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ABSTRACT 

Synthetic Aperture Radar image texture remains an untapped source of 

information about the imaged scene. The objective of texture analysis is to characterize 

and discriminate between environmental scenes based on the expression of the texture in 

the SAR image data. In our research, the autocorrelation function (ACF) is used to 

describe the image texture. We have developed a simple one-dimension ACF model which 

includes the focus error. 

We have chosen sea ice as the environmental scene. We studied the effect of the 

system parameter on the estimation of SAR image texture and tested the ability of the 

ACF model to discriminate three ice types: undeformed new ice, deformed new ice and 

first year/brash ice matrix. The results indicate that the system parameter has a key role in 

the performance of the ACF. Texture classification based on the ACF parameter 

estimation is found to be feasible. 
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CHAPTER 1 

INTRODUCTION 

This chapter first outlines of the motivation for the texture analysis of the Synthetic 

Aperture Radar (SAR) image of sea ice in marginal ice zone. Then it describes the 

specific objective of the research and the tools used in texture analysis. The 

autocorrelation function (ACF) is chosen to describe the image texture in this research. 

The last part of this chapter introduces an outline of the thesis. 

1.1 Motivation for the Study 

1.1.1 SAR Image Texture Analysis 

Synthetic Aperture Radar (SAR) is an important technology with several 

advantages, including (1) day/night and all weather imaging, (2) geometric resolution 

independent of sensor altitude or wavelength, and (3) signal data characteristics unique to 

the microwave region of the electromagnetic (EM) spectrum (Curlander and McDonough, 

1991). The platform used in SAR systems can be an aircraft or a satellite. The image 

acquisition is very fast and the image scale is large. For example, a high resolution SAR 

system can achieve aresolution of about 0.3m by 0.3m (Posner, 1993). These advantages 

have led to widespread usage of SAR imaging systems in civilian remote sensing besides 

its usage for military applications. 
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Among all the remote sensing sensors, SAR is relatively new. Consequently, SAR 

image texture remains an untapped source of information about the imaged scene. 

Texture analysis is an important aspect in scene analysis because texture is a special kind 

of characteristic of picture regions which corresponds to the physical surface (Chen, 

1980). Texture of an image represents the frequency of tonal change on an image. In 

another words, a texture is composed of primitives arranged in terms of a specific 

relationship; the primitive is a collection of pixels in which each one shares a common 

tonal property and is geometrically connected. These primitives are related to the texture 

according to a spatial relationship which may be probabilistic, structural or both in nature. 

The word "scene" is used to refer to all scatterers from the same class. 

The objective of texture analysis is to characterize and discriminate between 

environmental scenes based on the expression of the spatial backscatter fluctuations, or 

texture, in the SAR image data. 

For distributed scenes, there are many small individual reflectors within a given 

pixel. The individual reflectors might be deployed spatially in such a way as to cause 

destructive or constructive interference in the sum of their reflectance. Some pixels would 

therefore appear unnaturally bright or dim. This "salt and pepper" texture is called 

speckle. The image texture is thus a mixture of speckle and target texture. 

1.1.2 Sea Ice 

Sea ice has important consequences to human activity. Sea ice has an intimate and 

complex role in the ocean-ice-atmosphere system. In this system, there are thermal and 
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mechanical energy transfers over a large spatial and temporal range. The key factor 

controlling surface energy fluxes and the available net radiation is the high albedo of the 

ice and snow covered surface (Barry, 1983). There are significant turbulent heat fluxes 

from the oceans to the atmosphere through leads (cracks in the ice), young, thin ice (up to 

one metre thick) in winter because of their relatively small albedo in winter. This leads to 

a large heat transfer. Therefore, the young ice has a significant roll in the winter energy 

budget. It is estimated that half of the heat flux over a year occurs through 20-80 cm thin 

and young ice, whose area is only about 6 percent of the ocean in winter (Maykut, 1978). 

The distribution of the sea ice and the atmosphere are fully coupled in the dynamic 

ocean-ice-atmosphere system (Herman, 1986). The change of the sea ice will affect the 

heat fluxes, which may bring a positive feed back to the atmosphere activity, for example, 

storm. Herman and Johnson (1978) predicted in their experiment that the raising of the 

sea level as a result of the melting of the sea ice which is the effect of the temperature 

raising of the earth would increase precipitation over northern Europe. 

Sea ice also greatly affects maritime activity, such as navigation and offshore oil 

and gas drilling. The mechanical action of ice on offshore structures is probably the most 

important environmental factor affecting the design of these offshore structures. The 

mechanical characteristics, such as compressive strength, tensile strength, shear strength 

and flexural strength, are determined by the type of ice. Each different type of ice has a 

different crystal structure and a different age. When designing the drilling platform, the 

sea ice types around the oil and gas reserve must first be determined. Sea ice is also a 

significant hazard to shipping. The path of the ship should be through the young and thin 
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ice areas for the reason of safety. Based on all of these needs, acquisition of the sea ice 

distribution is essential. 

Most offshore activity occurs in what is called the marginal ice zone (MIZ). MIZ 

may be defined as "an ice cover which is close enough to the open ocean to be affected by 

its presence" (Wadhams, 1986). The multiplicity in size, shape and type of the ice 

characterize this zone. The MIZ of great commercial value to Canada is in the Labrador 

Sea and extends from Baffin Bay to the Grand Banks (Collins, 1993). A large 

international field experiment known as LII4iEX (Labrador Ice Margin Experiment) 

(Carsey, Argus, Collins, Holt, Livingsone and Tang, 1989) took place at this site in the 

spring of 1989. The SAR data used in this study is from this experiment. The ice in this 

zone is predominantly first year ice with O.O1%-8% multiyear ice (Zakrzewski, 1986). 

1.2 Research Objective 

The traditional way of getting the spatial distribution of sea ice types is from the 

records from isolated ships and stations which are unfortunately sparse. The cost and 

hazards of these observations are large, and the time and spatial scale for which 

information is acquired cannot meet our needs. Consequently, remote sensing is especially 

suitable for this large spatial scale data acquisition of sea ice because of its time and cost 

savings characteristics. Imaging radar, one of the sensors in remote sensing, has been 

shown to be the most effective tool for acquiring regional sea ice information on an 

operational basis (Falkingham, 1991). Due to its high resolution, the SAR, one of the 

radar imaging system, was used in LIMEX because of its high resolution. 
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SAR is an active imaging system using coherent electromagnetic radiation. Like 

all coherent imaging systems, such as the laser, the image from SAR is degraded by 

speckle. The speckle cannot be considered as noise. It also carries some information of 

the scene texture. Thus the SAR image used in this research is not speckle deducted. 

My objective in the study is to perform sea ice classification based on the texture 

difference of different types of sea ice. Mathematical models are very important and 

useful in the development of image processing algorithms. Although, it is possible to 

develop heuristic algorithms for some of the easier image processing tasks, model based 

procedures are necessary for developing optimal algorithms for more difficult image 

processing problems. The optical imaging system can be modeled as a linear system with 

additive Gaussian noise. However, the imaging process of the radar is significantly 

different than the optical systems due to the coherent nature of the illumination. 

The linear additive Gaussian noise models cannot be applied to the radar imaging 

systems. The image processing algorithms, which are based on additive Gaussian noise 

models, would fail when they are used on radar images. The models for radar image 

processing were developed with consideration of the local and global statistical properties 

of radar images (Frost, 1982). 

In many texture applications, such as texture classification, texture edge detection 

and image segmentation etc., the success of the algorithm is highly dependent upon the 

selection of the texture properties (Davis, 1975). There are many ways to describe 

texture: 
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• Cooccurrence matrix. This matrix is an estimation of the second order statistics of the 

image P(x, öy, i, j). P(öx, öy, i, j) is the probability that two pixels of distances ox 

and Oy in x and y directions have intensity i and j. Generally, the cooccurrence matrix 

can provide a powerful texture discrimination capability. But it cannot filly identify 

every texture (Chen, 1980). 

• Statistical mean estimator and variance estimator. This method assumes the image is a 

two-dimensional discrete random field and the random variables in the field are 

stochastically independent. The assumption implies that the ensemble statistics are the 

same as the spatial statistics. This is not a realistic model because in most images, the 

pixels are spatially correlated. 

• Means and the covariance matrix of the intensity of the pixels in the image. 

• The Fourier Power Spectrum (FPS). This power spectrum reflects the distribution of 

the coarseness of the texture. This spectrum is biased if the image is directionally-

biased. Another problem is the difficulty of evaluating the spectrum over non-square 

regions (Palidis, 1977). 

• Gray level run length (Galloway, 1975). In this approach, the texture description is 

contained in the four intensity level run length matrices. Each matrix is evaluated for 

each of the four directions. This method is quite good for the linearly-structured 

texture. 

• Autocorrelation function (ACF) (Rosenfeld and Weszka, 1976). The first order 

statistics (PDF) cannot reflect the correlation in the image pixel. Thus the second 
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order statistic (ACF) is necessary to give more complete description of the image. C. 

J. Oliver has made significant contribution to SAR image texture analysis using ACF. 

In our research, the ACF was used to describe the natural clutter texture in the 

high-resolution SAR image. Clutter is defined as a collection of randomly distributed 

elemental scatterers with no scatterer dominating (Posner, 1993). The ACF model was 

based on a statistical model of the field and a simplified imaging function. 

The purpose for which we constructed an ACF model to represent the 

backscatter' s two-point statistics was to estimate backscatter texture parameters from 

SAR image using the ACF as a texture description tool. The parameters estimated through 

the ACF model reflect the texture's characteristics and can be used to perform image 

classification. However, the discrimination power of the ACF texture parameters is 

significantly weakened by a large ACF variance. A key issue in this approach is the 

accuracy with which we can estimate the ACF model parameters. 

1.3 Thesis Outline 

Chapter 2 gives a brief description of the SAR imaging system. SAR is different 

from the traditional real aperture image radar. Through its synthetic aperture, SAR gains 

high along-track resolution. The SAR imaging system consists of 2 parts: (1) collection of 

a sampled target diffraction pattern and (2) reconstruction of the target backscatter field 

through range and azimuth matched filtering. 
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The spatial statistics of the sea ice is studied in Chapter 3. Based on the analysis, 

models of the ACF and second-order single moment (the square of the reflected intensity 

from the scene). are constructed. Texture classification is performed by using the 

estimated parameters of the ACF model. The estimation accuracy of these parameters in 

ACF is essential to show the classification reliability. 

Chapter 4 describes the data source and the experiments designed to test the 

models we built and the classification ability of the ice texture parameters. 

Chapter 5 shows the results of the experiments designed in Chapter 4. The 

interpretation of the results is also in this chapter. 

Discussions and recommendations are given in Chapter 6. 

Information extraction from radar images will continue to be an important and 

interesting area of study. The extraction of the texture information of the target was 

addressed in this work. The models derived here will provide one method of extracting 

and analyzing the information contained in SAR images. 
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CHAPTER 2 

THE SAR IMAGING SYSTEM 

This chapter reviews the SAR imaging system. First, it presents a brief history of 

SAR. Then it describes how SAR works and the signal processing method. A model for 

SAR imaging system is constructed based on these system description. Finally the 

autofocus technique is reviewed. 

2.1 Introduction 

SAR is an active remote sensing system. The radar transmits an electromagnetic 

wave towards the ground target area and records the reflected wave. The characteristics 

of the reflected wave, for example, amplitude, phase and polarization, etc., primarily 

depend on three reflecting surface parameters: (1) dielectric constant; (2) roughness (rms 

height); and (3) local slope. Imaging radar records the reflected wave and the 

corresponding time delay to determine the object characteristics and the relative position 

of the object. 

Before the discovery of synthetic aperture radar in the early 1950's, radar had long 

been used as a tool for detecting and tracking metallic targets such as aircraft and ships. 

In the early 1950's, it was found that the radar could be fixed to the fuselage of the 

aircraft instead of rotating the antenna to scan the target area. This is the early version of 

imaging radar called side-looking real-aperture radar (SLAR). The value of SLAR images 

for scientific applications such as geologic mapping, oceanography and land use studies 
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was recognized almost immediately (McDonald, 1969). Based on SLAP, SAR was 

designed by Carl Wiley of Goodyear Aircraft Corp. in June 1951 (wiley, 1985). In 1953, 

the first airborne high resolution SAR system was built by the radar group at the 

Goodyear research facility in Litchfield, Arizona (Curlander and McDonough, 1991). It is 

the image resolution in the dimension parallel to the direction of flight (i.e., the azimuth or 

along-track dimension) that distinguishes a SAR from other imaging radar systems. To 

achieve high resolution in the azimuth dimension, SAR uses a coherent system to record 

the amplitude and phase information of the echo. Now, SAR is widely used in remote 

sensing. After the airborne SAR systems, there are spaceborne SAR systems. In 1972, 

the Apollo Lunar Sounder Experiment was performed. In this experiment, Apollo 17 

carried a coherent SAR system to map the lunar surface at radar wavelengths. The 

success of this experiment led NASA in 1975 to approve a SAR as one of the remote 

sensors on Seasat. The scientific results from Seasat quickly led to the approval by NASA 

of the series of flights of the Shuttle Imaging Radar (SIR). 

2.2 Geometry of Imaging Radar 

In the imaging radar system, the transmitting antenna sends out the 

electromagnetic wave for the duration T. Then the transmitting antenna is shut off. This 

signal is called a pulse of duration T. The pulse emitted from the antenna will illuminate 

some target area. For radar systems which are scanning the earth's surface, the area 

illuminated by one pulse is called the radar's footprint (Fitch, 1988). Swath is defined as 
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the strip covered by the footprint when the radar moves forward. Figure 2.1 shows the 

geometry with the transmitted pulse and its resulting footprint. 

Line of flight or azimuth direction 

pulse width, w 

Slant range R0 

Footprint 

Figure 2.1 Radar geometry with the transmitted pulse and its resulting footprint. 
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The flight direction of the aircraft is called the azimuth direction. Ground range 

and slant range are shown in Figure 2.1. We assume that the transmitting antenna is 

turned on for a very short time, and then off again, which means that T is very small. 

Therefore, a brief burst of radio energy is emitted, which is pictured as a shaded band of 

width w in Figure 2.1. If the two reflectors in the footprint are closer together than the 

width w of the pulse, the two targets would blur together so that they could not be 

separate them in the image. 

The size of the footprint is determined by the antenna beam width. The 

transmitting/receiving antennae are characterized by a three dimensional gain pattern 

which has fading side lobes. In this study, only the center lobe is modeled and the sidelobe 

effect is ignored as most of the energy transmitted by the antenna is in the center lobe. 

Thus, the radar system antenna pattern can be modeled as a Gaussian function for 

simplicity. 

The SAR system uses a digital computer to process the raw data into an image. 

After one pulse is sent out at a certain azimuth position, the receiver will sample the 

reflected signal. This implies that one continuous echo will generate an entire row of 

discrete data points. The sampling rate should obey the Nyquist sampling principle to 

keep the resolution in the range dimension. After the echo is sampled, one strip of signal 

is obtained. The width of this strip in the azimuthal direction is equal to the azimuth 

beamwidth on the ground. By turning the transmitter on and off, many strips are obtained 

as the airplane moves forward. These strips thus form a two-dimensional image. The 
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pulse rate should also obey the Nyquist sampling principle which relates to the azimuth 

resolution. 

2.3 Radar Image Processing 

SAR systems are designed and operated to be linear in the various voltage 

waveforms (Curlander and McDonough, 1991). In the SAR system, the operation of 

average power formation at the IF (Intermediate Frequency) output is replaced with the 

linear operation of "quadrature demodulation", also called "I, Q detection". In this, the 

high frequency structure of the IF signal is shifted to a frequency band centered on zero 

frequency, leaving the low frequency envelope waveform (Whalen, 1971). 

2.3.1 Matched Filter Receiving 

The noise due to interfering radiation, atmospheric and thermal effects degrades 

the ideal transmission and reception of the radar signals. The overlap of the returning 

radar pulse from closely spaced objects causes signal ambiguity. Thus the effective 

duration and energy of the transmitted pulse determine the resolution and maximum range, 

respectively, of a radar system. Shorter duration pulses allow closely spaced targets to be 

discriminated, while high energy pulses provide measurable reflections from targets at 

large ranges. However, it is difficult and expensive to develop the hardware to generate a 

short pulse with large energy. The autocorrelation of the received signal can compress the 

pulse and remove part of the noise. Therefore, this technique is used in SAR signal range 

and azimuth compression (Cenzo, 1981. Fitch, 1988. Curlander and McDonough, 1991). 
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A linear or nonlinear Frequency Modulation (FM) (chirp) format is often used for 

pulse coding while a correlation receiver is used for compression (Fitch, 1988). The 

correlation receiver is also called a matched filter. The maximum range resolution of the 

image is determined by the bandwidth of the transmitted pulse. Let u(t) be the transmitted 

signal and r(t) be the received signal and let r(t) be a time delay of u(t). Thus, the received 

signal can be written as: 

r(t) = cYu(t-t) (2.1) 

where cy is cross section of the reflector and t is the two-way travel time. 

The output of the matched filter is: 

y(t) = f u*(s)r(s + t)ds = of u*(s)u(s + t - ,t)ds 

where * denotes complex conjugate relationship. 

(2.2) 

The linearity of the correlation operation implies that this receiver can be expressed 

as the convolution of the received signal with the impulse response h(t) Thus Equation 

(2.2) can be written as: 

where, 

y(t) = $ u*(s)r(s + t)ds = f r(s)u(—(t - s))ds = $ r(s)h(t - s)ds (2.3) 

h(t) = u*(_t) (2.4) 
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A stable local oscillator (STALO) is usually required to produce a reference signal 

to mix with the echo so as to keep the phase information contained in a radar echo. This 

is called coherent receiving. 

2.3.2 Synthetic Aperture Radar 

0 

Transmitte 
pulse  

Figure 2.2 Spherical propagation wavefront of the transmitted and scattered field. 

For real aperture radar the resolution in the azimuth direction depends on the 

physical length of antenna in this direction. The longer the antenna, the smaller the 

resolution. Hence, a very long antenna is needed to achieve high along-track resolution. 

For example, to achieve a 25m resolution in azimuth in Seasat, the antenna should be over 

8km (Fitch, 1988). It is not feasible for either satellites or aircraft to carry antennae more 

than 1km long. However, an antenna array made up of antennae of small size can achieve 

the same result. The wavefront of the echo has a spherical shape (see Figure 2.2). Thus, 
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for a linearly placed antenna array of which the antennae are placed along a straight line, 

the sum of the signal from different subapertures is performed after a certain delay for 

each subaperture. The length of the antenna array is the real aperture of the radar system. 

The number of positions required to sample the antenna array for an arbitrary input are 

specified by Nyquist's theory applied to the spatial bandwidth of the collected signal in the 

azimuth direction. 

Because of the weight and size restriction of the platform, the larger aperture 

antenna array does not physically exist in SAR. A single and physically small antenna is 

used to collect the data. The larger aperture is synthesized by sequentially gathering at 

different positions which collectively define the antenna array. The solution is known as 

Synthetic Aperture Radar (SAR). 

Figure 2.3 shows the geometry in SAR. 13 is defined as the beam width in the 

azimuth direction. X is the width of the power envelope of the physical antenna 

corresponding to the azimuth width of radar footprint, which is known as the synthetic 

aperture in SAR literature. For high resolution SAR systems, 0 is quite small. Therefore, 

the X can be written as: 

X=R013 (2.5) 

where R0 is the slant range of the footprint center. 

The spatial bandwidth of the recorded data is given by: 
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2 
B 

where 2 is the wavelength. 

Azimuth direction 

Figure 2.3 Geometry in SAR 

(2.6) 

An unfocused array can be synthesized by averaging echo signals at some fixed 

time delay bin over a window in the azimuth direction. Due to the fact that the wavefront 

of the echo has a spherical shape, the resolution is degraded by the curved wavelet effect 

which is called range migration of the target echo. The range migration is coupled with 

the range and azimuth coordinates. The focused SAR is achieved by averaging the echo 

along a hyperbolic line in the azimuth direction. Each output range requires a particular 

shift of the surrounding data to create the focusing effect. 

The range dependent delay and summation operation for focusing a synthetic 

aperture can be described by a matched filter similar to the pulse compression procedure 
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described in Section 2.1. The pulse compression of the range echo is committed before 

focusing the synthetic. The azimuth phase term provides the shape for the reference 

function. 

2.4 A Model for the SAR Imaging System 

This study was only concerned with the azimuth direction of the SAR image. 

Therefore, a one-dimensional system model was adopted. Synthetic aperture radar is a 

coherent imaging system which consists of two parts: (1) collection of the target 

diffi-action pattern and (2) reconstruction of the target image through matched filter 

processing (Collins, 1993). M. J. Collins built a model of the imaging system based on this 

description and this model was used in this research. 

From Section 2.3.2 it is known that when we reconstruct the synthetic aperture in 

the azimuth direction, due to range migration, the data should have an appropriate delay 

before being summed. Since the data used in this study was collected by the airborne SAR 

system, the effect of range migration was neglected. This model also neglects the effects 

related to target motion and used a Gaussian function to model the center lobe of the 

antenna pattern. Thus, the diffraction pattern of the signal can be simply represented by a 

diffraction filter hd (Goodman, 1968; Collins, 1993): 

hd(x) exp{ } I = 2X2 exp—jt---' 
t. xoJ 

(2.7) 



19 

where x is the spatial azimuth coordinate. X is the synthetic aperture defined in Section 

2.3.2. It is equivalent to the width of the available diffraction pattern. The width of the 

quadratic phase term %o is written as: 

X IR? 
(2.8) 

where the spatial bandwidth, B, is defined in Section 2.3.2. 

After the diffracted wave is collected by the receiver, a matched filter is needed to 

reconstruct the image. This matched filter may also select an arbitrary segment or look of 

the recorded signal with a real Gaussian weighting function. According to Equations 2.4 

and 2.7, the matched filter may be written as: 

hm(X) exp{— -} I x X1 = X2 expj1r—j-exp 
I.. X0J 

(2.9) 

where X is called the look width which decides the fraction of the available signal 

selected for processing and can be written as: 

xn=x/n (2.10) 

where 1/n is the fraction of the total available aperture. 

In the diffraction model, the range migration is neglected. Thus, the matched filter 

constructed based on this model has a small phase mismatch with the real signal which 
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results in an imperfectly focused radar system. This is commonly termed as focus error in 

SAR literature. The matched filter model with a focus error is: 

h. (x) exp{ x2  I x 1 xl = -7tj- exi7t-- exPt_7r-1 

where x is the width of the quadratic phase term with a small fractional focus error TI. X is 

defined as: 

IR7  
(2.12) 

The SAR system's complex impulse response of the azimuth channel may be 

written as: 

hc(X)=h r(X)*hm(X) (2.13) 

where "*" denotes the convolution operator. The stationary-phase approximation when 

performing the Fourier transform and the constant is neglected. The impulse response can 

be written as: 

hc(x)=exp{_1tB2 K+jc  X2} 
K2 +2 

where, 

(2.14) 
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1+n2  
2 +1 and 

(1+i) 1+i 
(2.15) 

The square law detection of the complex signal yields the image intensity or power. The 

power response of the image is: 

KB2  
hl=Ihc(x)I2=exp{_2K22 x2 (2.16) 

The imaging system resolution which is measured in this study by the equivalent 

rectangular width (ERW) (Brown, 1963) is: 

•K_T_ p= p0 -j- (2.17) 

where po is the best achievable resolution which equals 1/B. The focus error and 

fractional look width will effect the system resolution according to the model. 

2.5 Autofocus Technique 

In order to form the SAR image, the incident radiation is convolved with a 

reference signal. In this research the effect of range migration was neglected. Therefore, 

there is a mismatch between the echo and the reference. One technique used to correct 

the mismatch is autofocusing (Oliver, 1993). Autofocusing uses post-processing on the 

SAR images to improve the quality. In this method, the focus parameter is adjusted to 

maximize the contrast in the compressed pulse. This type of processing does not require 
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specific knowledge about the scene. It is not dependent on the existence of point targets, 

as extended targets will also give an autofocusing capability. Indeed, this technique will 

work provided that there is some variation in the underlying cross-section. 

Although autofocusing is used to minimize the mismatch, there is still some 

uncertainty in the width and sidelobe level of the compressed pulse in a SAR image. In 

the limit of perfect focusing, the focus error depends not only on the radar trajectory but 

also on the noise in the received signal. The ideal form of the signal after diffraction, is 

degraded by a complex Gaussian additive noise component. This noise arises from the 

interference between random scatterers within the scene. Another source of uncertainty is 

from the use of a mismatched reference function, arising from uncertainties in the 

autofocus estimate. 



23 

CHAPTER 3 

STATISTICAL ANALYSIS OF YOUNG ICE IN THE LABRADOR SEA MIZ 

This chapter reviews the physical properties of sea ice. Based on the assumption 

that the SAR image intensity for sea ice has a K-distribution (Oliver, 1986), the ACF 

model and second-order single moment model are constructed. This chapter also 

discusses the possibility of sea ice classification based on the parameter estimation of the 

ACF model. ,To measure the classification accuracy, the fractional error in the ACF 

parameter is introduced. 

3.1 Formation and Physical Properties of the Sea Ice 

Salts in sea water affect the freezing point approximately according to the equation 

Tf= -0 .O55S where S is the salinity per mil (%o) of sea water (Maykut, 1985). Surface 

cooling of the sea water produces a density gradient in the upper ocean which yields an 

unstable vertical density distribution in turn leading to convective mixing until the water 

reaches freezing point (Weeks and Ackley, 1982). Once the entire mixed layer in the 

upper ocean reaches freezing point, additional heat loss allows the ice formation to begin. 

Sea ice generally contains much less salt than the water from which it freezes. The 

freezing process rejects most of the salt back to the ocean. As the ice grows, more salt is 

rejected (Gow and Tucker III, 1991). 

Initial ice formation occurs at or near the surface of the sea water in the form of 

small platelets and needles called frazil. Further freezing produces grease ice, a soupy 
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mixture of sea water and unconsolidated frazil crystals. Under quiescent conditions the 

frazil crystals quickly freeze together to form a solid, continuous ice cover. However, 

winds cause turbulence in the water which usually prohibits this solid ice cover formation. 

Wind and wave action drive frazil crystals downwind and in the sustained wave field, the 

accumulation of frazil crystals forms pancakes. Finally, the pancakes consolidate by 

freezing together to form a continuous sheet of ice. This thin sheet of ice would most 

often deform under compression (Gow and Tucker III, 1991). 

Once a continuous ice sheet has formed, ice crystals lose a degree of freedom in 

their growth. Further ice growth is vertical to the ice sheet. Ice growth causes the 

important small-scale roughness elements which form many small scatterers. The 

polycrystalline structure which characterizes the sea ice can occur in several different 

textures. Differences in crystalline texture and the nature and distribution of brine 

inclusions are of additional importance in that they exert a major effect on the electrical 

properties of sea ice and in turn can have a critical bearing on the radar images. 

3.2 Statistical Model of Young Ice 

The backscatter of the young ice in the Labrador Marginal Ice Zone (MhZ) can be 

described by a compound scattering model that is the result of two dependent random 

processes: one governing the variability of an individual pixel, and the other controlling 

the spatial fluctuation of these per-pixel statistics (Collins, 1993). The young ice in the 

scale of the SAR resolution may comprise of floes, floe edges, brash ice between the floes, 
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etc. As with most naturally occurring terrain, sea ice may be regarded as a set of locally 

homogeneous patches which share some particular set of physical characteristics. 

A homogeneous area, such as a field of wheat, has a very narrow correlation 

function relative to the resolution of the imaging system. Targets like this are called 

Gaussian and the texture of the image is due to the speckle only. This speckle texture is 

caused by constructive and destructive interference of the individual reflectors which is not 

only on a per pixel basis but also on a pixel-by-pixel basis when coherent illumination is 

reflected from a rough surface. The compound targets, however, involve two 

components: (1) speckle, (2) texture which is due to the spatial variability in the scattering 

properties of the scene illuminated by the radar (Posner, 1993). This is often called a 

non-Gaussian target. Therefore, the statistical character of these scenes can be expressed 

by two phenomena: one is speckle which is a unit complex Gaussian; the other is the 

spatially correlated texture. It must be understood that the overall "speckled appearance" 

of a radar image and the "image texture" in a radar image are both due to the interplay of 

the two phenomena which are speckle and texture (Ulaby, Moore and Fung, 1986; Ulaby 

and Dobson, 1989). 

3.2.1 Backscattering Model 

Two basic approaches are available when we study the scattering of 

electromagnetic waves from rough surfaces. In principle, the solution can be derived 

analytically by solving Maxwell's equations while introducing the appropriate boundary 

conditions to describe the form of the surface (Beckmann and Spizzichino, 1963; Tsang, 
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Kong and Shin, 1985). However, this approach suffers from the difficulty of selecting and 

applying the correct boundary conditions that represent typical realistic surfaces (Oliver, 

1984). Another method is modeling the scattering surface by an array of elemental 

scatterers and introducing the surface properties via the fluctuation in the cross-section or 

density of scatterers within this array (Jakeman, 1974; Pusey, 1977; Oliver, 1988a). 

Regarding the intensity distribution of the clutter, it is most often assumed to be a 

Rayleigh distribution whose usual interpretation is that the clutter arises from the 

superposition of returns from a large number of equivalent elementary scatterers. These 

scatterers are independent of one another and form what is called a fully developed 

Gaussian speckle (or a circularly symmetric Gaussian scattering) according to the 

Goodman condition of this model (Goodman, 1975. Frost, 1982. Conte, Longo and 

Lops, 1991). When electromagnetic waves are scattered from a large array of scatterers 

which are randomly distributed through the resolution cell with dimensions that are large 

compared with the radiation wavelength, the mutual interference between independent 

scatterers gives rise to a total field which has a Gaussian probability distribution. 

Envelope detection of the field leads to a Rayleigh distributed intensity. 

However, experimental data indicate that large deviations from Rayleigh statistics 

exist in situations such as high-resolution radar. In the high-resolution image, the number 

of scatterers can no longer be assumed "large" as it is assumed to be in the Goodman 

condition (Oliver, 1984). In a variety of high resolution coherent imaging applications, in 

particular radar, it has been demonstrated that many natural clutter textures can be 
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described by a K-distributed probability density function (PDF) (Oliver, 1986; Oliver, 

1988b; Blacknell, 1994a; Conte, Bisceglie, Lops and Ricci, 1991.) given by: 

2 ( i /21 

P(') =  K 1 [2J ] (3.1) 

where I is the detected intensity by the radar system, ( ) represent the ensemble average 

over all possible realizations of the scatterer positions within the resolution cell, r(y) is the 

gamma function of order y, K 1 is the modified Bessel function of order y-1 which is 

called a K distribution of order y-1 and y represents the number of scatterers per 

resolution length (Oliver, 1982). Table 3.1 shows the conditions for the K-distribution 

target. 

This K-distributed image intensity can be shown to arise from a surface having a 

gamma-distributed cross section, : 

( ),_I 1  
P() F(y) 'P\• . •U)) 

(3.2) 

when coherent radiation is scattered from this surface (Oliver, 1984; Medez and 

Escamilla, 1988; Blacknell, 1994b). When y approaches infinity, for a wheat field, for 

example, the surface will be a Gaussian target (Conte, Longo and Lops, 1991). 
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Condition Physical Meaning 

The phases are uniformly distributed 

between 0 and 2it 

Surface roughness is large compared 

to the incident wavelength 

The amplitude and phase of individual 

scatterers are statistically independent 

There is no deterministic relationship 

between position and strength of the 

scatterers relative to a wavelength 

The amplitude of all scatterers in the 

resolution cell are approxithately the 

same 

No single or small groups of 

scatterers predominate 

The number of scatterers in the 

resolution is not large 

A limited complex scatterers in one 

resolution for high-resolution radar 

Table 3.1 A summary of conditions for K-distributed target and their physical meaning. 

3.2.2 Spatial ACF of the SAR Image 

It is not an adequate description to merely consider the PDF of the detected 

intensity or the surface cross section. At least the two-point correlation properties of the 

clutter texture should be considered. The two-point correlation properties may be 

expressed by the autocorrelation function (ACF). The two-point image statistics have 

been proven useful in SAR image studies. Oliver (1982, 1984) used the ACF extensively 

in his studies of non-Gaussian scattering, and much of the current published work is based 

on his work. 
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When only the azimuth dimension of the radar image is considered, the total 

received field at a position x can be calculated by integrating over the scattered 

contributions from elements dxi at position x1 relative to the receiver. Thus, 

+o 

s(x) = BJdx1a(x1)exp{ico(x1)Jh(x1) (3.3) 

where the function h(x) is the spatial impulse response of the imaging system, a(x1) is a 

complex scattering amplitude, p (xi) is an additional, position-dependent, phase factor of 

the scatterer and B is a constant describing the energy collection of the receiver (Oliver, 

1986). The received intensity is then defined as the square law detection of this field so 

that: 

1(x) Is(x)l2 =IBI2f$dx1dx2a(x, )a*(x2) x exp[i((x1) - co(x2))Jh(xi)h*(x2) 

Co 

(3.4) 

This phase decorrelation arises from the Goodman assumption in Section 3.1 that 

scatterers are randomly positioned within the resolution cell and the phases of the 

individual scatterers are statistically independent of each other. The properties of the 

received field and intensity for such a noise process are usually conveyed through the 

ensemble averages of the single-point moments or autocorrelation functions. Only the 
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non-zero resultant is obtained when pairs of positions are identical because of the 

decorrelation of the phase term. Hence the mean intensity is given by: 

+ 

'(I) =IBI2 cr)dxiIh(xi)I2 
OD 

(3.5) 

The mean intensity depends on the imaging function and the average surface cross section 

defined by: 

(3.6) 

The second-order two-point correlation property that is defined is the normalized 

intensity ACF given by 

g2 (x) I(x1)I(x1 + x)XI) 2 (3.7) 

Assuming the phase decorrelation, and considering only the dominant 

contributions when pairs of positions are identical, one-dimensional ACF model is 

obtained: 
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g' 2 (x) = $fd 1cLv2{((cr(x1)cr(x2)) x [jh(x1)I2 1 h(x2 +x)I2 +h(x1 )h* (x1 +x) 
co 

+00 

h(x2 )h * (x2 + x)] x (W f dx, I h(x1 )2 )_2 
oD 

(3.8) 

If it is assumed that the cross section of the surface is gamma-distributed, then the 

cross section ACF for the individual contributions may be written as (Oliver, 1985): 

1 
 =1+—g 12 (3.9) 

From Equation 3.6, the gamma-distributed cross section arises from the Gaussian-

distributed scattering amplitude (Papoulis, 1965). Therefore, we may assume that the 

surface has a Gaussian spectrum: 

(x1 —x2)2  
g12=exp(— x2 

0 

(3.10) 

where x0 is the backscatter correlation length. 

From Chapter 2, it is known that the instrument function may be represented by a 

Gaussian model for simplicity. Thus, from Equation 2.18 the power response of the 

imaging system is: 

h(x) = exp(—-) (3.11) 
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where p is the nominal resolution of the corresponding centred look. 

From Equations 3.8, 3.9, 3.10 and 3.11, we can obtain the second-order ACF 

model 

1 1  
g(2)(x)=1+exp(_)+  /2 exp( )+  exp(— 2 2  (3.12) +1 2 /-e2 -+ +xo 

xo2 xo 

The first two terms in Equation 3.12 are the uncorrelated background component 

which describe the Gaussian component of the process resulting from the interference 

between large numbers of random scatterers filling the illumination beam. The 

uncorrelated background component corresponds to the speckle behavior. A similar 

Gaussian behavior can be derived for two point receivers viewing radiation scattered from 

a continuous rough surface undergoing transverse motion. The third term decays rapidly 

outside the instrumental width and has a similar form to the second term. The fourth term 

represents the effect of fluctuations in the number of scatterers within the beam. The 

present analysis demonstrates that it is the only non-Gaussian contribution to the process 

that is affected by the properties of the surface itself (Oliver, 1991). 

From Equations 2.17 and 2.19, the system resolution is: 

1 1 H-n2 X2 11 2  
p— [—+ + ] 

2it B2 B2(1+rj)2 1+ n2 +(1+1)2 
(3.13) 
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The previous work on the ACF model of the SAP. image assumes that the image is 

perfectly focused. That is, the system resolution p is fixed in the ACF model. However, 

focus errors always exists in the image reconstruction process. Therefore, the texture 

parameters estimated from this model contain system errors resulting from the inaccurate 

model. In this research, an ACF model which contains a small focus error term has been 

constructed and it is expected that this model fits better than the old one. 

3.2.3 Second-order Single Moment Model 

As mentioned in Chapter 1, the single moment statistics are also a means to 

describe the image texture. Thus, it is another useful tool in SAR image studies. In this 

research, only the second order single moment statistics were studied. Oliver (1986) gave 

the following equation for the single moment of the image intensity: 

1(2) - K12) - 2S,, - (3.14) 

where SV 2 is the normalized second moment for the total cross section. 

Like the assumption made when the ACF model was constructed, it can be 

assumed that the surface has a Gaussian spectrum and instrument function. Thus, 
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@(x )0-(X2 )) h(x1 )I2 h(x2 )I2 x(Jcfr1 I h(x1 )12 )2 I2 2x f$cfr1cfr2  2 - ( - oo 

(3.15) 

=2 
1 

P 2 (-+1) 
xo 

The second order single moment has the same factor as the fourth term in the ACF 

model that was derived, thus, it also represents the effect of fluctuations in the number of 

scatterers within the beam. 

3.3 Texture Classification 

One important component of SAP. studies is the extraction of information from the 

image. There are two main restrictions to this process. First, the image suffers from 

speckle which introduces noise that is comparable to the ideal signal. Second, the 

resolution of the SAR system is usually comparable with many of the objects that are to 

be studied. This means that, unlike many optical images, the redundancy in the SAR 

image is small and any image interpretation must retain all of the information in the 

original data. The processing of radar images always involves some prior knowledge of 

the scene. This prior knowledge expressed as a set of models for the scene helps to 

extract information from the image. 
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3.3.1 Texture Classification Based on the ACF Model 

There are many methods to model the image texture. However, the ACF model 

has been demonstrated to fit a wide variety of natural clutter texture in coherent imagery 

(Oliver, 1989a). From Section 3.2.2, it is known that the gamma-distributed cross section 

of the scene is the result of a complex Gaussian random walk with order parameter y. As 

a consequence of this Gaussian property, all the higher-order correlation properties of the 

texture can be expressed in terms of the autocorre!ation function (ACF). The ACF 

therefore contains all the information about the surface texture. In other words, the ACF 

encapsulates the properties of the texture (Oliver, 1990; Ward, 1981). This suggests that 

texture segmentation based on ACF parameter determination may be feasible. The texture 

classification based on the ACF parameters has been applied to simulated SAR image data 

and shows good classification results (Oliver, 1990). In this research, this classification 

method was applied to real sea ice images. Based on the assumption that the SAR image 

of sea ice can be described by a K-distributed PDF, this classification algorithm is feasible. 

Estimating the parameters of a statistical distribution from measured sample values 

forms an essential part of many signal- and image-processing tasks. In the analysis of 

high-resolution SAR imagery, parameter estimation is required for such tasks as 

segmentation and target detection (Blacknell, 1994). In Section 3.2.2, the high resolution 

ACF model was developed. In that model, certain assumptions were made about the 

functional forms of the imaging system's impulse response function and the spatial 

autocorrelation function of the backscatter cross section fluctuations. In the SAR image 

intensity ACF model, the radar parameter is the SAR resolution p and the texture 
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parameters are the backscatter correlation length x0 and order parameter y. Oliver and 

White (1990) simulated several SAR image texture based on the ACF model. Figure 3.1 

shows the simulation images (512 x 512 pixels) with different values of the parameters y 

and x0. Table 3.2 lists the values corresponding to each class. 

3.3.2 Parameter Estimation Accuracy 

Since the texture classification can be made based on intensity ACF parameter 

estimation, an estimation of the accuracy of the parameters in the ACF is essential to 

demonstrate the classification reliability. The estimated parameters are biased due to the 

finite size of the sample and due to the calculation method (Oliver, 1990). The 

discrimination power of the ACF based on the parameter estimation is also significantly 

weakened by a large ACF variance. Since we wish to perform texture classification with 

as small a region as possible, knowing the reliability of the estimated parameter is 

essential. 

When the instrument function width is much less than any correlation length within 

the surface, the intensity ACF is approximately equal to the surface cross-section ACF 

except at the zero lag value (Oliver, 1989b). The subimage size must be sufficiently large 

for the parameters to be independent, corresponding to negligible edge effects. This 

situation corresponds to where the region size is large compared with any correlation 

lengths within the texture (Oliver, 1990). The fractional error is defined as the error in the 

parameter over the estimated value and this error is a measure of estimation accuracy. 
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Based on Oliver's work on two-dimensional estimation error, the theoretical form of the 

one-dimensional fractional error for x0 and ' can be derived: 

Köx0)/x0 =4 0 1 1 ++ 2J/N 

Köy/y =4( 1+ 40 —+ 5 
27y )/N 

(3.16) 

(3.17) 

where N is the number of pixels in the azimuth direction in the image from which the 

parameters are estimated. These two equations imply that the fractional error in the order 

parameter is larger than that in the correlation length. 
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xo 

7 

Fig 3.1 Large regions of textures with varying correlation lengths (rows) and order 

F1 4 71 
parameters (columns) with classes placed as follow: 2 5 8 . The 

L 6 9J 

corresponding texture parameters for each class are listed in Table 3.2 (From 

Oliver and White, 1990). 

1 2 3 4 5 6 7 8 9 

7 

XO 

0.09 0.09 0.09 0.50 0.50 0.50 0.72 0.72 0.72 

2.52 4.00 6.55 2.52 4.00 6.55 2.52 4.00 6.55 

Table 3.2 The simulation values of the texture parameters corresponding to the classes. 
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CHAPTER 4 

EXPERIMENTAL PROCEDURE AND DATA 

This chapter includes two parts. The first part describes the experiments designed 

in this research to test the hypotheses. The second part then reviews information about 

the data source used in this research. The data used is from the Labrador Ice Margin 

Experiment (LIMEX) which was conducted in the southern Labrador Sea. Three ice 

types were studied in this experiment: undeformed new ice, deformed new ice and large 

first year/brash ice matrix. 

4.1 Experiment Design 

To test the ACF model and the classification ability of the parameters in the model, 

three main experiments were designed using actual SAR data. 

• Hypothesis 1: The ACF model which includes a focus error fits the measured 

image ACF better than the ACF model without a focus error. The processed 

band width n affects the system resolution. Large n reduces the effect of focus 

error but worsens the parameter estimation accuracy. 

Experiment 1: The ACF parameters are estimated and the modeled ACF is 

compared with the measured ACF of the sea ice images in two conditions: 

with focus error and without focus error in the ACF model. In this experiment, 

n increases from 1 to 5 with increments of 1; the trial focus error ' increase 

from -5% to 5% with increments of 1%. 
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• Hypothesis 2: The fractional error, which is defined as the error in the 

parameter over the estimated value, can be used as a measure of accuracy for 

the parameter estimation. The theoretical and experimental fractional errors of 

the texture parameters are close. The fractional errors in the parameters are 

small so that the estimated parameters are reliable. 

Experiment 2: The theoretical and experimental fractional error of the selected 

targets in six channels are compared. In this experiment n equals 1 and the 

matched filter is not adjusted to perfect focus when the image is reconstructed 

(the trial focus error i'O.00). 

• Hypothesis 3: The texture parameters of the SAR image of sea ice can be used 

to perform sea ice classification. 

Experiment 3: The two estimated parameters (y and xo) for different scenes are 

compared. Each target is then divided into subareas using a rectangular 

window where y and xo and are estimated for each subarea. The purpose of 

this experiment is to find out whether texture classification based on ACF 

parameter fitting is feasible. 

4.2 Experimental Data Acquirement 

The Labrador Ice Margin Experiment (LIMEX) is an international, 

multidisciplinary, field program conducted in the southern Labrador Sea between March 4 

and April 4 of 1989. LIMEX was divided into two phases whose locations are shown in 
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Figure 3.2. More detailed information about this experiment can be found in the science 

plan (Raney and Argus, 1988), the operations plan (Argus, 1989) and the data report 

(Raney et al., 1989). 

Phase I of LIMEX focused on the microwave signatures and physical properties 

of the sea ice and snow. Phase II focused on the microwave signatures of ocean gravity 

waves, and the physical and mechanical properties of the ice being forced by these waves. 

The data used in the research were collected in phase I. 

55° 50° scale 
6Oi 

52° 
Phase 1 
419 Mar 
CGS Sir John Franklin & 

510 MV Terra Nordica 
Ice Programs 

50° 

49° 

Phase 2 
21 Mar-4 April 
MV Terra Nordica 
Ice and Oceans Programs 

o Ice edges from AES charts 

470 

46° 

Ice edge 06103 
Ice edge 27/03 

N.B. Ice within the pack 
on 27/03 was less concentrated 
than 06103. 

Figure 4.1 Location of LilviEX experimental sites, from Raney et al., 1989. 
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The main remote sensing instrument in LIMEX was the synthetic aperture radar 

system operated by the Canada Centre for Remote Sensing (CCRS). This SAR system 

included two subsystems, one operating at C-band (5.3 GHz), the other at X-band (9.25 

GHz). Both subsystems were capable of transmitting and receiving H or V polarized 

microwaves. Therefore, each has three channels: HI-I, HV, VV. Thus six channels of 

image data were obtained for each target. In the meantime, a mapping camera was used 

to acquire the optical image data of the same scene. 

4.2.1 SAR System 

The SAR imaging system operated in LIMEX is the Integrated Radar Imaging 

System (IRIS) developed by MacDonald Dettwiler and Associates. This SAR system was 

carried on the CCRS Convair-580 aircraft. The main technical specifications for the 

CCRS IRIS in high resolution mode are listed in Table 4.1. 

4.2.2 Aerial Photography 

The Convair-580 also carried a Wilde RC-10 mapping camera with black and 

white film. The image centre of the camera are fixed to the nadir point and the scale of the 

photographs was 1:2000. The aerial photographs were used to estimate the ice types 

presented in the SAR imagery by human visualization. The thinner ice is more transparent 

to the optical frequencies, thus it appears darker in the black and white film. The aerial 

photography also showed the size and shape of the floes and ice pancakes. 
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4.3 Studied Scene 

In this research three typical types of ice are studied. The location of these sea ice 

targets are labeled A, B and C in Figure 4.2. These targets' surface statistics vary from 

Gaussian to non-Gaussian. 

4.3.1 Target A: Undeformed New Ice 

Figure 4.3 is the aerial photograph of the undeformed new ice. New ice is made 

up of frazil crystals. In calm conditions, the frazil crystals quickly freeze together to form 

a solid, continuous ice cover. This ice sheet is quite thin and fragile. Since the penetration 

depth, which is defined as the depth at which the power of the electromagnetic field falls 

by lie, is less than a centimetre (Ulaby, Moore and Fung, 1986), the scattering from the 

new ice is from the surface. Therefore, the surface geometry determines the spatial 

variations of the SAR return. The undeformed floes are rafted onto each other which 

causes bright image features in the aerial photography. This type of ice should yield non-

Gaussian statistics (Collins, 1993). 

4.3.2 Target B: Deformed New Ice 

The new ice is so fragile that it easily deforms as the result of wind and wave 

action. When the large new ice floes break, they break into small angular ice floes with 

dimensions of 1-2 metres. The edge rafting of the small floes show up as many bright 

lines in the aerial photographs with sharp intersections. This can be seen in Figure 4.4 

which is the aerial photography of deformed new ice. This target is still new ice, therefore 
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the surface geometry determines the spatial variations of the SAR return. The relative 

uniformity of the ice pancakes suggests that it is a Gaussian target. 

4.3.3 Target C: Large First Year/Brash Ice Matrix 

The thickness of the first year ice is more than 30 cm. The bumping of the ice 

floes causes the breaking off of small ice pieces which further break into smaller fragments 

(on the order of a centimeter). The mixture of the small fragments and sea water is called 

brash ice. 

The dimension of the floes for target C is about 10-50 m. Figure 4.5 is the aerial 

photography for this target. A previous study shows that the statistical behavior of this 

target is strongly non-Gaussian. 
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Transmitter C X 

frequency 

radiated peak power 

average power coupling 

polarization 

chirp length 

chirp coding 

5.30 GHz 

34.3 KW 

-51.8dB 

H or V 

7 ts 

non-linear FM 

9.25 GHz 

3.8 KW 

-53.1 dB 

H or V 

15 gs 

linear FM 

Receiver 

noise figure 

compressed pulse width 

3 dB range resolution 

5.2 dB 

38 ns 

5.7 m 

5.3 dB 

32 ns 

4.8 m 

Antennae 

polarization 

azimuth beam width (one way) 

elevation beam width (one way) 

gain 

H V 

3.00 33° 

28.0° 25.0° 

26.4 dB 24.8 dB 

H V 

1.4° 1.4° 

26.0° 26.0° 

28.0 dB 28.5 dB 

System 

noise equivalent 

A/D converter dynamic range 

range sample spacing 

recorded samples 

-40 dB 

30 dB / 6 bit 

4 m 

Full Swath: 4096 

-30 dB 

Half Swath: 2048 

Table 4.1 The main technical specifications for the CCRS IRIS in high resolution mode. 

(Collins, 1993). 
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Figure 4.2 The overview of the location of the studied area. This is CCRS CMII-! SAR 

image data. The Target F in the image is named Target C in this thesis. 
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Figure 4.3 Target A: Undeformed new ice. 
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Figure 4.4 Target B: Deformed new ice. 
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Figure 4.5 Target C: Large first year/brash ice matrix. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter presents all the experimental results and discussion. The results show 

that the ACF model including the focus error fits better than the ACF model not including 

the focus error to the measured ACF of the SAR image of the sea ice. The processed 

bandwidth affects the performance of the ACF model through the system resolution. The 

estimation error in the ACF parameters is small and the sea ice classification based on the 

ACF parameter estimation is feasible. 

5.1 Nonlinear Model Fitting Method 

In the ACF model we developed in the last chapter (Equation 3.12) there are three 

parameters: system resolution p, order parameter y and correlation length X. The model 

depends nonlinearly on these three parameters. In the fitting procedure, a least squares 

solution is adopted. That is, the merit function x2 is defined and the best-fit parameters 

are determined by its minimization. Providing a set of trial values, a procedure was 

developed to improve this trial solution and output a new set of values. The procedure is 

then repeated until X2 stops decreasing or effectively stops. The output of the loop is the 

fitting result -- a new set of values. 

Let a be the set of parameters: p, y and x0. The model to be fitted is 
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yy(x;a) (5.1) 

where x is the set of lag distances. The X2 merit function is (Press et al., 1992) 

x2(a)= [ i ( i;)  
(5.2) 

where yi is the estimated ACF at the ith lag; cj is the standard deviation of the estimated 

ACF at the ith lag. 

The Levenberg-Marquardt method was used in this research to perform the 

nonlinear fitting. If 4,,t is the new set of parameters and a, is the current trial values for 

the parameters, then 

anext = acur - K x VX2(acur) (5.3) 

Where K is a constant that is small enough to keep the downhill direction. 

The Levenberg-Marquardt method is developed based on the above idea. The 

routine outputs the fitted parameters and the covariance matrix of the parameters. The 

Levenberg-Marquardt method works very well in practice and has become the standard of 

nonlinear least-squares routines (Press et al., 1992). 
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5.2 Comparison of the Two ACF Models 

The measured ACF in the image was calculated in two steps. First the normalized 

intensity ACF was calculated in the azimuth direction at a certain range position. This 

procedure was repeated until all range positions in the image were completed. Then these 

autocorrelation vectors were averaged. 

Equation 3.12 was fitted to ACF measurement. Two cases were considered: ACF 

model without a focus error and ACF model with a focus error. In the first case, the 

system resolution was calculated by Equation 3.13 in which rO.00 and only the order 

parameter and correlation length were estimated. In the second case, all three parameters 

were estimated. Figure 5.1-5.4 show the measured ACF and modeled ACF. 

The merit function x2 reflects how well the model fits the measured ACF. Table 

5.1 lists x2 values for different n using the Levenberg-Marquardt fitting methods. 

From Figures 5.1-5.4 and Table 5. 1, we can see that the ACF model fits the 

measured ACF model quite well at different values of processed bandwidth n and trial 

focus error i'. The modeled ACF including the focus error provides a better fit to the 

estimated ACF than that not including the focus error. In Figure 5.1 the fitted results of 

the two models are very similar at i'O.00. However, there is more difference between 

the two sets of ACF at i'O.00 in Figure 5.2. This is because the perfect focus of target 

A, channel CHH when n1 occurs at r°•00, while the perfect focus of Target A, channel 

XHV occurs at 1= 0.025. 
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Near the zero lag the modeled ACF is quite small compared with the measured 

ACF. At the zero azimuth lag distance, the intensity ACF g(0) equals the mean of the 

square of the intensity. When we construct the SAR imaging system model, we neglected 

the side lobe effect. Some energy is lost with this energy envelope, therefore the modeled 

y(0) is smaller than the measured y(0). 

5.3 The Effect of Processed Bandwidth on the ACF Model 

From Table 5.1, we can see that as the processed bandwidth n increases, %2 

becomes smaller. However the f of some channels increases dramatically at n=5 because 

the subaperture is too small to get enough information to represent the characteristics of 

the scene. Thus, the model fails to represent the image ACF at large n. 

Figure 5.5 shows the modeled ACF including focus error and not including focus 

error at different n. Figure 5.5 indicates that as n increases, the curve of the fitted ACF 

including focus error and the curve of fitted ACF not including focus error become closer. 

This effect is more distinctive at the X band with n as large as 5 than at C band. From 

Equation 3.13, we can see the system resolution with a focus error and the system 

resolution without a focus error of the X band are closer than those of the C band with n 

as large as 5. Overall large n can reduce the effect of the focus error. This result can also 

be seen in Table 5.1 which is consistent with our model. 

In the later study, the ACF model with focus error was used because of the better 

fit. That is, the Equation 3.12 was fitted to ACF measurements and the three parameters 

were estimated. 
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5.4 The Effect of Processed Bandwidth on the Parameters of the ACF Model 

5.4.1 The Effect of Processed Bandwidth on the System Resolution 

Table 5.2 lists the system resolution at different n for each channel of Target A and 

C. The system resolution was estimated by fitting the ACF model to the measured ACF. 

The matched filter of the imaging system (Equation 2.9) indicates that the fractional look 

of the image is a low pass filter. That is, the larger the n, the greater the loss of the high 

frequency information. The experimental results indicate that the low pass filter changes 

the system resolution. The smaller the bandwidth of the filter, the larger the system 

resolution. The change of the system resolution with n is consistent with the theory. 

The system resolution computed from Equation 3.13 is the same for all targets in a 

certain channel (Collins, 1993). However the values in Table 5.2 indicate that the system 

resolution depends not only on the system parameters but also on the target. As 

mentioned in Chapter 3, the more Gaussian the scene, the narrower the correlation 

function. Thus the system resolution of Target A is smaller than that of Target C as 

Target A is more Gaussian than Target C. 

5.4.2 The Effect of Processed Bandwidth on the Order Parameter 

Table 5.3 lists the order parameters at different n for each channel of Target A and 

C with the trial focus error r'O.00. As seen from this table, the order parameter of 

Target A for the three X band channels increases as n increases. The Cvv also has the 

same change. This means that the number of scatterers per resolution cell increases and 
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the image texture becomes more Gaussian as n increases. It is seen that the texture of the 

moderate Gaussian target A at n=5 has too much uncertainty. The image is only 

composed of speckles and part of the texture information is lost. At this point, the ACF 

model seems to fail to represent the texture properties of the image. Also seen from this 

table, the order parameter of channels CHH and CHV decreases when n increases from 1 to 

5. This result implies that the added scatterers with the increase of the resolution cell are 

correlated to the original ones. The destructive effect results in a smaller amount of 

scatterers in a resolution cell. 

For the non-Gaussian target C, the order parameters do not increase as fast as 

those of the moderately non-Gaussian target A when n increases from 1 to 5. Thus for the 

non-Gaussian target, a larger n can be applied to save the computation load while most of 

the texture information of the image is kept. 

Comparing all the six channels of the two targets, it is found that the channels Cvv 

and Xvv are more speckled. 

5.4.3 The Effect of Processed Bandwidth on the Correlation Length 

Table 5.4 lists the correlation length at different n for each channel of Target A and 

C with the trial focus error 'O.00. It can be seen from this table that the correlation 

length increases as n increases from 1 to 5. As a low pass filter, the fractional look of the 

image reduces the system resolution and reduces the high frequency information in the 

image. From Figure 3.1 it can be seen that the loss of the fine structural information in the 

image increases the correlation length of the image texture. The correlation length of 
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target A at the X band is much larger than the image size (1024 pixels in azimuth 

direction) at n=5. For target C, the same parameter with channels XHV and Xvv is also 

much larger than the image size (2048 pixels in azimuth direction) at n=5. When 

constructing the ACF model, it is assumed that the correlation length is much smaller than 

the image size. Thus, the large correlation length at these channels makes the ACF model 

no longer hold true. Therefore, the fitted result based on the ACF model is not reliable at 

n=5. 

5.5 The Standard Deviation of the Estimated Parameters 

When we use the Levenberg-Marquardt methods to perform the ACF model fitting 

to the measured ACF, the routine not only outputs the three estimated parameters but also 

outputs the covariance matrix. Table 5.5 and Table 5.6 list the standard deviation of the 

order parameters and correlation length which are from the covariance matrix. The 

standard deviation of the parameters is small except when n5. This result implies that the 

estimated parameters are reliable. However, although a large n can decrease the 

computation load, it reduces the accuracy of the estimated parameters. 

5.6 Second-order Single Moment 

Table 5.7 lists the second-order single moment in azimuth direction at different n 

for each channel of Targets A and C with the trial focus error i'=O.00. First the single 

moment values at a certain range position were measured in the azimuth direction. This 

procedure was repeated until all range positions in the image were calculated. Then these 
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values were averaged to get the mean measured second-order single moment and the 

standard deviation. Compared with Table 5.3, the change of the second-order single 

moment has a certain relationship with the change of the order parameter. An increase of 

the order parameter is accompanied by a decrease of the second-order single moment. 

This is because a larger number of scatterers results in a greater destructive effect. The 

most specked channels Cvv and Xvv have the weakest image intensity. These results are 

consistent with our single moment model (Equation 3.15). 
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target n CHH CHV CVV XHH XHV XVV 

A 1 

3 

5 

C 1 

3 

5 

0.5554 1.0271 1.4100 1.0853 1.9154 0.4162 

1.0591 11.8032 77.8593 20.0669 35.6120 27.5020 

0.3255 0.5207 0.6984 0.5838 0.1267 0.1663 

2.3926 7.5997 69.4026 29.9510 32.7500 50.0668 

0.3218 0.4569 45.4928 41.4032 39.2411 52.1095 

7.3805 7.7910 79.8412 49.2674 44.0347 57.6210 

0.5121 1.0988 1.4988 0.4313 2.1593 0.7579 

2.8152 9.7061 1.7827 6.9720 32.1740 5.8735 

0.3799 1.0998 0.3931 0.3975 1.5182 0.4613 

3.7329 9.7491 10.4055 12.9369 32.4258 21.3860 

0.5614 0.8780 0.3733 0.4092 31.9865 28.4481 

5.0184 11.3162 24.0905 17.1500 33.3549 30.5080 

Table 5.1 Merit function x2 of Target A and Target C with trial focus error r'0.00. The 

first row of each n represents the results of the ACF model including the focus 

error in which the system resolution is estimated by fitting the ACF model to the 

measured ACF. The second row of each processed bandwidth n represents the 

results of the ACF model not including the focus error in which the system 

resolution is fixed assuming the image is perfectly focused. 
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target n CHH CHV CVV XHH XHV XVV 

A I 

3 

5 

C 1 

3 

5 

0.7277 0.5734 0.4374 0.6301 0.5528 0.6150 

1.2207 1.0855 0.8541 1.2448 1.2182 1.1837 

1.7914 1.7161 2.2285 3.3044 3.5656 3.3630 

0.6064 0.5597 0.5688 0.7162 0.6554 0.7022 

1.1291 1.0570 0.9590 1.2740 1.3035 1.2926 

1.8152 1.6900 1.4522 1.9064 3.3925 3.3796 

Table 5.2 The system resolution at different processed bandwidths n for each channel of 

targets A and C with the trial focus error i'O.00. The system resolution is 

estimated by fitting the ACF model to the measured ACF. 
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target n CHH CHV CVV XHH XHV XVV 

A 1 

3 

5 

C 1 

3 

5 

9.8 8.3 23.1 12.1 11.8 23.4 

7.4 5.8 37.2 14.2 12.2 26.9 

6.2 4.8 8.0e+ 1.0e+93 1.8e+ 5.5e+ 

158 100 156 

1.71 2.12 6.9 2.17 3.19 5.37 

1.67 2.04 7.0 2.29 3.34 5.7 

1.70 2.14 6.8 2.24 6.81 28.4 

Table 5.3 The order parameter at different processed bandwidths n for each channel of 

targets A and C with the trial focus error ii'=O.00. The order parameter is 

estimated by fitting the ACF model to the measured ACF. 
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target n CH1I CHV CVV XHIH XHV XVV 

A I 

3 

5 

C 1 

3 

5 

10.04 11.01 10.26 10.67 11.44 10.30 

11.07 14.4 15.62 15.0 17.4 10.76 

11.6 15.0 26 892 1.2e+3 26 

14.5 13.2 10.85 15.4 11.85 12.29 

14.8 13.7 14.05 16.4 14.6 14.0 

15.3 15.0 13.7 16.3 7.le+ 1.4e+ 

134 145 

Table 5.4 The correlation length at different processed bandwidths n for each channel of 

targets A and C with the trial focus error r0.00. The correlation length is 

estimated by fitting the ACF model to the measured ACF. 
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target n CHH CHV CVV XHH XHV XVV 

A 1 

3 

5 

C 1 

3 

5 

4.7564 2.0885 10.5239 4.5276 3.6736 15.5963 

3.4331 1.6877 31.1517 8.1296 5.0364 27.6584 

3.2785 1.6964 Inf Inf Inf Inf 

0.2326 0.2302 1.6619 0.2804 0.2750 0.9071 

0.2850 0.2837 1.8944 0.3674 0.4312 1.3306 

0.3868 0.3892 2.1448 0.4491 Inf Inf 

Table 5.5 The standard deviation of the order parameter at different processed bandwidths 

n for each channel of targets A and C with the trial focus error i-'=0.00. The 

standard deviation of the order parameter was the output of the Levenberg-

Marquardt routine when the ACF model was fit to the measured ACF. 
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target n CHH CHV CVV XHT-J XHV XVV 

A 1 

3 

5 

C 1 

3 

5 

0.5533 0.4483 0.2674 0.4227 0.4535 0.3574 

0.8416 1.3341 0.8083 1.2182 1.5812 0.4955 

1.2143 2.0613 Inf Inf Inf Inf 

2.3432 1.2577 0.4323 2.1712 0.5253 0.5939 

2.9103 1.7243 0.9332 2.8055 1.1911 1.0397 

3.8272 2.4531 1.1153 3.2175 Inf Inf 

Table 5.6 The standard deviation of the correlation length at different processed 

bandwidths n for each channel of Target A and C with the trial focus error 

i'=O.00. The standard deviation of correlation length was the output of the 

Levenberg-Marquardt routine when the ACF model was fit to the measured 

ACF. 
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target n CHE CHV CVV XHT-i XHV XVV 

A 1 

3 

5 

C 1 

3 

5 

2.54 2.27 2.056 2.24 2.17 2.11 

±0.8730 ±0.1654 ±0.0931 ±0.2027 ±0.1367 ±0.1991 

2.6 2.41 2.046 2.23 2.18 2.11 

±1.0589 ±0.2643 ±0.0977 ±0.2175 ±0.2004 ±0.2029 

2.6 2.51 2.04 2.18 2.14 2.09 

±1.0600 ±0.4082 ±0.1361 ±0.1975 ±0.2324 ±0.1956 

3.36 3.07 2.42 3.04 2.73 2.51 

±0.5234 ±0.2897 ±0.6184 ±0.3471 ±0.1596 ±0.4530 

3.46 3.17 2.42 3.02 2.73 2.51 

±0.6501 ±0.3511 ±0.3787 ±0.3714 ±0.1952 ±0.5007 

3.47 3.13 2.39 3.00 2.70 2.47 

±0.6994 ±0.2881 ±0.2945 ±0.4144 ±0.2371 ±0.3926 

Table 5.7 The second-order single moment at different processed bandwidths n for each 

channel of targets A and C with the trial focus error i'=O.00. These results are 

mean values of the measured second-order single moment in the azimuth 

direction. 
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5.7 Texture Classification of the Sea Ice 

5.7.1 Estimated Parameters of the Three Ice Types 

Table 5.8 lists the estimated order parameters and correlation length for targets A, 

B and C. The azimuth length of the three images are all 1024 pixels so that the estimated 

values are comparable. To achieve the highest resolution, the number of looks was chosen 

to be 1. 

The order parameters of Target A and Target C are quite different in all six 

channels. The order parameters of Target B and Target C are also quite different in all six 

channels. At channel XHH and channel Xvv, Target B appears more Gaussian than Target 

A. At channel Cvv and channel XHV, Target A appears more Gaussian than Target B. 

At channel CHH and channel Cm,, the order parameters of Target A and Target B 

are almost the same. However, the correlation lengths of the two targets in the two 

channels are quite different. The size of the ice floes for Target B is much smaller than 

that for Target A and Target C. The correlation length of Target B is the smallest 

among the three targets except at channel Cvv and Xvv. The correlation length of the 

three targets is quite close at Cvv and Xvv. From Section 5.3, it is known that the image 

appears more speckled in the two channels for which some target texture information of 

the target was lost. The correlation length of target A and C are very close in all six 

channels. 

The results in Table 5.8 show that the order parameter and correlation length in 

the ACF model can be used to perform texture classification of the three types of sea ice. 
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5.7.2 Fractional Error of the Estimated Value 

Table 5.9 lists the theoretical prediction and experimental result of the fractional 

error of targets A, B and C. The error in correlation length is much smaller than that in 

order parameter. This result is consistent to our fractional error models (Equations 3.16 

and 3.17). Oliver (1989) found that the error in the order parameter was dominated by 

the variation in the zero-lag value between different ACF estimation. In this case, the 

error is caused by the variation in the zero-lag value between different ACF values in 

different range position, while the error in the correlation length depended on the 

fluctuations between different lag values of the same estimate. From figures 5.1-5.4 it can 

be seen that the fluctuations between different lag values is quite small which results in a 

small error in the correlation length. Therefore texture classification based on the 

correlation length is more reliable than that based on the order parameter. 

For moderately non-Gaussian Target A, the theoretical predictions and the 

experimental results show some similarity except in the case of the order parameter for 

channels CHV and Xvv. For Gaussian Target B, there is a greater difference between the 

theoretical predictions and the experimental results of the order parameters. The 

experimental fractional error of these six channels seems to have a random distribution. 

The theoretical predictions and the experimental results of the order parameters of Target 

C are quite close. These results demonstrate that the fractional error in the order 

parameter of the strongly non-Gaussian target is smaller than that for Gaussian targets 

which means that the variation in the zero-lag value between different ACF values is much 

smaller. However, the fractional error in the correlation length of this target type is 
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relatively large which means that the fluctuations between different lag values of the same 

estimate are relatively large. This phenomenon is consistent with the general properties of 

the autocorrelation function. 

The experimental fractional errors in the correlation length show less fluctuation 

among the six channels than the fractional errors in the order parameters. This is because 

the standard deviation in the correlation length is much smaller than that in the order 

parameter. The experimental results are calculated using the estimated values. Thus, 

there is more dissimilarity in the experimental fractional error of the order parameter. 

5.7.3 Texture Parameters of the Subimage 

When texture classification is done, this process should be performed with as small 

a region as possible. However, the finite image size will bias the parameters estimated 

from the ACF model that is based on an assumption that the image size is infinite. 

Therefore, the image size chosen must be much larger than the correlation length. All the 

three targets were divided into subareas using a window of 128 pixels in azimuth 

direction. If the window size is too small, for example 32 pixels in azimuth direction, the 

error in the estimated parameters is large and the result is inaccurate and unreliable 

because of the bias introduced by the finite region size. The fractional error in the two 

texture parameters is of the same level as that listed in Table 5.9 which is quite small. 

Figures 5.6 and 5.7 show the histograms of y of subimages, figure 5.8 shows the 

histogram of x0 of subimages where y and x0 of the subareas both have normal 

distributions. Target A is made up very large ice blocks, hence one subareas' texture may 
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be totally different from others. For example, the subimage may only contain the ice edge 

or the center of the ice block. Thus, the histogram of y for Target A has more than one 

peak. However, the histogram of y for targets B and C has only one peak (see figures 5.6 

and 5.7). 

Figure 5.7 illustrates that Target B and Target C can be separated by the order 

parameter y of channel CHV. Figure 5.8 indicates that Target A and Target B can be 

separated by the correlation length xo of channel CHH and that Target B and Target C can 

be separated by the correlation length x0 of channel Cw. Figure 5.9 shows the histogram 

of y of subimages of channel C. From this histogram, we find that Target A and Target 

B or Target C can be separated by the order parameter ' of channel C. However the 

probable value of the texture parameter of different sea ice types overlaps. This reduces 

the accuracy of classification. The error in the order parameter and correlation length 

makes the performance even poorer. Therefore other algorithms are necessary in addition 

to the ACF model when we perform classification with a small region. 
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A B C 

7 XO X0 7 X0 

CHH 9.8 10.04 9.0 7.23 3.12 10.88 

±4.7561 ± 0.5533 ±8.1783 ±0.4973 ±0.6047 ± 0.8530 

CHV 8.3 11.01 8.5 9.07 2.99 10.81 

±2.0885 ± 0.4483 ±2.0796 ±0.3137 ±0.5141 ± 0.8219 

CVV 23.1 10.26 17.1 10.48 7.9 10.40 

±10.5288 ± 0.2674 ± 4.5852 ± 0.2493 ±1.7422 ± 0.4263 

XHH 12.1 10.67 14.5 9.04 4.4 11.3 

± 4.5276 ± 0.4227 ± 6.5308 ±0.3110 ±1.1125 ± 0.8027 

X.HV 11.8 11.44 8.1 8.57 4.40 10.63 

± 3.6736 ± 0.4535 ±1.8908 ±0.2818 ±0.8971 ± 0.6337 

XVV 23.4 10.30 31.7 10.58 7.2 9.99 

±15.5963 ± 0.3574 ±25.5724 ± 0.3882 ±2.0735 ±0.4916 

Table 5.8 The texture parameters of y and xo and their standard deviation, azimuth length: 

1024, n1, the trial focus error q'=0.00. 
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channel theoretical 

prediction 

experimental 

result 

theoretical 

prediction 

experimental 

result 

A CUB 0.4148 0.4861 0.0327 0.0551 

CHV 0.4404 0.2510 0.0344 0.0407 

CVV 0.4028 0.4554 0.0324 0.0261 

XHH 0.4225 0.3734 0.0335 0.0396 

XHV 0.4380 0.3122 0.0347 0.0397 

XVV 0.4034 0.6658 0.0324 0.0347 

B CHH 0.4322 0.9081 0.0340 0.0688 

CHV 0.4860 0.2444 0.0381 0.0346 

CVV 0.5031 0.2683 0.0402 0.0238 

XHH 0.4693 0.4515 0.0375 0.0344 

XHV 0.4742 0.2329 0.0371 0.0329 

XVV 0.4941 0.8069 0.0401 0.0367 

C CHH 0.2357 0.1937 0.0649 0.0784 

CHV 0.2371 0.1721 0.0650 . 0.0760 

CVV 0.2033 0.2215 0.0596 0.0410 

XHH 0.2241 0.2553 0.0635 0.0728 

XHV 0.2198 0.2036 0.0623 0.0596 

XVV 0.2011 0.2898 0.0587 0.0492 

Table 5.9 The theoretical prediction and experimental results of the fractional error for 

targets A, B and C. The azimuth size of the target area is 1024, n=1, the trial 

focus error q'=0.00. 
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Figure 5.1 Measured and modeled ACF. Target A, Channel CHH, n=1, the trial focus 

error ,q"=0.00. The solid line represents the measured ACF; the dashed line 

represents the modeled ACF with focus error; the circles represent the ACF 

model not considering the focus error. 
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Figure 5.2 Measured and modeled ACF. Target A, Channel XHV, n=1, the trial focus 

error i'=O.00. The solid line represents the measured ACF; the dashed line 

represents the modeled ACF with focus error; the circles represent the ACF 

model not considering the focus error. 
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Figure 5.3 Measured and modeled ACF. Target A, Channel CHH, n1, the trial focus 

error 11'=O.05. The solid line represents the measured ACF; the dashed line 

represents the modeled ACF with focus error; the circles represent the ACF 

model not considering the focus error. 
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Figure 5.4 Measured and modeled ACF with different n. Target F, Channel CHH, the 

trial focus error 1'=O.03. The solid line represents the measured ACF; the 

dashed line represents the modeled ACF with focus error; the dotted line 

represents the ACF model not considering the focus error. 
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Figure 5.5 Modeled ACF of Target A of different channels, the trial focus error 1'=O.02. 

The solid line represents the modeled ACF with focus error; the dashed line 

represents the ACF model not considering the focus error. 
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Figure 5.6 The histogram of y of subimages (azimuth length: 128), channel XHH, n= 1, the 

trial focus error fl'=O.00. 
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Figure 5.7 The histogram of? of subimages (azimuth length: 128), channel CHV, n=1, the 

trial focus error Ti'=O.00. 
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Figure 5.8 The histogram of x0 of subimages (azimuth length: 128), channel CHH, n1, 

the trial focus error ri'=O.00. 
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Figure 5.9 The histogram of y of subimages (azimuth length: 128), channel CHH, n=1, the 

trial focus error Tl'=O.00. 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The primary concern of this research was the extraction of information about the 

general SAR scene rather than specifically shaped targets. This is often described as 

background clutter. A K-distribution model was applied to describe the statistics of the 

sea ice image. The intensity ACF model was derived based on this assumption. The 

experiments show that the intensity ACF model including focus error is in excellent 

agreement with the estimated ACF of the sea ice image through the high resolution radar. 

The system resolution not only is a function of radar system parameters but also depends 

on the characteristics of the target. Generally speaking, the large look number n reduces 

the effect of focus error. 

The theoretical and experimental fractional errors of the three targets used in the 

research in six channels show similarities with a few exceptions. The fractional error in 

the order parameter is larger than that in the correlation length. The accuracy with which 

the parameters of the sea ice texture can be estimated can be expressed by a modified 

theory. The difference between the theoretical and the experimental fractional error is a 

result of the edge effects introduced by the finite image size (Oliver, 1989). 

The fractional error of the texture parameters is small. The three sea ice types 

represented by targets A, B and C can be separated by the texture parameters: order 

parameter and correlation length. The image size must be much larger than any 
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correlation length within the texture to reduce the bias in the estimation introduced by the 

finite size of the image. The azimuth length in the classification is 1024 and 128 pixels. 

Since the K-distribution model has been demonstrated to be applicable to a wide variety of 

natural clutter textures in coherent imagery, the results in our research suggest that texture 

classification based on the ACF parameter estimation is feasible. This classification 

algorithm is most useful for large area targets, such as sea ice, agriculture, etc. This 

research suggests that this new texture classification algorithm based on ACF parameter 

estimation of SAR image data holds promise for the discrimination between terrestrial 

surfaces. 

6.2 Recommendations 

In this research, only the one-dimensional ACF model was constructed. To better 

describe the texture information of the image, the texture parameters in the range 

direction need to be considered. A two-dimensional ACF model is essential to fully 

describe the image texture. 

When we do the texture classification, we wish to perform this process with as 

small a region as possible. When the image size is reduced to 128 pixels, the texture 

parameters of the subimage have a normal distribution. The value ranges of the texture 

parameter of targets A, B and C are overlapped. The selection of an appropriate threshold 

is essential when classification is performed. To perform sea ice classification with smaller 

image size, the knowledge of the image texture is not enough. Other sources of 

information about the target are essential to do more accurate classification. 
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