ON THE REGULAR REPRESENTATION OF ALGEBRAS

Nuder II Hybernty

Department of Computer Beligner

Technion - brack haditute of Eschnology, Hathi, brack

and

University of Calputy, Alberta Caunda

Key Words - Associative algebras, regular representation such of tomors

1. INTRODUCTION

Let **A** be an associative algebra with unity element $\{ (nv) \}$ this field k. Let $\{a_1, \dots, a_n\}$ be a base of **A**, $\{RR_L(\mathbf{A}) = \{A_n \mid a \in \mathbf{A}\} \text{ and } RR_L(\mathbf{A}) = \{A^n \mid a \in \mathbf{A}\} \text{ bit the left and right regular representation matrices of$ **A** $, respectively Let <math>\mathbf{v} = \sum_{i=1}^n (a_i v_i)$ that $\mathbf{v} = \sum_{i=1}^n (a_i v_i) \mathbf{v}$ the two elements in **A** and $\mathbf{v} = \sum_{i=1}^n (\mathbf{v}^T B_i, \mathbf{v}) a_i$ where $\mathbf{v} = (v_1, \dots, v_n)^T$ and $\mathbf{v} = \{v_1, \dots, v_n\}^T$ in this paper we study some properties and the connection between the notice $\{A_{i_1}, \dots, A_{i_n}\}$ and $\{B_{1}, \dots, B_{n}\}$. These properties has various applications in the theory of multiplicative complexity of algebras.

One of our purposes will be to classify all algorithm **A** that satisfy. There exist a nonsingular matrix N such that $\{B_1N,\dots,B_nN\}$ is a base for an algorithm that is boundplik to **A** or to **A**, the reciprocal algebra. For commutative algebra and semblingly algorithm is completely classified

2. PRELIMINARY RESULTS

In this section we give some preliminary results

<u>Definition 1</u>. Let $B = \{B_1, \dots, B_n\}$ be a set of $n \times n$ matrices. We define the T-dual and D-dual sets B^T and B^D of B as follows:

$$B^{T} = \{B_{1}^{T}, \dots, B_{n}^{T}\}$$
, $B^{D} = \{C_{1}, \dots, C_{n}\}$,

Here B_i^T is the transpose of B_i and B^D denotes the set of $n \times n$ matrices that satisfy

$$C_i^j = B_i^i$$
, $i, j = 1, \ldots, n$,

where B_i^j is the j-th column of B_i , i.e

$$C_i = [B_1 e_i \mid \cdots \mid B_n e_i].$$

where e_i is the *i*-th column unit vector of order n.

We also define $B^E = B^{TDT}$, i.e $B^E = \{D_1, \ldots, D_n\}$ where

<u>Definition 2.</u> Let $B = \{B_1, \ldots, B_n\}$ be a set of $n \times n$ matrices. Let M, N and $K = (K_{i,j})$ be $n \times n$ matrices. We define

$$NBM = \{NB_1M, \ldots, NB_nM\}, B[K] = \{\sum_{j=1}^n K_{1,j}B_j, \ldots, \sum_{j=1}^n K_{n,j}B_j\}.$$

<u>Definition 3</u>. Let $B = \{B_1, \ldots, B_n\}$ and $C = \{C_1, \ldots, C_m\}$ be sets of $n \times n$ and $m \times m$ matrices, respectively. We define

$$B \oplus C = {\tilde{B}_1, \ldots, \tilde{B}_n, \tilde{C}_1, \ldots, \tilde{C}_m}$$

where

$$\tilde{B}_i = \begin{bmatrix} B_i & 0_{n \times m} \\ 0_{m \times n} & 0_{m \times m} \end{bmatrix} , \quad \tilde{C}_l = \begin{bmatrix} 0_{n \times n} & 0_{n \times m} \\ 0_{m \times n} & C_l \end{bmatrix}$$

and $0_{s \times r}$ is the zero $s \times r$ matrix.

We also define

$$B \otimes C = \{B_a \otimes C_b \mid a = 1, \ldots, n, b = 1, \ldots, m\}.$$

where Θ is the Kronecker product of matrices.

<u>Lemma 1.</u> Let A_1 , A_2 and A be sets of n_1 , n_2 and n, $n_1 \times n_1$, $n_2 \times n_2$ and $n \times n$ matrices, respectively. Then

(i)
$$A^{TT} = A$$
, $A^{DD} = A$, $A^{EE} = A$, $A^{E} = A^{TDT} = A^{DTD}$.

(ii)
$$A[K][J] = A[JK], (NAM)[K] = N(A[K])M$$
.

(iii)
$$(N A M)^T = M^T A^T N^T, (A [K])^T = A^T [K]$$

$$(iv)$$
 $(NA)^D = NA^D$, $(AM)^D = A^D [M^T]$, $(A[K])^D = (A^D K^T)$.

$$(v)$$
 $(A_1 \oplus A_2)^T = A_1^T \oplus A_2^T, (A_1 \oplus A_2)^D = A_1^D \oplus A_2^D.$

$$(vi) \quad (A_1 \otimes A_2)^T = A_1^T \otimes A_2^T, \ (A_1 \otimes A_2)^D = A_1^D \otimes A_2^D.$$

$$(vii) \quad A_1[K] \oplus A_2 = (A_1 \oplus A_2)[diag\ (K\ , I_{n_2})] \ , N\ A_1M \oplus A_2 = diag\ (N\ , I_{n_2})(A_1 \oplus A_2)\ diag\ (M\ , I_{n_2}).$$

$$(viii) \ \ A_1[K] \otimes A_2 = (A_1 \otimes A_2)[K \otimes I_{n_2}] \ , \ N \ A_1 M \otimes A_2 = (N \otimes I_{n_2})(A_1 \otimes A_2)(I_{n_1} \otimes M)$$

where

$$diag (B_1, B_2) = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}.$$

Proof . In (i) the first three equations are trivial. Let $A = \{(a_{k,i,j})_{i,j}\}_k$, i.e $A = \{(a_{1,i,j})_{i,j}, \ldots, (a_{n,i,j})_{i,j}\}$ where the indices i and j are for the rows and the columns, respectively. Then $A^D = \{(a_{k,i,j})_{i,k}\}_j$ and $A^T = \{(a_{k,i,j})_{j,i}\}_k$. Using those properties of the indices the fourth equation in (i) follows. (ii) and (iii) are trivial. To prove (iv) observe that if $M = (m_{i,j})$ and $A = \{B_1, \ldots, B_n\} = \{(a_{k,i,j})_{i,j}\}_k$ then

$$(NA)^{D} = \{ [NB_{i}^{(1)} | \cdots | NB_{i}^{(n)}] \}_{i}^{D} = \{ [NB_{1}^{(i)} | \cdots | NB_{n}^{(i)}] \}_{i} = N \{ [B_{1}^{(i)} | \cdots | B_{n}^{(i)}] \}_{i} = NA^{D},$$

$$(AM)^{D} = \{ (\sum_{l=1}^{n} a_{k,i,l} m_{l,j})_{i,j} \}_{k}^{D} = \{ (\sum_{l=1}^{n} a_{k,i,l} m_{l,j})_{i,k} \}_{j} = \{ \sum_{l=1}^{n} m_{l,j} (a_{k,i,l})_{i,k} \}_{j} = A^{D} [M^{T}],$$

and

$$A^{D}K^{T} = (A^{D}K^{T})^{DD} = (A [K])^{D}.$$

(ν) Follows immediately from definition 3. The first equation in (νi) is well known and the second follows from

$$(B_1 \otimes B_2)^{(i+n(j-1))} = B_1^{(i)} \otimes B_2^{(j)}$$

where B_2 is $n \times n$ matrix. (vii) is trivial.

The second property in (viii) follows from the following well known equation

$$N_1 M_1 \otimes N_2 M_2 = (N_1 \otimes N_2) (M_1 \otimes M_2).$$

and the first equation follows from

$$A_1[W] \otimes A_2 = (A_1^D K^T \otimes A_2^D)^D = ((A_1^D \otimes A_2^D)(K^T \otimes I_{n_2}))^D = (A_1 \otimes A_2)[K \otimes I_{n_2}]. \quad \Box$$

<u>Definition 4.</u> For two *n*-sets of $n \times n$ matrices B and C we write $B \equiv C$, B is equivalent to C, if there exist nonsingular matrices N, M and K such that

$$B = N(C[K])M$$
.

Obviously this relation is an equivalence relation.

<u>Lemma 2.</u> Let $A_1, \ldots, A_k, B_1, \ldots, B_k$ be sets of matrices. Then

- (i) If $A_1 \equiv B_1$ then $A_1^D \equiv B_1^D$ and $A_1^T \equiv B_1^T$.
- (ii) $B_1 \oplus \cdots \oplus B_k \equiv B_{\phi(1)} \oplus \cdots \oplus B_{\phi(k)}$ and $B_1 \otimes \cdots \otimes B_k \equiv B_{\phi(1)} \otimes \cdots \otimes B_{\phi(k)}$ for any permutation ϕ on $\{1, \ldots, k\}$.
- (iii) If $A_i \equiv B_i$, i = 1, ..., k then $A_1 \oplus \cdots \oplus A_k \equiv B_1 \oplus \cdots \oplus B_k$ and $A_1 \otimes \cdots \otimes A_k \equiv B_1 \otimes \cdots \otimes B_k$.

Proof. (i) follows by lemma 1. Let A and B be sets of n and $m, n \times n$ and $m \times m$ matrices, respectively. Then it can be easily shown that

$$\begin{bmatrix} I_m \\ I_n \end{bmatrix} (A \oplus B) \begin{bmatrix} I_m \\ I_n \end{bmatrix}^{-1} \begin{bmatrix} I_m \\ I_n \end{bmatrix} = B \oplus A.$$

where I_n is the identity matrix of order n.

It is known [MN] that

$$K_{m,n}(A \otimes B)K_{m,n}^{-1}[K_{m,n}] = B \otimes A$$

where $K_{m,n} = \sum_{j=1}^n (e_j^T \otimes I_m \otimes e_j)$. This implies (ii). (iii) follows from lemma 1. \square

3. REGULAR REPRESENTATION OF ALGEBRAS

Let A be an associative algebra with unit element 1 and $\{a_1, \ldots, a_n\}$ be a basic of the algebra A. Let

$$a_i a_j = \sum_{k=1}^n \gamma_{i,j,k} a_k$$

with $\gamma_{i,j,k} \in F$, i, j, $k = 1, \ldots, n$. Then for $x = \sum_{i=1}^n x_i \ a_i$ and $y = \sum_{j=1}^n y_j \ a_j$ we have

$$x \ y = \left[\sum_{i=1}^{n} x_{i} \ a_{i}\right] \left[\sum_{j=1}^{n} y_{j} \ a_{j}\right] = \sum_{k=1}^{n} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i,j,k} \ x_{i} y_{j}\right] a_{k}.$$

Let $a_i y = \sum_{k=1}^n \sigma_{i,k} a_k$ and define $A_y = (\sigma_{i,k})$ an $n \times n$ square matrix. Then it can be easily shown that $\sigma_{i,k} = \sum_{j=1}^n \gamma_{i,j,k} y_j$ and $\mathbf{RR}_l(\mathbf{A}) = \{A_a \mid a \in \mathbf{A}\}$ form an algebra over F that is isomorphic to \mathbf{A} under the corresponding $a \to A_a$, $\{A_{a_1}, \ldots, A_{a_n}\}$ is a base for the algebra $\mathbf{RR}_l(\mathbf{A})$, $A_\lambda = \lambda I_n$, $A_a A_b = A_{ab}$, $A_a + A_b = A_{a+b}$, $\lambda A_a = A_{\lambda a}$ for $\lambda \in F$ and if a b = 1 then $A_a^{-1} = A_b$. The algebra $\mathbf{RR}_l(\mathbf{A})$ is called the *left regular representation* of \mathbf{A} . The left regular representation $\mathbf{RR}_l(\mathbf{A})$ of \mathbf{A} is depending on the chooses bases $B = \{a_1, \ldots, a_n\}$, when we want to emphasize this dependency we write $\mathbf{RR}_l(\mathbf{A}, B)$.

Let $x \ a_i = \sum_{j=1}^n \delta_{j,i} \ a_j$ and define $A^x = (\delta_{j,i})$ an $n \times n$ square matrix. Then $\mathbf{RR}_r(\mathbf{A}) = \{A^a \mid a \in \mathbf{A}\}$ form an algebra over F that is isomorphic to \mathbf{A} under the corresponding $a \to A^a$. The algebra $\mathbf{RR}_r(\mathbf{A})$ is called the *right regular representation* of \mathbf{A} .

We define

$$\mathbf{B}(\mathbf{A}) = \{B_1, \dots, B_n\}$$

where for $\mathbf{x} = (x_1, \dots, x_n)^T$, $\mathbf{y} = (y_1, \dots, y_n)^T$ we have

$$\mathbf{x}^T B_i \mathbf{y} = \sum_{i=1}^n \sum_{j=1}^n \gamma_{i,j,k} x_i y_j.$$

i.e. the i-th coefficient of the product x y.

Let $C_l(A) = \{A_{a_1}, \ldots, A_{a_n}\}$ and $C_r(A) = \{A^{a_1}, \ldots, A^{a_n}\}$. We now give the connection between B(A), $C_l(A)$ and $C_r(A)$.

Lemma 3. We have

$$C_l(\mathbf{A})^D = \mathbf{B}(\mathbf{A}), C_r(\mathbf{A})^E = \mathbf{B}(\mathbf{A}), C_r(\mathbf{A}) = C_l(\mathbf{A})^{TD}.$$

Proof. We have

$$a_i y = a_i \left[\sum_{j=1}^n y_j a_j \right] = \sum_{k=1}^n \left[\sum_{j=1}^n \gamma_{i,j,k} y_j \right] a_k$$

and therefore

$$A_{y} = \begin{bmatrix} \sum_{j=1}^{n} \gamma_{1,j,1} y_{j} & \cdots & \sum_{j=1}^{n} \gamma_{1,j,n} y_{j} \\ \vdots & & \vdots \\ \vdots & & \ddots & \vdots \\ \sum_{j=1}^{n} \gamma_{n,j,1} y_{j} & \cdots & \sum_{j=1}^{n} \gamma_{n,j,n} y_{j} \end{bmatrix}$$

$$(1)$$

The product of x and y is

$$x y = \sum_{k=1}^{n} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i,j,k} x_{i} y_{j} \right] a_{k} = \sum_{k=1}^{n} (\mathbf{x}^{T} B_{k} \mathbf{y}) a_{k}$$

thus $\mathbf{x}^T B_k \mathbf{y} = \sum_{i=1}^n \sum_{j=1}^n \gamma_{i,j,k} x_i y_j$ or

$$B_{k} = \begin{bmatrix} \gamma_{1,1,k} & \cdots & \gamma_{1,n,k} \\ \vdots & & \vdots \\ \vdots & & \vdots \\ \gamma_{n,1,k} & \cdots & \gamma_{n,n,k} \end{bmatrix}$$

and from (1) we have

$$A_{a_j} = \begin{bmatrix} \gamma_{1,j,1} & \cdots & \gamma_{1,j,n} \\ \cdot & & \cdot \\ \cdot & & \cdot \\ \cdot & & \cdot \\ \gamma_{n,j,1} & \cdots & \gamma_{n,j,n} \end{bmatrix}$$

and therefore $B_k = [A_{a_1}e_k \mid \cdots \mid A_{a_n}e_k]$

The second equalition can be proved in the same manner. Now $C_l(A)^D = B(A) = C_r(A)^E$ follows the third equalition. \Box

Obviously, $C_l(A)$, $C_r(A)$, $RR_l(A)$, $RR_r(A)$ and B(A) is depending on the chooses bases $B = \{a_1, \ldots, a_n\}$. When we want to emphasis this dependency we write $C_l(A,B)$, $C_r(A,B)$, $RR_l(A,B)$, $RR_r(A,B)$ and $RR_r(A,B)$.

Lemma 4. Let A and A' be algebras. If A is isomorphic to A' then there exist bases

 $A = \{a_1, \ldots, a_n\}$ and $A' = \{a_1', \ldots, a_n'\}$ for A and A', respectively, such that

$$C_l(A,A) = C_l(A',A'), B(A,A) = B(A',A').$$

Proof. Let $\phi: A \to A'$ be an isomorphism. Let $A = \{a_1, \ldots, a_n\}$ be a base for A. Then $A' = \{\phi(a_1), \ldots, \phi(a_n)\}$ is a base for A' and for $x = \sum x_i a_i$, $y = \sum y_i a_i$, $x' = \sum x_i \phi(a_i)$ and $y' = \sum y_i \phi(a_i)$ we have

$$x y = \sum (\mathbf{x}^T B_i \mathbf{y}) a_i$$

and

$$x'y' = \phi(xy) = \sum (\mathbf{x}^T B_i \mathbf{y}) \phi(a_i).$$

This implies that $\mathbf{B}(\mathbf{A}, A) = \mathbf{B}(\mathbf{A}', A')$. By lemma 3 the first equalition follows. \square

Lemma 5. [FZ]. Let $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ be bases for the algebra A. Then

$$C_l(A,A) \equiv C_l(A,B), B(A,A) \equiv B(A,B).$$

To find the exact connection between $C_l(A,A)$ and $C_l(A,B)$ we prove the following

Lemma 6. Let A and B be as in lemma 5. If B = A [M] then

$$\mathbf{B}(\mathbf{A}, B) = M \mathbf{B}(\mathbf{A}, A) [(M^T)^{-1}] M^T$$
, $\mathbf{C}_l(\mathbf{A}, B) = M \mathbf{C}_l(\mathbf{A}, A) [M] M^{-1}$.

and

$$C_r(A,B) = (M^T)^{-1}C_r(A,A)[M]M^T$$
.

Proof. Let $M=(m_{i,j})$. Then $b_i=\sum_{j=1}^n m_{i,j}\,a_j$ and for $x=\sum_{i=1}^n x_i\,b_i$, $y=\sum_{i=1}^n y_ib_i$ we have

$$x y = \left(\sum_{i=1}^{n} x_{i} \sum_{j=1}^{n} m_{i,j} a_{j}\right) \left(\sum_{i=1}^{n} y_{i} \sum_{j=1}^{n} m_{i,j} a_{i}\right) = \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} x_{i} m_{i,j}\right) a_{j}\right) \left(\sum_{j=1}^{n} \left(\sum_{i=1}^{n} y_{i} m_{i,j}\right) a_{j}\right) = \sum_{j=1}^{n} (M^{T} \mathbf{x})^{T} B_{j} (M^{T} \mathbf{y}) a_{j}$$

$$= \sum_{i=1}^{n} \mathbf{x}^{T} (M B_{j} M^{T}) \mathbf{y} a_{j}.$$

where **B** (**A**, **A**) = $\{B_j\}_{j=1,...,n}$.

Let
$$M^{-1} = (n_{i,j})$$
. Then $a_i = \sum_{j=1}^{n} n_{i,j} b_j$ and

$$x y = \sum_{i=1}^{n} x^{T} (M B_{i} M^{T}) y \sum_{j=1}^{n} n_{i,j} b_{j} = \sum_{j=1}^{n} x^{T} (M (\sum_{i=1}^{n} n_{i,j} B_{i}) M^{T}) y b_{j}.$$

This implies that

$$\mathbf{B}(\mathbf{A}, B) = M \mathbf{B}(\mathbf{A}, A) [(M^T)^{-1}] M^T$$

By lemma 3 and 1 we obtain the other equations. \Box

<u>Lemma 7</u>. Let A and A' be algebras. If A is isomorphic to A' then there exist a nonsingular matrix M such that

$$\mathbf{RR}_{l}(\mathbf{A}) = M \mathbf{RR}_{l}(\mathbf{A}')M^{-1}$$

Also for B = A [M] where A and B are as in lemma 5

$$RR_{1}(A,B) = M RR_{1}(A,A)M^{-1}$$

Proof. Observing that $L(M C_l(A,A)[M]M^{-1}) = M RR(A,A)M^{-1}$, [L(H)] is the linear space spanned by the elements of H] and by lemma 4 and 6 the result follows. \square

Lemma 8. Let A_1 and A_2 be algebras. Then

$$C_l(A_1 \times A_2) \equiv C_l(A_1) \oplus C_l(A_2), \quad B(A_1 \times A_2) \equiv B(A_1) \oplus B(A_2),$$

 $C_l(A_1 \otimes A_2) \equiv C_l(A_1) \otimes C_l(A_2), \quad B(A_1 \otimes A_2) \equiv B(A_1) \otimes B(A_2).$

Proof. The connection on C_l is well known from the theory of regular matrix representation of algebras. We have by lemma 1, 2 and 3

$$\mathbf{B}(\mathbf{A}_{1}\times\mathbf{A}_{2})=\mathbf{C}_{l}(\mathbf{A}_{1}\times\mathbf{A}_{2})^{D}\equiv(\mathbf{C}_{l}(\mathbf{A}_{1})\oplus\mathbf{C}_{l}(\mathbf{A}_{2}))^{D}=\mathbf{C}_{l}(\mathbf{A}_{1})^{D}\oplus\mathbf{C}_{l}(\mathbf{A}_{2})^{D}=\mathbf{B}(\mathbf{A}_{1})\oplus\mathbf{B}(\mathbf{A}_{2}).$$
 and so for $\boldsymbol{\Theta}$. \square

Let **A** be an algebra. The *reciprocal algebra* A^- of **A** is an algebra with elements of **A** and the multiplication * such that a * b = b a. We have

Lemma 9. Let $\{a_1, \ldots, a_n\}$ be a base for A. Then

$$B(A^{-}) = B(A)^{T}$$
, $C_{l}(A^{-}) = C_{l}(A)^{E}$, $C_{r}(A^{-}) = C_{r}(A)^{D}$.

and

$$\mathbf{C}_r(\mathbf{A}^-) = \mathbf{C}_l(\mathbf{A})^T$$
.

Proof . We have

$$x * y = y x = \sum_{k=1}^{n} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} \gamma_{i,j,k} x_{j} y_{i} \right] a_{k}$$

$$= \sum_{k=1}^{n} (y^{T} B_{i} x) a_{k} = \sum_{k=1}^{n} (x^{T} B_{i}^{T} y) a_{k}.$$
(2)

Therefore $\mathbf{B}(\mathbf{A}^{-}) = \mathbf{B}(\mathbf{A})^{T}$. By lemma 1, 2 and 3 we have

$$C_{l}(A^{-}) = B(A^{-})^{D} = B(A)^{TD} = C_{l}(A)^{DTD} = C_{l}(A)^{E}$$

The rest follows in a similar manner.

Observe that when A is commutative algebra then $A^- = A$ and therefore we have

<u>Lemma 10</u>. We have $C_l(A) = C_l(A)^E$ iff $C_r(A) = C_r(A)^T$ iff A is commutative algebra.

Proof. If **A** is commutative algebra then by lemma 9 we have $C_l(\mathbf{A})^E = C_l(\mathbf{A}^-) = C_l(\mathbf{A})$. If $C_l(\mathbf{A}) = C_l(\mathbf{A})^E$ then $\mathbf{B}(\mathbf{A}) = \mathbf{B}(\mathbf{A})^T$ and by (2) we obtain that $x \ y = y \ x$ for every x and y in **A**. \square

<u>Definition 5</u>. Let A be an algebra. For $W \in \{D, T, DT, TD, E\}$ we say that A is W-algebra (W-algebra) if

$$C_l(A)^W \equiv C_l(A), (C_l(A)^W \equiv C_l(A^-)).$$

We say that A is W-isomorphic algebra (W-isomorphic algebra) if there exist matrices N and M such that $N L(C_l(A)^W)M$ is an algebra that is isomorphic to A (to A-) [recall that L(H) is the linear space spanned by the elements of H]. By lemma 1, we have

$$W$$
-algebra \Rightarrow W -isomorphic algebra.
 W -algebra \Rightarrow W -isomorphic algebra.

Obviously the following lemma follows

Lemma 11. Let W, W_1 , $W_2 \in \{D, T, TD, DT, E\}$. Then

- (i) If A is W_1 -algebra and W_2 -algebra then A is W_1W_2 -algebra.
- (ii) A is W-algebra iff A is WE-algebra iff A is EW-algebra.
- (iii) A is W^- -isomorphic algebra iff A is WT-isomorphic algebra.

Lemma 11 with lemma 1 follows

Lemma 12. For every algebra A one of the following can happen

- (i) A is W-algebra for every $W \in \{D, T, TD, E\}$.
- (ii) A is W-algebra for only one $W \in \{D, T, TD, E\}$.
- (iii) A is not W-algebra for every $W \in \{D, T, TD, E\}$.

Lemma 13. Every algebra A is TD-isomorphic algebra.

Proof. Since $C_l(A)^{TD} = C_r(A)$ and $C_r(A)$ is isomorphic to A the result follows. \square

Lemma 14. A is E-algebra iff A is isomorphic to A^- .

Proof. If A is E-algebra then $C_l(A) \equiv C_l(A)^E = C_l(A^-)$ which follows that there exist matrices N and M such that $RR_l(A) = N RR_l(A^-)M$. Since $I \in RR_l(A^-)$ we have $NM = A_a \in RR_l(A)$ and therefore

$$N^{-1} \mathbf{R} \mathbf{R}_{l}(\mathbf{A}) N = N^{-1} \mathbf{R} \mathbf{R}_{l}(\mathbf{A}) A_{a} M^{-1} = N^{-1} \mathbf{R} \mathbf{R}_{l}(\mathbf{A}) M^{-1} = \mathbf{R} \mathbf{R}_{l}(\mathbf{A}^{-}).$$

Now it can be easily show that $\phi(A_c) = N A_c N^{-1}$ is an isomorphism of $\mathbf{RR}_l(\mathbf{A})$ to $\mathbf{RR}_l(\mathbf{A}^-)$ which implies that \mathbf{A} and \mathbf{A}^- are isomorphic. If \mathbf{A} is isomorphic to \mathbf{A}^- , then by lemma 4 and 6 we have $\mathbf{C}_l(\mathbf{A}) = \mathbf{C}_l(\mathbf{A}^-) = \mathbf{C}_l(\mathbf{A})^E$. \square

Lemma 15. We have

- (i) A is D-algebra iff A^- is T-algebra.
- (ii) If A is D-algebra then A is isomorphic to A^- .

Proof. We have

$$C_l(A^-) = C_l(A)^{DTD} \equiv C_l(A)^{TD} = C_l(A^-)^{TDTTD} = C_l(A^-)^T$$

Since $C_l(A^-) \equiv C_l(A^-)^T$ then there exist nonsingular matrices K, N and M such that

$$\mathbf{C}_{l}(\mathbf{A}^{-})[K] = N \mathbf{C}_{l}(\mathbf{A}^{-})^{T} M.$$

Since $L\left(C_{l}\left(\mathbf{A}^{-}\right)[K]\right) = \mathbf{RR}_{l}\left(\mathbf{A}^{-}\right)$ and $L\left(NC_{l}\left(\mathbf{A}^{-}\right)^{T}M\right) = N\mathbf{RR}_{l}\left(\mathbf{A}^{-}\right)^{T}M$ we have

$$\mathbf{RR}_{l}(\mathbf{A}^{-}) = N \mathbf{RR}_{l}(\mathbf{A}^{-})^{T} M.$$

Since $I \in \mathbf{RR}_l$ (\mathbf{A}^-) then $N M \in \mathbf{RR}_l$ (\mathbf{A}^-). Let $N M = A_a$ for some $a \in \mathbf{A}^-$. Since N is nonsingular we have $M = N^{-1}A_a$ and then

$$RR_{l}(A^{-}) = N RR_{l}(A^{-})N^{-1}A_{a}$$

Since $A_a = N M$ is nonsingular and $RR(A^-)A_a^{-1} = RR_L(A^-)$ we have

$$\mathbf{RR}_{l}(\mathbf{A}^{-}) = N \mathbf{RR}_{l}(\mathbf{A}^{-})^{T} N^{-1}$$

Since $\mathbf{RR}_l(\mathbf{A}^-)^T$ is isomorphic to \mathbf{A} and $\mathbf{RR}(\mathbf{A}^-)$ is isomorphic to \mathbf{A}^- we have \mathbf{A} is isomorphic to \mathbf{A}^- . \square

The proofs of the following two lemmas are similar to the proof of lemma 14 and 15

Lemma 16. We have

- (i) A is DT-algebra iff A is TD-algebra iff A^- is DT-algebra.
- (ii) A is DT-algebra iff there exist a nonsingular matrix N such that $\mathbf{RR}_r(\mathbf{A}) = N \mathbf{RR}_l(\mathbf{A}) N^{-1}$.

<u>Lemma 17.</u> A is E-algebra iff A is E- isomorphic algebra iff A is T- isomorphic algebra iff A is isomorphic to A^- .

Lemma 18. If A_1 and A_2 are W-algebra (W-isomorphic algebra) then are the algebras $A_1 \times A_2$ and $A_1 \otimes A_2$.

Proof. By lemma 8 we have

$$C_{l}\left(\mathbf{A}_{1}\times\mathbf{A}_{2}\right)^{W}\equiv C_{l}\left(\mathbf{A}_{1}\right)^{W}\oplus C_{l}\left(\mathbf{A}_{2}\right)^{W}\equiv C_{l}\left(\mathbf{A}_{1}\right)\oplus C_{l}\left(\mathbf{A}_{2}\right)\equiv C_{l}\left(\mathbf{A}_{1}\times\mathbf{A}_{2}\right).$$
 and so for \otimes . \square

Let A be an algebra. Let A' be subalgebra of A. We define

$$U(\mathbf{A}') = \{ v \in F^n \mid a \in \mathbf{A}' - \{0\} : A_a v = 0 \}.$$

Define

$$P_{\mathbf{A}} = \{ a \in \mathbf{A} \mid (rad \, \mathbf{A}) \, a = 0 \}.$$

Obviously, $P_{\mathbf{A}}$ is subalgebra of \mathbf{A} .

Lemma 19. We have

$$U(P_{\mathbf{A}}) = U(\mathbf{A}).$$

Proof. Obviously, $U(P_A) \subseteq U(A)$. If $0 \neq v \in U(A)$ then there exist $a \in A$ such that $A_a v = 0$. If $(rad A) a \neq 0$ then we can find $b_1 \in rad A$ such that $b_1 a \neq 0$. If $(rad A) b_1 a \neq 0$ then we can find $b_2 \in rad A$ such that $b_2 b_1 a \neq 0$ and so on. Since $b_1, b_2, \dots \in rad A$ we have $b_t b_{t-1} \dots b_1 a \in (rad A)^t$ and since for t = index(rad A) we have $(rad A)^t = 0$ there exist r such that $b_r \dots b_1 a \neq 0$ and $(rad A) b_r \dots b_1 a = 0$. Therefore $b_r \dots b_1 a \in P_A$. Now since

$$A_{b_r \cdots b_1 a} v = (A_{b_r \cdots b_1}) (A_a v) = 0$$

we have $v \in U(P_A)$. \square

We say that **A** is *weakly* W-algebra if there exist nonsingular matrices N and M such that $NL(C_l(\mathbf{A})^W)M$ is an associative algebra with unity I.

W-algebra \Longrightarrow W-isomorphic algebra \Longrightarrow weakly W-algebra.

By lemma 9 every algebra is weakly W-algebra for $W \in \{T, TD, E\}$ and an algebra A is weakly D-algebra iff A is weakly DT-algebra.

We call A *D*-regular algebra if $U(A) = F^n$.

Lemma 20. If A is weakly D-algebra then A is D-regular.

Proof. Let $C_l(A)^D = \{B_1, \ldots, B_n\}$. Then

$$L(C_l(A)^D) = \{B_v = [A_{a_1}v \mid \cdots \mid A_{a_n}v] \mid v \in F^n\}.$$

If $U(\mathbf{A}) = F^n$ then for every v there exist $a \in \mathbf{A}$ such that $A_a v = 0$. If $a = \sum_{i=1}^n \lambda_i a_i$ then $A_a v = \sum_{i=1}^n \lambda_i A_{a_i} v = 0$ which implies that B_v is singular matrix for every v. Therefore for every non-singular matrices N and M the set $NL(\mathbf{B}(\mathbf{A}))M$ cannot contain the identity matrix. Hence \mathbf{A} is not weakly D-algebra. \square

It follows from the proof of lemma 20 that

<u>Lemma 21</u>. The algebra **A** is not *D*-regular if and only if $L\left(\mathbf{C}_{l}\left(\mathbf{A}\right)^{D}\right)$ contains no nonsingular element.

The following follows from the above results

$$D$$
-algebra \Rightarrow D -isomorphic algebra \Rightarrow weakly D -algebra \Rightarrow D -regular. (3)

<u>Lemma 22</u>. If A_1 is not D-regular then for every algebra A_2 the algebras $A_1 \times A_2$ and $A_1 \otimes A_2$ are not D-regular.

Proof. Since $C_l(A_1 \times A_2)^D \equiv C_l(A_1)^D \oplus C_l(A_2)^D$ and $C_l(A_1 \otimes A_2)^D = C_l(A_1)^D \otimes C_l(A_2)^D$ then $L(C_l(A_1 \times A_2)^D)$ and $L(C_l(A_1 \otimes A_2)^D)$ contains no nonsingular matrix. \square

4. COMMUTATIVE ALGEBRAS

In this section we study the properties of commutative algebras. By lemma 10 we have

Theorem 1. Every commutative algebra is E-algebra.

Therefore by lemma 12 we have

Theorem 2. A commutative algebra A is DT-algebra iff A is TD-algebra iff A is T-algebra iff A is

D -algebra.

This lemma shows that it is enough to investigate the conditions where a commutative algebra is D-algebra. In this section we prove the following

Theorem 3. A commutative local algebra is D-algebra iff

$$P_{\mathbf{A}} = d\mathbf{A}$$

where $d \in \mathbf{A}$.

Since by Artin theorem every commutative algebra is a direct sum of local commutative algebras the commutative D-algebras is completely classified.

Lemma 23. A commutative algebra A is D-algebra if and only if A is D-regular.

Proof. If A is D-algebra then by (3) A is D-regular. Assume that A is not weak. Then there exist $v \in F^n$ such that

$$B_{\nu} = [A_{a_1} \nu \mid \cdots \mid A_{a_n} \nu]$$

is nonsingular. Consider the set

$$H = \{A_{a_1}B_{\nu}, A_{a_2}B_{\nu}, \dots, A_{a_n}B_{\nu}\} = C_l(A)B_{\nu}.$$

Since $A_{a_i}B_{\nu}=[A_{a_ia_1}\nu\mid \cdots\mid A_{a_ia_n}\nu]$ and $A_{a_ia_i}=A_{a_ia_i}$ we have $H^D=H$. Hence

$$(\mathbf{C}_l(\mathbf{A})B_{\mathbf{v}})^D = \mathbf{C}_l(\mathbf{A})B_{\mathbf{v}}$$

By lemma 1 and since B_{ν} is nonsingular we obtain

$$\mathbf{C}_{l}(\mathbf{A}) = (\mathbf{C}_{l}(\mathbf{A})^{D}[B_{v}^{T}])B_{v}^{-1} \equiv \mathbf{C}_{l}(\mathbf{A})^{D}. \square$$

<u>Lemma 24.</u> Let A_1 and A_2 be commutative algebras. Then $A_1 \otimes A_2$ is D-algebra iff $A_1 \oplus A_2$ is D-algebra iff A_1 and A_2 are D-algebra.

Proof. If $A_1 \otimes A_2$ is D-algebra then $A_1 \otimes A_2$ is D- regular. Then by lemma 22 A_1 and A_2 are D-regular and therefore by lemma 23 they are D-algebra. \square

<u>Lemma 25.</u> A local commutative algebra A is D-algebra if and only if $P_A = a$ A for some $a \in A$.

Proof. Let $P_A = a$ A. If $P_A = (0)$ then $U(P_A) = \emptyset$ and by lemma 23, A is D-algebra.

Let $0 \neq b \in P_A = a$ A then b = ca. Since $a, b \neq 0$ are in P_A we must have c not in rad A and therefore c is nonsingular. Hence A_c is nonsingular matrix and $A_b v = A_c A_a v = 0$ is equivalent to

 $A_a v = 0$. Therefore

$$U(P_{\mathbf{A}}) = \{ v \mid A_a v = 0 \}.$$

Since $a \neq 0$ the matrix $A_a \neq 0$ and therefore $U(P_A) \neq F^n$. This follows that A is D-algebra.

Let A be a commutative local D-algebra. Let $a_1 \in P_A$. Then $a_1 A \subseteq P_A$. Now let $a_2 \in P_A - a_1 A$. Then $a_2 A \subseteq P_A$. If $a_1 A \cap a_2 A \neq (0)$. Then there exist u_1 and u_2 such that $a_1 u_1 = a_2 u_2$. If u_2 is singular then $u_2 \in rad$ A and $a_1 u_1 = 0 = a_2 u_2$. If u_2 is nonsingular then $a_2 = a_1 u_2^{-1} u_1$ and $a_2 \in a_1 A$. A contradiction. Therefore there exist $a_1, a_2, \ldots, a_w \in P_A$ such that (Induction hypothesis)

$$P_{\mathbf{A}} = a_1 \mathbf{A} \oplus a_2 \mathbf{A} \oplus \cdots \oplus a_{\mathbf{w}} \mathbf{A}.$$

(direct sum of subspaces). Consider the following base of A

$$A = \{u_1, \ldots, u_s, t_1, \ldots, t_r, a_1u_1, \ldots, a_1u_s, \ldots, a_wu_1, \ldots, a_wu_s\}$$
 where $u_1, \ldots, u_s \in A$ are nonsingular elements $s = dim (A/rad A), \{t_1, \ldots, t_r\}$ is a base for $(rad A) - P_A$ and $\{a_1u_1, \ldots, a_wu_s\}$ is a base for P_A . Let $\phi: A \to A/rad A$ be a canonical homomorphism. Since A is local commutative algebra we have $A/rad A$ is a field. Let $\phi(u_i) = d_i \in A/rad A$. If

$$d_i d_j = \sum_{k=1}^s \gamma_{i,j,k} d_k \tag{4}$$

then because

$$\phi(u_i u_j) = \phi(u_i)\phi(u_j) = d_i d_j = \sum_{k=1}^{s} \gamma_{i,j,k} d_k = \phi(\sum_{k=1}^{s} \gamma_{i,j,k} u_k) = \sum_{k=1}^{s} \gamma_{i,j,k} d_k$$

we have

$$u_i u_j = \sum_{k=1}^{s} \gamma_{i,j,k} u_k + h$$

where $h \in rad A$. Therefore

$$u_i(a_l u_j) = a_l \sum_{k=1}^{s} \gamma_{i,j,k} u_k + a_l h = \sum_{k=1}^{s} \gamma_{i,j,k} a_l u_k.$$

This with (4) implies

$$A_{a_l u_j} = \begin{bmatrix} \tilde{A}_{d_j} & 0_{s \times s} & \cdots & 0_{s \times s} \\ 0 & & & & \end{bmatrix}$$

where $\mathbf{C}_l\left(\mathbf{A}/rad\ \mathbf{A}\ , \{d_1,\ldots,d_s\}\right) = \{\tilde{A}_{d_1},\ldots,\tilde{A}_{d_s}\}$

Let $v = (v_0, v_1, v_2, v_3)$ be any vector of length n where v_0 is of length $n - dim \ rad \ A$ and v_1, v_2 are of length s. Then

$$A_{\sum \lambda_i a_1 u_i + \sum \delta_i a_2 u_i} v = \tilde{A}_{\sum \lambda_i d_i} v_1 + \tilde{A}_{\sum \delta_i d_i} v_2.$$

We shall show that for any v_1 , $v_2 \in F^s$ there exist \tilde{A}_{f_1} , $\tilde{A}_{f_2} \in C_l(\mathbf{A}/rad\ \mathbf{A})$ not both zero such that $\tilde{A}_{f_1}v_1 + \tilde{A}_{f_2}v_2 = 0$. This follows that any $v \in F^n$ is in $U(\mathbf{A})$ which complete the proof.

If $v_1 = 0$ or $v_2 = 0$ then this result is trivial. Assume $v_1, v_2 \neq 0$. Consider the set

$$H = \{\tilde{A}_a v_1 \mid a \in \mathbf{A}/rad \mathbf{A}\}\$$

If $\tilde{A}_{d_1}v$,..., $\tilde{A}_{d_s}v\in H$ are linearly dependent then there exist $(\psi_1,\ldots,\psi_s)\in F^s$ such that $\sum_{i=1}^s \psi_i \tilde{A}_{d_i}v=0$ which implies that $\tilde{A}_d v=0$ for $d=\sum_{i=1}^n \psi_i d_i$ and \tilde{A}_d is singular. Since \mathbf{A}/rad \mathbf{A} is a field we have a contradiction. Therefore $H=F^s$ and therefore there exist $d\in \mathbf{A}/rad$ \mathbf{A} such that $\tilde{A}_d v_1=-v_2$. Now this implies $\tilde{A}_d v_1+\tilde{A}_1 v_2=0$. \square

We now give some examples of commutative D-algebras.

Example 1 . Polynomial algebras

The polynomial algebra is the algebra $F(p) = F[\alpha]/(p(\alpha))$ where $p(\alpha) \in F[\alpha]$. It can be easily shown that

$$C_l(F[\alpha]/(p(\alpha))) = \{C_p^0, C_p^1, \dots, C_p^{deg(p-1)}\}.$$

where C_p is the companion matrix of p. If $p(\alpha) = p_1(\alpha)^{d_1} \cdots p_r(\alpha)^{d_r}$ where $p_1(\alpha), \ldots, p_r(\alpha)$ are distinct irreducible polynomials. Then

$$F(p) = F(p_1^{d_1}) \times \cdots \times F(p_r^{d_r}). \tag{5}$$

and it is well known that

$$F(p_1^{d_1}) = F(p_1) \otimes F(\alpha^{d_1}). \tag{6}$$

This algebra is also satisfy

Corollary 1. The algebra F(p) is D-algebra.

Proof. By (5) and (6) and lemma 24 it is enough to prove that $A = F(\alpha^d)$ is *D*-algebra. Since $P_A = \alpha^{d-1}A$ by lemma 25 the result follows. \square

Example 2.

Let $\{1, p_1, p_2, d\}$ be a base for the algebra A that satisfies: 1 is the unit element,

$$p_1p_2 = p_2p_1 = d$$
, $p_1^2 = p_2^2 = d^2 = 0$.

Then A is local commutative algebra and for $y = y_1 + y_2p_1 + y_3p_2 + y_4d$ we have

$$A_{y} = \begin{bmatrix} y_{1} & y_{2} & y_{3} & y_{4} \\ 0 & y_{1} & 0 & y_{3} \\ 0 & 0 & y_{1} & y_{2} \\ 0 & 0 & 0 & y_{1} \end{bmatrix}$$

Since $P_{\mathbf{A}} = d \mathbf{A}$ the algebra \mathbf{A} is D-algebra. \square

Lemma 26. If A is commutative local D-algebra and k = index (rad A) is the least integer such that $(rad A)^k = 0$ then

$$P_{\mathbf{A}} = (rad \mathbf{A})^{k-1}.$$

Proof. Since for every $a \in (rad \ A)^{k-1}$ we have $a \ rad \ A = 0$ then $(rad \ A)^{k-1} \subseteq P_A$. If A is D-algebra then $P_A = d \ A$ for some $d \in P_A$.

If $e \in (rad \ A)^{k-1}$ then $e = d \ u$ for some nonsingular u and then $P_A = d \ A \subseteq (rad \ A)^{k-1}$. \square

Notice that in the end of the proof of lemma 23 we have the exact connection between $C_l(A)$ and $C_l(A)^D$ for commutative D-algebras. The exact connection between $C_l(A)$ and $C_l(A)^{DT}$, $C_l(A)^T$ · · · can be obtain from this by using lemma 1.

5. SEMISIMPLE ALGEBRAS

We shall begin to investigate the case when A is simple algebra. If A is a simple algebra then it is well known that

$$A = M_n \otimes P$$

where M_n is the total matrix algebra of order n and P is a division algebra. By lemma 14 we have

Lemma 27. The simple algebra $M_n \otimes P$ is E-algebra if and only if P is isomorphic to P^- .

Now we shall use Noether-Skolem theorem, [H], to prove

Lemma 28. Any simple algebra is TD-algebra.

Proof. Since $\mathbf{RR}_l(\mathbf{A})$ is isomorphic to $\mathbf{RR}_r(\mathbf{A})$ and the unit element in both of them coincide we have by Noether-Skolem theorem $\mathbf{RR}_r(\mathbf{A}) = N^{-1}\mathbf{RR}_l(\mathbf{A})N$ which follows that $\mathbf{C}_l(\mathbf{A})^{TD} = N^{-1}\mathbf{C}_l(\mathbf{A})N[M]$ for some nonsingular matrix M. \square

Since every semisimple algebra A is

$$\mathbf{A} = \underset{i=1}{\overset{t}{\times}} \mathbf{M}_{n_i} \otimes \mathbf{P}_i$$

where P_i , $i=1,\ldots,t$ are division algebras we have

Theorem 4. Any semisimple algebra is *TD* -algebra.

Since

$$\mathbf{A}^-$$
 isomorphic to $\underset{i=1}{\overset{t}{\times}} \mathbf{M}_{n_i}^- \otimes \mathbf{P}_i^-$ isomorphic to $\underset{i=1}{\overset{t}{\times}} \mathbf{M}_{n_i} \otimes \mathbf{P}_i^-$

we have

Theorem 5. A semisimple algebra $\underset{i=1}{\overset{t}{\times}} \mathbf{M}_{n_i} \otimes \mathbf{P}_i$ is *E*-algebra iff there exist a permutation Φ on $\{1,\ldots,t\}$ such that: For $i=1,\ldots,t$ we have

- (i) $n_i = n_{\Phi(i)}$.
- (ii) P_i is isomorphic to $P_{\Phi(i)}^-$.

By lemma 12 we have

Theorem 6. A semisimple algebra is D - algebra iff A is E -algebra.

By lemma 11 we have

Theorem 7. Every semisimple algebra is T-algebra and D-algebra.

6. APPLICATIONS

In this section we shall give some applications of the results in sections 4 and 5.

Let $B = \{B_1, \ldots, B_k\}$ be a set of $n \times m$ matrices. In a similar manner as in definitions 1 and 2 we can define B^T , B^D , NBM[K]. For C a k' set of $n' \times m'$ matrices we also can define, as in definition 3, $B \oplus C$ and $B \otimes C$. Then all the equations in lemma 1 and 2 are true for these extended definitions.

The multiplicative complexity of B is the minimal integer t such that there exist matrices L_1, L_2 and L_3 of order $t \times k$, $t \times n$ and $t \times m$, respectively, where

$$\begin{bmatrix} \mathbf{x}^T B_1 \mathbf{y} \\ \cdot \\ \cdot \\ \mathbf{x}^T B_k \mathbf{y} \end{bmatrix} = L_1^T (L_2 \mathbf{x} * L_3 \mathbf{y}).$$

where for $u = (u_1, \ldots, u_t)^T$, $v = (v_1, \ldots, v_t)$ the componentwise product u * v is $(u_1 v_1, \ldots, u_t v_t)^T$. The triple (L_1, L_2, L_3) is called a *minimal bilinear algorithm* for B and the multiplicative complexity is denoted by $\delta(B)$.

It is known that if (L_1, L_2, L_3) is a bilinear algorithm for B then (L_1, L_3, L_2) and (L_2, L_1, L_3) is minimal bilinear algorithm for B^T and B^D respectively. If N, M and K are nonsingular matrices of order $n \times n$, $m \times m$ and $k \times k$, respectively, then (L_1K^T, L_2N, L_3M) is a minimal bilinear algorithm for NBM[K]. Therefore

$$\delta(B) = \delta(B^T) = \delta(B^D) = \delta(NBM[K]). \tag{7}$$

For algebra A the multiplicative complexity of A is

$$\delta(\mathbf{A}) = \delta(\mathbf{B}(\mathbf{A})).$$

The applied meaning of the multiplicative complexity of B is the number of multiplications and divisions needed to compute $\mathbf{x}^T B_1 \mathbf{y}, \dots, \mathbf{x}^T B_k \mathbf{y}$ by a program. Therefore $\delta(\mathbf{A})$ is the number of multiplications and divisions needed to compute the multiplication of two elements in the algebra \mathbf{A} .

The multiplicative complexity of computing $\mathbf{x}^T H_1 \mathbf{y}, \dots, \mathbf{x}^T H_l \mathbf{y}$ where $\mathbf{x} = (x_1, \dots, x_r)^T$, $\mathbf{y} = (y_1, \dots, y_s)^T$ are vector of elements in \mathbf{A} is

$$\delta(H \otimes \mathbf{B}(\mathbf{A}))$$

where $H = \{H_1, ..., H_l\}.$

For these problems we have

Theorem 8.

(i) For D-algebras

$$\delta(H \otimes \mathbf{B}(\mathbf{A})) = \delta(H^D \otimes \mathbf{B}(\mathbf{A})).$$

(ii) For TD -algebras

$$\delta(H \otimes \mathbf{B}(\mathbf{A})) = \delta(H^{DT} \otimes \mathbf{B}(\mathbf{A})).$$

(iii) For T-algebras

$$\delta(H \otimes \mathbf{B}(\mathbf{A})) = \delta(H^E \otimes \mathbf{B}(\mathbf{A})).$$

Proof . If A is D-algebra then

$$(H \otimes \mathbf{B}(\mathbf{A}))^D = H^D \otimes \mathbf{B}(\mathbf{A})^D = H^D \otimes \mathbf{B}(\mathbf{A}).$$

Therefore

$$\delta(H \otimes \mathbf{B}(\mathbf{A})) = \delta(H^D \otimes \mathbf{B}(\mathbf{A})).$$

If **A** is TD-algebra then $\delta(H \otimes \mathbf{B}(\mathbf{A})) = \delta(H^D \otimes \mathbf{B}(\mathbf{A}^-))\delta(H^{DT} \otimes \mathbf{B}(\mathbf{A})) = \delta(H^D \otimes \mathbf{B}(\mathbf{A}))$. (ii) follows in a similar manner. \square

One application of this theorem is

Corollary 2. For *D*-algebras and *TD*-algebras the multiplicative complexity of computing $x_1y_1 + \cdots + x_ny_n$ and $x_1y_1, x_2y_1, \ldots, x_ny_n$ where $x_i, y_i \in A$ are equal.

Proof. The complexity of $x_1y_1 + \cdots + x_ny_n$ is $\delta(I_n \otimes B(A))$ and the complexity of $x_1y_1, x_2y_1, \ldots, x_ny$ where $x_i, y_i \in A$ is $\delta(I_n^D \otimes B(A))$ and by Theorem 1 they are equals. \square

The reader can find more application in [AW], [B3], [B4], [Gr2] and [HM].

REFERENCES

- [A] A. A. Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol XXIV, (1939).
- [ASt] A. Alder, V. Strassen, On the algorithmic complexity of associative algebras, *Theoret. Compute. Sci.* 15 (1981):201-211.
- [AW] L. Auslander, S. Winograd The multiplicative complexity of certain semilinear systems defined by polynomials, *Adv. in App. Math.* 1 (1980), 157-299.

- [B1] N. H. Bshouty, A lower bound for matrix multiplication. , Proceedings 29th Annual Symposium on Foundations of Computer Science, (1988).
- [B2] N. H. Bshouty, Multiplicative complexity of direct sum of quadratic systems.
- [B3] N. H. Bshouty, On the algorithmic complexity of associative algebras over finite fields. (In preparation).
- [B4] N. H. Bshouty, Complexity of bilinear forms over associative algebras.
- [BD1] R.W. Brockett, D. Dobkin, On the Optimal Evaluation of a set of Bilinear Forms, *Linear Algebra and Its Applications* **19** (1978), 207-235.
- [FZ] C.M. Feduccia, Y. Zalcstein, Algebras having linear multiplicative complexity, J. ACM 24 (1977), 311-331.
- [Gan] F. R. Gantmacher, The theory of matrices Vo. 1,2 chelsea, New York 1959.
- [Gr2] H. F. Groote, On varieties of optimal algorithms for the computation of bilinear mapping I.

 The isotropy group of a bilinear mapping, *Theoretical Computer Science* 7 (1978), 1-24.
- [Gr3] H. F. Groote, On varieties of optimal algorithms for the computation of bilinear mapping II. Optimal algorithms for 2×2-Matrix multiplication, *Theoretical Computer Science* 7 (1978), 127-148.
- [Gr5] H. F. Groote, Characterization of division algebras of minimal rank and the structure of their algorithm varieties, SIAM J. Comput. 12 (1983), 101-117.
- [Gr6] H. G. Groote, Lectures on the complexity of bilinear problems. LN Comput. Sci. 245, Springer, Berlin 1987.
- [H] I. N. Herstein, Noncommutative Rings, Carus Math. Monographs, 15, Mathematical Associations of America, Washington, DC, 1973.
- [HM] J. Hopcroft, J. Munsinski, Duality applied to the complexity of matrix multiplication, SIAM J. Comput. 2 (1973), 159-173.
- [HMo] J. Heintz, J. Morgenstern, On associative algebras of minimal rank, *Proc. of the AAECC-2 Conference (Grenoble 1984)*.

[W4] S. Winograd, Some Bilinear Forms Whose Multiplicative Complexity Depends on the Field
 Constants, Math. System Theory 10 (1976/77), 169-180.