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Abstract

General methods and typical specific solutions for robot arm geometry are well-known. This
paper presents a detailed solution for a six joint manipulator which has a rotation at mid-
forearm rather than a third wrist axis. Details are given indicating how real joint angles relate
to those modeled by the more abstract kinematics. All degeneracies are considered and methods
for handling them are given. The paper provides a complete tutorial for kinematic modeling
with a specific arm.

Introduction

General methods for solving the geometry of robot arms are well-known [Paul 1981]. In addition
examples of typical arm configurations — such as the elbow and Stanford arms — have been
given, providing the basic insight required for understanding robot kinematics. The paper
complements this by providing a complete kinematic solution for another manipulator, one with
a joint mid-way along the forearm. Included are the details of how real joint axes correspond
to the joints used in the geometric model, and methods for handling all degeneracies. This
complete example is a tutorial for handling the geometry and reality of robot kinematics. The
paper was motivated by difficulties experienced while tuning the kinematics code supplied with
the arm. In fact, the supplied inverse kinematics incorrectly calculated several of the joint values.
Small problems in the complex geometric models can result in considerable frustration, both
for the experienced and inexperienced. A full development of forward and inverse kinematics is
included here to obviate this. A brief summary of the algebra of linkages starts the discussion,
followed by the forward and inverse kinematics of the Excalibur robot!.

'Product of RSI Robotic Systems International, Sidney, B.C. See {Excalibur 1986] for complete specifications
of the robot.



1 Overview of the Method

A transformation between bases or coordinate frames defined at each manipulator link,
is easily accomplished by matrices.? [Paul 1981] states a simple method for formulating the
matrices. Any manipulator consists of links connected at joints. Movement of each link is
either a revolution about (revolute joint) or translation along (prismatic joint) the joint axis.
Figure 1 shows how each link can be characterized by a length, twist, distance, angle, and
basis.> With these parameters, transformation from link 7 — 1 to link n is comprised of four
steps:

1. rotate about z,_, by an angle of 8,

2. translate along z,_; by distance d,,

3. translate along z,, (was z,_1, now rotated) by length a,
4. rotate by the twist o, about z,.*

Expressing this relationship as a product of matrices yields the change of basis matrix, A,,
which takes coordinates from the frame of link n to that of link n — 1

A, = Rot(z,0,)Trans(0,0,d,)Trans(a,,0,0)Rot(z, )
cosd, —sinf,cosa, sinf,sina, a,cosd,
_ sin#, cosf,cosa, —cosl,sina, apsind,
- 0 sin a, COS (py d,
0 0 0 1
and the overall transform for an n link arm is T, = A; A3 A3 --- A,. ZT,E is the matrix which

transforms end effector coordinates into world coordinates, provided Z is the change of basis
from link one to world coordinates and E is the change of basis from the end of the gripper to
link n coordinates. ZT, E can be expressed directly in world coordinates as a location p and an
orientation, illustrated in figure 2. The orientation is a normal vector n, an orientation vector
0, and an approach vector a, yielding the noap matrix:®

n
noap = |
0

|1
o a p
Ll
0 01

?Change of basis matrices can be found in most elementary algebra books, for example, [Grossman 1987).

3All of the Excalibur’s joints are revolute. For a discussion of bases at prismatic joints see [Paul 1981].

*Angles and distances are expressed in terms of the current basis. For example, the sign of o, is determined
by the direction of z,,.

®n, 0, and a are easily converted to roll, pitch, and yaw. See [Paul 1981].

2



Joint n

int n+1
Joint n-1 6n Joint n

Link n-1

a, length of the common normal connecting the two joint axes

o, twist between the two joint axes. measured in a plane perpendicular to the
common normal.

d, distance separating the two normals along the axis of joint n.

0, angle between two links, measured between the normals in a plane perpen-
dicular to them.

orig, intersection of the common normal between joint axes n and n + 1 and joint
axis n + 1.2

z, Aligned with the axis of joint n + 1.
Xn Aligned with the common normal between joint axis n and joint axis n + 1.%

Yn Tn X 25,

“Should these axes intersect, the point of intersection is the origin. If the axes are parallel,
the origin is so chosen that the joint distance, d;, is zero to the next defined coordinate frame

origin.
If these axes intersect, the x-axis is aligned with z,_; x z,.

Figure 1: Setting up coordinate frames for an arbitrary manipulator (adapted from [Paul 1981])

Figure 2: Normal, orientation, approach, and position



Figure 3: Coordinate frames for the Excalibur

link 0, «a, a, d, cosa, sina,
1 6, -90° 0 0 0 -1
2 0, 0° Ly 0 1
3 63 90° 0 0 0 1
4 604 -90° 0 Lay 0 -1
5 6 90° 0 0 0 1
6 b 0° 0 0 1 0

Table 1: The Excalibur link parameters. Ly, 4,..n, is the combined length of links n;, ny, - - -

2 Excalibur Forward Kinematics

Using the method outlined in the previous section, conversion from Excalibur joint coordinates
to world coordinates is easily accomplished. Coordinate frames® are set up for each link as
shown in figure 3, resulting in the link parameters of table 1. The sign of a,, is determined
using the right-hand rule with the thumb pointing along the direction of z,.  Substituting
these values into A matrices and writing cos 8, as c, and sinf, as s, yields the six matrices of
figure 4.

Two translations are necessary to finish the conversion: a translation by L; along the
z-axis to move the world origin to the base of the manipulator and a translation by Lse along

There are, of course, many ways of defining these frames, depending on the direction chosen for each of the
basis vectors. The frames given here allow expression of length as positive. If the z-axes were pointing down,
then length would be negative.



Cy 0 —8 0 Cy —S8g 0 LQCg
_ 81 0 5] 0 _ So Cy 0 L282
A=l 210 o 2|0 o 1 0
0 0 0 1 0 0 0 1
c3 0 s3 O cg 0 —s4 0
_ 83 0 —C3 0 S84 0 Cy4 0
A=1091 0 o A=19 1 o L,
0 0 0 1 0 0 0 1
Cs 0 S5 0 Cg —S8g 00
_ | 8 0 —cs 0 |l s ¢ 00
S=101 0 o As=119 o0 10
00 0 1 0 0 01
Figure 4: A matrices for the Excalibur.
100 0 100 0
010 0 010 0
Z= 001 L E= 0 0 1 Lsg
000 1 000 1

Figure 5: World origin and tool translation matrices

the z-axis since the point p lies at the end of the gripper (figure 5), forming the noap matrix
with components shown in figure 6, where cz3 = cos(6; + 03) and s53 = sin(6, + 63).

It is important to notice that the Excalibur robot does not measure its joint angles in
exactly the manner suggested above, as shown in figure 7. As angles are read, the following
modifications must be made to the joint values before sending them through the kinematics
above. If p, is the angle read from the robot, then

01 =m 02 = —p2 — 30° 93 = —p3 + 150° (1)
0s=1ps 05 =—ps 0s = pe.

3 Excalibur Inverse Kinematics

Inverse kinematics must solve the kinematic equations for all 0,, thus converting world co-
ordinates to joint angles. This task is more difficult since sine and cosine are not invertible.
Finding a solution involves both algebraic and geometric techniques. Many of the angles are
determined from properties of triangles, while others are easier isolated using the matrix equa-

tions, premultiplying both sides of noap = ZA,A;--- A,E by inverses of the right hand side
matrices.



ny = ¢1[ca3(caCsCe — 5456) — 32355Cq] — S1[S4C5¢6 + C4Sé]
ny, = s1[caa(cacsce — 5436) — $2335¢C6| + €1[34C5¢6 + Ca56)
n, = 323[3436 - C4C506] — €2335C¢

0y = 01[3238536 - 623(640536 + 8406)] + 81[340536 - 0466]
0y, = 31[5233536 - 023(046556 + 54C6)] —C [540536 h C4Cs]

0, = S23[c4CsS6 + 84C6] + C238556

a; = c¢1(C3CsSs5 + $23C5) — 515485

ay = s1(ca3caSs + S23C5) + €18455

a; = C23C5 — 823C435

Pr = € [6230435L56 + s23(csLse + Lag) + c2L2] — s15455Ls6
py = S1[caacaSsLse+ s2a(csLse + Las) + caLa] + c18485Lse
p: = —523caSsLse + ca3(csLse + Lag) — saLa + Ly

Figure 6: noap matrix components

J1
120

Figure 7: Excalibur rest position (all angles read as 0) and joint limits
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Figure 8: Useful reach vectors for determining joint angles

One solution for the joint angles, 6,,0,,...8¢, is now presented. Suppose that the vectors
n, o, a, and p are known.

1. Define reach4 to be the vector from the base origin to the end of link four, as shown in
figure 8.
reach4 = (reachd,, reachd,, reachd,) = p — Lsga.

This is necessary, since joint one and joint five both potentially cause a displacement
about the same axis. The vector eliminates the contribution of joint five, enabling the
calculation of #;. Let reach4,, be the projection of reach4 into the z-y plane.

2. Two cases arise when considering the value for 6;:

(a) If the arm is to be placed vertical (i.e. reachd,, = 0) then it is unnecessary to
move the first joint since joints four and six can account for any change required in
orientation.

(b) Otherwise, 6; = atan2(reach4,, reach4,).” If, however, the elbow of the manipulator
(joint three) is to be positioned downwards then the solution for joint one is not this
easy. Instead, when the above calculation for 8, exceeds the manipulator bounds,
assume that the robot is bent backwards over the base, as in figure 9. Now 6, is
changed by 7. Alternatively, the bounds for joint one may not be exceeded but the
solution is still off by 7. This condition will only by noticed after solving for the
orientation joints (four, five, and six) is impossible.

3. Let reach25 be the length joining joint two to joint five.

reach25 = \/(reachflw)2 + (reachd, — L,)?.

Concentrate on the triangle formed with sides L2, L34, and reach25, visible previously in
figure 8.

7a.tan?(y,x) = tan~! L where the sign on both components uniquely specifies the quadrant.
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reachd

X

Figure 9: The excalibur bent over itself. Elbow is down.

: ,.+*"" ElbowUp? = False
Link 2 ' (60to 80 degrees)

Link 3 at 0 degrees

ElbowUp? = True
(-80 to 60 degrees)

(a) Range of link 3

Link 3

angle23
Link 2 %) Link 2 f?/ %

anglei3 N 103
%3 63 \|Link 3 x} .
(b) ElbowUp? = True (c) ElbowUp? = False

Figure 10: Finding the angle at link 3

4. Call the angle between links two and three, angle23. The cosine of this angle can be
determined using the cosine law.® This cosine calculation may yield an absolute value
greater than one, indicating that the position the robot is required to reach is not within
its bounds.

5. Uniquely determining 6, and 6, is geometrically impossible since their axes are parallel.
However, by setting one parameter, elbowUp?, this problem is alleviated. Figure 10

8cosf = “—2‘,_,&:# where a, b, and ¢ form a triangle and 6 is the angle between a and b.



reach4

L2
0 0,
I x 0.1>
(b) Elbow is down (c) Elbow is down
swing is same direc- swing is opposite
tion as reach4, direction as reach4,

Figure 11: Summing a and J to determine 6,

illustrates the significance of elbowUp?.® The solution for 83 is then

o. — J 270°—angle23 if elbowlp? = true!®
5 7 ) angle23—90°  otherwise.!!

6. The next task is to solve for f; by summing two angles: a and 3, as shown in figure 11.

® o = atan2(reachd, — Ly, reachd,,)

3 = atan2(sin 3, cos 3) where cos 3 is determined using the cosine law on the triangle
reach25-Ly-Ls and sin f is determined using similar right triangles. As illustrated

®The value of elbowlUp? may at times determine whether a solution can be computed. elbowUp? is usually

set to true, thus leaving link three less restricted.
'%This formula is easier to visualize as (180° — angle23) + 90°.
Determined using complementary angles about the lines formed by link 2 and link 3.



in the figure,

Lassino

reach2b

L34 sin(03 — 90°)
reach2b

sin 3

When the elbow is up, 6; = —(a + 8). Otherwise the elbow is down and the solution de-
pends on whether the swing (joint one) axis is in the same direction as (reachd,, reachd,).
If so, i.e. the cosine of f; has the same sign as reach4,, then once again ; = —(a + 3),
arising in part (b) of the figure. In the remaining case, (c) of the figure, 0, = a — 8 — .

7. Adding 0; and 05 gives 3.

Solving for the remaining three joints is difficult and resorting to algebra is helpful. These
joints are primarily concerned with the orientation of the end effector, whereas the first
three were concerned with attaining the desired position.

8. The cosine of angle five is isolated in the equation A35' A3 AT'Z 1 (noap) = A4AsAE:

|

c1C23 S1C23 —S23 L1893 — Locs

[
—581 o) 0 0 n o ap
C1523 S1823 €23 Licoz — Losy I
0 0 0 1 0 001
fa(n) fa1(0) fa(a) fa(p)+ Lisas — Lacs
fa2(n)  fx(o) fa(a) fa2(p)
fas(n) fas(o) fas(a) fas(p) + Licaz — Lass

0 0 0 1
C4C5Cq — 5486 —C4C586 — S4Cg  C435 Lsgcass
$4C5C6 + €486  —384C58¢ + C4C6  S4S5 Ls6sass

—85C6 S536 cs  Lsecs + Lay
0 0 0 1
where!?
fa1(v) = (crcas)vr + (s123)v2 — S23v3
fa(v) = —siv+cv,
fas(v) = (c1823)v1 + (s1823)v2 + C2303.

9. Comparing the value in position 3-3 of both sides of this equation gives

cos s = fi3(a).

12f;; refers to the function resulting from the matrix equation A71A7L -+ AT T, = A;11Ajrs--- A, in the
J g 1 i—1 1 + +
Jjth row [Paul 1981].
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10. In the trivial case (cs = 1), 85 = 0 since —90° < 05 < 90°. This implies that the axes

11.

12.

of rotation for joints four and six are parallel, hence the rotation should be split between
the two. The previous matrix equation provides the necessary value:

fa2(n)  s4csce+ case

fsl(n) C4C5C6 — 5436
84Ce + €436 .
= —————— sincecs; =1
C4Ce — 8438¢

sin(04 + 0s)
cos(fs + 0s)

Thus 04 + 05 = atan(fa2(n), fai(n)). Assigning actual values to 8, and 0 can be done
in many ways. Whenever possible it is a good idea to ensure that the amount of motion
occurring in both joints is approximately the same. This is accomplished by finding the
difference between the new required value for 4 4 6 and the old value, adding half to
each joint.

If 05 # 0 it is generally impossible to find a unique solution for the last three joints.
This interaction is different from that between joints two and three, where a parameter
was allocated to aid the solution. There each solution resulted in a configuration of
the manipulator which looked different. In this case the different solutions result in the
manipulator looking as if it is in the same position. Hence the actual solution found is
not important in the function of the manipulator.!® The strategy is to assume that 85 is
a positive angle, then calculate 8, and 6 and ensure that they fall within the limits of
the manipulator. If they do not, then assume that 05 is negative. This means that 6, and
s must be moved to the opposite quadrant by adding or subtracting 180°.

o Let 0 < 65 < 90°, where 05 is determined by an inverse cosine. Calculate §, and 8,
from the matrix equation, checking that they fall within the manipulator bounds.

ans ) )

04
06

o Otherwise 5 is negative, so 6, and 6 are in the opposite quadrant from that calcu-
lated in the previous step.

Make sure that all joints calculated fall within the mechanical limitations of the robot.

Conclusion

This paper develops a complete tutorial example of a kinematic solution for a specific robot
arm, one comprising six joints with one mid-way along the forearm. Degeneracies and the
correspondence between real and modeled joint axes are handled in a realistic manner.

13That is, provided that joint limitations do not come into play.
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