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Abstract 

To assess the vulnerability of road networks, the commonly used analytical vulnerability 

analysis is to determine the global vulnerability of links in a road network by removing 

links one by one from the network and measuring the resulting increase in the total travel                                                                                                                                                                                                                                                                                                                                                  

cost of the network. Such global vulnerability ranking might fail to identify the most critical 

links as it overlooks important factors that affect the vulnerability of road links. Instances 

of such factors include link specific geometry design, poor downstream traffic signal 

timing, and/or links that are prone to more collisions. Additionally, traditional techniques 

identify the critical links of a transportation network measuring only the consequences of 

the link closure with little consideration given to its closure probability. Consideration of 

the probability of link closure or failure is important as some of the links in a transportation 

network are more susceptible to disruptive events than others. To fill the void in the 

literature, I propose two data-driven vulnerability approaches: 1) vulnerability analysis by 

modeling monthly and seasonal extreme travel delay variations and 2) vulnerability 

analysis by measuring the spatiotemporal impact of incidents. In studying road network 

vulnerability by modeling monthly and seasonal variation of extreme travel delay, I 

propose a new class of extreme value distribution called compound generalized extreme 

value (CGEV) distribution for depicting the monthly and seasonal variation in extreme 

travel delays in road networks. Since the frequency and severity of extreme events are 

highly correlated to the variation in weather conditions as an extrinsic cause of incidents 

and long delays, monthly and seasonal changes in weather contribute to extreme travel time 

variability. The change in driving behavior, which itself varies according to road/weather 
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conditions, also contributes to the monthly and seasonal variation in observed extreme 

travel times. Therefore, it is critical to model the effect of monthly and seasonal changes 

on observed extreme travel delays on road networks. Based on the empirically revealed 

linear relationship between mean and standard deviation (SD) of extreme travel delays for 

both monthly and seasonal levels, I formulated two multiplicative error models. I then 

obtain the CGEV distribution by linking the two multiplicative error models and formed a 

compound distribution that characterizes the overall variation in extreme travel delay. I 

calibrated the CGEV distribution parameters and validated the underlying assumptions that 

are used to derive the CGEV distribution using multi-year observed travel time data from 

the City of Calgary road network. The results indicate that accounting for the seasonality 

by identifying seasonal specific parameters provides a flexible and not too complex CGEV 

distribution that is shown to outperform the traditional GEV distribution. Finally, I 

evaluated the application of the proposed CGEV distribution in the context of road network 

vulnerability taking into account the stochastic nature of extreme event occurrences and 

the link importance. This derived data-driven vulnerability index incorporates a wealth of 

information related to both network topology in terms of connectivity and the dynamic 

interaction between travel demand and supply.  

In studying road network vulnerability by measuring the spatiotemporal impact of 

incidents, I propose a new data-driven, impact area, vulnerability analysis approach that 

takes into consideration both the probability of impact as well as the effects of incidents on 

the impact area. I employed multi-year observed travel time and incident data to investigate 

these underlying dynamics as the datasets contain important information that reflect the 
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historical spatial and temporal occurrences of link closure and their network wide impacts. 

Rather than focusing solely on the travel time fluctuation of the link subject to incident, 

and to capture all aspects of incidents’ impact, I developed a new approach to identify both 

the resulting spatial and temporal impacts by monitoring the dynamic propagation and 

dissemination of congestion patterns in the set of links that are in the vicinity of the link 

subject to incident (i.e., impact area). I subsequently used these spatial and temporal 

dimensions of the impacts in the vulnerability analysis. I examined the performance of the 

developed approach, historical travel time and incident data of the City of Calgary. The 

results indicate that the recorded temporal impact of incidents is not representative enough 

of the true impact of incidents since it overlooks the dynamic spatial propagation of the 

effect of incidents on the impact area. Finally, I used the estimated spatiotemporal impact 

of incidents in Calgary road network to determine the vulnerability of the links considering 

both the probability that links in an impact area are affected by an incident as well as the 

spatiotemporal consequence of the incident on the impact area. This data-driven 

vulnerability measure could be used as a decision support tool for decision-makers in 

prioritizing improvements to critical links to enhance overall network vulnerability, 

reliability, and resilience. 
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CHAPTER 1:  INTRODUCTION 

 

1.1 Background 

An urban road network is the backbone of a city and contributes to its operational and economic 

performance. Yet, the frequent occurrence of various recurrent and non-recurrent events results in 

severe deterioration to road network performance and its reliability. Recurrent events happen 

periodically in a road network and are the outcome of the within-day variation of travel demand. 

Non-recurrent events, in contrast, result from extreme and rare occurrences of events leading to 

severe deterioration in network performance. The possible sources of such unexpected events are 

natural (e.g., disasters, extreme weather condition), artificial (e.g., traffic collisions, major road 

repairs, social events) or technical (e.g., signal failure at a major intersection) (Li, 2008). Other 

classification of the causes of disruptive events can be further categorised as internal, external and 

intentional incident interferences (Mattsson and Jenelius, 2015). Internal events are those 

originating from the system and caused by mistakes made by transportation authorities and staff 

(e.g., technical failure) and external events are mostly related to natural phenomena (e.g., extreme 

weather conditions) or artificial events caused by intentional interferences (e.g., terrorist or cyber 

attacks). 

 Both recurrent and non-recurrent events can result in long delays and gridlock. Reliability, 

vulnerability, and resiliency are the three important concepts in the literature that describe the 

performance of a road network during and after network disruptions. Numerous definitions are 

proposed in the literature for these three concepts. Reliability is defined as the range of variation 

of travel time experienced by users during a large number of daily trips (Turner et al., 1996) and 

indicates the probability that the transportation network remains satisfactory in terms of service 
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level provision under perturbation (Gu et al., 2019). Vulnerability is defined as the susceptibility 

of road network elements to perturbation (Taylor, 2017). Finally, resilience refers to the capability 

of a road network to resist, absorb and recover from serious disruptions. Figure 1.1 intuitively 

compares the three concepts of reliability, vulnerability and resilience and illustrates different 

levels of these concepts. 𝐹(𝑚), in Figure 1.1, refers to the  ratio of the network performance at time 

m after perturbation to the equilibrium network performance. It is important to understand the 

impact of these events on network performance and how fast a network can recover to its normal 

operation to evaluate the vulnerability/resiliency of a road network. Moreover, in the case of 

evaluating network reliability, transportation planners and operators are often interested in 

understanding the connectivity, capacity, and service level of a network under long delays caused 

by recurrent and non-recurrent events because such occurrences can cause gridlock and, therefore, 

serious deterioration in network operation (Gu et al., 2019).  

 While the consequences of recurrent congestion have been studied in the literature, the 

important implications of non-recurrent occurrences on the performance of road networks and the 

nature of these extreme events demands more attention. In addition, the link between non-recurrent 

occurrences and travel time distribution, the impact on travel time variability, and their application 

in vulnerability analysis requires further investigation. 
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Figure 1.1. Illustration of the relationship between reliability, vulnerability and resilience (Gu et 

al., 2019) 

 

While the probability of occurrences of non-recurrent occurrences is very low, the impact 

of these events on the performance of the transportation network can be huge. Therefore, in the 

transportation network, it is important to identify the vulnerable elements affected by such 

disruptive events. Such analysis helps to manage the potential risks resulting from these events 

and to better alleviate the disruptions to improve various aspects of transportation network 

performance. Vulnerable network elements (e.g., links, nodes) are part of a network responsible 

for a sharp decrease in traffic operation performance caused by capacity restrictions due to an 

incident or special event (Yperman & Tampere, 2006). Searching for vulnerable elements of a road 

network aims to identify potential critical elements in a transportation network. Once these 

elements are identified, network robustness can be improved by either reinforcing these elements 

or by improving alternative parallel routes (Matisziw and Murray, 2009). 
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Numerous evaluation approaches and techniques have been considered in the literature to 

identify the critical road infrastructure. The evaluation approach is strongly linked to how a 

transportation network is represented for the aim of the analysis. Depending on whether a 

transportation network is represented as an abstract graph or not, different measures of 

vulnerability are used in the literature. Apart from the evaluation approach, depending on how the 

scale of a disruptive event and its associated impact area is measured in a transportation network, 

different vulnerability analysis techniques were employed in the literature (Chen et al., 2012; Du 

et al, 2014; Jenelius and Mattsson, 2015; Taylor and Susilawati, 2012). 

 

1.2 Motivating a more holistic approach to vulnerability analysis 

While previously discussed techniques and approaches have been employed to measure the 

vulnerability of individual network components (e.g., links, nodes), in the presence of rare extreme 

events, these techniques identify the critical links of a transportation network measuring only the 

consequences of a link closure with little consideration given to the probability of link closure. 

The probability of link closure or failure is important as some of the links in a transportation 

network are more susceptible to rare events than others. Instances of such links are links with 

problematic geometric design, major links with higher fluctuations in travel demand, and/or major 

highways with high merging, diverging, and weaving traffic activity, which makes highways more 

prone to bottleneck formations and, thus, traffic breakdowns and possibly collisions. Moreover, 

depending on their type, rare events have a different probability of occurrences and their impacts 

differ case by case.  

The need of a more comprehensive approach was underlined in several previous studies. 

Berdiaca (2002), Chen et. al (2007), Erath et al. (2009) and Watling and Balijepalli (2012) 
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specified that vulnerability analysis should be regarded as a risk analysis. Defining transportation 

system vulnerability as society’s risk of transportation system disruptions and degradations, 

Jenelius (2009), Jenelius and Mattsson (2015) and Mattsson and Jenelius (2015) further specified 

that a vulnerability scenario should be formalised as a ‘‘triplet’’: 1) a description, 2) the probability 

and 3) the consequences (measure of damage) of that scenario. Therefore, a more holistic 

vulnerability analysis that takes into consideration this “triplet” approach is needed to 

simultaneously incorporate the probability and the consequences of disruptive events. 

In addition, analytical vulnerability approaches discussed in the literature usually overlook 

important factors that affect the vulnerability of road links, such as extreme weather conditions, 

link specific geometry design, poor downstream traffic signal timing and/or links that are prone to 

a higher frequency of collisions. Multi-year observed travel time data carry important information 

that also reflect the historical spatial and temporal occurrence of link failure and their impact. This 

copious amount of multi-year travel time data can be further explored to identify the occurrence 

of disruptive events, examine the probability of occurrence of resulting extreme travel delays and 

evaluate their impact on overall network performance. 

 

1.3 Objective and scope 

This thesis studies road network vulnerability with consideration of both probability and 

consequences of rare events. Two vulnerability analysis sub-problems are examined: 1) road 

network vulnerability analysis by modeling monthly and seasonal variations in extreme travel 

delays, and 2) road network vulnerability analysis by measuring the spatiotemporal impact of 

incidents. The following is a brief overview of each sub-problem. 
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1.3.1 Introduction to the vulnerability analysis by modeling monthly and seasonal extreme 

travel delay variations 

To the best of my knowledge, the impact of monthly and seasonal changes in weather 

condition on the variation of the extreme travel delay at the network level received less attention 

in network vulnerability research. The lack of studies on extreme travel time and the fact that the 

classic central theorem and traditional distributions fail to model extreme events motivates the 

development of a powerful modeling tool capable of capturing the variation in extreme travel delay 

data. My work attempts to fill the void in the literature by introducing a new class of extreme value 

distribution and proposes a new data-driven vulnerability approach, which considers both monthly 

and seasonal variation in extreme travel delay per km (also known as extreme normalized travel 

delay or extreme travel pace defined as the ratio of link travel time to link distance). 

The risk factor of collisions as a function of drivers’ perceptions leading to injuries or 

fatalities was estimated as 9 on snowy roads and 24 on icy roads compared to bare roads 

(Kilpeläinen and Summala, 2007). In addition, both the mean and SD of the observed speed 

decreases on slippery/icy road conditions (Rama and Kulmala, 2000; Saastamoinen, 1993). 

Because of the change in driving behavior, which itself varies according to road/weather 

conditions, the average observed extreme travel time, i.e., mean extreme travel time, varies 

seasonally and the variation in the observed extreme travel time, i.e., SD of extreme travel time, 

differs from season to season. 

Of particular importance to the City of Calgary road network, which is the case study 

examined in this thesis, monthly and seasonal variation of extreme travel time is of interest as the 

frequency and severity of extreme events are highly correlated to the variation in weather 

conditions as an extrinsic cause of incidents (Alberta Transportation, 2016). People living in 
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southern Alberta face on average 55 snowy days every year (Environment Canada, 2019). The 

snow may remain on roads for even longer, especially during the fall and winter seasons when the 

temperature is usually below 0 degrees Celsius. Seasonal changes in weather contribute to extreme 

travel time variability. Snow and ice are contributors to 14% of fatal and 16.1% percent of non-

fatal injury collisions (Alberta Transportation, 2016). In Finland, which has similar winter weather 

conditions, it has been reported that the probability of injury related collisions is over 20 times 

higher on an icy/snowy road than on a dry road surface (Kilpeläinen and  Summala, 2007; Rama 

and Kulmala, 2000), resulting in long travel delays on affected links.  

 

1.3.2 Introduction to the vulnerability analysis by measuring the spatiotemporal impact of 

incidents 

Previous vulnerability analysis measures the increase in the total network travel cost 

associated with each individual link closure to accordingly determine the global vulnerability 

ranking. In the analysis conducted in the literature, the impact of each link closure is measured 

before and after closure by running a network traffic assignment without taking into account the 

duration of the closure and how quickly a link recovers from the incident or closure. In other words, 

it is not realistic to account for the impact of link closure by solely measuring the maximum 

possible increase in the travel time. This single point in time measure, in terms of increase in the 

travel time only when the link is fully closed, does not fully consider the dynamic ramifications of 

closure during the full-time span from link closure to recovery. This analysis is of interest as some 

of the links are more prone to incidents and simultaneously recover much more slowly from the 

incident compared to other links due to geometrical properties of the network in the vicinity of 

these links. Instance of geometrical properties influencing such analysis include lower network 
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redundancy in the vicinity of the links subject to incident, higher link betweenness, lack of 

alternative links to the links subject to incident, one directional links subject to incident, etc. Multi-

year observed travel time and incident (i.e., collision and link closure) data carry this information 

and can be mined to determine the full spatial and temporal impact of link disruptions in the studied 

network. 

Archived information about incidents, such as reported incident start time and clearance 

time, is usually based on the perceptions of those involved in the incident or guesswork by the 

officer or operator, thus, reported incident information is not accurate enough to rely on to 

determine the vulnerability of links to the presence of incidents. The true spatiotemporal impact 

of incidents could be used to determine the probability that the neighboring links of a link subject 

to incident (i.e., a link which is impacted directly by an incident) are affected by the incident and 

also the impact of the incident in terms of the magnitude of the increase in the pace of the 

neighboring links. Subsequently, network vulnerability ranking could take into consideration both 

the probability of neighboring links being affected by the incident as well as the magnitude of the 

impact. 

In this thesis, I propose a new spatiotemporal incident impact determination approach by 

focusing on the similarity of congestion patterns in the vicinity of target links during an incident. 

In addition, I develop a risk-based vulnerability index which takes into consideration the 

probability of impact as well as the magnitude of the impact resulting from incidents. 

 

1.4 Proposed methodology and research contributions 

This research contributes to the body of knowledge by incorporating the probability and 

consequences of link failure in the road network vulnerability problem. Consideration for the 
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probability of the impact resulting from link failure is often overlooked in the literature even 

though this probability can significantly affect the order of the links in the network vulnerability 

ranking. The large size and the frequently high congestion levels of actual transportation networks 

further requires consideration of this probability.  

The contribution of this study can be summarized in two distinctive categories. The 

contributions of this research to each category are outlined below. 

Contributions to the network vulnerability while accounting for seasonality: The 

model developed for this research offers several contributions. The contributions are listed as 

follows:  

− Developing a new class of extreme value distribution called compound generalized extreme 

value (CGEV) distribution which accounts for monthly and seasonal variation in the extreme 

travel delay.  

− Proposing a new data-driven vulnerability approach that accounts for both the stochastic nature 

of extreme events, which is connected to the probability of extreme events, and link 

importance, which is used as an alternative measure for the relative impact of a link failure on 

network performance. 

− Evaluating the performance of the proposed CGEV distribution and demonstrating that the 

CGEV distribution outperforms the traditional generalized extreme value (GEV) distribution 

in modeling the variation in the extreme travel delay.  

Contributions to the network vulnerability while accounting for spatiotemporal impact 

of incidents: In this work, I attempt to address the existing gap in the literature through three main 

contributions. The contributions are outlined as follows: 
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− Developing a new methodology to determine the true spatial and temporal impact of incidents. 

I achieved this by monitoring the traffic pattern in the vicinity of the target link, also called 

impact area, and looking for similarities in the congestion pattern from which the temporal and 

spatial dimensions of the incident impact is determined. 

− Developing a novel data-driven vulnerability index which takes into account the probability 

that links in the impact area associated with a given incident are affected. In addition, the 

consequence of the incident is measured in term of the deviation between the mean of the 

historical distribution of pace and the experienced pace during the unusual event of that link.  

− Modeling the vulnerability of large size networks by applying real observed data from the 

Calgary road network. 

 

1.5 Thesis organization  

This thesis consists of four chapters that are laid out as follows: 

Chapter 2 is devoted to the derivation of the CGEV distribution by accounting for monthly 

and seasonal variations in the extreme travel delay resulting from incidents. This chapter begins 

with a comprehensive overview of previous studies on the relationship between extreme events 

and travel time distribution, travel time variability and road network vulnerability, followed by 

derivation of the CGEV distribution. This chapter also covers problem formulation for the 

vulnerability index and a real network case study (Calgary road network). 

Chapter 3 describes a data-driven vulnerability approach accounting for spatiotemporal 

impact of historical incidents. This chapter includes the formulation of the proposed model and 

several examples that demonstrate its applicability. The chapter also includes formulation of the 

proposed data-driven vulnerability index and the vulnerability analysis of Calgary road network.  
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  Chapter 4 summarizes the findings of this research and concludes the work described in 

this dissertation. The contributions of this research to the greater body of literature are described 

and recommendation for future research are made. 
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CHAPTER 2:  COMPOUND GENERALIZED EXTREME VALUE 

DISTRIBUTION FOR MODELING THE EFFECT OF MONTHLY AND 

SEASONAL VARIATION ON THE EXTREME TRAVEL DELAYS FOR 

VULNERABILITY ANALYSIS OF ROAD NETWORKS 1 

 

2.1 Background and related studies 

2.1.1 Travel time distribution and extreme events  

While traffic information is almost always communicated by means of average travel time, 

travelers usually experience variation in travel times from one time period to another during a day, 

from one day to another, and over different months and seasons. Thus, a stochastic representation 

of travel time and its variation is of more interest than specifying a deterministic value or range 

for the average travel time. Characterizing travel time variability is the basis of many travel time 

reliability analyses that resulted in numerous derived measures to represent the reliability of travel 

time (Asakura and Kashiwadani, 1991; Florida Department of Transpiration, 2000; Chen and 

Recker, 2000; Chen et al., 2003). State-of-the-art practices often use the mean and variance of 

travel time to derive buffer time and planning time indices as measures of road reliability. 

However, empirical travel time analyses have shown that travel time distributions are not 

necessarily symmetrical but highly skewed to the right with a heavy tail, especially in the presence 

of road network disruptions resulting from adverse weather conditions, car collisions, or other 

incidents (Bogers et al., 2006; Fosgerau and Karlström, 2010; Sumalee et al., 2013; Susilawati et 

 

1 The contents of this section have been used in the paper entitled: “Compound Generalized Extreme Value distribution 

for modeling the effects of monthly and seasonal variation on the extreme travel delays for vulnerability analysis of 

road network”. Revise and resubmit in “Transportation Research Part C: Emerging Technologies” 
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al., 2013; and Van Lint et al., 2008).  Common indices of buffer and planning time are thus not 

illuminating enough for evaluating heavy-tailed travel time distributions. 

Different parametric distributions were tested in previous studies to describe the observed 

travel time data and its stochastic nature. Examples of such distributions include log-normal 

(Herman and Lam, 1974; Richardson and Taylor, 1978; Pu, 2011), truncated log-normal (Wang et 

al., 2012), gamma (Herman and Lam, 1974; Polus, 1979; Kim and Mahmassani, 2015), beta 

(Polus, 1979; Castillo et al., 2012), Weibull (Al-Deek and Emam, 2006), exponential (Talley and 

Becker, 1987; Noland and Small, 1995), bimodal (Yang et al., 2014), and Burr type XII (Susilawati 

et al., 2013). In a more recent study, Kim and Mahmassani (2015) presented a compound gamma-

gamma distribution to describe the travel delay per mile assuming a multiplicative error model for 

both vehicle-to-vehicle and day-to-day travel time variability. 

While travel time variability and travel time distribution have received increased attention 

in the literature, much less attention is paid to examine the tail of the travel time distribution, which 

consists of extreme travel times associated with the occurrence of recurrent and non-recurrent 

extreme events (e.g., incidents and extreme weather conditions). The impact of the extreme travel 

times due to both recurrent and non-recurrent events is of interest as the demand and supply 

interaction patterns resulting from these events can lead to long delays and, therefore, link failure. 

Extreme travel times are low-probability events located on the right-hand side tail of a distribution 

and can result in link failure and possibly gridlocks, which contribute to road network 

vulnerability. Fosgerau and Fukuda (2012) showed that traditional distributions, which are usually 

used to model travel time data, did not provide a good description of extreme travel time data.  Xu 

et al. (2014) introduced a new risk-based measure of travel time reliability that characterized the 

tail of the travel time distribution. Zhong et al. (2019) introduced a double time-scale travel time 
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distribution not only to model travel time under risk-free conditions but also to capture the skewed 

distributions of travel time under abnormal traffic conditions. The authors further applied the 

proposed double time-scale travel time distribution to analyzing network resilience by showing 

the short-term and long-term impacts of disruption and systematic changes on road network 

performance. 

 

2.1.2 Travel time variability and the treatment of extreme events 

Different measures of travel time variability are considered in the literature such as vehicle-

to-vehicle and period-to-period. Vehicle-to-vehicle variability refers to the variation in travel time 

of vehicles that depart within the same period of time. For example, morning peak and period-to-

period variation in travel time refers to how the mean travel time within a specific time interval, 

for example, morning peak, varies over different periods of time (e.g., day-to-day, month-to-

month, etc.) (Noland and Polak, 2002; Yildirimoglu et al., 2015). Numerous studies have 

investigated the relationship between the mean value and SD of travel time across vehicles and 

from one time period to another. The relationship between the mean and variance of travel time 

was first explored in the kinetic theory of traffic flow developed by Prigogine and Herman (1971). 

In another study, Jones et al. (1989) indicated that the mean and SD of normalized travel time were 

highly positively correlated. In studying the mean-SD travel time relationship, normalized travel 

time was first used by Herman and Lam (1974) to differentiate between travel time variability 

from heterogeneity in speed and variability due to trip distance. While vehicle-to-vehicle 

variability is the result of interactions between the vehicles, the period-to-period variability is 

mainly caused by extrinsic occurrences such as a change in weather conditions, incident 

occurrences, work zones, etc. (Cohen and Southworth, 1999; Kwon et al., 2000; Kwon et al., 
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2011), and variation of capacity (Brilon et al., 2005); which itself is stochastic and can vary 

according to road surface conditions (wet or dry), outdoor light level (daylight or darkness), and 

the prevailing purpose of the road (long distance or metropolitan commuter traffic) (Ponzlet, 

1996). 

A more common period-to-period travel time variability addressed in the literature is day-

to-day travel time variability. Different definitions are considered to describe the day-to-day 

variation in travel time; thus, various functional forms are suggested to fit the day-to-day travel 

time data. In an early study, Turner and Wardrop (1951) noted that the day-to-day mean-SD plot 

was well represented by a power function where the exponent of mean travel time was obtained as 

0.68. Herman and Lam (1974) theoretically proved that the SD of the travel time was proportional 

to the square root of the mean travel time, assuming that the travel times on each route were 

uncorrelated and identically distributed. However, working with the empirical data, they indicated 

that the linear function provided a better fit, and the root-square function may not be valid for long 

journeys (travel time greater than 30 minutes). Using empirical bus travel time data, Polus (1979) 

obtained the square-root function for a mean-SD relationship. Based on the theoretical work of 

Herman and Lam (1974), the square-root relationship between the mean and SD of travel time was 

considered that from which the mean-coefficient of variation (CV) square root function was 

derived (Richardson and Taylor, 1978), and the square-root relationship represented the linear 

relationship between congestion factor- defined as mean travel time divided by free-flow speed 

and CV (Taylor, 1982). Using travel time data from London, UK, May et al. (1989) showed that 

both linear and square-root functions perform equally well.  

While link travel time is stochastic and purely dynamic, mean travel time can be used as 

an explanatory variable to predict travel time variability. A few studies have made important 
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contributions in showing the existence of a linear relationship between mean travel time and SD 

of travel time (Mohammadi, 1997; Mazloumi et al., 2009; Hellinga, 2011; Kim and Mahmassani, 

2015 and Kouwenhoven and Warffemius, 2016). In these studies, extreme travel time data are 

usually treated as outliers and accordingly disregarded from the data set as shown in Figure 2.1. 

Hellinga (2011) removed the extreme travel time data to obtain a linear relationship between the 

annual average travel time and SD. Similarly, de Jong and Bliemer (2015) and Kouwenhoven and 

Warffemius (2016) indicated that the extreme travel time data may affect the SD of travel time; 

hence, the extreme travel time data were filtered to obtain a linear function for the mean-SD plot. 

The  occurrence of these extreme travel times is highly stochastic and hardly observed as they are 

often associated with rare extrinsic occurrences (e.g., special events, collisions, signal failures, 

extreme weather conditions, etc.), making it even more challenging to establish a meaningful 

relationship between the mean and SD of extreme travel times. Establishing a meaningful 

relationship between mean and SD of extreme travel times will consider the effect of long delays 

on network performance and improve the understanding of the statistical properties of extreme 

travel times. Better apprehension of the stochastic nature of extreme travel times will in turn aid 

in establishing proper vulnerability measures that consider the effect of long delays. Thus, extreme 

travel times will not be filtered from the analysis to gain insight into their statistical properties. 

Therefore, there is a need for a systematic way of quantifying, analyzing, and assessing the 

variability of extreme travel times, and then various vulnerability measures can be developed. This 

research takes many steps in this direction.  
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Figure 2.1. Relationship between mean and standard deviation of travel time in the presence of 

extreme events (Jong and Bliemer 2015) 

 

To my knowledge, none of the published studies appears to account for the effect of 

variability in extreme travel time. The last two decades witnessed the emergence of floating probe 

data with large spatial network and temporal coverage. This multi-year network-wide observed 

extreme travel time data contain important information that reflect the spatial and temporal 

occurrence of recurrent and non-recurrent extreme travel delays. This data can further advance the 

understanding of the distribution and variability of extreme travel times and their effects. 

 

2.1.3 Road network vulnerability and extreme events 

Road network vulnerability analysis has recently received much attention in the literature. 

Depending on how a road network is represented in the vulnerability analysis problem, two distinct 

evaluation approaches exist with little overlap: 1) topological vulnerability analysis of road 

networks and 2) system-based vulnerability analysis of road networks. In the topological 

vulnerability analysis approach, a road network is typically represented as an abstract network 

(graph) consisting of nodes and undirected, unweighted links. Topological vulnerability studies 

usually deploy accessibility and network efficiency indices as measures of vulnerability to assess 
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the socioeconomic consequences of link closure. Examples of recent topological network 

vulnerability studies include important analysis conducted on road networks (Bell et al., 2017; Gao 

et al., 2019; López et al., 2017) and on public transport networks (Li et al., 2019; Ye and Kim, 

2019). In contrast, system-based vulnerability studies employ graph representation of real 

networks consisting of weighted links with weights corresponding to actual link length, travel cost, 

etc. Transport network performance is examined through the interaction between travel demand 

and supply in terms of the increase in the total travel cost of a network to identify the critical 

elements of road networks (Almotahari and Yazici, 2019; García‑Palomares et al., 2018) and 

public transport networks (Jiang et al., 2018; Lu, 2018; Yap et al., 2018). 

As reported in previous studies, a more comprehensive approach to vulnerability analysis 

is required, and this new approach needs to be taken from a risk analysis perspective. However, 

due to the difficulty in predicting the probability of extreme event occurrences given the lack of 

historical network-wide travel information, the majority of the previous studies still approach the 

vulnerability problem by only focusing on the theoretical, consequential aspects of extreme events  

(Faturechi and Miller-Hooks, 2014; Taylor, 2017; Gu et al., 2019). Clearly, a comprehensive 

vulnerability analysis is needed to incorporate both the probability and the consequences of rare 

events.   

 

2.2 Extreme value theory (EVT) 

In the analysis in which the probability of the tail of the probability density function (PDF) 

is of interest, a classical central limit theorem may not be applicable. Consider a section of a 

freeway with n samples of independent and identically distributed (i.i.d.) random travel times 
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represented as X1, X2, …, Xn. The probability of a travel time exceeding a certain threshold x, can 

be then calculated by the following: 

 

𝑃(𝑋 ≥ 𝑥) = 1 − 𝐹(𝑥)  (2.1) 

  

where F(x) is the cumulative distribution function (CDF) that follows a certain statistical 

distribution. This method may be used to estimate the probability of the tail of the travel time 

distribution for a relatively large value of x. However, in the case that the expected value of X, i.e., 

E(X), is not finite, the central limit theorem does not apply. Moreover, if the probability of the 

travel time exceeding the maximum observed travel time in the sample yields a value of 0, as 

represented mathematically below, the central limit theorem is no longer relevant: 

 

𝑝 = 𝑃(𝑋 > 𝑥) = 1 − 𝐹(𝑥) = 0              𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑚𝑎𝑥  (2.2) 

 

where 𝑥𝑚𝑎𝑥 is the maximum observed travel time. While the probability of these extreme travel 

times is very low, it cannot be assumed that such travel times are impossible, suggesting that 

special statistical techniques that focus on extreme events, or identically small tail probabilities, 

need to be developed. 

 The extreme value theory was first proposed by Fisher and Leonard Tippett (1928) and 

was further developed by Gnedenko (1943). Based on the Fisher–Tippett–Gnedenko theorem, if 

X1, X2, …, Xn are samples of i.i.d. random variables (travel time in this study), and Mn=max {X1, 

X2, …, Xn} denotes the maximum value among n sampled data, then the distribution of Mn 

converges to the following distribution called the GEV distribution: 
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𝐻(𝑥) =

{
 

 𝑒𝑥𝑝 {− [1 + 𝜉(
𝑥 − 𝜇

𝜎
)]
−1

𝜉⁄

}       𝑖𝑓 𝜉 ≠ 0 

𝑒𝑥𝑝 [−𝑒𝑥𝑝 (−
𝑥 − 𝜇

𝜎
)]                𝑖𝑓 𝜉 = 0

 

  

(2.3) 

  

where µ and σ denote location and scale parameters, respectively. ξ is called a shape parameter, 

and depending on the value ξ takes, 𝐻(𝑥) converges to different distributions. If ξ → 0, H(x) 

corresponds to the Gumbel distribution (also called GEV distribution Type-I). If ξ > 0, H(x) 

corresponds to the Fréchet distribution (also called GEV distribution Type-II), and if ξ < 0, 𝐻(𝑥) 

corresponds to the Weibull distribution (also called GEV distribution Type-III). 

Block maxima is the method of choosing the maximum travel time in each sample travel 

time and it is used in this study to determine the extreme travel times in an examined network. In 

this approach, the main data set is divided into equal blocks and the maximum value of each block 

is determined as a single member of the subset. 

EVT can be applied in various fields of study. It is a powerful tool to model extreme events 

in environmental, structural, and financial research on topics such as air pollution (Smith, 1989; 

Kütchenhoff and Thamerus, 1996; Ercelebi and Toros, 2009), climate change (Katz, 1999; 

Beniston et al., 2007; Cooley, 2009), wind severity classification (Lombardo et al., 2009), wind 

data analysis (Harris, 1996; Mayne, 1979; Holmes and Moriarty, 1999), windstorm losses 

(Rootzén and Tajvidi, 1997), temperature analysis (Ferrez et al., 2011), forest fires (Alvarado et 

al., 1998), geological and seismic studies [earthquake severity analysis (Campbell, 1982; Esfeh et 

al., 2016), earthquake risk analysis (Cornell, 1968), diamond data analysis (Caers et al., 1996)], 

hydrology [flood (Rossi et al., 1984; Frances et al., 1994; Renard and Lang, 2007; Willems et al., 

2007), rainfall (Beguería and Vicente-Serrano, 2006; Papalexiou and Koutsoyiannis, 2013), 

drought (Bordi et al., 2007; Burke et al., 2010), wave modeling (Moeini et al., 2010)], financial 
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applications and risk management (McNeil, 1997; McNeil et al., 2000; Gencay et al., 2004), 

structural safety (Makkonen, 2008), corrosion (Rivas et al., 2008), and athletic records (Gembris 

et al., 2007). 

 However, the application of EVT is rather limited in transportation-related studies. One of 

the main transportation related applications of EVT is to model the unobserved portion of the 

utility function (error term) in the logit discrete choice behavior model (Luce and Suppes, 1965) 

and in a family of generalized extreme value models such as nested logit (Williams, 1977) and 

GEV (McFadden, 1978). EVT is also applied widely in road safety studies (Tarko and 

Songchitruksa, 2005; Zheng et al., 2014). EVT was also employed to estimate road traffic capacity 

(Hyde and Wright, 1986; Minderhoud et al., 1997) and to predict the violation of air quality 

standards at urban intersections (Sharma et al., 1999). 

 

2.3 Proportionality between the mean and SD of extreme delays 

Previous studies confirmed a highly positive correlation between SD of travel time and 

mean travel time for both within-day and day-to-day levels (Kim and Mahmassani, 2015). 

However, the relationship between the SD and mean value of extreme travel time has not yet been 

investigated. Observed travel time data over a period of 6 years was obtained from INRIX for the 

City of Calgary and was analyzed to investigate whether the SD and mean value of extreme travel 

data were correlated or not. INRIX collects roadway speed and travel time data from real-time 

anonymous phones, vehicles and mobile devices equipped with GPS locator devices and 

traditional road sensors and hundreds of other sources and aggregates them over 1-minute time 

intervals. INRIX also provides the segment length and free-flow travel time. The travel times of 

road segments were calculated given the roadway speed and length. 
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To reveal the relationship between the mean and SD of extreme travel time, travel time 

data from 6 years between the end of December 2013 to the end of December 2019 were collected 

and aggregated over 1-minute time intervals from a 0.82 km section of Shaganappi Trail NW N, a 

two-lane highway with a speed limit of 70 km/h. The block maxima method was applied to choose 

the extreme travel times out of the collected travel time data. The sample size of the block maxima 

approach was determined by the block intervals 𝜏. Block intervals should be selected carefully to 

ensure a sufficiently large sample size. Choosing a block interval of 𝜏 results in a 
𝑁

𝜏
 sample size, 

where N is the total number of days. 
𝑁

𝜏
 also represents the total number of blocks or the equivalent 

total number of extreme travel times during the studied time span. For example, choosing a 1-day 

block interval results in 2,191 extreme travel time observations for 6 years. If a block interval is 

shorter, the sample size is larger. Consequently, a larger sample size results in a least biased mean 

and SD of the extreme travel time as calculated for each time interval t with the length of T per 

hour (T > 𝜏). However, the block interval should be large enough to ensure that each block has a 

sufficient number of observations and allows the extreme travel time to be observed among a 

relatively large set of travel data. Choosing a relatively large block interval is justified by the 

requirement that the extracted extreme travel time from each block interval can be guaranteed to 

be a truly extreme value. The block interval of 7 days/1 week, is considered in this study as a 

compromise between the two constraints. Choosing 7-day block intervals provides a sample size 

of 313 extreme observations over a period of 6 years.  

After constructing the extreme travel time database, an appropriate value must be assigned 

to the time interval T to evaluate the period-to-period variation (monthly and seasonal variation in 

this study) in travel time. The mean and SD of extreme travel time is calculated for each time 

interval. Choosing a time interval of T results in 
𝑁

𝑇
 of mean-SD points for period-to-period and a 
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total of 
𝑁

90
 points for seasonal variation - assuming each season includes on average 90 days - for 

which the linearity of the fitted curve must be examined. Similar to the block interval, T should be 

assigned an appropriate value. A large value of time interval T enables us to calculate the mean 

and SD of a relatively large number of extreme travel observations, which reduces the bias in 

calculating the mean and SD in each time interval. However, T should be small enough to have a 

sufficient number of mean-SD points for a seasonal level as choosing a large time interval 

significantly reduces the mean-SD data points. T is considered as one month in this study to 

accommodate these two constraints. Therefore, [
2191

30.42
] = 72 and [

2191

90
] = 24 mean-SD points are 

obtained for monthly and seasonal levels, respectively, where 30.42 represents the average number 

of days in a month.  

Assuming that a linear relationship holds at both monthly and seasonal levels, the linear 

relationship between the mean and SD of extreme travel time data at the monthly level is expressed 

as follows: 

 

𝜎𝜖 = 𝜃1𝜇𝜖 + 𝜃2  (2.4) 

 

Where: 

𝜖- extreme travel time per unit distance (min/km) 

𝜎𝜖- SD of 𝜖  (min/km) 

𝜇𝜖- mean of 𝜖 (min/km) 

𝜃1, 𝜃2- coefficients 

 

Equation (2.4) suggests that by increasing the mean of the extreme travel time, the SD of the 

extreme travel time also increases. When there is no variation in travel time, all vehicles most 
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likely experience only slight variation in the observed mean extreme travel time. The x-intercept 

as obtained by setting the SD in Equation (2.4) to zero is called the minimum observed mean 

extreme travel time, i.e., 0 mean extreme travel delay2 as indicated in Figure 2.1. Therefore, the 

mean extreme travel time becomes equal to (− 𝜃2 𝜃1⁄ ). Therefore, the x-intercept in the monthly 

plot represents the minimum observed mean extreme travel time. 

The extreme travel delay can be calculated by subtracting the minimum observed mean of 

extreme travel time from each extreme travel time. It can be mathematically shown by 𝑑 = 𝜖 −

(−𝜃2 𝜃1⁄ ) where 𝑑 is a random variable that represents extreme travel delay per km. The mean 

and SD of extreme travel delay are 𝜇𝑑 = 𝜇𝜖 + (𝜃2 𝜃1⁄ ) and 𝜎𝑑 = 𝜎𝜖, respectively. 𝜇𝜖  can be 

written as 𝜇𝜖 = 𝜇𝑑 − (𝜃2 𝜃1⁄ ). Equation (2.5) is obtained by replacing 𝜇𝜖  and 𝜎𝜖 in Equation (2.4) 

as follows: 

 

𝜎𝑑 = 𝜃1𝜇𝑑  (2.5) 

 

In Equation (2.5), 𝜃1 is the coefficient of variation (CV) of the extreme travel delay, and the x-

intercept of the monthly extreme travel delay data is 0. 

For time intervals t=1, …, M in each season j=1, …, S, the mean and SD of extreme travel 

delay data can be obtained as follows: 

 

𝜇𝑑𝑡𝑗 =
1

𝑛𝑡𝑗
∑𝑑𝑖𝑡𝑗

𝑛𝑡𝑗

𝑖=1

  (2.6) 

 

 

2 This extreme travel delay is obtained by subtracting the x-intercept (i.e., the minimum observed mean extreme travel 

time) from the extreme travel time and is different from the actual extreme travel delay, which is obtained by 

subtracting the extreme travel time from the free-flow travel time. For the rest of the chapter, I refer to the former 

simply as extreme travel delay. When needed, the latter will be indicated as actual travel delay. The extreme travel 

delay can be converted into the actual travel delay anytime given the x-intercept and the free-flow travel time. 
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𝜎𝑑𝑡𝑗 = √
1

𝑛𝑡𝑗
∑(𝑑𝑖𝑡𝑗

2

𝑛𝑡𝑗

𝑖=1

− 𝜇𝑑𝑡𝑗
2)  (2.7) 

 

Where: 

𝑖- block interval index 

𝑡- time interval index 

𝑗- season index 

𝑀- total number of time intervals in each season 

𝑆- total number of seasons 

𝜇𝑑𝑡𝑗- mean of extreme travel delay at time interval t in season j 

𝜎𝑑𝑡𝑗- SD of extreme travel delay at time interval t in season j 

𝑛𝑡𝑗- total number of blocks at time interval t in season j 

𝑑𝑖𝑡𝑗- extreme travel delay of block i at time interval 𝑡 in season j 

 

The linear relationship between the mean and SD of extreme travel delay can be rewritten: 

 

𝜎𝑑𝑡𝑗 = 𝜃𝜇𝑑𝑡𝑗   (2.8) 

 

where 𝜃 represents the CV of the 𝑑𝑡𝑗. 

 Similar to the monthly variation in extreme travel delay, the mean and SD of the seasonal 

extreme travel delay variation are calculated assuming 𝐷𝑡𝑗 as the mean extreme travel delay for 

time interval t in season j. 
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𝜇𝐷𝑗 =
1

𝑀
∑𝐷𝑡𝑗

𝑀

𝑡=1

  (2.9) 

 

𝜎𝐷𝑗 = √
1

𝑀
∑(𝐷𝑡𝑗

2

𝑀

𝑡=1

− 𝜇𝐷𝑗
2)  (2.10) 

 

Where: 

𝜇𝐷𝑗- mean extreme travel delay in season 𝑗 

𝜎𝐷𝑗- SD of extreme travel delay in season 𝑗 

 

In Equation (2.11), 𝐷𝑡𝑗 corresponds to 𝜇𝑑𝑡𝑗  in Equation (2.6) as follows: 

 

𝐷𝑡𝑗 = 𝜇𝑑𝑡𝑗 =
1

𝑛𝑡𝑗
∑𝑑𝑖𝑡𝑗

𝑛𝑡𝑗

𝑖=1

  (2.11) 

 

The linear relationship between the mean and SD of seasonal extreme travel delay variation can 

be expressed as follows: 

 

𝜎𝐷𝑗 = 𝛩𝜇𝐷𝑗   (2.12) 

 

where 𝛩 denotes the CV of 𝐷𝑗. 
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Figure 2.2. Monthly (left) and Seasonal (right) mean-SD plots for extreme travel delay on a road 

segment in Calgary 

 

To validate the linear relationship between the mean and SD of extreme travel delay 

represented in Equations (2.8) and (2.12), a number of curves previously used in the literature to 

describe the mean-SD relationship of travel delay (linear, quadratic, exponential and square-root) 

are fitted to the monthly and seasonal extreme travel delay data for multiple links in the Calgary 

network. An example is depicted in Figure 2.2 for the 0.82 km section of Shaganappi Trail NW N. 

As can be seen in Figure 2.2, the SD of the extreme travel delay increases as the mean of extreme 

travel delay increases. This finding is intuitive as similar trend has been found in the literature for 

vehicle-to-vehicle and period-to-period travel time variability (Mahmassani et al., 2012, Kim and 

Mahmassani, 2015). According to Prigogine and Herman (1971), the mean travel time and its 

variance changes according to traffic conditions. In uncongested traffic condition, drivers are able 

to maintain fairly high and relatively similar speed which contributes to the findings that relatively 

short mean travel times with low standard deviation prevail. On the other hand, increased traffic 

congestion causes decrease in the average speed of the drivers. Consequently, drivers experience 

increased interactions with other vehicles in their vicinities. These interactions lead to increase in 
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the fluctuations of the traffic speed which consequently causes increase in the SD of travel time 

(Mahmassani et al., 2012).  

 While the R-square value obtained from fitting the quadratic curve is slightly better in both 

monthly and seasonal variations in extreme travel delay compared to the linear model (0.5032 vs. 

0.5012 in the monthly case and 0.5364 vs. 0.5361 for the seasonal case), the quadratic model tends 

to overfit both monthly and seasonal data; a slight improvement in the associated R-square values 

is not statistically significant and cannot be justified because it is an overly complex model. 

Moreover, a simple linear model results in a less complex representation of the model, which is 

desirable for describing the period-to-period and seasonal variations of extreme travel delay. As 

shown in Figure 2.2, the intercepts of the obtained linear relationship between the mean and SD 

of extreme travel delay for both period-to-period and seasonal levels (-0.058 and -0.022, 

respectively) are not significantly different from 0 for a 99% confidence interval given the t-stat 

value of 0.035 and 0.008, respectively, which further verifies the linear relationships represented 

in Equations (2.8) and (2.12). These linear relationships are validated using data from other links 

in the Calgary network with different lengths and speed limits. The average R-square value is 

found as 0.71 with the SD of 0.17 calculated across 5,104 links in Calgary road network. In brief, 

the linear model is better in modeling the monthly variation in extreme travel delay compared to 

the quadratic, exponential and square root functions. Moreover, the linear model represents a good 

fit to the seasonal variation in extreme travel delay data. The results confirm that a linear 

relationship exists between the mean and SD of extreme travel delay data, which is valid for both 

the monthly and seasonal levels. 
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2.4 Extreme travel delay modeling 

2.4.1 Multiplicative error model 

In this section, the individual extreme travel delay on a given link is modeled. The extreme 

travel delays that belong to time interval t are denoted by 𝑑𝑡 (min/km). As shown in Figure 2.2, 

some degree of heteroscedasticity exists in the monthly variation in the observed extreme travel 

time mean-SD data. The observed heteroscedasticity requires a modeling tool capable of 

addressing the time-varying variance resulting from the observed heteroscedasticity. In addition, 

using Equation (2.7) to calculate the SD of extreme travel delay for different time intervals implies 

that the variance of extreme travel delay data is not constant and varies over time, as shown in 

Figure 2.2, where the SD of the individual extreme travel delay data varies between 0.97 and 3.60 

(min/km) on the y-axis. A varying SD suggests that the error term of the individual extreme travel 

delay cannot be expressed by an additive error model in which the variance of the error component 

is assumed to be constant. A multiplicative error model is utilized to address the variability of the 

extreme travel delay variance; the model describes the relationship between an individual extreme 

travel delay and its mean as shown in Equation (2.13): 

 

𝑑𝑡 = 𝐷𝑡. 𝜀𝑑  (2.13) 

 

where 𝐷𝑡 is the mean of 𝑑𝑡, which represents the mean extreme travel delay at time interval t, and 

𝜀𝑑 is the error term, which denotes the period-to-period variation of the extreme travel delay 

around its mean.  

Given positive values of 𝑑𝑡 (extreme travel delay) and 𝐷𝑡 (mean extreme travel delay), the 

error term in Equation (2.13) only takes positive values. In addition, assuming a multiplicative 

error model, the expected value of 𝜀𝑑, denoted by 𝐸(𝜀𝑑), must be equal to 1 (Engle, 2002). The 
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random error term 𝜀𝑑 can follow any continuous PDF that satisfies the above specifications. 

Examples of such distributions include the exponential, gamma, log-normal, log-logistic, Pareto, 

and GEV distributions. Choosing the best-fitted distribution to 𝜀𝑑 requires identifying which PDF 

best describes the period-to-period individual extreme travel delay (𝑑𝑡). In this study, since the 

observed extreme travel delay data (𝑑𝑡) follow the GEV distributions as discussed in detail in 

section 2.2, the error term (𝜀𝑑)  is assumed to follow the GEV distribution with a unit mean. 

More specifically, the error term follow the GEV distribution with location parameter 𝜇𝑑, 

shape parameter 𝜉𝑑, and scale parameter 
𝜉𝑑(1−𝜇𝑑)

𝛤(1−𝜉𝑑)−1
 3 denoted by 𝜀𝑑  ~𝐺𝐸𝑉 (𝜇𝑑 ,

𝜉𝑑(1−𝜇𝑑)

𝛤(1−𝜉𝑑)−1
, 𝜉𝑑), 

where 𝛤(∙) is the gamma function. Consequently, 𝑑𝑡 in Equation (2.13) follows the GEV 

distribution denoted by 𝑑𝑡  ~𝐺𝐸𝑉 (𝜇𝑑𝐷𝑡 ,
𝜉𝑑(1−𝜇𝑑)𝐷𝑡

𝛤(1−𝜉𝑑)−1
, 𝜉𝑑). 

In the next step, the seasonal variation in extreme travel delay is modeled also using a 

multiplicative error model as follows: 

 

𝐷𝑡 = 𝛥𝑗 . 𝜀𝐷  (2.14) 

 

where 𝛥𝑗 is the mean of 𝐷𝑡 and represents seasonal extreme travel delay considering time interval 

of length T. 𝜀𝐷 is the error component and represents the seasonal variation of the mean extreme 

travel delay around 𝛥𝑗. Similar to the period-to-period case, 𝜀𝐷 is assumed to follow the GEV 

distribution with a unit mean. Similar to 𝑑𝑡, the extreme value theory can also apply to 𝐷𝑡, which 

is the mean of 𝑑𝑡. 

 

 

3 Please refer to Appendix I on how the scale parameter is calculated based on the location parameter and shape 

parameter. 
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Proposition 1. Assume d1tj, d2tj, …, ditj are a series of period-to-period extreme travel delay 

observations where ditj is the extreme travel delay of block i at time interval 𝑡 for season j. Also, 

assume that 𝐷𝑡𝑗 is the seasonal mean of the extreme travel delay of time interval t and season j 

where 𝐷𝑡𝑗 =
1

𝑛𝑡𝑗
∑ 𝑑𝑖𝑡𝑗
𝑛𝑡𝑗
𝑖=1

. The random variable 𝐷𝑡𝑗, which represents the period-to-period mean 

of extreme travel delay (𝐷𝑡𝑗), follows the GEV. 

 

Proof 1. From the definition of the period-to-period extreme travel delay, Equation (2.15) can be 

used to describe ditj. 

 

𝑑𝑖𝑡𝑗 = 𝑚𝑎𝑥{𝑑1𝑖𝑡𝑗 , 𝑑2𝑖𝑡𝑗 , … , 𝑑ℎ𝑖𝑡𝑗}  (2.15) 

 

where 𝑑ℎ𝑖𝑡𝑗  denotes hth travel delays of block i at time interval 𝑡 in season j. Equation (2.15) states 

that in each block, the maximum individual delay is chosen as the extreme travel delay. Choosing 

any other individual travel delay rather than the maximum in block 1 results in a different period-

to-period mean of extreme travel delay, which can be shown by 𝐷𝑡𝑗
1  where 𝐷𝑡𝑗

1 ≤ 𝐷𝑡𝑗 . Similarly, 

the period-to-period mean of extreme travel delay that is obtained by choosing an individual travel 

delay rather than the maximum in block i results in 𝐷𝑡𝑗
𝑖  where 𝐷𝑡𝑗

𝑖 ≤ 𝐷𝑡𝑗. Thus, in a series 

{𝐷𝑡𝑗
1 , 𝐷𝑡𝑗

2 , … ,𝐷𝑡𝑗
𝑖 , … , 𝐷𝑡𝑗 , … , 𝐷𝑡𝑗

𝑛 },  𝐷𝑡𝑗 is the maximum (extreme) period-to-period mean of extreme 

travel delay in time interval t in season j; thus, the extreme value theory is applied to 𝐷𝑡𝑗. 

Since 𝐷𝑡 follows the GEV, the error term 𝜀𝐷 in Equation (2.14) also follows the GEV. 

More specifically 𝜀𝐷 follows the GEV with location parameter 𝜇𝐷 , shape parameter 𝜉𝐷 , and scale 

parameter 
𝜉𝐷(1−𝜇𝐷)

𝛤(1−𝜉𝐷)−1
 denoted by 𝜀𝐷 ~𝐺𝐸𝑉 (𝜇𝐷,

𝜉𝐷(1−𝜇𝐷)

𝛤(1−𝜉𝐷)−1
, 𝜉𝐷). Since the extreme travel delay 

distribution is usually bounded on the left side and highly skewed to the right, it is likely that both 
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𝜉𝑑 ≠ 0 and 𝜉𝐷 ≠ 0. In the case that any shape parameter is equal to 0, the associated GEV 

distribution will not have a lower bound, which is unlikely in the case of extreme travel delay 

distribution. Thus, it is assumed that 𝜉𝑑 ≠ 0 and 𝜉𝐷 ≠ 0, and therefore, the first part of the GEV 

distribution in Equation (2.3) applies to both period-to-period and seasonal extreme travel delay 

data. Table 2.1 summarizes the specifications of the discussed models. For the period-to-period 

distribution model, the CV of the error term is equal to the CV of the extreme travel delay, which 

is 𝜃 in Equation (2.8). Similarly, for the seasonal distribution model, the CV of the error term is 

equal to the CV of the mean extreme travel delay, which is 𝛩 in Equation (2.12). The CVs of both 

the extreme travel delay and mean extreme travel delay can be used to compare the CV enhanced 

by the GEV distributions with the slopes of the linear models fitted to the period-to-period (𝜃) and 

seasonal extreme travel delay data (𝛩). This comparison provides more insight into how well the 

individual GEV distribution fits the empirical data. 

 

Table 2.1. Characterizing period-to-period and seasonal extreme travel delay variability 

 Period-to-period distribution Seasonal distribution 

Error model 𝑑𝑡 = 𝐷𝑡 . 𝜀𝑑  𝐷𝑡 = 𝛥𝑗 . 𝜀𝐷 

Distribution GEV GEV 

Properties of 

error term 

distribution 

𝜀𝑑  ~𝐺𝐸𝑉 (𝜇𝑑 ,
𝜉𝑑(1 − 𝜇𝑑)

𝛤(1 − 𝜉𝑑) − 1
, 𝜉𝑑) 

𝐸(𝜀𝑑) = 𝜇𝑑 +
𝜉𝑑(1 − 𝜇𝑑)

𝛤(1 − 𝜉𝑑) − 1

𝛤(1 − 𝜉𝑑) − 1

𝜉𝑑
= 1  

𝑉𝐴𝑅(𝜀𝑑) = (
1 − 𝜇𝑑

𝛤(1 − 𝜉𝑑) − 1
)

2

(𝛤(1 − 2𝜉𝑑) − 𝛤(1 − 𝜉𝑑)
2) 

𝐶𝑉(𝜀𝑑) =
1 − 𝜇𝑑

𝛤(1 − 𝜉𝑑) − 1
√(𝛤(1 − 2𝜉𝑑) − 𝛤(1 − 𝜉𝑑)

2) 

𝜀𝐷 ~𝐺𝐸𝑉 (𝜇𝐷 ,
𝜉𝐷(1 − 𝜇𝐷)

𝛤(1 − 𝜉𝐷) − 1
, 𝜉𝐷) 

𝐸(𝜀𝐷) = 𝜇𝐷 +
𝜉𝐷(1 − 𝜇𝐷)

𝛤(1 − 𝜉𝐷) − 1

𝛤(1 − 𝜉𝐷) − 1

𝜉𝐷
= 1 

𝑉𝐴𝑅(𝜀𝐷) = (
1 − 𝜇𝐷

𝛤(1 − 𝜉𝐷) − 1
)

2

(𝛤(1 − 2𝜉𝐷) − 𝛤(1 − 𝜉𝐷)
2) 

𝐶𝑉(𝜀𝐷) =
1 − 𝜇𝐷

𝛤(1 − 𝜉𝐷) − 1
√(𝛤(1 − 2𝜉𝐷) − 𝛤(1 − 𝜉𝐷)

2) 

Properties of 

response 

variable 

distribution 

𝑑𝑡  ~𝐺𝐸𝑉 (𝜇𝑑𝐷𝑡 ,
𝜉𝑑(1 − 𝜇𝑑)𝐷𝑡

𝛤(1 − 𝜉𝑑) − 1
, 𝜉𝑑) 

𝐸(𝑑𝑡) = 𝐷𝑡  

𝑉𝐴𝑅(𝑑𝑡) = 𝐷𝑡
2 (

1 − 𝜇𝑑

𝛤(1 − 𝜉𝑑) − 1
)

2

(𝛤(1 − 2𝜉𝑑) − 𝛤(1 − 𝜉𝑑)
2) 

𝐶𝑉(𝑑𝑡) =
1 − 𝜇𝑑

𝛤(1 − 𝜉𝑑) − 1
√(𝛤(1 − 2𝜉𝑑) − 𝛤(1 − 𝜉𝑑)

2) 

𝐷𝑡 ~𝐺𝐸𝑉 (𝜇𝐷𝛥𝑗 ,
𝜉𝐷(1 − 𝜇𝐷)𝛥𝑗

𝛤(1 − 𝜉𝐷) − 1
, 𝜉𝐷) 

𝐸(𝐷𝑡) = 𝛥𝑗 

𝑉𝐴𝑅(𝐷𝑡) = 𝛥𝑗
2 (

1 − 𝜇𝐷

𝛤(1 − 𝜉𝐷) − 1
)

2

(𝛤(1 − 2𝜉𝐷) − 𝛤(1 − 𝜉𝐷)
2) 

𝐶𝑉(𝐷𝑡) =
1 − 𝜇𝐷

𝛤(1 − 𝜉𝐷) − 1
√(𝛤(1 − 2𝜉𝐷) − 𝛤(1 − 𝜉𝐷)

2) 
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2.4.2 CGEV distribution to model extreme travel delay 

A new equation can be obtained by combining Equations (2.13) and (2.14); this new 

equation describes the extreme travel delay (𝑑𝑡) based on the two error terms as follows: 

 

𝑑𝑡 = 𝛥𝑗. 𝜀𝐷. 𝜀𝑑  (2.16) 

 

Since 𝑑𝑡 is the product of the multiplication of two randomly GEV distributed error terms, 𝑑𝑡 can 

be modeled using a CGEV distribution. In this study, a new representation of CGEV distribution 

is derived as follows: 

Let 𝐷𝑡 follow the GEV distribution, i.e., 𝐷𝑡  ~𝐺𝐸𝑉 (𝜇𝐷𝛥𝑗,
𝜉𝐷(1−𝜇𝐷)𝛥𝑗

𝛤(1−𝜉𝐷)−1
, 𝜉𝐷). The PDF of 𝐷𝑡 is given 

by the following equation:  

 

𝑓(𝐷𝑡) =
 𝛤(1 − 𝜉𝐷) − 1

𝜉𝐷(1 − 𝜇𝐷)𝛥𝑗
𝑒𝑥𝑝 [−(1 +

(𝐷𝑡 − 𝜇𝐷𝛥𝑗)(𝛤(1 − 𝜉𝐷) − 1)

(1 − 𝜇𝐷)𝛥𝑗
)

−
 1
𝜉𝐷

] . (1 +
(𝐷𝑡 − 𝜇𝐷𝛥𝑗)(𝛤(1 − 𝜉𝐷) − 1)

(1 − 𝜇𝐷)𝛥𝑗
)

−1−
 1
𝜉𝐷

 (2.17) 

 

The conditional PDF of 𝑑𝑡 given its mean (𝐷𝑡) under 𝑑𝑡 ~𝐺𝐸𝑉 (𝜇𝑑𝐷𝑡,
𝜉𝑑(1−𝜇𝑑)𝐷𝑡

𝛤(1−𝜉𝑑)−1
, 𝜉𝑑) is as 

follows: 

 

𝑓(𝑑𝑡|𝐷𝑡) =
 𝛤(1 − 𝜉𝑑) − 1

𝜉𝑑(1 − 𝜇𝑑)𝐷𝑡
𝑒𝑥𝑝 [−(1 +

(𝑑𝑡 − 𝜇𝑑𝐷𝑡)(𝛤(1 − 𝜉𝑑) − 1)

(1 − 𝜇𝑑)𝐷𝑡
)

−
 1
𝜉𝑑
] . (1 +

(𝑑𝑡 − 𝜇𝑑𝐷𝑡)(𝛤(1 − 𝜉𝑑) − 1)

(1 − 𝜇𝑑)𝐷𝑡
)

−1−
 1
𝜉𝑑

 (2.18) 

 

The unconditional PDF of 𝑑𝑡 is obtained by integrating the multiplication of the PDFs in Equations 

(2.17) and (2.18) over all possible values of 𝐷𝑡 from 0 to infinity.  

 

𝑓(𝑑𝑡) = ∫ 𝑓(𝑑𝑡|𝐷𝑡)𝑓(𝐷𝑡) 𝑑𝐷𝑡

∞

0

  (2.19) 

 

The intermediate form of the PDF is as follows:  
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𝑓(𝑑𝑡) =
𝛾𝑑𝛾𝐷
𝛥𝑗𝜉𝑑𝜉𝐷

∫ 𝐷𝑡
−1𝑒𝑥𝑝[−(1 − 𝜇𝑑𝛾𝑑 + 𝛾𝑑

𝑑𝑡
𝐷𝑡
)
−
 1
𝜉𝑑

∞

0

− (1 − 𝜇𝐷𝛾𝐷 + 𝛾𝐷
𝐷𝑡
𝛥𝑗
)

−
 1
𝜉𝐷
](1 − 𝜇𝑑𝛾𝑑 + 𝛾𝑑

𝑑𝑡
𝐷𝑡
)
−1−

 1
𝜉𝑑
(1 − 𝜇𝐷𝛾𝐷 + 𝛾𝐷

𝐷𝑡
𝛥𝑗
)

−1−
 1
𝜉𝐷
 𝑑𝐷𝑡 

(2.20) 

 

Where 𝛾𝑘 =
𝛤(1−𝜉𝑘)−1

1−𝜇𝑘
. Since there is no direct closed-form expression for the integral in Equation 

(2.20), I solve the problem using the Taylor series representation of the exponential function shown 

in Equation (2.21): 

 

𝑒𝑥 =  ∑
𝑥𝑣

𝑣!

∞

𝑣=0

 (2.21) 

 

Expanding the exponential components in Equation (2.20) using Equation (2.21) results in 

Equation (2.22) as follows: 

 

𝑓(𝑑𝑡) =
𝛾𝑑𝛾𝐷

𝛥𝑗𝜉𝑑𝜉𝐷
∫ ∑∑𝐷𝑡

−1 (−1)𝑚+𝑛

(𝑚 − 1)! (𝑛 − 1)!
(1 − 𝜇𝑑𝛾𝑑 + 𝛾𝑑

𝑑𝑡

𝐷𝑡
)

−1−
 𝑚
𝜉𝑑
(1 − 𝜇𝐷𝛾𝐷 + 𝛾𝐷

𝐷𝑡

𝛥𝑗
)

−1−
 𝑛
𝜉𝐷

∞

𝑛=1

∞

𝑚=1

∞

0

 𝑑𝐷𝑡  (2.22) 

 

Equation (2.22) can be approximated by Equation (2.23) considering the Taylor polynomial form 

of Equation (2.22), i.e., taking r initial terms of the Taylor series, and rearranging the integral in 

Equation (2.22): 

 

𝑓(𝑑𝑡) =
𝛾𝑑𝛾𝐷

𝛥𝑗𝜉𝑑𝜉𝐷
∑ ∑∫ 𝐷𝑡

−1 (−1)𝑚+𝑛

(𝑚 − 1)! (𝑛 − 1)!
(1 − 𝜇𝑑𝛾𝑑 + 𝛾𝑑

𝑑𝑡

𝐷𝑡
)

−1−
 𝑚
𝜉𝑑
(1 − 𝜇𝐷𝛾𝐷 + 𝛾𝐷

𝐷𝑡

𝛥𝑗
)

−1−
 𝑛
𝜉𝐷∞

0

𝑟

𝑛=1

𝑟

𝑚=1

 𝑑𝐷𝑡 (2.23) 
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A closed-form algebraic expression based on a regularized hypergeometric function4 is found for 

the integral in Equation (2.23) which results in Equation (2.24) as the closed-form expression for 

the CGEV distribution as follows: 

 

𝑓(𝑑𝑡) =
𝛾𝑑𝛾𝐷
𝛥𝑗𝜉𝑑𝜉𝐷

∑∑
(−1)𝑚+𝑛

(𝑚 − 1)! (𝑛 − 1)!

𝜋 (𝛾𝑑𝑑𝑡)
−1−

 𝑚
𝜉𝑑  (1 − 𝜇𝐷𝛾𝐷)

−1−
 𝑛
𝜉𝐷  𝑐𝑠𝑐 [𝜋(

 𝑚
𝜉𝑑
−
 𝑛
𝜉𝐷
)]

𝛤 (1+
 𝑚
𝜉𝑑
)𝛤 (1 +

 𝑛
𝜉𝐷
)

𝑟

𝑛=1

𝑟

𝑚=1

𝑓 (2.24) 

 

Where 𝑓 is as follows: 

 

𝑓 = 𝛤 (1 +
 𝑛

𝜉𝐷
)
2

[
 𝛾𝐷

𝛥𝑗(1 − 𝜇𝐷𝛾𝐷)
]

−1−
 𝑛
𝜉𝐷
[
1 − 𝜇𝑑𝛾𝑑
𝛾𝑑𝑑𝑡

]

 𝑛
𝜉𝐷
−
 𝑚
𝜉𝑑

2 1F
(1 +

 𝑛

𝜉𝐷
, 1 +

 𝑛

𝜉𝐷
;
 𝑛

𝜉𝐷
−
 𝑚

𝜉𝑑

+ 1;
𝛥𝑗  (1 − 𝜇𝑑𝛾𝑑)(1 − 𝜇𝐷𝛾𝐷)

𝛾𝑑𝛾𝐷𝑑𝑡
)

− 𝛤 (1 +
 𝑚

𝜉𝑑
)
2

[
 𝛾𝐷

𝛥𝑗(1 − 𝜇𝐷𝛾𝐷)
]

−1−
 𝑚
𝜉𝑑

2 1F
(1 +

 𝑚

𝜉𝑑
, 1 +

 𝑚

𝜉𝑑
;
 𝑚

𝜉𝑑
−
 𝑛

𝜉𝐷

+ 1;
𝛥𝑗(1 − 𝜇𝑑𝛾𝑑)(1 − 𝜇𝐷𝛾𝐷)

𝛾𝑑𝛾𝐷𝑑𝑡
) 

(2.25) 

 

Different values of r yield different approximations of the intermediate form of the PDF in 

Equation (2.20). For the ideal case of 𝑟 = ∞, Equation (2.24) is the exact representation of 

Equation (2.20). However, calculating infinity terms of the polynomial Taylor expansion of the 

exponential function can be computationally exhaustive. The appropriate value of r used in the 

Taylor expansion to approximate the function depends on the desired tolerance. Figure 2.3 

represents different PDFs with different parameters estimated for 𝑟 = 2, 3, 4, 5 along with the 

intermediate form of the PDF. Considering a tolerance of 0.001, choosing the first five terms of 

 

4 Refer to Gradshteyn and Ryzhik (2014) for more information on the hypergeometric function and its properties. 
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the Taylor expansion (𝑟 = 5) of both exponential functions in Equation (2.20) provides a very 

close approximation of the intermediate form of the PDF, as shown in Figure 2.3. 

 

 

Figure 2.3. PDFs with different parameters approximated for different value of r versus the 

intermediate form (𝒅𝒕 is per 𝒎𝒊𝒏 𝒌𝒎⁄ ) 

 

The CDF of the CGEV distribution is then calculated by integrating the PDF as follows: 

 

𝐹(𝑑𝑡) = ∫ 𝑓(𝑥)
𝑑𝑡

−∞

 𝑑𝑥 (2.26) 
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The CDF of the CGEV distribution is obtained as follows: 

 

𝐹(𝑑𝑡) =
𝛾𝑑𝛾𝐷
𝛥𝑗𝜉𝑑𝜉𝐷

∑∑
(−1)𝑚+𝑛

(𝑚 − 1)! (𝑛 − 1)!

𝜋 (𝛾𝑑)
−1−

 𝑚
𝜉𝑑  (1 − 𝜇𝐷𝛾𝐷)

−1−
 𝑛
𝜉𝐷  𝑐𝑠𝑐 [𝜋(

 𝑚
𝜉𝑑
−
 𝑛
𝜉𝐷
)]

𝛤 (1 +
 𝑚
𝜉𝑑
)𝛤 (1+

 𝑛
𝜉𝐷
)

𝑟

𝑛=1

𝑟

𝑚=1

𝐹 (2.27) 

 

Where 𝐹 is as follows: 

 

𝐹 = 𝛤 (1 +
 𝑛

𝜉𝐷
)
2

[
 𝛾𝐷

𝛥𝑗(1 − 𝜇𝐷𝛾𝐷)
]

−1−
 𝑛
𝜉𝐷
[
1 − 𝜇𝑑𝛾𝑑

𝛾𝑑
]

 𝑛
𝜉𝐷
−
 𝑚
𝜉𝑑 (𝑑𝑡)

−
 𝑛
𝜉𝐷

−
 𝑛
𝜉𝐷
− 𝑛

2 1F
(1 +

 𝑛

𝜉𝐷
, 1 +

 𝑛

𝜉𝐷
;
 𝑛

𝜉𝐷
−
 𝑚

𝜉𝑑

+ 1;
𝛥𝑗  (1 − 𝜇𝑑𝛾𝑑)(1 − 𝜇𝐷𝛾𝐷)

𝛾𝑑𝛾𝐷𝑑𝑡
)

− 𝛤 (1 +
 𝑚

𝜉𝑑
)
2

[
 𝛾𝐷

𝛥𝑗(1 − 𝜇𝐷𝛾𝐷)
]

−1−
 𝑚
𝜉𝑑 (𝑑𝑡)

−
 𝑚
𝜉𝐷

−
 𝑚
𝜉𝐷
−𝑚

2 1F
(1 +

 𝑚

𝜉𝑑
, 1 +

 𝑚

𝜉𝑑
;
 𝑚

𝜉𝑑
−
 𝑛

𝜉𝐷

+ 1;
𝛥𝑗(1 − 𝜇𝑑𝛾𝑑)(1 − 𝜇𝐷𝛾𝐷)

𝛾𝑑𝛾𝐷𝑑𝑡
) 

(2.28) 

 

 The obtained CGEV distribution has five parameters, 𝜇𝑑, 𝜉𝑑, 𝜇𝐷 , 𝜉𝐷 , and 𝛥𝑗, where 

𝜇𝑑 , 𝜉𝑑 , 𝜇𝐷, 𝜉𝐷 ∈ ℝ and 𝛥𝑗 ∈ (0,∞). Thus, the distribution of 𝑑𝑡 is 𝑑𝑡~CGEV(𝜇𝑑, 𝜇𝐷; 𝜉𝑑 , 𝜉𝐷; 𝛥𝑗). 

𝜇𝑑 and 𝜇𝐷  are the location parameters, 𝜉𝑑 and 𝜉𝐷  are the shape parameters, and 𝛥𝑗 is the seasonal 

mean of the extreme travel delay in the CGEV distribution. 𝜇𝑑 and 𝜉𝑑 represent the period-to-

period variation in the extreme travel delay, and 𝜇𝐷 , 𝜉𝐷 , and 𝛥𝑗 characterize the seasonal 

distribution of extreme travel delay.  

 

2.5 Analysis of extreme travel time data 

2.5.1 Data 

A real-world case study was conducted to showcase the procedures of calibrating the 

CGEV distribution and its applications in modeling the variability in extreme travel delay data 
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collected from various roadways in the City of Calgary over a long-term evaluation period. For 

this study, travel time data of the selected corridors were collected for each day between December 

31, 2013 to December 31, 2019 for 6 years (2191 days); the data was aggregated over 1-minute 

time intervals to fully investigate the impact of rare events on the performance of the links. The 

update time interval of a minimum of 1 minute was required to have a sufficient number of travel 

times to determine the rare events. The data was collected by INRIX Roadway Analytics, which 

provides services that allow users to view and query regional traffic flow information. The 

coverage of the INRIX Roadway Analytics5 includes provincial highways, the Major Road 

Network, and select arterial roads within the metro Calgary boundary. 

 The performance of the proposed approach is evaluated for the majority of the links in the 

Calgary road network. Around 85% of the Calgary road network, consisting of 5104 links, were 

selected for the analysis. To showcase the performance of the model at the link level, I selected a 

0.82 km section of Shaganappi Trail NW N, Calgary as an example. This link connects several 

business centers and shopping centers with two residential areas. Moreover, this link is part of a 

corridor that connects two major roads in Calgary: 16th Avenue and Crowchild Trail. For the 

analysis, I divided the whole dataset into equal blocks of 1 week, i.e., 𝜏 = 7 days. Choosing block 

intervals of 1 week resulted in 313 extreme observations. 

 

2.5.2 Investigating the linear relationship between the mean and SD of extreme travel delay 

The linear relationship between the mean and SD of extreme travel delay is investigated 

by calculating the mean and SD of the extreme delays obtained from each block interval. The mean 

and SD of the extreme travel delay is calculated for both period-to-period (month-to-month) and 

 

5 https://inrix.com/products/roadway-analytics/ 

https://inrix.com/products/roadway-analytics/
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seasonal levels using Eqs. (8) and (12), respectively. The linear model parameter estimation 

algorithm is summarized in terms of pseudocode as presented in Table 2.1. 

 

Table 2.2. Algorithm for estimating the parameters of the mean-SD linear model 

Procedure LinearModelParametersEstimation 

Input: Historical travel time information for links in network 𝐺 

Output: Parameters of the mean-SD linear model of extreme travel delay for each link  

Initialization:  

Assign an appropriate value to the block interval 𝜏 

Assign an appropriate value to the time interval T where 𝜏 ≤ T 

Step 1: Obtain x-intercept for period-to-period level 

             For each link 𝑙 ∈ 𝐺 

  For each season j=1, …, S 

      For each time interval t=1, …, M 

          For each block interval 𝑖 = 1, . . . , 𝑛𝑡𝑗  

Set 𝑡_𝑡𝑖𝑡𝑗 ∶= 𝑚𝑎𝑥{𝑡_𝑡1𝑖𝑡𝑗 , 𝑡_𝑡2𝑖𝑡𝑗 , … , 𝑡_𝑡ℎ𝑖𝑡𝑗}* 

⟹
∑ ∑ 𝑛𝑡𝑗

𝑀
𝑡=1

𝑆
𝑗=1  = 𝑁

𝜏
 blocks or the equivalent total number of extreme travel times 

          End for 

          Set 𝜇𝑡_𝑡𝑡𝑗  ≔
1

𝑛𝑡𝑗
∑ 𝑑𝑖𝑡𝑗
𝑛𝑡𝑗
𝑖=1

 , 𝜎𝑡_𝑡𝑡𝑗  ≔ √
1

𝑛𝑡𝑗
∑ (𝑡_𝑡𝑖𝑡𝑗

2𝑛𝑡𝑗
𝑖=1

− 𝜇𝑡_𝑡𝑡𝑗
2) 

      End for 

  End for 

  ⟹
𝑁

𝑇
 mean-SD points for period-to-period variation in extreme travel times 

  Plot 
𝑁

𝑇
 mean-SD points for period-to-period and obtain the x-intercept (−𝜃2 𝜃1⁄ ) 

  Set 𝑀𝑀𝑇𝑙 ≔ −𝜃2 𝜃1⁄ ⁑ 

Step 2: Obtain parameters of the linear models 

                For each season j=1, …, S 

      For each time interval t=1, …, M 

          For each block interval 𝑖 = 1, . . . , 𝑛𝑡𝑗  

Set 𝑑ℎ𝑖𝑡𝑗 ∶= 𝑡_𝑡ℎ𝑖𝑡𝑗 + 𝜃2 𝜃1⁄  

Set 𝑑𝑖𝑡𝑗 ∶= 𝑚𝑎𝑥{𝑑1𝑖𝑡𝑗, 𝑑2𝑖𝑡𝑗, … , 𝑑ℎ𝑖𝑡𝑗} 
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⟹
𝑁

𝜏
 total number of extreme travel delays 

          End for 

          Set 𝜇𝑑𝑡𝑗 ≔
1

𝑛𝑡𝑗
∑ 𝑑𝑖𝑡𝑗
𝑛𝑡𝑗
𝑖=1

 , 𝜎𝑑𝑡𝑗 ≔ √
1

𝑛𝑡𝑗
∑ (𝑑𝑖𝑡𝑗

2𝑛𝑡𝑗
𝑖=1

− 𝜇𝑑𝑡𝑗
2) 

      End for 

  End for 

  ⟹
𝑁

𝑇
 mean-SD points for period-to-period variation in extreme travel times 

  Plot 
𝑁

𝑇
 mean-SD points for period-to-period and obtain 𝜃 by performing linear 

regression 

  Set 𝜇𝐷𝑗 ≔
1

𝑀
∑ 𝐷𝑡𝑗
𝑀
𝑡=1  , 𝜎𝐷𝑗 ≔ √

1

𝑀
∑ (𝐷𝑡𝑗

2𝑀
𝑡=1 − 𝜇𝐷𝑗

2) 

  ⟹
𝑁

𝑇
 mean-SD points for period-to-period variation in extreme travel delays 

  Plot 
𝑁

90
 mean-SD points for seasonal variation and obtain 𝛩 by performing linear 

regression 

            End for 

* 𝑡_𝑡: travel time 

⁑ 𝑀𝑀𝑇: Minimum observed mean of extreme travel time 

 

Time interval 𝑇 should be selected such that enough period-to-period mean-SD extreme travel 

delay points exists for step 1 in Table 2.2 to estimate 𝛩. In this study, as indicated in Table 2.2, the 

minimum observed mean of extreme travel time is calibrated for each route segment separately. 

Calibrating the minimum observed mean of extreme travel time for each segment provides a more 

accurate estimation of extreme travel delay, especially when route segments are taken from the 

same corridor with different free-flow speeds.  

 

2.5.3 Model calibration: estimating parameters of CGEV distributions 

The CV of the error terms 𝜀𝑑 and 𝜀𝐷 obtained from fitting linear functions to both the 

extreme travel delay and mean extreme travel delay data, shown by 𝜃 and 𝛩 and as calculated by 
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Eqs. (8) and (12), respectively, must be compared with the CVs enhanced by fitting CGEV 

distributions to both period-to-period and seasonal extreme travel delay data, shown by 𝜃 and 𝛩̂, 

respectively, to validate the assumption that these error terms follow the GEV distribution. Based 

on the information provided in Table 2.1, the following equations are obtained to calculate 𝜃 and 

𝛩̂: 

 

𝜃 =
1 − 𝜇𝑑

𝛤(1 − 𝜉𝑑) − 1
√(𝛤(1 − 2𝜉𝑑) − 𝛤(1 − 𝜉𝑑)2) (2.29) 

 

𝛩̂ =
1 − 𝜇𝐷

𝛤(1 − 𝜉𝐷) − 1
√(𝛤(1 − 2𝜉𝐷) − 𝛤(1 − 𝜉𝐷)2) (2.30) 

 

For this purpose, the steps outlined in Table 2.3 are followed to validate the assumed distribution 

for the error terms at both link and network levels.  

The parameters of the CGEV distribution are estimated by fitting 2 GEV distributions to 

the error terms 𝜀𝑑 and 𝜀𝐷 using the maximum likelihood estimation (MLE) method. This 

estimation results in 2 shape parameters (𝜉𝑑, 𝜉𝐷), 2 location parameters (𝜇𝑑, 𝜇𝐷), and the seasonal 

mean of extreme travel delay (𝛥𝑗). The details are provided in Table 2.3. 

 

Table 2.3. Algorithm for estimating the parameters of the CGEV distribution 

Procedure CGEVParametersEstimation 

Input: Historical travel time information for links in network 𝐺 

Output: Parameters of the CGEV for each link  

Initialization:  

Assign an appropriate value to the time interval T 

Assign an appropriate value to the block interval 𝜏 where 𝜏 ≤ T 

Step 1: Estimate parameters of CGEV related to period-to-period level and validate the model 

assumption  
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             For each link 𝑙 ∈ 𝐺 

  For each season j=1, …, S 

      For each time interval t=1, …, M 

          Set 𝐷𝑡𝑗 ≔
1

𝑛𝑡𝑗
∑ 𝑑𝑖𝑡𝑗
𝑛𝑡𝑗
𝑖=1

 

          Set 𝐷𝑡 ≔ 𝐷𝑡𝑗  

          For each block interval 𝑖 = 1, . . . , 𝑛𝑡𝑗  

Set 𝑑𝑡 ≔ 𝑑𝑖𝑡𝑗 

Set (𝜀𝑑)𝑖 ≔
𝑑𝑡

𝐷𝑡
 ′ 

          End for 

          Set 𝜀𝑑_𝑡 ≔ {(𝜀𝑑)1, . . . , (𝜀𝑑)𝑛𝑡𝑗} ″ 

      End for 

      Set 𝜀𝑑 ≔ {𝜀𝑑_1, . . . , 𝜀𝑑_𝑀} 

  End for 

  If Model 1 

      Determine parameters of GEV distribution (𝜇𝑑  𝑎𝑛𝑑 𝜉𝑑) by applying MLE method to the 
𝑁

𝜏
  

error term 𝜀𝑑 

  End if 

  If Model 2 

      Set 𝜀𝑑 ≔ {𝜀𝑤 , 𝜀𝑝 , 𝜀𝑠 , 𝜀𝑓} ‴ (Assigns block error terms in similar seasons across different 

years to the same set) 

      Determine parameters of GEV distribution (𝜇𝑑  𝑎𝑛𝑑 𝜉𝑑) by applying MLE method to the 

error terms in each season 

  End if 

  Set 𝜃 ≔
1−𝜇𝑑

𝛤(1−𝜉𝑑)−1
√(𝛤(1 − 2𝜉𝑑) − 𝛤(1 − 𝜉𝑑)2) 

  Set 𝜃 ≔
𝜎𝑑𝑡𝑗

𝜇𝑑𝑡𝑗
 

  Compare how close is 𝜃 to 𝜃 

Step 2:     Estimate parameters of CGEV related to seasonal level and validate the model assumption 

                 For each season j=1, …, S   

      Set 𝜇𝐷𝑗 ≔
1

𝑀
∑ 𝐷𝑡𝑗
𝑀
𝑡=1  

      Set 𝛥𝑗 ≔ 𝜇𝐷𝑗  
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      For each time interval t=1, …, M 

          Set (𝜀𝐷)𝑡 ≔
𝐷𝑡

𝛥𝑗
 

      End for 

      Set 𝜀𝐷 ≔ {(𝜀𝐷)1, . . . , (𝜀𝐷)𝑄} 

      If Model 1 

          Determine parameters of GEV distribution (𝜇𝐷  𝑎𝑛𝑑 𝜉𝐷) by applying MLE method to the 

𝑁

𝑇
  error term 𝜀𝐷 

      End if 

      If Model 2 

          Set 𝜀𝐷 ≔ {𝜀𝐷_𝑤 , 𝜀𝐷_𝑝, 𝜀𝐷_𝑠 , 𝜀𝐷_𝑓} ‴ (Assigns time interval error terms in similar seasons 

across different years to the same set) 

          Determine parameters of GEV distribution (𝜇𝐷  𝑎𝑛𝑑 𝜉𝐷) by applying MLE method to the 

error terms in each season 

      End if 

      Set 𝛩̂ ≔
1−𝜇𝐷

𝛤(1−𝜉𝐷)−1
√(𝛤(1 − 2𝜉𝐷) − 𝛤(1 − 𝜉𝐷)2) 

      Set 𝛩 ≔
𝜎𝐷𝑗

𝜇𝐷𝑗
 

      Compare how close is 𝛩̂ to 𝛩 

  End for 

             End for 

′ (𝜀𝑑)𝑖 = maximum error term in block i 

″ 𝜀𝑑_𝑡  = Set of error terms in time interval t 

‴ w: winter, p: spring, s: summer, f: fall 

 

2.5.4 Performance of the CGEV distribution 

In this section, the performance of the proposed CGEV distribution is evaluated in terms 

of the goodness of fit compared to the empirically observed data. The performance of the CGEV 

distribution is further compared with the performance of the traditional GEV distribution, taking 

into account both the goodness of fit and the complexity of the model. For the comparison, four 
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different models consisting of two CGEV models and two GEV models are constructed to be fit 

to the empirical data as follows: 

 

a. Model 1: CGEV with different 𝛥𝑗 for each season 

 

In the first model, similar seasons are assumed to have similar 𝛥𝑗 values, but the rest of the 

CGEV parameters are assumed to remain constant over different seasons, i.e., similar 𝜉𝑑, 𝜉𝐷 , 𝜇𝑑, 

𝜇𝐷 . The choice of the constant and varying parameters in this model is based on the assumption 

that the PDF tail characteristics, i.e., related to the shape parameters 𝜉𝑑, 𝜉𝐷 , and the translation of 

the PDF on the x-axis, i.e., related to the location parameters 𝜇𝑑, 𝜇𝐷 , remain fairly constant over 

different seasons, while the magnitude of the average extreme travel delay observed on a link, 

represented by 𝛥𝑗, varies from one season to another (e.g., from spring to winter). It was further 

assumed that similar seasons across different years have similar 𝛥𝑗 values (e.g., spring 2015 and 

spring 2016 have same 𝛥𝑗 values). 

 Six years of travel time data, or twenty-four different seasons, results in four CGEV 

distributions to be fit to the empirical extreme travel delay data. These distributions share similar 

shape and location parameters, but they have a different value for 𝛥𝑗. Thus, 8 parameters consisting 

of 2 shape parameters, 2 location parameters, and 4 𝛥𝑗, 𝑗 = 1, . . . ,4, should be estimated to 

construct all the required CGEV models to describe the data. The 𝛥𝑗 values in Model 1 are 

calculated according to Table 2.2, and the shape and location parameters are estimated based on 

the MLE method as described in Table 2.3. 

 

b. Model 2: CGEV with different parameters over different seasons 

 

While assuming similar shape and location parameters across different seasons, as in 

Model 1,  simplifies the model and reduces the computational time in constructing the CGEV 
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distributions for different seasons as fewer parameters need to be estimated, seasonal variation in 

extreme travel delay data (e.g., from winter to spring) might lead to different tail and location 

characteristics of the PDF of the data. Thus, to investigate the plausible improvement in the 

goodness of fit, in Model 2, it is assumed that similar seasons across different years share similar 

shape and location parameters while the shape and location parameters vary across different 

seasons within a year.  

Moreover, similar to what is assumed in Model 1, it is plausible that the extreme travel 

delay process, which is mainly a function of environment and weather conditions for similar 

seasons across different years, is fairly homogenous. This homogeneity can be modeled by 

allowing different 𝛥𝑗 values for different seasons (e.g., from spring to winter), but common 𝛥𝑗 

values for similar seasons across different years which in turn generates 4 CGEV distributions to 

be fit to the empirical extreme travel delay data. In Model 2, 20 parameters, 8 shape parameters, 8 

location parameters, and 4 𝛥𝑗,  𝑗 = 1, . . . ,4, need to be estimated. 

Model 2 increases the complexity of the model parameters estimation compared to Model 1 by 

relaxing the homogenous extreme travel delay process across different seasons of different years. 

The 𝛥𝑗 values of the CGEV distribution are obtained as described in Table 2.2, and the shape and 

location parameters are estimated using the MLE method as illustrated in Table 2.3. 

 

c. Model 3: GEV with different parameters for each season 

 

Similar to Model 2, Model 3 relaxes the assumption that the tail characteristics and the 

translation of the PDF on the x-axis remain constant across different seasons. Moreover, similar 

to Model 2, it is assumed that the extreme travel delay process remains homogeneous across similar 

seasons of different years, and thus, similar seasons across different years share the same shape 

(𝜉), location (𝜇), and scale parameters (𝜎). This assumption results in constructing 4 GEV models 
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(1 for each season) for which 12 parameters need to be estimated in total (4 shape parameters, 4 

location parameters, and 4 scale parameters). Regarding the model complexity in terms of the 

number of model parameters, Model 3 is ranked between Model 1 and Model 2. 

 The 3 parameters of the GEV distribution in each season are obtained by applying the MLE 

method. Therefore, the GEV distribution is fitted to the 
𝑁

4𝜏
 error terms 𝜀𝑑, which exist in each 

season. 

 

d. Model 4: GEV with same parameters across all seasons 

 

In Model 4, all seasons across different years are assumed to share similar shape, location, 

and scale parameters. Model 4 is the simplest model discussed in this section as only three 

parameters need to be estimated for the whole database, regardless of the seasonality change in the 

observed extreme travel delay across a year.  

 The three parameters of the GEV distributions in Model 4 are obtained by applying the 

MLE method to the whole database, which requires fitting the GEV distribution to all  
𝑁

𝜏
  error 

terms 𝜀𝑑. 

 The sample results of the parameters of the CGEV distributions for Models 1 and 2 for the 

case of the 0.82 km section of Shaganappi Trail NW are shown in Table 2.4, following the models’ 

specifications in Table 2.3. In addition, the CVs enhanced by the CGEV distribution (theoretical 

CVs) are compared to the CVs obtained from fitting a linear function to the seasonal empirical 

extreme travel delay data (actual CV) in Table 2.4 to validate the period-to-period and seasonal 

variation in extreme travel delay. 
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Table 2.4. CGEV distribution and model validation results for Models 1 and 2 for the case of the 

0.82 km section of Shaganappi Trail NW   

Model Season 

Constructed CGEV distribution Slope Ratio 

Parameters CV 
𝜃 𝛩 𝜃/𝜃 𝛩/𝛩̂ 

𝜀𝑑 𝜇𝑑 𝜀𝐷 𝜇𝐷 𝛥𝑗 𝜃 𝛩̂ 

Model 1 

Spring 

0.156 0.908 0.215 0.956 

8.94 

0.2018 0.0983 

0.1257 0.1368 0.623 1.392 

Summer 8.98 0.1570 0.2075 0.778 2.111 

Fall 9.97 0.2680 0.0657 1.33 0.687 

Winter 8.84 0.1787 0.0409 0.885 0.416 

Model 2 

Spring 0.207 0.940 0.144 0.948 8.94 0.1343 0.1143 0.1257 0.1368 0.936 1.197 

Summer 0.030 0.926 0.109 0.901 8.98 0.1630 0.2149 0.1570 0.2075 0.963 0.966 

Fall 0.157 0.876 0.479 0.990 9.97 0.2720 0.0637 0.2680 0.0657 0.985 1.003 

Winter 0.168 0.916 0.303 0.979 8.84 0.1790 0.0519 0.1787 0.0409 0.998 0.788 

 

Investigating the value of the ratios between the theoretical and actual CVs across different 

seasons for the examined link reveals significant deviations between the theoretical and actual CVs 

in Model 1, especially in the case of seasonal variability. To investigate whether this is the case at 

the network level, the monthly and seasonal ratios are evaluated for all the links in the Calgary 

road network. The results are shown in Figure 2.4.  

As shown, in most cases, there is significant deviation between the actual and theoretical 

CVs across all the links in the network for Model 1. A possible source of the deviations is the 

generalization of the shape and location parameters across all seasons. Therefore, the assumption 

that the PDF characteristics remain constant over different seasons does not hold. The mean of the 

ratios is in the range of [0.915, 0.984] and [0.894, 1.098] for monthly and seasonal levels, 

respectively, which indicates that the extreme travel delay can be characterized by the CGEV 

distribution constructed in Model 2 for both monthly and seasonal variability. In addition, 

comparing the SD of the monthly and seasonal ratios across different seasons reveals more 

variations in the ratios at the seasonal level for both Models 1 and 2. The higher dispersion around 
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the mean ratio for the seasonal level compared to the monthly level is possibly due to the smaller 

sample size of the mean-SD points used to construct the mean-SD plots for the seasonal level 

(similar to what is depicted in Figure 2.2). Thus, these results are a relatively more biased 

estimation of the actual CV obtained from applying linear regression to the mean and SD of the 

extreme travel time as calculated for each season. 
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Figure 2.4. Monthly levels (left) and seasonal levels (right) ratios for the four seasons of the year 

calculated for all links with INRIX data in the Calgary road network 



 

  49 

To compare the performance of the proposed CGEV models with that of the conventional 

GEV models and evaluate how well the distribution fits the empirical data, an appropriate measure 

of goodness of fit needs to be considered. The choice of this measure can be tricky as the number 

of the estimated parameters varies across different models. Since the number of parameters is not 

the same across different distributions, the maximum likelihood value is not a precise estimator of 

the goodness of fit because it only measures the goodness of fit without accounting for the 

complexity of the model (i.e., the number of estimated parameters). Since increasing the number 

of estimated parameters increases the goodness of fit and the complexity of the model at the same 

time, Akaike Information Criterion (AIC) (Akaike, 1998) is an ideal measure that accounts for 

both the goodness of fit and the complexity of the models. AIC is defined in Equation (2.31). 

 

𝐴𝐼𝐶 = 2𝑘 − 2𝑙𝑛(𝐿)       (2.31) 

 

where k is the number of estimated parameters and L denotes the maximum value of the likelihood 

function. The model is better with a smaller AIC. While AIC rewards the goodness of fit, it 

penalizes the model for overfitting brought by a higher number of estimated parameters for each 

season. After obtaining the AIC for all constructed models, the AIC of each model is then 

subtracted from the AIC of the best candidate model in each season to obtain the relative AIC 

difference for each model across different seasons; 𝛥𝐴𝐼𝐶𝑚 = 𝐴𝐼𝐶𝑚 −𝑚𝑖𝑛
𝑁
(𝐴𝐼𝐶𝑛) , n =1,..,m,…N. 

If the AIC difference in a season is low, the associated model is better in terms of fitting to the 

empirical data related to that season. 𝛥𝐴𝐼𝐶𝑚 = 0 is set for the best-fitted model to the data.  

The AIC is calculated based on the log-likelihoods obtained from fitting different models 

to the seasonal extreme travel delay data. For illustration purposes, the performance of different 

models in each season in terms of the log-likelihood value and across all seasons in terms of the 
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AIC value is compared in the case of the 0.82 km section of Shaganappi Trail NW N and is shown 

in Figure 2.5. 
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Figure 2.5. Values of log-likelihood and AIC under different CGEV and GEV distributions fitted 

to the extreme travel delay data 

 

The relative log-likelihood value calculated over different seasons for Model 2 shows a 

superior fit with the empirical data followed by Model 1 then the other two GEV distributions. 

The performance of Model 4 (the least complex model) is not significantly far from Model 3 (the 

second most complex model), which necessitated comparing the AIC values to account for model 

complexity. The estimation of 𝛥𝐴𝐼𝐶 values indicates that the CGEV distribution represented in 

Model 2 is favored over the other three distributions across all seasons followed by Model 1, which 

has a smaller 𝛥𝐴𝐼𝐶 value compared to Model 3 and Model 4. However, while Model 3 provides a 

better fit with the empirical data (better log-likelihood value) compared to Model 4, the complexity 

of Model 3 leads to a higher value of 𝛥𝐴𝐼𝐶 and thus, Model 4 outperforms Model 3.  

To evaluate the overall performance of the models and to see whether the same trend holds 

at the network scale, the 𝛥𝐴𝐼𝐶 values associated with each model are evaluated and compared for 
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every link in the Calgary road network. The results indicate that Model 2 has the highest log-

likelihood value for every link in the network across different seasons, which indicates a superior 

fit with the empirical data. Taking the model complexity into account, Model 2 has the lowest 

𝛥𝐴𝐼𝐶 in 4995 out of 5104 links in the network, and thus, it performs better compared to the other 

three distributions. Moreover, for the 117 links in the network for which Model 2 is not the best 

fitted distribution to the empirical data, Model 2 is ranked either second (101 times) or third (8 

times) with no record of Model 2 being ranked fourth in any of the links; consequently, Model 2 

outperforms the other distributions. The superiority of Model 2 comes from the fact that Model 2 

accounts for all seasonality aspects of the extreme travel delay data by allowing different 

parameters to be estimated across different seasons, i.e., different shape and location parameters 

and different 𝛥𝑗 values for different seasons.  

The CGEV distribution represented in Model 1 is the second-best model followed closely 

by Model 3. While Model 3 outperforms Model 1 in most of the links when the log-likelihood 

values are compared (due to the generalization of the shape and location parameters across 

different seasons in Model 1 as discussed before), Model 3 has many more parameters to be 

estimated in each season, which leads to a more complex model and, thus, a higher 𝛥𝐴𝐼𝐶 value. 

In other words, while the GEV distribution represented in Model 3 is heavily penalized because 

of its extra parameters (12 parameters to be estimated compared to 8 parameters in Model 1), the 

actual fit tends to be better in Model 3 compared to Model 1 without factoring in the complexity. 

Model 3 over-generalizes the characteristics of extreme travel delay by ignoring monthly and 

seasonal variation in the extreme travel delay, which results in a poor fit to the empirical data. This 

over-generalization is not observed in Model 1 as Model 1 accounts for seasonality in the data by 

allowing different 𝛥𝑗 values to be estimated across different seasons, which leads to its superior 
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performance compared to Model 3. Model 4, the least complex model, is the least favored model 

compared to the other three distributions and provides a relatively poor fit to the empirical data; it 

is ranked as the worst distribution in 4704 of the links in the Calgary road network  
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Figure 2.6. Model ranking and the associated frequency based on 𝛥𝐴𝐼𝐶 values across all links in 

the Calgary road network 

 

Figure 2.7 shows an example of detailed histograms of extreme travel delay across different 

seasons, presented along with the density curves associated with the constructed models for the 

case of the 0.82 km section of Shaganappi Trail NW N, Calgary. As shown, the CGEV family 

consisting of Model 1 and 2 better represents the observed underlying extreme travel delay data 

across different seasons compared to the GEV family (Model 3 and 4). The only exception is the 

summer season, in which Model 3 from the GEV family provides a closer fit to the observed 

frequency of data compared to Model 1. This finding is consistent with the log-likelihood values 

reported in Figure 2.5 for Model 1 and Model 3 for the summer season. In addition, Figure 2.7 

indicates that Model 2 is capable of modeling a wide range of extreme traffic conditions given the 
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four unique shape and location parameters for each season (𝜀𝑑, 𝜀𝐷, 𝜇𝑑, 𝜇𝐷); it characterizes the 

monthly and seasonal variation in data and adapts to the temporal evolution of the extreme travel 

delay distribution through the season-sensitive varying mean parameters (𝛥𝑗, 𝑗 = 1, . . . ,4). While 

flexibility usually comes at a cost of having a more complex model, the CGEV distribution 

constructed in Model 2 does not add much to the model complexity as it requires estimating 

additional mean parameters that are fairly easy and straightforward to calculate across different 

seasons. Further, Model 2 only has one more season-sensitive parameter for each season compared 

to Model 3. This level of flexibility is not offered by traditional GEV distributions in Models 3 

and 4 as they fail to account for the extreme travel delay distribution given the large variance in 

extreme travel delay distributions over different time periods for which the GEV parameters are 

calibrated. Therefore, in the context of road network vulnerability, CGEV distributions can offer 

a unifying framework in assessing, comparing, and describing the extreme travel time distribution 

considering the seasonality in the data. 
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Figure 2.7. Extreme travel delay distributions and the fitted density curves for different seasons 

for the 0.82 km of Shaganappi Trail NW N, Calgary 

 

I will be using this interesting feature of the CGEV distribution to obtain a reasonable 

prediction of the return level associated with the extreme travel delay distribution constructed for 

each season. The return level is then used to build a data-driven measure of vulnerability to find 

the vulnerable elements of the Calgary road network. 
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2.5.5 Return level and further model validation 

The concept of return level has been used extensively in the literature to account for the 

impact of extreme events in different fields, including environmentally related subjects such as 

predicting maximum water level (Mudersbach and Jensen, 2010), predicting maximum daily 

rainfall (Coles and Pericchi, 2003), and predicting maximum global temperature (Cheng et al., 

2014), and subjects related to financial markets, to measure the value at risk (Gilli, 2006). In the 

context of transportation, the concept of return level has been employed widely in predicting the 

severity of car crashes (Åsljung et al., 2017; Åsljung et al., 2016; Tarko and Songchitruksa, 2005; 

Zheng et al., 2014), measuring the exposer of road networks to extreme weather conditions 

(Schlögl and Laaha, 2017), and predicting the severity of aviation incidents (Panagiotakopoulos et 

al., 2009). 

The measures of return level, i.e., extreme quantiles of a block maximum distribution, and 

return period, i.e., the period between two succeeding exceedances of the corresponding return 

level value, provide important information for decision-making processes and assessing the impact 

of extreme events in terms of the magnitude of the observed extreme travel delay. If 𝐹(𝑑𝑡) is the 

CDF of the maximum observed extreme travel delay over successive non-overlapping time blocks 

of equal length and 𝑑𝑝(𝑙) is the return level of link 𝑙 associated with the return period 
1

𝑝
, to a 

reasonable degree of accuracy, then the level 𝑑𝑝(𝑙) is expected to be exceeded on average once 

every 
1

𝑝
 period of time. More specifically, 𝑑𝑝(𝑙) is exceeded by the block maximum in any block 

with the probability of p; therefore, 𝐹(𝑑𝑝(𝑙)) = 1 − 𝑝. In the case of the GEV distribution, the 

return level of link 𝑙, i.e., 𝑑𝑝(𝑙), is calculated as follows: 
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𝑑𝑝(𝑙) = 𝜇𝑙 −
𝜎𝑙
𝜉𝑙
[1 − {𝑙𝑜𝑔(1 − 𝑝)}−𝜉𝑙]  

(2.32) 

 

where 𝜇𝑙, 𝜎𝑙, and 𝜉𝑙 are the location, scale, and shape parameters of the GEV distribution associated 

with link 𝑙.  

Calculating the return level of the CGEV distribution is not as straightforward as in the 

case of the GEV distribution. No closed-form equation exists for the return level of the CGEV 

distribution; however, the return level can be calculated for the desired period of time numerically. 

As the return level is the quantile of the CDF for the return period 
1

𝑝
 , the return level can be 

obtained by trial and error where different values of 𝑑𝑡 are evaluated in the CDF function 

successively until the CDF function converges to 1 − 𝑝 as shown in Equation (2.33). 

 

𝐹(𝑑𝑝(𝑙)) = ∫ 𝑓(𝑑𝑡) 𝑑𝑑𝑡

𝑑𝑝(𝑙)

−∞

= 1 − 𝑝  (2.33) 

 

To evaluate how accurately the observed return level can be predicted by the analytical return level 

obtained from the CGEV distribution, the entire 6 years travel time database associated with each 

link in the Calgary road network is split into two 3-year travel time databases (one from December 

2013 to December 2016 and the other from January 2017 to December 2019); the analytical return 

level is calculated for the first database and is validated by comparing it to the observed mean 

return level estimated from the second database. The observed mean return level in each season 

(e.g., fall) is calculated by choosing the maximum extreme travel delay in each of the three seasons 

in the second database (i.e., fall 2017, fall 2018, and fall 2019) and calculating the mean of these 

three extreme observations.  To further validate the fit of the CGEV distribution with the empirical 
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data compared to the traditional GEV distribution, seasonal return level (
1

𝑝
 = 12) is calculated for 

both Model 2 and Model 3 and compared with the seasonal observed mean return level.  

Table 2.5 shows the return levels of the extreme travel delay associated with Model 2 and 

Model 3 across different seasons calculated for the 0.82 km section of Shaganappi Trail NW N, 

Calgary (Link 1) and a 1.9 km section of Deerfoot Trail between Country Hills Blvd NE and 

Airport Trail (Link 2). The closest predictions to the actual return level and the corresponding 

observed mean return level are highlighted in bold. 

 

Table 2.5. Sample comparison of the return levels obtained from the CGEV and GEV 

distributions for 2 links in Calgary 

Link  Spring Summer Fall Winter 

1 

Return level (Model 2) 11.41 12.34 12.52 10.93 

Return level (Model 3) 15.93 11.95 15.02 14.23 

Observed mean return level 12.68 13.57 13.31 11.58 

2 

Return level (Model 2) 5.78 6.02 9.81 7.03 

Return level (Model 3) 5.48 4.87 6.76 5.32 

Observed mean return level 6.01 6.76 10.72 7.49 

 

As shown, the CGEV distribution in Model 2 outperforms the GEV distribution in Model 

3 because it provides a more accurate prediction of the actual mean return level across different 

seasons for both case studies. To validate whether the same statement holds for other links, the 

analytical return levels for both Model 2 and 3 are obtained for all links in Calgary road network 

across different seasons and are compared to the actual mean return levels. The percentage error 

of prediction is depicted as a heatmap across different seasons in Figure 2.9.  
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Figure 2.8. Percentage error of estimation across different seasons for Right: Model 3 and Left: Model 2 
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As shown in Figure 2.8, Model 2 consistently outperforms Model 3, especially for the seasons of 

spring and summer because the errors of estimation are significantly larger in Model 3. While the 

CGEV model performance remains fairly consistent over different seasons, the GEV distribution 

performance is much worse than that of the CGEV distribution for the seasons of spring and 

summer. This superior performance of the CGEV distribution further supports the merit of the 

CGEV distribution in modeling the variability in a large size network and minimizing the error in 

predicting the actual return level. 

 

2.6 Applications of CGEV distribution in road network vulnerability analysis 

Determining the critical links in a road network is essential for resilience analysis because 

it contributes to improved resource management by proactively preventing events that contribute 

to rare events in a network (e.g., collisions). The frequency of extreme events occurring during a 

certain time period can be estimated by analyzing travel time data. The travel time of a link is 

likely high in the presence of rare events. As the probability of rare events is very low, I expect 

that high travel times occur less frequently. Therefore, considering the distribution of the travel 

time data for a given link in a transportation network, greater travel times have a lower probability 

and, thus, are located at the tail of the distribution. EVT is a powerful tool to estimate the frequency 

of extreme travel delay occurrence. The probability of each link closure can be modeled 

alternatively by measuring the return level of extreme travel delays associated with each link in a 

road network. One advantage of using return level as a proxy of the frequency of exceedance is 

that the return level accounts for the magnitude of an extreme travel delay that occurs on average 

once every 
1

𝑝
 period. In other words, it models the magnitude of the extreme travel delays and takes 

into account the stochastic nature of extreme travel delays as the return level is directly related to 
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the estimated parameters of the GEV distribution as shown in the return level measures  indicated 

(i.e. Equations (2.32) and (2.33)). It is desirable to use the normalized return level, i.e., return level 

pace, as a performance metric instead of the more traditional measure of vehicle count since the 

goal is to measure the impact of traffic congestion during extreme events (Donovan and Work, 

2017).  

While return level addresses the magnitude and stochasticity associated with the 

occurrence of rare events in a given link, it does not model how important a link is in a given road 

network compared to other links. For instance, a minor link with a low daily travel demand can 

have a larger return level of extreme travel delay compared to a congested major link with a high 

daily demand for travel. To account for the link importance, the importance of each link in a given 

network is quantified by estimating the weights of each link contributing to network performance. 

Adopting the idea of trip importance introduced by Zhong et al. (2019), a new link importance 

measure is introduced in this study. Given 𝐿 links, denote 𝑋𝑘
𝑖 (𝑙) =

𝑢𝑘
𝑖 (𝑙)

𝑤(𝑙)
 as the pace distribution of 

link 𝑙 = 1, . . . , 𝐿 in the time interval k of day 𝑖 and 𝑅𝑘
𝑖 (𝐺) =

∑ 𝑤(𝑙)𝑋𝑘
𝑖 (𝑙)𝐿

𝑙=1

∑ 𝑤(𝑙)𝐿
𝑙=1

 as the network-scale pace 

distribution of network G at time interval k of day 𝑖, where 𝑢𝑘
𝑖 (𝑙) is the travel time of link 𝑙 in the 

time interval k of day 𝑖, and 𝑤(𝑙) is the length of link 𝑙; the following optimization problem is 

solved to determine the importance of each link on network performance: 

 

𝑍 = 𝑚𝑖𝑛 ∑∑(𝐸 [𝑅𝑘
𝑖 (𝐺) −∑𝑎(𝑙). 𝑋𝑘

𝑖 (𝑙)

𝐿

𝑙=1

])

2𝑇

𝑘=1

𝑁

𝑖=1

 

s.t.     ∑ 𝑎(𝑙)𝐿
𝑙=1 = 1 

         0 ≤ 𝑎(𝑙) ≤ 1 

 

(2.34) 
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Where 𝑎(𝑙) is the importance weighting of link 𝑙. The results obtained from solving the above 

equation is a number between 0 and 1 for each link in the network. As 𝑎(𝑙) increases, the more 

link l contributes to the network performance; thus, links with the highest values of 𝑎(𝑙) have the 

most substantial contribution to network performance.  

 A new vulnerability index is then introduced by considering both the stochastic nature of 

extreme events, expressed by the return level of the extreme travel delay, and the link importance: 

 

𝑉𝑈𝐿𝑙
𝐺 = 𝑎(𝑙). 𝑑𝑝(𝑙)  (2.35) 

 

where 𝑉𝑈𝐿𝑙
𝐺  is the vulnerability index of link 𝑙 in network 𝐺 and represents the relative impact of 

the closure of link 𝑙 on network performance. Based on the obtained vulnerability index, the 

vulnerable ranking of link 𝑙, denoted by 𝑟𝑎𝑛𝑘𝑙
𝐺, can be determined in network G. 

 

Table 2.6. Algorithm for ranking vulnerable links 

Procedure FindingVulnerableLinks 

Input: Historical travel time information for links in network 𝐺 

Output: Network vulnerability ranking for each link  

Step 1: For each link 𝑙 ∈ 𝐺 

Fit the CGEV distribution by procedure CGEVParametersEstimation  

Calculate the return level 𝑑𝑝(𝑙) using Equation (2.33) 

Calculate the importance weighting of link 𝑙 among all the other links in network 𝐺 using 

Equation (2.34) 

Calculate the network vulnerability index 𝑉𝑈𝐿𝑙
𝐺 using Equation (2.35) 

            End for 

Step 2: Determine the 𝑟𝑎𝑛𝑘𝑙
𝐺 values by sorting the 𝑉𝑈𝐿𝑙

𝐺 values in a descendent order 

 

For the analysis, the majority of roadways in Calgary, AB, Canada, (around 85% of 

roadways, consisting of 5104 links) were selected. The selected corridors include provincial 
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highways and major road networks including freeways, expressways, arterials, and local and minor 

roads within the metro Calgary boundary. Figure 2.9 shows the critical links of the Calgary road 

network. 

 

 

Figure 2.9. The critical links in the Calgary road network 

 

Notable areas consisting of clusters of critical links are highlighted in Figure 2.9. The most 

critical links are the roads within the Calgary downtown area. Calgary downtown is the second-

largest concentration of head offices in Canada and arguably the densest downtown area of any 

city of its size in North America (Canada West Foundation, 2010). Due to the high concentration 
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of businesses and high population density, Calgary downtown has a very high demand for daily 

travel. The high travel demand to downtown Calgary might be one of the most important factors 

contributing to the vulnerability of these links. Despite being a dense urban area (measured by the 

number of links per unit area), most of the critical links in this area (4th, 5th, 6th, and 9th Ave, and 

4th, 5th, and 9th St SW) are one-way roads with limited alternative access roads to these links, i.e., 

low connectivity. In most cases, the alternative roads to these links are other links that are two 

blocks away. In addition, to access these one-way roads, drivers need to use other one-way roads. 

Therefore, because of the low connectivity between one-way streets, high network density in the 

downtown area cannot easily mitigate the consequences of road closure within the area. Thus, the 

lack of alternative links to these roads could be another influential factor in the vulnerability of 

these links. One last influential factor is the lack of cyclicity in downtown Calgary. Due to the high 

number of one-way streets, a few numbers of random walk lead to a cycle back to a previously 

visited node in the downtown area. Lack of cyclicity further affects the capability of the downtown 

area to recover from the consequences of link failure. This finding is consistent with the finding in 

Zhang et al. (2015), who reported cyclicity to be positively correlated with resilience. 

 Another city area consisting of a considerable number of critical links is in the vicinity of 

the University of Calgary (the largest university in Southern Alberta) and major roads connecting 

other city areas to the university, i.e., 16 Ave and part of Crowchild Trail. Banff Trail and part of 

Crowchild Trail in the vicinity of the university are links with high traffic demand and a very high 

annual collision rate (around 100 incidents per year). In addition, Banff Trail is the only link that 

connects 16 Ave and Crowchild Trail, two major expressways. This roadway design makes Banff 

trail highly vulnerable to disruptive events. 
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16 Ave is a major urban arterial road in the City of Calgary that forms 26 km of the Trans 

Canada Highway and connects Calgary to Banff and Medicine Hat. 16 Ave crosses major 

expressways (Sarcee Trail, Crowchild Trail, Deerfoot Trail, and Stoney Trail), but only the part 

between Deerfoot Trail and 14th St has extensive commercial development. In addition, this part 

of 16 Ave connects numerous demand generators in the City of Calgary to the Southern Alberta 

Institute of Technology (SAIT) and the University of Calgary. While this part of 16 Ave is a major 

link with high travel demand, the network density is not high in the vicinity of this link, especially 

compared to the Calgary downtown area. Furthermore, most of the links in the Calgary network 

are radial links connecting the center with very few east-west connections. Thus, most of the east-

west connections load onto 16 Ave, which makes the travel demand excessive on this link. 

Moreover, the high numbers of signalized intersections with complex signal timing and high 

collision rate (50 incidents per year) compared to similar expressways in the Calgary road network 

(Farhan, 2019) make this part of the road more vulnerable to disruptive events. 

Comparing my findings in the Calgary downtown and 16 Ave/Banff Trail cases with  the 

findings of Chen et al. (2012), my results are consistent and it can be concluded that for congested 

urban areas, those roadways that have limited alternative access links tend to be vulnerable to 

disruptive events. 

Another network area consisting of highly vulnerable links is the intersection of McKnight Blvd 

and Edmonton Trail. This part of the network is a low network density area with high travel 

demand, which directs the traffic demand from/to the NE area and Deerfoot trail from/to Calgary 

downtown via Edmonton trail. One possible reason contributing to the vulnerability of this area is 

the relatively high collision rate due to the sudden decrease in the speed limit on McKnight Blvd 

from 70 km/h to 50 km/h in the vicinity of the McKnight Blvd/Edmonton Trail intersection. 
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Another reason is the lack of alternative links to this area, which makes the area not robust in terms 

of mitigating the consequences of network disruption. Comparing the case of McKnight 

Blvd/Edmonton Trail with the previously discussed network areas, it can be inferred that for low-

density network areas, the demand level plays a much more important contributing factor to link 

vulnerability. 
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CHAPTER 3:  ROAD NETWORK VULNERABILITY ANALYSIS CONSIDERING 

PROBABILITY AND CONSEQUENCES OF DISRUPTIVE EVENTS 

 

3.1 Introduction 

3.1.1 Background and motivation 

A robust and resilient transportation network is the backbone of an advanced society. A 

robust transportation network facilitates the movement of passengers, goods and services, and 

contributes to a flourishing economy. A transportation network, however, can be vulnerable to 

certain disruptive events that range from regular fluctuations and recurrent events to irregular and 

non-recurrent events. Recurrent events happen periodically in a road network and are the outcomes 

of the within-day variation of travel demand. Non-recurrent events, on the other hand, result from 

extreme and disruptive occurrences leading to severe deterioration of network performance. The 

possible sources of such unexpected events are natural  (e.g., disasters, extreme weather condition), 

artificial (e.g., traffic collisions, major road repairs, social events) or technical (e.g., signal failure 

at a major intersection) (Li, 2008). Other classification of the causes of disruptive events can be 

further categorised as internal, external and intentional incidents interference (Mattsson and 

Jenelius, 2015). Internal events are those originating from the system and are caused by mistakes 

made by transportation authorities and staff (e.g., technical failure) and external events are mostly 

related to natural phenomena (e.g., extreme weather conditions) or artificial events caused by 

intentional interferences (e.g., terrorist or cyber attacks). 

Non-recurrent events can result in long delays, spillbacks and network gridlocks. While 

the probability of occurrences of disruptive events are very low, the impact of these events on the 

performance of the transportation network can be huge. Therefore, in the transportation network, 

it is important to identify the vulnerable elements affected by such disruptive event. Such analysis 



 

  67 

helps to manage the potential risks resulting from these events and to better alleviate the 

disruptions to improve all aspects of transportation network performance. Vulnerable network 

elements (e.g., links, nodes) are part of a network responsible for a sharp decrease in traffic 

operation performance caused by capacity restrictions due to an incident or special event (Yperman 

& Tampere, 2006). Searching for vulnerable elements of a road network aims to identify potential 

critical elements in a transportation network. Once these elements are identified, network 

robustness can be improved by either reinforcing these elements or by improving alternative 

parallel routes (Matisziw and Murray, 2009). 

Numerous evaluation approaches and techniques have been considered in the literature to 

identify the critical road infrastructure. The evaluation approach is strongly linked to how a 

transportation network is represented for the purpose of the analysis. Depending on whether a 

transportation network is represented as an abstract graph or not, different measures of 

vulnerability are used in the literature and are discussed in Section 3.1.2.1. Apart from the 

evaluation approach, depending on how the scale of a disruptive event and its associated impact 

area is measured in a transportation network, different vulnerability analysis techniques were 

employed and are discussed in Section 3.1.2.2. 

While previously discussed techniques and approaches have been employed to measure the 

vulnerability of network individual components (i.e., nodes and links) with the presence of 

disruptive events, these techniques deal with identifying the critical links of a transportation 

network, measuring only the consequences of the link closure with little consideration given to the 

probability of link closure. The probability of link closure or failure is important as some of the 

links in a transportation network are more susceptible to disruptive events than others. Instances 

of such links are links with problematic geometry design, major links with higher fluctuations in 
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travel demand and/or major highways with high merging, diverging and weaving traffic activity, 

which makes such links more prone than others to bottleneck formations and thus traffic 

breakdowns and possibly collisions. Moreover, depending on their type, disruptive events have a 

different probability of occurrence and their impacts differ case by case. The need for a more 

comprehensive approach was underlined in several previous studies. Berdiaca (2002), Chen et. al 

(2007), Erath et al. (2009), Tampere et al. (2007) and Watling and Balijepalli (2012) specified that 

vulnerability analysis should be regarded as risk analysis. Defining transportation system 

vulnerability as society’s risk of transportation system disruptions and degradations, Jenelius 

(2009), Jenelius and Mattsson (2015) and Mattsson and Jenelius (2015) further specified that a 

vulnerability scenario should be formalised as a ‘‘triplet’’: 1) a description, 2) the probability and 

3) the consequences (measure of damage) of that scenario. Therefore, more comprehensive 

vulnerability analysis is needed to simultaneously incorporate the probability and the 

consequences of disruptive events. 

Moreover, important factors that affect the vulnerability of road links (e.g., poor geometry 

design) are usually left unnoticed by the analytical vulnerability approaches discussed in the 

literature. Multi-year observed travel time data carries important information that also reflects the 

historical spatial and temporal occurrence of link failure and their impacts. In this research, copious 

multi-year travel time data is further explored to identify the occurrence of disruptive events, 

examine the probability of occurrence of resulting extreme travel delays and evaluate their impacts 

on overall network performance. As a case study, this chapter uses the City of Calgary where rich 

historical travel time and incident data are available. The theoretical contribution of this research 

is the development of a novel impact area vulnerability analysis approach that incorporates both 

the probability and consequences of disruptive events to find the most vulnerable links in a road 
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network. In addition, this research contributes to the body of knowledge methodologically by 

proposing a dynamic statistical approach to determine the spatiotemporal impact of disruptive 

events. In addition, the obtained spatiotemporal impact is used to determine the probability of the 

impact resulting from occurrences of disruptive events. A risk-based vulnerability index is also 

developed using the concept of limit state function that is borrowed from structural reliability 

analysis. 

 

3.1.2 Review of the previous studies 

3.1.2.1 Evaluation approaches of vulnerability analysis 

Road network vulnerability analysis has been recently receiving much attention in 

literature. Depending on how a road network is represented in the vulnerability analysis problem, 

two distinct evaluation approaches exist with little overlap: 1) topological and 2) system-based 

vulnerability analysis of road networks.  

In the topological vulnerability analysis approach, a road network is typically represented 

as an abstract network (graph) consisting of nodes and links. Links can be represented as either 

directed or undirected links. Depending on the analysis application, links can also be considered 

unweighted (i.e., all links have similar lengths) or weighted (i.e., links have different lengths). 

Topological vulnerability studies usually deploy connectivity and network efficiency indices and 

other topological properties such as degree centrality and betweenness centrality as measures of 

vulnerability to assess the socioeconomic consequences of link closure (Demšar et al., 2008; 

Kurauchi et al., 2009; Duan and Lu, 2014). Denoting a connected network by G, the network 

efficiency indices usually represent the average distance between all possible pair of nodes in 

network G in the case of weighted links or the average number of links forming a route, in the case 
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of unweighted links. Various methods and techniques were employed in the literature to determine 

the vulnerable elements in road networks. As an example of recent topological network 

vulnerability studies on road transportation network, Bell et al. (2017) employed spectral analysis 

to find critical network cuts (i.e., cuts with least capacity normalized by the relative size of the 

network in either side of the cut) and thus the potential flow bottlenecks in road networks. 

Computational efficiency is one of the remarkable characteristics of the spectral analysis approach, 

which neither needs the origin-destination (OD) demand information nor the path-flow 

enumeration. Gao et al. (2019) conducted a topological vulnerability analysis considering both the 

quantitative aspect of connections between nodes (e.g., number of nodes connected to a specific 

node) and the information on the interaction level between nodes (e.g., how easily traffic can 

transfer from one node to its neighboring node). Assuming undirected and unweighted links, they 

make use of probability measures to describe the traffic flow between nodes. López et al. (2017) 

examined the impact of network topological configuration on network vulnerability and identified 

the vulnerable links by measuring the change in the traffic flow distribution associated with each 

link removal in the network. Other important examples of recent topological network vulnerability 

studies include important analysis conducted on public transport networks (Li et al., 2019; Ye and 

Kim, 2019) and air transport networks (Janić, 2015; Klophaus and Lordan, 2018; Lordan et al., 

2014). 

On the other hand, system-based vulnerability studies similarly employ graph 

representation of real networks consisting of weighted links with weights corresponding to actual 

link length, travel cost, etc. To identify the critical elements, transport network performances are 

examined through studying the interaction between travel demand and supply in terms of the 

increase in the total travel cost of the network. Several techniques and indices have been introduced 
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in system-based vulnerability literature to determine the vulnerability ranking of the examined 

network G. Almotahari and Yazici (2019) introduced a new vulnerability index taking into account 

traffic flow, link travel time and marginal travel cost associated with each link in the network. 

They also account for the importance of each link by assigning a weight based on the proportion 

of the flow that each link carries as compared to the total network flow. García‑Palomares et al. 

(2018) conducted a vulnerability analysis on a road network in Spain. They introduced a 

vulnerability index based on three different accessibility measures including weighted average 

travel time, potential accessibility capacity, and daily accessibility. The accessibility measures 

used in this study mainly consist of travel time between each pair of centroid cities and the centroid 

population. Other interesting examples of system-based vulnerability analysis include those on 

public transport networks (Jiang et al., 2018; Lu, 2018; Yap et al., 2018) and air transport network 

(Darayi et al., 2017; Voltes-Dorta et al., 2017).  

The fact that topological vulnerability approaches need limited data regarding the O-D 

demand and individual link traffic makes this approach computationally realistic and relatively 

easier to perform compared to system-based vulnerability approaches. The topological approach 

is also a more attractive choice of vulnerability analysis for networks without detailed network 

information. However, this approach does not totally reflect a realistic representation of the 

behavioural responses to disruption. Moreover, topological approaches do not take into 

consideration the dynamic effects of disruption, such as traffic congestion from disruption in any 

given link resulting in a significant increase in travel time on the neighboring links. System-based 

vulnerability approaches overcome some of these limitations as the travellers’ response to 

disruption can be reasonably predicted. While the discussed analytical vulnerability approaches 

provide invaluable insights in understanding the importance of each link and the interactions 
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between nodes in a given network G, they usually overlook important contributing factors that 

affect the vulnerability of road links such as extreme weather condition, link specific geometry 

design, poor downstream traffic signal timing and/or links that are prone to higher frequency of 

collisions. In this study I make use of observed historical network wide link travel time and 

incident data which carry this wealth of information in order to derive a data-driven vulnerability 

index. 

 

3.1.2.2 Employed techniques in vulnerability analysis 

In any given transportation network, the critical links can be identified using different 

methods. The most used approach is to identify the critical links using a full network scan (Jenelius 

et al., 2006; Chen et. al., 2007; Du et al., 2014). In this approach, all the links in the transportation 

network are removed iteratively and the resulting impact is measured in terms of the increase in 

the generalized travel cost (e.g., increase in the travel time) of the passengers travelling all over 

the network. The vulnerability ranking is then determined to indicate the sorted order of the links 

in the transportation network ranging from the most to the least vulnerable. While the full network 

scan approach assures obtaining the global vulnerability ranking, it can be computationally 

intensive as the impact of link closure in terms of the reduced network performance needs to be 

evaluated for all links. The task of identifying the critical links may become computationally 

infeasible for a large-scale transportation network such as the Chicago regional network which has 

39,018 links (Dial, 2006), especially in the case of system-based vulnerability approach.  

To overcome the intensive computational time required to measure the impact of removing 

all the links, a pre-selected links approach based on certain strategies is used in the literature 

(D’Este and Taylor, 2003; Knoop et al., 2012; Taylor and D’Este, 2004; Taylor and Susilawati, 
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2012). In this approach, the analysis is performed on only these set of pre-selected candidate links, 

which correspond to high path choice probability between origin-destination nodes (Duan and Lu, 

2014; Jenelius and Mattsson, 2015; Demšar et al., 2008). While this approach is much faster than 

the full network scan approach, obtaining global vulnerability ranking is not guaranteed. 

Moreover, the choice of pre-selected links is sensitive to the underlying strategy of choosing the 

candidate links.  

In view of the above, an impact area vulnerability analysis approach was first introduced 

by Erath et al. (2009) and then Chen et al. (2012) to identify the most critical links in a congested 

large-scale transportation network. In this approach, the consequences of a link closure are 

evaluated within its local impact area and not within the whole network. The impact area 

vulnerability approach is based on the empirical findings that the impact of a link closure is mainly 

limited to the adjacent links and nodes and does not disperse throughout the whole network. As 

the local impact area is relatively small, the computational cost required for assessing the 

consequences of all possible link closures within the impact area, are moderate. Chen et al. (2012) 

proposed an impact area vulnerability approach to find the critical links in the Hong Kong road 

network. They considered the impact area associated with each link closure in the network 

deterministic and similar across different links in the network. One of the limitations of the 

analytical impact-area approaches discussed in the literature is that the size of the impact area 

cannot be adequately modeled. In fact, the size of the impact area not only varies from link to link 

but is also a by-product of the various factors which affect the O-D demand, including the within 

day and day-to-day fluctuation of travel demand, as well as weather conditions. These factors 

contribute to how severely neighbouring links are affected by disruptive events. In this study, an 

impact-area approach is taken into consideration and the spatial and temporal impacts of historical 
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disruptive events are measured using various data-driven and machine learning techniques to 

obtain the vulnerability ranking. While disruptive events can be categorized as planned and 

unplanned events, the focus of this study is on the impact of unplanned disruptive events. In fact, 

the behavioural demand response to planned disruptive events (e.g., work zones and other road 

works) is totally different from one of the unplanned disruptive events (e.g., collision) in terms of 

the demand elasticity with respect to learning and rerouting, as well as possible mode choice and 

destination choice shift. While the response to planned events is gradual and demand can be 

assumed relatively inelastic during these events, the demand response to unplanned events is 

highly elastic with respect to detouring (Erath et al., 2009). This makes analyzing the impact of 

planned events more challenging. Quantifying the impact of planned events is also more difficult 

to capture and necessitates evaluating the change in day-to-day travel demand pattern. Table 3.1 

summarizes some of the findings in recent road network vulnerability analysis.   
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Table 3.1. Classification of recent road network vulnerability studies by evacuation approach and employed techniques 

Study Evaluation approach 
Employed 

technique 
Note 

López et al. (2017) Analytical/topological 
full network 

scan 

(i) Uses flow autocorrelation for more realistic representation of vulnerability 
(ii) No realistic representation of the behavioural responses to disruption (no traffic assignment) 

Duan and Lu 
(2014) 

Analytical/topological 
pre-selected 

links 

(i) Evaluated network vulnerability at three different granularities; segment-based, stroke-based and community-based. 
(ii) Not very realistic representation of flow distribution during disruptive events  

(iii) No consideration of the behavioural responses to disruption 

Bell et al. (2017) Analytical/topological 
pre-selected 

links 

(i) Uses spectral partitioning to identify flow bottlenecks in networks 

(ii) Computationally realistic and easy to perform 
(iii) No realistic representation of the behavioural responses to disruption 

Gao et al. (2019) Analytical/topological 
pre-selected 

links* 

(i) Characterizes evolution of vulnerability through different time of day 

(ii) No consideration of the characteristics of links (e.g., length, speed limit) 
(iii) No consideration of demand response to disruptive events 

Almotahari and 

Yazici (2019) 

Analytical/system-

based 

full network 

scan 

(i) Low efficiency for large size networks 
(ii) No consideration of link interactions 

(iii) No realistic representation of the behavioural responses to disruption (static traffic assignment) 

García‑Palomares 

et al. (2018) 

Analytical/system-

based 

full network 

scan 

(i) Applied only to high capacity road network (e.g., freeways) 

(ii) No realistic representation of the behavioural responses to disruption (no traffic assignment) 

Du et al. (2014) 
Analytical/system-

based 

full network 

scan 

(i) Proposed a simulation approach for logistics transport network 

(ii) No realistic representation of the behavioural responses to disruption (static traffic assignment: Dijkstra algorithm) 

Knoop et al. 

(2012) 

Analytical/system-

based 

pre-selected 

links 

(i) Proposed a multi-linear fit of indicators as vulnerability index 
(ii) Relatively fast for large scale networks 

(iii) Not realistic consideration of incident occurrence probability (assumed proportional to flow) 

Taylor and 

Susilawati (2012) 

Analytical/system-

based 

pre-selected 

links 

(i) Employed intelligent screening procedure to increase the computational efficiency 

(ii) More suitable for rural and remote areas 
(iii) Less suitable for congested urban network 

Jenelius and 
Mattsson (2015) 

Analytical/system-
based 

pre-selected 
links 

(i) Assumed that the closure of a link does not affect the travel time on any other link 
(ii) Static and constant demand is considered during disruption 

(iii) Not suitable for congested urban areas 

Chen et al., (2012) 
Analytical/system-

based 
Impact area 

(i) Introduces local vulnerability ranking 

(ii) More realistic representation of flow distribution after disruptive events 

(iii) Employs deterministic impact area approach with fixed number of affected links 
(iv) Not very realistic impact area determination 

Erath et al. (2009) 
Simulation/system-

based 
Impact area 

(i) Modeled the impact of long-lasting events modeling direct and indirect impact of closure 
(ii) Considered only the impact of major links closure 

(iii) Assumed inelastic demand with respect to mode choice and destination choice shift 

*Links are randomly selected based on random attacks to network elements 
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3.2  Network pace distribution 

Previous vulnerability analysis measures the increase in the total network travel cost 

associated with each individual link closure to accordingly determine the global vulnerability 

ranking. In the analysis conducted in the literature, the impact of each link closure is 

measured for before and after closure by running a network traffic assignment without taking 

into account the duration of the closure and how quickly a link recovers from the incident or 

closure. In other words, it is not realistic to account for the impact of link closure by solely 

measuring the maximum possible increase in travel time. This single point in time measure 

(in terms of increase in the travel time only when the link is fully closed) does not fully 

consider the dynamic ramification of closure during the full-time span from link closure to 

recovery. This analysis is of interest as some of the links are more prone to incidents and 

simultaneously recover much more slowly from the incident compared to other links due to 

geometrical properties of the network in the vicinity of these links. Instances of geometrical 

and topological properties influencing such analysis include lower network redundancy in 

the vicinity of the links subject to incident; higher link betweenness; lack of alternative links 

to the links subject to incident; and one directional links subject to incident, among others. 

Multi-year observed travel time and incident (i.e., collision and link closure) data carry this 

information and can be mined to determine the full spatial and temporal impact of link 

disruptions in the studied network. 

To identify the impact of an incident occurring in a given link 𝑗, and consistent with 

the finding of Erath et al., (2009) and Chen et al., (2012), it is assumed that the spatial and 

temporal impact of the closure of link 𝑗 is limited to its impact area 𝐺′, which is a subnetwork 

of the studied network 𝐺, and does not disperse throughout the whole network 𝐺. It is further 
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assumed that the immediate neighboring links (i.e., upstream and downstream neighboring 

links) are the most affected since the impact of an incident fades out as one moves farther 

from the link subject to incident. The experienced travel times during a disruptive event for 

each affected link in the impact area 𝐺′ can be best represented as a distribution rather than 

an average travel time value. To determine the impact of a disruptive event on each link in 

the impact area 𝐺′, it is not realistic to account for the increase in the travel time by directly 

subtracting the experienced travel time from the free flow speed. In fact, the expected travel 

time during different times of day can be considerably higher than the free flow travel time 

on a given link because of the within-day variation in the travel demand. Thus, to capture the 

impact of a disruptive event, the deviation between the mean of the historical distribution of 

pace (min/km) (i.e., normalized travel time defined as the ratio of link travel time to link 

distance) and the experienced pace during a disruptive event in each time period is calculated. 

Since the goal is to measure the impact of disruptive events on the performance of the 

subnetwork, it is more desirable to model the impact in terms of the change in pace as 

opposed to using the more traditional measure of vehicle count. Based on the shape of the 

fundamental diagram, when the vehicle flow drops significantly in a link, it is difficult to 

identify whether the underlying reason being simply low demand for travel or stop and go 

due to significant increase in congestion. The pace distribution clearly distinguishes between 

these possibilities since a smaller pace consistently represents decreased demand and higher 

pace indicates more congestion.  

The pace of traffic on a link in a given network is equal to the inverse of Edie’s 

generalized average speed (Edie, 1963). Therefore, the pace of a given link 𝑗 in the set of 

links 𝐽 in a hypothetical subnetwork 𝐺′ in time period T and time interval 𝜏 where 𝜏 ∈ 𝑇, 
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denoted by 𝑃𝑇
𝜏(𝑗), can be calculated as Equation (3.1). The time interval 𝜏 is the granularity 

offered by the historical data. For instance, if the pace data is updated every 1 minute, 𝜏 = 1 

minute.  

 

𝑃𝑇
𝜏(𝑗) =

𝑢𝑇
𝜏 (𝑗)

𝑙(𝑗)
  (3.1) 

 

where 𝑢𝑇
𝜏 (𝑗) is the travel time of link 𝑗 in the time period T and time interval 𝜏, and 𝑙(𝑗) is 

the length of link 𝑗. The traffic condition of the subnetwork 𝐺′ consisting of |𝐽| links in the 

time period T and time interval 𝜏 can be then shown as the mean pace vector, denoted by 

𝑎𝑇
𝜏 (𝐺′) which consists of the pace of the links in the subnetwork 𝐺′ as follows: 

 

𝑎𝑇
𝜏 (𝐺′) = (𝑃𝑇

𝜏(𝑗)) ∈ ℝ1×|𝐽|  (3.2) 

 
The mean pace vector has a strong periodic pattern in the sense that not only the mean pace 

vector of the subnetwork 𝐺′has a significant time-of-day variations, but it also fluctuates 

from day to day. Such within-day and day-to-day dynamics in the mean pace vector can be 

modeled by grouping pace data into different clusters based on their time-of-day and time-

of-week variation. Such grouping can be accommodated by the reference set 𝑄(𝐺′) which 

consists of all the reference sets constructed for different times of day across all available 

travel time data (i.e., 𝑄𝑇(𝐺
′)). Since there are 168 hours in week, the reference set 𝑄(𝐺′) is 

defined as below: 

 

𝑄(𝐺′) = (𝑄𝑇,𝑗
 (𝐺′))

168×|𝐽|
 

𝑄𝑇,𝑗
 (𝐺′) ∈ ℝ𝑀𝑇,𝑗×1 

 (3.3) 
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Where 𝑀𝑇,𝑗 is the number of mean pace entries available for link 𝑗 in time period 𝑇. The 

reference set 𝑄(𝐺′) is a matrix that its entries are themselves matrices 𝑄𝑇,𝑗
 (𝐺′) that contains 

all the mean pace vectors in subnetwork 𝐺′ which occur at the time period 𝑇. The grouping 

of the mean pace vectors based on their time-of-day and time-of-week is based on the 

assumption that the traffic conditions observed in a specific day of week and time period 

(e.g., Thursdays between 4-5 PM) on a specific link are fairly similar with minor deviation 

in the absence of disruptive events. When estimating how typical the traffic condition is in 

each of the 168 time periods in a week, the mean pace data during disruptive events (e.g., 

collisions, link closure, etc.) should not be included in the reference set 𝑄(𝐺′). The 

construction of the reference set 𝑄(𝐺′) makes it possible to calculate the expected mean pace 

vector of the subnetwork 𝐺′, denoted by 𝜇(𝐺′). 𝜇(𝐺′) is a matrix consisting of the expected 

mean pace of subnetwork 𝐺′ for each time period T (i.e., 𝜇𝑇(𝐺
′)) and is defined as follows:  

 

𝜇(𝐺′) = (𝜇𝑇(𝑗)) ∈ ℝ
168×|𝐽| 

𝜇𝑇(𝑗) =
1

𝑀𝑇,𝑗
∑ 𝑃𝑇

𝜏(𝑗)

 𝑀𝑇,𝑗

𝜏=1

 

 (3.4) 

 

The 𝜇𝑇(𝐺
′) is itself a matrix where its entries are the expected pace of each link 𝑗 at the time 

period 𝑇, 𝜇𝑇(𝑗). In addition to the expected mean pace vector calculated by Equation (3.4), 

the PDF of the typical behaviour of all links in the network could be obtained for all the 168 

possible time periods. Estimation of the typical behaviour of traffic for all links in the 

network make it possible to detect the deviation of the pace from the typical behaviour during 

unusual events. 
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Figure 3.1 shows a hypothetical subnetwork consisting of 10 directed links and 4 

centroid nodes with 1 and 2 as origin and 8 and 9 as destination nodes. The link subject to 

incident (i.e., link connecting node 4 to node 6) is shown by a dotted line. For each link in 

the impact area, the typical behaviour in terms of the distribution of pace is shown as the 

blue curve and the red curve shows the pace distribution during a disruptive event. Once the 

distribution of the typical behaviour and distribution of the pace during a disruptive event is 

constructed for all links in the subnetwork, the deviation from the typical behaviour could be 

utilized to determine the spatiotemporal impact of a disruptive event. These procedures will 

be discussed in the subsequent sections. 
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Figure. 3.1. Hypothetical impact area consisting of links affected by a disruptive event 

 

3.3 Estimating the spatiotemporal impact of disruptive events 

The mean pace vector of subnetwork 𝐺′ is likely high in the presence of disruptive 

events. As the probability of disruptive events is very low, I am expecting that low mean 

pace occurs less frequently. Therefore, considering the distribution of the travel pace data 
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for a given link in the subnetwork 𝐺′, very high mean pace data are located at the tail of the 

distribution. In the analysis in which the impact of the tail of the PDF is necessary to estimate, 

a classical central limit theorem may not be applicable to estimate the extent of the impact.  

Various methods are employed in the literature to determine the spatiotemporal 

impact of disruptive events. Previous literature is mostly devoted to simulation and 

theoretical modeling approaches to determine the impact of disruptive events. More 

specifically, the literature can be divided into 3 groups depending on the deployed 

methodology: 1) theoretical modeling including deterministic queuing theory and kinematic 

shockwave theory (Asakura et al., 2017;), 2) field survey analysis (Sermons and Koppelman, 

1996), 3) simulation studies (Li et al., 2020; Sethi et al., 1995). The outcomes of the 

previously mentioned approaches rely mainly on theoretical modeling of transportation 

networks or alternatively simulation-based analysis with none or little consideration of real-

world traffic data. In addition, these events differ significantly in their duration, location and 

intensity; thus, their spatiotemporal impact events cannot be accurately estimated using these 

methods which restricts the spatial transferability of the developed models. 

Recently, with emerging data collection technologies, high resolution traffic data is 

collected and mined and thus can be further explored to measure the spatiotemporal impact 

of disruptive events. This introduces the fourth method of estimating the incident impact 

which relies on empirical studies using real observed traffic data (Chakraborty et. al., 2019; 

Jeong et al., 2011; Pan et al., 2015; Sun et al., 2016; Liu et al., 2019). Different traffic 

parameters have been deployed by previous studies to estimate the spatiotemporal impact of 

collisions including traffic volume (Sun et al., 2016), travel speed (Chakraborty et. al., 2019; 
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Pan et al., 2015), combination of both traffic volume and travel speed (Liu et al., 2019), and 

combination of both travel speed and traffic occupancy (Jeong et al., 2011).  

Relying on the assumption that the impact of an incident propagates over time and 

space, previous studies mainly focused on the impact of incidents on only the main corridor 

(i.e., the road segment directly affected by the incident) and its upstream sections. In reality, 

the effect of an incident does not impose restrictions on only the main corridor, but its impact 

disperses throughout the whole impact area consisting of the neighboring links (Chen et al., 

2012). The sole consideration of the main corridor as the impact area leads to the 

underestimation of the spatial and temporal impact of incidents and thus, the obtained 

incident time might not reflect the correct time when traffic in the network is back to normal. 

In addition, because of the back-propagating shockwaves, the impact area follows a 

growing/shrinking pattern after the occurrence of an incident (Pan et al., 2015), therefore 

previous approaches are unable to capture the dynamic pattern of the impact area. Finally, 

the literature is mainly devoted to detecting incidents on either freeways (Chakraborty et. al., 

2019; Jeong et al., 2011; Liu et al., 2019; Pan et al., 2015;) or arterials (Li et al., 2020; 

Sermons and Koppelman, 1996; Sethi et al., 1995) with little consideration given to 

estimating the spatiotemporal impact of incidents on other types of road simultaneously. 

Recently, Donovan and Work (2017) studied the impact of 2012 Hurricane Sandy on 

the New York City road network. They constructed one mean vector including data related 

to both typical behaviour of traffic and during the hurricane for different types of trip. They 

estimated the temporal impact of the hurricane by estimating the Mahalanobis distance 

(Mahalanobis, 1936) across different time periods to measure the deviation of the pace 

during the hurricane from the typical pace of the network. Using Mahalanobis distance to 
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estimate the temporal impact of a disruptive event requires consideration of its appropriate 

threshold value above which the pace data are considered as extremes. The choice of 

threshold is tricky as the estimated temporal impact could be overly sensitive to the choice 

of threshold. Moreover, because of this sensitivity, this method might not be accurate enough 

to estimate the temporal impact of less-extreme events (e.g., collision, signal failure or any 

event leading to single link closure). The extent of impact could be determined more 

accurately by leveraging non-authoritative data and its integration with established data and 

methods. In this regard, Schnebele et al., (2014) evaluated the spatiotemporal impact of 

Hurricane Sandy by analysing non-authoritative data. Estimation of the temporal impact of 

these less-extreme events is necessary to identify the vulnerable elements (e.g., links and 

nodes) of a road network. In addition, modeling the impact of disruptive events could be 

inefficient if the pace PDF is constructed only once for all available mean pace vector data, 

especially in the case of light-tailed PDFs of the pace.  

To overcome the above-mentioned limitations, an efficient algorithm was developed 

in this research to measure the spatiotemporal impact of disruptive events taking into account 

the impact of the event on all neighboring affected links. Tracking the evolution of the impact 

on neighbouring links enables us to capture the true temporal impact of these events. In 

addition, the dynamic behaviour of the spatial propagation of events is estimated in each time 

step considering the dynamic growing/shrinking pattern after occurrence of events. 

Moreover, the proposed model is a more general approach in the sense that the application 

of the proposed model is not restricted to only freeways and arterials. The developed model 

is also computationally efficient as its only input is the historical travel time data which 

reduces the computational burden of the proposed approach as opposed to the other methods 



 

84 

 

relying on various sources of data. Finally, the efficiency of the proposed model is enhanced 

by constructing two mean pace distributions; one for typical behaviour of the subnetwork 𝐺′ 

and one for the mean pace during a disruptive event, as depicted in Figure 3.1, instead of 

finding the deviation of the pace from the typical behaviour by construction of only one pace 

PDF for the subnetwork 𝐺′ as used in the literature (Donovan and Work, 2017). 

 

3.3.1 Proposed spatiotemporal impact estimation model 

Following the discussion in Section 3.2, two sets of pace distributions are constructed 

for the impact area 𝐺′; one set of mean pace distributions during a disruptive event and one 

set representing the typical mean pace distribution. In this section, the spatiotemporal impact 

of disruptive events is estimated using these two sets of mean pace distribution. 

Let 𝑒𝑘(𝑔, ⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ), 𝑟 ≤ 𝑠 & 𝑟, 𝑠 ∈ {1, . . . ,168} denote the kth single disruptive event 

associated with link 𝑔 which is subject to incident. Since the impact of the disruptive event 

might not be limited to only one time period, the latter part (i.e., ⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ) indicates the time 

periods in which the impact of the disruptive event might persist. The set of disruptive events 

associated with the link 𝑔 (i.e., 𝐸(𝑔)) can be constructed as follows: 

 

𝐸(𝑔) = {𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

)}  𝑘 = 1,… , |𝐸(𝑔)| &  𝑟 ≤ 𝑠 & 𝑟, 𝑠 ∈ {1, . . . ,168} (3.5) 

 

The mean pace vector of the subnetwork 𝐺′ during a disruptive event 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ) in time 

period T and time interval 𝜏, (i.e., 𝑎𝑇
𝜏 (𝐺′, 𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 ))) is constructed as follows: 
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𝑎𝑇
𝜏 (𝐺′, 𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

)) = (𝑃𝑇
𝜏(𝑗, 𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

))) ∈ ℝ|𝐽|×1   𝑟 ≤ 𝑠 & 𝑟, 𝑠 ∈ {1, . . . ,168} (3.6) 

 

where 𝑃𝑇
𝜏(𝑗, 𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 )) is the pace of link 𝑗 during the event 𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 ) in time 

period T and time interval 𝜏. The affected links in each time interval 𝜏 could be determined 

by comparing 𝑎𝑇
𝜏 (𝐺′, 𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 )) with the typical pace behaviour of the subnetwork 𝐺′. 

More specifically, the following hypothetical test is performed at 95% confidence interval to 

construct the impact area 𝐺′, which corresponds to those links for which the pace during the 

disruptive event is greater than the expected pace (i.e., 𝑃𝑇
𝜏(𝑗, 𝑒𝑘(𝑔, ⋃ 𝑇𝑖

𝑠
𝑖=𝑟 )) ≥ 𝜇𝑇(𝑗)). 

 

𝑁𝑢𝑙𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: 𝐻0: 𝑃𝑇
𝜏 (𝑗, 𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

)) = 𝜇𝑇(𝑗) 

𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠: 𝐻1: 𝑃𝑇
𝜏 (𝑗, 𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

)) ≠ 𝜇𝑇(𝑗) 

  𝑟 ≤ 𝑠 & 𝑟, 𝑠 ∈ {1, . . . ,168} (3.7) 

 

In other words, links for which the pace during the disruptive event is significantly higher 

than the expected pace would be identified as affected by the event and thus is marked as 

one of the links in the impact area 𝐺′.  

The hypothesis tested in Equation (3.7) is repeated for every time interval in each of 

the time periods, 𝑇𝑖, associated with the disruptive events to determine the dynamics of the 

growing/shrinking patterns of the impact area 𝐺′ during the disruptive event. The impact 

area 𝐺′ is then constructed for all available time intervals of 𝜏. Once the impact area is 

constructed for every time interval 𝜏, the duration of the disruptive event 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ) (i.e., 

𝑈(𝑒𝑘(𝑔, ⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ))) could be obtained relying on the assumption that the mean pace vector 
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of the impact area 𝐺′ for different time intervals remains fairly similar. In other words, the 

temporal impact is assessed assuming that the traffic congestion patterns through different 

time intervals during the incident have greater similarities between each other compared to 

the traffic pattern before the time the event occurs and after the time the traffic condition is 

back to normal.  

In this study, by the temporal impact of an incident I mean the difference between 

the incident occurrence time (T0) and flow recovery time (T7) which is shown as time to 

return to normal flow in Figure 3.2. The flow recovery time is when the impact of an incident 

is totally dissipated and the flow in the impact area returns totally to normal condition. In 

traffic incident reports, the reported incident time of an incident (T1) is usually recorded 

instead of the incident occurrence time. In addition, either roadway clearance (T5) or incident 

clearance time (T6) are usually reported as the end time of an incident. Thus, the difference 

between the reported start and end time does not fully represent the temporal impact of a 

given incident as even if the incident is removed its impact can still be propagating on other 

links by space and by time. 

 

 
Figure 3.2. Timeline of a traffic incident (Amer et al., 2015) 
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To make the comparison between the mean pace vectors of the impact area 𝐺′ during 

the disruptive event easier, all pace data are labelled and clustered. The primary data for the 

clustering analysis is the directed graph of the links which are connected in space with their 

immediate neighbouring links (i.e., the upstream and downstream links connected to the 

affected link) and in time with the pace data associated with the previous and next time 

intervals for the affected link. Each observation in the impact area 𝐺′ is shown by start and 

end node of the corresponding link j, (i.e., (𝑥𝑗,𝑠 𝑦𝑗,𝑠) and (𝑥𝑗,𝑒  𝑦𝑗,𝑒) respectively), time interval 

𝜏 and its pace during time interval 𝜏 (i.e., 𝑃𝑇
𝜏(𝑗, 𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 ))).  

The entire database consisting of links and their corresponding pace distribution 

during different time intervals throughout the whole incident period is synthesized into 

individual observations (i.e., a couple composed by a link and its pace deviation from the 

typical behavior during a time interval shown as (𝑗, 𝑃𝑇
𝜏(𝑗, 𝑒𝑘(𝑔, ⋃ 𝑇𝑖

𝑠
𝑖=𝑟 )) − 𝜇𝑇(𝑗))). Since 

basic information that is reported on incidents such as their occurrence time and clearance 

time usually comes from the perceptions of those involved in the incident (also called non-

authoritative data) or a guess from the officer reporting the incident, information on the 

incident occurrence and clearance times might not be accurate enough to derive the temporal 

impact of incidents. Therefore, the boundary of  𝐵(𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) =  [𝑆𝑇𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 −

 30 𝑚𝑖𝑛, 𝐸𝑇𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 + 30 𝑚𝑖𝑛] is chosen for the aim of clustering, where 𝐵(𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) 

is the time boundary corresponding to the incident 𝑒𝑘(𝑔, ⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ) and 𝑆𝑇𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑 and 

𝐸𝑇𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑑  are its reported occurrence time and clearance time respectively. These intervals 

are set to obtain the true temporal impact of the incident from the real occurrence time of the 

incident to the true time the impact of the incident is cleared from the road network. 
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Once the set of all observations within the boundary 𝐵(𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ))  is 

constructed, Ck-means clustering method is performed to assign a cluster ID to each of the 

observations in the set. Ck-means is the improved version of the k-means clustering method 

originally developed by Wang and Song (2011). It has been shown recently that k-means is 

an efficient clustering method in partitioning urban road networks considering both spatial 

locations of links and their corresponding travel time information (Ji and Geroliminis, 2012; 

Lopez et al., 2017). However, the disadvantage of k-means algorithm is that it depends 

heavily on the initial cluster centers (i.e., number of clusters) which is required as the 

clustering input by the user and thus not always optimal nor repeatable. Moreover, the 

runtime of the k-mean algorithm increases exponentially with the number of clusters. Ck-

means algorithm overcomes these issues by using a dynamic programming algorithm to 

guarantee optimality of clustering by minimizing the sum of the squares of within-cluster 

distances from each observation to its corresponding cluster mean. As the result, the runtime 

of the Ck-means algorithm is a linear function of the number of clusters which makes it more 

efficient than K-means when the number of clusters is high. The reader is referred to Wang 

and Song (2011) for more information on the Ck-means algorithm. 

After performing the Ck-means algorithm on all observations 

(𝑗, 𝑃𝑇
𝜏(𝑗, 𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 )) − 𝜇𝑇(𝑗)) within the boundary 𝐵(𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 )), each observation  

is assigned a cluster ID. Each set of clustered observations belonging to the same time 

interval 𝜏 is then synthesized into a single ordered vector of all observations 𝜋𝑡, whose values 

are the cluster IDs. To compare two consecutive vectors of observations which belong to two 

consecutive time intervals 𝜏 and 𝜏′ (i.e., 𝜋𝜏 and 𝜋𝜏′) and to assess how similar are these 
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vectors, I use normalized mutual information (𝑁𝑀𝐼) which measures the proximity between 

two vectors obtained from clustering (Strehl and Ghosh, 2002) as follows: 

 

𝑁𝑀𝐼(𝜋𝜏 , 𝜋𝜏′) =
𝐼(𝜋𝜏 , 𝜋𝜏′)

√𝐻(𝜋𝜏)𝐻(𝜋𝜏′)
=
𝐻(𝜋𝜏) + 𝐻(𝜋𝜏′) − 𝐻(𝜋𝜏 , 𝜋𝜏′)

√𝐻(𝜋𝜏)𝐻(𝜋𝜏′)
  (3.8) 

 

Where 𝑁𝑀𝐼(𝜋𝜏 , 𝜋𝜏′) is normalized mutual information between observation vector 𝜋𝜏 and 

𝜋𝜏′, 𝐼(𝜋𝜏 , 𝜋𝜏′) denotes the mutual information between 𝜋𝜏 and 𝜋𝜏′ which measures the 

mutual dependence between two random variables. 𝐻(𝜋𝜏) and 𝐻(𝜋𝜏′) are the entropy of 𝜋𝜏 

and 𝜋𝜏′ respectively and 𝐻(𝜋𝜏 , 𝜋𝜏′) is the joint entropy of 𝜋𝜏 and 𝜋𝜏′. The similarity between 

every two consecutive vectors of observations corresponding to two consecutive time 

intervals within the boundary 𝐵(𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) is then calculated and plotted to spot any 

unusual variations in the value of 𝑁𝑀𝐼 which indicates dissimilarity between the observation 

vectors of the two consecutive time intervals from which the occurrence and flow recovery 

time of the event could be inferred. It is to be expected that 𝑁𝑀𝐼 values for time intervals 

before the occurrence of the incident remain fairly high followed by a sharp drop in the time 

of incident occurrence. 𝑁𝑀𝐼 values are also expected to remain high throughout the duration 

of the incident followed by a drop when the incident is cleared from the road network and its 

impacts start to dampen.  

 

3.4 Impact area vulnerability analysis approach 

As discussed previously in Section 3.1.2.2, the common approach to determine the 

global vulnerability of links in a given road network is the full scan network approach. In 

this approach, links in a given road network are removed successively and network traffic 
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assignment is carried out to evaluate the travellers’ rerouting response to the link closure and 

consequently measure the impact of link removal on the total network cost. The global 

vulnerability ranking is then determined by sorting the value of the increase in the total cost 

of the network in descending order. This approach is not without limitations as it is 

computationally intensive for large-scale networks. Second, empirical findings show that the 

impact of link closure imposes restrictions only on an impact area in the vicinity of the link 

subject to incident; thus, the impact does not disperse throughout the whole network 

(Danczyk and Liu, 2010). In a few studies where the impact area approach is carried out to 

determine the impact area vulnerability ranking, the size of the impact area, in terms of the 

level of proximity of the affected links to the link subject to incident, was given as the model 

input rather than the output of the model (Chen et al., 2012). In other words, in previous 

studies, it was assumed that the size of the impact area is fixed and independent of the type 

of the link subject to incident and the network characteristics in the vicinity of that link. The 

limitations of previous analytical approaches necessitate conducting more empirical analysis 

to evaluate how the impact area resulting from a link failure propagates through time and 

how the characteristic of the link subject to incident contributes to the magnitude of the 

impact. Finally, the focus of previous approaches was mainly on the consequences of the 

disruptive events to determine the vulnerable elements in a given road network with no 

consideration of the probability of disruptive events. In this section, a data driven impact 

vulnerability analysis approach is proposed using the empirical information regarding the 

spatiotemporal impact of the historical disruptive events to determine the impact area 

vulnerability ranking of links in a given road network considering both the probability and 

consequences of disruptive events. 
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3.4.1 Modeling probability and consequences of disruptive events 

Once the spatiotemporal impact of a disruptive event is determined, the impact of the 

event could be assessed by measuring the deviation of the mean observed pace of a link 

during the incident from the typical pace of that link and also by evaluating how likely the 

pace during the disruptive event is higher than the typical pace of that link in the impact area 

𝐺′. The former measure represents the consequence of failure on a given link – whether it is 

a link subject to incident or an affected link- and the latter measure denotes the probability 

that a given link is significantly affected by an incident. The probability that the pace during 

an incident on a given link is greater than the typical pace of that link can be estimated by 

applying the limit state function (Melchers and Beck, 1999), which is usually applied in 

structural reliability analysis.  

The probability that the pace of link 𝑗 during an incident 𝑒𝑘(𝑔, ⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ) (i.e., 𝑝𝑓) is 

greater than the nominal pace of link 𝑗 could be shown as below: 

 

𝑝𝑓 = 𝑃(𝑃⋃ 𝑇𝑖
𝑠
𝑖=𝑟

(𝑗, 𝑁) ≤ 𝑃
𝑈(𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 ))

(𝑗, 𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

))) 

 𝑘 = 1, … , |𝐸(𝑔)| &  𝑟

≤ 𝑠 & 𝑟, 𝑠 ∈ {1, . . . ,168} 
(3.9) 

 

where 𝑃⋃ 𝑇𝑖
𝑠
𝑖=𝑟

(𝑗, 𝑁) is the nominal pace of link 𝑗 during the time periods ⋃ 𝑇𝑖
𝑠
𝑖=𝑟  associated 

with the incident 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ) and 𝑃

𝑈(𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ))

(𝑗, 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) shows the pace of 

link 𝑗 during the temporal impact of the incident.6 Denoting the marginal PDF of pace of link 

 

6 From now on, for the aim of simplicity, 𝑃⋃ 𝑇𝑖
𝑠
𝑖=𝑟

(𝑗,𝑁) and 𝑃
𝑈(𝑒𝑘(𝑔,⋃ 𝑇𝑖

𝑠
𝑖=𝑟 ))

(𝑗, 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) will be 

represented by 𝑃𝑁 (𝑗) and 𝑃𝑄(𝑗) respectively. 
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𝑗 during the temporal impact of the incident as 𝑓𝑄(𝑗, 𝑞), and the marginal PDF of the nominal 

pace (i.e., typical pace) of link 𝑗 during the time periods ⋃ 𝑇𝑖
𝑠
𝑖=𝑟  associated with the incident 

as 𝑓𝑁(𝑗, 𝑛), Equation (3.9) can be re-written as follows: 

 

𝑝𝑓 = 𝑃(𝑃𝑁 (𝑗) − 𝑃𝑄(𝑗) ≤ 0) = 𝑃(𝐺𝑁,𝑄 (𝑗) < 0) =∬𝑓𝑁,𝑄(𝑗, 𝑛, 𝑞) 𝑑𝑛 𝑑𝑞

 

𝐷

  (3.10) 

 

where 𝑓𝑁,𝑄(𝑗, 𝑛, 𝑞) shows the joint (bivariate) density function corresponding to link 𝑗 and 𝐷 

denotes the domain of the pace in which the pace during the incident is higher than the 

nominal pace which is represented by the hatched domain 𝐷 in Figure 3.3. 𝐺𝑁,𝑄 (𝑗) is termed 

the limit state function and the probability that link 𝑗 is affected by the event is identical with 

the probability of limit state violation. In Figure 3.3, 𝑃̅𝑁 (𝑗) and 𝑃̅𝑄(𝑗) are the mean of 𝑓𝑁(𝑗, 𝑛) 

and 𝑓𝑄(𝑗, 𝑞) respectively. 

In essence, finding the probability that link 𝑗 is affected by the incident on link 𝑔 

requires solving a multi-dimensional integration. However, finding a closed-form expression 

for the integration in Equation (3.10) might not be always possible given that the marginal 

PDFs 𝑓𝑁(𝑗, 𝑛) and 𝑓𝑄(𝑗, 𝑞) might follow various statistical distributions. For the aim of 

finding this probability, simulation approaches (e.g., direct sampling methods) could be 

performed. In direct sampling methods, random samples of vectors of the random variables 

(i.e., nominal pace and during incident pace) are generated and the samples of the limit state 

function 𝐺𝑁,𝑄 (𝑗) are obtained consequently.  

In this research, to find the marginal PDFs of the nominal pace and the pace during 

incident, various PDFs are fitted to both the nominal pace data and incident pace data of link 

𝑗. The choice of distributions is limited to the parametric distributions that are found by the 
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literature to properly describe the observed travel time data; normal (Zhong et al., 2020), 

lognormal (Herman and Lam, 1974; Richardson and Taylor, 1978; Pu, 2011), betta (Polus, 

1979; Castillo et al., 2012), gamma (Herman and Lam, 1974; Polus, 1979; Kim and 

Mahmassani, 2015), exponential (Talley and Becker, 1987; Noland and Small, 1995) and 

generalized extreme value distribution (Al-Deek and Emam, 2006). Both MLE method and 

Bayesian inference are utilized in the literature to obtain the best fitted distributions of the 

empirical nominal pace and incident pace data. In the MLE method, the best fitted 

distribution is chosen by measuring the goodness of fit of all the above-mentioned 

distributions and comparing their maximum likelihood values. Once the best distributions 

according to both methods of parameter inference methods (i.e., MLE and Bayesian) are 

determined, various statistical techniques are employed to determine the superior 

distribution. More specifically, the fit of the CDF of the empirical pace data are compared to 

the CDFs obtained from parameter inference methods. Additionally, the quantile-quantile 

(q-q) plots and also the mean of the modeled and the mean of the empirical pace data are 

compared to find the best fitted distribution of the empirical nominal pace and incident pace 

data. 
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Figure 3.3. Impact domain 𝐷, marginal PDFs and the joint PDF in 3D 

 

Depending on the underlying fitted distribution a closed-from solution or appropriate 

analytical approximation might not always exist. Therefore, in the next step, a crude Monte 

Carlo simulation approach is considered to measure the probability that a given link 𝑗 is 

significantly affected by the incident 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 ). To this end, a large equal number of 

nominal pace and incident pace samples (i.e., 𝑛𝑠) are generated according to each underlying 

distribution. For each pair of generated samples, the sample pace during the incident is 

subtracted from the nominal pace to obtain the value of the limit state function 𝐺𝑁,𝑄 (𝑗) for 

each sample pair. The probability that link 𝑗 is affected by the incident is then calculated by 

measuring the proportion of the samples in the domain 𝐷 to the total number of experiments: 
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𝜙𝑓(𝑗) ≈
𝑛[𝐺𝑁,𝑄 (𝑗) < 0]

𝑛𝑠
  (3.11) 

 

where 𝑛[𝐺𝑁,𝑄 (𝑗) < 0] represents the number samples in the domain 𝐷. The required number 

of samples generated for each distribution depends on the underlying distributions and the 

desired accuracy of the estimated probability 𝜙𝑓(𝑗). To have reasonably high number of 

samples in the domain 𝐷, 105 samples for each distribution are generated initially. The 

number of samples in the domain 𝐷 is then counted. The experiment will be performed again 

with higher number of experiments (i.e., 106) in the case that the number of samples in the 

domain 𝐷 is not large enough. 

 

3.4.2 Impact area vulnerability index 

Previous studies mainly focused on finding the vulnerable links by only measuring 

the consequence of failure of given link 𝑗 with no consideration given to its possible impact 

resulting from the failure of adjacent links. In fact, due to the possibility of the existing 

correlation between adjacent links (Chen et al., 2011; Chen et al., 2012), failure of a given 

link 𝑗 could lead to the failure of other links in its vicinity or at least it can affect the travel 

pace of these links. Of course, the characteristics of the link itself in terms of capacity and 

the time of the occurrence of the disruptive event play a major factor in whether the impacts 

are propagated to other links or not. For instance, a collision blocking two lanes in a major 

freeway might result in a different size of the impact area depending on when the collision 

occurs. While if the collision occurs during the night, the resulting traffic disruption can be 

easily absorbed, during the morning or afternoon peak hour, the diverted traffic and possibly 
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blocked on/off ramps would significantly affect other neighboring roads/arterials; possibly 

inducing a propagating spillback domino effect on other links.   

To take into consideration both the impact of incident occurring on link 𝑗 on the 

performance of both link 𝑗 itself and other links in its vicinity and also the impact of incidents 

occurring on other links in the vicinity of link 𝑗 on the performance of link 𝑗, the probability 

vector of link 𝑗 (i.e., 𝜙(𝑗)) is calculated using the procedure in Section 3.4.1. This probability 

vector itself is constructed by two smaller probability vectors; 𝜙(𝑗, 𝑒𝑘(𝑗,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) contains 

the probabilities that link 𝑗 is affected by incidents on link 𝑗 itself (direct impact probabilities) 

and 𝜙(𝑗, 𝑒𝑘(𝑔,⋃ 𝑇𝑖
𝑠
𝑖=𝑟 )) which includes the probabilities that link 𝑗 is affected by incidents 

occurring on other adjacent links (indirect impact probabilities). A new vulnerability index 

(𝑉𝑈𝐿𝑗) is proposed considering both the direct and indirect impact probabilities on link 𝑗 and 

the consequence of the impact in terms of increase in the mean pace of link 𝑗. 

 

𝑉𝑈𝐿𝑗 = 𝑎(𝑗)(∑∑𝛼ℎ,𝑗𝜙(ℎ, 𝑒𝑘 (𝑗,⋃𝑇𝑖

𝑠

𝑖=𝑟

))

𝑛𝐺

ℎ=1

(𝑃̅𝑄(ℎ) − 𝑃̅𝑁 (ℎ))

𝑚𝑗

𝑘=1

+∑∑𝛼𝑗,𝑔𝜙(𝑗, 𝑒𝑘 (𝑔,⋃𝑇𝑖

𝑠

𝑖=𝑟

))(𝑃̅𝑄(𝑗) − 𝑃̅𝑁 (𝑗))

𝑚𝑔

𝑘=1

𝑛𝐺

𝑔=1

) 

(3.12) 

 

where 𝑚𝑗 and 𝑚𝑔 are the total number of disruptive events that occurred on link 𝑗 and link 

𝑔 respectively, and 𝑛𝐺 shows the total number of links in the network 𝐺. 𝛼ℎ,𝑗 and 𝛼𝑗,𝑔 are 

binary parameters defined as below: 
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𝛼ℎ,𝑗 = {
1
0

 

If link ℎ is affected by incident on link 𝑗 
(3.13) 

If link ℎ is not affected by incident on link 𝑗 

 

𝛼𝑗,𝑔 = {
1
0

 

If link 𝑗 is affected by incident on link 𝑔 

(3.14) 

If link 𝑗 is not affected by incident on link 𝑔 

 

In Equation (3.12), 𝑎(𝑗) indicates the importance of link 𝑗 in network 𝐺. Adopting the idea 

of trip importance introduced by Zhong et al. (2019), a new link importance measure (i.e., 

𝑎(𝑗)) is introduced in this study. Given 𝑛𝐺 links, denote  

𝑃𝑇
 (𝑗, 𝑖) =

𝑢𝑇(𝑗,𝑖)

𝑙(𝑗)
 as the pace distribution of link 𝑗 = 1,… , 𝑛𝐺 in time period 𝑇 = 1,…24, of 

day 𝑖 and 𝑅𝑇
 (𝐺, 𝑖) =

∑ 𝑙(𝑗)𝑃𝑇
 (𝑗,𝑖)

𝑛𝐺
𝑗=1

∑ 𝑙(𝑗)
𝑛𝐺
𝑗=1

 as the network-scale pace distribution of network G at 

time period T of day 𝑖, where 𝑢𝑇(𝑗, 𝑖) is the travel time of link 𝑗 in the time period T of day 

𝑖. 

A similar optimization problem to the one in Chapter 2 equation 2.32 is formulated 

to identify the importance of each link on network performance and is repeated for the 

reader’s convenience as follows: 

 

𝑍 = 𝑚𝑖𝑛 ∑∑(𝐸 [𝑅𝑇
 (𝐺, 𝑖) −∑𝑎(𝑗). 𝑃𝑇

 (𝑗, 𝑖)

𝑛𝐺

𝑗=1

])

2
24

𝑇=1

𝑁

𝑖=1

 

 

s.t.     ∑ 𝑎(𝑗)
𝑛𝐺
𝑗=1 = 1 

 

         0 ≤ 𝑎(𝑗) ≤ 1 

 

(3.15) 
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The results obtained from solving the above equation is a real number 𝑎(𝑗) between 0 and 1 

for each link in the network. In other words, Equation (3.15) assigns an importance index 

𝑎(𝑗) to each link by minimizing the deviation between the network-wide measure of pace 

distribution and the summation of the product of 𝑎(𝑗) with the individual pace distribution 

of links in network 𝐺. Since the objective function in Equation (3.15) is always positive, the 

optimization problem tries to assign higher 𝑎(𝑗) values to links with higher 𝑃𝑇
 (𝑗, 𝑖). In other 

words, the outcome of optimization problem in Equation (3.15) is assigning higher values of 

𝑎(𝑗) to links with higher travel paces (e.g., major roads including freeways and arterials). 

Subsequently links with lower travel pace (e.g., minor links or links with relatively high level 

of service and operation conditions) are penalized by lower value of 𝑎(𝑗). An increase in 

𝑎(𝑗) portrays a more significant contribution of link j to the overall network performance; 

thus, links with the highest values of 𝑎(𝑗) have the most substantial contribution to network 

performance.  

The optimization problem in Equation (3.15) is a convex quadratic optimization 

problem (QP) with linear constraints which can be solved using exact optimization methods. 

The optimization problem is formulated and solved in Python using Gurobi solver (Gurobi 

Optimization, 2020). Using exact methods to solve the optimization problem in Equation 

(3.15) ensures reaching the global optimum with reasonable computation time. 

 

3.5 Analysis of the incident and travel time data: Calgary network case study 

3.5.1 Data description 

Data collected from a real-world case study is analyzed to showcase the performance 

of the proposed spatiotemporal impact estimation model and its application in estimating the 
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link vulnerability. Travel time and incident data collected from various roadways in the City 

of Calgary over multiple years were analyzed. Around 85% of the Calgary road network, 

consisting of 5104 links, are selected for the aim of the analysis. The performance of the 

proposed approach is thus evaluated for the majority of links in the Calgary road network.  

For the aim of this study, the travel time data of the selected corridors were collected 

for each single day between the end of December 2013 to the end of January 2019 and 

aggregated over 1-minute time intervals to fully investigate the impact of disruptive events 

on the performance of the links. The time interval of a minimum of 1 minute is required in 

order to have a sufficient number of travel times among which the impact of disruptive events 

is determined. The data was collected by INRIX Roadway Analytics which provides services 

that allow the users to view and query regional traffic flow information. The coverage of the 

INRIX Roadway Analytics includes provincial highways, the Major Road Network and 

select arterial roads within the Metro Calgary boundary. 

Another dataset used in this study is the incident database which includes collision 

data from the City of Calgary for the same period of time as the travel time database (i.e., 

end of December 2013 to the end of January 2019). Information reported for each incident 

includes, the type of incident (i.e., collision, road repair, signal failure), date, time of the 

incident, location of the incident in the form of the latitude and longitude, incident severity 

in terms of the number of blocked lanes and reported occurrence time and clearance time of 

the incident. It is to be noted that road repair events were not considered in the analysis as 

they fall under planned events, which are out of scope of this research. The occurrence and 

clearance time of the incidents are mostly reported by either those involved in the incident 

or police officers. For a small portion of the historical incidents the occurrence time is 
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identified using traffic cameras in the vicinity of the incidents, however, the source of the 

reported occurrence time of the incident is not recorded in the database. 

 

3.5.2 Investigating the spatiotemporal impact of incidents 

The City of Calgary’s incident database used in this study includes 30,814 individual 

incidents. Since the duration of work zones and other road works can last for months, they 

have been removed from the analysis performed to determine the spatiotemporal impact of 

incidents. After filtering those events, 12,504 events were included and the analysis was 

performed regardless of their severity (i.e., number of lane blockages). The incident database 

is integrated with the travel time database and incidents are assigned to their corresponding 

links by matching the coordinated in the both databases. Collisions occurring at intersections 

are assigned to their immediate neighbours (i.e. immediate upstream and downstream links) 

to have a large enough link for analysing the spatiotemporal impact of incident at 

intersections. The spatiotemporal impact analysis was implemented using Python 3.7.5 

software on a personal computer with 3.4 GHz Intel CoreTM i7-6700 processor and 16GB of 

memory. The spatiotemporal impact determination took in average 30 second for each 

collision. To show the performance of the proposed approach in evaluating the temporal 

impact of the incident occurrences, results from 6 incidents from various roads in the City of 

Calgary are illustrated here. The characteristics of the incidents are shown in Table 3.2. 
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Table 3.2. Incident information including reported occurrence time, clearance time, 

estimated occurrence time and flow recovery time 

Incident 
Link subject to 

incident 
Direction 

Length 

(km) 

Reported 

occurrence 

time 

Reported 

clearance 

time 

Estimated 

occurrence 

time 

Estimated 

flow 

recovery 

time 

1 

Macleod Tr N (btw 6 

Ave SE and 5 Ave 

SE) 

NB 0.11 9:05 10:40 8:59 10:47 

2 

Crowchild Tr NW 

(btw Kensington Rd 

NW and Memorial Dr 

NW) 

SB 0.21 8:58 11:20 8:59 11:24 

3 

Glenmore Tr SE (btw 

Deerfoot Tr SE and 

Blackfoot Tr SE) 

WB 0.40 9:54 11:50 9:56 12:03 

4 

Canyon Meadows Dr 

SW (btw Intersection 

with Macleod Tr N) 

WB 0.21 13:05 14:45 12:59 14:53 

5 

Macleod Tr N (btw 

Intersection with 

Midlake Blvd SE) 

NB 0.23 17:10 17:40 17:02 17:46 

6 

Crowchild Tr NW 

(btw 53 St NW and 

Sarcee Tr NW) 

WB 0.81 8:55 10:10 8:46 10:16 

 

The temporal impact information reported in Table 3.2 is obtained by plotting 𝑁𝑀𝐼 

versus the 1-minute time intervals for incidents listed in Table 3.2 as depicted in Figure 3.6. 

 The occurrence time and the flow recovery time of the incidents are then estimated 

by spotting any sudden drop in the value of 𝑁𝑀𝐼 which indicates dissimilarity between the 

observation vector of the two consecutive time intervals. The inference of the incidents’ 

occurrence and flow recovery time is based on the assumption that 𝑁𝑀𝐼 values remain fairly 

high for a short period of time, where the demand variation is negligible before the 

occurrence of the incident, followed by a sharp drop during the time of incident occurrence. 

𝑁𝑀𝐼 values are also expected to remain high for the incident impact duration followed by 
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another drop during the vicinity of the time that the impact of the incident occurring on the 

link is cleared from the impact area. The drops in the 𝑁𝑀𝐼 values are indicated by red and 

green circles in Figure 3.6, to identify the inferred occurrence and the flow recovery time 

associated with each incident shown in Table 3.2. 

To elaborate further on how the spatiotemporal impact of incidents are determined, 

the spatial impact of Incident 1 is determined by applying the approach developed in Section 

3.3.1 and is represented in an example in Figures 3.4 and 3.5. Important time points including 

reported start time, estimated start time, reported clearance time and estimated flow recovery 

time are also shown in Figure 3.5. The link subject to incident is indicated by the black star 

and the affected links in each time interval are shown by dashed lines. In addition, the links 

that belong to the same cluster obtained from conducting Ck-means clustering technique 

discussed in Section 3.3.1, are shown by the same colour. In this specific incident, the 

outcome of the Ck-means clustering is 4 clusters that are shown in 4 different colours; blue, 

green, yellow and red. The mean pace of links in different clusters has an ascending order 

from the colour blue to red, while links within a same cluster (shown by same colour in 

Figure 3.5) have relatively similar paces From Figure 3.5, therefore it is evident that the 

impact of the incident has been dispersed throughout the specified part of Calgary downtown 

area depicted in Figure 3.4 well ahead of the reported start time. It is also shown that even 

after the clearance of the incident from the link subject to incident, the impact of the incident 

remains on some of the links in terms of the deviation of the pace from nominal pace of those 

links. 
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Figure 3.4. Part of Calgary downtown area affected by Incident 1 

 

Based on the information in Table 3.2, the model estimated occurrence times are 

usually detected ahead of the reported occurrence time, while the estimated flow recovery 

time is always after the reported clearance time. Possible sources of these deviations could 

be error or delay in recording the incident occurrence and clearance time, which is evident 

in most cases in Table 3.2 where the occurrence and clearance times are rounded to the 

nearest 5 minutes.  

To investigate whether the same trend is applied to other historical incidents, the 

spatiotemporal impact of all historical incidents was estimated and the deviation of the 

estimated quantities (i.e., occurrence time, flow recovery time and impact duration of the 

incident), from the reported ones is shown in Figure 3.7. The boxplot represented in Figure 

3.7 includes minimum, maximum, median, mean (shown by plus sign), first quartile, and 

third quartile for the difference between the estimated and reported occurrence time, reported 

clearance time and flow recovery time, and time difference between reported incident 



 

104 

 

duration and estimated incident impact duration. Individual data is also plotted for each 

category. The mean of the difference between estimated and reported occurrence time is 

close to zero and in most cases the difference is negative, which indicates that the occurrence 

time is detected earlier by the proposed approach compared to the reported occurrence time. 

This finding is reasonable as the majority of the reported occurrence times are not accurate 

since they are usually reported by those involved in the incidents or by operators and 

sometime after the real occurrence time of the incident. The difference in the occurrence time 

could be positive though for some events, as indicated in Figure 3.7. The positive difference 

is justified by the fact that the developed methodology in Section 3.3 determine the temporal 

impact by comparing the pace pattern of the impact area. It might take the algorithm some 

time to recognize the change in the pace pattern throughout the impact area as the change in 

the pace after the incident could be gradual. 
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8:58 Estimated occurrence time: 8:59

9:06

10:41

10:45 10:46 Flow recovery time: 10:47

Reported occurrence time: 9:05

Reported clearance time: 10:40

Target link

Affected link

Link in cluster 1

Link in cluster 2

Link in cluster 3

Link in cluster 4
 

Figure 3.5. Spatial impact of Incident 1 in different time intervals 
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Figure 3.6. NMI values versus time intervals for selected collisions in Calgary road 

network 
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In contrast to the occurrence time, the majority of the differences between the flow 

recovery time and clearance time of incidents are positive, which shows that the real impact 

of incidents endures much longer in the network. This finding is intuitive since the recorded 

clearance time in the dataset is the time that a given incident is removed from the link subject 

to incident and is not reflective of the ongoing propagation of the shockwave induced by the 

incident on the links in the vicinity of the link subject to incident. Because of the relatively 

high difference between the reported clearance and estimated flow recovery time of the 

incidents, the estimated duration of the effect of incidents is found to be higher than the 

reported duration of the incident. In addition to the higher mean difference between the 

reported clearance time and estimated flow recovery time compared to the mean difference 

between the reported and estimated occurrence time (7.31 min versus 2.44 min), higher 

variation is observed in the difference of the reported clearance time and estimated flow 

recovery time. The 𝑆𝐷 = 5.98 min for the difference between the reported clearance time 

and estimated flow recovery time – compared to the 𝑆𝐷 = 4.08 min of the difference of the 

reported and estimated occurrence time, implies that the reported clearance time is not 

representative enough of the actual incident flow recovery time. While it is possible to record 

the occurrence time of the incident accurately by field observation, the flow recovery time 

of the incident from the impact area cannot be directly detected by field observation as the 

impact of the incident pertains even after the incident is removed from the link subject to the 

incident. The proposed approach can determine the enduring spatiotemporal impact of 

incidents which is crucial in road safety, resilience and road vulnerability analysis. 

 



 

108 

 

 

Figure 3.7. Time difference between the estimated and reported occurrence time, reported 

clearance time and flow recovery time and time difference between reported incident 

duration and estimated incident impact duration 

 

It is possible to validate the proposed approach by comparing the estimated and the 

reported occurrence time when accurate reported occurrence time is available. Trustworthy 

source of this information could be the occurrence times extracted from CCTV traffic 

cameras. However, since the source of the records is not specified in the examined dataset, 

it is not possible to validate the model. The validation could be performed upon availability 

of such data by comparing the estimated and reported occurrence times of such incidents. 
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3.5.3 Calgary road network vulnerability analysis 

Once the spatiotemporal impact of all incidents in the incident database of the City 

of Calgary is evaluated, the individual vulnerability index of each link is calculated using 

Equation (3.12). The vulnerability index accounts for both the direct and indirect impact of 

incidents affecting a given link j. By direct impact, I mean the impact of all incidents in 

which link j is the link where the incident occurs and the impact of link j failure is measured 

on the associated impact area. By indirect impact, I mean the impact of all incidents in which 

link j is not the link where the incident occurs but is affected by incidents occurring on other 

links in the network. Figure 3.8 shows the critical links in Calgary road network as portrayed 

in the vulnerability analysis. 
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Figure 3.8. The first 800 vulnerable links in the Calgary road network 

 

Notable areas consisting of clusters of critical links are highlighted in Figure 3.8. The 

most critical links in the Calgary road network are located in the downtown area. Calgary 

downtown is one of the densest downtown areas of its size in North America and also ranked 

second in the largest concentration of head offices in Canada (Calgary Economic 

Development, 2018). High concentration of businesses and high population density in 

Calgary downtown area result in high travel demand, which can be considered as one of the 

most important factors contributing to the vulnerability of the links located in this area. In 

addition, most of the links in Calgary downtown area are one-way streets (e.g., 4th, 5th, 6th, 
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and 9th Ave, and 4th, 5th, and 9th St SW) with a limited number of turning movements to 

access these links where most of these alternative roads are themselves one-way road 

segments (i.e., one might need to use three one-way streets instead of making a left turn). 

Thus, despite being a dense urban area, measured by the number of links per unit area, 

Calgary downtown suffers from relatively low connectivity. This is the same case for any 

other downtown with a large number of one-way streets. Because of the low connectivity 

between the road segments within the Calgary downtown area, the high network density 

cannot easily absorb and thus mitigate the congestion caused by disruptive events, which 

makes this area highly vulnerable to the occurrence of incidents. Another influential factor 

is lack of cyclicity in the Calgary downtown area. Due to the high number of one-way streets, 

a few random walks lead to a cycle back to a previously visited node in the downtown area. 

For instance, visiting the intersection of 5 Ave SW and 5 St SW requires a minimum walk 

of the length of 8 (i.e., visiting at minimum 8 intersections prior to visiting the mentioned 

intersection again). Such lack of cyclicity further affects the capability of the downtown area 

to recover from the consequences of link failure. This finding is consistent with the finding 

in Zhang et al. (2015), who reported cyclicity to be positively correlated with resilience. 

Most of the corridors reported as vulnerable road segments in Chapter 2 are indeed 

also identified as vulnerable corridors using Equation (3.12) as the measure of vulnerability. 

Examples are the stretch of the 16 Ave between Deerfoot Trail and 14th St, Banff Trail, the 

intersection of McKnight Blvd and Deerfoot Trail/Edmonton Trail and the area in the vicinity 

of the University of Calgary. 

 In addition, several new corridors are added to the set of vulnerable links by applying 

the methodology developed in this chapter. Notable examples are Deerfoot Trail, Crowchild 
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Trial and Glenmore Trail. Deerfoot Trail and Glenmore Trail are Alberta’s busiest highways 

with peak daily congestion lasting as many as four hours (Alberta Transportation, 2018). The 

high traffic volume on these two corridors is a contributing factor to an average 2,000 

collisions annually (Farhan, 2019). In contrast to dense urban areas such as Calgary 

downtown, where lack of alternative access roads is likely the contributing factor to the 

vulnerability of links subject to incident, the demand for travel becomes a more contributing 

factor to vulnerability in areas with lower densities (e.g., major highways such as Deerfoot 

Trail and Glenmore Trail). The same explanation applies to the part of Crowchild Trail 

between Glenmore Trail and 32 Ave NW, which connects the lower part of the city to 

numerous major demand attractors in the City of Calgary such as University of Calgary, 

Foothills Medical Centre, SAIT and Alberta Children’s Hospital. This part of Crowchild 

Trail contains links with high traffic demand and a very high annual collision rate (around 

100 incidents per year) which makes them vulnerable to the presence of disruptive events. 

As discussed previously in this section, the majority of the links recognised as 

vulnerable links in Chapter 2 indeed turned out to be vulnerable network elements by 

applying the methodology introduced in this chapter. In fact, new corridors are revealed to 

be also vulnerable that are not identified as vulnerable links by proposed approach in Chapter 

2. One possible justification is that in Chapter 2, the vulnerability index is obtained by 

evaluating the return level of the extreme delays determined in each week as the block 

interval. The consideration of one-week block interval might underestimate the return level 

of links with high frequency of collisions (e.g., Deerfoot Trail, Glenmore Trail and 

Crowchild Trail) where on average more than one incident occurs weekly or even daily. 

Thus, the approach in Chapter 2 might not completely reveal the vulnerability level of these 
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links. This issue can be resolved by either choosing smaller block-intervals for links with 

higher frequency of incidents or applying Rth largest order, a method which allows two or 

more extremes to be chosen in each block interval. The implementation of Rth order method 

could be tricky as it might increase the bias in the obtained extreme database by also 

including non-extreme travel time observations. Same issue holds for choosing block 

maxima method with smaller block-intervals especially for links with lower frequency of 

incidents. Nevertheless, the road vulnerability index developed in this chapter is more 

holistic as it also considers the impact of all possible incidents on a given link (i.e., both 

direct and indirect impact of incidents). The consideration of the impact of all incidents is 

facilitated in this chapter by integrating both the incident and travel time databases. Thus, 

the vulnerability ranking obtained in this chapter represents more realistically the true 

vulnerability ranking of links compared to the one obtained in Chapter 2 as is shown in the 

case study on the Calgary road network.  

Comparing my findings on major highways in the City of Calgary with the findings 

of Chen et al. (2012), my results are consistent, and it can be concluded that corridors with 

high travel demand in areas with lower urban densities tend to be more vulnerable to 

disruptive events as compared to links with low travel demand. In addition, it was also found 

in this chapter that for dense urban areas where the demand of travel is high (e.g., downtown), 

links with fewer alternative access links and higher frequency of incidents are likely more 

vulnerable to the presence of disruptive events.  
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CHAPTER 4:  SUMMARY AND CONCLUSIONS 

 

This chapter presents concluding remarks and provides potential directions for new 

research. Sections 4.1 and 4.2 share an overall research summary and the findings related to 

Chapters 2 and 3. I suggest areas that may be of interest for future study in Section 4.3. 

 

4.1 Research contributions and findings on the vulnerability analysis by modeling 

monthly and seasonal extreme travel delay variations 

In Chapter 2, I proposed a new vulnerability index by modeling the monthly and 

seasonal variation in the extreme travel delay. 

This research contributes to the previous body of knowledge as follows:  

1) Developing a new class of extreme value distribution called CGEV distribution to 

describe extreme travel delays observed in a road transportation network. The proposed 

CGEV distribution is the product of two GEV distributions used to describe the extreme 

travel delay variability across two different levels, month-to-month and seasonal. I obtained 

a closed-form algebraic expression based on a regularized hypergeometric function to 

represent the PDF and CDF of the CGEV distribution. The proposed CGEV distribution is 

characterized by its five parameters consisting of two shape parameters (𝜉𝑑, 𝜉𝐷), two location 

parameters (𝜇𝑑, 𝜇𝐷), and the seasonal mean of extreme travel delay (𝛥𝑗). The two shape 

parameters 𝜉𝑑 and 𝜇𝑑 characterize the monthly variation in extreme travel delay and the two 

location parameters 𝜉𝐷  and 𝜇𝐷  also characterize the monthly variation in extreme travel 

delay. Finally, 𝛥𝑗 represents the actual mean of extreme travel delay in a given season j.  
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The proposed CGEV distribution reduces the number of estimated parameters needed 

to describe the monthly and seasonal variation in extreme travel delay if the variation was 

intended to be modeled by two separate GEV distributions, i.e., one to describe month-to-

month and one for seasonal variability. Moreover, the fact that the parameters of the CGEV 

distribution characterize the monthly and seasonal variability makes it more convenient to 

validate the model assumptions compared to that of the GEV distribution because the CGEV 

distribution relates empirical and analytical CVs for both variability levels. 

I calibrated the parameters of the CGEV distribution parameters using actual 

observed link-based multiyear observed travel time data from the City of Calgary road 

network. The underlying assumptions used to derive the CGEV distribution are also 

validated using the same dataset. The results indicate that the mean-SD relationship can be 

adequately described by a linear function for both monthly and seasonal levels. 

2) Comparing the performance of the proposed CGEV distribution with that of the 

traditional GEV distribution accounting for both the goodness of fit, i.e., relative log-

likelihood value, and model complexity, i.e., number of estimated parameters. The results 

indicate that accounting for the seasonality by allowing the same parameters across similar 

seasons provides a flexible, but not too complex (i.e. in terms of the number of estimated 

parameters needed), CGEV distribution that is favored over other models that are based on 

traditional GEV distribution. The results are further validated by comparing the ranking 

distribution of the developed CGEV distribution across all links in the Calgary road network. 

To further validate the assumption that the developed CGEV distribution is able to 

properly model the overall variation in extreme travel delay, I obtained the seasonal return 

level of the extreme travel delay, i.e., the level of extreme travel delay expected to be 
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exceeded on average once every season, for both the CGEV and traditional GEV 

distributions. In addition, I compared the return level to the actual observed mean of the 

extreme travel delay across different seasons. I showed the merit of the CGEV distribution 

in modeling the variability in a large size network and that the CGEV distribution minimizes 

the error of the actual return level prediction. 

The primary improvement of the CGEV distribution over traditional GEV 

distributions is its ability to model multi-dimensional aspects of extreme travel delay 

variability and the clear physical interpretation of its parameters in connection with monthly 

and seasonal variation in extreme travel delay. Modeling the extreme travel delay using the 

CGEV distribution provides a systematic framework in appraising, assessing, and comparing 

the extreme travel delay variability, which is crucial to perceive the underlying variabilities 

in extreme travel delay and their characteristics. 

3) Developing a new data-driven vulnerability approach that accounts for both the 

stochastic nature of extreme events and link importance. While the stochastic nature of 

extreme events is reflected in their return levels, link importance is used as an alternative 

measure for the relative impact of a link failure on network performance. 

I discussed the application of the proposed CGEV distribution to road network 

vulnerability analysis and proposed a new index of road vulnerability based on the relative 

importance of links in road networks and their seasonal return levels. I examined the 

performance of the proposed index in the case of Calgary road network and showed that in 

dense urban areas, links with lack of access to alternative links are likely more vulnerable to 

the presence of disruptive events. 
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4.2 Research contributions and findings on vulnerability analysis by measuring the 

spatiotemporal impact of incidents 

In Chapter 3, I proposed another data-driven vulnerability approach that considers 

both the consequences of incidents as well as the probability of incidents’ impact on the 

neighbouring links. 

Analytical vulnerability analysis usually overlooks important factors that affect the 

vulnerability of road links. For instance, they model the link closure as a one-time incident 

and measured the consequences before and after the change with no consideration to dynamic 

impact of closure during the full-time span from link closure to link recovery. Multi-year 

observed travel time and incident data could be mined to further unravel these dynamics as 

these datasets contain important information that reflect the historical spatial and temporal 

occurrences of link closure and their impacts.  

This research contributes to the body of knowledge as follows:  

1) Formulating a novel approach to identify the spatial and temporal impact of 

incidents; these spatiotemporal impacts of incidents are subsequently used in the 

vulnerability analysis. Thus, instead of focusing only on the travel time fluctuation of the 

link subject to incident, which is the common practice in the literature, the developed 

approach determines both the time of occurrence and the flow recovery of incidents by 

monitoring the spatiotemporal propagation of congestion patterns in a collection of links in 

the vicinity of the link subject to incident (i.e., impact area). 

I examined the performance of the developed approach on historical incidents in the 

Calgary road network. The results indicate that the reported incident duration obtained from 

start time and clearance time recorded in the dataset is not representative enough of the true 
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impact of incidents as it overlooks the propagating impact of incidents on the impact area. 

The proposed approach can determine the enduring spatiotemporal impact of incidents. A 

more realistic representation of the spatiotemporal propagation of incidents is imperative for 

a solid vulnerability analysis. The accuracy of such information is crucial in identifying the 

critical road infrastructure needed to increase road safety and network robustness. The 

analysis framework that is developed in this research is shown to successfully identify the 

spatiotemporal propagation of incidents in a road network. In addition, the outcomes of this 

analysis can be used as a decision support tool to assist transportation policy makers in 

identifying the critical and vulnerable links in a road network and subsequently prioritize the 

resources that need to be allocated to improve network wide resilience and robustness. 

2) Developing a new holistic data-driven impact area vulnerability approach that 

takes into consideration both the probability that links in an impact area are affected by an 

incident as well as the spatiotemporal propagation of the incident on the impact area. In 

addition, I formulated an optimization problem to identify the importance of each link on 

network performance. The importance index has higher values for links with higher travel 

paces (e.g., major roads including freeways and arterials) and is lower for links with lower 

travel pace (e.g., minor links or links with relatively high level of service and operation 

conditions). The link importance was incorporated into the proposed vulnerability index.  I 

examined the performance of the proposed vulnerability index on the Calgary road network 

while taking into account the spatiotemporal impact of historical incidents and the 

importance of links in the Calgary road network. I found that in urban areas with lower urban 

density, links on corridors with high travel demand are more likely to be vulnerable to 

disruptive events compared to links with lower demand of travel. In addition, I found that in 
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dense urban areas (e.g., downtown), lack of connectivity is the most contributing factor to 

road vulnerability as connectivity can efficiently mitigate the consequences of road closure 

within the area. The primary feature of the developed vulnerability index is its ability to 

model multi-dimensional aspects of extreme travel delays caused by incidents in a road 

network. These multi-dimensional aspects were not examined before. 

3) Estimating the vulnerability ranking of links where both the direct and indirect 

impacts of incidents are incorporated. While direct impact considers the impact of all 

incidents occurring on a given link on the link itself and links in its vicinity, the indirect 

impact examines the impact of incidents occurring on other links but also affecting the given 

link. The vulnerability analysis discussed in the literature only measures the direct impact of 

incidents on a given link, however, network elements in the vicinity of links that are subject 

to high frequency of incidents are themselves more vulnerable to be affected indirectly by 

the resulting congestion.    

 

4.3 Future extension 

There are numerous possible future directions for this research. For instance, the 

proposed approach to determine the spatiotemporal impact of incidents in Chapter 3 could 

be enhanced to identify the impact of other type of incidents other than collisions (e.g., work 

zones, link closure due to severe weather condition, etc.). The determination of the 

spatiotemporal impact of non-collision related incidents could be challenging as the impact 

of these events can last much longer in a road network compared to that of collisions. 

Consequently, the vulnerability index proposed in Chapter 3 could be further modified to 

take into consideration the impact of non-collision related incidents.  
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Another interesting extension of this study is revising the spatiotemporal evaluation 

approach such that it can be used as an online incident detection technique. The proposed 

approach in Chapter 3 evaluates the spatiotemporal impact of incidents by analysing the 

travel pace data during the incident time which requires having access to historical incident 

pace data. Thus, in the current form, the developed approach cannot be used as an incident 

detection technique. The provision of real-time traffic information gives transportation 

authorities the possibility of detecting incidents soon after their occurrences which may help 

design strategies for traffic management and rerouting information - to be delivered to drivers 

online through variable-message signs, traffic radio or navigation devices - to mitigate 

congestion and improve the performance of road networks in the presence of incidents. 

Another potential extension of this study is considering possible future advancements 

in traffic monitoring through connected vehicles. Connected vehicles are becoming 

information hubs that generate, process, send, and receive vast amounts of data while on the 

move. I can study how I can make use of introducing new advancements to current traffic 

data collection methods to improve the accuracy of the proposed spatiotemporal incident 

evaluation technique. Furthermore, I can study how to harness the massive amount of real-

time data provided by the connected vehicle environment to develop more efficient incident 

detection techniques.
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Appendix I 

Let’s assume that the error term 𝜀𝑑 follows the GEV distribution with location parameter 𝜇𝑑, 

shape parameter 𝜉𝑑, and scale parameter 𝜎𝑑. The expected value of 𝜀𝑑, denoted by 𝐸(𝜀𝑑), is 

equal to 1 as follows: 

 

𝐸(𝜀𝑑) = 1  (I-2.1) 

 

Replacing the mean value of the error term based on the GEV distribution as 𝜇𝑑 +

𝜎𝑑
𝛤(1−𝜉𝑑)−1

𝜉𝑑
  in Equation (I-2.1) results in the following: 

 

𝜇𝑑 + 𝜎𝑑
𝛤(1 − 𝜉𝑑) − 1

𝜉𝑑
= 1  (I-2.2) 

 

The scale parameter 𝜎𝑑 is then obtained based on the shape and location parameters by re-

organizing Equation (I-2.2) as follows: 

 

𝜎𝑑 =
(1 − 𝜇𝑑)𝜉𝑑
𝛤(1 − 𝜉𝑑) − 1

  (I-2.3) 
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