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Apart from the intrinsic interest of this enterprise, we hoped to establish a systematic method for
finding objective correlates to elements of musical structure and style that might lay the groundwork
for a method of musical analysis based upon objective, repeatable, experiments using actual musi-
cians. We also wanted to provide a benchmark against which the performance of other predictive
models of music could be assessed. For example, Conklin [1] describes an adaptive scheme for
predicting music based on techniques of machine learning, and applies it to certain compositions.
Unfortunately, it is hard to judge the success of this in human terms since it is not known how well
people can predict the same compositions.

The music used in the experiments comprised selected melodies from the Chorale harmoniza-
tions of J.S. Bach. This music consditutes a well-recognized genre and forms a standard subject
of study in most university-level music theory classes. Trained musicians are generally intimately
familiar with the chorales. Moreover, they are readily available in machine-readable form, so a large
database could easily be assembled for the experiments. Note, incidentally, that these melodies
were not composed by Bach, but have been part of the Lutheran Church music tradition since the
16th century.

The methodology we use is suitable for investigating a wide variety of musical phenomena.
The experiments we have performed so far, being the first in a planned series, focus on the pitch
of the melodies. We thought it best to concentrate on a single parameter of music, and to begin
by disregarding the complex interdependencies between harmony, pitch, and rhythm. Subsequent
experiments will explore other areas—in particular, the effect of harmonic context upon the entropy
profile for pitch.

This paper is organized as follows. The first section sketches the historical and theoretical
background for the experiments, which derive from the pioneering work of Shannon [2, 3] and
Cover & King [4] on estimating the entropy of printed English. Next we describe the experiment
itself. It is performed using a program for the Apple Macintosh computer called CHORALE CASINO,
which is freely available from the authors. We outline how the program works and how it is used
in our experiments. The third section presents experimental results, and these are evaluated and
interpreted in the fourth. Finally we draw some general conclusions and summarize directions
for further work. An Appendix sets out in more detail the development of information theory

and entropy estimation techniques, and includes a mathematical account of relevant aspects of the



theory.

2 Background

Shannon [5] was the first to investigate the entropy of messages in communication systems. He
sought to quantify the amount of redundancy in the English language—other researchers have since
applied his methods to a great variety of other natural languages [6]. His early studies were strictly
statistical, using letter and word frequency tables derived from samples of text. However, due to the
theoretical limits of the technique, these so-called “N-gram analyses” yielded estimates that were

deemed to be poor indicators of the true entropy of the source text (see the Appendix for details).

2.1 The guessing game

Realizing the limitations of N-gram analysis, Shannon took a new tack altogether. He recognized
that every person has a sophisticated model of language in their head. This model encompasses
word structure, syntax, semantics, idioms and style, not to mention the subject matter of the text
itself. It allows people to predict effortlessly the letter or word that follows a given context, usually
with high accuracy. It also enables readers to spot subtle errors of grammar and spelling, and to
make the proper correction, sometimes unconsciously, and usually with great speed.

Shannon used people’s predictive ability to derive an entropy estimate of English. The procedure

he followed was:
1. Show a passage of text to a subject, but only up to a certain point;
2. Ask the subject to guess the next character;
3. If the guess is wrong, have the subject guess again;
4. Repeat until the guess is correct;

5. Have the subject guess the next character in the same manner, continuing until the entire

passage has been completed.

The number of guesses taken by the subject for each character of the text is recorded, and is used

to derive an entropy estimate.



Shannon used this technique with 100 short samples of text from the book Jefferson the Virginian
by Dumas Malone. He concluded that the entropy for this particular source of printed English lies
between 0.6 and 1.3 bits per character [7]. The problem with this result is the wide gap between the
lower and upper bounds, which is due to the limitations of the guessing technique. For example,
our expectation that the letter “u” will follow “q” is much stronger than our expectation that “a”

will follow “r”; yet the two events appear to convey the same information if they are guessed in the

same number of attempts. Obviously, some valuable information about the text is being lost.

2.2 The gambling game

Cover & King [8] improved upon Shannon’s technique by incorporating gambling into the guessing
procedure. Each subject is given an initial capital amount of Sy = 1. At each stage n, if the player
guesses correctly his capital S, is set to 27pS,_1, where p is the proportion of capital the subject
chose to wager and S,_; is the capital accrued from the previous stage. If the player guesses
incorrectly, the capital declines by the proportion bet. The number 27 represents fair odds because
there are 27 symbols to choose from (26 letters plus a space).

It can be shown that the entropy of text can be estimated reliably from the capital accumulated

by a subject [9]. Mathematically, it is expressed as:
. 1
H= ,,IL“J,O log, 27 — m log, S»| , 1)

where H is the entropy of the text in bits per symbol, n is the current stage (i.e. the number of the
letter being guessed), and S,, is the capital accumulated by the subject after n stages. Any practical
estimate must, of course, be based on a finite number of guesses, and its accuracy will increase as
the number of letters grows until, in the limit, the “true” information content of the text is obtained.

The gambling procedure elicits from the subject an intuitive probability estimate for the next
symbol to be guessed. If a particular symbol is considered very likely to occur, good subjects will
wager a large proportion of their capital on that choice. Conversely, in situations where subjects are
less sure of the symbol they will bet a smaller amount. This scheme not only rewards the correct
guess, but rewards accurate estimates of the symbol’s probability—gamblers will recognize it as
proportional betting. To obtain the best possible results, subjects are pitted against each other in a

tournament competition, with a reward to the overall winner.



An important practical advantage of the scheme is that subjects are required to supply a prob-
ability estimate only for the symbol they feel is most likely. If that turns out to be incorrect, they
must supply a probability for the next most likely symbol, and so on until the correct one is chosen.
This sequential betting procedure reduces the time required for the subject to proceed through the
text because probability values need not be supplied for every possible symbol at every stage of the

experiment.

2.3 Results from the gambling game

One way of combining the results from several subjects in this experiment is simply to average the
capital that accrues to each one and calculate the entropy from it using equation (1). This is called
the “average capital estimate.” However, the best subject’s entropy value is more telling because
it reflects the most sophisticated model of the language—we are not particularly concerned with
players who have poor models. While the “best subject estimate” is useful, it is unreliable. It may
be optimistic because with a large number of players there is a chance that the best one does well
simply by luck. It may be pessimistic because the best overall player may suffer occasional lapses
of judgement—a joint decision by all players could do better than any one individual. Both of these
problems can be solved by using a “committee gambling estimate,” which simply uses a weighted
average of the individual accrued capitals, with weights chosen in proportion to the subject’s relative
success in the tournament. This can sometimes give an even better entropy figure than the best
subject [10].

Using the same text as in Shannon’s experiment, Cover & King [11] arrived at an average capital
estimate of 1.34 bits/symbol, a best subject estimate of 1.29 bits/symbol, and a committee gambling
estimate of 1.25 bits/symbol. They were careful to note that each source of printed English will

have its own characteristic entropy, and these estimates are valid for this particular text only.

2.4 Entropy of Music

The pioneering work of Shannon soon led to the application of information theory to music. Some
researchers, such as Meyer [12], were interested in the aesthetic and philosophic implications of
the theory when applied to music. Others studied specific musical examples. For example, Hiller

& Fuller [13] analyzed four sonata expositions statistically, and derived a variety of “contours



of information fluctuation,” From these they drew a number of conclusions about the style of
the composers, and made meaningful comparisons between the works. Other similar studies soon
followed {14, 15]. However, all these analyses used N-gram techniques, with the attendant statistical

uncertainty, and say little about people’s models of music.

3 Description of the experiment

3.1 The CHORALE CASINO program

The CHORALE CASINO program was written to facilitate the investigation of human performance
in music prediction, using the gambling methodology. The program has a built-in database of
one hundred melodies, derived from the chorale harmonizations of J.S. Bach. The experimenter
can choose any of these melodies simply by entering a security password and the desired chorale
number.

The program is structured as a game, and records each player’s score and rank within a
tournament-style competition. The result of every guess, and the amount bet, are recorded in
the subject’s log file, as is the time taken to make the bet. The program also calculates and stores
the entropy at each note of the chorale.

When CHORALE CASINO begins, players are presented with a registration panel which asks them
to enter their name and years of experience in music—both practice and theory. The program then
presents a series of tutorial panels explaining how the subject is to play the game. Next, the current
rankings in the tournament are displayed, giving the names and scores of the top five players so far.

The game proper now begins, and the main display is shown on the screen. Figure 1 shows the
situation partway through a chorale. It depicts the rhythmic skeleton of the music, with all notes
still to be chosen marked in gray in a neutral position—the middle line of the staff. Bar lines are
shown, as is the key signature, time signature, and fermata signs; however, repeat signs are omitted.
If the entire chorale is too big to fit on the monitor, the player can move to any part of it by pointing
(with a mouse) to the scroll bar and clicking on it.

The player chooses a pitch to bet on by manipulating what we call the “note slider.” This
consists of an up-arrow button above the current note and a down-arrow button below it. When the

former is clicked using the mouse, the note displayed on the staff rises chromatically. When the



latter is selected the note falls chromatically. In this fashion the player can choose any pitch from
the chromatic scale between middle C and G at the top of the staff. However, if a note has already
been unsuccessfully bet upon, the slider will skip over that particular note, preventing the player
from the pointless exercise of betting on it again.

After the note has been identified correctly, the slider advances to the next one. The correctly
guessed melody remains on the screen, while notes still to be chosen are displayed as grayed notes in
neutral position. The player can hear the melody up to and including the current point by selecting
the “hear it” item in the menu bar at the top of the screen, which causes the notes to be synthesized
by built-in hardware and played on the computer’s speaker. When the game begins the note slider
is placed over the chorale’s first note, and the music is guessed in order from left to right.

Players must bet on each pitch they choose. When they have manipulated the note slider until
they are satisfied with the note selected, they push the “Note OK” button attached to it. This
immediately brings up the bet panel illustrated in Figure 2. It consists of the “bet slider” to the
left, and four numerical displays to the right. The player chooses the proportion of capital to
bet by moving the slider up and down with the mouse. As it moves, the numerical displays are
automatically updated. Two of these show the amount bet, one as a proportion of capital and the
other as an absolute dollar figure. The remaining two show the potential total capital, one for a
losing bet and the other for a winner. When the player is satisfied with the amount to be wagered,
the “Bet amount shown” button must be pressed. If the pitch selected is correct, a panel is displayed
telling the player that they have won, along with the updated capital amount; and the note slider
is automatically advanced to the next note of the chorale. If the pitch is incorrect, the player is
informed of the capital remaining after the loss. The note slider will not advance in this case, forcing
another choice of pitch at the same point in the chorale.

The player continues to choose, and bet on, each note until the whole piece has been completed.

At the end the final capital amount is displayed, along with the player’s rank in the tournament.

3.2 Experimental trials

A tournament was organized to collect experimental data. We wanted an accurate estimate of the
entropy of particular pieces of music, and this is best achieved when a strong sense of competition

is fostered among players. Contestants were grouped into three categories: expert, intermediate,



and novice. A novice was defined as any person with the basic ability to read music, while an
intermediate player must have had at least two years of formal music theory classes. An expert was
defined as any person with advanced music degrees and professional experience.

Five contestants in each category competed against each other in the first round of the tour-
nament. The top two players from each category advanced to the playoff round. As an incentive
to perform well, a prize of $100 was awarded to each winner of the playoff round in the novice
and intermediate categories. The melody employed for the first round of the tournament was taken
from Chorale No. 151 of J.S. Bach’s 371 Four-Part Chorales (Edition Breitkopf). For the second
round, Chorale No. 61 was used. Care was taken that no contestant knew in advance which chorale
melody would be chosen.

The experiments were performed using the CHORALE CASINO program. After a short briefing,
the contestants were left alone at the computer to complete the game without any interruptions.
No time limit was imposed for completion, though some players took as long as 64 minutes while

others finished Chorale 151 in only 17 minutes.

4 Experimental results

The cumulative entropy profile for the melody of Chorale 151 is shown in Figure 3a, which plots

the cumulative average entropy in bits per symbol for each note. This was calculated by:
. 1
H= nlgrgo log, 20 — - log, Sn |, )]

where n is the current stage and S, the capital accumulated so far by the subject. The number
20 represents fair odds because this is the number of chromatic pitches to choose from (middle
C to G above the staff). Three profiles are given: the average capital estimate, the weighted
average estimate, and the best subject estimate. The first is calculated at each note by averaging the
accumulated capital of all 15 subjects and then applying the above formula. The second is obtained
similarly, except that each subject’s capital is weighted by the factor capital/total, where total is
the sum of all subjects” accumulated capital at that particular stage. The third is formed by taking
the highest accumulated capital of any subject at each note. Note that the best subject and weighted

average estimates converge fairly quickly to the same value.



We conclude that the average capital estimate for the entropy of this chorale is 2.086 bits per
symbol. The weighted average estimate is 1.982 bits/symbol, and the best subject estimate is 1.974
bits/symbol.

Since the cumulative entropy estimates are running averages, the profiles tends to settle down
as the number of notes increases, damping any short-term variations in entropy. In order to show
these variations, instantaneous entropy profiles were also obtained, and are shown in Figure 3b.

Instantaneous entropy at each note is calculated by:
H= 10g2 20 — 10g2 S ) (3)

where H is the entropy of the current pitch in bits per symbol and S the capital won by the subject
on this note. This formula is derived from equation (2) by setting n to 1, which is tantamount to
assuming that subjects start out with a capital of 1 at each note. The average capital, weighted
average, and best subject estimates are calculated in the same manner as for cumulative entropy,
except, of course, that the capital amounts are not cumulative.

Of the three estimates of instantaneous entropy, the weighted average is probably the most
useful. The best subject estimate really just shows that at least one of the 15 subjects managed to
score much better than all the others, with the result that several flat spots appear in the graph. On
the other hand, the average capital estimate can be unduly influenced by a single poor bettor on a
particular note, with the result that the profile may show a peak in entropy where one should not
really exist. The weighted average is the best compromise because it minimizes the effect of poor
betting but does not unduly reward the occasional lucky bet.

The cumulative entropy profiles for the melody of Chorale 61 are shown in Figure 4a. These
are calculated in exactly the same way as for Chorale 151, except that only 6 subjects were used
in the playoff round. The average capital estimate for the entropy of this chorale is 1.575 bits per
symbol, while the best subject and weighted average estimates are both 1.529 bits/symbol. The
instantaneous entropy profiles for the chorale are given in Figure 4b. They, too, are calculated in
the same way as for Chorale 151, and again only 6 subjects were used.

Surprisingly, there was little difference in the results between the three categories of subjects.
Once extreme results were discarded, we found that each group averaged about the same. In fact,

the best performer was one whom we had classified as a “novice”! This may speak more about



shortcomings in our categorization and the positive effects of careful betting practices than it does

about musical models.

S Evaluation and interpretation

5.1 Lower bounds estimate of the entropy

According to the best subject estimates, the entropy of pitch in Chorales 151 and 61 is 1.974 and
1.529 bits per symbol respectively. Let us consider how closely these figures might approximate
the “true” entropy of the chorales. The experiment is designed to evoke each subject’s inherent
statistical model of music to derive the entropy profiles. It is assumed that subjects have a good
understanding of proportional betting—for the experiment rewards those who bet according to
the probabilities they attribute to the pitches. Thus, over and above their musical understanding
and experience, subjects’ gambling skills are involved. In some cases we found that these skills
were quite poor and acted against an obviously solid grasp of the music. On these grounds alone,
we expect that the entropy estimates would be lowered if the subjects were shown how to wager
effectively and allowed to practice their betting.

As with any game, participants can be expected to improve their performance with practice.
With each new round of the tournament, subjects became more comfortable with the task, not only
in their betting technique, but also in terms of thinking about musical processes in a completely new
way. As subjects become more proficient at turning their musical understanding towards playing
the game, we expect a further drop in the entropy estimate.

Another factor that may have artificially increased the estimate is the use of forced sequential
guessing. In these experiments, subjects were constrained to guess the pitch of each note in order,
from left to right. Although we often think of music as a sequential entity progressing through time,
at a deeper structural level its organization is most definitely non-sequential. Future experiments
will explore this issue by allowing subjects to choose notes to work on in any order. Preliminary
results indicate that the corresponding entropy estimate will drop noticeably.

In principle, the estimates we derive converge to the “true” entropy as the context increases to
infinity (see equation (1)). The chorales are limited in size, so the asymptote will never be reached.

It may be that entropy estimates for larger chorales tend to be lower simply because of this fact. The
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results above seem to support this, but many more trials are needed to yield conclusive evidence.
Alternatively, it may be that the estimate converges quickly and the entropy profiles accurately
reflect the changing information content of the music beyond the context of a few notes.
Notwithstanding these factors, it seems fair to say that 1.974 and 1.529 bits per note are
reasonably accurate entropy estimates for pitch in the two chorales, although they probably err on
the high side. Unfortunately it is not possible to extrapolate these into an overall entropy figure
for the chorale genre—just two estimates are quite insufficient to support any degree of confidence
in the result. A much larger number would be required to generalize to the class of pieces in a
statistically valid manner, and we will need to collect more data before we can produce an average
entropy estimate for the chorales. Such a figure would be useful as a basis for comparing the chorale
melodies with other genres of music. However, it provides only a gross comparison between styles,
and the individual entropy estimates are more interesting because they can be used for detailed

analyses of particular pieces of music.

5.2 Correlation with stylistic analysis of the music

The instantaneous entropy profile can be used for a detailed note-by-note analysis of the melody of
the chorale. There are four phrases in Chorale 151 (see Figure 3c), and they are marked by fermata
signs in Figures 3a and 3b. Using the weighted average estimate, it is apparent that the “valleys”
in the instantaneous entropy profile of Figure 3b tend to correspond to the ultimate notes in each
cadence. This is particularly clear in the cadences at notes 7, 15, and 29. In the third cadence, the
dip in the profile corresponds to the penultimate note, and there is a slight rise in entropy when
the cadence finally appears at note 22. The difference may be due to the fact that this cadence is
the only one which is not a V-I cadence. It can be considered a half cadence if the harmonization
of Bach is ignored (and recall that the subjects are given only the melody), and the slight rise in
entropy seems to correspond to the consequent lack of closure.

The chorale exhibits a wave-like entropy profile, with troughs corresponding more or less to
cadence points and peaks occurring at the middle of phrases. For example, the peak in the first
phrase occurs on note 4. Here a leap of a third breaks the repetition of the chorale’s initial note. At
note 10 we see another sharp peak, due to the fact that the expected duplication of the beginning of

the first phrase does not occur, but instead is replaced by a stepwise downward motion. The peak
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at notes 18 and 19 is again due to the variation on the beginning phrase. At note 18 there is some
uncertainty as to whether the pattern of the first or second phrase will be repeated exactly. When
the second pattern seems to be confirmed, a new pattern is created at note 19 with the repetition of
the A, causing a large increase in entropy.

The largest peak of the chorale occurs at note 23. The leap of a minor seventh is very unusual
in this style of music, and is even more unexpected in this case because the leading-tone at note 22
would normally resolve to a G. In retrospect, this leap does make musical sense since the descending
stepwise motion to the tonic is displaced by an octave to keep the melody within the soprano’s range.
However, on a note-to-note basis the leap is very unexpected, and results in the large rise in entropy.

The cumulative entropy profile of Figure 3a is most useful for discerning long-term trends in the
chorale’s information content. The part of the profile over the first 5 or 6 notes should be ignored
since there is insufficient context to establish a long-term tendency. In contrast, the second and third
phrases show a definite steady decrease in entropy. Whether this is due to the convergent nature
of the estimate or the musical nature of the melody is open to some debate. It is clear, however,
that enough context has been built up to allow the subjects’ predictive ability to grow progressively
stronger through these two phrases. At note 23 the leap of the seventh shows up very clearly even
on this graph as a relatively sharp peak, while the rather predictable ending is reflected in a fairly
steep decline in entropy. In summary, one can characterize the first phrase as uncertain due to the
lack of context, phrases two and three as increasingly predictable, and phrase four as starting with
a jolt but ending in a logical manner.

Chorale 61 can be analyzed in a similar manner. As in Chorale 151, we see wave-like motion
in the instantaneous entropy (Figure 4b), with troughs at each cadence point. This is particularly
clear at the cadences at notes 7, 14, 21, 27, 42, 49, and 57. The one at note 34 is the only exception,
presumably because the expected resolution is Eb, whereas a G is heard.

This chorale is interesting because we see not one but two peaks, of unequal size, in the middle
of each phrase. In phrases 2, 3, 5, 6, 7, and 8 the larger peak comes first, either on the first or the
second note after the cadence point. This reflects that fact that after a cadence, it becomes difficult to
predict what direction the new phrase will take. In phrase 7 this is compounded by the unexpected
downward leap of a third on note 44. In phrase 4 the smaller peak occurs first, indicating that the

resolution of the cadence is quite clear, since it is leading-tone to tonic. The large peak comes on a
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repetition of the G at note 25. Up to this point there has been only one repeated note, so subjects
have a high expectation that all movement is by step. The minor peak in phrase 6 (note 40) is also
due to an unexpected repeated note, while the minor peaks in phrases 5 and 8 (notes 31 and 53)
can be attributed to the fact that the rising stepwise motion is discontinued in favor of descending
motion by step.

Figure 4a shows the cumulative entropy profile for Chorale 61. As in the other chorale, the
profile for the first phrase should be ignored due to lack of context. Phrases 2 through 5 show a
more or less steady decline in the entropy. What is interesting are the two slight rises in phrases 6
and 7 (at notes 35-38 and 43—44). These correspond with the modulation to the dominant in the
former and the unexpected leap at note 44 in the latter. The final phrase continues the steady decline
in entropy started in phrase 7.

There is a remarkable similarity in the long-term trends of these two chorales. Both exhibit
uncertain entropy profiles in the first phrase because of a lack of context. The next several phrases
show a decreasing entropy, reflecting the fact that the growing context supports more confident
prediction. Finally, both chorales have a rise of entropy near the end of the piece, followed by steep
declines to the final cadence. Part of what seems to make a satisfactory melodic profile is a pattern

of uncertainty, increasing stability, uncertainty, and final resolution.

5.3 Comparison with algorithmic models of prediction

As mentioned in the introduction, we wanted to establish a benchmark against which a predictive
model based on machine learning could be judged. A detailed comparison is left to another
paper [16]. However, we briefly note that the derived entropy profiles are remarkably similar,
though there are important exceptions due to the nature of the algorithmic model. The human
subjects slightly outperformed the machine-based system, although we expect that the model can

be tuned to more closely approximate, or possibly surpass, these results.

6 Future experiments

The experiments performed above lead in a number of new directions. We first want to investigate

the effect of non-sequential guessing in the gambling methodology. The CHORALE CASINO program
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has already been modified to allow this, and preliminary results indicate that the entropy estimates
will drop significantly. A second planned experiment will provide subjects with the context of the
three other voices of the chorale when guessing the pitch of the melody. The data obtained from this
study will help us to improve the algorithmic model when it deals with multi-part music. Finally,
the gambling methodology will be applied to parameters other than pitch—rhythm and harmony, in

particular, should prove to be rewarding areas of investigation.

7 Conclusions

The computer program CHORALE CASINO was used to administer experiments designed to elicit
predictive probabilities of music from subjects. From this data we derived entropy estimates for
pitch of 1.974 and 1.529 bits/symbol for Chorales 151 and 61 respectively. More importantly,
cumulative and instantaneous entropy profiles for each of the chorales were derived. These proved
useful in musical analyses of the pieces, and helped to characterize the short and long term structure
of the music. If enough data is collected, such studies can be used to characterize a composer’s style
in general, and to provide an objective, scientifically repeatable, means of comparative analysis. The
results of these studies will also be useful when constructing and tuning machine-based predictive

models of music.
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Appendix

Information theory

The foundation of modern information theory was established by Hartley in a paper published in
1928 [17]. He stated that any communication system could be examined independently of the
people who send or receive the messages, and that it was amenable to objective measurement.
Messages sent through a communication system are constructed as a sequence of physical signals.
Each sequence can be described as a particular arrangement of arbitrary, discrete symbols. When
characterizing a communication system in objective terms, it is not necessary to consider what these
symbols mean, but only how many different ones there are and how quickly they can be transmitted
through the system. This knowledge can help to estimate the theoretical maximum throughput of
any communication system. The word “information” is used in a precise quantitative sense as a
measure of the content of a message, and not in its usual sense to denote semantic meaning [18].
Hartley went on to examine random messages. A random message is defined as a sequence of
symbols where each symbol is chosen independently and with equal probability from the alphabet
of symbols without regard to which ones preceded it. Since symbols in a random message are
equiprobable, there is no way to represent it more compactly, and thus a random message is said to

have maximum information content. Its information content in bits per symbol is given by:
(HN)maz = logz N) (4)

where N is the number of symbols in the alphabet. The maximum rate of information transmission

of a communication channel, in bits per second, is:
(HT)ma:l: = nlog2 N, )]

where n the number of symbols transmitted per second. If a message is of length T" seconds, the

total amount of information transmitted is:
Hpmar =nTlog, N bits. (6)

Of course, very few messages are completely random in their structure. For example, in printed
§6,90 (171 I T3 4 )

English it is clear that letters such as “e”, “t”, and “a” are much more common than “z”, “x”, and

“q”. A probability p; can be assigned to each of the N letters (that is, symbols) in the alphabet.
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The sum of these probabilities must, of course, equal 1. Shannon [19] found that the information

content of such a message, in bits per symbol, could be determined by:

N
Hy = —Zpi logzp,-. @)

i=1
This equation gives what is called the “0-order information content” since it is based on
probabilities that are assigned to the letters without regard to their predecessors. When examining
the statistics of printed English, it is obvious that the probability of a particular letter occurring is
conditioned by the letter or letters that came before it. For example, the probability that the letter
“u” follows “q” is very high, but the probability that “x” follows it is extremely low. When the
probabilities are examined in the context of two letters (a “digram”), the analysis is said to be of
order 1. Sequences of three letters (“trigrams”), four letters (“tetragrams”), and longer can also be
used. Such “N-gram” analyses have an order of N — 1.
Shannon [20] found that the information content over N adjacent letters (sometimes called the
N-gram entropy) is given by:
Fy ==Y p(bi,5)logy py, (5), ®
i’j
or, equivalently:
Fy == p(bi,5)logy p(bi, 5) + ) _p(b:) logy p(bi), O
ij i
where b; is a block of N — 1 letters, 7 is the letter following b;, p(b;, j) is the probability of
N-gram b; j; and py, (5) is the conditional probability of letter j after the block b;, which is given
by p(b;, 7)/p(b;). The longer the sequences of letters used, the closer these estimates will approach

the “true” information content of the message. This is expressed mathematically as:

H = lim Fy. (10)
N—00

Entropy of printed English

Plain English was among the first communication systems to be viewed in terms of information
theory. The printed language has a fairly standard set of symbols, and these are structured into
messages according to well-defined conventions at a variety of levels. Researchers were interested

in the efficient transmission of text through a communication system, and thus sought to develop
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effective techniques for text compression. From this arose a desire to determine the theoretical limits
of compressibility, or, conversely, to find the redundancy of printed text and of natural language in
general.

The term entropy is used to describe the information content of a message. In connection with

printed English, Shannon defines entropy as:

...a statistical parameter which measures, in a certain sense, how much information
is produced on the average for each letter of a text in the language. If the language
is translated into binary digits (O or 1) in the most efficient way, the entropy H is the

average number of binary digits required per letter of the original language [21].

Redundancy, as the name implies, measures how much can be discarded without losing essential
information, in other words “...the amount of constraint imposed on a text in the language due to
its statistical structure” [22]. In mathematical terms, the percentage redundancy R of a message is
given by:

R= IL"I;’—“H x 100%, (11)

where H is the measured entropy of the message and H,,,. is the maximum possible entropy of a
message in the same system.

The first estimates of the entropy of printed English were made by examining the statistics of
representative text, through its N-gram frequency tables. Shannon [23] gives these results for 26-

and 27- letter alphabets (the latter including the space character):

E Fy B F Fuord
26 letters 4.70 4.14 3.56 33 2.62
27 letters 476 4.03 3.32 3.1 2.14

Shannon did not analyze a particular text but extrapolated from published monogram, digram,
trigram, and word frequency tables to derive N-gram entropies. His entropy values should be
considered as approximations only—especially for units larger than the trigram.

In fact, N-gram analysis is not a viable technique for obtaining an accurate estimate of the “true”

information content of natural language. The reason for this is as follows. As N becomes greater
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(i.e. the context for the N-gram analysis grows), the entropy estimate will converge to an asymptote
(the “true” entropy of the text). However, the analysis is necessarily based on a finite corpus. As
N grows, at some point all N-grams will become unique, which implies that the entropy is 0. In
principle, this leads to the conclusion that the text is entirely predictable and contains no information
at all! This clearly is not the case. For N-gram analysis to work reliably, then, one needs to analyze
a huge corpus of text. For example, the Brown corpus [24] contains 1.6 million characters, from
an alphabet of 94 different symbols. A trigram analysis is feasible, because 943 is less than the size
of the corpus. However, a tetragram analysis is not statistically valid since 94* is approximately 78

million, far greater than the number of characters in the text.
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