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2. PRELIMINARY RESULTS
In this section we give some preliminary results

Definition 1 . LetB = {By,...,B,} be a set of n xn matrices. We define the T—dual and D ~ dual

sets BT and BP of B as follows:

BT=(BT,....BTY , B ={(C,....C,),

Here B/ is the transpose of B; and B denotes the set of # xn matrices that satisfy

C/=Bl,i,j=1,...,n,

where B/ is the j-th column of B, i.e

C,-=[Ble,-| e IB,,e‘-].

where ¢; is the i-th column unit vector of order n.

We also define B = B™7 jie BE = (D,,...,D,} where

eiTBl
D,‘ =

elTBﬂ.
Definition 2 . Let B = (B, ... ,B,} be a set of n xn matrices. Let M ,N and K = (K;;)benxn
matrices. We define

NBM=(NBM,... NB,M}, BIK]={(3K1;Bj...., XK. B;].
j=1 j=1

Definition 3 . Let B = {By,...,B,) and C = {Cy,...,C,} be sets of nxn and m Xm matrices,

respectively. We define

BOC={(B,...,B,,C.,....Ch)

where

- Bi Onxm
B =1,

mXn mxXm

and O, is the zero s X7 matrix.

We also define

BOC={(B,®Cyla=1,...,n,b=1,...,m).



where @ is the Kronecker product of matrices.

Lemma 1. Let Ay, Ajand A be sets of ny, ny and n, nyxny, nyxn, and n Xn marices, respectively.

Then

(i) ATT=A,ADD=A,AEE=A,AE=ATDT:ADTD.

(i) A[KIJ1=A[JK],(NAM)[K]=N(A[K]M.

(i) (NAM) =MTATNT , (A[K1)Y =AT[K]

(v) (NAY =NAP, (AMY =AP [MT],(A[K])P = (APKT).

) (A®A)" =ATOAT, (A,04,)° =AP®AD.

i) (A1@A,) =AT®AT, (4,84, =A? @A},

i) A (K10 Az = (A10 Az)[diag (K ,1,,)] ,NAM ® Ay = diag (N ,I,,,)(A1® Ay)diag (M .1, ).

(iii) A1[K1QA,= (A1®A2)[K®In2] ,NAMBA,= (N®1,,)(A1®A2)(I, BM)

where
B, 0
] B,)= .
diag (B1.B2)=| o p_
Proof . In (i) the first three equations are trivial. Let A = {(a;, dijle, e
A={(ayijlijr... (@) )ij} where the indices i and j are for the rows and the columns, respec-

tively. Then AP = {(ak;;)ix); and AT = {Cai,; )j.i k. Using those properties of the indices the fourth
equation in (i) follows. (ii) and (iii) are trivial. To prove (iv) observe that if M = (m; ;) and

A={By...,By} ={(@;;);}k then

(NAY ={(INBOL - INB®NP = (INBP | - INBP]); =N ([Bf| -+ |BO]); =N AP,
(A M)D = {(Zak,i.l m; )i,j}kD = {(Zak,i,l m ; )i,lc}j = [Zml,j (ak,.’,r )l',k}j =AP [MT],
i=1 1=1 I=1
and
APKT = (APKTYP = (A [K1)P.
(v) Follows immediately from definition 3. The first equation in (vi) is well known and the

second follows from
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(BI@BZ)(I'HI G- =B{‘) @Béi)
where B, is n xn matrix. (vii) is trivial.
The second property in (viii) follows from the following well known equation

NiM{®NyMy=(N{®N)(M O M,).
and the first equation follows from

AlIW1@ A= (ATKT® A2 ) = (AP @ A2)(KT®1, ) = (A1842)[K81,] O

Definition 4 . For two n-sets of nxn matrices B and C we write B=C, B is equivalent to C, if

there exist nonsingular matrices N, M and K such that

B=N(C[K])M.
Obviously this relation is an equivalence relation.
Lemma 2. LetAy,...,A;,By,...,B; be sets of matrices. Then
(i) IfA;=B;then A? =B? and AT=BT.
(i) B1® - - ®By=By® - "® By and B1® - - ®@By=Byy® - - @ By, for any permu-

tation ¢ on (1, ... ,k].

(lll) If AiEB,', i=1,...,k then A1® @AkEBIQ re @Bk and

A1® - ®A=B,® - @B,

Proof . (i) follows by lemma 1. Let A and B be sets of n and m, n xn and m xm matrices, respec-

tively. Then it can be easily shown that

1 Jaonl, [ 7] -en

where 1, is the identity matrix of order n.

It is known [MN] that

Knn(A®B)K L [Kn,]=B®A
where K,,, , = E;;l ( ef@ I, ® e; ). This implies (ii). (iii ) follows from lemma 1. O



-5.

3. REGULAR REPRESENTATION OF ALGEBRAS

Let A be an associative algebra with unit element 1 and {ay, . . . ,a,} be a basic of the algebra

A. Let

n
@ a; =3 Yijx %
k=1
withY;je € F,i,j,k=1,...,n. Thenforx =Y xa andy =Y, y; a; we have
n n n nn
xy=|3xa Yyiai| =23 ZZYi,j,kxi}’j [
i=1 = k=1| i=1j=1
Leta;y = ¥ 6, a; and define A, =(0; ) an n Xn square matrix. Then it can be easily shown that
Oix = XY jxyj and RR; (A) = {4, | a € A} form an algebra over F that is isomorphic to A under
the corresponding a - A4, , {A,,l, - ,Aa"} is a base for the algebra RR; (A), Ay =Al,, A, A, = Ay,
Ag+Ap =Aupp, MA, = Ay, for ke F and if a b =1 then A = A,. The algebra RR, (A) is called
the left regular representation of A. The left regular representation RR; (A) of A is depending on the
chooses bases B = {ay, . .. ,a,}. when we want to emphasize this dependency we write RR,; (A,B ).
Let xa = Zj":l 8jia; and define A*=(§;;) an nxn square matrix. Then
RR, (A)= (A | ae A} form an algebra over F that is isomorphic to A under the corresponding
a —A®. The algebra RR, (A) is called the right regular representation of A.
We define

B(A)={By,...,B,)

where for x=(x1, ..., x,)7, y=(y1, . .., y.)" we have

x'B;y= 2 XYk % V).

i=l j=1
i.e. the i~th coefficient of the product x y.

Let C,(A)={4,,...,A,) and C,(A)= {A*', ... ,A™). We now give the connection
between B(A), C; (A) and C, (A).

Lemma 3 . We have

C (A =B(A),C, (A =B(A),C, (A)=C, (A)P.



Proof . We have

n n n )
4Gy =q {Zy/'a/} = [Z%,jﬂj @
i k=l

and therefore

n
EYl,j,l ¥j
j=l

zYnj,lyj

Lj=1

The product of x and y is

n n n
xy =3 X X Vjk%Yj

k=1{ i=l j=1

thus x" By =Y, X e Y X Yy or

Yk
Bk =
’Yn,l,k
and from (1) we have
Y1
A,,j =
Yn,jit
and therefore B, = [A; e | -+ - | A, e ).

j=t )

n
_Zlyl‘j.n b7
P

n

EYn,j,n Yj

j=

n

} a =Y (x'Byy)a
k=1

Yink

Yn,n *

Y.jn

Ynjm ]

O

The second equalition can be proved in the same manner. Now C; (A)® =B(A) = C, (A ) fol-

lows the third equalition. [

Obviously, C; (A), C, (A) , RR;(A) , RR,(A) and B(A) is depending on the chooses bases

B={ay,...,a,}). When we want to emphasis this dependency we write C;(A,B), C,(A,B) ,

RR;(A,B),RR,(A,B)and B(A,B).

Lemma 4 . Tet A and A’ be algebras. If A is isomorphic to A’ then there exist bases
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A={a,..., a,}and A" ={a/,...,a,’} for A and A’, respectively, such that

Ci(A,A)=C,(A",A"), B(A,A)=B(A",A").
Proof . Let ¢:A—A’ be an isomorphism. Let A = {a,,...,a,} be a base for A. Then
A’={¢(a1),...,0(a,)} is a base for A’ and for x =Y xa;, y = Y, yiay, x’ = Y, %0 (a;) and
¥ =2 %6(a;) we have

xy =Y ("B y)a
and

X'y’ =0(xy)=Y(xX'B;y)o(a;).
This implies that B(A,A)=B(A’,A"). By lemma 3 the first equalition follows. [

Lemma 5. [FZ].LetA = {ay,...,a,} and B = {b;,...,b,) be bases for the algebra A. Then

C;(A,A)=C/(A,B), B(A,A)=B(A,B).

To find the exact connection between C; (A,A ) and C; (A,B ) we prove the following

Lemma 6. Let A and B be as in lemma 5. If B = A [M ] then

B(A,B)=MB(A A (M"Y IMT, C;(A,B)=MC,;(AA)IMIM™.

and

C,(A,By= (MTYIC, (A, A)(MIMT.

Proof . Let M = (m; ;). Then b; = ¥% m; ja; and for x = 3.%.x; b,y = Y. y;b; we have
n n n n n n n n n T T T
xy=(Xx Xm;a)( Xy mija)=(X(Tnm;)a WX (Xyimij)aj) =3 (M"x)'B; (M y)a;
=1 j=1 =1 j=1 == j=l i=l j=1
=3 x" (MB;M")ya,.
=

where B(A,A)= (B;}; ., . n-

n
Let M= ("i,j ). Then a; = Zn,-,,- bj and
j=1

n n n n
xy =YX (MB;M")yY n ;b =Y x" (M (X mijBi )M )yb,;.
i=l j=1 j=1 i=1

This implies that

B(A,B)=MB(AA)[(MTYy'1MT.
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By lemma 3 and 1 we obtain the other equations. [J
Lemma 7. Let A and A’ be algebras. If A is isomorphic to A’ then there exist a nonsingular matrix M

such that

RR; (A)=M RR, (A" )M,

Also for B = A [M ] where A and B are as in lemma 5

RR;(A,B)=MRR; (A,A)M".
Proof . Observing that L (M C, (A,A)})[MIM)=M RR(A,A)M™, [L(H) is the linear space

spanned by the elements of H] and by lemma 4 and 6 the result follows . [1

Lemma 8 . Let A; and A, be algebras. Then

Ci(A1xA2)=C; (A)O C, (Az), B(A;xA2)=B(A)®B(A,),
Ci(A18A2)=C;(A)BC;(Ay), B(A;BA;)=B(A;)BB(A,).

Proof . The connection on C; is well known from the theory of regular matrix representation of alge-

bras. We have by lemma 1, 2 and 3

B(A1XAz) =C; (A1xA2)° =(Cr (A1) C; (A2))° = C; (A1)’ O Cr(A)° =B(A)OB(A).
andsofor®. O

Let A be an algebra. The reciprocal algebra A~ of A is an algebra with elements of A and the

multiplication * such that a * b = b a. We have

Lemma 9. Let {ay,..., a,} be a base for A. Then

B(A)=B(A), C;(A)=C(AF,C, (A7) =C, (A).

and

C, (AT)=C (A,
Proof . We have

k=1 | i=1j=1

x¥y=yx= Z[ZZY.‘.,’,M])’;’J a

=S Bix)a = 3 (X BIY)ay. @
k=1 k=1

Therefore B(A™) = B(A)”. By lemma 1, 2 and 3 we have

Ci(A)=B(A)? =B(A)® =C, (AP =C, (A)E.



The rest follows in a similar manner. [
Observe that when A is commutative algebra then A~ = A and therefore we have
Lemma 10 . We have C; (A) = C; (A)? iff C, (A) = C, (A)T iff A is commutative algebra.

Proof . If A is commutative algebra then by lemma 9 we have C; (A)f = C, (A7) =C;(A). If
Ci(A)=C,(A) then B(A)=B(A) and by (2) we obtain that x y =y x for every x and y in

A. 0O
Definition 5 . Let A be an algebra. For W e {D,T ,DT,TD ,E) we say that A is W -algebra (W™-

algebra) if

C (AW =C (A), (€ (A=Ci(A)).
We say that A is W-isomorphic algebra ( W -isomorphic algebra) if there exist matrices N and M

such that NL (C; (AW )M is an algebra that is isomorphic to A (to A7) [recall that L (H ) is the

linear space spanned by the elements of H]. By lemma 1, we have

W —algebra => W—isomorphic algebra.
W™-algebra => W™—isomorphic algebra.

Obviously the following lemma follows
Lemma 11. Let W , W, ,W,e {D,T,TD ,DT ,E}. Then
(1)  If A is Wy-algebra and W,-algebra then A is W, W ,-algebra.
()  Ais W-algebra iff A is WE -algebra iff A is EW -algebra.
(i) A is W-isomorphic algebra iff A is WT -isomorphic algebra.
Lemma 11 with lemma 1 follows
Lemma 12 . For every algebra A one of the following can happen
(i)  Ais W-algebra for every W e {D ,T,TD ,E }.
(i) A is W-algebra for only one W e (D ,T,TD ,E ).
(#i) A is not W-algebra for every We {D ,T ,TD ,E }.

Lemma 13 . Every algebra A is 7D -isomorphic algebra.
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Proof . Since C; (A)® = C, (A) and C, (A) is isomorphic to A the result follows . [J
Lemma 14 . A is E-algebra iff A is isomorphic to A™.
Proof . If A is E -algebra then C; (A)=C, (A)¥ = C; (A) which follows that there exist matrices N

and M such that RR,; (A) =N RR; (A")M. Since I € RR; (A™) we have N M = A, € RR;(A) and

therefore

N7'RR;(A)N =N"'RR;(A)A, M~ = N"'RR,(A)M~! = RR, (A7).
Now it can be easily show that ¢ (A, )=N A, N7! is an isomorphism of RR;(A) to RR;(A™) which

implies that A and A~ are isomorphic. If A is isomorphic to A~, then by lemma 4 and 6 we have

C (A)=C,(A)=C(A)*. O

Lemma 15. We have

(i)  Ais D-algebra iff A™ is T-algebra.

(i) If A is D-algebra then A is isomorphic to A™.
Proof . We have

Ci(A)=C (AP =C, (A)P =C, (AP =, (A7) .

Since C; (A™)=C,; (A™)T then there exist nonsingular matrices X ,N and M such that

Ci(A)[K]1=NC (A M.
Since L (C; (A7)[K])=RR,; (A7) and L (N C; (A")"M )= NRR, (A")" M we have

RR; (A7) =NRR; (A") M.
Since I € RR; (A7) then N M € RR, (A™). Let N M =A, for some a € A™. Since N is nonsingular we
have M =N"1A, and then
RR, (A")=NRR, (A")N14,
Since A, = N M is nonsingular and RR(A™)A; ! = RR, (A”) we have
RR, (A") =N RR, (A")T N7,
Since RR;(A™) is isomorphic to A and RR (A™) is isomorphic to A~ we have A is isomorphic

toA~. O

The proofs of the following two lemmas are similar to the proof of lemma 14 and 15
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Lemma 16 . We have

(©) A is DT -algebra iff A is TD -algebra iff A~ is DT -algebra,

(#) A is DT -algebra iff there exist a nonsingular matrix N such that RR, (A)=NRR; (A)N7,
Lemma 17 . A is E -algebra iff A is E- isomorphic algebra iff A is T- isomorphic algebra iff A is iso-
morphic to A™,

Lemma 18 . If A, and A, are W-algebra (W -isomorphic algebra) then are the algebras A; XA, and
A B A,

Proof . By lemma 8 we have

Ci (A1xA)" =C (A1) O C; (A2)Y =C; (A))O C, (A)=C; (A XAy).
and so for ®. O

Let A be an algebra. Let A’ be subalgebra of A. We define

U(A)={veF"| ae A-{0):4,v =0).
Define

Py={aeAl(radA)a =0).
Obviously, P, is subalgebra of A.

Lemma 19 . We have

U(Ppy)=U(A).
Proof . Obviously, U (P,)cU (A). If 0#v e U (A) then there exist a € A such that A, v=01If
(rad A)a #0 then we can find by € rad A such that bya #0. If (rad A)b;a#0 then we can find
byerad A such that b,b;a#0 and so on Since by,by, - €rad A we have
bibyy -+ -byae (rad A) and since for t = index (rad A) we have (rad A) =0 there exist 7 such
that b, - - - bya #0and (rad A)b, - - - bja =0, Therefore b, - - - bya € P ,. Now since
Ap o pav =(Ap ... ) (A v) =0

we have ve U (P,). O

We say that A is weakly W-algebra if there exist nonsingular matrices N and M such that

NL(C,(A)Y)M is an associative algebra with unity I.
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W—algebra => W —isomorphic algebra => weakly W-algebra .
By lemma 9 every algebra is weakly W -algebra for We (T ,TD ,E } and an algebra A is weakly D -

algebra iff A is weakly DT -algebra.
We call A D-regular algebra if U (A) = F*,
Lemma 20 . If A is weakly D -algebra then A is D -regular.

Proof . Let C; (A)? = (B,,...,B,}. Then

L(C,(A)D)z{Bv=[Aale 1A, vilveF).
If U(A)=F" then for every v there exist a € A such that A,v=0. If a =3y" A a; then

Agv =" N A, v = 0 which implies that B, is singular matrix for every v. Therefore for every non-

singular matrices N and M the set N L (B(A))M cannot contain the identity matrix. Hence A is not

weakly D -algebra. [0
It follows from the proof of lemma 20 that

Lemma 21 . The algebra A is not D -regular if and only if L (C; (A)® ) contains no nonsingular ele-

ment.

The following follows from the above results

D —algebra=>D —isomorphic algebra => weakly D —algebra =>D —regular. 3)
Lemma 22 . If A, is not D -regular then for every algebra A, the algebras A;x A, and A, ® A, are not

D -regular.
Proof . Since C; (A;1xA2)” =C; (A;)° © C; (A;)° and C; (A;®A,)° = C, (A;)P® C; (A,)° then
L (C;(A;xAz)?)and L (C; (A;® A,)P) contains no nonsingular matrix, [J
4, COMMUTATIVE ALGEBRAS
In this section we study the properties of commutative algebras. By lemma 10 we have
Theorem 1 . Every commutative algebra is E -algebra.
Therefore by lemma 12 we have

Theorem 2 . A commutative algebra A is DT -algebra iff A is TD -algebra iff A is T-algebra iff A is
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D -algebra.

This lemma shows that it is enough to investigate the conditions where a commutative algebra is

D -algebra. In this section we prove the following

Theorem 3 . A commutative local algebra is D -algebra iff

PAsz

where d € A.

Since by Artin theorem every commutative algebra is a direct sum of local commutative algebras
the commutative D -algebras is completely classified.
Lemma 23 . A commutative algebra A is D -algebra if and only if A is D -regular.

Proof . If A is D-algebra then by (3) A is D-regular. Assume that A is not weak. Then there exist

v € F* such that

B, =[Agv! -+ 14, v]
is nonsingular. Consider the set
H={A, B, ,A;B,,... A, B,}) =C,(A)B,.
Since A, B, =[Agq,v [ Agqv]and A,,‘,aj = Agjq, We have HP = H. Hence

(Cl (A)Bv )D = CI (A)Bv

By lemma 1 and since B, is nonsingular we obtain

C:(A)=(C (AP [B/1)B'=C (AP . O
Lemma 24 . Let A; and A, be commutative algebras. Then A; ® A, is D-algebra iff A, ® A, is D -

algebra iff A; and A, are D -algebra,

Proof . If A;® A, is D-algebra then A;® A, is D- regular. Then by lemma 22 A, and A, are D-

regular and therefore by lemma 23 they are D -algebra. [
Lemma 25 . A local commutative algebra A is D -algebra if and only if P, = a A for some a € A.
Proof . Let Py =a A. If P, = (0) then U (P,) = & and by lemma 23, A is D -algebra.

Let 0#bePy=a A then b = ca. Since a,b #0 are in P, we must have ¢ not in rad A and

therefore ¢ is nonsingular. Hence A, is nonsingular matrix and A, v =A.A,v =0 is equivalent to
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A, v =0. Therefore

U(Py)={vIA,v=0})
Since a #0 the matrix A, #0 and therefore U (P ,)#F*. This follows that A is D -algebra.

Let A be a commutative local D -algebra. Let a;€ P . Then a;AcP 4. Now let as€ Py—a A
Then asAcP,. If a; Anay A#(0). Then there exist u; and u, such that ajuy = asuy. If u, is singu-
lar then uy€ rad A and ayu; = 0 = aqu,. If u, is nonsingular then a, = a,u3" 4, and a,€ a,A. A con-
tradiction. Therefore there exist a;,as, . . . ,a, € P 4 such that (Induction hypothesis)

PA=a1A$a2A® e @awA.

(direct sum of subspaces). Consider the following base of A

A={ug ..o by oot @yly, .. Gyl e Gl . . Gyl )
where uy,...,u; € A are nonsingular elements s = dim (A/rad A), {t;,...,t) is a base for
(rad A)-P, and {ayu,, ... ,a,u) is a base for P,. Let ¢:A—A/rad A be a canonical homomot-

phism. Since A is local commutative algebra we have A/rad A is a field. Let O(uw;Y=d; € Alrad A.

If

didi = 30 Y jk i é)
then because

OCuiu; )= 0w )0 (u;) =didj = 35 Vi jude = OCim Vi e ) = Dpci i i
we have

s
U u; = Z’Yi’“,uk+h
k=1

where h € rad A. Therefore

s s
w(au))=a Y Yijee+ah =YYty .
k=1 k=1

This with (4) implies

where C; (A/rad A ,(d,, ... ,d )= {Adl, . .Ad,}-
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Let v = (vo,v1,v2,v3) be any vector of length n where v, is of length n — dim rad A and

v1,v, are of length 5. Then
Az‘)"ialui +¥8ay” = AZ’».-d:v 1 +A25id.'v2'
We shall show that for any v,, v,e F* there exist fifl,fifze C; (A/rad A) not both zero such that

Ap i +Ay,v2 = 0. This follows that any v € F* is in U (A) which complete the proof.
If vi =0 or v, =0 then this result is rivial. Assume v, ,v,#0. Consider the set

H={Av,lae Alrad A)
If Ayv,...,AyveH are lincarly dependent then there exist (i, ...,y,)e F* such that

i Wi v =0 which implies that A, v = 0 for d = YW d; and A, is singular, Since A/rad A is
a field we have a contradiction. Therefore = F* and therefore there exist d € A/rad A such that
Agv=-v,. Now this implies A;v,+4,v,=0. O

We now give some examples of commutative D -algebras.

Example 1. Polynomial algebras

The polynomial algebra is the algebra F (p ) = F [0.]/(p (o)) where p (o) e F [a]. It can be

easily shown that

Ci(F [al/(p ()))=(C).C, ... .CP ).

where C, is the companion matrix of p. If p (o) =p1(oc)d1 .- -p,(oc)d’ where py(a), ..., p, (a)

are distinct irreducible polynomials. Then

d d
F(p)=Fp')yx - xF(p"). (5)
and it is well known that

d d
F(p')=F(p1)BF (a™). ©)
This algebra is also satisfy
Corollary 1. The algebra F (p ) is D -algebra.

Proof . By (5) and (6) and lemma 24 it is enough to prove that A = F (a?) is D -algebra. Since

P, = 0" A by lemma 25 the result follows. O
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Example 2.

Let {1,p,,p,,d} be a base for the algebra A that satisfies: 1 is the unit element,

pip2=pp1=d, pf =pf =d*=0.
Then A is local commutative algebra and for y = y;+y,p1+y3pa+yad we have

Y1 Y2 Y3 Ya

0 y1 0 y;
YTLO0 0 yi oy,

00 0 y
Since P, = d A the algebra A is D-algebra. O

Lemma 26 . If A is commutative local D -algebra and k = index (rad A) is the least integer such that

(rad AY* =0 then

Py= (rad A7,
Proof . Since for every a € (rad A)*! we have a rad A = 0 then (rad A)*'cP,. If A is D -algebra

then P, =d A for some d € P,,.
Ife € (rad Ay then e = d u for some nonsingular # and then P, =d Ac(rad AY~!. [

Notice that in the end of the proof of lemma 23 we have the exact connection between C, (A )
and C;(A)? for commutative D -algebras. The exact connection between C;(A) and C; (A)°T,

C;(A)" - can be obtain from this by using lemma 1.

5. SEMISIMPLE ALGEBRAS

We shall begin to investigate the case when A is simple algebra. If A is a simple algebra then it

is well known that

A=M,®P

where M,, is the total matrix algebra of order n and P is a division algebra. By lemma 14 we have
Lemma 27 . The simple algebra M,, ® P is E -algebra if and only if P is isomorphic to P~.
Now we shall use Noether-Skolem theorem, [H], to prove

Lemma 28 . Any simple algebra is TD -algebra.
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Proof . Since RR;(A) is isomorphic to RR, (A) and the unit element in both of them coincide we
have by  Noether-Skolem  theorem  RR,(A) =N7RR,(A)N which  follows  that

C;(A)® =N7IC; (A)N [M ] for some nonsingular matrix M. [
Since every semisimple algebra A is
t
A= X M, ®P
where P; ,i =1,...,t are division algebras we have
Theorem 4 . Any semisimple algebra is 7D -algebra.
Since
t 1
A~ isomorphic to i>=<1 M,“, ® P, isomorphic to .'>=<x M,,i }P;
we have
t
Theorem 5 . A semisimple algebra i>=<1 M, ®P; is E-algebra iff there exist a permutation @ on
{1,...,t}) such that: Fori = 1,...,t we have
) m o= negy.
@)  P; is isomorphic to Pagy.
By lemma 12 we have
Theorem 6 . A semisimple algebra is D - algebra iff A is E -algebra.
By lemma 11 we have

Theorem 7 . Every semisimple algebra is T -algebra and D -algebra.

6. APPLICATIONS
In this section we shall give some applications of the results in scctions 4 and 5.

Let B = {By,...,By) be a set of n xm matrices. In a similar manner as in definitions 1 and 2
we can define BT ,BP [NB M [K]. For C a k’ set of n’xm’ matrices we also can dcfine, as in
definition 3, B ® C and B ® C. Then all the equations in lemma 1 and 2 are true for these extended

definitions.
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The multiplicative complexity of B is the minimal integer ¢ such that there exist matrices L;,L,

and Lj of order ¢ xk ,t xn and t Xm, respectively, where

XTBly
=L{ (Lyx* Lyy).
xTB,c y
where for u =(uy,...,%), v=(v,....,v) the componentwise product u*v s
(uyvy, ..., uv,)T. The triple (L, .Ly,L3) is called a minimal bilinear algorithm for B and the mul-

tiplicative complexity is denoted by 8(B ).

It is known that if (L;,L,,L3) is a bilinear algorithm for B then (Ly,L3,Ly) and (Ly,Ly,L3)
is minimal bilinear algorithm for BT and B? respectively. If N, M and K are nonsingular matrices of
order n Xxn, mxm and k Xk, respectively, then (L,K? ,L,N ,L3M ) is a minimal bilinear algorithm
for N B M [K ]. Therefore

8(B)=38(B")=8(B?)=8(NBMI[K]). 0]
For algebra A the multiplicative complexity of A is

8(A)=38(B(A)).
The applied meaning of the multiplicative complexity of B is the number of multiplications and divi-
sions needed to compute x’B,y,...,x"B,y by a program. Therefore 8(A) is the number of multi-

plications and divisions needed to compute the multiplication of two elements in the algebra A.

The multiplicative complexity of computing x"H,y,...,x'H;y where x=(xy,...,x,),
Y=01n....y) are vector of elements in A is
S(H®B(A))

where H = {H,, ... ,H,}.
For these problems we have
Theorem § .

(i)  For D -algebras

S(H®B(A))=3(H"®B(A)).
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(i)  For TD -algebras

S(H®B(A))=8(HPT®B(A)).
(iii) For T-algebras

S(H®B(A))=3(HE®B(A)).
Proof . If A is D -algebra then

(HB®B(A))? = HP®B(A)® = H? @ B(A).

Therefore

S(HO®B(A))=3(H? ®B(A)).
If A is 7D -algebra then (H @ B(A))=8(HP @ B(A™))S(HPT @ B(A))=8(HP ®B(A)). (i)

follows in a similar manner. O
One application of this theorem is

Corollary 2 . For D-algebras and TD-algebras the multiplicative complexity of computing

Xiy1+ - +x. ¥, and x1y X2y, ..., X,y where x; ,y; € A are equal.

Proof . The complexity of x,y;+ - - +x,y, is 8/, ®B(A)) and the complexity of

XY, X2Y ..., x,y where x; ,y; € A is SUP® B(A)) and by Theorem 1 they are equals. [J

The reader can find more application in [AW], [B3], [B4], [Gr2] and [HM].
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