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Abstract 

The primary objective of this work was to map biological diversity at the southern 

extent of the boreal forest in Prince Albert Nationd Park, Saskatchewan, Canada. 

This was accomplished by using remote sensing and GIs techniques to spatially 

estimate the four input vsriables of an ecological model able to predict biological 

diversity. The MsiabIes of interest were (1) the distance from a forest stand to a 

watershed ridgehe, (2) the time since the last forest fire, (3) the canopy species 

type and (4) the canopy s t e m  density. The methods used to map each Msiable are 

discussed in detail. The data used to estimate these vasiables included spaceborne 

imagery (electrooptical and synthetic aperture radar) and vector format elevation 

contours, streams and iakes. Close attention was paid to estimating the uncertainty 

associated with each input variable. The results are presented in the form of three 

maps of biological diversity in The Park. These maps indude predicted biodiversity 

as  well as  an upper and lower bound map based on the propagation of dl quantified 

uncertainties. The results show that combining spatidy estimated input parameters 

with such a model was reasonably successful and is an innovative use of remote 

sensing and GIs. 
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Chapter 1 

Introduction 

The boreal forest spans the northern hemisphere through Canada, Russia and Alaska 

and plays an important role in our society. In addition to its vital role in earth- 

atmosphere interactions, the boreal forest is of great economic significance ks a re- 

newable resource. It provides us with valuable and numerous pulp, paper and lumber 

products that are used by aJl facets of our society. It is in our interest to sustain this 

resource and it is, therefore, the subject of much scientific research geared toward 

understanding the mechanisms and processes of which it is a part. 

Fire has always played an important role in the proper functioning of the boreal 

forest. The serotinous pine cones of the Pinus bu&ana tree species, for instance, 

will not open and release their seeds without exposure to extremely high temper- 

atures and therefore rely on fire for regeneration (Cameron, 1953; Johnson, 1992). 

Although the boreal forest is a dynamic ecosystem with continual disturbance by 

fire, it has been capable of maintaining itself in a relatively stable state. With this 

in mind, the goal of hasvesting practices is seek to mimic this form of naturd distur- 

bance. However, only by understanding the processes that govern natural mortality 

and regeneration, can this god be r e a l i d .  

Biological diversity (or biodiaersity) is one important aspect of this research and 

it is the subject of this study. Biodiversity in the boreal forest is not a dynamic 

process itself; rather, it is the product of many processes. These include internal 

processes operating within the ecosystem a9 well as external processes operating on 



the ecosystem. 

Currently, ecologists are able to measure and map biodiversity of flora in the 

boreal region by collecting various ground sampled measurements of vegetation in 

forested stands. Although this method is by far the most accurate, it is a very 

costly, time consuming and labour intensive process. From these ground sampled 

measurements, ecologists can also study and characterize the processes operating 

in the boreal forest. If the underlying processes which shape biodiversity can be 

determined and parameterized in a mathematical model, they can potentially be 

used to predict biodiversity. 

However, whether biodiversity is estimated directly horn the ground sampled 

data or predicted with mathematical models from ground measured input variables, 

we are left with only stand-based estimates of diversity. O w  understanding of bio- 

diversity over the landscape is therefore Limited by these sparse da t a  To improve 

our understanding, there is a need to map diversity over an entire landscape. The 

question then arises, &how can this be accomplished?" 

Remote sensing and GIs techniques are concerned with handling and manipu- 

lating spatial da ta  This spatial data might include remotely sensed imagery or a 

digital elevation model. Given these spatial datasets, GIs and remote sensing tech- 

niques can potentially be used to measure and map the variables which ecologists 

use to predict biodiversity for a single point, over a large area. And given that a 

biodiversity prediction model can be created and that the input variables can be 

spat idy chaxacterised over large areas, a map of biodiversity can be produced. 

The primary objective of this work is to map the spatial distribution of herba- 

ceous plant biodiversity dong with an estimate of its uncertainty, in the southern 



boreal mixwood forest in Prince Albert National Park. 

Given this goal and the premises that have been set above, two general questions 

can be defined: first, what are the ecological processes that can be  used to predict 

biodiversity and how can they be measured and parameterized in a mathematical 

model? Second, how can remote sensing techniques and GIs be used with spatial 

data to map these parameters over an area of the boreal forest. The focus of this 

thesis will be on the second question. However, the reader will also be presented 

with a discussion of an ecological model developed by Chipman (1999) which is able 

to predict biological diversity in the southern mixwood boreal forest. In conjunction 

with spatial input parameters derived from this work, the model will be used to map 

diversity over the landscape. 

As a famework for discussing this research, background information on topics 

relative and pertinent to this work wi l i  be presented in the remaining sections of 

this chapter. First, biodiversity will be discussed in terms of how it is described and 

quantified (51.1) for this study. 

Chapters 3 through 6 discuss the four input variables of the ecological model 

needed to predict diversity. Within each of these chapters, the reader will find an 

introduction to the topic, a discussion of any computer algorithms developed, the 

methods used to map each variable (spatially) and an assessment of the uncertainty 

in each map created. Chapter 7 links Chapters 3 through 6 together by discussing 

how each input map was used in the implementation of the ecological model to 

map biodiversity. The resulting maps of biodiversity estimates and uncertainty are 

presented and discussed. 



1.1 Defining and Quantifying Biological Diversity 

In the broadest sense, biological diversity is natural variation. This natural variation 

can occur at the level of the molecule, gene and species. At these levels, biologi- 

cal diversity can be described across many scales such as the forest stand or over 

landscape units such as a drainage basin (Huston, 1994). 

Ecologists generally use two components to describe biological diversity or bio- 

diue~sity. The first is species richness (S) which is simply a count of the number 

of ditferent species present in a given arek The second is known as evenness which 

is also refmed to as species relative abundance and describes the proportions of 

species in the area. A natural ecosystem is usually composed of a few species that 

are very abundant within an area and many species which are much 1- abundant. 

A measure of evenness accounts for this aspect of diversity (Magurran, 1988; May, 

1975; Whittaker, 1977). Although both components are accepted representations of 

diversity, re1-g strictly on a measure of richness to describe diversity is potentidy 

dangerous because it does not describe the distribution of species in the area. 

A note on biological diversity in the context of forests: trees usually contribute a 

greater quantity of usable natural resources to a site t6sn herbaceous plants. EEgh 

diversity areas, therefore, are not necessarily beneficial. For example, shortly after 

an area has been harvested, herbaceous plants and shrubs that were once starved for 

light and competing for nutrients and moisture with the mature canopy above would 

be fiee to grow. In addition, invasive species that have migrated in horn nearby areas 

will be able to grow. Within a short time span (which could be years or months), 

the number of species in the area would be very high but not necessarily bendcia1 



to the organisms that use the area (Harper and Hawksworth, 1995; Born- and 

Likens, 1979). 

1.2 Ecological Modeling For Mapping Biodiversity 

As was previously mentioned, biological diversity is shaped by many different pro- 

cesses operating at different spatial and temporal scales. In the context of this 

reseuch, the major processes shaping diversity are of a geomorphologicd a d  eco- 

logical nature. Although it is difficult to describe and quantify these process over an 

entire landscape, often there are surrogates that we can measure and use to obtain 

relevant and meaningful information. In the bored mivwood forest, research has 

indicated that four surrogate variables can be used to describe biological diversity. 

These indude (1) canopy stem density and (2) canopy type which are associated 

with light interactions in the canopy, (3) timesince-fire which is a disturbance pro- 

cess and (4) distance from a ridgeline which is related to the processes operating on 

a hillslope. 

The common thread between these variables is that they are related to the use 

or manipulation of plant resources. Principally, the resources are light, soil nutrients 

and water (soil moisture). Although perhaps meaningless in their own right, these 

variables can be shown to be related to geomorphologicd and ecological processes - 

the very processes that shape biological diversity. Subsections 1.2. L to 1.2.3 describe 

the processes that are thought to influence biodiversity in the boreal forest. 



t -2.1 Light-Canopy Interactions 

Canopy stem density (CSD) is simply a measure of the number of canopy tree stems 

or trunks in an area (stems/ha). For this study, a canopy tree is defined as one 

that is greater than 10m td l  with a trunk diameter at breast height (DBH) of 10 

cm or greater. The CSD measure has a number of inter-related implications. First, 

h o s t  $1 species are competing with each other for resources within the ecosystem. 

If the canopy stem density is relatively high, there will be many trees competing 

for the same resources. S d g h t  is one of these resources which all plants need for 

photosynthesis. Specifically, one can expect that with an increase in canopy stem 

density, there should be a relative increase in leaf (or needle) area from canopy trees. 

This increased leaf area will decrease the amount of light reaching the subcanopy 

vegetation since the canopy trees will use and reflect relatively more light than in 

a low leaf area canopy. Increased light competition between subcanopy vegetation 

can result in some species experiencing local extinction. Liders et al. (1998) states 

that understory development is inversely proportion& to canopy development. Some 

species are shade tolerant and can compete effectively with low levels of direct light. 

Others which are not tolerant to these low light levels will die. In a mature forest 

with a well developed canopy, it was not uncommon to find very little herbaceous 

vegetation below the canopy (personal observation). This observation is supported 

by Haipern and Spies (1995) and Smith and Huston (1989). 

The type of canopy present wiIl also influence Light transmission to the forest 

floor. For instance, a dense conifer (white spruce for example) canopy can cause an 

almost total absence of shrubs on the forest floor due to low light levels. Trembling 



aspen canopies, on the other hand, are more voluminous but less dense and allow 

direct sunlight to intermittently reach the forest floor. These small sunlight patches 

are cdled sun flecks (Lieffers et al., 1998). 

1.2.2 Disturbance Processes 

A disturbance is a process that causes mortality of plants due to an externd con- 

dition. It has been shown that the intensity, frequency, timing, area affected and 

effect on resources are useful properties for describing disturbance processes (Huston, 

1994). Of interest in this work is how a disturbance works to shape the diversity of 

a landscape. Even with acwate parameterisation of the above properties, there is 

no single rule for predicting diversity. Buston (1994) identifies that the initial state 

of the ecosystem, population growth dynamics and species competition dynamics 

are also important factors to consider when examining the effects of disturbance on 

biological diversity. Also important to consider are the effects of disturbance on 

diversity at different time scales. In the short-term, for example, species mortal- 

ity could result in local extinction and therefore, a reduction in diversity. In the 

long-term, there could be evolutionary changes in species that result in adaptation 

and therefore, resilience to disturbance. And within these time s d e s ,  changes in 

resource adability caused by disturbance can have a slow dect on diversity in 

terms of species growth, reproduction and competition strategies (Huston, 1994). 

Fire is a major disturbance process operating on the boreal forest. AIthough 

some are caused by humans, both acddentIy and purposely (prescribed burning 

techniques), most are lightning caused and have been a part of the ecosystem for 

thousands of years. Lightning caused fires account for 90% of the area burned. Fire 



in the boreal region has produced patchy or mosaic patterns of diversity across the 

landscape (Bridge, 1997; Johnson, 1992; Weir, 1996). 

In 51.1 there was brief mention of the effect of forest harvesting on the vegetation 

composition. It is known that immediately after a disturbance, the number of species 

in an area will rapidly increase. Although there is great competition for resources, 

the absence of a canopy dramatically increases the availability of light and nutrients. 

Eventually, certain species will dominate and a canopy will form. The mortality of 

shade intolerant species under the canopy will increase snd the vegetation underneath 

the canopy will thin out (Aber and MiliIlo, 1991; Bormann and Likens, 1979; Hdpern 

and Spies, 1995). Ideally, the function of diversity with time can be used to predict 

the diversity of a given forest stand at a certain point in time. 

1.2.3 Hillslope Processes 

A landscape can be conceptualized as a wire framework of ridgelines and valley 

bottoms on which hillslopes axe hung. Landscape topography, through the force 

of gravity, exerts a major influence on the movement of moisture and nutrients. 

Generally, moisture and nutrients wil l  move from higher elevations to lower elevations 

through pathways governed by the shape of the landscape. This simple notion says 

something important about where we should expect to find high levels of nutrients 

and moisture versus lower levels. Moving into the realm of ecology, nutrients and 

moisture are important resources for the growth of plants. We can expect, therefore, 

to find relatively higher amounts of resources in &y bottoms versus the tops of 

hills or on ridgelines. As a result, the general pattern that emerges on the landscape 

is one of higher plant diversity on hilltops and lower diversity in valley bottoms 



(Bridge, 1997). 

The fact that biological diversity will usually be higher on relatively higher PO- 

sitions on a hillslope is somewhat counter-intuitive since the quantity of moisture 

and nutrients will be relatively lower. It is very intuitive to think that there should 

be more plants and a greater variety of them in the MUey bottoms where resources 

are relatively high. How do we explain this? An ecological theory of competitive 

exclusion may explain this phenomenon. Essentially, the argument states that if two 

or more organisms are competing for similar resources, one will ultimately become 

more successfd than the others and crowd the others out. The result would be 

local extinction of the unsuccesay competing species and ultimately an expected 

reduction in species diversity (Huston, 1994). 

Ideally, given the preceding discussion, an estimate of soil moisture and nutrients 

available to the vegetation can be determined for any point in a drainage basin. 

However, basin hydrology and nutrient concentrations are atfected by complex inter- 

actions between vegetation, geology, geomorphology and climate which make such 

estimates difficult and sometimes impractical to obtain over large areas. Further- 

more, it has been shown by Bridge (1997) that vegetation patterns in the southern 

boreal mixwood can be predicted from the surrogate measurement of relative po- 

sition on a hillslope. Chapter 3 discusses the methods used in this work to map 

distance from a ridgeline. 

1.2.4 A Biodiversity Prediction Model 

The preceding discussions offered a mixture of theoretical and empirical explana- 

tions of processes that influence the shaping of biodiversity in the bored forest. By 



combining our knowledge of processes that we understand, there is the potentid to 

create a mathematical model based upon empirical observations that can be used to 

predict biodiversity at a given point in space and time. Given the spatial distribution 

of these surrogate Mliables, such a model can be used to predict and map biological 

diversity. 

A model was developed by Chipman (1999) using the ground sampled observa- 

tions discussed in 52.4 which is able to predict species richness of herbaceous plants 

in the southern mixwood boreal forest. This model was adopted for this study. 

Therefore, this work will be limited to mapping the species richness component of 

biodiversity. The model combines inputs of time-since-fire, distance from a ridgeline, 

canopy stem density and canopy type into a prediction of biodiversity. This work 

focuses on mapping the four model components within a section of the boreal forest. 

Chapter 7 will offer a more complete discussion of the form of the model and how it 

was implemented. 



Chapter 2 

Study Site and Data Description 

2.1 Regional Description 

The study site is part of the bored mix-wood forest located in and around Prince 

Albert National Park (PANP), central Sa~katchewan ( 5 3 O  35' N to 53O 20' N and 

born 106' 0' W to 106' 47' W). PANP is located on the southern fringe of the boreal 

forest which gives way to an expansive agricultural region to the south (Figure 2.1). 

The following physical description of the area has been summarized from Bridge 

(1997). 

The geomorphology of the area has been d&ed primarily by the glacial events 

of the Pleistocene (m 12 000 years ago). Although glacial tills dominate the area, 

there are also organic gladofluvid (of glacial river origin) and glaciolacustrine (of 

glacial lake origin) deposits of significance. The topography is composed of rolling 

hills with an elevation range of 500 to 800 m above sea level. 

Long cold winters and short cool summers are characteristic of the regional cli- 

mate. Between 400 and 500 mm of precipitation is received by the atea with approx- 

imately 70% falling as rain. . 

There are two major disturbance regimes at work in the mea: forest fires and for- 

est harvesting. The first includes both human induced and natural lightning mused 

fires although the latter make up the majority. Weyerhaeuser Canada operates a 

Forest Management License Area (FMLA) in the region and is responsibIe for the 



Figure 2.1: Location of the study area. The boreal region is shown by the gray 
shaded areas with the southern mix-wood boreal forest delineated by the darker 
grey belt. This unpublished figure has been used with the permission of Dr. E.A. 
Johnson of the Department of Biology, The University of Calgary. 



regeneration of harvested areas. However, within PANP there is no harvesting and 

the only source of significant natural disturbance is fire. 

Eight tree species dominate the area which are comprised of both coniferous and 

deciduous species. The coniferous species are Picea glauca (Moench) Voss, Picea mar- 

iana (Mill.) B.S.P., Pinus bankana Lamb., Abies balsamea (L.) Mill., La* luncino 

(DuRoi) K. KO&. Populous tmuloides  Michx., PopuZus balsamqem L. and Betula 

papyrifem Marsh. make up the deciduous species. There are also many herbaceous 

shrubs and ground cover plants that contribute to the vegetation composition. 

2.2 Image Data Acquired From Space 

Two Thematic Mapper images were obtained for this resei~1:c.h. They are both 

roughly centered over Prince Albert National Park and they were acquired on June 

10,1996 and August 29, 1996. Both images are virtually cloud free and each indude 

d seven spectrd bands at 30m ground resolution. Processing in the form of precise 

geometric correction wa3 performed on the two 1996 images by Radarsat Interna- 

tionai. Both images were referenced to the  WGS-84 ellipsoid in a UTM projection 

system. This processing r d t e d  in resampling the image pixels to 25m ground 

sample spacing (Appendix D) . 
In addition to electro-optid datq two L-band SIR-C SAR and two C-band SIR- 

C SAR images (Figure 2.2) acquired by the NASA Space Shuttle on October 4 and 

6, 1994 were obtained horn the NASA Jet Propulsion Lab. The ground resolution 

for both images is 12.5 metres. Together, the two images cover a substantial portion 

of the PAW study site (Appendix D). 



Figure 2.2: SIR-C SAR image coverage map. The dashed line is the PANP boundary. 
The light gray areas have SAR coverage while the dark gray areas show image overlap. 
Lakes have been included for geographic reference. 



The original SAR imagery was filtered using a gamma-gamma filter in order to 

remove some of the speckle noise (Lopes et al., 1993). Close inspection of the imagery 

prior to filtering revealed great local variation in backscatter amplitude. This was 

especially apparent in the Gband imagery. After filtering, this variation had been 

removed. 

2.3 GIs Data 

ArcInfo GIs (ARC/INFO, 1997) vector line coverages of elevation contours, rivers 

and lakes were made available by Parks Canada for PANP and surrounding adjacent 

lands. These were used to interpolate an elevation model (DEM) of the area using 

ArcInfo software. The contour interval of the topographic vectors was 8m. These 

vector GIs files were not provided with any metadata so that errors of unknown type 

and quantity exist within these files (Appendix D). The DEM interpolation process 

is discussed in greater detail in Chapter 3. 

A raster map of time-since-fire was obtained from The University of Calgary, 

Biology Department, Ecology Division. This map was derived &om data records 

couected and maintained by Weir (1996). Its development is discussed further in 

Chapter 4. 

2.4 Ground Sampled Data 

The ground data includes approximately one hundred and fifty sampled forest stsnds 

in and around PANP. The sampling method used was the point centered quarter 

method as described by Cottam and Curtis (1956). Each forest stand was point- 



sampled 15 times along a U-shaped transect. In some instances, the shape of the 

sampling t ransect was modified to accommodate unsuitable sampling terrain. Each 

sample point is divided into four equal sections or quadrats. At each point on 

the transect, four measurements were taken (one for each quadrat) which included: 

selected tree diameters at breast height (DBH) for canopy and understory and tree 

distances from the sample point (if less than or equal to 10 m), selected shrub 

distances and base diameters, tree seedling counts in two, one by one metre opposing 

quadrats (centered on the sample point) and herbaceous species and moss counts in 

two 25 x 25 an opposing quadrats (centered on the sample point). The data were 

collected by Bridge (1997) in the summers of 1993 and 1994 and Chipman (1999) 

and this author in the summer of 1997. 

For each forest stand sampled, three to five GPS positions were measured (de- 

pending on the trans& shape) for georeferencing purposes. Generally, these points 

were collected at the corners of the transect. AH points were post-differentially pro- 

cessed and corrections applied. These sites were used as training and testing sites 

for d classifications performed. 

2.5 Data Preparation 

2.5.1 SAR Imagery Extraction 

The SIR-C SAR imagery was delivered on 8mm tape and was extracted to harddisk 

using CEOS Tape Reader software (NASA Jet Propulsion Lab, 1993; Vuu et al., 

1995) which was compiled from C source code. The data was extraded to a raw 

format which consists of a set of leader, trailer and image Hes. The imagery at this 



point was stored in the form of a Stoke's matrix. Data Compression software (NASA 

Jet Propulsion Lab, 1994; Chapman, 1995) compiled From Fortran source code was 

then used to synthesize the Stoke's matrix into the required imagery. 

First, the Stoke's Matrix for each image was multilooked by two in both the 

azimuth and range direction. Since the October 4 image was quad-polarized, a 

total of four images were extracted. HH, HV, VH and W images were created and 

imported into PC1 software. The October 6 image was only dual-polarization and 

therefore was synthesized into two images. HH and W images were created and 

also imported into PC1 software. 

2.5.2 Georeferencing Spatial Data 

The ArcInfo vector line coverages were obtained in the NAD 27 datum and a UTM 

projection system. Using datum conversion routines designed specifically for Canada, 

within ArcInfo, all coverages were converted to the NAD 83 datum. 

Using the GCPWorks module of PC1 software and 150 000 NTS map sheets, 

approximately 40 ground control points were collected for each SAR image for geo- 

referencing. The images were t r d o r m e d  into the WGS-84 ellipsoid with an RMS 

error of approximately one pixel (25 m). 



Chapter 3 

Mapping Distance From a Ridgeline 

Section 1.2 examined the role of moisture and nutrients and their importance in 

explaining biodiversity. This chapter outlines the development of a map of distance 

to ridgeline for use in the biodiversity model. In addition, attention is paid to the 

uncertainty of the distance map. 

3.1 Problem Definition 

To map distance fiom a ridgeline (DFR), i t  was necessary to develop an algorithm 

that was able to determine the distance fiom each image pixel to its respective ridge- 

line. The details of this development are discussed in 53.2.1. In this application, the 

respective ridge is that which would contribute water and therefore, nutrients (via 

overland flow or groundwater movement) to the pixel in question. Since water, if 

unimpeded, will Bow in the direction of greatest slope gradient (aspect), it is neces- 

sary to find the path back to the ridge area from which the water originated. To ac- 

complish this task, two important assumptions were incorporated into the computer - 
algorithm: (1) it is assumed that for each image pixel, the direction of maximum 

gradient will govern the path direction of all overland watu movement down a hill- 

slope. And (2) it  is assumed for each pixel that a straight line path in the direction 

of its local aspect will lead to the correct region of the ridgeline. 

The first assumption is questionable since water flow ( d a c e  and s u b d i c e )  is 



governed not only by aspect but also by interactive factors such as  surface slope, 

basin shape, geology, vegetation and basin meteorology and climate (Briggs et al., 

1989; Tuttle, 1980). Nevertheless, the definition of surficid drainage networks as 

well as subsurface hydrology modeling using DEMs has become widely practiced 

(in Beven (1997); Beven and Kirkby (1979); Kirkby (1007); Jenson and Dominique 

(1998); O'Loughlin (1986); Wigmosta et al. (1994) for instance). The reasoning 

behind its widespread use is that despite these other iduences, surface topography 

remains a major influence on the movement of water. This is confirmed by work of 

Bridge (1997) as discussed in $1.2.3. 

Figure 3.1 addresses the second assumption by illustrating three possible meth- 

ods for distance determination. For Pixel A, Method 2 provides a good distance 

approximation relative to Method 3. However, for Pixel B, Met hod 2 provide a gross 

underestimate of the actual distance. Clearly, the assumptions will not always hold 

true but, given the available data inputs, they will usually provide a reasonable ap- 

proximation of the path leading to the source of moisture for a given pixel. It is also 

noteworthy to consider that Pixel B will receive moisture inputs horn a section of 

ridgeline and it could be argued that neither Methods 2 or 3 provide the absolutely 

correct distance to the ridge. Rather, the distance should be a median or average 

d u e  that lies somewhere in between, 

Given the shortcomings that these assumptions introduce into the algorithm, it 

is worthwhile to examine some other approaches used in similar applications. Bridge 

(1997) used straight-he shortest distance to the nearest ridge. Algorithmically, this 

is a simple measurement but it lacks the crucial ability to account for the actual 

movement direction of water flow through a basin. Flowing water will usually have a 



Figure 3.1: This contour map illustrates three possibilities for measuring distance 
fiom two pix& (A and B) to a basin ridgeline. Method 1 (used by Bridge (1997)) 
finds the dosest ridge (horizontd distance). Method 2 (from this work) finds the 
closest ridge (horizontal distance) based on a path direction cddated from local 
aspect. The third method traces a path which cuts perpendicularly through contour 
lines and is considered to be the best estimate. 



movement direction component that points toward the outflow area of the basin and 

thus, the closest ridgeline will usually be a gross underestimate of true distance (to 

the proper ridgeline). This is illustrated in Figure 3.1 by comparing the distances 

from pixel to ridgeline for Method 1 with Methods 2 and 3. 

The approach presented here offers an improvement on the work of Bridge (1997) 

by attempting to follow a path opposite to water movement as shown with method 

2. In basins with a regular shape (such as those which generally occur in the study 

site of this work), this path will usually closely approximate the distance given by 

a path which cuts perpendicularly through contour Lines. The latter is obviously 

more accurate but is problematic in terms of algorithm development. Initially, the 

algorithm implemented in this work was designed to follow a path up to the ridgeline 

such that the aspect of each pixel in the path would be used to determine a travel 

direction (opposite to the aspect). The path would be mapped out on a pixel by pixel 

basis until the ridgeline was reached and the distance determined by the number of 

horizontal, vertical and diagond pixel movements made. Figure 3.2 illustrates this 

idea. 

However, in some cases s m d  local maxima existed in the DEM. At these maxima, 

the apects d adjacent pixels can define travel directions which point toward each 

other. This means that the path would become trapped between these pixels. In 

these situations, an attempt was made to take an average aspect direction fiom 

a window surrounding these pixels and continue the path. This method solved the 

problem most of the time, but situations still arose in which the path became trapped, 

Unfortunately, the effects of these traps were often far reaching. Since each image 

pixel must be assigned a distance to the ridge, often the paths fiom other pixels 



Figure 3.2: The path &om pixel to ridge is defined on a pixel by pixel basis. The 
opposite direction of the aspect of each pixel points to the next pixel in the path 
until the ridge is reached. 

around these local maxima dso lead into the trap. If these pixels were ignored, large 

patches in the image would not be assigned a distance to the ridge. 

A more challenging issue was the possibility of loops occurring in the pixel paths. 

In relatively flat areas, pixel paths would sometimes loop back onto themselves, to be 

trapped in an endless path. The only way to determine if a pixel path was trapped 

in an endless loop was to track its path and check (after each pixel movement) to see 

if it returned to a past position. This solution was computationally intensive. Fur- 

thermore, the problem of how to resolve these looping situation was not adequately 

solved. An averaging window (as discussed above) was used with some success but 

not aU cases could be resolved. These problems lead to the development of the 

alternative dgorithm implemented in this work. 

At this point, we examine some alternative strategies for determining distance to 

the nearest ridgeline: 

In an application involving mapping of surface saturation zones in drainage 



basins, O'Loughlin (1986) determined a trajectory from a given point up to a ridge- 

line using contour lines rather than a cell-based aspect approach. This was ac- 

complished by minimizing the distance between each successive contour line as the 

trajectory moved up the slope. This ensured that the path of maximum gradient 

(and therefore the path of most likely water Bow) would be found. Why was this 

potential improvement not used in this work? The primary reason for this choice 

is because the solution-space of this work is in the raster or cell-based domain and 

not the vector domain. This method offered by OYLoughlin (1986) requires contour 

line vectors of elevation. The algorithm developed for this work was geared toward 

solving a problem in the raster domain. Although these vectors were available for 

this project, this may not always be the case. For instance, DEMs derived from SAR 

interferometry (Atlantis Scientific) or stereo SPOT imagery are raster based. 

Skidmore (1990) used a digital elevation model to map the topog~aphic position of 

pixels relative to a valley bottom and ridgeline. This was performed by calculating 

the shortest straight-line distance to the neaxest valley and to the nearest ridgehe. 

The position is then calculated by dividing the Euclidean distance to the nearest 

v d e y  bottom by the sum of the distances to valley bottom and ridgeline. Although 

this measure gives us a sense of the da t i ve  location of a pixel in a drainage basin 

with respect to the ridgeline and valley, it would not be practical to use in this model. 

Using the Euclidean distance, we again ignore that fact that moisture movement will 

be largely influenced by the aspect of the terrain and not the shortest path to the 

ridge. This approach is similar to that used by Bridge (1997). 



3.2 Methods 

3.2.1 Computer Algorithm Development 

The distance from ridgeline program (DFR) relies on three sources of data to calcu- 

late distance. The first is an image of pixel slope aspect. Aspect defines the direction 

(in the horizontal plane) that a sloping surface faces and is taken perpendicularly 

from the line of steepest slope on the surface. The input image pixel aspects must 

be indexed starting from north at 0 degrees and moving clockwise to 360 degrees. 

Pixels with no slope (and therefore no aspect) must have a value of 510. The second 

is an image of drainage basin ridgelines. Ridges must have a value of 255 with a 

value of 0 assigned to all non-ridge pixels. The DFR program traces a path fiom 

each pixel up to a ridgeline. The path direction fiom pixel to ridge is defined a s  the 

opposite direction of the aspect of the starting pixel. The user can specify a window 

size centered on the start pixel whose aspects are averaged and used to determine 

a path direction to the ridge. Averaging the angles was accompIished by converting 

the angles into polar coordinates, taking the mean of the vertical and horizontal 

components and converting back to an angle (in degrees). Increasing the window 

size to a 3 x 3 or 5 x 5 reduced the sensitivity of travel direction to local Mliation 

in pixel aspect. The third data source is an image of path barriers such as lakes and 

rivers. Its role is examined below in the paragraph discussing enor handling. 

Movement occurs one pixel st a time in one of eight directions as shown in Figure 

3.3. These movement directions are limited by increments of 45 degrees (starting at 

0 or 360 degrees for north movement) which wiu ultimately result in over- or under- 

movement in one or both of the horizontal and vertical directions. To avoid this 



potential problem, after each pixel move the desired travel direction (the precise 

direction in which you would like to move) was subtracted From the actual angle 

travelled (the direction in which you are forced to move due to the constraints of a 

grid). This difference was used to make adjustments to the pixel movement directions 

so that the overall path travelled closely EoUowed the desired direction of travel. The 

following two equations generalize this iterative adjustment procedure: 

where TD is the travel direction and AD is travel direction adjustment angle. After 

the first iteration, the new travel direction becomes the desired travel direction. The 

actual travel direction wiIl be re-evaluated at each iteration (pixel movement) and 

adjusted when necessaq, according to the movement constraints outlined in Figure 

3.3. 

The user is able to specify the size of an image pixeI in the horizontal and verticd 

directions in the desired units. The program counts all  horizontal and vertical pixel 

movements and then calculates the actual straight h e  distance from pixel to ridge 

based on this information. Figure 3.4 shows an example of defining a path to the 

ridge for a given pixel. Notice that the actual path of travel differs fiom the desired 

travel path due to pixel movement constraints. However, the starting and end points 

are very similar so that the dx and dy components can be used to calculate total 

path distance. 

Three error situations can occur during this procedure: 



Figure 3.3: Actual Pixel movement direction is defined by a 45 degree range of angle 
in each of 8 directions &om a central pixel. The dashed lines indicate the range of 
angle for each movement direction. 

1. Pixel-to-ridge paths may lead off the image so that a distance cannot be cal- 

culated. This is likely to occur with pixels near the image edge. These pixels 

were Bagged with a d u e  of -999 so that the user can remove them if necessary. 

If not removed, parts of the output image will not have valid distance values. 

2. In some areas, there was no aspect (slope = 0). These pixels were easily 

identified because they had been previously assigned a value of 510. First, a 

window of user specified size (centered on the slopeless pixel) was searched for 

other pixels with aspect (slope > 0). If such pixels did exist, their mean aspect 

was assigned to the centrd pixel and the dgorithrn was able to continue. If all 

pixels had a value of 510, the central pixel was assigned an error flag value of 

-1 and written to the output image. 

3. Where small, local elevation maxima occur in a basin, it is possible that the 
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Figure 3.4: An example of tracing a path from a pixel to its respective ridgeline. 

direction of path travel will point toward the opposite ridgeline. In this case, 

the path of travel will first move down to a valley bottom and then up to the 

opposing ridge which is not a desirable measurement. To prevent this problem, 

the algorithm checks to see if the path encounters any barriers such as lakes or 

riven dong the way. If it does, the start pixd is assigned an error flag value 

of -2 and is written to the output image. 

Error flag d u e s  were used so that the user could evaluate potential azeaa of error 

and to speed up the algorithm for pixels that were problematic. In many cases, the 

areas of error will be small so that median or averaging filters could be used to assign 

values to the pixels in error. 



3.2.2 Prefiminary Data Processing 

The primary data source for mapping distance from a ridgeline was a DEM. It was 

necessary to interpolate a DEM from contour lines. Using ArcInfo GIs software 

( ARC/INFO. 1997) and the vector Line files of elemtion contours, lake outlines and 

rivers, a DEM was interpolated. The TOPOGRID lunction was used which inter- 

polates a grid from line features. This function allows for the incorporation of lake 

information and drainage information (rivers). Due to hardware memory constraints, 

the smallest size of grid cell that d d  be interpolated was 30m. 

Around some of the lakes it was found that the interpolation algorithm had pro- 

duced a number of thin linear depressions. After dose inspection, it was determined 

that these were primarily the result of including island polygons within the lakes 

which did not have contour lines within them. Deleting some of the smaller islands 

and adding contour lines to the larger ones removed most of these undesirable lines 

after re-interpolation. In areas in which these features persisted, they were locally 

filtered out using median filters of varying sizes. The size of the filter used depended 

on the severity of the errors. Although simplifications were introduced to the filtered 

areas of the DEM, the trade-off was necessary to maintain a connected drainage 

network. Furthermore, the primary use of the DEM was to produce a map of basin 

ridgelines and the topographic details within the basins were of lesser importance. 

Within PC1 EASIPACE softwaze, the DEM was then imported and resampled 

to 25m pixels using a nearest neighbor algorithm and co-registered with the &sting 

imagery in reference to the WGS-84 ellipsoid. Next, using terrain analysis programs 

within PC1 (1997) software, a map of basin ridgelines was created. These programs 



are based on the work of Jenson and Dominique (1998) and are able to extract 

geomorphological features from DEMs- In all, five PC1 programs were needed to 

create the ridgeline map. First, D WCO N (Drainage Watershed Conditioning) was 

used to create a depressionless DEM. This function removes s m d  sinks that may 

impede the flow of water over the surface. On most landscapes, sinks are likely due 

to imperfections in a DEM and if not removed, may result in discontinuous water 

Bow paths. DWCON also produces maps of water flow direction, flow accumulation 

and delta dues. The delta value represents the increase in flow accumulation in the 

flow direction. 

The initial results of DWCON were problematic. There were ten meas for which 

a flow direction could not be defined. These areas were large s i n k  in which water 

did not have a natural outflow path and all water in the surrounding area flowed 

into the lake. A number of compounding factors caused these problems: First, the 

area is relatively flat and the contour data used in the interpolation had a fairly wide 

i n t d  (8 m). Interpolation of these flat areas where contours are sparse can result 

in s m d  imperfections (such as peaks) in the DEM which can act as dams to impede 

flow. Second, lake polygons and river vectors were included in the interpolation as 

naturaI breaklines. Some of the river vectors were not complete and thus, flow paths 

to and from lakes were often broken. During the interpolation process, lakes can be 

interpolated as slight depressions. If a river is not present to force a drainage path 

from the lake, the lake may become a sink. To remedy this situation, the DEM was 

manually altered. Lake levels were increased to the lowest level of surrounding land 

such that they would have an outflow path. This procedure mimics that used by 

computer algorithms for sink remod. 



Next the SEED program was executed which automatically places starting or seed 

points at the outflow points of watersheds (where there are major tributaries). A 

threshold value must be specified by the user. If the area draining into a tributary (as 

calculated from the flow accumulation and delta values) is greater than the threshold 

value, a seed point will be placed at the tributary fork. If the area draining into a 

tributary is smaller than the threshold, the basin will not be seeded and it will 

become incorporated into a larger basin. In other words, the threshold value will 

globally govern the smdest size of basin that wi l l  be delineated. Following Bridge 

(1997) (whose work was in the same area), a threshold d u e  of 3000 pixels was 

chosen. 

The WTRSHED (Make Watersheds) program was then executed which delineates 

watersheds from the cell flow directions and seed points. The resulting image was 

a map of filled polygons representing watersheds. In order to delineate only the 

ridgelines, a raster to vector conversion was performed using the RTV program and 

then GRDVEC to burn the vectors into a raster based image. 

3.2.3 Map Creation 

Using the DFR EASI program discussed in 33.2.1, a map of DFR was then created. In 

order to use the DFR program, the first step involved calculating an image of aspect 

from the DEM which was accomplished with the ASP (Aspect) routine in PCI. Next, - - 

a map of ridgelines was created using GRDVEC (see above). Ridges were assigned 

a value of 255 and all other axeas were assigned a zero d u e .  The barrier map was 

created in a similar fashion except that river vectors and lake polygons were burned 

into an image with a d u e  of 255. An aspect averaging window size of 5x5 was 



specified and the DFR program executed. 

As discussed in 53.2.1, in some cases it was not possible for the program to 

determine a distance because the path to the ridge encountered a barrier such as a 

lake or river. To determine distances for these ateas, the PC1 GRDINT program was 

used to interpolate values from the output image from the DFR program. 

3.3 Results 

Figure 3.5 shows a sample of the resulting image after interpolation. Notice that as 

a path cutting perpendicularly through the contours is followed fiom a ridge to the 

center of a d e y ,  distance to the ridge increases (as shown by lighter shaded pixels). 

Figure 3.5: This small subsampIe of the find image shows pixel distances to ridge- 
lines created fiom the DFR program. Light shades represent distances far fiom the 
ridgeline reIative to darker shades. The black polygons are lakes. Superimposed onto 
the image are contour lines (thin dark lines) and basin ridgelines (light dashed lines). 
Histogram equalization has been performed on this image to improve contrast. 



3.3.1 Assessing the Accuracy of the Distance &om a Ridgeline Map 

Calculation of DFR was subject to many sources of uncertainty. For the DEM, 

these sources include uncertainty from the contour lines used for interpolation, the 

errors produced during interpolation and resampling the grid cell size. For the basin 

and ridge delineat ion, these sources indude uncertainty fiom the flow direct ion, 

flow accumulation and delta value calculations. Uncertainty was also introduced in 

d d a t i n g  the distance from the ridgelines. In some situations, there were no river 

vectors to e r n e  that a basin was properly divided such that distances would only 

be measured from a pixel to its respective ridge. 

The quantity of uncertainty present in these sources was mostly unknown and 

given the nature of the softwaze used, it waa not practical to propagate the known 

uncertainty. To propagate known uncertainty through all processing steps would 

have required re-writing these algorithms (to accommodate uncertainty) and this 

was not considered a viable option for the scope of this project. The assessment of 

uncertainty for the DFR map, therefore, was of an empirical nature. The formula- 

tion of the biodiversity model used manually map measured distance born ridgeline 

estimates for the ground sampled forest stands. Therefore, uncertainty in the map of 

DFR was assessed by comparing manually measured d u e s  to computer calculated 

pixel values. Forest stands were first located on the 1:50000 topographic maps. By 

visually assessing the terrain around a forest stand, the nearest ridge was located 

on the map and the distance meaaured. To datify, the measured transect running 

from stand up to ridge always cut perpendicularly through the contour lines. This 

was repeated for 31 forest stands such that a full range of distances were sampled. 



Figure 3.6 shows a scatterplot of the collected points represented by hollow circles. 

Distance From a Ridgeline: 

4000- 
Map Measured vs. Computer Calculated 
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Figure 3.6: This scatter plot shows the correlation between the two methods used to 
determine DFR for 31 ground sampled forest stands. For the manually calculated 
method, 1:50000 topographic maps were interpreted and basin ridgetines were traced 
out. The distance was measured fiom forest stand to ridge by cutting a path per- 
pendicularly through contours. Induded on the plot is the loghear regression line 
and error bars (dotted lines) based on a 95% wdidence level. 

Idedy, there would be a one-to-one relationship between hand measured dis- 

tances and computer calculated distances such that the slope of a fitted line would 

equal one. It is dm that the relationship breaks down and the points become more 

spread out. W h y  does this happen? In some cases, very large basins can usually be 

subdivided into smaller basins (sub-basins) and so on. The DEM spatial resolution 



will ultimately limit the divisibility of basins (Goodchild and Mmk, 1987). However 

in this case, the threshold parameter used in the watershed seeding program is used 

to globally define the scale at which a basin is defined. Increasing the threshold 

will increase the smallest size of a basin defined. The actual closest ridge to a given 

pixel wilI, therefore, not necessarily coincide with the closest ridge defined by the 

computer algorithms. The manual measurements taken from topographic maps were 

aimed at finding the closest ridge to a stand. Situations arose in which computer 

defined basins were larger than the manually (visually interpreted) defined basins 

and this resulted in a drastic difference between the two measurements. In a few 

cases, the difference in distance exceeded 500m. 

It was dear that there was a need to account for these discrepancies. This need 

was met by fitting a model to the collected data points. In order to fit a regression 

line to these data points, both measured and d d i t t e d  distances were natural log 

transformed. After plotting the transformed data, the relationship became tighter 

and the spread of points became more even. Linear regrolsion was then performed on 

the data and 95% confidence level error bars were determined. Figure 3.6 shows the 

model prediction line (solid line) and the error bars (dashed Lines) after undoing the 

log-log transformation. It was evident that the computer calculated distance usudy 

overestimated the map measured distance such that the slope of the prediction line 

was less than one. For this reason, the regression model was used as  a correction 

function on the computer calculated distances as well as a mechanism for estimating 

the uncertainty associated with the new estimate. A PC1 program was written to 

apply the model to the original DFR image. The result was a corrected image of 

DFR. Another PC1 program was written to produce upper and lower bound images 



of DFR based on the 95% confidence in t end  of the correction model. 

3.4 Discussion 

The algorithm developed in this chapter is conceptually very simple; yet it serves 

a specific purpose by providing necessary data for the biodiversity model. It is 

not surprising that the literature on algorithm development for this kind of use 

is very limited. It is not the intention of this work to critique the biodiversity 

prediction model being used here but clearly, alternative variables could be suggested. 

A simple model for which input paxameters can be easily obtained is usually a very 

desirable model (given that it is still able to produce reasonable results). In this sense, 

the simplicity of the distance from ridgeline variable is an asset of the biodiversity 

prediction model. However, in 51.2.3 it waa suggested that distance /ram a ridgeline 

was a surrogate variable for some very important underlying earth processes; namely 

the movement and concentration of moisture and nutrients. Furthermore, there is 

a reasonable pool of literature to draw from which deals with characterizing the 

moisture status of a given point in a landscape. For instance, the use of a topographic 

indez was implemented in TOPMODEL and was developed by Beven and Kirkby 

(1979). The index is calculated as: tc = a/tan/3, where a is the area draining 

through a point fiom upslope and tan /3 is the l d  slope angle. The index can be 

calculated for each cell of a DEM. High d u e s  of the index indicate areas that will 

saturate first (also see Beven (1997) and Kirkby (1007)). This index could offer an 

improvement over distance fiom ridgeline because it offers a quantitative measure of 

moisture availability at any given point in a drainage basin. 



Chapter 4 

Mapping Time-Since-Fire 

Section 1.2 introduced the role of disturbance processes in shaping biodiversity. Since 

this study site has been limited to land within the PANP boundary, the primary 

disturbance of interest is he. Of particular interest is the mosaic of forest fire 

ages over the landscape. A map of time-sincefire aLeady existed from previous 

research which wil l  be discussed shortly. Recall that part of the primary objective 

of this study was to account for uncertainty in the biodiversity estimates. It was 

therefore, necessary to develop a mechanism for estimating uncertainty in the time- 

since-fire map. This chapter will discuss the methodology used to perform this 

uncertainty assessment on the time-since-fire map. The readts section ($4.3) will 

offer a discussion on how these uncertainty measurements wil l  be used in the final 

model. 

4.1 Problem Definition 

Weir (1996) produced a map of time-sincefue (TSF) polygons for PANP. This was 

accomplished by first identiwg preliminazy fire boundaries on 1:12 500 scde air- 

photos. The initial results yielded a map of 3168 polygons of approximately 2 to 5 

ha in area Extensive field reconnaissance was then used to check the validity of the 

photo-interpreted fire boundaries. Boundaries were adjusted where necessary. It was 

then necessary to determine a fire date for each polygon. The dates were determined 



from field evidence from fire scarred trees, remnant trees (unscmed fire survivors) 

and forest canopy ages. The sample data included 520 disks horn scarred trees, 400 

increment cores from remnant trees and 15 000 from canopy trees. Adjacent poly- 

gons with the same time-since-fire were merged and a final 1:50 000 scale map of 

1249 polygons resulted. A more detailed discussion of the map derivation is offered 

by Weir (1996). 

Through personal communication with Weir (1996), uncertainty estimates for 

polygon fire ages were obtained and are summaxized in Table 4.1. Where a range 

of uncertainty was specified, the upper limit of the range is used in order to be 

conservative- 

Table 4.1: Expert opinion estimates of time-since-fie measurement uncertainty. 

Fie age (yre) 
0 - 149 

In addition to the measurement uncertainty associated with the fire ages, there 

is also spatid uncertainty present in the location of the polygon boundaries. This 

spatial uncertainty manifests itself in the form of additional uncertainty in the ages 

of the poIygons. The time-since-fire vanable presents us with a slight paradox which 

does no allow uncertainty to be represented using traditional methods. Taylor (1982) 

discusses various methods such as using a symmetric interval centered on a measured 

best estimate of the variable in question. Alternatively, a Mliable could be treated 

as random such that it is interpreted as the mean (best estimate) of a normal distri- 

Estimated Uncertainty (yrs) 

k 1 



bution. The distribution standard deviation and a confidence interval could be used 

to access the uncertainty in the mean (or best estimate) of the variable. However, 

from the preceding discussion, it will be made clear that these methods cannot be 

used. 

Consider first that time-since-fire is a continuous variable that can be any value 

greater than or equal to zero. The paradox, however, is that it must be treated 

as ordinal data. That is, the fire ages within each polygon are essentially ranked, 

discrete attributes. To illustrate, consider a point on the ezad boundary between two 

adjacent polygons of ages 10 and 205 years. This point must take on the fire age of 

one of the two polygons (either 10 or 205 years) and cannot take on an intermediate 

value. If there is any uncertainty in the location of the fie polygon boundaries, there 

must be uncertainty attached to the ages assigned to points which are close to or 

on these boundaries. The magnitude of this uncertainty will be expected to increase 

with an increase in the magnitude of the difference in adjacent polygon fire ages. 

For instance, the border point between a very old TSF polygon neighbouring a very - 

young one will have a high age uncertainty relative to a border point between two 

polygons of similar age. 

A question that must still be amwered is what constitutes a boundary point? As 

one follows a straight line transect &om a shared polygon boundary to the center 

of the polygon, the expected uncertainty will decrease such that the uncertainty 

estimate will be partly a h c t i o n  of distance. However, this uncertainty-distance 

relationship is not known so a conservative worst m e  approach to uncertainty as- 

sessment must be adopted. At some point along this transect (still moving toward 

the center), there will be a very high probabiity that the TSF is correct. It is here 



that we assume that the spatial uncertainty in the polygon border no Longer has an 

effect on the estimated TSF. The distance from the boundary to this point along 

the transect will define the width of a buffer zone within the polygon as shown in 

Figure 4.i. The buffer zones represent areas in which the amount of uncertainty is 

in question. In the cross-section view, this is shown with the rectangle labeled as 

the zone of unhoum uncertainty. Since we do not know what the uncertainty is at 

specific points within this zone, the uncertainty interval is taken as the louter and 

upper limits regardless of distance from the boundary. 

If we consider the point near the shared polygon boundary in Figure 4.1, the age 

could be as old as 225 years or as young as 9 years. This gives rise to asymmetric 

uncertainty intervals such that a point labeled as 205 could be +20 or -196 years 

uncertain : 

205 - 196 years = 9 years = lower limit 

205 + 20 years = 225 years = upper limit 

using this conservative approach, only an estimate of the width of the buffer zone is 

needed. The discussion turns now to the implementation of these ideas on the TSF 

map. 

4.2 Methods 

Rom the preceding discussion in 54.1, two ideas can be identified in terms of ap- 

proaches to uncertainty assessment: 

1. For areas inside a polygon in which we are reasonably sure that the TSF is 

correct (areas with attribute uncertainty but not spatial uncertainty), the un- 



Zone of anknown 

Boundary 

Figure 4.1: Illustrated here is the idea that the location of a boundary h e  be- 
tween timesince-fire polygons is fuay. The inner polygons represent areas for which 
the uncertainty can be reasonably estimated. The shaded buffer zones within the 
perimeter of the polygons represent areas for which uncertainty cannot be accurately 
defined. There is some unknown probability that the point within the 205 year polyd 
gon should actually belong within the 10 year polygon which as a r d t ,  manifests 
itself in a wide range of uncertainty as shown by the upper and lower limits. 



certainty can be represented with a traditional interval based on the attribute 

uncertainties from Table 4.1. For example, a TSF of 170 years can be repre- 

sented by 170 f 5 years or alternatively by a lower and upper limit, (165, 175) 

respectively. 

2. For the buffer zones (ateas with attribute and spatial uncertainty), the un- 

certainty can be represented by a lower and upper limit. These limits are 

defined by the youngest and oldest possible ages of any neighbouring polygons 

to which s point might belong. This is illustrated by the example fiom 54.1. 

Notice that these limits include the known attribute uncertainty from Table 

4.1. In the event that more than two polygons intersect, only the youngest and 

oldest TSFs will be of interest in defining the uncertainty bounds. 

These two ideas are the basis for estimating and mapping the uncertainty in the 

time-since-fte map and are addressed in the development of a computer program 

called TSF. 

4.2.1 Computer Algorithm Development 

The TSF program runs in a PC1 (1997) EASI command line environment. It requires 

two input images: (1) an image of TSF polygons and (2) an image of TSF uncertainty 

as illustrated with Figure 4.2. The preparation of these images wilI be discussed in 

the next section. 

The user must specify a global bufter zone size (in pixels) to be applied to each 

TSF polygon. This buffer size is multiplied by 2 and then 1 is added to it to give a 

search window size. This s e d  window is passed over the time-since-fire image pixeI 



by pixel. At  each pixel, it is determined whether or not the window is homogeneous or 

whether it contains Lake pixels. Lake pixels are identified by their value of zero. The 

boundary between lake polygons and fire polygons is not subject to the same spatial 

uncertainty that the boundary between two neighbouring fire polygons share. It is 

assumed that these boundaries can been mapped with reasonable accuracy. If the 

window is homogeneous (lake pixels excepted), the central pixel value in the window 

is written to an output image of time-since-fire and its associated uncertainty (taken 

from the input uncertainty image) is written to a new uncertainty image. However, if 

it is not homogeneous, an output d u e  of -1 is written to both the time-since-fire and 

uncertainty images. The -1 d u e s  indicate buffer zone pixels which will be located 

at the outskirts of polygons. The two output images address first requirement for 

uncertainty estimation (from 54.2). 

For each buffer zone pixel (-1 value), the second uncertainty estimation procedure 

must be addressed. This is accomplished by determining the oldest and youngest fire 

age (from the input TSF image) in the search window. The uncertainty associated 

with the oldest pixel is added to the TSF value to produce an upper limit. The 

uncertainty associated with the youngest pixel (lake pixels excepted) is subtracted 

from the TSF value to produce a lower limit These were both written to separate 

output images. On these images, all non-buffer zone pixels were assigned a -1 d u e .  

These two output images address the second requirement for uncertainty estimation 

(from 54.2). 



4.2.2 Map Creation 

The time-since-fire map obtained from the Department of Biology at The University 

of Calgary, was a pixel map of polygons with each cell having a TSF value. Lakes 

had been logically assigned a value of zero. Four sources of spatial uncertainty in 

the map were identified: 

1. Since fie polygons were hand drawn born 1:12 500 scale akphotos, a 1 mm 

ambiguity in the tracing of the polygon borders would result in a spatial uncer- 

tainty of f 12.5 m. Through personal communication with Weir (1996), it was 

established that 1 mm (on the 1:25,000 paper map) was the greatest amount 

of spatial uncertainty that could be expected. This quantity translated to 25m 

on the ground which was equal to almost 1 pixel (of 30 x 30 m size) on the 

raster map. 

2. Uncertainty in digitizing the line work. Digitizing was performed by GAIA 

Consultants, Calgary, Alberta GAIA was contacted for this information but 

their records of the work did not include digitizing error. Ccnsequently, this 

source of unknown uncertainty was not included in the analysis. 

3. The map had been previousIy derived from a file of vector based polygons which 

were encoded into pixels of 30 x 30m in size. Immediately, this step introduces 

spatid uncertainty in the location of all fire polygon boundaries. Although 

it is intuitive to assign a f0.5 pixel spatid uncertainty to the location of the 

rasterized vector (the worst case scenario), it can be shown mathematidy 

that the actuaI error is only M.289 pixels (Chapman, 1988). This source of 

error must be included in the specified buff- zone width. 



4. In $4.1 it was mentioned that the smallest polygons mapped were between 2 

and 5 ha. Since 2 ha is the very smallest polygon that will be found on the 

map, there will be Larger polygons on the map that may have smaller polygons 

wrapped into them that have not been delineated. These small polygons may 

be located within larger polygons or on their borders. In either case, their 

frequency of occurrence and locations cannot be determined from the digital 

map and thus, we are left with a source of spatid uncertainty for which we 

cannot account. 

Figure 4.2: These ate small subsamples of the input images. Image A is the 
time-since-fire and B is the starting uncertainty estimate image. In both images, 
the lakes axe reptesented by the black polygons. 

Given this map and estimates of the uncertainty associated with the ranges of 

fire ages, the first step required producing a map of uncertainty. A simple PC1 EASI 

script was written to do this. The script essentially treats Table 4.1 as a look-up 

table. The value of each pixel in the TSF image is determined and the appropriate 



uncertainty value is written to a separate image in the corresponding pixel location. 

Next, these two images were used as inputs into the TSF computer program and the 

output maps were produced. 

4.3 Results 

A sample of the output imagery from the TSF program is shown in Figure 4.3. Older 

polygons are represented by the lighter shades in A. Likewise, higher uncertainty is 

represented by the lighter shades in B. As one would expect, there are even width 

buffer zones surrounding all polygons which represent the uncertain boundary loca- 

tions. On these images, the buffer zones are a total of 4 pixels wide because each 

polygon has its own buffer zone of 2 pixels in width. Imagea C and D illustrate the 

uncertainty assessment for the buffer zones for the upper and lower limits respec- 

tively. These buffers provide uncertainty coverage for the undefined areas from A 

and B. Notice that buffis zones do not appear around lake poIygons. 

At this point, it is not entirely obvious how these intermediate results will be 

used in the final biodiversity model. Essentially, we must tadde this problem using 

two approaches: the first will use the information horn images A and B and the 

second wi l l  use images C and Ll, respectively. Figure 4.4 illustrates the relevance of 

the two approacbes in terms of their use in the biodiversity model. 

The main estimate of biodiversity is a function of timesincefire, canopy stem 

density, canopy type and distance from a ridgeline. For this estimate, the entire 

image of TSF is used for input into the model. Uncertainty estimation is treated in 

a slightly Werent manner. R e f h g  to Figure 4.4, PixeI 1 klls within the inner fire 



Figure 4.3: These small subsamples of the final images illustrate theoutput horn 
the TSF program. A is the time-since-fire estimate. B is the uncertainty estimate. 
The black rings around the polygons in these images are the buffer zones. Cand D 
are the upper and lower limits, respectively, of uncertainty in the buff- zones. 



polygon. To estimate the upper and lower bounds of uncertainty, images A and B are 

used. For the upper bound, B is added to A and for the lower bound, B is subtracted 

&om A. Pixel 2 falls outside of the i ~ e r  polygon and is considered to be within the 

buffer zone of unknown uncertainty. Its upper and lower bounds are expressed by 

the imagery of C and D respectively. When calculating an upper or lower bound 

on biodiversity, the location of the image pixel (for which the calculation is being 

performed) is essential. If an upper bound on biodiversity was being calculated, the 

upper bound images for canopy stem density, distance fiom a ridgeline would be 

input into the model as well as a canopy type. The choice of imagery for time-since- 

fire will depend on the pixel location. For Pixel 2, for example, image C would be 

used to calculate the upper bound of biodiversity. A detailed discussion of how the 

data inputs are handled in the biodiversity model will be offered in Chapter 7. 



Figure 4.4: The upper and lower bounds on predicted biodiversity depend on pixel 
location on the image. In this example, Pixel 1 uses symmetric uncertainty i n t d s  
but pixel 2 uses independent upper and lower bound image of TSF for input into the 
biodiversity model. 
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Chapter 5 

Mapping Canopy Type 

This chapter addresses the need to map dominant forest canopy types for the study 

area which is an important component of the biological diversity prediction model. 

As with distance &om a ridgeline and time-sincefire, the uncertainty in our canopy 

type prediction must also be determined for propagation through the model. This 

chapter describes the steps taken to accomplish these tasks using the available da ta  

5.1 Problem Definition 

Given the nature of the solution, two problems were encountered: 

1. There were poor classification results from the initial data classifications. The 

results were investigated with an in-depth examination of the training site data 

in an attempt to improve the accuracy of canopy determination. 

2. As a byproduct of the images dasdications which resulted from this work, the 

question arose: how can the outputs of two or more classifications be combined 

in order to improve the overall results? 

One method that has received recent attention is the use of the Dempster-Shafer 

Theory of Evidence (Dempster, 1967; Shafer, 1976) in the context of spatial data 

fusion and classification (referred to herein as evidential reasoning (ER) ). Section 



5.3 pursues the use of ER data fusion and how it was implemented in this work to 

solve the second problem. 

5.2 Canopy Type Classification Methodology 

5.2.1 Tkaining and Testing Site Preparation 

Using the GPS data collected fiom each ground sample site, a vector database of ad 

site transects was built in ARC/INFO (1997). An attribute table of site IDS was also 

constructed and linked to the vectors. The database was then imported into a PC1 

(1997) database. Using the dassification tools of the Imageworks module of PCI, 

the pixels that fell directly underneath the transect Lines of each site were encoded 

into an image plane (as trainingltesting pixels for that site). Approximately 150 

individual sites were defined this way. 

Each site was then labeled with its appropriate forest type category. The forest 

classes used by Chipman (1999) are jack pine (JP), black spruce (BS), trembling as- 

pen (TA) and a mixed dass of trembling aspen, white spruce and balsam fir (MIX). A 

description of how these classes were chosen is offered in Appendix C. For each of the 

four categories, the sites that fell within each were randomly divided into two halves 

to provide two sets of sites - one for training and one for testing. The image-encoded 

sites were then converted to bitmaps and aggregated into their respective groups. 

The result was 4 testing site and 4 training site datasets; a testing and training set 

for each dass. In addition to the forest classes, water (WAT), anthropogenic (ANT), 

and wetland (WET) classes were also defined (each with a training and testing set 

of data). The anthropogenic dass indudes towns, roads, recent harvests as well a s  



other man-made features. A total of 14 datasets resulted- 

5.2.2 Choice of a Classification Algorithm 

As a pre-classification step, the Kolmogorov-Smirnov (K-S) test was used to deter- 

mine if the training site data fit a normal distribution. The K-S test was especially 

suited to this data set because it can be used with very small sample sizes (Lilliefors, 

1997). The test compares the cumulative density function (CDF) of an input dataset 

to that of a hypothetical CDF parameterized with the mean and standard deviation 

of the input data. The test statistic is calculated by determining the absolute max- 

imum vertical distance between the two distributions. The null hypothesis for the 

test is that the two distributions (input and hypothetical) are the same. Small prob- 

ability values indicate that the two distributions are signXcantly different such that 

the null hypothesis is rejected. A probability value of 1.0 is likely to r d t  when the 

distributions are identical - that is, the input data fits a p e r f ' l y  normal distribution 

(Siegal and Castellan, 1988; Press et al., 1992). 

Table 5.1: Probability values from the Kolmogorov-Smirnov test for .normality. 
Tested were the training data for the four canopy types of interest for each of the 
seven TM bands. 



In all but a few cases, the probability values from the K-S test were close to 0 

meaning that overall, the training data were not normally distributed (Table 5.1). 

This preliminary assessment of the data immediately eliminated the option of using 

the maximum Likelihood parametric image classifier ( MLC) . 

The MLC requires that the input data for training sites fit a Gaussian distri- 

bution with known means and covariances. In addition, the classifier requires that 

the sample sizes of the training data be quite large so that the covariance param- 

eters can be reasonably estimated for multidimensional surfaces (Richards, 1993; 

Schowengerdt, 1997). The training data failed to meet both of these requirements. 

Instead, the k-nearest neighkurs (kNN) classifier was chosen. The kNN classifier 

provides a non-parametric supervised approach to data classification that has been 

shown to provide pixel assignment accuracies similar to parametric methods such as 

the MLC (Hardin, 1994). Since it is non-parametric, the kNN classifier is also more 

suited toward the use of s m d  training data sample sizes. 

5.2.3 Computer Algorithm Development 

Since the propagation of uncertainty throughout all components of the biodiversity 

prediction model is an integral part of this work, it was necessary to devise a method 

of uncertainty estimation for the dassification. The logical choice of an uncertainty 

measure was the use of dass assignment probabilities for each pixel. For instance, if 

a pixel had a 0.5 probability of being labeled as jack pine and a 0.48 probability of 

being Labeled as black spruce, the uncertainty in the final decision to label the class 

as jack pine would be very high since the probabilities aze so similar. The fouowing 

paragraphs detail the derivation of these probabilities. 



Although a lcNN classifier akeady existed within PCI, the algorithm did not allow 

For the output of probability values for pixel assignments into each possible class. 

This need was addressed in the development of an alternative kNN algorithm for use 

in the PC1 (1997) EASI command line environment. The user is able to specify an 

input channel containing training sites, channels to be classified, output channels for 

the classified image and probability values, an integer value for k and a maximum 

number of training samples per class. Training data is first extracted under each 

training site and stored in a two dimensional matrix. For an unclassified image 

pixel, the Eudidean distance (in multispectral space) is calculated to each training 

pixel. A list of the k shortest distances is then examined for the most frequently 

occurring training ciass which is chosen as the winning pixel label. If there is a tie 

between two or more potential winners, the dass with the training pixel with the 

shortest distance to the unclassified pixel is chosen. 

The number of votes (out of the total K-nearest neighbow) that each dass re- 

ceived was also used to calculate an assignment probability for each class by simply 

dividing the frequency of votes for each class by the total number of nearest neigh- 

bows, k. Using the example horn Figure 5.1, the probabilities for jack pine, black 

spruce and trembling aspen would be 0.6, 0.3 and 0.1, respectively. Logically, the 

winning clam has the highest probability. These d u e s  are then output into images; 

one for each dass. The use of these uncertainty images will be addressed in Chapter 

7 which addresses the implementation of the biodiversity model. 

These steps are repeated for each image pixel. An obvious drawback to the kNN 

clas&er is the heavy cornputationd requirement which results in long execution 

time. The imagery in this project measures 2611 by 3785 pixels. To classify 7 TM 



Figure 5.1: Example of kNN-based class assignment for a single pixel (black triangle) 
in a twdirnensional feature space for 10 nearest neighbours. The Euclidean distance 
is measured to each training pixel but only the closest 10 distances are kept. The 
jack pine class would be chosen as the winner based on the number of votes each 
class received. 
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bands with 10 nearest neighbours and 1000 training pixels (in total), the algorithm 

would need to calculate approximately 6.9 x 10" distances. In some cases, these 

execution times make the kNN classifier an impractical choice. However, for this 

project, a MATLAB (1997) program was available which creates a kNN dassification 

confusion matrix using the training and testing datasets without classifying the entire 

image. The use of this program tremendously cut down preliminary processing time. 

The program was written by Dr. Michael Collins of the Department of Geomatics 

Engineering at the University of Calgary, Alberta 

5.2.4 Classification 

The June and August, 1996 images were both classified with the Matlab program 

to yield preliminary dassification accuracy results. The initial kNN dassification 

using the June, 1996 TM imagery yielded the best overall results for the four forest 

type classes. However, in both classifications, the black spruce and mixed cIasses aze 

heavily confused with the other classes resulting in very poor classification accuracy 

for those classes. The June results are shown in Table 5.2 as well as Appendix B for 

comparison with the August results. 

From these results, it was thought that the s m d  sample size of training and 

testing sites might be negatively infhencing the dassification. Notice that for the 

smd pixel totals (sample sizes) in Table 5.2, the dassification accuracies are quite 

low. For larger samples, the accuracy tends to increase. 

To test this hypothesis and hopefully improve the accuracy of the classification, 

each of the 100 ground sampling sites was examined with the intent of expanding 

their area on the imagery (ie. increase the number of pixels per sample site). Forest 



I class 11 JP 1 BS 1 TA I MIX I WAT ) ANT 1 WET 11 Percent I 

I TOTAL 83 1 56 1 196 1 61 1 205 1 170 1 241 1) I - -- - -- -- - 

Table 5.2: kNN Classification results for testing sites using 7 bands of the June, 1996 
TM imagery. The dass3cation accuracies of the black spruce and mixed class are 
unacceptably low. 

inventory maps, 150 000 scale topographic maps and the raw TM imagery were used 

to determine if a site could be expanded. For many sites, the forest type patterns 

on the inventory maps matched with the patterns seen on the TM imagery. If a site 

was clearly contained within an area that was homogeneous with respect to forest 

type, its extent was expanded within the area by a number of concentric rings around 

the original site. However, expansion only occurred within the homogeneous areas. 

The largest individual training site included 71 pixels; about seven times the original 

number of pixels for that site. In some cases sites could not be safely expanded. 

The new sites were then aggregated as before and dassification was performed 

again on the June and August images. For the bladc spruce and trembling aspen 

classes, the results were even poorer than those oEered by the unexpanded sites of 

which the results were poor to begin with. Table 5.3 shows a slight improvement in 

the jack pine and mixed class. The results do not support the hypothesis that the 

small sample sizes of the training sites were negatively influencing the performance 



of the kNN classifier, 

Table 5.3: kNN Classification results for expanded testing sites using 7 bands of the 
June, 1996 TM imagery. The dasssification accuracies of the black spruce and mixed 
class are unacceptably low. The last column shows the change in accuracy from the 
unexpaaded sites classification results. 

The classifications were not limited to electro-optical TM data. Two other classi- 

fications were performed. The fist  used four bands of SIR-C SAR data; LHH, LHV, 

CAH and CHV. The second used four DEM derived, geomorphometric variables 

including elevation, slope, aspect and distance from a ridgeline. The accuracies re- 

sulting from the geomorphometric variable classification offered no improvement over 

the June TM dassificatioa and in some instances were considerably worse. The SAR 

data showed only sIight improvement in the bladc spruce dass but a considerable 

decline in accuracy in all other forest classes (Table 5.4). 

The poor results of all classifications performed were puzzling and prompted 

further investigation as to why the classification accuracies were not higher. Ex- 

amination of the canopy species compositions (Appendix A) of the ground sampled 

sites provided a strong clue toward an explanation. For only a few forest stands, 

the species compositions measured as pun. For instance, Site 48 was recorded as 



Table 5.4: kNN Classification results for expanded testing sites using SAR LHH, 
LW, CHH and CEW polarizations. The dassification accuracies of the jack pine 
and mixed classes in particular, are unacceptably low. The last column shows the 
change in accuracy from the expanded June TM sites classification results. 

100% jack pine. However, most sites were extremely mixed and in some cases, there 

is no dominant canopy type even though the site was being used to represent one 

in the classification. For instance, Site 81 was classed as a jack pine site for the 

classification training yet its composition is 53% jack pine and 47% trembling aspen. 

Further examination of Appendix A reveds that there are many sites for which a 

dominant canopy cannot be reasonably distinguished. It seemed likely that the nat- 

ural mixture of species in the training sites was the cause of great confusion in the 

classifications. For this reason, a further in-depth investigation of tE imagery data 

extracted from the ground sampled sites (training and testing data) was undertaken. 

To accommodate this investigation, a new program was written based on the 

W N  classifier methodology horn 55.2.3. Its purpose was to test the validity of the 

training and testing site data by treating each site, one at a time, as an unclassified 

image. The program iterates through aU sites and dassifies each one using all other 

sites as training data. A table of the number of pixels falling into each class for each 



site is output. It is similar to a classification confusion matrix except that the pixels 

being classified are all h u m  to be of one class. For example, at one iteration, the 

program might attempt to classify a black spruce site using all other sites as training 

data. Since we know what the site should be classified as, we calculate the percent 

accuracy in classifying the site as black spruce. 

Initially, all sites in each class were included in the kNN site testing. The resulting 

output tables are presented in Appendix B. The resulting classification accuracies 

were then used to identify potential problem sites. The double lined columns indicate 

the class of intereat in each table. In each row, the top number indicates the number 

of pixels that fell into that class and the bottom number indicates the same in a 

percentage of the total number pixels for that site. These percentages can be used 

as classification accuracies since each site is considered homogeneous. For instance, 

in Table B the jack pine site (etrs3) was classified with 97.8 percent (or 45/46 pixels) 

accuracy. Moving down the column, it is easy to identify potential problem sites 

with low classification accuracies. Overall, the individual accuracies for the jack 

pine and trembling aspen site tests reflect the reasonable, overall kNN ~Iassification 

test accuracies for each class (Table 5.3). Most of the black spruce and mixed sites 

performed extremely poorly which reflected their low classification accuracies. 

The individual sites were examined more closely in terms of their age (time- 

since-fire), canopy stem density and under- and overstory species composition (as 

determined from ground sampling estimates). The main goal here was to explain 

the level of classification accuracy of the sites. First, the canopy composition (Ap- 

pendix A) was examined to see if the canopy species distributions for a site could 

explain the deviations. If this faiIed, the canopy stem density was examined. If the 



stand was of Low density, the understory species composition was also examined. If 

the deviation could be qualitatively explained within reason, it was removed from 

the trainingltesting dataset. Particular attention was paid to the sites with low clas- 

sification accuracy. In general, the heuristic rules used to determine if a site should 

be kept or removed were applied equally throughout the set of sites for each class. 

For instance, in some cases sites with high classification accuracy were also ques- 

tioned and removed because canopy compositions did not indicate that a high level 

of accuracy should be expected. Since the black spruce class consisted of very few 

sites (and therefore few pixels), none were removed. Tables 5.5 though 5.7 address 

the justification for removing training sites from the classification. 

Class ID 
etrs7 

etrs9 

Justification for remod of jack pine sites 
Canopy composition includes 50% trembling aspen which coincides 
dosely with kNN test results 
Canopy composition is very mixed with high proportions of white 

etrs76 
spruce and trembling aspen. 
Canopy composition includes less than 30% jack pine which indicates 

etrs8 1 

I I relatively wet area (in terms of ground moisture). This observation I 

a non-dominant jack pine canopy 
Canopy composition indudes 47% trembling aspen which coincides 

etn85 

I I coincides with 97% if the pixels being classified as wetland I 

closely with kNN test results 
According to the 1:50 000 topographic maps, the site is locaed in a 

Table 5.5: Training sites removed for the jadc pine class. 

Once the identified problem sites had been removed, the dassification was per- 

formed again on the June TM data using the Matlab test program. The resalts are 

presented in Table 5.8. Note that three of the four forest dasses showed an increase 

in classification accuracy. In particular, there was substantial improvement in the 



r Class ID I Justification for removal of tremblina amen sites I 
I 

I etrs5 
V - 

Canopy composition indudes less than 12% trembling aspen which 

etrsl3 
indicates a non-dominant trembling aspen canopy 
Although this site was dassified reasonably well at 64% accuracy, its 

etrsl4 
canopy composition consists of 53% white spruce 
Although this site was classified well at 86% accuracy, its canopy 

etrs41 
etrs42 
etrs46 

composition consists of 46% white spruce 
These sites are very mixed in terms of canopy composition 

Although this site was classified well at 100% accuracy, its canopy 

etrs54 
composition consists of less than 6% trembling aspen 
Although this site was classified well at 70% accuracy, its canopy 

etn57 

I I position is dominated by 66% white spruce with only 26% trembling I 

composition is very mixed 
Although this site was clkssified w d  at 100% accuracy, its canopy 

etn60 
composition is very mixed with only 36% trembling aspen 
Although this site was ciasssed well at 71% accuracy, its canopy corn- 

I composition is very mixed with only 37% trembling aspen I 
etrs97 

Table 5.6: Training sites removed for the trembling aspen class. 

aspen 
Although this site was classified well at 82% accuracy, its canopy 



I ( with classification accuracy. This dominance of black spruce was the 

Class ID 
etrs4 

Justification for removal of mixed sites 
Canopy composition includes 52% bladc spruce which coincides well 

I I indicates only 24%. However, forest inventory maps indicate that 
etrsl5 

reason the site was placed into the bladc spruce dass 
Site dassified at 100% trembling aspen yet the canopy composition 

I I site is not very mixed. This coincides with high trembling aspen in 
etrsl7 

trembling aspen is a dominant canopy type 
Canopy composition includes 54% trembling aspen indicating that the 

I 1 indicates only 24%. However, forest inventory maps indicate that 
etrsl9 

the classification test result 
Site classified at 97% trembling aspen yet the canopy composition 

I I indicates only 36%. However, forest inventory maps indicate that 
etrs2l 

trembling aspen is the canopy species for the area 
Site classified at 94% trembling aspen yet the canopy composition 

I I cates 52% black spruce. The result cannot be explained but neither of 
etrs3O 

I I these should be represented so heavily within the site indicating that 

trembling aspen is the canopy species for the area 
The site classified at 78% jack pine yet the canopy composition indi- 

I I spectraily different from the forest. This observation likely explains 
etn56 

it is a problem site. 
This site is located at the edge of a lake and on the imagery it appeared 

I I spruce indicating that it is should not be in the mixed category. 
etrs64 

Table 5.7: Training sites removed for the mixed class. 

the misclaasification of pixels into the anthropogenic class. 
The canopy composition consists of 63% white spruce and 37% black 



trembling and mixed classes. Black spruce accuracy declined considerably and was 

much lower than desired. It is interesting to note that as the mixed class accuracy 

increased, the black spruce class accuracy declined. 

Table 5.8: Summary of kNN results for testing sites using 7 band TM after site 
expansion and selective site remod. The change is relative to the June TM dassi- 
fication before site remod. 

-- - -- - - - - - 

Table 5.9: Summary of lcNN results for testing sites using SIR-C SAR LHH, LEV, 
CHH and CHV polarizations after site expansion and selective site removal. The 
change is relative to the SAR classification before site r e m o d  

Notice that for the S AR classification, the classification accuracies are generally 

quite low. However, the black spruce accuracy is considerably higher than the TM 

WET 
0 
6 
4 
0 
0 
17 

593 

class 
JP 
BS 
TA 

MIX 
WAT 
ANT 
WET 

accuracy for the same dass. This result was the motivation for the next &ion of 

JP 
67 
31 
55 
18 
0 
35 
0 

Percent 
30.6 
51.5 
64.6 
30 

LOO 
70.2 
83.4 

WAT 
0 
0 
0 
0 

788 
0 
0 

Change 
-10.3 
-0.02 
+6.22 
+lO.O 

0 
+9.9 
-16.6 

MIX 
4 
6 
17 
30 
0 
11 
0 

BS 
25 
68 
25 
37 
0 
41 
4 

ANT 
49 
15 
11 
9 
0 
336 
113 

TA 
74 
6 

204 
6 
0 
39 
1 



this chapter in which the evidential reasoning combination algorithm is implemented 

on the classified produced so far. At this point, the kNN classification algorithm was 

implemented on both sets of imagery (TM and SAR). The result was two classified 

images of forest canopy type and two sets of probability imagery of seven images 

each (one image per class). 

5.3 Evidential Reasoning Combination 

The following sections introduce evidential reasoning and how it can be used to com- 

bine classifier outputs. Specifically, the combination of the SAR and TM probability 

images is also examined. 

5.3.1 Introduction to Evidential Reasoning 

ER is similar in concept to the boolean algebra based 'overlay' operation found in 

image processing and GIs packages. However, in the typical overlay, a redting pixel - - 

or polygon is labeled with hard decision criteria such as C=AUB or C=AnB. 

The Theory of Evidence combination methodology is based on the concept of 

evidential mass. Each pixel in each data set is assigned a mass of evidence which 

represents our belief in tenns of a probability value that the pixel in question belongs 

to a certain label dass. Since probabilities are being used, the total evidential mass 

for a pixel must always sum to unity with each component representing a proportion 

of mass in favour of a certain class Iabel. 

To illustrate, consider the following example of a mass distribution function from 

Richards (1993): 



where rn is the mass distribution for a given data source and < A, B, C > is the set 

of possible label dasses for a pixel with their respective probabilities of assignment. 

Notice that the sum of all evidence is 1.0. Recd  &om $5.2.3 on the kNN computer 

algorithm development that class assignment probabilities axe output for each pixel 

in the image. These probabilities provide us with a convenient source of eaidential 

maas which can be used in evidential reasoning. Also, recall that since they are 

proportions, they sum to 1.0. 

A method was formulated by Dempster (1967) for combining multiple sets of mass 

distribution functions into a single set. It is referred to as Dempster's Orthogonal 

Sum and will be elaborated upon in 95.3.4. The method allows for evidential mass 

to be combined or integrated from different data sources. A decision rule is then 

applied to the combined set of evidence for each pixel and a class label is determined 

(see 55.3.5 for a more complete discussion). 

5.3.2 Incorporating Uncertainty & Representing Ignorance 

A great asset of the Theory of Evidence is thak it allows for uncertainty estimates to 

be included in the total evidentid mass for a pixel at each 1eveI of the classification. 

The simplest incorporation of uncertainty into the mass distribution function can be 

illustrated with an example. 

Suppose that one was only 80% confident that the correct pixel label was in 

fact one of the possible classes A, B o r  C. In other words, what if there were other 

possibilities that we have not taken into account? By multiplying each element in 



the set from Equation 5.1 by 0.80, the mass distribution would become: 

where 0 denotes the uncertainty. The uncertainty can be viewed as our ignormce in 

choosing a comprehensive set of label classes. The higher the uncertainty, the less 

confidence we have that a given pixel will accurately be represented by the possible 

labels we have chosen. In this example, there is a probability of 0.2 that none of the 

possible labels is the correct one. 

Again, the W N  classification provides us with a convenient mechanism for de- 

termining the uncertainty: From a classified image, we are able to determine the 

accuracy of each class (see for example, Table 5.8). These accuracies can be used as 

certainty measurements such that the uncertainty for an individual piece of evidence 

in the set is equd to 1 - (accura y%/100). Since we have an accuracy fm each class, 

we can be more s p d c  about the quantity of uncertainty associated with each piece 

of evidence than was illustrated in Equation 5.2. In this ease, each element is mul- 

tiplied by its associated uncertainty. The uncertainty term in the set then becomes 

equal to - C evidence. 

5.3.3 Evidential Measures 

Mathematicdy, the elements of the evidential mass distribution are described with 

three measures: support, plausibility and eoidential intend. The first, support, is a 

meaaure of the minimum amount of evidence that supports the labeling of a pixel 

as a certain dass. The second, plausibility, is a measure of the maximum amount 

of evidence that supports the labeling of a pixel and is caIcdated as one minus the 



total support for all other label possibilities. In the example above, each possible 

class is assigned a support and a plausibility. The evidential interval is t he  difference 

between the support and plausibility. Using the example above for label class A, the 

notation is given as: 

where s, p and u are the support, plausibility and evidential interval respectively 

for label dass A. A graphid representation is shown in Figure 5.2. The evidential 

in tend can be interpreted as  the amount of imprecision in the m a s  allocated to 

a certain label dass. A very tight or small interval indicates a relatively precise 

estimate that the amount of mass assigned to a given label class is correct. A 

relatively wide interval obviously indicates that we cannot precisely determine what 

the mass allocation should be. 

Figure 5.2: A linear depiction of the evidential internal as represented by the shaded 
segment. The evidential interval is a measure of how certain one is about the evidence 
assigned to the mass fimction in support of a given pixel IabeIing. 



5.3.4 Combining Evidence 

In order to combine classifier outputs, it is necessary to combine the mass of evidence 

distributions for each source. The evidence for each data source is combined using 

Dempster's orthogonal sum (Dempster, 1967) which is described mathematically 

below with an exampIe using two sets of labels, Y and Z &om mass distribution 

functions rnl and rnz:  

where rn12 represent8 the combined mass distribution for the sets of Labels, Y and 

2. The new set of labels is denoted by X. It would be illogical to combine evidence 

for two different label dasses. For example, the mass from one data set in favour of 

labeling a pixel as black spruce would not be combined with the m a s  in favour of 

labeling a pixel as trembling aspen from the other data set. Thus, a null or empty set 

denoted by 0 is defined which represents the discaxded contradictory label classes. 

The constant, r restores the total probability mass to 1.0 and is calculated as follows: 

Once a new evidential mass distribution is calculated, it can be combined with 

another. This process is repeated until a l l  sets of evidence are combined. The order 

and grouping of mass distribution combinations is irrelevant since the orthogonal 

sum has commutative and asmciative properties (Garvey et d., 1981; Moon, 1990; 

Richards, 1993; Shafer, 1976). 

Figure 5.3, adapted from Richards (1993) and Garvey et d. (1981), shows a 
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based on souce # I 

1 Probability that the pixel belongs to C 
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Combined probability thaf rhe pixel 
belongs to C based on source #I and $2 

0  hen^ set 

Figure 5.3: A conceptual Unit Square for combining evidence fiom two data sources, 
and mz. 

conceptual unit squaxe for two data sets. The horizontal lines partition the four 

label class probabilities (A, B, C, D) for a pixel from the first data source giving 

a total probability of 1.0. Similarly, the vertical lines partition the identical four 

label class probabilities for the second data source. The area of a single box defined 

by two intersecting identical classes (ml(C) n m2(C) for example) represents the 

combined evidence (probability) for a pixel label dass from the two evidentid mass 

distributions ml and m2. Boxes defined &om the intersection of conflicting label 

classes (ml(A)  n m2(D) for example) are assigned to the null set as denoted by 0. 

The inclusion of uncertainty is indicated by the 0 partitions (55.32). 

Figures 5.2 and 5.3 are closely related to one another. The distance between 

label class divisions on one axis in Figure 5.3 represents the magnitude of support in 

favour of that label from a data source. Notice that the total quantity of evidence, 

when all label class support magnitudes are summed for a single source, equals 1.0. 



5.3.5 The Decision Rule 

Once a final set of evidence has been derived (through successive combinations), a 

decision rule must be applied to actually classify the data. Various decision rules are 

used in the literature with no consensus on which is the most correct. 

1. The label class with the highest support is chosen (Le HGgarat-Masde et al., 

1998; Kim and Swain, 1995; Lee et al., 1987; Peddle, 1993, 1995). 

2. The label class with the highest plausibility is chosen (Le Hhgarat-Made et al., 

1998; Lee et al., 1987; Kim and Swain, 1995). 

3. The label dass with the highest support AND plausibility is chosen (The m a -  

imum support and plausibility rule). (Lee et d., 1987) 

4. The label class with the highest sum of support and plausibility is chosen 

(Le Hhgarat-Masde et al., 1998; Peddle, 1993, 1995). 

5. The label dass with support that exceeds the plausibilities for all other possible 

labels is chosen (The absolute rule). (Lee et al., 1987) 

Lee et al. (1987) note that if there are no union subsets (A U B for example) 

for the possible classes, the first three rules wil l  result in the same decision. This is 

evident in Figure 5.4 where it can be seen that for decision de s  1, 2 and 3 applied 

to the mass distribution, Class A wil I  always be chosen. 

If only a maximum support decision rule (I) is chosen, Richards (1993) mgues 

that a labeling decision should be considered risky if the plausibility for the next 

most likely class is higher than the mppoFt for the class with the greatest support. 



Support + Plausibility 

PLvnbility Uncertainty 

Figure 5.4: A graphic example of a set of evidence represented in tenns of support 
and plawibility. The label classes for the mass distribution function are A, B and C. 

The obsolute rule proposed by Lee et al. (1987) would account for this situation 

but as they note, the decision d e  can result in a situation in which no class will be 

chosen. This d occur when the uncertainty is greater that the difference in support 

of the two most likely classes. 

The use of supports and plausibilities for decision rules can be useful for deter- 

mining the weakness or strength of a partidas labeling. For example, in a geological 

mapping application, Moon (1990) produced separate maps for plausibility and sup- 

port to aid in the interpretation of the hal labeling decision. A user would then be 

able to associate a confidence levei with any information extracted from such a map. 



5.3.6 Computer Algorithm Development 

Two programs were developed to implement evidential reasoning combination on 

the data sets: ( 1) an Evidential Reasoning Combination (ERC) program and (2) a 

Classification of Evidential Reasoning Probabilities (CERP) program. Both run in 

a PC1 (1997) EASI command line environment. 

The primary function of the ERC program is to combine evidential mass derived 

ftom two sources of image data using Dempster's orthogonal s u m  (55.3.1). The 

program takes as inputs, two sets of images of which the pixel values must be prob- 

abilities. For each pixel Location on a set of imagery, an evidential mass distribution 

function can be extracted. The user must specify these two sets of probability images 

to be combined as well as a set of output channels to house the combined probability 

values where each set represents a singie data source. Both input sets must have an 

equal number of elements (imagery). The user is able to optionally specify two sets 

of values which represent the uncertainties for each individud classes for each data 

source. 

The algorithm operates on the sets of imagery one pixel at a time. At a given 

pixel location, a set of probability values is extracted from a set of imagery and 

stored in kn array. The set of evidence is then prepared for combination. If the user 

does s p e w  label daas uncertainties, the algorithm ensures that the sum of all  mass 

is 1.0 by applying the following rule to each set of evidence: 

1. All elements are multiplied by their respective uncertainty dues .  

2. The total mass for the set of evidence is calculated. 



3. If total mass = 0 : It is assumed that there are no probabilities and a flag is 

set for later use in the algorithm. 

4. If 0 < total mass <= 1 : Any remaining difference (1 - total mass) is assigned 

to the uncertainty term. 

5. If total mass > I : The mass total is normalized to 1.0 such that all elements 

are divided by the total number of possible classes. 

If uncertainty values were not s p d e d ,  only rules 2 to 5 were applied. It should 

be noted that for the kNN classifier, the total mass will never be greater that one. 

However, with other classifiers such as the MLC, the probabilities can sum to greater 

than one. These steps are repeated for the second set of imagery. The algorithm 

then proceeds to the combination stage. Before combination begins, the algorithm 

checks for the moss = 0 flog. If the flag has been set, combination does not occur for 

that pixel set. The combination stage uses Dempster7s orthogonal sum to combine 

the two arrays of probability dues .  These are stored in a third array and written 

to the s p d e d  output probability channels. This entire process is repeated for each 

pixel location on the imagery until a complete set of combined probability imagery is 

created. The program can be re-run if additional sets of evidence must be combined. 

This can be facilitated with a PCI EASI maen, script such that the output from one 

program execmtion becomes the input (for one set of imagery) for the next. As with 

ERC, the CERP program also tuns in PC1 (1997) EASI command line environment. 

Its fundion is to determine a winning pixel label from a set of probabilities. These 

probabilities are ideally extracted fiom the output imagery of ERE 



Table 5.10: Summary of classification results after SAR and TM classifications were 
combined using evidential reasoning. The change is relative to the highest accuracy 
of the pre-combination TM results. 

5.3.7 Image Combination 

The ERC program was implemented using the probability imagery of the SAR and 

TM data as  inputs. The classification accuracies were used as uncertainty meamre- 

ments for each label dass as discussed in 55.3.2. The result was a new set of combined 

dass labeling probabilities which were used in CERP to produce a classified image 

of forest types. The mazimum support deasion rule was applied. 

5.4 Assessing the Accuracy of Canopy Type 

Referring to Table 5.10, the jack pine and trembling aspen classes performed well 

in the classification assessment with 75% and 99% accuracy, respectively. The black 

spruce and mixed class were still considerable poorer than desired. However, the 

combination of SAR and TM imagery improved the black spruce accuracy consider- 

ably. At the same time, it lowered the accuracy of the mixed class. If we compare 

these results back to the original TM dassification, we can see that there a.re both 

gains and losses. in general, however, there have been reasonabIe gains made in 



classification accuracy. T h e  mixed class, for instance, jumped fIom a very low 28% 

accuracy to a more reasonable 50%. The black spruce class was the only one that 

really suffered a notable reduction in accuracy. 

Trembling aspen and black spruce appeared to be responsible for much of the 

misclassification in the mixed class. This observation is not unreasonable because 

trembling aspen appears as both a category on its own and within the mixed class. 

Confusion with the black spruce class is more m c d t  to explain. The poor perfor- 

mance of the dassScation of the black spruce category is possibly due to the heavy 

presence of white spruce in the mixed stands. The spectral signatures of the two 

species cannot be examined due to lack of necessary data- However, it is possible 

that they are similar and therefore, dassificat ion confusion has resulted. 

Lastly, it should be noted that although the jack pine, black spruce and trembling 

aspen sites are representing the dominance of their respective species, it is not likely 

that pure stands will be found in nature. Examination of the canopy composition 

tables in Appendix A tells us that all stands are to some degree, mixed stands. 

Furthermore, if we look to the understory species, it is unlikely that it will be the 

same as the canopy species, nor p w  itself. Now consider that each tree in a site 

will contribute some energy (from reflection) to the sensor which will manifest itself 

in the pixel value found on an electro-optid remotely sensed image. It can be 

conjectured then, that the confusion arising in the mixed and black spruce classes 

can be explained with the preceding observations. 

It also is possible that some of the so-ded p u n  sites are isolated forest stands 

within larger mized areas (ie. they are part of a patchy landscape). The coarse 

resolution of the satellite imagery and the forest inventory maps may not delineate 
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these small s tands  and thus, if the site was unduly expanded, confusion might result. 



Chapter 6 

Mapping Canopy Stem Density 

The role of canopy trees in explaining biodiversity was examined in 5 1.2. This chapter 

discusses the development of a map of canopy stem density for PANP. Again, close 

attention is paid to uncertainty propagation. 

6.1 Problem Definition 

Mapping canopy stem density with satellite imagery proved to be the most difficult 

task encountered. Reports of canopy stem density estimates for boreal forest from 

spaceborne imagery are sparse in the literature. Many studies demonstrate the use 

of S AR to predict forestry parameters such as species composition, biomass, LA I or 

DBH(Ranson et d., 1995; Ranson and Sun, 1994; Le Toan et d., 1992; Wilson, 1996). 

However, within this literature there is little or no attention given to the estimation 

of stem density. In the few instances in which it is given mention, we are left without 

a summary of results. It seems plausible that estimation of stem density has been 

largely unsuccessful by the scientific community and thus, reporting of results has 

not followed. Given this premise, success seemed unlike1 y. Nevertheless, this chapter 

discusses the approach used to estimate stern density for the P A W  study site. The 

reader should note that the results are not without error; the errors, however, do not 

go unreported. 



6.2 Modeling Canopy Stem Density 

The following subsections discuss (1) the flow of the model design, (2) provide an 

explanation as to how the model was developed asd (3) the development of the 

mat hematical relationships which were used to predict stem density from remotely 

sensed imagery. The development of the final model was not a straight forward 

exercise and it encompassed many failed approaches. The proceeding discussions 

will offer an insight into these failures and how they influenced the find model. To 

begin the discussion, it is instructive to first examine the flow of the model. 

6.2.1 Model Design and Flow 

Figure 6.1 shows the flow of the initial and final models used to predict canopy stem 

density. In the initid three-part model, W polarized backscatter is used to estimate 

biomass for each image pixel (Step I). The biomass estimate represents the amount 

of biomass of a single representative tree in a pixel. In other words, if a random tree 

was selected from within a given pixel, its biomass would be characterized by the 

pixel biomass estimate. Although this is a highly questionable assumption, it is an 

artifact of the coarse resolution of the image data. 

The biomass estimate is then used to predict DBH (Step 2). Again, the DBH 

estimate represents the diameter of a representative tree for the pixel. Finally, the 

DBH estimate is used to predict canopy stem density (Step 3). Given the previous 

assumptions, the estimate implies that if we sampled the density of trees at any 

given area within a pixel, our results would be similar to the estimate of CSD for 

the pixel. Common sense tells use that this is anlikely to be the case if we actually 



Figure 6.1: Initid and final versions of the canopy stem density model 
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put it to the teat with fieId reconnaissance. However, since the estimates are pixel 

based, there will inevitably have to be some generalization. 

Ultimately, circumstances dictated that it would be more suitable to estimate 

CSD directly horn SAR imagery (Figure 6.1). Although this seems simple and 

straight forward, arriving at this solution was not trivia. The assumptions made 

in the initial model and the interpretation of the result remains the same with the 

exception of the biomass estimation and its relation to DBH. The following subsection 
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will discuss how this model was developed. 
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6.2.2 Background of the Model Development 

The first question that was asked was what forestry parameters have been successfully 

estimated with remotely sensed imagery? The most logical place to start was with 

stem density itself since this was the desired parameter. However, as was alluded to 

in 56.1, the literature concerning this kind of estimate was spame. Kurvonen et al. 

(1999) estimated stem volume using Gband JERS-1 and ERS-1 SAR. However, their 

prediction equations required the use of vegetation and ground moisture parameters. 

Their approach did not seem practical for this work. 

Scatter plots of aJl four SAR bands and all seven TM bands versus stem density 

measurements (from the ground sampled sites) were constructed. None of the plots 

appwed to show any semblance of useful relationship between the remotely sensed 

inputs and stem density. This suggested that a surrogate variable, which could be 

estimated, would have to be used and then related to stem density. 

Based on previous work by Ranson et al. (1995); Ranson and Sun (1994); Le Toan 

et al. (1992) and Wilson (1996), biomass appeated to be a parameter that could be 

estimated with reasonable success for boreal forest using SAR imagery. In particular, 

a good linear correlation between SAR LHV backscatter and biomass (kg/m2) had 

been reported. Le Toan et d. (1992) reported even stronger correlations between 

P-band SAR and biomass. Unfortunately such data was not available for this study 

site. Ranson et al. (1995) heady related the log of forest biomass to SIR-C SAR 

LHV backscatter with a c d c i e n t  of determination (r2)  of 0.846. Their study site 

was part of the BOREAS project and was Iocated adjacent to PANP. Their results 

seemed extremely promising for this research. 



It was noted that Ranson et al. (1995) cdculated biomass for their training sites 

using DBH measurements as inputs into allornetric equations (Singh, 1982). Singh 

empirically derived a set of third-order polynomial equations for relating DBH (cm) 

to biomass (kg) for major tree species in the prairie provinces of Casada which in- 

clude relationships for individual bored species. The r2 values for these relationships 

ranged between 0.96 and 0.99. These DBH-biomass relationships were important be- 

cause biomass measurements did not exist in the ground sampled dataaet for this 

project. They provided a means by which biomass could be determined since DBR 

measurements did exist for the ground sampled data. To predict D BH from biomass, 

a straight forward inversion of the equations was carried out. 

The sampling method discussed in 82.4 used 15 sample points of which each was 

divided into four quadrats. Therefore, the maximum number of canopy trees sampled 

was 60 (15 points times 4 quadrants). If a canopy tree was further than 10 m from 

the sample point, it was not measured so in some instances there were less than 60 

sample trees. From the population of sample trees for a given stand, mean DBHs 

were calculated for each species. The mean DBH for a tree species in the stand was 

input into the appropriate biomass prediction equation (for the species of interest). 

This was repeated for each species in the stand. A weighted average of biomass was 

then calculated such that species with greater abundance in the stand would have a 

greater influence on the biomass estimate. This yielded a predicted estimate for a 

single representative tree for a stand. 

Scatter plots of d four SAR bands versus the estimated biomass were then 

constrticted. Linear regression was performed on the SAR LHV polarization which 

was the only independent variabIe yielding anything resembling a useful relationship. 



The adjusted r2 value was very low at approximately 0.3. 

In parallel to the work of the preceding discussions, it was determined that DBH 

can be related linearly to the natural logarithm of stem density such that it will 

increase as stem density decreases (Husch et al., 1972; Oliver and Larson, 1990). 

Intuitively this makes sense because as trees get bigger, they need more space to 

grow. As a preliminary check of the validity of this relationship for the study site of 

this research, DBH and stem density data for the southern boreal mixwood forest of 

Saskatchewan published by Ranson et al. (1995) (from the BOREAS project) were 

plotted as described above. The r d t a n t  correlation c d c i e n t  for the linear regres- 

sion was -0.94. This prompted further investigation to fmd such a relationship with 

the data used in this research. After plotting the canopy stem densities versus the 

DBH d u e s  from the ground sampled sites, a very similar relationship was revealed 

with an r2 of approximately 0.6. 

Before continuing, now is a convenient time to recapitulate: from the SAR im- 

agery, we are able to estimate biomass. Using Singh's equations, we can relate 

biomass to DBH. DBH can then be related to CSD. Using these relationships, we 

can logically piece together a method for stem density estimation. However, it should 

be evident to the reader that this method is marred by the weak relationship be- 

tween SAR imagery and biomass estimation. The poor correlation introduces a 

large amount of uncertainty into the CSD prediction. In addition, each intermediate 

model needed to arrive at a CSD estimate dso introduces its own uncertainty which 

is compounded as the results of one are used as  input into another. Simplification 

was the most logical answer for reducing uncertainty. 

When testing the solution with input biomass estimates, it was noted that the 



output DBH values for different species were quite similar. The biomass to DBH 

functions were then plotted and it was evident that within the range of useful input 

biomass estimates, the functions were all nearly Linear. This implied that perhap 

DBH could be directly estimated from the SAR imagery. Plotting SAR LHV versus 

mean DBH revealed that the relationship was very similar to that of SAR LHV and 

biomass except that there were a number of major outliers at the lower and upper 

range of DBH values. If the input SAR was limited to pix values within 156 and 255 

(on an &bit scale), a Linear relationship could be d&ed with an r2 of approximately 

0.3. The relationship, although still weak, allowed part two of the initial model to 

be eliminated. This simplified the model as well as reduced the introduction of 

additional uncertainty associated with the biomass-DBH models. 

It seemed plausible that the relationship between the three variables (SAR LHV, 

DBH and CSD) could be Mher  simplified. Recall that scatter plots constructed 

for CSD versus the four SAR bsnds revealed no apparent relationship. However, by 

Limiting the range of SAR d u e s  used in the model and reconstructing the scatter 

plots, a weak relationship emerged. Could a simple SAR LEN-ln CSD relationship 

be used with the exclusion of DBH (and biomass)? Some sample SAR data was 

ntn though the original set of models to determine CSD values. Then, using the 

simplified relationship of LEV to the natural Logarithm of CSD, the same data was 

input. The results were remarkably similar. This relationship, although weak, was 

a good approximation of the original set of models. The advantages to using this 

model were twofold. Fist it is simpler to implement and second, the uncertainty is 

reduced. 

Using a sub-sample of the SAR LHV imagery, the model was implemented with 



a PC1 program. Immediately it was evident that  model was problematic. Due to 

the limited range of valid SAR vaiues that could be input into the model, CSD could 

not be predicted for large patches of the image which was highly unacceptable. This 

prompted the search for an alternative SAR Mliable to relate to CSD; one in which a 

complete range of SAR values would be valid as input into the model. Ranson et al. 

(1995) and Ranson and Sun (1994) used SAR band ratios to improve correlation with 

biomass. They proposed that using a ratio of SAR bands (as opposed to unratioed 

bands) may increase signal dynamic range and thus, improve correlation. Collins and 

Livingston (1996) used SAR polarization ratios (same band) for mapping thin sea ice. 

These techniques were examined for this research: regressions were performed using 

all possible combinations of SAR polarizations and band ratios versus the natural 

logarithm of canopy stem density. Of these many combinations, the LHH/LHV 

showed a reasonable correlation with CSD. Utilizing this ratio enabled a model to 

be constructed for which SAR inputs were not limited by a specific range. The data 

used to construct the model is shown plotted in Figure 6.2. 

6.3 Methods 

6.3.1 Construction of the Model Equations 

Although the actual model was simplified down to a single linear regreasion equation, 

its final mathematid development was heady influenced by the nature of the data 

from which i t  was constructed. Canopy s t e m  density measurements were provided by 

Chipman (1999). CSD is estimated with the equation, CSD = l/rnean distance2. 

The mean distance is calculated by summing the distances from tree to sample point 



of all trees sampled in the stand and dividing by the  totaI number of trees. The 

error on the mean distance for a stand was estimated using the standard deviation 

on the mean distance, c= = o,/fl. Using standard error propagation techniques, 

the error on CSD was then determined. Likewise, the SAR backscatter used in the 

model was a mean value pooled from the pixels which fell within the sampled stand. 

The standard deviation of the mean was used as an error estimate. Both sources of 

error were significant and needed to be incorporated into the regression model. 

In response to this need, a weighted least squares technique was used to estimate 

the model parameters as well their errors in terms of variances and covariances. 

The technique, which differs from standard regression techniques, is able to estimate 

parameters based on input measurements with errors in both variables (a complete 

treatment of these methods is given in Krakiwsky and Gagnon (1987)). This was 

ideal for the data being used to build the model. The basic form of the model 

relationship is: 

hCSD = m x ( L H H J L H V )  + b 

where m and b are the slope and intercept respectively. Then letting 

In CSD = C S D  

so that a linear solution can be obtained using 

CSD' = rn x ( L H H I L H V )  + b 

An additional benefit of the least squares approach is that it allows for the dm- 

Iation of error on any prediction using the variancecovariance matrix of the model 



parameter estimates. The benefit here is that the errors from both the SAR and 

CSD original measurements (used to construct the model) are incorporated into the 

error on a prediction. 

The least squares solution to Equation 6.3 was programmed in MATLAB (1997). 

From the solution, the slope and intercepts were obtained as well as the variance- 

covariance matrix. Figure 6.2 shows the relationship as the solid line amid the 

measured data points. 

Figure 6.2: Measurement data and the hear regression model used to predict canopy 
stem density h m  the SAR backscatter ratio. The solid Line is the model prediction 
line (of best fit) and the dashed lines represent error bars two standard deviations 
from the prediction line. 
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6.3.2 Computer Algorithm Development 

In order to predict canopy stem density for the entire image area, it was necessary 

to automate the process. A PC1 program was written to both predict CSD values as 

well as propagate uncertainty from staxt to finish. The program was executed using 

the SAR LHH/LHV ratio as input data. An estimate image of CSD and an upper 

and lower bound image were output. 

6.4 Results 

Figure 6.3 shows a sample of the output estimated CSD image. Light patches repre- 

sent higher canopy stem densities relative to darker patches. There are some noisy 

areas apparent on the image. These are a result of wetland areas and will ultimately 

be filtered out in the final maps of species richness. 

Figute 6.3: An image subsample of estimated canopy stem density using a SIR-C 
SAR LEIH/LEV polarization ratio. Dark areas represent lower CSD than lighter 
areas. Rivers have been superimposed onto the image. 



6.4.1 Assessing the Accuracy of Canopy Stem Density 

Equation 6.3, although linear, predicts the naturd logarithm of canopy stem density. 

This is true for the error as well. In order to determine the error interval, the h(error) 

was added and subtracted from the ln(CSD) to gain the upper and lower error bounds 

on the prediction. The exponential of each was then calculated which produced the 

error in terms of CSD. These bounds are plotted in Figure 6.2 as the dashed lines. 

An important feature to notice is that the error bounds are not symmetric about 

the prediction value. This is a product of using log trdonned data in the model 

development. SAR input values below 0.8 and above 1.0 are prone to extremely high 

uncertainty. 



Chapter 7 

Mapping Biodiversity Using An Ecological Model 

This chapter draws together the results of Chapters 3 though 6 into the biodiversity 

prediction model. The culmination of this work is presented as a set of three predicted 

species richness images at the end of this chapter. 

7.1 The Model 

The general form of the species richness prediction equation developed by Chipman 

(1999) is: 

where Po is the intercept, are parameter estimates for the variables TSF, DFR 

and CSD respectively, and 614 are parameter estimates for the categorical dummy 

variables jack pine (JP), black spruce (BS) and trembling aspen (TA), respectively. 

The categorid forest type variables are binary. Only one of these variables may 

have a value of one (1) at any one time while all others must have a zero value. The 

mixed class is not included in the equation but is represented when aU other species 

have a value of 0. The &kt of these binary Mliabies is to change the intercept of 

the model. The parameter estimates are listed in Table 7.1 



1 Term / Estimate I 

Table 7.1: Parameter estimates for the species richness equation (Eq. 7.1). 

Intercept (Pa) 
TSF (a) 

7.2 Methods 

25.995261 
-0.03661 1 

7.2.1 Computer Algorithm Development 

Two PC1 programs were written to apply the model to the input imagery. The first, 

called MODPRED (for model prediction) takes input data for each variable and 

predicts species richness. The second, called MODERR (for model error) performs 

the same function as MODEST but was designed to predict the upper and lower 

enor bound on the prediction of species richness. 

It is appropriate now, to summarize the sources of data that will be used in 

the model. Fkom Chapter 3, an image of distance from ridgeline was produced. In 

addition, upper and lower estimate images of DFR were also produced based on a 

95% confidence interval. Chapter 4 took an existing image of field measured time- 

sincefire and produced two sets of upper and lower bound TSF imagery based upon 

the highest expected measurement error. One set covered the inner part of the fire 

poIygons and the other covered the outer rings of the fire polygons (at the  borders). 

In Chapter 5, a dassified image of four forest types was produced, each corresponding 



to a category in the model. [n addition, the probability that a given pixel should 

be =[assified as each forest type was recorded into a set of four images (one for each 

class). Lastly, Chapter 6 produced an image of canopy stem density as well as upper 

a d  lower estimate images of CSD. 

The MODPRED program accepts the images of DFR, TSF, CSD, canopy type 

and the four images of pixel assignment probabilities. The program extracts the set 

of input variables for a single pixel location. The DFR, TSF and CSD d u e s  are 

input directly into the model. The canopy type was treated in a slightly difFkrent 

manner because it is of a categorical nature. Initially, classification probabilities for 

an individual pixel were summed. If the s u m  was less than a user defined threshold 

value, the model was not implemented. Rather, the pixel was assigned the class from 

the canopy type image. Remember that in addition to the four canopy type classes, 

this image included a water, wetland and anthropogenic class. In most instances, 

very low probability sums were the result of the pixel (under consideration) belonging 

to one of the non-forest classes. If the probability s u m  exceeded the threshold, the 

model wa implemented four times for an individual pixel. On each implementation, 

the DFR, TSF and CSD inputs remained constant but the canopy type was changed. 

The four estimates of species richness (one for each canopy type) were then multiplied 

by their respective dsssification probabilities to produce a weighted estimate. The 

four estimates were then summed and the find value for the pixel was then written 

to an output image. 

The MODERR program acted identically to MODPRED with two exceptions. 

First, the program was designed to accept either the upper or lower estimates of 

DFR, TSF and CSD. Second, recall that there were two sets of upper and lower 



Figure 7.1: Schematic of the method used to cdcdate predicted species richness. 
Species richness is caldated four times for each canopy type and tken multiplied 
by its respective canopy classification probability. The results aze summed to give 
a weighted average predicted species richness. For each intermediate prediction, the 
TSF variable input into the model will depend on whether the pixel is in the inner 
fire polygon or in the outer buffer zone area. 
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were given a vaiue of -1. These flag dues  were used to determine which uncertainty 

image should be used in the model for a particular p a .  Once, determined, the 

implementation of the model proceeded as described in the preceding paragraph. 

7.2.2 Mapping Biodiversity 

Using MODPRED and the images of TSF, DFR, CSD and canopy type classification 

probabilities, an image of predicted species richness was produced. MODERR was 



then run twice using using the upper and then lower bound image sets to produce 

aa upper and lower bound on the prediction of species richness. The three slope 

estimates in Equation 7.1 were a l l  negative. This means that if the input variables 

TSF, DFR and CSD are relatively large, the diversity estimate will be relatively 

small. Therefore, the input upper bound uncertainty images produced the lower 

bound of predicted species richness. The reverse was true for the upper bound 

of predicted species richness. The images were colour coded using dark green to 

represent high diversity and light green to represent low diversity. 

7.2.3 Performance of the Model and Uncertainty Propagation 

Much attention was paid to quantifying and propagating uncertainty throughout the 

preceding four chapters of this work. These efforts culminate here as aU estimations of 

uncertainty in the input variables are propagated though the biodiversity prediction 

model, 

Using the training and testing sites discussed in 55.2.1, predicted diversity values 

were extracted from the final images. It should be noted that the testing data set was 

used in neither the canopy stem density estimation nor the canopy type estimation. 

The distance from ridgeline estimation did include some of the testing sites because 

there were difficulties, in measuring the distances from all sites to their respective 

ridgelines using the topographic maps. 

Figures 7.2 shows the actud correlations between species richness measured in 

the field at the ground sampled sites with species richness predicted by the model 

using image inputs (for the same sites). It is readily apparent that the correlations 

are neither strong nor free of error. Care must be taken when interpreting these 



error bars: the uncertainty estimates derived for each input variable (TSF, DFR 

and CSD) were quite conservative or what can be termed as the worst case error. 

Consider now that it is quite improbable that for a given image pixel, the worst case 

error will be present for d input variables simultaneously. There is a much higher 

probability that two variables will have small error and that only one is subject to 

a large error. These error bars represent the wont possible case in which all input 

variables ace subject to the maximum possible error. 

In order to assess how well the model can predict species richness, a residual 

analysis was pdormed. The collected field data was uaed as the ohercred dataset. 

Plots of the residuals were constructed and are shown in Figure 7.3. Notice that 

both plots exhibit a heady increasing trend. If a regression line was plotted on the 

testing residual data, it would cross the z axis around the value 14. This implies 

that predicted species richness values greater than or equal to 14 have been underes- 

timated by the model. Values less than 14 have been overestimated. For the training 

data, this value is approximately 16. Potentidy, a correction could be applied to 

the model for the input data used in this project so that  these over and under pre- 

dictions could be minimized. However, the unmodified model used here generally 

produces conservative estimates of species richness from an ecological point of view. 

Both training and testing data yielded RMS error values of 6.8 species. 

Thus far, we examined how well the model was able to predict species richness 

compared to what was actually observed in the field. Although this is what we are 

ultimately interested in predicting, it is not an entirely fair evaluation of the model 

when used with the image based variable inputs. The model itself was constructed 

using field measurements of time-since-fire, canopy stem density and canopy type and 



Model Predicted Species Richness From l mage 
input Data vs. Field Observed Species Richness 

Figure 7.2: Scatter plot showing the correlation between field measured species rich- 
ness and image based model predicted spedes richness for testing and training 
ground sampled sites. &or bars have been induded which represent the upper and 
lower estimates of diversity for each sample site extracted &om the find images. 
Error bars which dip below zero have not been included. 



Residual Plots For the Species Richness Prediction Model: 

Testing Data 
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Figure 7.3: Residual plots for the species richness prediction model using the testing 
and training data sets 
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map measurements of distance from a ridgeline. If these field measured variables 

are input into the model, species richness can be predicted. Presented now is a 

cornpatison between species richness predicted with image derived inputs a d  species 

richness predicted with field based inputs. 

The upper plot in Figure 7.4 shows the correlation between species richness pre- 

dicted by image derived inputs and field measured inputs. Clearly there is a much 

stronger correlation than is exhibited in Figure 7.2. The lower plot shows the resid- 

uals when comparing the two prediction met hods. The systematic underestimation 

is no longer apparent and the residuals have been reduced compared to Figure 7.3. 

The RMS error of the residuds is 3.84. 

Finally, it is worthwhile to examine how welI the model predicts species richness 

with field collected inputs compared to the field observed species richness values. In 

other words, the data used to construct the model is used within the model. Figure 

7.5 shows the correlation between observed species richness and the predicted species 

richness using field observed input data. It is clear from the residual plot that the 

model itself predicts species richness with a large amount of associated error. This 

observation serves to strengthen our assessment of the apparently weak image-based 

parameter estimation (Figure 7.2). However, it weakens our confidence in the validity 

of the find biodiversity maps. 

7.2.4 Sensitivity Analysis 

In order to get an idea of the stability of the equation when subject to changes in 

input variables, a simple sensitivity analysis wao performed. For each of the model 

variables, a maximum, minimum and mean value were chosen. The mean values 



Model Predicted Species Richness From: 
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Figure 7.4: The upper plot shows the correlation between species richness predicted 
by image derived inputs and fieId measured inputs. The lower plot shows the resid- 
uals (f ield predidedvs.image predicted) for the same data. Error bars have been 
omitted for darity. 
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represent a typicd forest pixel. 

Maximums for time-sincefire (TSF) and distance fiom a ridgeline (DFR) were chosen 

based on the expected upper Limit of the value of the input variable. Canopy stem 

density (CSD) was chosen because it represents the approximate upper limit of MLid 

values for use in the species richness equation. 

Species richness was repeatedly predicted by substituting the minimum and max- . 

imum, one at a time for each variable, into the equation while holding ail others 

constant with their respective mean value. Each forest tpe was treated separately 

and a mean for alI forest types was calculated. These results are shown in Figure 

7.6. The model wacl also used to predict spedes richness using the mean d u e  for 

each variable (labeled as Mean on each Figure). For each of the sets of bars for TSF, 

DFR and CSD, ad other variables were held constant with the mean values. For 

instance, when reading the mazimum bar for TSF, spedes richness was calculated 

using the maximum value for TSF and the mean values for DFR and CSD. 

As expected from the form of the model, the general patterns of species richness 

due to variable sensitivity are the same between species graphs. Due to the nature of 

the great uncertainty in canopy stem density estimation, the model is very sensitive to 

that variable. It is evident from the graphs that a value of greater than 7000 treeslha 

in magnitude predicts negative species richness which is not a d i d  possibility. In 

many instances, the upper limit of CSD reached well beyond this value. 

Variable 
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Figure 7.6: Sensitivity of species richness using the model with four different canopy 
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7.3 Results 

Figure 7.7 shows predicted species richness maps and upper and Lower bounds on 

predicted species richness for Prince Albert National Park. The reader should note 

that the upper bound image was derived from the lower bounds of variable input 

uncertainty for reasons discussed in 57.2.2. The same is true for the lower bound 

image. 

The wetter areas of The Park tend to have lower diversity. This observation 

coincides with the reasoning for the inclusion of the distance &om a ridgeline variable 

into the model. However, the actual patterns in the distance horn a ridgeline occur 

at a finer scale than on the species richness map and therefore, there are no apparent 

spatial correlations between the two maps. The same is true for canopy stem density. 

In general, aseas which were classified as trembling aspen are highly correlated with 

relatively high biodiversity. Lower biodiversity areas tend to coincide with the spatid 

distribution of jack pine and the mixed class. The lowest biodiversity coincides with 

black spruce. There was no apparent spatial correlation between the patterns of 

species richness and the time-sincetire map. Since fie is suppressed within the 

park, there tends to be very little young forest area This might account for the lack 

of appazent Mliation in species richness due to this variable. 
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Chapter 8 

Conclusions and Recommendat ions 

8.1 Conclusions 

In this authors opinion, the success of this work should be judged on the merits of 

three components which extend fiom the primary objective put forth in Chapter 1: 

1. Success of the image based estimation of the species richness model parameters. 

2. The estimation of uncertainty throughout all facets of both the parkmeter 

estimation and final biodiversity prediction. 

3. Performance of the image based paameter estimates for predicting biodiversity. 

Regarding the first: distance fiom ridgeline estimation with the new algorithm 

met with good success. The new dgorithm developed for estimating the distance 

for image pixels to the ridge improved upon the past work of Bridge (1997). This 

wa3 accomplished by incorporating local terrain aspect into determining the correct 

ridge to measure the distance to. The new canopy type estimation algorithm met 

with reasonable success. The classification accuracies were not as high as desired 

but considering the nature of the training sites (they were far from pure), the overall 

result was very acceptable. A highlight of the work was the use of evidential reasoning 

to combine classifiers and improve the accuracies of some of the dasses. The new 

canopy stem density estimation algorithm was not a great success. Although a 



result was obtained, spaceborne imagery was unable to explain most of the variation 

associated with stem density for the ground sampled forest stands. 

One of the highlights of this work was the estimation of uncertainty associated 

with each parameter image and the find result. It is common in the literature to find 

results reported without an estimate of the associated uncertainty. For the distance 

from ridgeline and canopy stem density estimates, the associated uncertainties are in 

many instances, more than 100% of the estimate itself. However, it is the opinion of 

this author that the uncertainty provides as much information as the prediction itself. 

Results axe almost worthless if one does not know how good they are. Uncertainty 

estimation allows us to manage uncertainty and ultimateiy pinpoint areas which need 

improvement. In this sense, the uncertainty estimation was very successful. 

The performance of the image based parameter estimates as inputs into the model 

was reasonably successful. In the comparison of the species richness predictions made 

from field measured inputs versus those made from imagebaaed inputs, this work is 

quite successful overall. The performance of the image-based inputs for predicting 

species richness compared to the actual field measured (observed) species richness 

was not as satisfactory. However, given that the modei used for this work is still 

under development, the results shown here are not without pmmise of improvement. 

Overd, the primary objective of mapping the spatid distribution of biodiversity 

in bored forest was met. Based on the criteria set forth at the beginning of this 

chapter, this work should be considered a success in almost d aspects. 



8.2 Recommendations 

Given the resources and option to extend this work, the following recommendations 

would be made: 

1. The estimation of canopy stem density was highly problematic. The use of 

the SAR P-band might improve the correlation with stern density because the 

longer wavelength energy can penetrate deeper into the canopy where it can 

have more intense backscatter interactions with the tree trunks. Failing this, 

an alternative variable for canopy stem density would be suggested (for the 

biodiversity model). Since both canopy stem density and canopy type are 

surrogate variables for light transmission to the forest floor, an estimate of leaf 

area index (LAI) might prove more effective in the biodiversity model. Much 

work has been done in the r e a h  of LA1 estimation for forest canopies and 

it may provide a good alternative. This suggestion, however, would require 

revisiting the ground sampled forest stands with a light meter in order that 

correlations be made between LA1 and spaceborne imagery. 

2. The classification of canopy type suffered tremendously from the nature of the 

ground sampled training sites. In the bored mixwood forest, stands which 

are 100% species pure are virtually non-existent so it is naive to expect that 

ground sampled training sites should be pure either. However, the mixture 

of species within the training sites proved to be the largest obstacle in the 

dassification process. Classification improvement probably lies in redefining 

the canopy type categories used in the model to reflect the species mixtures 

found in nature. This variable undoubtedIy is correlated with canopy stem 



density and could also potentidy be removed from the model and substituted 

with an LA1 estimate. Failing this, the size and number of ground sampled 

training sites should be expanded in order to better represent each canopy 

class in the image classification training procedure. Recall that in order to 

increase the number of training pixel's, the sites were expanded. If the sites 

were revisited and circumnavigated with a GPS receiver, we would have a very 

accurate representation of the actual spatial bound of each stand. In this way, 

sites could be expanded without f- of including other stands within them. 

3. As was noted in Chapter 7, the upper and lower bounds of uncertainty on 

the final predicted species richness map represented the worst case scenario, in 

which the maximum amount of expected error from each input variable was 

propagated through the model. Common sense tells us that this situation is 

highly improbable so we are left with an ultra-conservative representation of 

uncertainty. Ideally, a method would be devised which takes into account the 

probability of the wont case error occurring for each input variable for each 

species richness prediction. The estimated uncertainty would surely decrease 

and the results would become more meanin@. 

4. The distance horn ridgeline dgorithm could potentidy be improved by in- 

corporating contour information or the aspect information of each pixel in 

determining the pathway to the ridge. The first would require a solution which 

encompassed both the raster and vector domain. A pixels location in raster 

space could be converted to a point in vector space. For the point, a path 

which minimizes the distance between ehc6 contour as a path is drawn to the 



ridge would be found. The distance of this path would then be recored for the 

pixel. This would be a very computationally intensive solution. 
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Appendix A 

Canopy Species Compositions For Ground Sites 

Table A.1: Ground site canopy compositions in percentages. This table has been 
compiled from the work of Bridge (1997). Note that sites 82,83 and 91 were recently 
burned and thus, consist of understory trees ody. 

Continued on next page .... 

Site 
L 
2 
3 
4 
5 
6 
7 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

BF - B d a m  fir PB - Paper birch 
WS - White spruce BS - Black spruce 
JP - Jack pine BP - Balsam poplar 
TA - Trembling aspen CSD - Canopy stem density (treeslha) 

BE' 
50.36 

PB I WS BS 
2.71 
2.55 

51.53 

3.41 
6.38 
55.32 
45.98 

2.87 
3.42 

2.15 

42.80 
2.62 
2-63 
28.15 
41.80 
16.41 

35.57 
19.93 
33.59 
27.06 
53.36 
46.37 
19.22 
28.01 
27.45 
21.21 
51.86 
67-22 

7.63 

3.05 

69.53 

6-42 

JP 

94.71 

13.85 

8.63 
2.03 

1.63 
8.85 
1.99 

52.63 

3.35 

22.84 

2.70 
50.10 
34.44 

4.66 

4-35 
64.54 
11.98 

BP 

25.23 
14.92 

8.87 

3.19 

TA 

94.82 
2.66 

CSD 
602.2 
610.4 
613.7 

20.32 
11.50 
65.97 
49.90 
17.95 
71.66 

1251 
526.3 
731.1 
1899.2 
1198.7 

663 
2.31 

20-68 
37-78 
48.28 
23.79 
4.58 
53.79 
8.15 
23.15 
23.17 

2149 
2412 
778-7 
983.7 
1478.3 
1191.1 
1143.9 
591.5 

2091.19 
I 

998.8 
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'Site 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 

BF 

35.55 

18.44 
3.445 

PB 

1.771 

8,732 
5.781 
15.05 
17.1 
12.69 

WS 

41.76 

9.47 
37.57 
20.98 
37.8 
44.53 

BS JP 
52.75 

100 

20.93 

3.553 

45.53 

CSD 
437.6 

0 
0 

879.5 
202.7 

BP I TA 

100 
73.73 

92.93 

1569.7 
957.6 
1934.7 
2982.8 
1456.1 

0 
200.9 
749.6 
976.4 
892.8 
1157.2 
736.4 

41.6 

7.304 
5.989 

2.258 
3.448 

7.016 

6.14 

47.25 

58.4 

92-7 
94.01 

3.081 
17.48 

3.516 
81.8 
49.64 

41.66 
36.63 



Appendix B 

Classification Test Results 

t Ku = Trembling Alpen, White Spruce, Balsam Fir 

-errs r Site wu rubaaqaently removed from the duriltatioa 

Table B.1: kNN dassification testing of Jack Pine ground sampled sites. For each 
site, the first row shows the number of pixels classified into each class. The second 
row indicates the percentage of pixels classified into each cIass. 



- -  

Table B.2: kNN clkssification testing of Black Spruce ground sampled sites. 



Table B.3: kNN cIas$fication testing of Trembling Aspen gtomd sampIed sites. 



Table B.4: W classification testing of Mixed ground sampled sites. 



June TM - une~panded sites 
class f JP I BS I TA I MIX I WAT I ANT ( WET 11 Percent I 

August TM - unexpanded sites 
I dass 11 JP I BS I TA I MIX I WAT 1 ANT I WET 11 percent J 

A N T S O ?  0 0 95 51 60.13 
W E T 8 0 5  0 0 1 156 91.76 

Table B.5: Summary tables of *HJN results for testing sites using 7 b u d  TM. 



Appendix C 

Choosing Classes For Canopy Classification 

The forest classes used in this study were determined by Bridge (1997) and sub- 

sequently adopted by Chipman (1999). Bridge performed a principal components 

analysis (P CA) on a habitat m a t e  F i t ,  a matrix with dimensions of forest sites or 

stands (n) by species (s) with the cells containing species abundance scores is formed. 

The matrix is then andyzed to remove the effeet of timesince-fire (temporal vari- 

ation) and a new matrix, the habitat mat*, is formed. The first two components 

contained most of the variation and in identifying each stand by a dominant canopy 

type Bridge was able to form five distinct tree species clusters on a two dimensional 

PCA plot (of the first two principle components). These were jack pine, black spruce, 

white spruce. trembling aspen and bdsam fir. 

The position of each stand was located on a map of geomorphology and the sur- 

ficid material (gladofluvial or glaciai till) and hillslope position on which the stand 

fell was determined. The centroids of the topographic positions were plotted on the 

first two components of the habitat mat* PCA by surficial material type. These 

centroids showed a remarkable affinity to the location of the dominant species type 

clusters. Bridge hypothesized that the dusters could be explained by environmental 

information such as moisture and nutrient gradients and treated the first two princi- 

pal components as such. Ultimately, this hypothesis led to his theory that vegetation 

composition can be expIained by the relative position of a stand on a hillslope. 

The dominant species dasses were then adopted by Chipman (1999) for her bi* 



logicat diversity prediction model. Since species richness was very similar for bdsam 

fir, white spruce and some of the trembling aspen stands, Chipman formed a new 

mired class. These four classes (black spruce, jack pine, trembling aspen and mixed) 

were the basis for the image classification of this study. 



Appendix D 

Data Summary For The Project 

This appendix summarises the data discussed in Chapter 2. 

Table D. 1 : Summary of available electro-opticd satellite image data. 

1 
2 

1 2 I 55.87 - 60.30 I 12.5~ I MLC i HH,HV i oct 6 ,  1994 I 

SateUte 
Landsat 5 
Landsat 5 

1 

(IA = Incidence Angle , MLC = Multi-took Complex) 

Table D.2: Summary of available SIR-C SAR image data (L and C band). 

Date Acquired 
June 10, 1996 
August 29, 1996 

Sensor 

Thematic Mapper 
Thematic Mapper 

Bands 
1-7 
1-7 

IA range (deg) 
38-05 - 43.33 

1 

*(R = raster, V = vector, P = polygon, L = line) 

Ground Res. 
12*5m 

Data Type 
MLC 

L 

2 
3 
4 

Table D.3: Summary of available GIs data in ArcInfo format. 

Description 
Elevation Vectors 

Polaskation 
HH,HVTVHTW 

Type* I Source 

V, L I Parks Canada 
Lake Polygons 
River Vectors 
Time since h e  

Date Acquired 
Oct 4, 1994 

V, P ' Parks Canada 
V, L 
R, P 

Parks Canada 
The Universitv of Cdnarv 



Appendix E 

System Hardware and Software Specifications 

Machine: SUN SPARC Ultra 1 Sparc 

200 MHz CPU, 128 MB RAM 

0s: SUN Solaris 2.6 

Compiler: GCC - Gnu C/C++ Compiler (v2.8.1) 

G77 - Gnu Fortran Corniler (v0.5.23) 

Commercial Software: PC1 EASIfPACE (~6.3)~ MATLAB (v5.3), 

SIR-C CEOS Tape Reader (v2.3), SIR-C Data Compression 

Project Software*: TSF, DFR, ERC, CERP, CSD, MODPRE, MODERR 

Machine: Bull RISC System/6000 

0s :  IBM ACC (v4.1) 

Commercial Software: ARC/INFO (v7.2.1), ArcView (v3.1) 

SPSS (v6.1) 

*All code developed for this project was written in C++. Many of these programs 

are executed in a PC1 EASI command line environment. By linking the C++ code 

to the PC1 C language Libraries, the programmer and the user are able to make use 

of PC1 image processing functionality. 




