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Existence of nonoscillatory solutions for the second-order dynamic equation (A0x
Δ)Δ(t) +∑

i∈[1,n]N Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
T

is investigated in this paper. The results involve
nonoscillation criteria in terms of relevant dynamic and generalized characteristic inequalities,
comparison theorems, and explicit nonoscillation and oscillation conditions. This allows to obtain
most known nonoscillation results for second-order delay differential equations in the caseA0(t) ≡
1 for t ∈ [t0,∞)

R
and for second-order nondelay difference equations (αi(t) = t+ 1 for t ∈ [t0,∞)

N
).

Moreover, the general results imply new nonoscillation tests for delay differential equations with
arbitrary A0 and for second-order delay difference equations. Known nonoscillation results for
quantum scales can also be deduced.

1. Introduction

This paper deals with second-order linear delay dynamic equations on time scales.
Differential equations of the second order have important applications and were extensively
studied; see, for example, the monographs of Agarwal et al. [1], Erbe et al. [2], Győri and
Ladas [3], Ladde et al. [4], Myškis [5], Norkin [6], Swanson [7], and references therein.
Difference equations of the second order describe finite difference approximations of second-
order differential equations, and they also have numerous applications.

We study nonoscillation properties of these two types of equations and some of
their generalizations. The main result of the paper is that under some natural assumptions
for a delay dynamic equation the following four assertions are equivalent: nonoscillation
of solutions of the equation on time scales and of the corresponding dynamic inequality,
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positivity of the fundamental function, and the existence of a nonnegative solution for a
generalized Riccati inequality. The equivalence of oscillation properties of the differential
equation and the corresponding differential inequality can be applied to obtain new explicit
nonoscillation and oscillation conditions and also to prove some well-known results in a
different way. A generalized Riccati inequality is used to compare oscillation properties of
two equations without comparing their solutions. These results can be regarded as a natural
generalization of the well-known Sturm-Picone comparison theorem for a second-order
ordinary differential equation; see [7, Section 1.1]. Applying positivity of the fundamental
function, positive solutions of two equations can be compared. There are many results
of this kind for delay differential equations of the first-order and only a few for second-
order equations. Myškis [5] obtained one of the first comparison theorems for second-order
differential equations. The results presented here are generalizations of known nonoscillation
tests even for delay differential equations (when the time scale is the real line).

The paper also contains conditions on the initial function and initial values which
imply that the corresponding solution is positive. Such conditions are well known for first-
order delay differential equations; however, to the best of our knowledge, the only paper
concerning second-order equations is [8].

From now on, we will without furthermore mentioning suppose that the time scale T

is unbounded from above. The purpose of the present paper is to study nonoscillation of the
delay dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T
, (1.1)

where n ∈ N, t0 ∈ T, f ∈ Crd([t0,∞)
T
,R) is the forcing term, A0 ∈ Crd([t0,∞)

T
,R+), and for

all i ∈ [1, n]
N
, Ai ∈ Crd([t0,∞)

T
,R) is the coefficient corresponding to the function αi, where

αi ≤ σ on [t0,∞)
T
.

In this paper, we follow themethod employed in [8] for second-order delay differential
equations. Themethod can also be regarded as an application of that used in [9] for first-order
dynamic equations.

As a special case, the results of the present paper allow to deduce nonoscillation
criteria for the delay differential equation

(
A0x

′)′(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
R
, (1.2)

in the caseA0(t) ≡ 1 for t ∈ [t0,∞)
R
, they coincide with theorems in [8]. The case of a “quickly

growing” function A0 when the integral of its reciprocal can converge is treated separately.
Let us recall some known nonoscillation and oscillation results for the ordinary

differential equations

(
A0x

′)′(t) +A1(t)x(t) = 0 for t ∈ [t0,∞)
R
, (1.3)

x′′(t) +A1(t)x(t) = 0 for t ∈ [t0,∞)
R
, (1.4)

whereA1 is nonnegative, which are particular cases of (1.2)with n = 1, α1(t) = t, andA0(t) ≡
1 for all t ∈ [t0,∞)

R
.



Abstract and Applied Analysis 3

In [10], Leighton proved the following well-known oscillation test for (1.4); see [10,
11].

Theorem A (see [10]). Assume that

∫∞

t0

1
A0
(
η
)dη = ∞,

∫∞

t0

A1
(
η
)
dη = ∞, (1.5)

then (1.3) is oscillatory.

This result for (1.4) was obtained by Wintner in [12] without imposing any sign
condition on the coefficient A1.

In [13], Kneser proved the following result.

Theorem B (see [13]). Equation (1.4) is nonoscillatory if t2A1(t) ≤ 1/4 for all t ∈ [t0,∞)
R
, while

oscillatory if t2A1(t) > λ0/4 for all t ∈ [t0,∞)
R
and some λ0 ∈ (1,∞)

T
.

In [14], Hille proved the following result, which improves the one due to Kneser; see
also [14–16].

Theorem C (see [14]). Equation (1.4) is nonoscillatory if

t

∫∞

t

A1
(
η
)
dη ≤ 1

4
∀t ∈ [t0,∞)

R
, (1.6)

while it is oscillatory if

t

∫∞

t

A1
(
η
)
dη >

λ0
4

∀t ∈ [t0,∞)
R
and some λ0 ∈ (1,∞)

R
. (1.7)

Another particular case of (1.1) is the second-order delay difference equation

Δ(A0Δx)(k) +
∑

i∈[1,n]
N

Ai(k)x(αi(k)) = 0 for ∈ [k0,∞)
N
, (1.8)

to the best of our knowledge, there are very few nonoscillation results for this equation; see,
for example, [17]. However, nonoscillation properties of the nondelay equations

Δ(A0Δx)(k) +A1(k)x(k + 1) = 0 for k ∈ [k0,∞)
N
, (1.9)

Δ2x(k) +A1(k)x(k + 1) = 0 for k ∈ [k0,∞)
N

(1.10)

have been extensively studied in [1, 18–22]; see also [23]. In particular, the following result is
valid.
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Theorem D. Assume that

∞∑

j=k0

A1
(
j
)
= ∞, (1.11)

then (1.10) is oscillatory.

The following theorem can be regarded as the discrete analogue of the nonoscillation
result due to Kneser.

Theorem E. Assume that k(k + 1)A1(k) ≤ 1/4 for all k ∈ [k0,∞)
N
, then (1.10) is nonoscillatory.

Hille’s result in [14] also has a counterpart in the discrete case. In [22], Zhou and
Zhang proved the nonoscillation part, and in [24], Zhang and Cheng justified the oscillation
part which generalizes Theorem E.

Theorem F (see [22, 24]). Equation (1.10) is nonoscillatory if

k
∞∑

j=k

A1
(
j
) ≤ 1

4
∀k ∈ [k0,∞)

N
, (1.12)

while is oscillatory if

k
∞∑

j=k

A1
(
j
)
>
λ0
4

∀k ∈ [k0,∞)
N
and some λ0 ∈ (1,∞)

R
. (1.13)

In [23], Tang et al. studied nonoscillation and oscillation of the equation

Δ2x(k) +A1(k)x(k) = 0 for k ∈ [k0,∞)
N
, (1.14)

where {A1(k)} is a sequence of nonnegative reals and obtained the following theorem.

Theorem G (see [23]). Equation (1.14) is nonoscillatory if (1.12) holds, while is it oscillatory if
(1.13) holds.

These results together with some remarks on the q-difference equations will be
discussed in Section 7. The readers can find some nonoscillation results for second-order
nondelay dynamic equations in the papers [20, 25–29], some of which generalize some of
those mentioned above.

The paper is organized as follows. In Section 2, some auxiliary results are presented.
In Section 3, the equivalence of the four above-mentioned properties is established. Section 4
is dedicated to comparison results. Section 5 includes some explicit nonoscillation and
oscillation conditions. A sufficient condition for existence of a positive solution is given
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in Section 6. Section 7 involves some discussion and states open problems. Section 7 as an
appendix contains a short account on the fundamentals of the time scales theory.

2. Preliminary Results

Consider the following delay dynamic equation:

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T
,

x(t0) = x1, xΔ(t0) = x2, x(t) = ϕ(t) for t ∈ [t−1, t0)T
,

(2.1)

where n ∈ N, T is a time scale unbounded above, t0 ∈ T, x1, x2 ∈ R are the initial values, ϕ ∈
Crd([t−1, t0)T

,R) is the initial function, such that ϕ has a finite left-sided limit at the initial point
t0 provided that it is left dense, f ∈ Crd([t0,∞)

T
,R) is the forcing term,A0 ∈ Crd([t0,∞)

T
,R+),

and for all i ∈ [1, n]
N
, Ai ∈ Crd([t0,∞)

T
,R) is the coefficient corresponding to the function

αi ∈ Crd([t0,∞)
T
,T), which satisfies αi(t) ≤ σ(t) for all t ∈ [t0,∞)

T
and limt→∞αi(t) = ∞.

Here, we denoted

αmin(t) := min
i∈[1,n]

N

{αi(t)} for t ∈ [t0,∞)
T
, t−1 := inf

t∈[t0,∞)
T

{αmin(t)}, (2.2)

then t−1 is finite, since αmin asymptotically tends to infinity.

Definition 2.1. A function x : [t−1,∞)
T

→ R with x ∈ C1
rd([t0,∞)

T
,R) and a derivative

satisfying A0x
Δ ∈ C1

rd([t0,∞)
T
,R) is called a solution of (2.1) if it satisfies the equation in

the first line of (2.1) identically on [t0,∞)
T
and also the initial conditions in the second line of

(2.1).

For a given function ϕ ∈ Crd([t−1, t0)T
,R) with a finite left-sided limit at the initial

point t0 provided that it is left-dense and x1, x2 ∈ R, problem (2.1) admits a unique solution
satisfying x = ϕ on [t−1, t0)T

with x(t0) = x1 and xΔ(t0) = x2 (see [30] and [31, Theorem 3.1]).

Definition 2.2. A solution of (2.1) is called eventually positive if there exists s ∈ [t0,∞)
T
such

that x > 0 on [s,∞)
T
, and if (−x) is eventually positive, then x is called eventually negative.

If (2.1) has a solution which is either eventually positive or eventually negative, then it is
called nonoscillatory. A solution, which is neither eventually positive nor eventually negative,
is called oscillatory, and (2.1) is said to be oscillatory provided that every solution of (2.1) is
oscillatory.

For convenience in the notation and simplicity in the proofs, we suppose that functions
vanish out of their specified domains, that is, let f : D → R be defined for some D ⊂ R, then
it is always understood that f(t) = χD(t)f(t) for t ∈ R, where χD is the characteristic function
of the set D ⊂ R defined by χD(t) ≡ 1 for t ∈ D and χD(t) ≡ 0 for t /∈ D.
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Definition 2.3. Let s ∈ T and s−1 := inft∈[s,∞)
T
{αmin(t)}. The solutions X1 = X1(·, s) and X2 =

X2(·, s) of the problems

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [s,∞)
T
,

xΔ(s) =
1

A0(s)
, x(t) ≡ 0 for t ∈ [s−1, s]T

,

(2.3)

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [s,∞)
T
,

xΔ(s) = 0, x(t) = χ{s}(t) for t ∈ [s−1, s]T
,

(2.4)

which satisfy X1(·, s), X2(·, s) ∈ C1
rd([s,∞)

T
,R), are called the first fundamental solution and

the second fundamental solution of (2.1), respectively.

The following lemma plays the major role in this paper; it presents a representation
formula to solutions of (2.1) by the means of the fundamental solutions X1 and X2.

Lemma 2.4. Let x be a solution of (2.1), then x can be written in the following form:

x(t) = x2X1(t, t0) + x1X2(t, t0) +
∫ t

t0

X1
(
t, σ
(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη (2.5)

for t ∈ [t0,∞)
T
.

Proof. For t ∈ [t−1,∞)
T
, let

y(t) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ t

t0

X1
(
t, σ
(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη for t ∈ [t0,∞)
T
,

ϕ(t) for t ∈ [t1, t0)T
.

(2.6)

We recall that X1(·, t0) and X2(·, t0) solve (2.3) and (2.4), respectively. To complete the proof,
let us demonstrate that y solves

(
A0y

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)y(αi(t)) = f(t) for t ∈ [t0,∞)
T
,

y(t0) = 0, yΔ(t0) = 0, y(t) = ϕ(t) for t ∈ [t−1, t0)T
.

(2.7)



Abstract and Applied Analysis 7

This will imply that the function z defined by z := x2X1(·, t0) + x1X2(·, t0) + y on [t0,∞)
T

is a solution of (2.1). Combining this with the uniqueness result in [31, Theorem 3.1] will
complete the proof. For all t ∈ [t0,∞)

T
, we can compute that

yΔ(t) =
∫ t

t0

XΔ
1

(
t, σ
(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη

+X1(σ(t), σ(t))

⎡

⎣f(t) −
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t))

⎤

⎦

=
∫ t

t0

XΔ
1

(
t, σ
(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη.

(2.8)

Therefore, y(t0) = 0, yΔ(t0) = 0, and y = ϕ on [t−1, t0)T
, that is, y satisfies the initial conditions

in (2.7). Differentiating yΔ after multiplying by A0 and using the properties of the first
fundamental solution X1, we get

(
A0y

Δ
)Δ

(t) =
∫ t

t0

(
A0XΔ

1

(·, σ(η))
)Δ

(t)

⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη

+Aσ
0 (t)XΔ

1 (σ(t), σ(t))

⎡

⎣f(t) −
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t))

⎤

⎦

= −
∑

j∈[1,n]
N

Aj(t)
∫αj (t)

t0

X1
(
αj(t), σ

(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη

−
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t)) + f(t)

(2.9)

for all t ∈ [t0,∞)
T
. For t ∈ [t0,∞)

T
, set I(t) = {i ∈ [1, n]

N
: χ[t0,∞)

T
(αi(t)) = 1} and J(t) := {i ∈

[1, n]
N
: χ[t−1,t0)T

(αi(t)) = 1}. Making some arrangements, for all t ∈ [t0,∞)
T
, we find

(
A0y

Δ
)Δ

(t) = −
∑

j∈I(t)
Aj(t)

∫αj (t)

t0

X1
(
αj(t), σ

(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη

−
∑

j∈J(t)
Aj(t)

∫αj (t)

t0

X1
(
αj(t), σ

(
η
))
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

Ai

(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη

−
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t)) + f(t),

(2.10)
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and thus

(
A0y

Δ
)Δ

(t) = −
∑

j∈I(t)
Aj(t)

∫αj (t)

t0

X1
(
αj(t), σ

(
η
))
f
(
η
)
Δη −

∑

j∈J(t)
Ai(t)ϕ(αi(t)) + f(t)

= −
∑

j∈I(t)
Aj(t)y

(
αj(t)

) −
∑

j∈J(t)
Aj(t)y

(
αj(t)

)
+ f(t),

(2.11)

which proves that y satisfies (2.7) on [t0,∞)
T
since I(t) ∩ J(t) = ∅ and I(t) ∪ J(t) = [1, n]

N
for

each t ∈ [t0,∞)
T
. The proof is therefore completed.

Next, we present a result from [9]which will be used in the proof of the main result.

Lemma 2.5 (see [9, Lemma 2.5]). Let t0 ∈ T and assume that K is a nonnegative Δ-integrable
function defined on {(t, s) ∈ T × T : t ∈ [t0,∞)

T
, s ∈ [t0, t]T

}. If f, g ∈ Crd([t0,∞)
T
,R) satisfy

f(t) =
∫ t

t0

K
(
t, η
)
f
(
η
)
Δη + g(t) ∀t ∈ [t0,∞)

T
, (2.12)

then g(t) ≥ 0 for all t ∈ [t0,∞)
T
implies f(t) ≥ 0 for all t ∈ [t0,∞)

T
.

3. Nonoscillation Criteria

Consider the delay dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
T (3.1)

and its corresponding inequalities

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) ≤ 0 for t ∈ [t0,∞)
T
, (3.2)

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) ≥ 0 for t ∈ [t0,∞)
T
. (3.3)

We now prove the following result, which plays a major role throughout the paper.

Theorem 3.1. Suppose that the following conditions hold:

(A1) A0 ∈ Crd([t0,∞)
T
,R+),

(A2) for i ∈ [1, n]
N
, Ai ∈ Crd([t0,∞)

T
,R+

0 ),

(A3) for i ∈ [1, n]
N
, αi ∈ Crd([t0,∞)

T
,T) satisfies αi(t) ≤ σ(t) for all t ∈ [t0,∞)

T
and

limt→∞αi(t) = ∞,
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then the following conditions are equivalent:

(i) the second-order dynamic equation (3.1) has a nonoscillatory solution,

(ii) the second-order dynamic inequality (3.2) has an eventually positive solution and/or (3.3)
has an eventually negative solution,

(iii) there exist a sufficiently large t1 ∈ [t0,∞)
T
and a function Λ ∈ C1

rd([t1,∞)
T
,R) with

Λ/A0 ∈ R+([t1,∞)
T
,R) satisfying the first-order dynamic Riccati inequality

ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t)) ≤ 0 ∀t ∈ [t1,∞)
T
, (3.4)

(iv) the first fundamental solution X1 of (3.1) is eventually positive, that is, there exists a
sufficiently large t1 ∈ [t0,∞)

T
such that X1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈

[t1,∞)
T
.

Proof. The proof follows the scheme: (i)⇒(ii)⇒(iii)⇒(iv)⇒(i).
(i)⇒(ii) This part is trivial, since any eventually positive solution of (3.1) satisfies (3.2)

too, which indicates that its negative satisfies (3.3).
(ii)⇒(iii) Let x be an eventually positive solution of (3.2), then there exists t1 ∈ [t0,∞)

T

such that x(t) > 0 for all t ∈ [t1,∞)
T
. We may assume without loss of generality that x(t1) = 1

(otherwise, we may proceed with the function x/x(t1), which is also a solution since (3.2) is
linear). Let

Λ(t) := A0(t)
xΔ(t)
x(t)

for t ∈ [t1,∞)
T
, (3.5)

then evidently Λ ∈ C1
rd([t1,∞)

T
,R) and

1 + μ(t)
Λ(t)
A0(t)

= 1 + μ(t)
xΔ(t)
x(t)

=
xσ(t)
x(t)

> 0 ∀t ∈ [t1,∞)
T
, (3.6)

which proves that Λ/A0 ∈ R+([t1,∞)
T
,R). This implies that the exponential function

eΛ/A0(·, t1) is well defined and is positive on the entire time scale [t1,∞)
T
; see [32, Theorem

2.48]. From (3.5), we see that Λ satisfies the ordinary dynamic equation

xΔ(t) =
Λ(t)
A0(t)

x(t) for t ∈ [t1,∞)
T
,

x(t1) = 1,

(3.7)

whose unique solution is

x(t) = eΛ/A0(t, t1) ∀t ∈ [t1,∞)
T
, (3.8)
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see [32, Theorem 2.77]. Hence, using (3.8), for all t ∈ [t1,∞)
T
, we get

xΔ(t) =
Λ(t)
A0(t)

eΛ/A0(t, t1),

(
A0x

Δ)Δ(t) = (ΛeΛ/A0(·, t1))Δ(t) = ΛΔ(t)eΛ/A0(t, t1) + Λσ(t)eΔΛ/A0
(t, t1)

= ΛΔ(t)eΛ/A0(t, t1) +
1

A0(t)
Λσ(t)Λ(t)eΛ/A0(t, t1),

(3.9)

which gives by substituting into (3.2) and using [32, Theorem 2.36] that

0 ≥ ΛΔ(t)eΛ/A0(t, t1) +
1

A0(t)
Λσ(t)Λ(t)eΛ/A0(t, t1) +

∑

i∈[1,n]
N

Ai(t)eΛ/A0(αi(t), t1)

= eΛ/A0(t, t1)

⎡

⎣ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

Ai(t)
eΛ/A0(αi(t), t1)
eΛ/A0(t, t1)

⎤

⎦

= eΛ/A0(t, t1)

⎡

⎣ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤

⎦

(3.10)

for all t ∈ [t1,∞)
T
. Since the expression in the brackets is the same as the left-hand side of

(3.4) and eΛ/A0(·, t1) > 0 on [t1,∞)
T
, the function Λ is a solution of (3.4).

(iii)⇒(iv) Consider the initial value problem

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t1,∞)
T
,

xΔ(t1) = 0, x(t) ≡ 0 for t ∈ [t−1, t1]T
.

(3.11)

Denote

g(t) := A0(t)xΔ(t) −Λ(t)x(t) for t ∈ [t1,∞)
T
, (3.12)

where x is any solution of (3.11) and Λ is a solution of (3.4). From (3.12), we have

xΔ(t) =
Λ(t)
A0(t)

x(t) +
g(t)
A0(t)

for t ∈ [t1,∞)
T
,

x(t1) = 0,

(3.13)

whose unique solution is

x(t) =
∫ t

t1

eΛ/A0

(
t, σ
(
η
)) g

(
η
)

A0
(
η
)Δη ∀t ∈ [t1,∞)

T
, (3.14)
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see [32, Theorem 2.77]. Now, for all t ∈ [t1,∞)
T
, we compute that

x(t) = e�(Λ/A0)(σ(t), t)

[∫σ(t)

t1

eΛ/A0

(
σ(t), σ

(
η
)) g
(
η
)

A
(
η
)Δη − μ(t)eΛ/A0(σ(t), σ(t))

g(t)
A0(t)

]

=
A0(t)

A0(t) + μ(t)Λ(t)

[

xσ(t) − μ(t) g(t)
A0(t)

]

=
1

A0(t) + μ(t)Λ(t)
[
A0(t)xσ(t) − μ(t)g(t)

]
,

(3.15)

and similarly

x(αi(t)) = e�(Λ/A0)(σ(t), αi(t))

×
[∫σ(t)

t1

eΛ/A0

(
σ(t), σ

(
η
)) g
(
η
)

A
(
η
)Δη −

∫σ(t)

αi(t)
eΛ/A0

(
σ(t), σ

(
η
)) g

(
η
)

A0
(
η
)Δη

]

= e�(Λ/A0)(σ(t), αi(t))

[

xσ(t) −
∫σ(t)

αi(t)
eΛ/A0

(
σ(t), σ

(
η
)) g

(
η
)

A0
(
η
)Δη

]

= e�(Λ/A0)(σ(t), αi(t))x
σ(t) −

∫σ(t)

αi(t)
eΛ/A0

(
αi(t), σ

(
η
)) g

(
η
)

A0
(
η
)Δη

(3.16)

for i ∈ [1, n]
N
. From (3.12) and (3.15), we have

(
A0x

Δ
)Δ

(t) =
(
Λx + g

)Δ(t) = ΛΔ(t)xσ(t) + Λ(t)xΔ(t) + gΔ(t)

= ΛΔ(t)xσ(t) +
Λ2(t)
A0(t)

x(t) +
Λ(t)
A0(t)

g(t) + gΔ(t)
(3.17)

for all t ∈ [t1,∞)
T
. We substitute (3.14), (3.15), (3.16), and (3.17) into (3.11) and find that

f(t) =

⎡

⎣ΛΔ(t)xσ(t) +
Λ2(t)
A0(t)

x(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t))

⎤

⎦ +
Λ(t)
A0(t)

g(t) + gΔ(t)

=

⎡

⎣ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

⎤

⎦xσ(t)
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−
⎡

⎣
μ(t)Λ2(t)

A0(t)
(
A0(t) + μ(t)Λ(t)

)g(t) +
∑

i∈[1,n]
N

Ai(t)
∫σ(t)

αi(t)
eΛ/A0

(
αi(t), σ

(
η
)) g

(
η
)

A0
(
η
)Δη

⎤

⎦

+
Λ(t)
A0(t)

g(t) + gΔ(t)

=

⎡

⎣ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

⎤

⎦

×
[

1 + μ(t)
Λ(t)
A0(t)

] ∫σ(t)

t1

eΛ/A0

(
t, σ
(
η
)) g

(
η
)

A0
(
η
)Δη

−
∑

i∈[1,n]
N

Ai(t)
∫σ(t)

αi(t)
eΛ/A0

(
αi(t), σ

(
η
)) g

(
η
)

A0
(
η
)Δη

+
Λ(t)

A0(t) + μ(t)Λ(t)
g(t) + gΔ(t)

(3.18)

for all t ∈ [t1,∞)
T
. Then, (3.18) can be rewritten as

gΔ(t) = − Λ(t)
A0(t) + μ(t)Λ(t)

g(t) + Υ(t)
∫σ(t)

t1

eΛ/A0

(
t, σ
(
η
)) g

(
η
)

A0
(
η
)Δη

+
∑

i∈[1,n]
N

Ai(t)
∫σ(t)

αi(t)
eΛ/A0

(
αi(t), σ

(
η
)) g

(
η
)

A0
(
η
)Δη + f(t)

(3.19)

for all t ∈ [t1,∞)
T
, where

Υ(t) := −
[

1 + μ(t)
Λ(t)
A0(t)

]
⎡

⎣ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

⎤

⎦

(3.20)

for t ∈ [t1,∞)
T
. We now show that Υ ≥ 0 on [t1,∞)

T
. Indeed, by using (3.4) and the simple

useful formula (A.2), we get

Υ(t) = −
⎡

⎣
(

1 + μ(t)
Λ(t)
A0(t)

)

ΛΔ(t) +
1

A0(t)
Λ2(t) +

∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤

⎦

= −
⎡

⎣ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤

⎦ ≥ 0

(3.21)
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for all t ∈ [t1,∞)
T
. On the other hand, from (3.11) and (3.12), we see that g(t1) = 0. Then, by

[32, Theorem 2.77], we can write (3.19) in the equivalent form

g = Hg + h on [t1,∞)
T
, (3.22)

where, for t ∈ [t1,∞)
T
, we have defined

(Hg
)
(t) :=

∫ t

t1

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
⎡

⎣Υ
(
η
)
∫σ(η)

t1

eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

Δζ

+
∑

i∈[1,n]
N

Ai

(
η
)
∫σ(η)

αi(η)
eΛ/A0

(
αi
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

Δζ

⎤

⎦Δη,

(3.23)

h(t) :=
∫ t

t1

eΛ/A0(t, σ(ζ))f
(
η
)
Δη. (3.24)

Note that Λ/A0 ∈ R+([t1,∞)
T
,R) implies −Λ/(A0 + μΛ) ∈ R+([t1,∞)

T
,R) (indeed, we have

1 − μΛ/(A0 + μΛ) = A0/(A0 + μΛ) > 0 on [t1,∞)
T
), and thus the exponential function

e�(Λ/A0)(·, t1) is alsowell defined and positive on the entire time scale [t1,∞)
T
, see [32, Exercise

2.28]. Thus, f ≥ 0 on [t1,∞)
T
implies h ≥ 0 on [t1,∞)

T
. For simplicity of notation, for

s, t ∈ [t1,∞)
T
, we let

K1(t, s) :=
1

A0(s)

∫ t

s

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
Υ
(
η
)
eΛ/A0

(
σ
(
η
)
, σ(s)

)
Δη,

K2(t, s) :=
1

A0(s)

∫ t

s

e−Λ/(A0+μΛ)
(
t, σ
(
η
)) ∑

i∈[1,n]
N

Ai

(
η
)
χ[αi(η),∞)

T
(s)eΛ/A0

(
σ
(
η
)
, σ(s)

)
Δη.

(3.25)

Using the change of integration order formula in [33, Lemma 1], for all t ∈ [t1,∞)
T
, we obtain

∫ t

t1

∫σ(η)

t1

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
Υ
(
η
)
eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

ΔζΔη

=
∫ t

t1

∫ t

ζ

e−Λ/(A0+μΛ)
(
t, σ
(
η
))
Υ
(
η
)
eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

ΔηΔζ

=
∫ t

t1

K1(t, ζ)g(ζ)Δζ,

(3.26)
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and similarly

∫ t

t1

∫σ(η)

t1

e−Λ/(A0+μΛ)
(
t, σ
(
η
)) ∑

i∈[1,n]
N

Ai

(
η
)
χ[αi(η),∞)

T
(ζ)eΛ/A0

(
σ
(
η
)
, σ(ζ)

) g(ζ)
A0(ζ)

ΔζΔη

=
∫ t

t1

K2(t, ζ)g(ζ)Δζ.

(3.27)

Therefore, we can rewrite (3.23) in the equivalent form of the integral operator

(Hg
)
(t) =

∫ t

t1

[
K1
(
t, η
)
+K2

(
t, η
)]
g
(
η
)
Δη for t ∈ [t1,∞)

T
, (3.28)

whose kernel is nonnegative. Consequently, using (3.22), (3.24), and (3.28), we obtain that
f ≥ 0 on [t1,∞)

T
implies h ≥ 0 on [t1,∞)

T
; this and Lemma 2.5 yield that g ≥ 0 on [t1,∞)

T
.

Therefore, from (3.14), we infer that if f ≥ 0 on [t1,∞)
T
, then x ≥ 0 on [t1,∞)

T
too. On the

other hand, by Lemma 2.4, x has the following representation:

x(t) =
∫ t

t1

X1
(
t, σ
(
η
))
f
(
η
)
Δη for t ∈ [t1,∞)

T
. (3.29)

Since x is eventually nonnegative for any eventually nonnegative function f , we infer that
the kernel X1 of the integral on the right-hand side of (3.29) is eventually nonnegative.
Indeed, assume to the contrary that x ≥ 0 on [t1,∞)

T
but X1 is not nonnegative, then

we may pick t2 ∈ [t1,∞)
T
and find s ∈ [t1, t2)T

such that X1(t2, σ(s)) < 0. Then, letting
f(t) := −min{X1(t2, σ(t)), 0} ≥ 0 for t ∈ [t1,∞)

T
, we are led to the contradiction x(t2) < 0,

where x is defined by (3.29). To prove that X1 is eventually positive, set x(t) := X1(t, s)
for t ∈ [t0,∞)

T
, where s ∈ [t1,∞)

T
, to see that x ≥ 0 and (A0x

Δ)Δ ≤ 0 on [s,∞)
T
,

which implies A0x
Δ is nonincreasing on [s,∞)

T
. So that, we may let t1 ∈ [t0,∞)

T
so large

that xΔ (i.e., A0x
Δ) is of fixed sign on [s,∞)

T
⊂ [t1,∞)

T
. The initial condition and (A1)

together with xΔ(s) = 1/A0(s) > 0 imply that xΔ > 0 on [s,∞)
T
. Consequently, we have

x(t) = X1(t, s) > X1(s, s) = 0 for all t ∈ (s,∞)
T
⊂ [t1,∞)

T
.

(iv)⇒(i) Clearly, X1(·, t0) is an eventually positive solution of (3.1).
The proof is completed.

Let us introduce the following condition:

(A4) A0 ∈ Crd([t0,∞)
T
,R+)with

∫∞

t0

1
A0
(
η
)Δη = ∞. (3.30)
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Remark 3.2. It is well known that (A4) ensures existence of t1 ∈ [t0,∞)
T
such that x(t)xΔ(t) ≥

0 for all t ∈ [t1,∞)
T
, for any nonoscillatory solution x of (3.1). This fact follows from the

formula

x(t) = x(s) +A0(s)xΔ(s)
∫ t

s

1
A0
(
η
)Δη −

∫ t

s

1
A0
(
η
)

⎡

⎣

∫η

s

∑

i∈[1,n]
N

Ai(ζ)x(αi(ζ))Δζ

⎤

⎦Δη (3.31)

for all t ∈ [t0,∞)
T
, obtained by integrating (3.1) twice, where s ∈ [t0,∞)

T
. In the case when

(A4) holds, (iii) of Theorem 3.1 can be assumed to hold with Λ ∈ C1
rd([t1,∞)

T
,R+

0 ), which
means that any positive (negative) solution is nondecreasing (nonincreasing).

Remark 3.3. Let (A4) hold and exist t1 ∈ [t0,∞)
T
and the function Λ ∈ C1

rd([t1,∞)
T
,R+

0 )
satisfying inequality (3.4), then the assertions (i), (iii), and (iv) of Theorem 3.1 are also valid
on [t1,∞)

T
.

Remark 3.4. It should be noted that (3.4) is also equivalent to the inequality

ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t)) ≤ 0 ∀t ∈ [t1,∞)
T
, (3.32)

see (3.20) and compare with [26, 28, 29, 34].

Example 3.5. For T = R, (3.4) has the form

Λ′(t) +
1

A0(t)
Λ2(t) +

∑

i∈[1,n]
N

Ai(t) exp

{

−
∫ t

αi(t)

Λ
(
η
)

A0
(
η
)dη

}

≤ 0 ∀t ∈ [t1,∞)
R
, (3.33)

see [8] for the case A0(t) ≡ 1, t ∈ [t0,∞)
R
, and [35] for n = 1, α1(t) = t, t ∈ [t0,∞)

R
.

Example 3.6. For T = N, (3.4) becomes

ΔΛ(k) +
Λ2(k)

A0(k) + Λ(k)
+
∑

i∈[1,n]
N

Ai(k)
k∏

j=αi(k)

A0
(
j
)

A0
(
j
)
+ Λ
(
j
) ≤ 0 ∀k ∈ [k1,∞)

N
, (3.34)

where the product over the empty set is assumed to be equal to one; see [1, 18] (or (1.10)) for
n = 1, α1(k) = k + 1, k ∈ [k0,∞)

N
, and [20] for n = 1, A0(k) ≡ 1, α1(k) = k + 1, k ∈ [k0,∞)

N
.

It should be mentioned that in the literature all the results relating difference equations with
discrete Riccati equations consider only the nondelay case. This result in the discrete case is
therefore new.
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Example 3.7. For T = qZ with q ∈ (1,∞)
R
, under the same assumption on the product as in

the previous example, condition (3.4) reduces to the inequality

DqΛ(t) +
Λ2(t)

A0(t) +
(
q − 1

)
tΛ(t)

+
∑

i∈[1,n]
N

Ai(t)
logq(t)∏

η=logq(αi(t))

A0
(
qη
)

A0
(
qη
)
+
(
q − 1

)
qηΛ
(
qη
) ≤ 0 (3.35)

for all t ∈ [t1,∞)
qZ .

4. Comparison Theorems

Theorem 3.1 can be employed to obtain comparison nonoscillation results. To this end,
together with (3.1), we consider the second-order dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = 0 for t ∈ [t0,∞)
T
, (4.1)

where Bi ∈ Crd([t0,∞)
T
,R) for i ∈ [1, n]

N
.

The following theorem establishes the relation between the first fundamental solution
of the model equation with positive coefficients and comparison (4.1) with coefficients of
arbitrary signs.

Theorem 4.1. Suppose that (A2), (A3), (A4), and the following condition hold:

(A5) for i ∈ [1, n]
N
, Bi ∈ Crd([t0,∞)

T
,R) with Ai(t) ≥ Bi(t) for all t ∈ [t0,∞)

T
.

Assume further that (3.4) admits a solution Λ ∈ C1
rd([t1,∞)

T
,R+

0 ) for some t1 ∈ [t0,∞)
T
, then the

first fundamental solution Y1 of (4.1) satisfies Y1(t, s) ≥ X1(t, s) > 0 for all t ∈ (s,∞)
T
and all

s ∈ [t1,∞)
T
, whereX1 denotes the first fundamental solution of (3.1).

Proof. We consider the initial value problem

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T
,

xΔ(t0) = 0, x(t) ≡ 0 for t ∈ [t−1, t0]T
,

(4.2)

where f ∈ Crd([t0,∞)
T
,R). Let g ∈ Crd([t1,∞)

T
,R), and define the function x as

x(t) =
∫ t

t1

X1
(
t, σ
(
η
))
g
(
η
)
Δη ∀t ∈ [t1,∞)

T
. (4.3)
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By the Leibnitz rule (see [32, Theorem 1.117]), for all t ∈ [t1,∞)
T
, we have

xΔ(t) =
∫ t

t1

XΔ
1

(
t, σ
(
η
))
g
(
η
)
Δη, (4.4)

(
A0x

Δ
)Δ

(t) =
∫ t

t1

(
A0XΔ

1

(·, σ(η))
)Δ

(t)g
(
η
)
Δη + g(t). (4.5)

Substituting (4.3) and (4.5) into (4.2), we get

f(t) =
∫ t

t1

(
A0XΔ

1

(·, σ(η))
)Δ

(t)g
(
η
)
Δη +

∑

i∈[1,n]
N

Bi(t)
∫αi(t)

t1

X1
(
αi(t), σ

(
η
))
g
(
η
)
Δη + g(t)

=
∑

i∈[1,n]
N

[Bi(t) −Ai(t)]
∫αi(t)

t1

X1
(
αi(t), σ

(
η
))
g
(
η
)
Δη + g(t)

=
∑

i∈[1,n]
N

[Bi(t) −Ai(t)]
∫ t

t1

X1
(
αi(t), σ

(
η
))
g
(
η
)
Δη + g(t),

(4.6)

where in the last step, we have used the fact that X1(t, σ(s)) ≡ 0 for all t ∈ [t1,∞)
T
and all

s ∈ [t,∞)
T
. Therefore, we obtain the operator equation

g = Hg + f on [t1,∞)
T
, (4.7)

where

(Hg
)
(t) :=

∫ t

t1

∑

i∈[1,n]
N

X1
(
αi(t), σ

(
η
))
[Ai(t) − Bi(t)]g

(
η
)
Δη for t ∈ [t1,∞)

T
, (4.8)

whose kernel is nonnegative. An application of Lemma 2.5 shows that nonnegativity of f
implies the same for g, and thus x is nonnegative by (4.3). On the other hand, by Lemma 2.4,
x has the representation

x(t) =
∫ t

t0

Y1
(
t, σ
(
η
))
f
(
η
)
Δη ∀t ∈ [t0,∞)

T
. (4.9)

Proceeding as in the proof of the part (iii)⇒(iv) of Theorem 3.1, we conclude that the first
fundamental solution Y1 of (4.1) satisfies Y1(t, s) ≥ 0 for all t ∈ (s,∞)

T
and all s ∈ [t1,∞)

T
.

To complete the proof, we have to show that Y1(t, s) ≥ X1(t, s) > 0 for all t ∈ (s,∞)
T
and all

s ∈ [t1,∞)
T
. Clearly, for any fixed s ∈ [t1,∞)

T
and all t ∈ [s,∞)

T
, we have

(
A0YΔ

1 (·, s)
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)Y1(αi(t), s) =
∑

i∈[1,n]
N

[Ai(t) − Bi(t)]Y1(αi(t), s), (4.10)
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which by the solution representation formula yields that

Y1(t, s) = X1(t, s) +
∫ t

s

X1
(
t, σ
(
η
)) ∑

i∈[1,n]
N

[
Ai

(
η
) − Bi

(
η
)]Y1

(
αi
(
η
)
, s
)
Δη ≥ X1(t, s) (4.11)

for all t ∈ [s,∞)
T
. This completes the proof since the first fundamental solution X1 satisfies

X1(t, s) > 0 for all t ∈ (s,∞)
T
and all s ∈ [t1,∞)

T
by Remark 3.3.

Corollary 4.2. Suppose that (A1), (A2), (A3), and (A5) hold, and (3.1) has a nonoscillatory solution
on [t1,∞)

T
⊂ [t0,∞)

T
, then (4.1) admits a nonoscillatory solution on [t2,∞)

T
⊂ [t1,∞)

T
.

Corollary 4.3. Assume that (A2) and (A3) hold.

(i) If (A1) holds and the dynamic inequality

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

A+
i (t)x(αi(t)) ≤ 0 for t ∈ [t0,∞)

T
, (4.12)

where A+
i (t) := max{Ai(t), 0} for t ∈ [t0,∞)

T
and i ∈ [1, n]

N
, has a positive solution on

[t0,∞)
T
, then (3.1) also admits a positive solution on [t1,∞)

T
⊂ [t0,∞)

T
.

(ii) If (A4) holds and there exist a sufficiently large t1 ∈ [t0,∞)
T
and a function Λ ∈

C1
rd([t1,∞)

T
,R+

0 ) satisfying the inequality

ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

A+
i (t)e�(Λ/A0)(t, αi(t)) ≤ 0 ∀t ∈ [t1,∞)

T
, (4.13)

then the first fundamental solutionX1 of (3.1) satisfiesX1(t, s) > 0 for all t ∈ (s,∞)
T
and

all s ∈ [t1,∞)
T
.

Proof. Consider the dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

A+
i (t)x(αi(t)) = 0 for t ∈ [t0,∞)

T
. (4.14)

Theorem 3.1 implies that for this equation the assertions (i) and (ii) hold. Since for all
i ∈ [1, n]

N
, we have Ai(t) ≤ A+

i (t) for all t ∈ [t0,∞)
T
, the application of Corollary 4.2 and

Theorem 4.1 completes the proof.

Now, let us compare the solutions of problem (2.1) and the following initial value
problem:

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = g(t) for t ∈ [t0,∞)
T
,

x(t0) = y1, xΔ(t0) = y2, x(t) = ψ(t) for t ∈ [t−1, t0)T
,

(4.15)
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where y1, y2 ∈ R are the initial values, ψ ∈ Crd([t−1, t0)T
,R) is the initial function such

that ψ has a finite left-sided limit at the initial point t0 provided that it is left dense,
g ∈ Crd([t0,∞)

T
,R) is the forcing term.

Theorem 4.4. Suppose that (A2), (A3), (A4), (A5), and the following condition hold:

(A6) f, g ∈ Crd([t0,∞)
T
,R) and ϕ, ψ ∈ Crd([t−1, t0)T

,R) satisfy

f(t) −
∑

i∈[1,n]
N

Bi(t)ϕ(αi(t)) ≤ g(t) −
∑

i∈[1,n]
N

Bi(t)ψ(αi(t)) ∀t ∈ [t0,∞)
T
. (4.16)

Moreover, let (2.1) have a positive solution x on [t0,∞)
T
, y1 = x1, and y2 ≥ x2, then the solution y

of (4.15) satisfies y(t) ≥ x(t) for all t ∈ [t0,∞)
T
.

Proof. By Theorem 3.1 and Remark 3.3, we can assume that Λ ∈ Crd([t0,∞)
T
,R+

0 ) is a solution
of the dynamic Riccati inequality (3.4), then by (A5), the function Λ is also a solution of the
dynamic Riccati inequality

ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

Bi(t)e�(Λ/A0)(t, αi(t)) ≤ 0 ∀t ∈ [t0,∞)
T
, (4.17)

which is associated with (4.15). Hence, by Theorem 3.1 and Remark 3.3, the first fundamental
solution Y1 of (4.15) satisfies Y1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈ [t0,∞)

T
. Rewriting (2.1)

in the form

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x(αi(t)) = f(t) −
∑

i∈[1,n]
N

[Ai(t) − Bi(t)]x(αi(t)), t ∈ [t0,∞)
T

x(t0) = x1, xΔ(t0) = x2, x(t) = ϕ(t), t ∈ [t−1, t0)T
,

(4.18)

applying Lemma 2.4, and using (A6), we have

x(t) = x2Y1(t, t0) + x1Y2(t, t0) +
∫ t

t0

Y1
(
t, σ
(
η
))

×
⎡

⎣f
(
η
) −

∑

i∈[1,n]
N

[
Ai

(
η
) − Bi

(
η
)]
χ[t0,∞)

T

(
αi
(
η
))
x
(
αi
(
η
)) −

∑

i∈[1,n]
N

Bi
(
η
)
ϕ
(
αi
(
η
))
⎤

⎦Δη

≤ y2Y1(t, t0) + y1Y2(t, t0) +
∫ t

t0

Y1
(
t, σ
(
η
))
⎡

⎣g
(
η
) −

∑

i∈[1,n]
N

Bi
(
η
)
ψ
(
αi
(
η
))
⎤

⎦Δη

= y(t)
(4.19)

for all t ∈ [t0,∞)
T
. This completes the proof.
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Figure 1: The graph of 10 iterates for the solutions of (4.20) and (4.22) illustrates the result of Theorem 4.4,
here y(t) > x(t) for all t ∈ (1,∞)2Z

.

Remark 4.5. If Bi ∈ Crd([t0,∞)
T
,R+

0 ) for i ∈ [1, n]
N
, f(t) ≤ g(t) for all t ∈ [t0,∞)

T
and ϕ(t) ≥

ψ(t) for all t ∈ [t−1, t0)T
, then (A6) holds.

The following example illustrates Theorem 4.4 for the quantum time scale T = 2Z.

Example 4.6. Let 2Z := {2k : k ∈ Z} ∪ {0}, and consider the following initial value problems:

D2
(
Id2ZD2x

)
(t) +

2
t4
x

(
t

4

)

= − 1
t4

for t ∈ [1,∞)2Z ,

D2x(1) = 1, x(t) ≡ 1 for t ∈
[
1
4
, 1
]

2Z

,

(4.20)

where Id2Z is the identity function on 2Z, that is, Id2Z(t) = t for t ∈ 2Z, and

D2x(t) =
1
t
(x(2t) − x(t)) for t ∈ 2Z, (4.21)

D2
(
Id2ZD2x

)
(t) +

1
t4
x

(
t

4

)

=
1
t4

for t ∈ [1,∞)2Z ,

D2x(1) = 1, x(t) ≡ 1 for t ∈
[
1
4
, 1
]

2Z

.

(4.22)

Denoting by x and y the solutions of (4.20) and (4.22), respectively, we obtain y(t) ≥ x(t) for
all t ∈ [1,∞)2Z by Theorem 4.4. For the graph of the first 10 iterates, see Figure 1.

As an immediate consequence of Theorem 4.4, we obtain the following corollary.
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Corollary 4.7. Suppose that (A1), (A2), and (A3) hold and that (3.1) is nonoscillatory, then, for
f ∈ Crd([t0,∞)

T
,R+

0 ), the dynamic equation

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = f(t) for t ∈ [t0,∞)
T (4.23)

is also nonoscillatory.

We now consider the following dynamic equation:

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)x(αi(t)) = g(t) for t ∈ [t0,∞)
T
,

x(t0) = y1, xΔ(t0) = y2, x(t) = ψ(t) for t ∈ [t−1, t0)T
,

(4.24)

where the parameters are the same as in (4.15).
We obtain the most complete result if we compare solutions of (2.1) and (4.24) by

omitting the condition (A2) and assuming that the solution of (2.1) is positive.

Corollary 4.8. Suppose that (A3), (A4), and the following condition hold:

(A7) f, g ∈ Crd([t0,∞)
T
,R) and ϕ, ψ ∈ Crd([t−1, t0)T

,R) satisfy

f(t) −
∑

i∈[1,n]
N

Ai(t)ϕ(αi(t)) ≤ g(t) −
∑

i∈[1,n]
N

Ai(t)ψ(αi(t)) ∀t ∈ [t0,∞)
T
. (4.25)

If x is a positive solution of (2.1) on [t0,∞)
T
with x1 = y1 and y2 ≥ x2, then for the solution y of

(4.24), one has y(t) ≥ x(t) for all t ∈ [t0,∞)
T
.

Proof. Corollary 4.3 and Remark 3.3 imply that the first fundamental solution X1 associated
with (2.1) (and (4.24)) satisfies X1(t, s) > 0 for all t ∈ (s,∞)

T
and all s ∈ [t0,∞)

T
. Hence, the

claim follows from the solution representation formula.

Remark 4.9. If at least one of the inequalities in the statements of Theorem 4.4 and
Corollary 4.8 is strict, then the conclusions hold with the strict inequality too.

Let us compare equations with different coefficients and delays. Now, we consider

(
A0x

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Bi(t)x
(
βi(t)

)
= 0 for t ∈ [t0,∞)

T
. (4.26)

Theorem 4.10. Suppose that (A2), (A4), (A5), and the following condition hold:

(A8) for i ∈ [1, n]
N
, βi ∈ Crd([t0,∞)

T
,T) satisfies βi(t) ≤ αi(t) for all t ∈ [t0,∞)

T
and

limt→∞βi(t) = ∞.

Assume further that the first-order dynamic Riccati inequality (3.4) has a solution Λ ∈ C1
rd([t1,

∞)
T
,R+

0 ) for some t1 ∈ [t0,∞)
T
, then the first fundamental solution Y1 of (4.26) satisfies Y1(t, s) > 0

for all t ∈ (s,∞)
T
and all s ∈ [t1,∞)

T
.
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Proof. Note that (A5) implies Ai(t) ≥ B+
i (t) for all t ∈ [t0,∞)

T
and i ∈ [1, n]

N
, then we have

0 ≥ ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(σ(t), αi(t))

≥ ΛΔ(t) +
Λ2(t)

A0(t) + μ(t)Λ(t)
+
∑

i∈[1,n]
N

B+
i (t)e�(Λ/A0)

(
σ(t), βi(t)

)
(4.27)

for all t ∈ [t1,∞)
T
. The reference to Corollary 4.3 (ii) concludes the proof.

Remark 4.11. If the condition (A4) in Theorem 4.1, Theorem 4.4, Corollary 4.8, and
Theorem 4.10 is replaced with (A1), then the claims of the theorems are valid eventually.

Let us introduce the function

αmax(t) := max
i∈[1,n]

N

{αi(t)} for t ∈ [t0,∞)
T
. (4.28)

Corollary 4.12. Suppose that (A1), (A2), (A3), and (A5) hold. If

(
A0x

Δ
)Δ

(t) +

⎛

⎝
∑

i∈[1,n]
N

Ai(t)

⎞

⎠x(αmax(t)) = 0 for t ∈ [t0,∞)
T

(4.29)

is nonoscillatory, then (4.1) is also nonoscillatory.

Remark 4.13. The claim of Corollary 4.12 is also true when αmax is replaced by σ.

5. Explicit Nonoscillation and Oscillation Results

Theorem 5.1. Suppose that (A1), (A2), and (A3) hold and that

σ(t)
2tA0(t) + μ(t)

+ 2tσ(t)
∑

i∈[1,n]
N

Ai(t)e�(1/(2IdTA0))(σ(t), αi(t)) ≤ 1 ∀t ∈ [t1,∞)
T
, (5.1)

where t1 ∈ [t0,∞)
T
and IdT is the identity function on T, then (3.1) is nonoscillatory.

Proof. The statement of the theorem yields that Λ(t) = 1/(2t) for t ∈ [t0,∞)
T+ is a positive

solution of the Riccati inequality (3.32).

Next, let us apply Theorem 5.1 to delay differential equations.
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Corollary 5.2. Let A0 ∈ C([t0,∞)
R
,R+), for i ∈ [1, n]

N
, Ai ∈ C([t0,∞)

R
,R+

0 ), and αi ∈
C([t0,∞)

R
,R) such that αi(t) ≤ t for all t ∈ [t0,∞)

R
and limt→∞αi(t) = ∞. If

1
2A0(t)

+ 2t2
∑

i∈[1,n]
N

Ai(t) exp

{

−
∫ t

αi(t)

1
2ηA0

(
η
)dη

}

≤ 1 ∀t ∈ [t1,∞)
R (5.2)

for some t1 ∈ [t0,∞)
R
, then (1.2) is nonoscillatory.

Now, let us proceed with the discrete case.

Corollary 5.3. Let {A0(k)} be a positive sequence, for i ∈ [1, n]
N
, let {Ai(k)} be a nonnegative

sequence, and let {αi(k)} be a divergent sequence such that αi(k) ≤ k + 1 for all k ∈ [k0,∞)
N
. If

k + 1
2kA0(k) + 1

+ 2k(k + 1)
∑

i∈[1,n]
N

Ai(k)
k∏

j=αi(k)

2jA0
(
j
)

2jA0
(
j
)
+ 1

≤ 1 ∀k ∈ [k1,∞)
N (5.3)

for some k1 ∈ [k0,∞)
N
, then (1.8) is nonoscillatory.

Let us introduce the function

A(t, s) :=
∫ t

s

1
A0
(
η
)Δη for s, t ∈ [t0,∞)

T
. (5.4)

Theorem 5.4. Suppose that (A1), (A2), and (A3) hold, and for every t1 ∈ [t0,∞)
T
, the dynamic

equation

(
A0x

Δ
)Δ

(t) +
1

A(αmax(t), t1)

⎛

⎝
∑

i∈[1,n]
N

Ai(t)A(αi(t), t1)

⎞

⎠x(αmax(t)) = 0, t ∈ [t2,∞)
T

(5.5)

is oscillatory, where t2 ∈ [t1,∞)
T
satisfies αmin(t) > t1 for all t ∈ [t2,∞)

T
, then (3.1) is also

oscillatory.

Proof. Assume to the contrary that (3.1) is nonoscillatory, then there exists a solution x of (3.1)
such that x > 0, (A0x

Δ)Δ ≤ 0 on [t1,∞)
T
⊂ [t0,∞)

T
. This implies that A0x

Δ is nonincreasing
on [t1,∞)

T
, then it follows that

x(t) ≥ x(t) − x(t1) =
∫ t

t1

1
A0
(
η
)A0
(
η
)
xΔ(η

)
Δη ≥ A(t, t1)A0(t)xΔ(t) ∀t ∈ [t1,∞)

T
, (5.6)

or simply by using (5.4),

x(t) −A(t, t1)A0(t)xΔ(t) ≥ 0 ∀t ∈ [t1,∞)
T
. (5.7)
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Now, let

ψ(t) :=
x(t)

A(t, t1)
for t ∈ (t1,∞)

T
. (5.8)

By the quotient rule, (5.4) and (5.7), we have

ψΔ(t) =
A(t, t1)A0(t)xΔ(t) − x(t)
A(σ(t), t1)A(t, t1)A0(t)

≤ 0 ∀t ∈ (t1,∞)
T
, (5.9)

proving that ψ is nonincreasing on (t1,∞)
T
. Therefore, for all i ∈ [1, n]

N
, we obtain

x(αmax(t))
A(αmax(t), t1)

= ψ(αmax(t)) ≤ ψ(αi(t)) = x(αi(t))
A(αi(t), t1)

∀t ∈ [t2,∞)
T
, (5.10)

where t2 ∈ [t1,∞)
T
satisfies αmin(t) > t1 for all t ∈ [t2,∞)

T
. Using (5.10) in (3.1), we see that x

solves

(
A0x

Δ
)Δ

(t) +
1

A(αmax(t), t1)

⎛

⎝
∑

i∈[1,n]
N

Ai(t)A(αi(t), t1)

⎞

⎠x(αmax(t)) ≤ 0 ∀t ∈ [t2,∞)
T
, (5.11)

which shows that (5.5) is also nonoscillatory by Theorem 3.1. This is a contradiction, and the
proof is completed.

The following theorem can be regarded as the dynamic generalization of Leighton’s
result (Theorem A).

Theorem 5.5. Suppose that (A2), (A3), and (A4) hold and that

∫∞

t2

∑

i∈[1,n]
N

Ai

(
η
)
e�(1/(A0A(·,t1)))

(
σ
(
η
)
, αi
(
η
))
Δη = ∞, (5.12)

where t2 ∈ (t1,∞) ⊂ [t0,∞)
T
, then every solution of (3.1) is oscillatory.

Proof. Assume to the contrary that (3.1) is nonoscillatory. It follows from Theorem 3.1 and
Remark 3.2 that (3.4) has a solution Λ ∈ Crd([t0,∞)

T
,R+

0 ). Using (3.5) and (5.7), we see that

Λ(t) ≤ 1
A(t, t1)

∀t ∈ [t2,∞)
T
, (5.13)

which together with (3.4) implies that

ΛΔ(t) +
∑

i∈[1,n]
N

Ai(t)e�(1/(A0A(·,t1)))(σ(t), αi(t)) ≤ 0 ∀t ∈ [t2,∞)
T
. (5.14)



Abstract and Applied Analysis 25

Integrating the last inequality, we get

Λ(t) −Λ(t2) +
∫ t

t2

∑

i∈[1,n]
N

Ai

(
η
)
e�(1/(A0A(·,t1)))

(
σ
(
η
)
, αi
(
η
))
Δη ≤ 0 ∀t ∈ [t2,∞)

T
, (5.15)

which is in a contradiction with (5.12). This completes the proof.

We conclude this section with applications of Theorem 5.5 to delay differential
equations and difference equations.

Corollary 5.6. Let A0 ∈ C([t0,∞)
R
,R+), for i ∈ [1, n]

N
, Ai ∈ C([t0,∞)

R
,R+

0 ), and αi ∈
C([t0,∞)

R
,R) such that αi(t) ≤ t for all t ∈ [t0,∞)

R
and limt→∞αi(t) = ∞. If

lim
t→∞

A(t, t0) = ∞,

∫∞

t0

∑

i∈[1,n]
N

Ai

(
η
)A
(
αi
(
η
)
, t0
)

A
(
η, t0
) dη = ∞, (5.16)

where

A(t, s) :=
∫ t

s

1
A0
(
η
)dη for s, t ∈ [t0,∞)

R
, (5.17)

then (1.2) is oscillatory.

Corollary 5.7. Let {A0(k)} be a positive sequence, for i ∈ [1, n]
N
, let {Ai(k)} be a nonnegative

sequence and let {αi(k)} be a divergent sequence such that αi(k) ≤ k + 1 for all k ∈ [k0,∞)
N
. If

lim
k→∞

A(k, k0) = ∞,
∞∑

j=k0

∑

i∈[1,n]
N

Ai

(
j
) j∏

�=αi(j)

A0(�)A(�, k0)
A0(�)A(�, k0) + 1

= ∞, (5.18)

where

A(k, l) :=
k−1∑

j=l

1
A0
(
j
) for l, k ∈ [k0,∞)

N
, (5.19)

then (1.8) is oscillatory.

6. Existence of a Positive Solution

Theorem 6.1. Suppose that (A2), (A3), and (A4) hold, f ∈ Crd([t0,∞)
T
,R+

0 ), and the first-order
dynamic Riccati inequality (3.4) has a solution Λ ∈ C1

rd([t0,∞)
T
,R+

0 ). Moreover, suppose that there
exist x1, x2 ∈ R

+ such that ϕ(t) ≤ x1 for all t ∈ [t−1, t0)T
and x2 ≥ Λ(t0)x1/A0(t0), then (2.1) admits

a positive solution x such that x(t) ≥ x1 for all t ∈ [t0,∞)
T
.
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Proof. First assume that y is the solution of the following initial value problem:

(
A0y

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)y(αi(t)) = 0 for t ∈ [t0,∞)
T
,

yΔ(t0) =
Λ(t0)
A0(t0)

x1, y(t) ≡ x1 for t ∈ [t−1, t0]T
.

(6.1)

Denote

z(t) :=

⎧
⎨

⎩

x1eΛ/A0(t, t0) for t ∈ [t0,∞)
T
,

x1 for t ∈ [t−1, t0)T
,

(6.2)

then, by following similar arguments to those in the proof of the part (ii)⇒(iii) of
Theorem 3.1, we obtain

g(t) :=
(
A0z

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)z(αi(t))

= x1eΛ/A0(t, t0)

⎡

⎣ΛΔ(t) +
1

A0(t)
Λσ(t)Λ(t) +

∑

i∈[1,n]
N

Ai(t)e�(Λ/A0)(t, αi(t))

⎤

⎦ ≤ 0

(6.3)

for all t ∈ [t0,∞)
T
. So z is a solution to

(
A0z

Δ
)Δ

(t) +
∑

i∈[1,n]
N

Ai(t)z(αi(t)) = g(t) for t ∈ [t0,∞)
T
,

zΔ(t0) =
Λ(t0)
A0(t0)

x1, z(t) ≡ x1 for t ∈ [t−1, t0]T
.

(6.4)

Theorem 4.4 implies that y(t) ≥ z(t) ≥ x1 > 0 for all t ∈ [t0,∞)
T
. By the hypothesis of the

theorem, Theorem 4.4, and Corollary 4.8, we have x(t) ≥ y(t) ≥ x1 > 0 for all t ∈ [t0,∞)
T
. This

completes the proof for the case f ≡ 0 and g ≡ 0 on [t0,∞)
T
.

The general case where f /≡ 0 on [t0,∞)
T
is also a consequence of Theorem 4.4.

Let us illustrate the result of Theorem 6.1 with the following example.

Example 6.2. Let
√

N0 := {
√
k : k ∈ N0}, and consider the following delay dynamic equation:

(
Id√

N0
xΔ
)Δ

(t) +
1

8t
√
t2 + 1

(

x(t) +
1
2
x
(√

t2 − 1
))

=
1

t
√
t2 + 1

, t ∈ [1,∞)√
N0
,

xΔ(1) = 2, x(t) ≡ 2 for t ∈ [0, 1]√
N0
,

(6.5)
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Figure 2: The graph of 15 iterates for the solution of (6.5) illustrates the result of Theorem 6.1.

then (5.1) takes the form Φ(t) ≤ 1 for all t ∈ [1,∞)√
N0
, where the function Φ is defined by

Φ(t) :=
1

2t2 +
(√

t2 + 1 − t
)

⎛

⎜
⎝
√
t2 + 1 +

t2

2

⎛

⎜
⎝1 +

t2 − 1

2(t2 − 1) +
(
t −

√
t2 − 1

)

⎞

⎟
⎠

⎞

⎟
⎠ for t ∈ [1,∞)

R

(6.6)

and is decreasing on [1,∞)
R
and thus is not greater than Φ(1) ≈ 0.79, that is, Theorem 5.1

holds. Theorem 6.1 therefore ensures that the solution is positive on [1,∞)√
N0
. For the graph

of 15 iterates, see Figure 2.

7. Discussion and Open Problems

We start this section with discussion of explicit nonoscillation conditions for delay differential
and difference equations. Let us first consider the continuous case. Corollary 5.6 with n = 1
and α1(t) = t for t ∈ [t0,∞)

R
reduces to Theorem A. Nonoscillation part of Kneser’s result

for (1.4) follows from Corollary 5.2 by letting n = 1, A0(t) ≡ 1, and α1(t) = t for t ∈ [t0,∞)
R
.

Theorem E is obtained by applying Corollary 5.3 to (1.10).
Known nonoscillation tests for difference equations can also be deduced from the

results of the present paper. In [18, Lemma 1.2], Chen and Erbe proved that (1.9) is
nonoscillatory if and only if there exists a sequence {Λ(k)} with A0(k) + Λ(k) > 0 for all
k ∈ [k1,∞)

N
and some k1 ∈ [k0,∞)

N
satisfying

ΔΛ(k) +
Λ2(k)

A0(k) + Λ(k)
+A1(k) ≤ 0 ∀k ∈ [k1,∞)

N
. (7.1)

Since this result is a necessary and sufficient condition, the conclusion of Theorem F could be
deduced from

ΔΛ(k) +
Λ2(k)

1 + Λ(k)
+A1(k) ≤ 0 ∀k ∈ [k1,∞)

N
, (7.2)
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which is a particular case of (7.1) with A0(k) ≡ 1 for k ∈ [k0,∞)
N
. We present below a short

proof for the nonoscillation part only. Assuming (1.12) and letting

Λ(k) :=
1

4(k − 1)
+

∞∑

j=k

A1
(
j
)

for k ∈ [k1,∞)
N
⊂ [2,∞)

N
, (7.3)

we get

1
4(k − 1)

+
1
4k

≥ Λ(k) ≥ 1
4(k − 1)

∀k ∈ [k1,∞)
N
, (7.4)

and this yields

ΔΛ(k) +
Λ2(k)

1 + Λ(k)
+A1(k) ≤ − 1

4k2(4k − 3)
< 0 ∀ k ∈ [k1,∞)

N
. (7.5)

That is, the discrete Riccati inequality (7.2) has a positive solution implying that (1.10)
is nonoscillatory. It is not hard to prove that (1.13) implies nonexistence of a sequence
{Λ(k)} satisfying the discrete Riccati inequality (7.2) (see the proof of [23, Lemma
3]). Thus, oscillation/nonoscillation results for (1.10) in [21] can be deduced from
nonexistence/existence of a solution for the discrete Riccati inequality (7.2); see also [20].

An application of Theorem 3.1 with Λ(t) := λ/t for t ∈ [t0,∞)
qZ

+ and λ ∈ R
+ implies

the following result for quantum scales.

Example 7.1. Let T = qZ := {qk : k ∈ Z} ∪ {0} with q ∈ (1,∞)
R
. If there exist λ ∈ R

+
0 and

t1 ∈ [t0,∞)
qZ

+ such that

λ2

A0(t) +
(
q − 1

)
λ
+ t2

∑

i∈[1,n]
N

Ai(t)
logq(t)∏

η=logq(αi(t))

A0
(
qη
)

A0
(
qη
)
+
(
q − 1

)
λ
≤ λ

q
, t ∈ [t1,∞)

qZ , (7.6)

then the delay q-difference equation

Dq

(
A0Dqx

)
(t) +

∑

i∈[1,n]
N

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)
qZ (7.7)

is nonoscillatory.

In [36], Bohner and Ünal studied nonoscillation and oscillation of the q-difference
equation

D2
qx(t) +

a

qt2
x
(
qt
)
= 0 for t ∈ [t0,∞)

qZ , (7.8)
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where a ∈ R
+
0 , and proved that (7.7) is nonoscillatory if and only if

a ≤ 1
(√

q + 1
)2 . (7.9)

For the above q-difference equation, (7.6) reduces to the algebraic inequality

λ2

1 +
(
q − 1

)
λ
+
a

q
≤ λ

q
or λ2 − (1 − (q − 1

)
a
)
λ + a ≤ 0, (7.10)

whose discriminant is (1 − (q − 1)a)2 − 4a = (q − 1)2a2 − (q + 1)a + 1. The discriminant is
nonnegative if and only if

a ≥ q + 2√q + 1
q2 − 2q + 1

=
1

(√
q − 1

)2 or a ≤ q − 2√q + 1
q2 − 2q + 1

=
1

(√
q + 1

)2 . (7.11)

If the latter one holds, then the inequality (7.6) holds with an equality for the value

λ :=
1
2

(

1 − (q − 1
)
a +
√
(
1 − (q − 1

)
a
)2 − 4a

)

. (7.12)

It is easy to check that this value is not less than 2/(√q + 1)2, that is, the solution is
nonnegative. This gives us the nonoscillation part of [36, Theorem 3].

Let us also outline connections to some known results in the theory of second-order
ordinary differential equations. For example, the Sturm-Picone comparison theorem is an
immediate corollary of Theorem 4.10 if we remark that a solution Λ ∈ C1

rd([t1,∞)
T
,R) of the

inequality (3.32) satisfying Λ/A0 ∈ R+([t1,∞)
T
,R) is also a solution of (3.32) with Bi instead

of Ai for i = 0, 1.

Proposition 7.2 (see [28, 32, 36]). Suppose that B0(t) ≥ A0(t) > 0, A1(t) ≥ 0, and A1(t) ≥ B1(t)
for all t ∈ [t0,∞)

T
, then nonoscillation of

(
A0x

Δ
)Δ

(t) +A1(t)xσ(t) = 0 for t ∈ [t0,∞)
T

(7.13)

implies nonoscillation of

(
B0x

Δ
)Δ

(t) + B1(t)xσ(t) = 0 for t ∈ [t0,∞)
T
. (7.14)

The following result can also be regarded as another generalization of the Sturm-
Picone comparison theorem. It is easily deduced that there is a solution Λ ∈ C1

rd([t1,∞)
T
,R+

0 )
of the inequality (3.4).
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Proposition 7.3. Suppose that (A4) and the conditions of Proposition 7.2 are fulfilled, then
nonoscillation of

(
A0x

Δ
)Δ

(t) +A1(t)x(t) = 0 for t ∈ [t0,∞)
T

(7.15)

implies the same for

(
B0x

Δ
)Δ

(t) + B1(t)x(t) = 0 for t ∈ [t0,∞)
T
. (7.16)

Finally, let us present some open problems. To this end, we will need the following
definition.

Definition 7.4. A solution x of (3.1) is said to be slowly oscillating if for every t1 ∈ [t0,∞)
T

there exist t2 ∈ (t1,∞)
T
with αmin(t) ≥ t1 for all t ∈ [t2,∞)

T
and t3 ∈ [t2,∞)

T
such that

x(t1)xσ(t1) ≤ 0, x(t2)xσ(t2) ≤ 0, x(t) > 0 for all t ∈ (t1, t2)T
.

Following the method of [8, Theorem 10], we can demonstrate that if (A1), (A2) with
positive coefficients and (A3) hold, then the existence of a slowly oscillating solution of (3.1)
which has infinitely many zeros implies oscillation of all solutions.

(P1) Generally, will existence of a slowly oscillating solution imply oscillation of all
solutions? To the best of our knowledge, slowly oscillating solutions have not been
studied for difference equations yet, the only known result is [9, Proposition 5.2].

All the results of the present paper are obtained under the assumptions that all
coefficients of (3.1) are nonnegative, and if some of them are negative, it is supposed that
the equation with the negative terms omitted has a positive solution.

(P2) Obtain sufficient nonoscillation conditions for (3.1)with coefficients of an arbitrary
sign, not assuming that all solutions of the equationwith negative terms omitted are
nonoscillatory. In particular, consider the equation with one oscillatory coefficient.

(P3) Describe the asymptotic and the global properties of nonoscillatory solutions.

(P4) Deduce nonoscillation conditions for linear second-order impulsive equations on
time scales, where both the solution and its derivative are subject to the change at
impulse points (and these changes can be matched or not). The results of this type
for second-order delay differential equations were obtained in [37].

(P5) Consider the same equation on different time scales. In particular, under which
conditions will nonoscillation of (1.8) imply nonoscillation of (1.2)?

(P6) Obtain nonoscillation conditions for neutral delay second-order equations. In
particular, for difference equations some results of this type (a necessary oscillation
conditions) can be found in [17].

(P7) In the present paper, all parameters of the equation are rd-continuous which
corresponds to continuous delays and coefficients for differential equations.
However, in [8], nonoscillation of second-order equations is studied under a more
general assumption that delays and coefficients are Lebesguemeasurable functions.
Can the restrictions of rd-continuity of the parameters be relaxed to involve,
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for example, discontinuous coefficients which arise in the theory of impulsive
equations?

Appendix

Time Scales Essentials

A time scale, which inherits the standard topology on R, is a nonempty closed subset of reals.
Here, and later throughout this paper, a time scale will be denoted by the symbol T, and the
intervals with a subscript T are used to denote the intersection of the usual interval with T.
For t ∈ T, we define the forward jump operator σ : T → T by σ(t) := inf(t,∞)

T
while the

backward jump operator ρ : T → T is defined by ρ(t) := sup(−∞, t)
T
, and the graininess function

μ : T → R
+
0 is defined to be μ(t) := σ(t)− t. A point t ∈ T is called right dense if σ(t) = t and/or

equivalently μ(t) = 0 holds; otherwise, it is called right scattered, and similarly left dense and
left scattered points are defined with respect to the backward jump operator. For f : T → R

and t ∈ T, the Δ-derivative fΔ(t) of f at the point t is defined to be the number, provided it
exists, with the property that, for any ε > 0, there is a neighborhoodU of t such that

∣
∣
∣
[
fσ(t) − f(s)] − fΔ(t)[σ(t) − s]

∣
∣
∣ ≤ ε|σ(t) − s| ∀s ∈ U, (A.1)

where fσ := f ◦ σ on T. We mean the Δ-derivative of a function when we only say
derivative unless otherwise is specified. A function f is called rd-continuous provided that
it is continuous at right-dense points in T and has a finite limit at left-dense points, and the
set of rd-continuous functions is denoted by Crd(T,R). The set of functions C1

rd(T,R) includes
the functions whose derivative is in Crd(T,R) too. For a function f ∈ C1

rd(T,R), the so-called
simple useful formula holds

fσ(t) = f(t) + μ(t)fΔ(t) ∀t ∈ T
κ, (A.2)

where T
κ := T \ {supT} if supT = maxT and satisfies ρ(maxT)/= maxT; otherwise, T

κ := T.
For s, t ∈ T and a function f ∈ Crd(T,R), the Δ-integral of f is defined by

∫ t

s

f
(
η
)
Δη = F(t) − F(s) for s, t ∈ T, (A.3)

where F ∈ C1
rd(T,R) is an antiderivative of f , that is, FΔ = f on T

κ. Table 1 gives the explicit
forms of the forward jump, graininess, Δ-derivative, and Δ-integral on the well-known time
scales of reals, integers, and the quantum set, respectively.

A function f ∈ Crd(T,R) is called regressive if 1 + μf /= 0 on T
κ, and positively regressive

if 1 + μf > 0 on T
κ. The set of regressive functions and the set of positively regressive functions are

denoted by R(T,R) and R+(T,R), respectively, and R−(T,R) is defined similarly.
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Table 1: Forward jump, Δ-derivative, and Δ-integral.

T R Z qZ, (q > 1)

σ(t) t t + 1 qt

fΔ(t) f ′(t) Δf(t)
Dqf(t) := (f(qt) − f(t))/((q − 1)t)

∫ t
s f(η)Δη

∫ t
s f(η)dη

∑t−1
η=s f(η)

∫ t
s f(η)dqη := (q − 1)

∑logq(t/q)

η=logq(s)
f(qη)qη

Table 2: The exponential function.

T R Z qZ, (q > 1)

ef (t, s) exp{∫ ts f(η)dη}
∏t−1

η=s(1 + f(η))
∏logq(t/q)

η=logq(s)
(1 + (q − 1)qηf(qη))

Let f ∈ R(T,R), then the exponential function ef(·, s) on a time scale T is defined to be
the unique solution of the initial value problem

xΔ(t) = f(t)x(t) for t ∈ T
κ,

x(s) = 1
(A.4)

for some fixed s ∈ T. For h ∈ R
+, set Ch := {z ∈ C : z/= − 1/h}, Zh := {z ∈ C : −π/h < Im(z) ≤

π/h}, and C0 := Z0 := C. For h ∈ R
+
0 , we define the cylinder transformation ξh : Ch → Zh by

ξh(z) :=

⎧
⎪⎨

⎪⎩

z, h = 0,

1
h
Log(1 + hz), h > 0

(A.5)

for z ∈ Ch, then the exponential function can also be written in the form

ef(t, s) := exp

{∫ t

s

ξμ(η)
(
f
(
η
))
Δη

}

for s, t ∈ T. (A.6)

Table 2 illustrates the explicit forms of the exponential function on some well-known time
scales.

The exponential function ef(·, s) is strictly positive on [s,∞)
T
if f ∈ R+([s,∞)

T
,R),

while ef(·, s) alternates in sign at right-scattered points of the interval [s,∞)
T
provided that

f ∈ R−([s,∞)
T
,R). For h ∈ R

+
0 , let z,w ∈ Ch, the circle plus ⊕h and the circle minus �h are

defined by z⊕h w := z + w + hzw and z�hw := (z − w)/(1 + hw), respectively. Further
throughout the paper, we will abbreviate the operations ⊕μ and �μ simply by ⊕ and �,
respectively. It is also known that R+(T,R) is a subgroup of R(T,R), that is, 0 ∈ R+(T,R),
f, g ∈ R+(T,R) implies f⊕μg ∈ R+(T,R) and �μf ∈ R+(T,R), where �μf := 0�μf on T.

The readers are referred to [32] for further interesting details in the time scale theory.
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