistry 

(Chairman) 

Cliemi stry D. R. Truax, Dept. of 

A. Rauk, Dept. of Chemistry 

R. Chatterjee, t. of Physics 

. Paldus, Dept. of A.lied Math-
ematics, University of Waterloo 

1ate) 4/ 



ABSTRACT  

A self-consistent perturbation theory is used to obtain 

closed-form expressions for the density matrix elements to 

first order for the iterative procedure. The validity of the 

approximations involved to get the closed-form expressions is 

tested against a few pi-electron systems. A similar analysis, 

but different in mathematical approach, is carried out for 

infinite networks. With the iterative method in its full form, 

bond length calculations were done for alternant and non-alternant 

hydrocarbons and the results are reported. The symmetry dilemma' 

that results from these calculations is discussed in connection 

with the 'singlet' stability of the Hartree-Fock solutions. 
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CHAPTER 1. 

INTRODUCTION  

1.10; PURPOSE  

This thesis is concerned with a study of a method of obtaining 

approximate values for the bond orders (and hence bond lengths) 

for conjugated ir-.electron systems of interest to chemists. As in 

nearly all realistic chemial problems, the methods of calculation 

are, by necessity, approximate. There are a number of matheithtical 

methods available with which the problem can be attacked. 

Essentially all such methods involve an approximate representation 

of the physics of the problem from which is extracted a solution. 

This solution may then be used to calculate the relevant property 

directly or it may be improved by successive approximations. In 

the present case the method chosen (for reasons outlined in 

Chapter 2) is the so-called iterative scheme that takes a simple 

and readily accessible description and by a suitably chosen 

perturbation,properly parametrized, successively "improves" the 

result. Sucha process raises a number of questions. For 

example, How does one choose the perturbation? What sort of 

parametrization is required? Does the procedure indeed converge to 

a unique solution? How rapidly does it converge? Can one 

analyse the procedure to obtain some insight into the final self-

consistent form? All of these questions are non-trivial but not 



-2-

all are normally considered. For example, the convergence of the 

self-consistent scheme in M.O. calculations is normally taken for 

granted but as pointed out by Schwartz' the convergence is not 

fully understood. Another example is that until recently little 

attention has been directed to the stability of molecular 

orbital descriptions obtained by solution of Hartree-Fock 

equations. Even such a fundamental concept as the conservation 

of symmetry in such calculations has been tacitly assumed but 

again this is not always so. These questions with specific 

reference to iterative methods prompted the investigations leading 

to much of the material reported in this thesis. In addition to 

carrying out such investigations, we have also applied the method 

to the calculation of a specific property of a number of conjugated 

pi-electron systems. 

1.20: RESUME  

The iterative method described in Chapter 2 turns on two 

equations, one relating the bond oHer to the bond length and the 

other allowing one to set up the hamiltonian matrix elements for 

the new iteration from the bond order elements obtained in the 

previous iteration. Further, to adapt the method to several 

classes of p1-electron systems, a flexible parameter, 5, which can 

be selected for a given class has been introduced into the second 

equation on which the iterative cycle rests. The success and the 

adaptability of this method requires that the procedure converges 

for appropriate 6 values and that it yields results in agreement 
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with the experimental data. To this end, we examined the 

convergence of the iterative method in some detail. 

The investigation of the convergence of the iterative method 

has been carried out theoretically and numerically. The 

theoretical analysis follows the general perturbation theory. 

Based on this, gexieral expressions were obtained for the density 

matrices at all stages of the iterative cycle under the L.C.A.O.-

M.O. approximation. The equations that led to the convergence 

criterion were then derived. The description of the analysis is 

delineated in Chapter 3. To illustrate the usefulness of the 

approach, continuant matrices which are a representation of linear 

polyenes were considered in Chapter 1. 

As a special case in our analysis we also considered infinite 

periodic networks. The convergence criterion and the breakdown 

point in the iterative method were treated in Chapter 5. To add 

support to the theoretical analysis, numerical investigations were 

also carried out for the infinite network. 

In Chapter 6 we discuss the appropriate choice of values for 

o for two classes of alternant hydrocarbons and also for a class 

of non-alternant hydrocarbons and present the results of the 

applications of the iterative method with these values. 

In the process of our calculations, it appeared that for 

certain systems, for example pentalene and heptalene, an initial 

symmetry (D2h) is lost and .the process converges to a new 

symmetry (C2h). Some discussion of this is provided in Chapter 7, 



in particular,the singlet instability associated with the symmetry 

problem of the Hartree-Fock solution. This investigation bears 

some resemblance to that of Paldus and Cizek2 who observed that 

where the instability has occurred, the alternative stable 

solution is found to belong to a lower symmetry. A description of 

the examination of the stability of the Hartree-Fock solution for 

pentalene and heptalene and a discussion of our results is 

provided. 



CHAPTER 2  

ITERATIVE TECHNIQUES  

2.10: INTRODUCTION  

Within the context of approximate schemes, methods of very 

general applicability have been developed and have found ready use. 

For example SCF_MO_PPPt schemes 1ave been used for calculating many 

properties. However, schemes with the flexibility necessary to 

provide 

complex 

result, 

a wide variety of properties with reasonable accuracy are 

and frequently require heavy use of computing time. As a 

simpler schemes specifically designed for the calculations 

of a particular property have been developed. 

generally involve two parts: an appropriately 

relation between the observable quantity and a 

Such methods 

parametrized 

quantity calculated 

from the approximate mathematical description of the molecule. The 

latter, quantity may in itself, be. the result of an iterative 

calculation wherein the quantities obtained from a given representation 

of the hamiltonian are used to define an improved hamiltonian with 

which a new value may be calculated. Although numerical calculations 

generally indicate that under certain restrictions the iterative 

method converges, there is a need to determine analytically the con-

ditions under which the iterative method converges, to examine the 

convergent form and for infinite systems analyse the functional 

characteristics of the approach to self-consistency. To this end, 

we make reference to the principle iterative methods and use the 

perturbation theoretic approach to examine an iterative scheme for 

I Self-consistent field molecular orbital Pariser-Parr-Pople. 
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calculating bond orders. 

2.20: THE,NATURE OF ITERATIVE METHODS  

There are many iterative methods 3 quite widely used in numerical 

analysis to obtain a better solution from an approximate solution or 

to solve an inhomogeneous problem. For example , integral equations 

are customarily solved by an iterative method; an elementary iteration-

variation procedure for solving the Schrdingerequation by the 

partitioning technique suggested by Lwdin is another instance.' The 

iterative methods are, in general, characterized either by successive 

approximations or successive substitutions. For example, to solve 

linear integral equations, the successive approximation method or the 

successive substitution method has been used. In both cases, the 

conditions under which the method would converge have been well demon-

strated. 

The iterative methods that we will discuss use the idea of the 

successive substitution. Depending upon the property we wish to 

calculate, the nature of the method and the functional relations 

involved change. In the following, we will consider two such methods 

which have been used in MO calculations one is the charge-dependent611 

and the other the bond-order dependent method. 1520 

2.201: The Charge-Dependent Method  

In the self-consistent field theory (SCF), the diagonal Fock 

matrix clement, F rr , of the effective hamiltonian at atom r depends on 

the charge-density, P rr' at rand on the charge-densities at all other 

centers and it is given by: 

= Heore ½ P Y + (2-1) 
rr rr rr rr ss rs 

str 



'1 

where 

core = (x r IcoreIX rr r ) , the core integral 

and -r rs r = (x (i) X s(2)1 --- IX (1) X(2)) , the coulomb repulsion 
r12 r 

integral. Ix  I belong to the atomic basis set. 

Thus, the dependence of F rr rr on P allows for the redistribution 

of charges on all centers as the iterative cycle leading to the self-

consistent field progresses. However, this aspect is absent in the 

simple Hiickel representation in that all the diagonal hamiltonian 

matrix elements,Hrr,t are equal for all atoms. Even if the matrix 

elements, Hrr are different, there is no technique inherent in this 

available for bringing about the charge redistribution. Therefore, a 

possible improvement on the Hackel approach is to modify each 

diagonal matrix element of the Hiickel matrix in an iterative manner 

such that it takes into consideration the charge density at that 

center. This idea was originally proposed by Wheland and Mann11 and 

later developed by Streitwieser and Streitwieser and Nair.' 2 This 

charge-dependent procedure, also called the w-technique, is described 

by the following equation 

H = •H +w(1_ ( P 
(n) rr (n-i) rr n-i) rn 

(2_2) 11_13 

H = (X r lHeff lXr) where lXr) are the atomic orbital (A.O.) 

basis and H ff is the effective one-particle hamiltonian. 
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w is the perturbation parameter and P rr is the charge-density on 

a particular center r. The subscript n indicates the order of 

iteration. Several modifications of this. equation14 have been 

suggested and yet basically all these methods involve the 

principle indicated in equation (2-2). 

The charge-dependent method has been quite widely used to 

obtain a better representation of the distribution of charges in 

many p1-electron systems, radicals, cations, anions and hetero-

nuclear compounds.12An examination of the convergence of this 

method has been carried out. 13 For the allyl and benzyl radicals, 

a slow oscillatory convergence was noticed. 12 Recently, 

modifications of this method to remove the oscillations and 

hasten the convergence have been suggested. 1 

Similar to the charge-dependent methods, we could envisage 

the bond-order dependent methods, the nature of which is 

delineated in the next section. 

2.202: The Bond-Order Dependent Method  

2.2021: The Description  

It is generally accepted that there is a relation between 

the separation, Rrs between two iT-centers r and s in a pi-

electron system and the so-called pi-electron bond order, P. 

Such relations have been proposed in the past by Coulson and 

Golebiewski15 and others .-16 Although their applicability is 
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considerable, it is limited in that the equations can only be used 

for certain classes of molecules, viz., linear polyenes, alternant 

and non-alternant hydrocarbons. Further, the accuracy of the 

resulting bond lengths would still depend on the accuracy of the 

calculated bond order elements. This amounts to seeking better 

solutions and hence better Prs with the approximate schemes 

available. Though one of the schemes, the Pariser-Parr-Pople (PPP) 

scheme without modification is ubiquitous in its applications for 

the electronic properties of the ir-electron systems, it frequently 

does not give Prs which yield sufficiently accurate values of the 

bond lengths. Consequently, modifications of the basic SCF 

calculations have been suggested. The most natural modification is 

a re-evaluation of the basic integrals to adjust for changes in 

bond lengths. This Rrs dependence can be accounted for by allowing 

for a dependence of the integrals on the elements of density matrix. 

As such, the procedure would be second order in Prs' and although a 

more accurate representation would be complicated. Rather than go 

this route we have attempted to modify the first order P rs 

dependence of the matrix.t 

In the bond-order dependent iterative method, 15 '16 the 

variation of the off-diagonal core elements with each iteration is 

•1•  Both the core integrals and the coulomb repulsion i ntegrals which 

constitute the off-diagonal Fock matrix element are assumed to be 

dependent on the bond order elements through a multiplicative 

factor. 
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such that the matrix elements are related to the bond lengths for 

which new matrix elements are sought. Although a variety of such 

iterative methods have been suggested, they differ only in the 

form of the equations used, and the resulting solutions do not 

differ in content. 

2.2022: The Delta Technique  

The iterative Hickel treatment which is easy to carry out is 

one of the better known of the techniques for calculating bond 

lengths. In this simple iterative procedure, the off-diagonal 

matrix elements, H rs , are recalculated either from the bond order 

matrix elements, Prs' directly or from the bond lengths (R rs ). To 

carry out the latter step, a bond length-bond order relation is 

necessary. For example, Coulson and. Golebiewski 15 used Salem's 

relation16 

(n) rs oj rs (  H std= H exp (- (n-1)rs CR - R )/0.3106 ) (2-3) 

along with a bond length-bond order relation 

R = 1.517 - 0.18 P 
(n-0 rs (n-i) rs 

Dewar and Sclimeising21 noted that the 

successful for one class of molecules 

hydrocarbons), does not yield results 

equation (2-3), though 

(viz., alternant aromatic 

in agreement with the 

experimental results for another class (viz., linear polyenes). 

Therefore, they suggested an alternative expression: 
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R = l.1i85 - 0.20 P 
(n-i) rs (n-i) rs 

for the latter class of molecules. 

(2-5) 

As is evident now, the lack of flexibility inherent in equations 

(2-3) and (2_1) or (2-5) limits applicability of this procedure. To 

get around this difficulty, an iterative procedure has been 

developed17 in which the bond length-bond order relation remains the 

same for all classes of molecules. On the other hand, it does modify 

the equation for the new matrix element. The form of the new 

equation for the off-diagonal matrix element is 

(n) H rs (o)Hrs  + (n-1 Prs std) (2-6) 

This relation recognizes the variation in the bond order matrix 

elements from iteration to iteration through a perturbation on the off-

diagonal elements which is proportional to the bond order times S. 

The value of the parameter 'S may be changed from one class of 

molecules (linear polyenes) to another (polycyclic alternant hydro-

carbons) to allow for rapid convergence to accurate values of bond 

lengths. In practice, it is noticed that the class of molecules, 

alternant hydrocarbons, where extensive delocalization is discernible, 

requires a smaller value of 5 to obtain the bond lengths in agreement 

with the experiment and for the class of compounds where the 

phenomenon of delocalization is lesspredominant, a higher value of S 

is necessary. 17 Further discussion on this will follow in the 

succeeding chapters. 

Even though the choice of 6 is fully decided by the type of 
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molecular system in question, we still have to ask ourselves if there 

is, indeed, any limitation on the choice of S. Furthermore, any 

iterative procedure including the one we suggested needs to be checked 

for convergence. These points are investigated in the following 

chapter. 

2.2023: Comments on the ô Technique and the SCF Treatment  

We would like to point out the relation between the present 

iterative method and the "restricted" SCF-ZDO scheme. 2223 (Restricted in 

the sense that the non-neighbour coulomb repulsion integrals are 

excluded.) 

The Fock matrix elements within this SCF-ZDO approximation are 

given by 

F rr = U rr + ½ P rr (rrlvlrr) 

F 
rs rs 

+ 

s(r) 

-½P 
rs 

(p  5S - l ) (rs tvlrs) (2-7) 

(rsvIrs) , r and s neighbours (2-8) 

where U rr r is the diagonal matrix element of X with respect to the 

one-electron hainiltonian and contains the kinetic energy and the 

interaction with the core of atom r. H is the matrix element of 
rs 

the one-electron hamiltonian for motion in the field of the two 

nuclei. (rs ivlrs ) are the two electron repulsion integrals. 

For alternant hydroOarbons, these elements reduce to 
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and. 

F rr =LJ rr + ½(rrlvlrr) 

F = H -½ P •rs IV"l rs) 
rs rs rs 

(2-9) 

Now recall that the iterative Htickel scheme defined earlier 

is characterized by the equations: 

where 

I-I = ci and. H H' + SP (2-11) 
rr rs rs rs 

HIS = ((0)Hrs - std ) (o - ap std) 

On assuming that the non-neighbour interactions for the repulsion 

integrals are zero, the present iterative method and the SOF-ZDO 

scheme become equivalent except that the elements have a somewhat 

different interpretation. 

In the case of alternant hydrocarbons the variation of the 

off-diagonal element will have no effect on the diagonal matrix 

elements of the density matrix. 23 This implies that for a given 

geometry of the system, Frr is iteration independent. This is to 

be compared to Hrr remaining the same at all stages of our 

iterative procedure. The elements that change then are the off-

diagonal Fock matrix element in SCF-ZDO and H rs , the off-

diagonal Hicke1 matrix element, in our approach. In the former 

case, this change comes through the exchange term 
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- ½ rs (rslvjrs> and in the latter through 5P 5. Clearly, for 

the fixed geometry model, (rsIIrs) remains the same at all 

stages of the iteration. However, P rs varies. Similarly, ó 

remains the same; it is again P rs that changes. In the 

procedure that we carried out, a constant term (-s) is added to 

(0)Hrs to give H 5; this is an initial perturbation which of 

course remains the same throughout the iteration procedure. 

Since ô may take different values for different classes of 

alternants, this allows us to introduce different H' for the rs 

different classes while at the same time maintaining the one 

parameter character of our procedure. 

From the point of view of a self-consistent field procedure in 

rs the matrix element H' defines the initial energy. The energy rs 

obtained after n iterations is decreased from this value 

(although increased from the "unperturbed" energy defined by (0)H). 

In order to make contact with the more common iterative 

procedures (the procedures by Longuet-Higgins and Salem, 16 

Coulson and Golebiewski 15 ) and to enable us to develop a 

perturbation treatment, we take H and not H? as the 
rs . rs 

zero order element and ô (P rs - P std ) as the perturbation in the 

iterative self-consistent procedure. 

As one goes from the alternants to the non-alternants, a 

difficulty arises. While the SCF-ZDO scheme yields self-

consistent results in the charge-distribution, the 5 technique 

does not consider this aspect explicitly. As we shall see, for 
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the purpose of bona length calculations, an appropriate choice of 

appears to take this into consideration in an adequate manner. 



CHAPTER 3  

THE ITERATIVE ANALYSIS  

3.10: INTRODUCTION  

The iterative analysis that will be delineated 

as we shall see, follows the perturbation theoretic 

an independent particle model. Since in the course 

references will be made to the existing approaches, 

in this chapter, 

approach based on 

of the analysis, 

a brief outline of 

the perturbation theories germane to the present problem is given in 

the following. Succeeding this, a formulation of our approach is 

presented. - 

Coulson and Longuet-Higgins2 and Longuet-Higgins25 introduced 

the perturbation theory based on an independent particle model to 

consider the effect of varying the coulomb integral, Hrr or the bond 

integral, H 5, on the total ir-electron energy, E 7 and the bond order 

matrix elements Their procedure was further developed by Dewar26 
rs 

and extensively used to study the electronic spectra and chemical 

reactivities of the molecules containing 7T-electron systems by 

several others. 27 

Recently, Imamura 28 and Carbo 29 gave a general perturbation theory 

for the .extended Uiickel scheme. McWeeny 3° presented the matrix formul-

ation for the self-consistent field perturbation theory. The McWeeny 

density matrix formulation allows one to go to any order of pertur-

bation. Further, the perturbations are not confined to one element of 

the hamiltonian matrix. In all these treatments, one-particle 
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perturbations are considered. Very recently, Sustmann and Binsch 

extended the self-consistent perturbation theory for two interacting 

closed-shell molecules where the one- and two-particle perturbations 

are important. 31 

3.20: THE ITERATIVE ANALYSIS  

3.201: Formulation  

For any pi-electron system, if the variation of the orbital 

coefficients between .two successive iterations is known, then it would 

be possible to follow the process from iteration to iteration. 

However, a knowledge of the effect of the variation is difficult to 

achieve for most of the pi-electron systems. To surmount this diffi-

culty, an attempt was made to obtain the first order orbital 

coefficients for the first iterated secular equation using the Rayleigh-

Schrdinger perturbation theory. Assuming that the Rayleigh-

Schr6dinger perturbation treatment leads to a very fast convergent 

result for the given problem, we truncated the perturbation expansion 

only to first order terms.. Even though truncating to a first order 

term may be a serious mistake, since the interest lies in establishing 

how the orbital coefficients are related to a first order approxi-

mation, the results obtained will probably act as guidelines in exami-

ning the convergence. Once the first iterated secular equation is 

solved, the second iterated secular equation is set up for which the 

same procedure is followed. With the algebraic equations available 

for the coefficients, after a detailed derivation, the analysis is 

carried out. In the following, we derive the appropriate equations 
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and then discuss the implications of. our results. 

The equations to be solved are:, 

(1H5 - ôrs E1 ) C = Q;. •r = 1, 2, ...n (3-1 

Equation (3-1) is the first iterated secular equation where 

the hamiltonian matrix elements expressed as 

= (0) + H 1 
(i)'rs (0) H rs Ô(0) 

H 
(ti) rs 

1• 

are 

(3-2) 

The nature of the perturbation 'is.described in section 3.203. The 

subscript on the left • refers 'to ,the number of iterations and the 

superscript on the right refers 'to the order 'of the term. 6 rs is the 

Kronecker delta. C5, are orbital coefficients.. Since the 

perturbatioit expansion will be truncated at first order terms, one 

has: 

H (0) + H"(1) 
(n) rs = (0) rs (n-1 ). rA 

- (0)E. ; (n-i) I 

(n)Cri (0) ri (n-i) ri 

See reference 22 for derivation. ' 

In Chapters 3 and 1, a multiplicative factor 2 should be included' 

in the definition of the zeroth order and higher order bond order 

elements, P. 
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where ô is the perturbation parameter. The perturbed atomic orbital 

coefficient of each molecular orbital can be expanded in the way 

indicated in equation (3_5). Substituting for (1)H 5 (l) E, and 

(l)Csi in equation (3-1) and picking up the terms which appear as 

coefficients to each power of perturbation would yield 

(H rs  Si's EI (0)) asi = 0; (r = 1, 2, ..n) (3-6) 
S 

(Hrs (1) - i's ô E I (1) Si 
) a + 

S 

(H i's (°) - rs EI (0)) a si '' 0; Cr = 1, 2, .n) (3-7) 
S 

Since the zeroth order molecular orbitals are normalised, 

i's 
'rs Si 

(0) = 

ri  

The expression for E1 ' can then be written as 

r S 

() (0) c 1(0) 
rs . 5  

(3-8) 

(3-9) 

To obtain the correction to the orbital coefficient one first 

multiplies (3-7) by and then, on carrying out the summation 

over all r, and recognizing that 

r s 

we obtain: 

o a (o) = 
rs ri sj 

(3-10) 
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E 
r 
Es S '= 

rs rj Si 
- (1/ (EO (o)-Ei ( 0) )) x 

H (1) 
rs ri sj 

Multiplying the above equation by C1(0) and summing over all j except 

i of the resulting equation gives rise to 

E 
r 

r S 

o - E 
rs rj Si pl 

r 

cs c 
rs rJ. Si 

E(Hrs ('Y[Ej(°)-Ei J (°)i ri )c °' pi sj (3-12) 
S 

In order to simplify equation (3-12),we need relations between the 

c ri $C (0) sj ' P1 c etc. To this end, we express the perturbed 

molecular orbitals in terms of the initial basis set as 

I",. E 
r 

E 
S 

ri r 

C SJ . 5/ \ (3ilL) 

Treating Cri as the real coefficients and using (3-5), we obtain 

csii C ri C sj (r I'D s) 

C sj ( 1 ) (ci) r I(Ds) + 
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(i) i 
ri sj 'r s 

rs 

All the higher order terms in 6 are neglected. Using the neglect of 

overlap approximation, we obtain 

V 
L 
r 

(o) a +2ô C c 6  
ri si rs ri si rs 

S r s 

Hence, to a first order approximation, 

and 

2 V (°) C (a) 3 0 
ri si rs 

rs 

Substituting (3-16) into (3-12) and considering 

C 
r ri rj 13 

I 
C C = (S 

P rj Pi sp rs 

we get, after some rearrangement 

(3-16) 

(3-17) 

= ('c pj (o)/( j -H (°)\ F. II H rs (i\'C 3:'j.i. sj (o) 
pi ji\ I'. i ,rs 

(3-19) 

AL. = (E. (o) .- (o) j \J Ei(())) and (o)AE. = (E1 (°) E. (0) ) 

will be -used s-ubseauently. 

3.202: The Coupling Phenomenon 

The expansion for the matrix element can ho written as 
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H = , rs H (o) + (o)H 
i) rs Oj rs 

(0) H rs + o) r (0)C. - 
= i 11 C (0) (3-20) 

where ii is the occupation number and the C (o) (o) are known for 
(o) ri (o) si 

the zeroth order problem. Similarly, the hainiltonian matrix element 

of the second iteration is: 

= (0)H + (i)Hrs H 
(2) rs rs 

= (0)H rs + fl (1)C. (1)C. - i) (3-21) 

where the coefficients (1)01 and. (1)0i are given by equation (3-5). 

Equations (3-20) and (3-21) indicate that the matrix elements for 

the nth iteration are dependent on the perturbation coefficients 

obtained in the previous iteration. These coefficients are of course 

dependent on the matrix elements of the n-i solution, hence the 

iterations are coupled through the products of orbital coefficients, 

i.e. through density matrix elements. We shall follow the iteration 

through the bond order matrix elements. 

3.203: Generalization  

3.2031: An Expression for the Density Matrix  

We have earlier obtained the expression for the first iterated 

solution to a first order accuracy using the perturbation theory as 



- 23 - 

(1)C. = ()C. + ((G) Cro ( I 1) 
ji 

(0)HPCI . (0)C. 
pci 

x 

(3-22) 

Neglecting the second order term in S in (3-22) allows one to write 

the product for C C as: (1) ri Ci) si 

(i) 0r1 (1)'i (0)Crj (0) (0)C.  (0) + 

(0) v ((0)c5 (°)/E) 6 (0)C. L. 

ji 

+ s c (0) ((0)c ° 4E\ 
(0) Si rj I  

p  

H C (0) (o) 
(0) pq (0) pi (oYcii 

(Q)H (0)C. (0)C° qj 

p  

(3-23) 

Summing over all the occupied levels, carrying out an expansion of the 

resulting expression and rearranging the terms, results in the 

expression for the first iterated density matrix element:' 

N/2 (o) 
Prs.1(i)Cri(i)Csf .( 0) ri () si 

N/2 •N ((0)c '° C + 

+ cS ri (0) sj (0) si (0)C i 

i=i i4 + 

((0) CHp q(1)(o)pi (0)C./(0)E) 
p,q.  

x 

(3-21t) 
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McWeeny, and Dierckson and McWeeny30 using the perturbation 

theory obtained an expression for the first order correction to the 

first order density matrix. Our expression can be shown to be 

equivalent. 

Extending this procedure allows us to write the expressions for 

the second iterated density matrix element and the third iterated 

density matrix element as 

N/2 11/2 
C (0) 

(2)P5 = i1 (2) Cri(2) Csi il ( o) ri (0)''si 

IN/2 N 

1) 
i=1 

((0)C ri (0)C si + (0) si 
(o) C (0) (0)Cj) 

(o H (0)Cpi  (0)Cqj ()/ (o) E)] pg. 
p,q 

IN/2 N 

62 L.1 j=..+1 

N 

I I p,q 

((0)C (.0) ri 

+ 

(0) 0sj + C (0) c rj ) (0) si 

x 

(O CPM(0)  (0)Cg. + (0) C qmC )(0)))x 

inn - 

((0 H (1) (0)C (0)C/QLE) x 
uv IMI u,v 

(0)C 1 (0)Cg. )/0E ] (3-25) 
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N/2 N/2 

(3)rs = 
(3)C. (3)C5 1 = C '• (o) C + 

(o) r1 si 
1=1 1=1 

fN/2 N 

(c 0c + 0c 0c x 
N 

I ri Si Si rj / 
Li1 j=-+1 

N 

(H (0)C. (0)C1)/(0)E I + 0) pq, 

p,q. 

rN/2 N 

L 

62 ((o)°rJ° (0)C. + (0)C Si (0) (0)C. ) 

1=1 

N/2 N 

I (0) ((0)Pk (0)Cq + (0) 
(o) qk (a) 

k=1 £ 

(Hi') ()Cuk  (o)C VA /0Ek) 

u,v 

(0)c.° (o)Cqifl/o AE. }}}] 

I N/2 N 

I N ((o)  ri (o) sj 

N (0) (0) 
((0) c p (0)Cq + (o)Cqk 

( 0 ) 

x 

N 

+ c (0)Crj) (0) Si 

p,q. 

N/2 N 

(0)C) 

t,w m1 n4 +i 



- 26 - 

(0) Ct (0)C wn  + (0) C c tn (0) wm 

(H (') (0)C  um (0)Cvn  40)At) (o)Ctk (0)C/ 

u,v 

(0)C. (0)C./OE] (3-26) 

3.2032: The Condensation Procedure  

Because of the unwieldy nature of (3-21), (3-25) and (3-26), we 

have resorted to using a condensed form for which the following 

notation is used. Previously, i, j, k, 2.., in, n... denoted the 

subscripts for the molecular orbitals; p, q, r, s, t, u, v, w... the 

subscripts for the centers. As the centers and the M.0.'s occur in 

pairs, a notation pertaining to the pair (pair of M.0.'s or pair of 

centers) is used. Thus, for the molecular orbital pairs I, J, K, L, 

M, 1'T... symbols are used. P, Q, 1, S, T... represent the paired 

centers. In the following, we will demonstrate how the condensed 

forms are obtained for the corrections to the first, second and third 

iterated density matrix elements. 

First, noting that 

P 
((0) 1 (0) . C (0) C E 1 (0)H) 

ii  pq 

(((0)cP0 (0)Cqj  ij E /2) + 
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(0) -' (1) /)) (0)H ((0)C. (0)C.  p CI (3-27) 

where Et = AE and replacing ET /2 = E.. without loss of generality, 
13 1 13 13 

the correction to the first iterated density matrix element as given 

by the second term in equation (3-2)4) is rewritten as 

N/2 'N 
(a) = (( a (0) (o) (0) 

rs - 0) ri (0) sj (0)Ci ai) x (i)  

2+1 

p q 

(0) 
((0)Hpq(1),(0)Cpi (0)Cj / I 1 

=6 1 1 ((0) .. H i,j PA rs,ij ij ) pq,ij, (0) pq 

where 

(1) 
(3-28) 

(0) Ai = ((0)C ri (°) (0) sj (0) + (0)C. (0)C rj ). 

On using the 'pair-notation' defined earlier, equation (3-28) becomes 

(1)T = ((0)ATI: (0)E1 A QI) ' H' (0) Q (3-29) 

where / A = A 
0i TI (o) rs,ij 

Similarly, the corrections to the second and third iterated density 

matrix elements as given in equation (3-25) or equation (3-26), are 

written in the condensed form as , 
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(i) ((0)ATI E1 (o)AQI) (0)H 
T IQ 

Q (2)  

+ 82 

and 

( 0 A 1 E1 (0)AQI) ((0)AQj E (o)ARJ) (0)HR 

P(i)=  
(3) T I)Q ((0)ATI E1 (0)AQI) (0)HQ 

+ 62 

I Q 

J  

(3-30) 

((0)A TI IE (o)AQI) ((0)AG E (o)J) (o) HR 

(( 0)ARK E  (0)ASK) (0) S H (1) 

(01 E1 (o)AQI) ((0)AQJ E (o)) 

(3-3') 

For a closed-shell N-electron problem, in general, the summation 

indices I, J, K, L... run over (N/2) 2 values and P, Q, R, S... run 

over N2 values. Recognizing this allows equations 

(3-31) to be written as 

P(1)=  I. ) (0) QH 
(1) T 

(3-29), (3-30) and 

(3-32) 
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P(1) 
(2) T 

and 

(i) - 

(3)T - 

I,Q 

ATIEIAI (0)HQ + (1 E1 AIQt ) 

I,Q,J,R 

(AQJ E AJRt)(0)HR(1) () 

ATIEIAI (0)HQ + 2 (ATI E1 AIQt) 

I,Q,J,R 

(AQJ E3 AJR) H + 3 
(0) B Z( 

I,Q,J,R,K,S 

(AQJ E At) (ARK E  AKSt) H (0) S 

ATI E1 A1Qt) 

(3-31I) 

Since the transpose of IQ element of A is AQI5 we replaced AQ1 by 

A1Qt in the above equations. In this notation, the density matrix 

element for a pair T (a pair of centers) at the end of the first 

iteration to a first order approimation is given by 

P P (0) + p (1) 
(1) T (0) T (0) T 

(3-35) 

(0) PT + 6 (0) (A B J±)T (3-36) 

where B = EA. 
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Similarly, 

(2)T (o)T + (o)T + 2 (0)PT 

+ o (o)tDT (A B A B H) (3-37) (o) -'---'-'T 

P (o) • (A B H (3)T (o) T (0)) c32 (ABAB H) + 
(0) 

—'T •--'--' T 

(o) B A B A B j) 

T (0)PT + a (A B H) -p" (n) PT 

(3-38) 

+ 2 (0) (A B A B H) + •.. + & j (A B ('' T 

(3-39) 

Recalling equation (3-3) that at each stage of the iteration, 

the new hamiltonian matrix element is obtained from an expression 

Std) • Subtracting from both sides of equations 
for (T -  std 

(3-36), (3-37), (3-38) and (3_39) gives the nth iterated expression 

for (T P std / \ as - F•std)  = (n) APT 

= (0) P + o (A B H) + 62 (A B  + ... + T (o) -..—T 

6 (o)( (A H) (3_)40) 
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When all the pairs of the centers are considered, the nth 

iterated density matrix and also the matrix made up of nT could 

be cast into a column vector. Thus, the final form of the column 

vector made up of PT'S is 

where 

( n )P I p (o) + (i) + 62p(2) + .. + np(n) 
___ \O)._. 

P1 

"N 

Correspondingly, 

LP= 
(n) (0) 

() +  I E (6 A (1) 
(0)f-

(1)  ( )fl ()) 

n1 

(3..J1) 

(3-1t2) 

(3-113) 

From (3-36), it is clear that A B'= A E A t where E is the diagonal 

matrix. Substituting A B = A E At into (342) and (343) and 

recognizing (0)H with (o)' one could write (342) and (343) 

respectively as 
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and 

(0) P + 1: (6 AEA 

(0) 1 n=1 

(3_)45) 

3.2033: The Convergence Criterion  

Having obtained expressions for , .P and ,flj one can carry 
-.-. 

out the test for convergence'. To do so, the relation for AP 
'n) 

given by (3_1) is rewritten as 

()! () + At 1 JY(6 AEAt)n1 x 

(0) n=0 

APM (3-1i6) 

Clearly, E (o A E At)_ 1 represens a geometric series. It will 

be a converging series provided the elgenvalues of the matrix 

(6 A E At) are less than unity.3' For the eigenvalues less than unity, 

as n • 

AP'+ 6,AEAt 
(n) (0) '--

6 At 
(0)--

(3J47) 

Since (6 A E At) and (i - 6 A E At) l commute, equation (3_1rf) 

yields 
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(n)AP  = (- 6 A )-1 (0) P (3-8) 

The final closed form expression for ()1P is valid for the 

linear relation used in the 3 technique (equation 2-6 ). It is 

equally valid for the truncated form of Salem's relation 

(equation 2-3 ) at the first order, after substituting into this 

equation the Coulson-GolebiewSki bdnd length-bond order 

relation. 15 

3.30: CONVERGENCE  

3.301: TheEigenvalues of the Supermatrix, 5 AEA  

It can be readily shown that the eigenvalues X for the super-

matrix A E At are linearly related to those (XP) of the 

polarizability matrix () as X = Xp/2. Hence the eigenvalues of 

5 AEA are given by A 6 =X/2. Binsch et a1 32 have obtained the 

eigenvalues A. for many of the systems of interest to us (e.g. 

condensed cyclic polyenes, linear polyenes, selected non-

alternants - see Chapter 6), and for reference, pertinent X values 

are displayed in Table 3.1. Consideration of these values 

indicates that, except for special cases, e.g. pentalene, the values 

max 
of are such that Xo < 1 for values of 6 between zero and one, 

indicating convergence of the procedure. We shall return to a 

discussion of this matter later. 
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TABLE: 3.1  

THE EIGENVALUES OF THE SUPE1MATRIX, 2 A E At 

Butadiene Naphthalene Pentalene 

0.000 

0.000 

0.537 

0.000 

0.000 

0.000 

0.017 

0.026 

0.1146 

0.233 

0.273 

0.383• 

0.721 

1o3l4 

0.000 

O . 0147 

0. 061 

0.103 

0.252 

0.1426 

0.550 

0.552 

2.367 



CHAPTER 4  

A STUDY OF THE FINITE SYSTEMS  

4.10: INTRODUCTION  

In the last chapter, we obtained the convergence criterion for 

the iterative procedure applicable to IF-electron systems. According 

to the criterion, the eigenvalues of the supermatrix, ô AEA, must 

be less than unity. In addition to determining the eigenvalues, one 

might examine the elements of the matrix - E A as they contribute 

to the n th iterated bond order. Clearly, this is unlikely to be 

fruitful in the general case (because, in general, the many 

elements of A E At will be different). However, the matrix (A E At) 

is reduced in particular cases to a form amenable to analysis. For 

example, the linear polyenes, which, within the scheme explained in 

the section (3.20) of the last chapter, can be represented by 

continuant matrices, yield  much reduced form of AE A . This 

reduction of A E At for linear polyenes can be readily illustrated 

since the orthogonal matrices that diagonalize the hamiltonian are 

well-known. (For example, their usefulness is well documented in 

studies of lattice dynamics problems.336) 

.20: AN EXTENSION OF THE. PERTURBATION ANALYSIS TO CONTINUANT  
MATRICES  

.20l: The Eigenvalues and the Eigenvectors of the Continuant  
Matrices  

As indicated in section 1.l0 , the matrix representation of 

the hamiltonian for linear polyenes can be written as a continuant 
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matrix 

H11 H12 

1121 

H 

1122 1123 

H32 H33 H3z 

\ 
\ 
\ 
\ \ 

\ 

\ 

.' 

N 

H can be cast into amuch simpler form, on assuming that all the 

core matrix elements, H, are identical and the bond integrals the 

same. (In lattice dynamics problems, a similar assumption is that 

there is no impurity at each core element.) Thus, 

i. H rs = X1H eff IX5. -: 

N denotes the order of the matrix. 

A continuant matrix model is valid for linear polyenes only, if non-

neighbour interactions are neglected and the A.O. overlap is 

omitted. 
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H 
aa 

H 

The elgenvalues of H are easily found to be 

(0)E = H + 2a cos [j'JT/N + 

(11_2) 

()4_3) 

The orthogonal matrix which brings H to the diagonal form has the 

elements 

(2/N + sin (lrrj/N + 1); 

r,j = 1 , 2, ' N 

4. 202: The Reduced nth Iterated Column Vector  

For the continuant representation of linear polyenes, we shall 

only consider nearest neighbour bond orders and hence the dimension 
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T of the n h iterated column vector - , .. is reduced to (N - 1). 

Further, this is consistent with a representation of H 1 in 
(0).-

which the only nonzero elements are those representing the nearest 

neighbour perturbations; i.e. the dimension of (0)H(1) can be 

reduced. Consequently in 

(1) 
(0)HQ 

Q 

which occurs in (n)Pas given by equation (3-42), Q is reduced to a 

set of labels representing nearest neighbour pairs only and (A E At 

to a square matrix of order (N - 1). 

The nth iterated super column vector, then, is 

I P\ (P) + c(l - H' 

where C = A E At. 

.30: FORMAL SIMPLIFICATION OF THE SUPERMATRIX ELEMENTS, A  

In section 4.202, we obtained an expression for the nth 

(4-5) 

iterated density matrix as a super column vector with a reduced 

dimensionality. However, no simplification of the supermatrix 

elements has been effected. We consider this aspect in the 

following section: 

4.301: The Parity Relations  

Examining the PQ element of the supermatrix C, it can be seen 

that since E is diagonal, this element results from a summation over I. 
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(The significance of the pair synibolsP,Q,'" I has been given in 

section (3.2032)).For the continuant matrix model this summation in 

the expanded form is 

(A IE p1AQ 

N/2 N 

I X 

i=1 

+ (0) C ri ° (0)C (°) r+1 ,j 

(0)Cr+l ,i (0)(0)Crj ) E ij 

+ 
(0) C si 

O (0)C (0) 
s+1 ,j 

(0) 
(0)c5 ) 

Substituting the explicit form for the coefficients as given by 

equation ) into equation 

N/2 N 

i=i j=i+i 
2 

(-6 ) yields 

(sin rei sin(r + i)O + sin(r + )O sin rOj) 

E ii (sin sOi sin(s + + sin(s + 1)01 sin sO.) 

(li.-6) 

(14_7) 

where ei = (iir/I(+l.)0 (JJT/N + 1) and the normalization constants 

are absorbed in E ij .. for convenience. It can be readily proved that 

The pairs P,Q are made up of neighbours only. 
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(sin r0 sin(r ± 1)0. + sin(r + 1)(3. sin rO ) 
3 j 

0 for i, j odd (or even) 

0 for. i odd, j even; or i even, j odd. 

The parity relations of equation ()4-8 ). clearly reduce the number of 

terms that contribute to (AEAt)pQ in equation @-6 ). 

1 .302: The Influence of a Single Perturbation  

In addition to the above simplification of the elements of the 

supermatrix, AEATh, one might also-consider contracting the nth 

iterated super-column victor by an appropriate choice of the 

Perturbation, (0 

We consider linear polyenes where there are two types of bonds 

and impose a restriction that the initial perturbation, (o)L' 

alternates along the chain, corresponding to the "single" and 

"double", bond character. Thus, )H has the same magnitude on 

each bond but differs in sign from bond to bond. Clearly, imposing 

a definite formto (0) 11 

as defined in chapter 2 , However, in order to determine how a 

is a restriction on the iterative method 

It should be horns in mind that in the parity relation, the values 

i and j can take are controfled.by the inequalities: 

•N/2≥i≥1 and H≥j≥.(N/2+1) 



single perturbation, defined in the above sense, would influence the 

th iterated super-column vector given in equation (1-i.-7 ), we first 

equate (0)11 to () P and on adding the standard super-column 

vector - 1 P Istc, to either side of the equation, we obtain: 

(n)AP 
.-.' 

where 

P 
(n) / (n) -' 

((P) = (( 0)) 

+ C(l - ((0) ,  (-9) 

Equation (1_9 ) immediately yields 

and 

iP [(1 S AEAtYl]A 
p(1) 

(n)-' 

where 1 is the unit matrix. Introducing the alternating 

perturbation into (-lO) gives 

AP (') [.2] 
(n) - 

where a - S AEAY ' and 

d= 
1%l 

(4-u) 



- 12 - 

Clearly, the n th iterated change, - (n) APT for a pair T is given by 

N-i 

(n)T o)' [ TQ Q (11.-12) 

We shall consider the implications of 2, the inverse of the 

'residual polarizability', (1 - 'S C), in the following section. 

4.40:  THE ELUCIDATION OF Q. 

Aside from the fact that the superniatrix C, from which the 

'residual polarizability' and its inverse are constructed is 

identical to its transpose, there exists an additional symmetry 

about the central bond which requires that: 

N/2 N 

,( 
(o) (o)Cri (0) C (0) r+1 j (0) + (0)Cr+l,i (0) CJ (o)) , 

1=1 j=- +1 
2 

(0) (0) (0) (o)\ 
E ii " + f(0)0N_r+1,i (0)N-r,j (0)CN_r,i (o)0Nr+1,j ) 

N/2 N 

i=1 jJ+1 
2 

(0) (0) + C 
(0)N •r, i. ( (0)0N-r+1,i (0)CN_r,j 

(0) 
(o) C N-r+1,j 

The name 'residual polarizability matrix' is given to 

(i - 'S A E At) since the 'S times the polarizability matrix is 

removed from the unit matrix. No additional significance can be 

assigned at this time. 
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E 1 (0) (0) + (0) (0) 
ii (o) (o) r+1 11 (o) C. i (0)Crj ) (-i3a) 

and. 

N/2 N 
C E 

ri. (o) r+1,j (o)Cr+1,i (o) .rj 
1 ) ii 

(C 0 °' c (0) (0) (0) 

=1 j=L+1 
2 

(0)C    ri (o)Cr+l,j + (0) Cr+l C j (0) rj 

N/2 N 
(0) 

(0)C (0) 1=1 j+L+i N-r,i (0)CN_r+1,j + 

2 

(0) (o)\ E . 
(0)0N-r+1,i (0)CNj / a.j 

(0)C (0) + (0) (0) 
N-r,i (o) C. N-r+1,i (0)CN+l i (0)CN_rj ) (-l3b) 

Thus, symmetry coniderations indicate that certain rows (or 

columns) in C are identical, making A E At singular. However, 

except for pathological cases (which will be referred to. in Chap. 

7) the r.esidual matrix (1 - ô A E At) will be taken to be non-

singular. Hence, for both (1 - A E At) and its inverse, 
1 

(a. - ô A E At')- , symmetry is conserved. Having considered the 

symmetry of Q, we will now consider an illustrative example. 

)4. 1Ol: An Illustrative Example  

For butadiene, the inverse of the 'residual polarizability 



matrix', (i - cS using the symmetry properties given in 

equations (li-13a) and (li-13b) and 7r12 ,12 = IT34,34 = 12,3 = W 34,12 , 

given by equation (4-i4.) is given on page 45 ak equation ()4-17). as 

Knowing the inverse, (equation +-1 7), the n th iterated matrix 

elements for the (1-2) bond, and (2-3) bond, 

obtained as in equations (li-15) and (1i—i6). 

5 A E At = 2j 

() P1 = (0) Pl (1)(I+1 () 

and 

can be 

= (0 A W  ) Pl 2E1 - 23,23 - 12,23] /II(- HI (-15) 

= (0) P2 2[- (1- 2 67r12 ,12 - 2 67f 12,23)] /II(- )I1 

4—i6) 

In ()-12), it should be noted that due to symmetry in (0)H ( or 

in ,), •the contribution (27r12,232 +67r12,3f (1 - 23,23 )) all is 

cancelled by the same tern of —913 - Recognizing this, we can give a 

form for the "reduced" inverse of the residual polarizability matrix as 



[(1 - 23,23)(1 - 12,12) - 627T2 12 ,23] [&r12, 2s] [21r21223 + 67T12,12 (1 - 2,23 )] 

[&r23 ,12] [(i - 12,12)(1 - 12,12) - 821T2 12 • 12 1 

[ 221223 + (1 - 23,23) 1T12,12] [r3 ,23]. [(i - 12,12)(1 23,23) - ô2it212,23] 

(14_17) 
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1 

i.reduced. -   X 

(i - '23,23) 

0 

'23,12 

1 

67T12 523 

(1- 2 12,12) 

67r34 ,23 

0 

(i - 23,23) 

i  —ôir —7r 0 
£2.. ks 

—ir, s 1—r ss —sir 

o -67t 

where IT = 7r23 ,23 = self polarizability of the central or long 

bond 

•Tl•SS = 'IT12,12 = 7T3404 = self polarizability of the terminal 

or short bonds 

7TJ 'I'I12,23 = 23,34 = mutual polarizability of the long 

bond by the neighbouring short bond. 

Equation (1_i8) does not mean that 92even under 
--reduced -  

symmetry restrictions. However, 92 educed Co )- ' Co ) 
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Equation (4-18) suggests that the nth iterated matrix element for 

any bond in linear polyenes has its contributions coming from the 

self-polarizability of the neighbouring bond(s) and the mutual 

polarizability of the neighbouring bond with itself. 

In Tables 4-1 - 4., we have given the values of the n th 

iterated matrix elements for butadiene using the "Jacobi" 

diagonalization method and the closed-form expressions, (4-12), 

(4-15), (4-16) and (4-17). In both instances, a P(standard) value 

which causes 'equal-but-opposite-in-sign' perturbations along the 

bonds and a P(standard) value of unity were used. Clearly, the 

results of the calculations. indicate that for low values of a the 

closed (but approximate) form of the nth iterative bond order is 

very close to the self-consistent result using the Jacobi 

diagonalizat ion. 
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TABLE: 4.1  

THE nth ITERATED BOND ORDER MATRIX ELEMEWPS, ()/P FOR 

BUTADIENE USING THE JACOBIt' METHOD 

std. 

= 

_(0) L\P2 
(1) tP i () L\P ] _(1) LP2 - AP2 

0.2 

0.6 

1.2 

2.0 

o.6708 

0.6708 

0.6708 -

o.6708 

0.2236 

0.2236 

0.2236 

0.2236 

0.2387 

0.2635 

0.2900 

0.3114 

0.2)403 

0.2763 

0.3217 

0.2936 

0.2550 

0. 3142 

0.3937 

o.4832 

0.2586 

0.3)499 

o.5)48)4 I 
0.9351 

TABLE: '4.2  

THE nth ITERATED BOND 0RDR' MATRIX EDEIviENTS, (n) AP , FOR 

BUTADIENE USING THE CLOSED-FORM APPROXIMATION 

std 
_.()LPZ (1)LP i P1 (1)LPZ ()EP2 

0.2 0.6708 0.2236 0.2396 0.2)415 0.2556 0.259)4 

o.6 0.6708 0.2236 0.2716 0.29 44 0.3197 0.3685 

1.2 , 0.6708 0.2236 0.3197 O.)4932 O.)4157 0.7628 

2.0 0.6708 0.2236 0.3837 -1.9591 0.5)43 
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TABLE:. 4 .3  

THE nth ITERATED BOND ORDER MATRIX ELEMENTS, () AP FOR 

BUTADIENE USING THE "JACOBI" METHOD. 

o p td (0) Pl (0) P2 (I)AP, flAP l (1) AP2 () P2 

0.2 1.0000 -o.io6 -0.5528 -0.0896 -0.0877 _o.5861 -0.5905 

0.6 1.0000 -0.1056 -0.5528 -0.0581 -0.0397 -o.66lo -0.7209 

1.2 1.0000 -0.1056 -0.5528 -0.0181 -0.0328 -0.8107 -1.25)42 

2.0 1.0000 -0.1056 -0.5528 -0.0028 -1.9692 -i.o668 '_1.211.61 

TABLE: 4 .4  

THE n th ITERATE BO]D ORDER MATRIX ELEMENTS, () LP FOR 

BUTADIENE USING THE. CLOSED-FORM APPROXIMATION 

std 
(0) Pl (0) P2 (1) Pl () AP2 AP2 

0.2 1.0000 -0.1056 -0.5528 -0.0896 -0.0877 -0.58)48 -0.5886 

0.6 1.0000 -0.1056 -0.5528 -0.0576 -0.03)47 -0.6)489 -0.3932 

1.2 1.0000 -o.10s6 -0.5528 0.0095 +0.16)42 -0.7)449 0.0553 

2.0 1.0000 -0.1056 -0.5528 0.0545 -2.2907 -0.8730 5.)4733 



CHAPTER '5  

A STUDY OF INFINITE SYSTEMS  

5.10: INTRODUCTION  

The analysis of the iterative method given in the last two 

chapters was effectively limited to finite systems, for both 

determination of the eigenvalues of an .,infinite dimensional 

polarizability matrix and the investigation of an infinite number 

of contributions of (1 - tS A F AtY1 to P are unrewarding. 

However, an analysis similar in spiiit but differing in mathematical 

technique can be carried out readily for infinite cyclic systems. , 

To illustrate the implications of the analysis, some numerical 

results will also be given. 

5.20: ANALYTICAL EXPRESSIONS FOR THE BOND ORDERS OF INFINITE  

CYCLIC POLYENES  

A cyclic polyene with the general formula, 4n+24n+2 where 

n is large is conside3ed for the present study. The results 

obtained here are equally valid for 'infinite linear chains.,37 The 

circular model is chosen simply for mathematical convenience. 

Taking the carbon-carbon bonds to be alternately long (Re) 

and short (R) such that the bond integralJHI(fHJ and following 

Hk = K'2r-11fteffI X2r)long S X2I fi ffX2+l)ht and H = 

A 

X2r?S are the A.O. basis and Heff is the one-particle effective 

hamiltonian. 
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Salem, 38 the normalised atomic orbital coefficients, C and 
2r,j 

C2r+1j  for two adjacent centers 2r and 2r + 1 separated by a double 

bond are found to be 

C = (irn + 2)½ (H e "j + H5 e½ iOi/E)½ e½ i2r ej (5-1) 
j ,2r, 

= (4n + )½ (H e½ iOJ + H5 e ioi/E)½ 
Cj2r+i  

where 

and 

e½, i(2r+l)Oj 

2 + H52 + 2HH5 cos Oj 

ej = (j TrA2n + 1)) 

½ 

(5-2) 

(5-3) 

For the iterative analysis, expressions for the bond orders of 

the long and the short bonds are essential. From equations (5-1) 

and ( 5-2), the bond orders can be written as: 

(o)s = 

occupied 

J 

= (l/(2fl + 

(n C2r ,j C2r+1 )' short 

(0)k.cos ej) 
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(0)P 

(i + 2 (Q)kcos Oj + (0)k2) 

n 
(l/2n + i) ((0)k + cos 

j=  -n 

1-2 (i + 2 (0)k cos Oj + (0)k2) 

(5_1) 

(5-5) 

where k = (H/H5) is the "bond alternation parameter" and fl is the 

occupation number. The summation in equations and (5-5) can 

be represented analytically for n + and yields: 

and 

(o)s = 

()P = 

11 + (o)k1E(  2J(0)k 
L j \l+(0)k 

+ ( I 1 - (0)k]. 2J3k ) 
j \l+(0)k 

(5-6) 

+ (o)k1E(  2J(0)k \ [1 - (0)k1( 2J(0)k —) 

o k ir j \l + (0)kJ ()k ir j \l + (0)k 

(5-7) 
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Here K( 140),(o)k ) and El  21  
1 + ()k \l + (0)k 

are the complete elliptic 

integrals of the first and the second kind respectively. The 

modulus for which the elliptic integral is evaluated is given in 

parenthesis. It is quite useful if K and E for modulus 

(2 ,1/k /l + (0)k) 

can be expressed in terms of K and E for modulus (0)k. Using the 

•1. 
identity 

K(J(70 /1 + (0)k) = [1 + (o)k] K((0)k) (8) 

and 

(0)k 

where 

) = [1+1(0)k] 
[2E ((0)k) [1- (0)k2]K(( 0)k)] 

(5-9) 

A description of these transformations is given in t? wendung 

der Elliptischen Funktionen in Physik und Technik" by 

F. Oberhettinger und W. Magnus (springer-Verlag, Berlin 1949). 
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11/2 

K((0)k) = f (i (0)k2 sin2 d and 

11/2 

E ((0)k) = f (1- (0)k2 sin2 )½ d 

in equations (5-6) and (5-7), it can be shown that 

and 

/2J(0)k \= .a 
(o)s1 + (0)k) 11 

E ((0)k) 

I = /(0)k \ (o)P 2 (  (o)k) 11 ((0)kK (k) (0) K  + E )  (5-il) -i 
(0) 

One other quantity that will be used in the functional analysis is 

the bond-order difference between the long and the short bonds 

which we write as: 

(o)P( I(0)  \ - P('(0)  \ 
1+ (0)k) 1+ (0)kl 

'/( 0)k)(K((0)k) - E( (0)k)) + 7TLk 
(E ((0)k) - ) (5-12) 
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It is quite apparent that knowing the value Ifor the bond 

alternation parameter, (0)k one would be able to obtain any of 

(0) PSI (0)P or the difference 

5.30: THE nth ITERATED BOND ORDER TERMS  

5.301: The Iterative Scheme  

As is evident from the section 6.10, the bond orders for the 

long and the short bonds are defined in . terms of the complete, 

elliptic integrals of the first kind and the second kind for a 

bond alternation parameter. With a knowledge of (o)d and (o)s' 

a new bond alternation parameter (1)k can be obtained using either 

Salem's relation (equation 2-3) to give: t. 

((0 )P  (o)z)• 

(1)k = ((1)H /(1)H5 ) (0)k (—q(0) P P. (0)PS  (5-13) 

or the relation given by equation (2-6 ) to give 

(1)k = (1)H  /(1)H3 I (0)H + 

+ 6 ((0) P S- P std)] 

P std is the bond order of a standard bond. 

((0)P P1, P Std ) I / 
: 

1• 

§ 

Equation ( 5-13) is obtained by substituting the Coulson-

Golebiewski relation R = 1.517 - 0.18 P into Salem's. equation 
(1)H = (0)H exp ( (i - R std )tO.3106) and then using the 

resulting equation to define (1)H2, and (l)Hs in (1)k. 

= 0.18/0.3106 
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The new alternation parameter would then allow one to find the 

quantities P and Pk and this process, on repetition would form the 

basis for the iterative analysis. In the last two chapters, the 

iterative procedure was followed by examining the nt iterated term 

for the bond order of a bond or the bond order matrix cast into a 

column vector. In the present analysis, since the bond alternation 

parameter at each stage of the iteration is related to the bond 

orders of the long and the short 1ond of the previous iteration,we 

follow the iterative procedure by asking for the difference 

between two bond order quantities, i.e. P5 - P, , on using 

Salem's relation,or P, '— (0)kP on using equation (5_l1 ). 

5.302: The Use of Salem's Relation  

Using Salem's relation (equation 5-13), 

the bond alternation parameter at the nth stage of the iteration 

can be given as 

= (0)k exp( (n-1) P s)) - 

a general form for 

(5-15) 

For a small value of the initial bond alternation parameter (0)k 

we can expand the elliptic interals in equations (5-10) and 

(5-11) to give: 

(0)P k = (0)k/2 

and 

('s—i6.) 
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(0) p s = 1 - ((0)kl2)2 (5-16b) 

Based on eq.uations (5-16a) and (5-16b), a new bond alternation 

parameter (1)k is evaluated using (5-15). A cyclic repetition of 

(5-16a), (5-16b) and (5—is) gives, explicitiy,the basis of the 

iterative procedure. It is assumed that the bond alternation 

parameter, k, remains small at all stages of the iterative 

procedure. To a first order approximation, from (5-15), (5-16a) 

and (5-I6b), one can immediately write that 

((1)P5 .- (1)P) ((0 P5 - (0)z) + (()5 (0)L) 

(½ ((0)k +. (0)k2)) (5-17) 

where g has been defined earlier. Continuing this further, it can 

be shown that 

((2)P - (2)P) ( 0 p5 - (0)P) + (( 0) P8 - (0)P) 

(1) k2 
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Following this, 

written as 

Since (1-2 ((0)k 

equation '(5-19) 

((0),.s _(0)P)+ (0) Ps - (0)P) 

(½ ((0)k + (0),2)) + 2 ((0)P5 - (0)P) 

(½ ((0)k + (0)k2)) (½ ((0)k + (0)k2)) (5-18) 

the n th iterated difference, - ()PQ,) 

((0)Ps - (0)P) + 

X (•(, ((0)k + (0)k2))fl 

(0)P (0)P 

+ (0)k2)) is always less than unity, for n 

is immediately written as 

((n) P s - ()P) ((0)P5 - (0)P)/(1 - 

is 

(5-19) 

((0)k + (0) k2))) 

(5-20) 

In section 5.40, the values of (n)s - obtained using 

the approximate form (equation 5.20). are indicated and compared 

with results for G) Ps - ()P2,) obtained by carrying out the full 

iterated procedure to convergence. 
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5.303: The Use of  a Linear Relation  

Clearly, there appears to be no serious difficulty in 

following the iterative method which uses Salem's relation for 

the perturbation. The procedure is not so clear cut on using our 

form of the perturbation in the iterative method. 

The equation for the nth iterated bond alternation parneter 

is given by 

(1)k [(o) + o ('std,_ (fl_))] 

[(0)IS ± o(PS d - .(-.1)P5)] (5-21) 

Without any approximation, if successive substitutions are made 

at each stage of the iteration, we would come up with continued 

fractions in the numerator and in the denominator, which are found 

to he difficult to resolve. Hence, approximations are made starting 

with (1) k. 

(1)k = [(Q)F o(Ptd (0)P)] [(0 + - (0) P)j 

A positive value of 6 11e:re corresponds to using a negative 

vluc' in ouv rclat1or (2-6) for (1 )H aná (I )fl 
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Dividing the numerator and the denominator of the above equation 

by (0)Hs considering low values of (0)k and requiring that 

(0)H (Std (o)P) 2 <<1 

one obtains 

(1)k ()k + ' (t (0)k std) 

- o' ((0)P - (0)k ()P) 

- V2( p std - (0) 2.. P )(P - (o)P) (5-22) 

where ô' =(o/(0)HS) . Again, for a low value of (0)k the last 

term can be neglected. Defining 

5' ((0)P - (0)k (0)P5)=1 (°) 6' 

s, ( \ std - k P std) =''' 

and 

and recognizing that the density matrix elements which are 

expressed in terms of the complete elliptic integrals of the 

first and the second kind can be simplified for a low value of 

the alternation parameter. ,. the peèio'n for 



((1)P - (0)k flP) 

is obtained as 

(0)k (1)Ps) ((1)k 2 (0) k 
((i)k\ 2 
\ 2) 

{((o)+ (0)fl - (o)5t) 
2 2 

- (0)k + (0)((0)k + tt - 

Within the approximations made earlier in this section, 

((I) P  - (0) k ((0)Pk -  (0)k P5 

+ "(½ (1 + (0)k)) 

- (0)(½(1 + ()k2)) 

) 

The second term on the right hand side of equation (5-21t) does 

not change from iteration to iteration. 

The new bond alternation parameter is then obtained from 

(5-23) 

(5-24) 
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2) k (0)k + 6" - 

For this bond-alternation parameter, the equation for 

is: 

((2)P - (0)k (2) P S) 

((2 P - o k P) ((0)P - (0)k (0)P) 

+ o"(½(i + (Q)k2))(l - 6' 

- (o)6'( ½ (1 + (0)k2))(1 

(i 

2 

Repeating this procedure, the n th iterated difference yields 

((n) - (0)k P) ((0)P - (0)k (0)P) 

1 + k2)) { ()fl1 2 
(o t 

((0) P std - (0)k P Std) 

(1 + (0)k2))} 

(5-25) 

(5-26) 

x 
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-  6 f ( (1 + (0)k2)){ ()n1 Ô ½  

( 0)P - (0)k (0)P) 

(1+ (0)k))} 

(5-27) 

(The substitution for cS" and is made in getting (5-27).) 

For 61 (1-2 (i + (0)k2)) < 1 and n -- , equation (5-27) 

yields 

(()P - (0)k ()P) ((0)P - (0)k (0)P) 

(0)k2))(Ptd - (0)k P std 

1(1 - 61 (;, (l  + (0)k2))) 

o' (½ (i + (0)k2)) ((0)P o k (0)P) 

/ (1 - o' (11 (1 + (0)k2))) (5-28) 

The validity of the approximation leading to (5-28) is 

checked by comparing results obtained by the iterative method. 

The details are given in the following section. 
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5.3011: Numerical Investigations  

5.3041: Assessment of Approximations  

Although closed form expressions were obtained for 

using both' Salem's relation and our linear relation, a number 

of approximations were required. In both instances higher order 

terms were dropped since a small value of (0)k was invoked. 

These approximations can be readily investigated for particular 

cases. In addition, a truncated binomial expansion was employed 

when our linear relation was used for the iterative procedure. 

To assess the validity of these approximations, numerical 

calculations were carried out using both the closed form 

expressions and the standard expressions carried from iteration 

to iteration. (Note that negative values only were assigned to 

the perturbation parameter, cS, since a positive value can 

preclude the evaluation of the elliptic integral of the first 

kind, K.) The results are given in Tables 5.1 and 5.2. It 

would appear that for small values of (0)k (see figures 1 

we could forego the iterative process and use the closed form 

expression directly. 

5.30112: Convergence  

lxi the calculations using our relations it was noticed that 

oscillations in the bond order elements from iteration to 

iteration occurred. From the closed form expressions given by 

equation (5-27), it is clear that this is a result of a negative 

value for the ratio in the geometric series, Clearly equation 
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(5-27) isa geometric series and converges only if 

½(l + (0)k) is less than unity in magnitude. That the 

oscillations and convergence rate are dependent on the value 

of iS can be seen by considering the curves displayed in 

figures 1 - ii. 
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TABLE: 5.1  

THE RESULTS FOR (()P - ()Pp ) USING THE 

"EXACT" EQUATIONS AND THE CLOSED FORM EXPRESSION 

E (0)k (pp) 
((0)ST(0))/ ))t 

((n) P--(n )PJg 

0.5795 0.10101 0.91687 0.978l0 0.97038 

0.5795 0.25000 0.85819 0.94363 0.92112 

0.5795 0J01O1 O.75142 0.89922 0.86120 

0.5795 0.66667 o.521O 0.76896 0.72565 

0.5795 o.8571)t 0.29020 0.53864 0.57270 

§ 
By the exact calculation, (use of equation (5-12)). 

By the closed form expression, (use of equation (5-28)). 



-67-

TABLE: 5 .2  

THE RESULTS FQR(P - (6)kflP ) USING 

THE "EXACT" EQUATIONS AND THE, CLOSED FORM EXPRESSION* 

(0)k 

P  

(o) - 

(0)k(0)P 

P-. kP (o) (n )s 

Numericalt 
(Elliptic Integrals) 

Analytical 

0.20202 0.2020 -0.098)41 -0.00991 -0.01628 

0.20202 O.li.O4O -0.098)41 0.06)4)43 0.08788 

0.20202 o.6o6i -o.o98)41 •0.12535 0.22373 

0.20202 0.8081 0.09814]. '. 0.17059 O.)4092]. 

0.20202 1.0101 -0.098)4]. •0.11O3 0.67697 

0.20202 1.2121 -0.098)4]. o.06)452 1.09685 

0.55556 0.2222 -0.2198 -0.12185 -0.18158 

0.55556 o.)4)4lt)4 -0.2198 -0.0)4792 -0.12769 

0.55556 o.6666 -0.2198' -0.00280 -o.o)4600 

0.55556 0.8888 -0.2198 -O.2250J 0.09233 

0.55556 1.1111 -0.2198 -0.30080 0.378)42 

0.55556 1.3333 -0.2198 -0.3)4)409 1.31606 

By the "exact" calculation. (Equations 5-10 and 5-11). 

§ By the closed form expression, 5-28. 

n large and even is considered. 
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TABLE: 5.2 cont'd  

THE RESULTS - FOR( P k p )usn\TG THE (n) 9' (o) (n) s 

"EXACT" EQUATIONS AND THE CLOSED FORM EXPRESSION* 

k 
(0) 

p (o)Z 
(b)k( 0 )P 

- 

(n) 9, (0 ) k (n) s 

Numerical 1. 

(Elliptic Integrals) 

Analytical  

0.77778 0.2222 -0.2132 '• -O.l25O -O.21l2 

0.77778 O.1i1i1i. -0.2132 ,• , —o.o6851 -0.12316 

0.77778 o.6666 -0.2132 -0.22972 , 0.20280 

0.77778 0.8888 -0.2132 —0.35608 0.19070 

0.77778 1.1111 , -0.2132 _O. 1311O 0.13890 

0.77778 1.3333 -0.2132 ' -O.1t8515 0.07532 

By the "'exact" calculation, (equations (5-10) and (-ii)). 

§ By the closed form expression, (equation (5-28)). 

niarge and even is considered. 



-69-

1.00 -

0.80 

0.40 

0.20 

k=0.10 

k = 0.25 
 0  

k=0.40 
7$  

k = 0.67 

I I I I 

k 0.86 

2 3 

ITER 

5 

Figure 5.1: Dependence of the matrix elements, (P - on the 
number of iterations, using the Salem's relation for different 
values of the bond alternation parameter. 
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CHAPTER 6  

APPLICATIONS  

6.i': INTRODUCTION  

Although such analysis as was afforded by presentation of 

the previous three chapters has been one of the aims of this 

work, we have also been very much concerned with the applications 

of the iterative bond length method and the results thereof. To 

this end we carried out a number of calculations, all of which 

use the variational procedure (through Jacobi diagonalization) 

rather than perturbation theory to obtain the bond orders at 

each stage of the iteratibn'. As indicated in section (2.2022) 

the first task in any application is to establish an appropriate 

5 value. For this purpose, calculations of the bond lengths for 

a number of representatives of a given class (for example, 

polycyclic alternants) were carried out with several values of cS 

to determine which value best reproduced the bond lengths 

obtained by experiment. Having established, an appropriate 
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S value, the bond lengths for other members of the class 

could be carried out. Even though the calculations were 

done for a large number of p1-electron systems, we will 

quote only a selected few as illustrative examples of 

the method. (A more exhaustive report from the point of 

view of applications has been published. 41) 

Both the 'analytical' method and the 'Jacobi 

diagonalization method' use the same relations to define 

the iterative scheme, and an investigation of this 

relation and the parameters chosen will also be considered 

in the following section. 

6.20: NUMERICAL INVESTIGATIONS OF THE ITERATIVE METHOD  

6.201: The Bond Length-Bond Order Relation  

Essentially, the relations that are used are 
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and 

R =- P 
(n) rs (n) rs 

(n) rs = (0) FI rs +o((n-l)prs —p  std) 

(6_1)t 

(6_2)t 

20-42 
Other relations that have been proposed ' for p1-electron systems 

(alternant and non-alternant hydrocarbons) and that are an out-

come of fitting the theoretically evaluated quantities, P rs' and 

the experimentally determined quantities, Rrs differ only in the 

values of a and b. For example, de Bruijn 3 has recently shown 

that a proper consideration of the effects of IT-electron 

correlation suggests values of the coefficients of a and b which 

are different from those of the Coulson-Golebiewski relation. 15 

[More recently, such relations have come under close scrutiny with 

the result that bond length relations which are either linear or 

quadratic in P have been suggested.'+3'+'+] However, since in the 

ensuing discussion on the characteristics of the iterative 

procedure, it appears that the bond length-bond order relation 

(R-P relation) does not in any respect alter the nature of our 

-I. 
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conclusions, we would like to confine ourselves to a single 

relation, the Coulson-Golebiewski relation. 

6.202: The Choice of S Values  

The equation on which our iterative cycle rests is the 

(equation 2-6) relating the haxniltonian matrix element, H, and 

the bond order element, P . This can be considered as a 
rs 

truncated form of the Longuet-Higgins-Salem (LHS) relation to 

the first order excepting that the first order correction does not 

contain (0)Hrs explicitly. Clearly, in our relation (eq.. 2-6) there 

is a 'variable' parameter, '5, whose choice differs from one class 

of molecules (alternant hydrocarbons) to another (non-alternant 

hydrocarbons). Evidently, any rationalization of the choice of '5 

can be made clear only if the nature of such bond order-bond 

length relations is understood. This is perhaps best approached 

through an investigation of the LHS relation. 

6.2021: The Longuet-Higgins-Salem Relation  

Even though modifications of and explicit considerations of 

the 7r-electron interactions in the LHS approach have been made, 3" 5 

the original LHS approach is adequate for our task. (Their 

initial study is limited to cyclic polyenes.) 

The total electronic energy is assumed to be given as the 

sum of two parts, one arising from the a bonds and the other 

from the i1-electrons. 
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T = E + Elff (6-3) 

where Ea the a electron' energy, is assumed to be a sum of 

independent contributions from the C-C bonds: 

(6-') 

R  is the length of the Qth bond. The p1-electron energy, E 7 

based on the L.C.A.0.-M0. theory is given-as a function of the 

bond integrals within the Hckel scheme. 

E11. = E.ff (H 1, H2, H, ...) 

At equilibrium, 

('T/lR \Q) equilibrium 
configuration 

It can be shown( 16 ) that. 

+ 2 P H4 Q  = 

=0 

where P i, the bond order of the Qt1 bond; 

(65)t 

(6-6) 

(6-7) 

The subscripts for H can be identified with the pair notation 

used in Chapter IV.. 
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= (df/dR) and 

HI = (dH/dR) Q 

As fI and ,HI only depend on the length RQ there is a relation 

between the bond length and the bond order. The relation that 

Longuet-Higgins and Salem adopted is 

R  = 1.50 - 0.15 PQ (63)t 

Furthermore, they assumed an exponential dependence of H on RQ: 

HQ = (0)HQ exP(_(RQ - R td)/a) 

Using equation (6-8), equation (6-9) can be written as 

HQ = (0)HQ exp (o.l5(P -  Pstd)/a) 

(6-9) § 

(6-9a) 

They showed that the relation (6-9a)and the equilibrium condition 

given by (6-7) and (6-8) fix the function, f(RQ). From this it 

follows that the potential function for the C-C stretching modes 

of benzene (one member in the cyclic polyene taken for study) is 

The Coulson-Golebiewski (C.G. )relation 15 (equation 2.)4 ) can be 

used and the value of V obtained would be slightly different. 

( (c.G.) 0.58). 

§ Other relations also have been proposed.20,Z+3 
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determined by the constants '(0)HQ' and 'a'. This suggests that 

they can be evaluated from the known force constants for the Ai 

and B2u stretching modes. 

Using the value for the totally symmetric, Ai g , and the 

totally asymmetric, B2u stretching modes, they were able to 

obtain a value for 'a' of O.3lO6. 

Clearly, this value of 'a' is dependent on the accuracy of 

the force field calculations of benzene. Longuet-Higgins and 

Salem made use of the force constants determined by Whiffen't6 

Although consistent results have been reported for the force 

constant of the totally symmetric, Aig, stretching mode, 6 "7 a 

considerable amount of uncertainty prevails as regards the value 

for the totally asymmetric, B2, stretching mode. 6' 7 This aspect 

can, in fact, be considered as a criticism against the use of one 

value of 'a' by Longuet-Higgins and Salem. Thus, it is clear that 

there exists a certain amount of arbitrariness in the value, 'a'. 

Further, the value of 'a' evaluated by Longuet-Higgins and Salem 

may be reasonably appropriate for benzene but may be less 

appropriate for other molecules. One may in fact be better 

advised to determine 'a' as an average value for several molecules 

in a given class. This evaluation could, in principle, follow the 

LHS procedure. Alternatively 'a' may be obtained from comparison 

The details of the evaluation are found in reference 16. 
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of experimental bond lengths and those calculated with various 

choices of 'a'. 

As pointed out in section2. 2022,the relation given by 

equation ( 2-6) is a truncated version of the LI-IS replaced 

by apararneter, 5. In our case 6 was selected on the basis 

of the best fit for the bond lengths of several molecules of one 

class. The value of cS selected for the calculations of bond 

lengths of polynuclear aromatic hydrocarbons 0.150.50 is close to the 

value of 0.56 suggested-by the results of Longuet-Higgins and Salem. The 

calculated results are in good agreement with the experimentally 

reported values for a wide range- of molecules of this class. 

Further reference to these results will be given in section(6.203.) 

A high delta value (5 = 0.75) reproduces experimental 

results for the linear polyenes - a different class of molecules. 

In the following section, we shall attempt a qualitative 

exposition 

classes. 

of the need for different S values for the two 

6.2022: S Value for Polyenes  

Although the 6 value required by our self-consistent 

procedure for condensed polycyclic alternant hydrocarbons is 

quite close to the 6 value predicted by Longuet-Higgins and 

Salem, there still exists a certain amount of arbitrariness in 

the values of 6, appropriate to a particular class. One might 

expect that for molecules rather different from the above type, 

6 could well take a different value. In particular, for linear 



polyenes, which which exhibit a marked bond alternation, the (5 value 

could well be different from that obtained for condensed systems. 

Gouterman and Wagniere's work' 8 sheds some light on this. 

44 
Following Hobey and McLachlan's forifor f(RQ) they defined the 

total electronic energy in terms of the equilibrium bond lengths 

R long and Rshort for cyclic polyenes C18H18, C2zH2j and C30H30. 

Gouterman and Wagniere' 8 noticed that if 'a' is decreased (to 0.21 

from 0.3106), there is a small trough in the potential curve for 

the asymmetric distortion. Hence, alower value of 'a' could, in 

fact, lead to a stable asymmetric distortion, i.e. 'bond 

alternation'. (Seve'a1 other workers' 9 have also indicated that a 

low value of 'a' not only brings about bond alternation but also 

lowers the critical value.of N (in C 'N2 H +2)at which the 

alternation occurs.) 

Ignoring the end effects, one might consider the linear polyenes 

as behaving similarly to cyclic polyenes. Hence, Gouterman and 

Wagniere's work suggests an increased (5 for linear polyenes with 

large N. Gouterman and Wagniere's value for 'a' of 0.21 

However, in linear polyenes, the bond alternation always seems 

to be obtained in contrast to the critical N observed for the 

onset of alternation in cyclic polyenes. 
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corresponds to a 6 of 0.80, quite close to the iS value of 0.75 

which best reproduced experimental bond lengths using our 

procedure (see section 6.2031). 

The increased iS suggested by Gouterman and Wagniere'S work on 

linear polyenes with large N and confirmed by us for finite 

polyenes clearly indicates a different sensitivity of HQ to bond 

length changes. Just what the source of this different 

sensitivity is less clear. It may in fact be a result of a 

TI • ,, § 
combination of factors due basically to the bond localization 

We shall make further comments on the consequences of using 

larger values of iS when the symmetry problem in the iterative 

calculation is discussed in Chapter 7. 

6.203: Applications  

6.2031: Alternant Hydrocarbons  

The calculations for the bond lengths of alternant hydro-

carbons were carried out for a wide range of iS values to study 

It might be worthwhile pointing out that the "localization" 

model as proposed by Dewar and Schmeising21 tb explain the 

physical and chemical properties appears to work well for 

finite polyenes. Vibrational spectroscopic studies coupled with 

force field calculations by Popov and Kogan5° on trans-butadiene 

and trans-hexatriene also seem to indicate that the localization 

model in contrast to the delocalization model is appropriate. 
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the sensitivity of the iterative procedure to ô values and to 

enable us to choose the 6 value for which the experimental 

results are best reproduced. As regards the sensitivity, the 

convergence slows down with an increase in the ô value. The S 

value of 0.115 appears to be the appropriate value. 

With this iS value the iterative bond length procedure was 

applied to a number of condensed polycyclic systems of 

interest for which the experimental bond lengths have not been 

reported. Since a compilation of our results has been published, 41 

we indicate the results for only a few systems in Table 6.1. 

Similarly, to illustrate the validity of using a higher iS 

value for linear polyenes, we give the results for butadiene and 

hexatriene in Table.6.3.Again having established the appropriate 

iS value for this class we applied the method to systems for which 

experimental data had not been published. 

6.2032: Non-al-ternant Hydrocarbons  

The success of this simple iterative procedure as indicated by 

comparison of the results in Table 7.1 prompted an extension to 

non-alternant systems. The extension is hampered by the fact that 

experimental bond length data for a wide variety of non-alt ernant 

hydrocarbons are not available. Further, in contrast to alternants 

where the .charge density on all centers is unity (both in Htickel 

and in the SCF-ZDO representation), for non-alternants, the charge 

varies from center to center. Hence, in addition to self-

consistent bond orders, a self-consistent charge distribution on 



centers should be attempted. 

The first difficulty was circumvented by selecting a few non-

alternant hydrocarbons which belong to a class of strained systems. 

Since the experimental data' are available for these systems (for 

example, acenaphthylene, 51a acepleiadylene,5 lb 3 ,)4-dimethylene-

cyclobutene 51c and fulvene 51'-), hopefully one could make a meaning-

ful choice of 5. The ô value so obtained may not be appropriate for 

other classes of non-alternant hydrocarbons. 

The second difficulty is set aside on the grounds that a one 

parameter procedure in iterative calculations is more tractable. 

Perhaps more to the point, for the strained non-alternants that can 

be checked, the perturbation of the of-diagonal hainiltonian matrix 

elements seems to be sufficient in that the results are in agreement 

with those obtained by experiment (see Table 6.2). The value of 6 

which best represented the bond lengths that could be checked against 

experimental data is 0.75. 

1 . The crystal structure studies were not made on the free molecules. 

§ 

The derivatives of acenaphthylene and the TI\JB complex of 

acepleladylene were used for the crystal structure studies.51a,51b 

Further Binsch, Heilbronner and. Murrell 32 point out that in bond 

fixation studies on pentalene the variation of the coulomb 

integral does not affect the bond lengths results. 
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6.30: FURTHER REMARKS ON THIS ITERATIVE PROCEDURE  

6.301: Effect of Choice of Standard Bond Length  

Hitherto, our discussion has been limited to the bond 

length-bond order relation and the choice of ô values. In 

addition to this we should point out that the value assigned to 

std is important. Clearly,variation of 1std will affect the 

way in which a given cS value perturbs the core element H in rs  

Hrs' = - SP$td and, as'sucb, changes the relation between the 

core element and the term SP in the iterative procedure. 

Clearly, the choice of S appropriate to a given class depends 

on the selection of P std* In addition, changes in P std can 

either slow down or hasten the convergence. The P std value 

used in our calculation is unity, corresponding to the bond 

order of ethylene. Although some calculations were carried out 

for the benzene value of Pstd = 0.667, no significant differences 

were apparent. 

6.302: Loss of Symmetry  

We might also remark that normally at all stages of 

iteration the symmetry is preserved. When 6 values of unity were 

used in our calculations all systems tested reduced to a set of 

linked ethylenic structures. In some instances such reduction 

brings with it a reduction to a kekul, e.g. naphthalene goes 

to such a structure. The original.syimnetry of linear polyenes 
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undergoes no change. Since t values of unity reduce the core 

element to zero this result is consistent with the results 

obtained by Paldus and Cizek.53 Somewhat more intriguing was 

the observation that for certain values of ô < 1, e.g. 

calculations on pentalene and heptalene,which belong to the 

class of (strained) non.-alternants, indicate that the starting 

symmetry is lowered after several iterations and the self-

consistent results obtained correspond to the lower symmetry. 

In Chapter T we shall discuss this symmetry 'dilemma', with 

particular reference to pentalene and hèptalene. 

6.303: On Uniqueness of the Iterative Solution  

In addition to the "loss of symmetry" problem, the question of 

uniqueness of the n " iterated form in those cases where the 

symmetry is maintained should also be considered. For example, 

when iterative bond length calculations on naphthalene are carried 

out using the same Hickel matrix but for two arbitrary but 

differentinitial bond order matrices, the same nth iterated bond 

order is obtained. The uniq.uenes.s of those cases in which there 

is also a symmetry loss will be mentioned in Chapter 1. 



-87-

TABLE: 6.1  

SELF-CONSISTENT CALCULATIONS OF BOND LENGTHS (X) 

POLYCYCLIC AROMATIC HYDROCARBONS 

Molecule 
a 

Bond 
The Present 
Method 

Experimental 
Values 

1-2 1.381 1.363 

Naphthalene (I) 2-3 1.1415 1.1415 

1-9 1.1421 1.)421 

9-10 1.1418 1.1418 

1-2 1.385 1.378 

2-3 1.1411 1.1409 

Benz(c)phenanthrene (ii) 3_14 1.385 1.3714 

14-i6 1.1416 1.391 

5-6 1 .37)4 1.352 

6.-17 1.)430 1.1430 

5-16 1.1430 1.14143 

114-15 1.1433 1.14146 

1-15 1.1415 1.1433 

114-17 1.405 1.1412 

15-16 1.415 1.1431 

a Bond numbering according to "Ring Index" (American Chemical 

Society, 1960); ô value, 0.145 is used for the calculation of 

the bond lengths. 

See reference 17. 
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TABLE: 6.2  

SELF-CONSISTENT BOND LENGTH RESULTS IN . UNITS 

STRAINED SYSTEMS 

Molecule Bond This Work 
Experimental * 

Result 

3, 4-dimethylenecyclobutene. 

Fulvene 

Acenaphthylene 

1-2 

1-4 

2-3 

2-5 

1-2 

1-5 

2-3 

5-6 

1-2 

2-10 

10-12 

3-10 

3-4 

14-5 

5-11 

11-12 

1.485 

1.343 

1.1488 

1.342 

1.3145 

1.480 

1.477 

1.345 

1.3146 

1.)476 

1.437 

1.372 

1.432 

1.368 

1.435 

1.395 

1.1488 ± 0.009 

1.357 ± 0.005 

1.516 ± 0.020 

1.335 ± 0.003 

1.340 ± 0.006 

1.1476 ± o.008 

1.462 ± 0.009 

1.347 ± 0.010 

1.478 § 

1.414 

1.363 

1.463 

1.368 

1.396 
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TABLE: 6.2 cont'd  

SELF-CONSISTENT BOND LENGTH RESULTS IN R UNITS 

STRAINED SYSTEMS 

Molecule Bond This Work 
Experimental * 

Result 

Acepleiadylene 1-2 

1-11 

2-12 

3-12 

3-14 

4-5 

9-10 

10-11 

11-15 

12-16 

i -i6 

1.1418 

1.382 

1.382 

1.1469 

1.3149 

1.1470 

1.350 

1.11.69 

1.1430 

1.1430 

1.405 

1. 399 t 

1.383 

i.14o6 

1.11.11.14 

1.356 

1.1427 

1.3614 

1.1457 

1.14214 

1.1456 

1.395 

§ Ref. 51. The data given in Table 6.2 correspond to the 

molecule, acenaphthoquinone. Only mean values are quoted. 

Ref. 52. The experimental results indicated in Table 6.2 

correspond to acepleladylene in its complex state with 

1,3, 5-trinitrobenzene. 

* See reference 141. 
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TABLE: 6.3  

SELF-CONSISTENT BOND LENGTH RESULTS IN R UNITS 

LINEAR POLYENES 

Molecule Bond This Work 
Experimental 

Result 

Butadiene 1-2 1.3141 1.337 ± 0.005 

1.339 

2-3 1.481 1.1483 ± 0.01 

i.148o 

Hexatriene 1-2 1.311-1 

2-3 1.1479 

3-14 1.3145 

Octatetraene 1-2 1.311-1 

2-3 1.179 

3_1 1.3)45 

4-5 1.177 

See reference 17. 
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TABLE: 6.4 

SELF-CONSISTENT BOND LENGTH RESULTS IN X UNITS 

Molecule Bond 
The Present 

Work 

Literature t 

Value 

Dibenzo ( def, mno ) chrysene 

Benz(e )azulene 

1-2 

1-18 

2-3 

2-20 

3_14 

4-5 

14-22 

5-6 

6-7 

7-8 

8-9 

8-22 

20-21 

21-22 

3_14 

1.1L14O 

1.367 

1.393 

1.1431 

1.420 

1.416 

1.1423 

1.390 

1.14014 

1.1401 

1.1439 

1.1423 

1.1415 

1.1420 

1.380 

1.1418 

1.1417 

1.381 

1.383 

1.1415 

1.1413 

1.382 
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TABLE: 6.4 cont'd  

0 

SELF-CONSISTENT BOND LENGTH RESULTS IN A UNITS 

Molecule Bond 
The Present 

Work 

Literature 
Value 

14_5 

5-6 

5-i1 

6-7 

7-8 

8-9 

8-12 

9-10 

10-11 

11-12 

12-13 

13-l4 

Benz(f)azulene 

1.417 

1. 469 

1.392 

1.350 

1.470 

1.355 

1. 476 

1. 465 

1.350 

1.469 

1.355 

1. 465 

1.381* 

1.416 

1.)416 

1.381 

1.117 

1.467 

1. 416 

1. 446 

1.405 

1.362 

1.448 

1.374 

1. )48 

1. 430 

1.370 

1.439 

1.374 

1.445 

1.394 

1.414 

1.411 

1.384 

1.113 

1.446 
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TABLE: 6.4 cont'd  

0 

SELF-CONSISTENT BOND LENGTH RESULTS IN A UNITS 

Molecule Bond 
The Present 

Work 

Literaturet 

Value 

5-1)4 1.392 1.1405 

6-7 1.351 1.366 

7-8 i.)4614 1.1431 

8-9 1.356 1.317 

9-10 1.1467 1.1438 

9-13 1.1476 1.14614 

10-11 1.351 1.370 

11-12, 1.464 1.1431 

12-13 1.355 1.373 

13-1)4 1.1469 1.1451 

See reference 141. 



CHAPTER 7  

THE "STABILITY" PROBLEM  

7.10: INTRODUCTION  

In the last chapter, we pointed out that there is a lowering 

of symmetry for pentalene and heptalene when the iterative 

procedure is carried out for particular delta values. This 

prevails whether the, starting symmetry is D 2 or C2 . Thus, for 

example, we observed that for the initial D2 symmetry, the 

final one is C 2h and for C2v , it is Cs' In section 7.20 we shall 

discuss this symmetry "breakdown'4. 

In all our calculations on pentalene and heptalene, the 

structure belonging to the lower symmetry group is a bond-

alternating structure. The instability of the higher point 

group is an example of "lattice instability". This instability 

has been examined by Nakajima and his coworkers 54 and den Boer 55 

for pentalene and heptalene from the point of view of "nuclear 

perturbation" and they too found the alternating structure to be 

of lower energy. 

Associated with the symmetry problem but more general than 

lattice instability is the "singlet" instability of the Hartree-

Fock solution. 2'52 It has been observed by Paldus and Cizek2'53 

that where this "instability" has occurred, the alternative 

stable solution is found to belong to a lower symmetry and for 
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cyclic polyenes, this is a bond alternating structure. 

Recalling the parallel between the iterative Hiickel scheme 

and the SCF-ZDO scheme, as given in Chapter 3, it might be said 

that an increase in S value corresponds to a lowering of the 

matrix element , Oj rs H with a concomitant increase in the pertur-

bation, 6P rs* In the SCF-ZDO scheme, this is similar to lowering 

the value for the core integralslH such that the contribution 
rs 

of the "exchange" term, -½ P rs 'rs' is relatively larger. 

Paldus and Cizek, 58 in their study of the "singlet" 

instability of the Hartree-Fock solutions of cyclic polyenes, 

analysed the influence of the "coupling constant", X, where X is 

the ratio of the repulion integrals, 'rs' to the core integral, 

on the "stability". They observed the "singlet" instability 

setting in forhighvalus of X, corresponding to small values of 

rs 

Our observation that for a high value of S,"lattice instability" 

occurs setting in for pentalene and heptalene is of course 

equivalent to an instability for low values of 1rs relative to 

what appears to be a high exchange contribution. However, it as not 

clear whether this meant that pentalene and heptalene ?would in 

fact show the "singlet" instability as defined by Paldus and Cizek. 

So far, no attempt has been made to study the "stability" of 

the HF solution of pentalene and heptalene. We shall state the 

"stability" conditions and examine the nature of the HF solution 

for these systems in section 7.30. 
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7.20: THE SYMMETRY CONSIDERATIONS  

7.201: The Symmetry 'Dilemma' in the. Present Iterative Method  

Numerical investigations using the present iterative procedure 

indicate± that for small perturbations, 0 < 5 < 0.)40, the 

symmetry (D2h) is conserved for pentalene. For 0.140 <6 < 1.0, 

there is a slow "change-over" from the high symmetry to the low 

symmetry (for example, if the high symmetry is D2h, the low is C2h, 

if it is C2, then the low one is Cs; see Tables 7.1 and 7.3). 

Furthermore, the convergence rate for the lower symmetric case, once 

the change-over has occurred, increases with an increase in the CS 

values. 

For pentalene, the 1w symmetry configuration exhibits bond 

alternation around the periphery (inC2h)or within a ring (in Cs). 

At CS = 1, the iterative cycle leads to an essentially alternating 

singlebond and double bond structure. (For CS > 1, "non-physical" 

density matrix elements result.) The same comments can be made for 

heptalene - see Table 7.14. 

The loss of symmetry might he ascribed to the cumulative effect 

of the random error that occurs at each stage of the iteration. To 

investigate this, numerical computations were repeated in double 

These observations are based on 100 iterations. 
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precision format, the higher symmetry is.lost for S values greater 

than 0.4 but at a much slower rate. 

It would appear that the rounding error on even the first 

iteration produces a representation of the hainiltonian which does 

not preserve symmetry exactly, i.e. in the case of single precision 

calculations symmetry is not preserved beyond, say, the sevehth 

figure, even at the first iteration. Such symmetry loss is not 

important in cases -ihere the energy surface is concave to the 

symmetry loss since subsequent iterations and their attendant 

random errors will always return to the original symmetry. 

However in those cases, such as for pentalene with 6 > 0., where 

the energy surface is not stable to symmetry loss this initial loss 

of symmetry may produce on the next iteration a slightly more 

assymmetric solution and this pro.cedire will continue-until the 

energy surface (in tho new symmetry) is stable to the random error 

symmetry loss. 

In other non-alternants, azulene (C), as-.indacene (C2v ) and 

dibenzpentalene (c2 ),• lowering of symmetry occurs only at high 6 

values (6 = 0.8). For the latter two, the Xmax value is equal to 

or greater than the critical Xax predicted by Binsch, Heilbronner 

and Murrell 32 whereas for azulene it is somewhat less (Amax = 1.26 

•  vs 1.8 for Xmax ). 
crit 

To investigate if this 'lowering' of symmetry is characteristic 

of all non-alternant hydrocarbons or not, we repeated the 

calculations for two model systems (see Table.. 7.1) where the largest 
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eigenvalue of their polarizability matrix is much smaller than the 

critical value. 32 For both systems, the initial symmetry is 

preserved (see Table 7.)4). 

7.202: The Onset of Symmetry Loss  

According to Binsch, Heilbronner and Murrell, 32 for molecules 

for which the largest eigenvalue of the polarizability matrix, ir, 

exceeds a "critical" value, a second order bond distortion leading 

o stability of a lower symmetry is not unexpected. The systems, 

pentalene, heptalene, as-indacene and dibenzopentalene were indeed 

investigated in view of the fact that the largest eigenvalue of the 

bond-bond polarizability matrix of these systems is equal to or 

greater than Binsch's "critical" value of 1.80 P. For pentalene 

and heptalene, the largest eigenvalue of the polarizability matrix 

is greater than the critical value, 1.80 by a wide margin. 

These are the same systems which experience lowering of symmetry in 

our iterative calculations, even for relatively small values of 6 

.(i.e. down to 6 = 

The importance of the eigenvalues of the polarizability matrix, 

'if, to the iterative procedure may be made clearer by recalling 

the eigenvalues of the 6 A E At should be less than unity for 

convergence of the iterative procedure. This is tantamount to 

saying that the largest eigenvalue of 6 A E At should be less than 

unity. Clearly, to realize "physically interpretable" density 

matrix elements, 6 should be less than 1. For pentalene, the 

largest eigenvalues of the polarizability matrix are 2.36 and 
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2.57 respectively, thus requiring a small 6 value. 

Naphthalene, as-indacene and dibenzpentaleie have eigenvectors 

equal to or less than the "critical" value (see Table 7.1) and this 

suggests that 6 values which caused loss of symmetry in pentalene 

and heptalene would not result in a symmetry loss - just as 

observed in the present study. However, for high 6 values, i.e. 

6 > 0.8, these systems would also exhibit instability. 

7.203: Non-analyticity  

From the numerical investigdtion outlined, there appears to 

be a relation between Xx, the value of 6, and the onset of the 

loss of symmetry using the iterative method with a variational 

solution of the representation for each iteration. No definitive 

statement of the relation. has been forthcoming. Although no direct 

comparison with the aforementioned numerical results can be made, 

it will be recalled that the perturbation result even in first 

order, is stable only if the matrix (1 .. 6. is non-

singular and converges only if the elgenvalues of i. are of a 

magnitude less than 1/6. Clearly such conditions may be violated 

and become pathological, even non-analytic, at 6Xmax = 1. This is 

of course somewhat similar to the non-analyticity observed by 

Paldus and Cizek. 57 

See Table 3.1. Théeigenvalues are of course dependent on 

parametrization and higher values-have been reported. 



- 100 - 

7.30: STABILITY  

7.301 :The Hartree-bck Stability Conditions  

Paldus and Cizek 53 have reviewed the importance of the 

stability of the Hartree-Fbck solutions for the closed- and the 

open-shell cases. They applied "stability" conditions (to be 

stated in the following section) to the HF solutions of cyclic 

polyenes, linear polyacenes and odd polyene radicals. 

Since the theory of the stability of Hartree-Fbck states 

5'+,55 
is fairly well-known, we will not dwell at length on it. 

Instead, we shall introduce the stability conditions for the 

closed shell systems directly and apply them to Hartree-bck 

solutions of pentalene and heptalene. 

The variation of the energy functional 

E() = 

is zero for the Slater determinant of the Hartree-Pock orbitals. 

This stationary point,that the functional E(c) represents,can 

be either a minimum, a maximum or a saddle point in the 

functional space. In order to distinguish between these 

alternatives, it is necessary to examine the second variation 

of the energy functiona], 62E(). Thou1ess, 5 Fukuda and 

Sawada55 and others 56 defined the "stability" condition within 

the variational space considered as requiring 62E() to be 

positive for a "stable" solution. This condition ensures that 
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the HF single determinant represents a local minimum of the 

energy functional. 

7.302 The "Singlet" Stability Conditions  

In the case of the singlet stability problem, the 

variational space is spanned by single determinant functions with 

doubly occupied orbitals, i.e. by the Slater determinants which 

are singlet eigenfunctions of the operator S2. 

To formulate the singlet stability conditions, the 

hamiltonian of the closed-shell 2n electronic system is written 

as a sum of one- and two-particle operators h and vPV 

respectively. 

Vp \) 

11<\' 

(7-1) 

Defining 'Y1, T2 •• etc. as the HF molecular orbitals where 

the first n orbitals ••• Y) are occupied in the ground 

state, 14)0 >, the HF solution within a normalization constant 

is written as 

ko> = det II'i Vi T22 •'•• (7-2) 

where the bar indicates the spin a and no bar denotes the spin c. 

One can then consider an arbitrary function, c> , which is not 

orthogonal to o> and which lies in the neighbourhood of 

ko> 
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(7-3) 

where j.> is given, according to the equation 4 of Ref. 2 

as 

i U].,U2•"U \j=1  

U1,U2,..U1> (7_)4) 

d refer to the mixing coefficients which denote the weights 
3 

with which the virtual orbitals are admixed to the occupied 

orbitals; I Ui> denotes the determinantal function 

whieh is obtained from Io> by replacing the occupied spin 

orbital by the virtual orbital i. 

The energy of H in > is 

E() = <CDIH (7-5) 

and the second variation in energy up tosecond order is defined 

as E(c) - E( 0). It can be shown2 that if this variation of 

the energy is to be positive, then the eigenvalues of the 

characteristic value problem 

AS BS 

!i s 

D, 

(76) 
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must be positive Here, the elements AU 111 U2 and B that 
LI1, U2  

constitute the square matrices AS and B5 are essentially the 

matrix elements of the hamiltonian given in (7-i) between the 

monoexcited states and between the ground and biexcited states: 

and 

A 

Al2 = <U11Q1U2> 

BU, ,u2 = <u1u2II CD o> 

where the Q operator 

(7—Ta) 

(7-Tb) 

E ((Io). The D are made up of the 

mixing coefficients, du . X.refersto the eigenvalue., 

When the matricesA5 and BS are real matrices, the "singlet" 

stability may be further simplified to 

(AS + BS) D5 = XS DS (7-8) 

However, it is equation (7-6) that we used to examine the 

singlet.stabilitY. of.theHartree-FOck solution for pentalene and 

heptalene. Further, in the evaluation of thd matrix .elements of 

A and B, no symmetry restrictions were involved. 

Since the derivation of (7-is fairly well-documented in 

literature, (see equations 'l - 114 for the derivation in the 

coordinate space representation of Ref.. 2 ) we omit it here. 
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1.303: The Method of Calculations  

Our concern is primarily with pentalene and 

heptalene, however the calculations were also extended to the 

higher homologs of C)NH)4N which belong to the symmetry group, 

D2h. The EF calculations were carried out within the Pariser-

Parr-Pople scheme, assuming the ZDO approximation. 

The calculation was set up assuming that all carbon-carbon 

neighbour bond distances were identical (1.397 A0 ). The one- and 

two-particle integrals over the carbon 2p orbitals were 

determined using both the "theoretical" parametrization and the 

Pariser-Parr parametrization which consider Cl electron 

screening and correlationin different ways - a factor in terms 

of which instability has been analysed. 45D57 

In M.O. calculations, Cl electron screening and correlation 

effects may be absorbed, in part, in the semi-empirical values of 

the coulomb repulsion integrals. For example, the one centre 

repulsion integral yrr in the PP scheme is of the order of 11 e.v. 

whereas in the theoretical "parametrization" the same integral 

takes the value of 17.23 e.v. The remaining two centre 

repulsion integrals, in the two schemes, show a similar disparity. 

Consequently use of the two schemes and comparison of the results 

§ The conclusions on the stability study are restricted by this 

approximation. 
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allows some assessment of correlation effects. 

7.3031: Theoretical "Parametrization" 

The repulsion integrals are calculated with the analytical 

expressions for the repulsion integrals obtained using 2p atomic 

orbitals, with the effective nuclear charge z = 3.2358. We 

assumed the orthogonality of the individual orbitals. (It is by 

no means correct to omit the overlap in this case; however, 

Paldus and Cizak58 found that the inclusion of overlap did not 

materially change their conclusions. Assuming that this is valid 

in our case, too,' and recognizing that the neglect of overlap 

simplifies the calculation, we have followed the above 

parametrization.) Following Rued.enberg, the core integrals in 

the off-diagonal element are taken as = -3.7163 e.v. 

7.3032: The Pariser-Parr "Parametrization"  

In the PPP representation the two centre coulomb repulsion 

integrals y rs are calculated using the charged-sphere approxi-

mation with Slater's effective nuclear charge value of 

Z = 3.25. The one centre coulomb repulsion integral, 1rr' is 

taken as 11.0 e.v. The core integral () is given the value 

= -2.39 e.v. 
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7.301i.: The Matrix Elements of the Stability Equation  

In order to examine the "singlet" stability of the HF solution 

for pentalene and heptalene obtained using the two "parametrization" 

schemes, the matrix, elements AS I and B appearing in the 
U1,U2 tJi,U2 

characteristic-value problem (equation 7-6) must be evaluated. As 

indicated in the section 7.20, these matrix elements are the matrix 

elements of the hamiltonian (7-1) between the monoexcited states and 

between the ground and biexcited states. 

For convenience., we shall denote the singly excited 

configuration by (as against for the ground state 

configuration) and the double excited configuration by 

The occupied orbitals from which the excitation ocdur.s are denoted 

by i and k and the virtual orbitals at which the excitation 

terminates are given the symbols ,j and2.. 

7.304i The Trunáatiori on the Set of Excitations  

For pentalene and heptalene we.consider only the excitations 

involving the two highest occupied levels and the two lowest 

virtual levels. In pa'ticular,we carried out the calculations 

for two sets of excitations. 

(a) All the possible monoexcited state configurations 

and the biexcited state configurations arising out 

of the excitations i(n) -* i(n + 1); i(n) -* j(n + -2) 

and i(n - i) -'. j(n +i). 
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(b) In addition to theexcitations considered in (a), 

we included the excitation i(n - i) -•- j(n+ 2). 

The 'n' in parenthesis indicates the total number of the occupied 

levels. The characteristic value problems are solved within the 

type of excitations described in (a) and (b). We shall present 

the results of the calculations for pentalene and heptalene in 

section 7,40. 

7.3012: The Effect of the Variation of the "Coupling" Constant, A  

In section' 7.10 we indicated the studies carried out by 

Cizek and Paldus53 on the use of the "coupling" constant, A, in 

examining the stability problem. The' variation of the "coupling" 

constant can be brought about by varying the value of the core 

integral, H 5 ,' alone without recourse to an adjustment of both 

the core integral añd the repulsion integral, yrs .Following 

this approach, w solved the characteristic value problem for 

several values of the core integralsat both levels of truncation, 

i.e. for.both (a) and (b) above. ' 

We shall consider the results obtained in the following 

section and discuss their implications. 

T.)40: RESTJLTS AND DISCUSSION ' 

Clearly, an examination of the lowest eigenvalue of the 
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characteristic value problem (equation 7.8 ) would indicate 

whether the Hartree-Fock solution obtained for pentalene and 

heptalene within the schemes explained in section 7.3 

is stable or not. As the results indicate (see Tables 7.5 & 7.6),ail 

the eigenvalues are positive in both schemes when the standard 

value of H , of the core integral is used. This suggests 

that the Hartree-Fock solution with the above parametrization 

is "singlet" stable. 

When the core integral, Hrs S varied systematically, the 

results (Tables 7.5 and T.6)show that the lowest eigènvalue is 

negative for small values of Firs in both the "theoretical" 

parametrization scheme and the "PPP" scheme. However, there is 

a definite accentuation of the negative value in the "theoretical" 

parametrization scheme in comparison with the PPP scheme. This is 

due to the fact that the inter-electronic repu1s1oxi is 

smaller at short distances in the PPP scheme than in the 

"theoretical" scheme. Cizèk and Paldus have made a similar 

observation 53 in their study on cyclic polyenes. 

The appearance of the negative eigenvalue for small I-I 
rs 

clearly indicates that the HF solution is unstable. From the 

plots of the lowest eigeñvalue against the core integral, Hrs5 

it can be said that the "instability" occurs at a higher value of 

H in the "theoretical" parametrization scheme relative to the 
rs 

PPP parametrization scheme. The reasoning is the same as the one given 

above to account for the accentuation of the negative eigenvalue. 
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Another aspect that can be extracted from this study is 

that the magnitude of the lowest eigenvalue is dependent on the 

maximum value considered for the quasimomentum transfer (see 

Tables 7.5 and .6). In our problem, this is equivalent to 

comparing the results obtained for the descriptions (a) and (b) 

given in section 7.3041. As we go. from (a) to (b), it is 

observed for pentalene and heptalené that the magnitude of all 

the eigenvalues, including the lowest eigenvalue, goes up. 

In our investigations, however, we noticed that the magnitude 

of the eigenvalues of the characteristic value problem in heptalene 

is smaller than that in pentalene and that of the higher homolog, 

nonalene, is smaller than that of heptalene. This is quite 

interesting since in the analysis carried out by Paldus and 

Cizek53 and Tric 52 for polyenes, the tendency towards "instability" 

increases as the dimensionality, 1, of the basic unit C +2 H +2 

increases. However, for small values of the 'coupling' constant, 

i.e. approximately standard core integral values, the trend 

observed by Paldus and Cizék is, indeed, found. 

7.401: On Uniqueness of the Self-consistent solution  

Ifl addition to the uniqueness or lack thereof of the final sym-

metry, i.e. either D 2 -).. 0 2h  of C2 -)- C. There is also the question 

of uniqueness of the nth iteratedbond order matrix given that the 

final result is of a particular symmetry. To test this two arbitrary 

D2h symmetry first order bond matrices were taken as starting points 

for the iterative procedure on pentalene and the final results were 

the same C2h bond order matrices. 
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TABLE: 7.1  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Molecule 
Density Matrix 

Bond. 0 1O 60 

Pentalene 1-2 0.651.O 0.65)48 o.6o 

= o.lto 1-8 0.5179 0.5165 0.5162 

2-3 0.65)40 0.65)47 

3-)4 0.5179 0.5166 0.5168 

4-5 0.5179 o.s16)4 0.5162 

4-8 0.5393 0.5)422 0.5)422 

5-6 0.65)40 0.65)47 0.6550 

6-7 0.65)40 0.65)47 0.65)4)4 

7-8 0.5179 0.5166 0. 5168 



TABLE: 7.1 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATIO1'T 

Molecule 
Density Matrix 

Bond 0 hO 60 

Pentalen 1-2 O.6h99 O.161i1' o.16hT 

D2h 1-8 O.52h3 0.9585 0.9585 

2-3 0.6)499 0.973)4 0.973)4 

= 0.80 3-h 0.52)43 0.1562 0.1562 

4-8 0.5309 0.1738 0.1738 

§ 
The calculations were carried out in single precision 

format in IBM 360/50K. 



TABLE: 7.2  

THE DENSITY MATRIX ELTh2EI'1TS AT SEVERAL STAGES OF ITERATION. 

Density Matrix 
No.tecule 

Bond : 0 ho 60 80 100 

Pentalene 1-2 o.61988T2b 0.65472300 o.65172300 O.651t72300 0.65472300 

=o.4o 1-8 0.52434547 :051650640 b.i6o64o 0.51650640 0.516506)40 

2-3 0.6498872)4 0.65472300 0.65472300 o.654r23oo 0.65)472300 

3-b 0.524311.547 0.51650640. o.si6s064o Q.5J.650640 o.i6o6bo 

4-8 0.53088923 0.511.2183611. 0.5)4218364 0.5)42183)4 0.511.2183614 

Pentalene 1-2 0.64988724 Ô.65880011.8 0.66027546 0.92192368 0.92196174 

= o.6o 
1-8 0.524345)47 0.50890409 0.50737301 0.2)4700069 6.24698299 

2-3 0.6)498872)4 0.658800148 0.65732368 0.290763)46 0.29065927 

314 0.524324547 0.50890)409 0.510)43705 0.87027650 0.87035872 

4-8 0.53088923 0.55)438181 0.55)437791 0.32566861 0.32552571 



TABLE: 7.2 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL STAGES OF ITERATIONS 

Density Matrix 
Molecule 

Bond 0 1.Q 60 80 100 

Pentalene 12 O.6'988T2l. 0.89906921 0.97341777 0.97341777 O.9731TTT 

= 0.80 1-8 0.52434547 0.23837876 0.1.5623307 o15623307 0.15623307 

• 2-3 0.64988724 0.36282220 o.161i.688'r o.16b68817 0.161688)47 

3_)4 • 0.52I315)47 o.81159590 0.95854294 0.958511.29)4 0.958511.29)4 

4-8 0.53088923 O.)4213011.09 0.1738)4755 0.173811.755 0.1738)4755 

The calculations were carried out in double precision format in IBM 360/50K. 



TABLE: 7.3  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Molecule 
Density Matrix 

Bond 0 1.O 60 

Pentalene 1-2 0.7608 0.9024 0.9024 

C2h 1-8 O.1l59 0.2670 0.2670 

= 0.40 2-3 0.5322 0.3321 0.3321 

3._lj. 0.6316 0.8207 0.8207 

4-5 O.1159 0.2670 0.2670 

4-8 0.5218 0.4a83 O.11o83 

5-6 0.7608 0.9024 0.9024 

6-7 0.5322 0.3321 0.3321 

7-8 0.6316 0.8207 0.8207 
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TABLE: 7.3 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Density Matrix 

Molecule 
Bond Q 4o 60 

Pentalene 1-2 0.7608 0.9930 0.9930 

C h 1-8 0.14159 0.0811 0.0811 

6 = 9.80 2-3 0.5322 0.0850 0.0850 

3_)4 0.6316 0.9790 0.9790 

)4_5 0.14159 0.8110 0.8110 

14-8 0.52148 0.1676 0.1676 

5-6 0.7608 0.9930 0.9930 

6-7 0.5322 0.85014 .o.8o14 

7-8 0.6316 0.9790 0.9790 

Pentalene 1-2 0.61495 0.6511, 0.6511 

1-8 0.51406 0.51417 0.51417 

6 = 0.20 7-8 0.14976 0.14870 0.14870 

6-7 0.6537 0.6572 0.6572 

14-8 0.51425 0.51496 0.51496 
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TABLEt 7.3 cont'd  

THE DENSITY MATRIX EL1EI''TS AT SEVERAL 

STAGESOF ITERATION 

Molecule 
Density Matrix 

Bond 0 4o 60 

Pentalene 1-2 0.6)495 O.653o 0.6530 

C2V i-8 o.)4o6 0.5)4)4)4 0.5)4)43 

= o.)4o 7-8 0.)4976 o.)469)4 o.)469)4 

6-7 0.6537 0.6626 0.6626 

4-8 0.5)425 0.5607 0.5607 

Pentalene 1-2 0.6)495 0.3132 0.3116 

1-8 0.5)406 0.8738 0.87)49 

= o.6o ?-3 o.695 0.9066 0.907)4 

3)4 0.5)406 0.2888 0.2879 

1i.5 o.1t976 o.886 0.8601 

4-8 0.5)425 0.3)468 0.3)446 

5-6 0.6537 0.255)4 0.2535 

6-7 0.6537 0.9)45)4 0.9)459 

7-8 o.)i976 0.1818 0.1822 

t For 6 = o.)4o and 0.60, the convergence rate is very slow. 
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TABLE: 7.3 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Density Matrix 

Molecule 
Bond O(C2) 1O(C) 6o(C) 

Pentalene 1-2 O.61i95 0.1758 0.1758 

,= 0.80 1-8 O.51O6 0.9638 0.9638 

2-3 o.6).95 0.9680 0.9680 

3_1 0.51.1.06 o.i8i14 0.18114 

4-5 0.14976 0.96011. 0.96011. 

14-8 0.51425 0.1873 0.1873 

5-6 0.6537 0.0972 0.0972 

6-7 0.6537 0.9916 0.9916 

7-8 0.14977 0.0807 0.0807 
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TABLE: 7.3 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Molecule 
Density Matrix 

Bond 0 1lO 6o 

Pentalene 1-2 0.7585 0.8969 0.8969 

C5 1-8 0.126o 0.2829 0.2829 

O.).LO 2-3 0.5343 0.3396 0.3396 

3.J 0.63711. 0.8233 0.8233 

4-5 0.11.002 0.2412 0.2412 

0.5311 O.11.171 

5-6 0.7657 0.9127 0.9127 

6-7 0.5303 0.3192 0.3192 

7-8 0.6211 0.8111.6 0.8111.6 
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TABLE: 7.3 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Density Matrix 
Molecule 

Bond 0 4O 60 

Pentalene 1-2 0.7585 0.9925 0.9925 

Cs 1-8 0.14260 0.0859 0.0859 

6 = 0.80 2-3 0.5311.3 o.o865 o.o86 

3-11. 0.63711. Q.9802 0.9802 

4-5 0.11.002 0.01.1.19 0.01419 

14-8 0.5311 0.1711.3 0.17143 

5-6 0.7657 0.9980 0.9980 

6-7 0.5303 0.14631 0.14631 

7-8 0.6211 0.9799 0.9799 
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TABLE: 7.4  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Molecule 

Density Matrix 

Bond 0 10 60 

Azulene 1-2 o.661O 0.6660 0.6660 

ô = O.ltO 1-10 0.5858 0.5926 0.5926 

2-3 0.6389 0.6382 0.6382 

8-9 o.6560 0.6555 0.6555 

9-10 0.5956 0.6052 0.6052 

6-10 0.)4009 0.36)47 0.36)47 

Azulene 1-2 0.66)40 0.6658 0.6658 

o = 0.60 1-10 0.5858 0.6006 o.6006 

2-3 0.6389 0.6383 0.6383 

8-9 0.6560 0.65)42 0.65)42 

9-10 0.5956 0.61)47 0.61)47 

6-10 0.)4009 0.3259 0.3259 



- 121 - 

TABLE: 7.4 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Molecule 
Density Matrix 

Bond. 0 4o 100 

Azulene 1-2 0.66)40 0.6590 0.1O4O 

cS = 0.80 1-10 0.5858 0.6203 0.9)496 

2-3 0.6389 0.6)431 0.96)41 

3-)4 0.6389 0.6385 0.1878 

4-5 0.66)40 0.663)4 0.9658 

5-6 0.5858 0.6159 0.18)47 

6-7 0.5956 0.6332 0.9)498 

6-10 O.)4009 0.2)415 0.17)42 

7-8 0.6560 0.6)488 0.1939 

8-9 0.6560 0.6532 0.96]4)4 

9-10 0.5950 0.6288 0.1855 
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TABLE: 7.4 cont'd  

THE DENSITY MATRIX EL4ENTS AT SEVERAL 

STAGES OF ITERATION 

Density Matrix 

MOlecule 
Bond 0 )#o 60 

As-indacene 1-2 0.11.911.7 O.39Ol 0.39011. 

1-12 0.6757 0.7920 0.7920 

= 0.50 2-3 0.7905 0.8667 0.8667 

3 1i 0.38811. 0.3268 0.3268 

14-12 0.14611.1 0.3772 0.3772 

)4_5 0.7016 0.79511. 0.79511. 

5-6 0.50311. 0.11.261 0.11.261 

11-12 0.11.160 0.3)422 0.31422 

As-indacene 1-2 0.11.911.7 0.1837 0.1837 

1-12 0.6757 0.9516 0.9516 

= 0.80 2-3 0.7905 0.9678 0.9678 

3_11. 0.3884 0.1750 0.1750 

0.11.611.1 0.1790 0.1790 

)4_5 0.7016 0.9508 0.9508 

5-6 0.50311. 0.19145 0.1911.5 

11-12 0.14160 0.1762 0.1762 
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TABLE: 7.4 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Molecule 
Density Matrix 

Bond 0 1L0 60 

Naphthalene 1-2 0.72)46 0.7)493 0.7)493 

D2h 1-9 0.55)47 0.5378 0.5378 

= 0.11.0 2-3 0.6032 0.5721 0.5721 

9-10 0.5182 0.5)4)48 0.5)4)48 

Naphthalene 1-2 0.7246 0.7828 0.7828 

D2h 1-9 0.55)47 0.5083 0.5083 

= 0.60 2-3 0.6032 0.5287 0.5287 

9-10 0.5182 0.5927 0.5927 

Naphthalene 1-2 0.72)46 0.9857 0.9857 

D2h 1-9 0.5511.7 0.1261 0.1261 

= 0.90 2-3 0.6032 0.1253 0.1253 

9-10 0.5182 0.9715 0.9715 
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TABLE: 7.4 cont 1d  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Density Matrix 

Molecule 
Bond. 0 lW 60 

Heptalene 1-2 0.6722 0.68)40 o.68)4o 

1-11 0.5357 0.5265 0.5265 

= O.IW 2-3 0.6187 0.6133 0.6133 

3-iL 0.6187 0.6133 0.6133 

4-5 0.6722 o.68lLo 0.68)40 

5-12 0.5357 0.5265 0.5265 

11-12 0.502)4 0.5120 0.5120 

Heptalene 1-2 0.6722 0.9381 0.9381 

1-11 0.5357 0.2)437 0.2)437 

= 0.70 2-3 d.6187 0.2533 0.2533 

3]4 0.6187 0.9322 0.9322 

4-5 0.6722 0.2685 0.2685 

5-12 0.5357 0.90)46 0.90)46 

11-12 0.502)4 0.2)479 0.2)479 
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TABLE: 7.4 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL STAGES OF ITERATION 

Molecule 

Density Matrix 

Bond O(D2h) 4O(C2h) O(C2h) 

Heptalene 1-2 0.6722 0.9914 O.991 4 

= 0.90 1-11 ' 0.5357 0.0925 , 0.0925 

2-3 0.6187 0.0929 0.0929 

3-4 0.6187 0.9913 0.9913 

0.6722 0.0939 0.0939 

'5 . -•;12 0.5357 0.9871 0.9871 

11-12 0.5021.1. •' 0.0922 0.0922 

Density Matrix± 

Molecule 
Bond .0 140 60 

Dibenz- 1-2 0.6115 0.5677 0.5677 
pentalene :. 1-16 0.6896 0.7191 .' 0.7191 

= 0.50 23 0.7083 0.71479 0.71479 

3_14 0.5520' 0.5172 0.5172 

4-5 0.5727. 0.5968 0.5968 

14-15 O.)4852 0.11.889 0.11.889 

5-6 ' 0.51405' . 0.5310 0.5310 

6-114 0.5281 0.5)4314 0.514311. 

1)4-15 0.14821 O. )4752 0.11.751 

15-16 0.5911.9 0.5810 o.8io" 

1. The convergence rate is slow. 
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TABLE: 7.4 cont'd  

THE DENSITY MATRIX ELEMENTS AT SEVERAL 

STAGES OF ITERATION 

Density Matrix 
Molecule 

Bond 0 4O 60 

Dibenz- 1-2 0.6115 0.1826 0.1826 

pentalene 1-16 0.6896 0.9667 0.9667 
2-3 0.7083 0.9682 0.9681 

= 0.80 31j. 0.5520 0.1790 0.1790 
4-5 0.5727 0.9559 0.9559 
4-15 O.)4852 0.1661 o.1661 
5-6 0.5)405 0.1627 0.1627 
6-7 0.5)405 0.95)45 0.95)46 
6-1)4 0.5281 o.181t 0.1817 
7-8 0.5726 0.1713 0.1711 
8-9 0.5520 0.3615 0.3578 
8-13 o.)4852 0.8676 0.8696 
9-10 0.7083 0.895)4 0.8973 

10-11 0.6115 0.3596 0.3560 
11-12 0.6896 0.8953 0.8972 
12-13 0.59)49 0.3618 0.3582 
13-14 0.4821 0.1680 0.1678 
14-15 0.4821 0.9380 0.9381 
15-16 0.5949. o.i865 o.i86)4 



TABLE: 7..4  

THE DENSITY MATRIX ELEMENTS AT SEVERAL STAGES OF ITERATION FOR MODEL NON-ALTERNANTS 

Molecule Bond 
Density Matrix, 'S = O.lto Density Matrix, 'S = 0.80 

o itO 60 o ito 60 

1-2 O.1t056 0.3)483 0.3)483 o. 1t056 0.1751 0.1751 

1-12 Q.8304 0.8753 0.8753 0.830)4 0.9691 0.9691 

2-3 0.6523 o.688o 0.6880 0.6523 0.8936 0.8937 

2-13 0.5160 0.51211. 0.51211. .0.5160 0.3263 0.3262 

3lt " 0.6103 0.5937 0.5937 0.6103 0.3395 0.3395 

Model I 13-lit 0.5307 0.5522 0.5522 0.5307 0.8259 '0.8259 

1-2 0.5812 0.6096 0.6096 0.5812 0.9)43)4 0.911.311. 

1-13 0.6829 0.66)42 0.6611.2  0.6829 0.2118 0.2118 

2-3 0.52)47 o.b923 O.1t923 0.52147 0.1859 0.1859 

2-lit 0.11.769 . 0.4624 O. 1t621t 0.14769 0.1903 0.1903 

3-It 0.7185 ' 0.76b3 , 0.7603 0.7185 0.9655 0.9655 

14_5 0.568)4 0.5187 0.5187 , 0.56814 0.1881 0.1881 

5-6 0.7221 " 
' 0.7623 0.7623 0.7221 ' 0.96)4)4 0.96)4)4 

6-,T 0.5168 0.11.881 0.14881 0.5168 0.1916 0.1916 

Model 11 7-11t 0.5555 0.5919 0.5919 0.5555 0.9291 0.9291 



TABLE: 7.5 

THE LOWEST-LYING EIGEIWALUE (IN ELECTRON VOLTS) X1 OF THE CHARACTERISTIC-VALUE 

PROBLEM, CALCULATED USING THE "THEORETICAL" PARAMETRIZATION AND "PPP" PARAMETRIZATION 

System 
"Theoretical" Parametrization "PPP" Parametrization  

- 

(0)HX 

rs.Fentalene 

X (a) (o )hirsX X (b) (0)HX X c:) (o rsx X (b) 

0.1 -1.033 0.1 -1.98 0.1 _O. 1 3 0.1 -0.688 

o.1 -o.1a6 0.3 -1.066 o.4 -0.063 0.13 -0.2213 

0.7 0.137 0.7 -0.176 0.7 0.281 0.7 0.163 

1.0 0.675 0.9 0.618 1.0 0.619 1.0 0.527 

- 1.3 0.999 1.3 0.956 1.3 0.881 

- 1.5 1.373 1.6 1.293 - 1.228 

The value of H rs is -3.716 e.v. 

The value of '1rs is -2.39 e.v. 



TABLE: 7.6 

THE LOWEST-LYING EIGEI'WALUE (IN ELECTRON VOLTS) A1, OF THE CHARACTERISTIC-VALUE 

PROBLEM, CALCULATED USING THE "THEORETICAL" PARAMETRIZATION AND "PPP" PARAMETRIZATION 

System 

"Theoretical"Parametrization t?ppp?t Parametrizationt 

- 

X (0)Hrs A (a) 
- 

(0) HrsX X (b) (0)HrsX A (a) 
- 

(0)H 5X A (b) 

Heptalene 0.1 -0.386 0.1 -1.153 0.1 _O.1O1 0.1 -O.75 

0.4 -0.065 O. -0.631 o.4 0.105 -- O. -O.17 

• 0.7 o. 6o. o. 047; 0.7 0.297 0.7 0.086 

1.0 0.592 1.0 0.239 1.0 •, 0.500. 1.Q 9.331 

1.3 0.929 1.3 0.633 1.3 0.709 1.3 0.569 

• 1.6 1.268 1.6 i.Oi 1.6 -, 1.6 0.802 

§ The value of H is -3.716 e.v. 
rs 

The value of H is -2.39 e.v.. 
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-; 0.20 

—0.60 

—1.40 

0.6 1.2 . 1.8 0 

Hrs , 

Figure T.1: Plot of the lowest eigenvalue, A, (e.v.), against the 
core integral, Hr for pentalene. - - 
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1.20 

0.60 

-0.30 

-0.90 

0.0 Q6 1.2 1.8 

Figure 7.2: Plot of the lowest eigenvalue, X, (e.v.), against the 
core integral, TT ,for heptalene. 



CHAPTER 8  

CONCLUDING REMARKS  

8.10: StJIv1MMY  

Although we have restricted ourselves to first order 

perturbations in the analytical study detailed in this thesis, we 

have obtained a closed form expression for the nth iterated bond 

order matrix. Within this context we have been able to examine 

both the criteria for convergence and in an illustrative example 

the contributions to the final bond order corrections. The 

analysis could, of course, be extended to include second order 

terms (but the complexity of the expression does not auger well 

for a useful analysis). We have been able to extend the work to 

infinite systems and for these cases to establish not only the 

convergent form of (n) r P but also the rate of convergence and the 

oscillations from iteration to iteration. Using parametrizations 

obtained on a statistical basis but in reasonable agreement with 

those obtained on the basis of specific models, the application 

of the method to several classes of pi-electron systems yields 

results in good agreement with experiment for a wide variety of 

systems. 

Finally, we have found that for certain molecules, the 

initial symmetry is lost after a number of iterations under the 

conditions similar to those known to lead to "instability" in 
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other systems. A more formal analysis of the "instability" in 

terms of the sign of the second variation of the energy functional 

yields an instability for essentially the same conditions, namely 

a relatively large ratio of the repulsion to the core matrix 

elements. 

8.20: FURTHER WORK  

Notwithstanding the apparent relation between 5 and the 

largest eigenvalue of the polarizability matrix and the onset of 

loss of symmetry, this is still an area of some concern. In 

particular, an attempt to establish non-analyticity for the 

"critical" range of CS would be useful in understanding just how 

the symmetry is lost. 

Further, in view of the apparent singlet "instability" of the 

Hartree-Fock solution of pentalene (D2h) and heptalene (D2h) it is 

perhaps useful to investigate other non-alternant hydrocarbons 

which have not been subjected to any "stability" study. 
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APPENDIX: 1 

MATRIX ELEMENTS  

Following Ito and I'Haya 59 andCizek, 60 the matrix elements 

of A and B are given below: 

DIAGONAL ELEMENTS OF A  

\i 
Q J a = 2 (jiI ^ Iij ) - (iilIii) 

+ (*)(Jlĥ l) - (Jlj)(ij h^ ji) 

0CC 

+ (2 (jat Iia' - (ja' IIa'i)) 
a' 

0CC 

- 

a' 
(2(ia'Iia') -. (ialj•jali )) 

OFF-DIAGONAL ELEMENTS OF A  

Li 
\i 

= 2(ikIiii) - (Jkj•jji) 

- (ili)(iihlk) 



Q 

-ha-

2(iiIvIi2) - iil;In. 

(iIi)(i Ik) 

0CC 

+ (2(ia'l;ka') 
a' 

jallv^Ialk >) 

2 (jkFliP) - (iklvl.i) 

DIAGONAL ELEMENTS OF B  

(DO) = 01'^Vlii• 

OFF-DIAGONAL ELEMENTS OF B  

Q (D 0) = _v'(iiIvIik> 
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Ki lt 
CD ii )= v(iltIlii) 

j lt I( ) (iltki) I k 


