
THE UNIVERSITY OF CALGARY

A Preemptive Scheduling

Heuristic

by

Gang Li

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF MATHEMATICS AND STATISTICS

CALGARY, ALBERTA

JULY, 1994

©Gang Li 1994

National Library
of Canada

Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1AON4

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395. rue Wellington
Ottawa (Ontario)
K1AON4

THE AUTHOR HAS GRANTED AN
IRREVOCABLE NON-EXCLUSIVE
LICENCE ALLOWING THE NATIONAL
LIBRARY OF CANADA TO
REPRODUCE, LOAN, DISTRIBUTE OR
SELL COPIES OF HIS/HER THESIS BY
ANY MEANS AND IN ANY FORM OR
FORMAT, MAKING THIS THESIS
AVAILABLE TO INTERESTED
PERSONS.

THE AUTHOR RETAINS OWNERSHIP
OF THE COPYRIGHT IN HIS/HER
THESIS. NEITHER THE THESIS NOR
SUBSTANTIAL EXTRACTS FROM IT
MAY BE PRINTED OR OTHERWISE
REPRODUCED WITHOUT HIS/HER
PERMISSION.

ISBN O-315-99407-X

Your file Votre rilfilrence

Our file Noire rilfilrence

L'AUTEUR A ACCORDE UNE LICENCE
iRREVOCABLE ET NON EXCLUSIVE
PERMETTANT A LA B1BLIOTHEQUE
NATIONALE DU CANADA DE
REPRODUIRE, PRETER, DISTRIBUER
OU VENDRE DES COPIES DE SA
THESE DE QUELQUE MANIERE ET
SOUS QUELQUE FORME QUE CE SOIT
POUR METTRE DES EXEMPLAIRES DE
CETTE THESE A LA DISPOSITION DES
PERSONNE INTERES SEES.

L'AUTEUR CONSERVE LA PROPRIETE
DU DROIT D'AUTBUR QUL PROTEGE
SA THESE. NI LA THESE NI DES
EXTRAITS SUB STANTIELS DE CELLE-
CI NE DOI VENT ETRE IMPRIMES OU
AUTREMENT REPRODUITS SANS SON
AUTORISATION.

Canad(I

THE UNIVERSITY OF CALGARY

FACULTY OF GRADUATE STUDIES

The undersigned certify that they have read, and recommend to the Faculty of Grad-

uate Studies for acceptance, a thesis entitled "A Preemptive Scheduling Heuristic"

submitted by Gang Li in partial fulfillment of the requirements for the degree of

Master of Science.

Supervisor, M. G. Stone,

DeDartment of Math and Stats

C. Laflamme, N
Department of Math and Stats

Department of Computing Science

11

ABSTRACT

To introduce the main topic of this thesis, we present a collection of known results

for preemptive and non-preemptive scheduling problems. Our goal is to explore the

use of unit execution times for critical path elements (members of a chain of maximal

length) as a scheduling heuristic. We observe that optimal schedules which are

compatible with this heuristic are always possible for one and two machine problems.

For three or more machines, we prove that tasks in critical paths in the original task

set P cannot always-be executed in unit time in an optimal schedule. We investigate

the possibility of rescheduling all tasks in any maximum chain in the order S(P)

induced by an optimal schedule S, using unit execution times without lengthening

the schedule. Finally, we identify a class of ordered sets called K-structures for which

we design an algorithm based on this heuristic which appears to provide optimal

preemptive schedules.

1'1

Preface

We examine optimal preemptive scheduling for a set of tasks with precedence

constraints given by a partial order on this set, P. Our major focus will be on

"preemptive scheduling" where work on individual tasks may be interrupted and

resumed at a later time. We consider problems with a fixed but arbitrary number

of identical processors, and tasks which each require unit execution time. First we

summarize some of the known results and explore easy consequences of these for the

questions of interest to us in the Thesis. For one and two machines most questions can

be answered rather easily and completely. For three or more machines(tbe "multi-

processor" case) these problems are harder. We comment on some of the questions

about computational complexity , in particular, we discuss various approaches to

the question of whether or not the multi-processor preemptive scheduling problem is

NP-hard. Next, we pose a number of questions related to the central theme of this

Thesis: Scheduling maximum chains(or critical paths). In 1989, Sauer and Stone

proved that for every schedule S there is some maximum chain (in the order induced

by S) which can be rescheduled in unit blocks(without preemption) in a schedule S',

of equal or shorter length , for the same poset P. It is natural to ask if this result

can be improved to one which deals directly with maximal chains in P. The answer

is "yes" for one or two machines. We show the answer to be "no" for three or more

processors: There exist partial orders P for which every optimal schedule preempts

each maximum chain in P. The smallest examples are surprisingly complex and

rely on special properties of a poset introduced by Sauer and Stone in 1986. In the

opposite direction, we prove for each three machine preemptive schedule S of P which

iv

satisfies a certain chain condition there exists an identifiable maximum chain in the

order extension S(P) which can be rescheduled without preemption in a schedule

S', of equal or shorter length, for the same poset P. We further investigate the

role of maximum chains from P in scheduling problems; in particular, we adopt the

scheduling of maximum chains in unit blocks as a scheduling heuristic. We define

an interesting class of posets(K-structures) which are amenable to scheduling by an

algorithm based on this heuristic. We identify some interesting properties related to

K-structures and the algorithm. The potential optimality of this algorithm provides

a direction for further research in this area. The bibliography provides references

to selected contemporary papers closely related to our research on multiprocessor

preemptive scheduling problem. No attempt is made to provide a comprehensive

bibliography for all of scheduling theory.

V

Acknowledgements

In the course of producing this thesis I have become indebted to many people.

To begin with, I would like to express deepest appreciation to my supervisor Dr. M.

G. Stone. He suggested to me to do research in scheduling theory, and provided me

with every accessible reference. His broad knowledge in scheduling theory always

guided me on the right track. And particularly, his creative ideas have made our

research much more productive. In order to make the thesis more readable, he put

much effort and patience in carefully verifying my results and checking every detail,

including my English expression. I will say, without his intellectual, emotional and

financial support, the thesis would not be possible.

My thanks to professor N.W. Sauer, C. Laflamme, P. Zvengrowski, and K.

Varadarajan. The lectures and seminars they offered presented me a broad view

of mathematics.

I am also grateful to Professors Stone and Zvengrowski for their financial support

during my summer research. I would like also to take this chance to thank the

Department of Mathematics and Statistics and the Faculty of Graduate Studies for

their financial and emotional support which enabled me to complete my graduate

study here.

Finally, a personal note of thanks to my wife for her patience and encouragement

throughout my two years of graduate study, for her great help in taking care of my

life.

vi

CONTENTS

Approval page ii

Abstract iii

Preface iv

Acknowledgements vi

List of Figures ix

Chapter 1. An Introduction to Scheduling Theory 1

I.I. Machine Scheduling Theory 1

1.2. Partially Ordered Sets 5

1.3. Preemptive Scheduling on Posets 8

1.4. Methodology 11

Chapter 2. Single-machine Scheduling Problem 14

2.1. Some Known Results 14

2.2. The Jump Number Problem 16

Chapter 3. Two-Machine Scheduling Problems 22

3.1. Some Known Results 22

3.2. A Proof for the General Two-machine Scheduling Problem 27

3.3 An Application of Transformation Methods 31

Chapter 4. Multi-Machine Scheduling Problems 36

4.1. Identical Processors and Independent Tasks 36

4.2. Identical Processors and Dependent Tasks 38

Chapter-5. The Complexity of Scheduling Problems 46

vii

5.1. An Introduction to NP-Completeness Theory 46

5.2. Computational Complexity of Scheduling Problems 55

Chapter 6. Scheduling of Maximum Chains in Unit Blocks 57

6.1. Schematic Representations 57

6.2. A Counterexample 58

Chapter 7. Rescheduling Maximum Chains in S(P) 67

7.1. Observations 67

7.2. Rescheduling Maximum Chains in S(P) 70

Chapter 8. Multiprocessor Scheduling Problem on K-structures 78

8.1. K-Structure 78

8.2. Double-Labeling 80

8.3. An Algorithm for K-Structure 82

8.4. Directions for Further Research 86

Bibliography 87

viii

List of Figures

Figure 1.2.1 6

Figure 1.2.2 7

Figure 1.3.1 10

Figure 1.3.2 10

Figure 2.2.1 18

Figure 2.2.2 20

Figure 2.2.3 20

Figure 3.1.1 23

Figure 3.1.2 24

Figure 3.2.1 28

Figure 3.2.2 28

Figure 3.2.3 29

Figure 3.3.1 32

Figure 4.1.1 38

Figure 4.2.1 39

Figure 5.1.1 49

Figure 5.1.2 50

Figure 6.1.1 58

Figure 6.1.2 58

Figure 6.2.1 59

Figure 6.2.2 60

ix

Figure 6.2.3 60

Figure 6.2.4 61

Figure 6.2.5 62

Figure 6.2.6 64

Figure 6.2.7 65

Figure 6.2.8 65

Figure 6.2.9 66

Figure 7.1.1 69

Figure 7.2.1 72

Figure 7.2.2 73

Figure 7.2.3 73

Figure 7.2.4 75

Figure 7.2.5 76

Figure 7.2.6 76

Figure 8.1.1 78

Figure 8.2.1 81

Figure 8.2.2 81

Figure 8.2.3 82

Figure 8.3.1 84

x

1

CHAPTER ONE

An Introduction to Scheduling Theory

1.1 Machine Scheduling Theory

In very general terms, machine scheduling theory studied in this thesis is con-

cerned with the allocation over time of scare resources in the form of machines or

processors to activities known as jobs or tasks. Based on prespecified properties

of and constraints on the tasks and processors, the problem is to find an efficient

algorithm to sequence the tasks to optimize(or improve) some desired performance

measure. The primary measure studied is the makespan of a schedule: the total time

required for processors to complete all tasks under some constraints. As to the con-

straints, if the jobs can be performed in any order, they are said to be independent.

But, this is often not the case; in many circumstances, of two given jobs, one must be

performed before the other. Such precedence constraints of course impose a partial

ordering on the task set.

The scheduling model used to treat subsequent problems is described here. We

consider(in this order) the resources, tasks, scheduling constraints, and performance

measures which will be used to describe subsequent problems.

- Resources:

In the majority of the models studied, the resources consist simply of a set ?Z. =

{Pi,... , Pm} of processors. Depending on the specific problem, they are either totally

identical in functional capability but different in speed, or different in both function

and speed. In the most general model, there is also a set of additional resource type

= {R1,... , R3}, some (possibly empty) subset of which is required during the

2

entire execution of a task on some processor. In computer applications, for example,

such resources may represent primary or secondary storage, input/output devices,

or subroutine libraries.

- The Tasks:

The tasks for a given scheduling problem can be described as a system (Y, -

[t], {Rj}, {w}) as follows:

1. Y= {T1,...,T} is aset of tasks to be executed.

2. -< is an (irrefiexive) partial order defined on Y which specifies operational

precedence constraints; that is, T -< Tj signifies that TI must be completed before

Tj can begin.

3. [tv] is an m x n matrix of execution times, where tjj > 0 is the time required to

execute Tj, 1 ≤ j ≤ n, on processor P, 1 ≤ i < m. We suppose that tij = co signifies

that T1 can not be executed on P and that for each j there exists at least one i such

that tij < oo. When all processors are identical we let ti denote the execution time

of T1 common to each processor.

4. 'R..j = [Ri(Tj),... , R8(Tj)], 1 ≤ j ≤ n, specifies in the i'th component, the

amount of resource type Ri required throughout the execution of T3. The amount of

each resource R1 is assumed to be finite, say m1, and we may assume R1(T) m1,

for all i and j.

5. The weights w, 1 ≤ i ≤ n, are interpreted as deferral costs (or cost penalties),

which in general may be arbitrary functions of schedule properties influencing Ti.

However, the wi will be taken to be zero in the models we analyze.

- Scheduling constraints:

3

By "constraint" we mean here a restriction of the scheduling algorithm to a

specific type of schedule. Two main restrictions are considered:

1. Non-preemptive/preemptive Scheduling: Non-preemptive scheduling requires

that no task be interrupted once the execution of this task has begun. By contrast,

for preemptive scheduling, the execution of a task can be interrupted before its com-

pletion, and resumed later by the same or another machine for further processing.

We will assume there is no loss of execution time due to preemptions.

2. Schedules may also be constrained to follow some particular strategy or prior-

ity, for example list scheduling. In this type of scheduling, an ordered list of the tasks

in Y is assumed or constructed before hand. This list is often called the priority list.

The sequence by which tasks are assigned to processors is then decided by a repeated

scan of the list. Specifically, when a processor becomes free for assignment, the list

is scanned until the first unexecuted task T is found which is ready to be executed.

That is, we execute next the first task T in the list which can be executed on the

given processor, provided all predecessors of T have been completed, and sufficient

resources exist to satisfy R1(T) for each 1 ≤ i ≤ s.

- Performance Measures:

The criteria to measure scheduling performance varies in different contexts. For a

general problem with processor resources 7?. = {P1,... , P}, task set (Y, -<, [r], {R1}, {w})

where Y = {T1,. . . , T }, with given scheduling constraints and an arbitrary schedule

S, common measures are:

1) makespan(schedule-length required to complete all tasks)

w(S) = maxi<<{rs(T)}

4

2) mean weighted finishing time

W(S) = w'rs(TO

where r(Ti) denotes the time at which T is terminated (finish time) in S.

Using this general model, we may classify machine scheduling problems according

to certain specific criteria:

- single-machine/multi-machine scheduling

- identical machine/non-uniform machine scheduling

machines or processors in parallel/series

- machine scheduling with/without supporting resources(e.g. I/O, storage, etc)

- scheduling of independent tasks/precedence constrained tasks

- identical task size/non-uniform task size(which affects execution time)

with/without release time and/or deadline restriction on the task set

weighted/unweighted task system

preemptive/non-preemptive scheduling

- list scheduling/scheduling without fixed priorities

- optimization of maximum finish time/mean weighted finish time

The scheduling we will mainly study is multi-machine preemptive scheduling

with identical processors, and unit-execution-time precedence constrained tasks. We

also assume there are no other resources required for performance of any task on

any specific machine. Our object is to minimize the makespan(or maximum finish

time) over all schedules on some fixed task set. The specific model for preemptive

scheduling is this:

- resources: 1Z = {Pi,. . . , Pm } set of machines/processors

- tasks: (Y,≤,['rj],{R},{w}) where 7= {T1,..., T} set of tasks/jobs

5

- scheduling constraint: preemptive

- performance measure: maximum finish time

Specifically, the preemptive scheduling we are mainly concerned has following

properties:

(1). Tij = Tkl for any i, k E {1, 2,..., m} and j,l e {1,. .. , n}, i.e., all processors

are identical, and execution time for each task is the same.

(2). {R} = 0: no additional resource is required throughout the execution of

any task.

(3). wj = 0 for any 1 ≤ j ≤ n; task set is unweighted, there are no deferral costs

or other penalty costs weighted on any task. We only consider the execution time.

(4). ≤ is the precedence constraint on the task set T, which is actually a partially

ordered set.

1.2 Partially Ordered Sets

A binary relation < on a set X is a partial order if it has the three properties:

Reflexivity: Vx E X, x < x

Antisymetricity: Vx, y € X, (x:5 y) A (y ≤ x) x = y

Transitivity: Vx, y, z E X, (x ≤ y) A (y ≤ z) = x < z

A set X, equipped with a partial order ≤, is called a partially ordered set, or

briefly: a poset. In a partially ordered set (X, ≤), there are some objects of special

interest:

(a) An element m E X is called a maximal element if each x € X related to m

satisfies x < m. Equivalently, whenever m < x and x € X, then m = x.

6

(b) An element b E X is called an upper bound for a subset A C X if the relation

a < b holds for all a E A.

(c) A subset A C X is called a chain if all the elements of A are related, that is,

for all x, y E A, either x < y or y ≤ x.

Partially ordered sets can be visually displayed through Hasse diagrams which

can be obtained by the following four steps:

- draw a digraph of the poset

- delete all cycles from the digraph

- eliminate all edges that are implied by transitive property

- redraw the digraph with all edges pointing "upward" and then delete arrows

from edges

Figure 1.2.1 below depicts the Hasse Diagram for a typical poset P.

(a)

Poset P

:i
(b)

Hasse Digram of P

C d g b

a f b e

The Gantt Chart of a preemptive schedule of

above poset P

(c)

fig 1.2.1

7

Schedules for partially ordered sets may be represented by Gantt Charts which

provide a visual presentation of the schedule. Such a chart displays the time intervals

during which each machine is occupied with various tasks as a single row with a linear

time scale so that length corresponds to scheduled time for tasks or partial tasks. The

time intervals during which each machine is occupied with various tasks are easily

read from the chart. Figure 1.2.1(c) displays such a Gantt Chart for the partial order

whose Hasse diagram is given above in Figure 1.2.1(a). We will typically use Gantt

Charts to visualize schedules and to discuss their properties. Indeed for practical

purpose we may identify each schedule with its representation as a Gantt Chart.

A poset (X, ≤*) is a linear extension of poset (X, ≤) if and only if:

Vx,yEX,x≤y=,.x≤*y

- Vx,y E X,x ≤* y or y ≤* x

Actually, X is a chain under the relation ≤IC. Observe that if (X, :5) is not itself

a chain, then we can have many different linear extensions of (X, ≤). For example,

(A, ≤) shown in fig 1.2.2 has two linear extensions:

b V C

(a)

Poset A

C

b

a

(b)

b

C

a

Two linear extensions of A

fig 1.2.2

A poset (P, ≤) is an interval order if and only if P is isomorphic to a set (PR, ≤*)

of open intervals on real line R where the ordering relation ≤* on PR is defined as:

8

A <* B for A, B E PR iff a is less than b in R for any a E A, b E B. Qis an interval

extension of a poset P if and only if Q is an interval order which contains P.

There is a well known lemma which could be treated as an alternative definition

for interval order:

Lemma 1.2.1 (P, ≤) is an interval ordered set if and only if for any A, A', B, B' in

P with A < B and A' < B', we have either A < B' or A' < B.

Linear extensions and interval extensions of posets receive a great deal of attention

in scheduling theory. Such extensions are not just some ordering imposed on a task

set, but are inherited from various schedules of the tasks. We observe that:

1) any single-machine non-preemptive schedule S of poset P gives a unique linear

extension of P; and any linear extension £ of a poset P gives a unique single-machine

schedule S of P.

2) any rn-machine schedule S of a poset P gives a unique interval extension I of

the poset P; and any interval extension £ of width m of a poset P gives a rn-machine

schedule S of the poset P.

§1.3 Preemptive Scheduling on Partially Ordered Sets

Now, we will give some definitions and notations in preemptive scheduling prob-

lems:

Definition 1.3.1 For any poset P, we let

(1) H = H(P) = height of poset P = the length of a maximum chain in P

(2) Ca = {C is a chain, and c > a for any c E C}, and 1(a) = level of a in

9

P = maxcEca{ICI}.

(3) ca = {C is a chain, and c < a for any c € C}, and h(a) = height of a in

P = maxc€ca{ ICI }.

Definition 1.3.2 For any poset P, and a schedule S of P, we define:

(1) ISI = makespan of the schedule S.

(2) as (a) = starting time in S of job a E P.

(3) Ts (a) = finishing time in S of job a E P.

(4) We denote by (5(P), ≤*) the order extension of (P, ≤) induced by the schedule

S, that is, if a < b then a <* b, and if a precedes bin 5, then a <* b.

(5) We denote by 5: Q the restriction of schedule S on subset Q 9 P.

If is understood, we write simply o(a) for as (a), and r(a) for rs(a). Note, for any

job a E P, if JSJ = t, then o(a) E [0, t), r(a) E (0, t]

Definition 1.3.3 Given a poset P:

(1) A shift in a schedule S of P is a maximal closed time interval [t1, t2]

[0, t], where t = I SI, during which there is no machine/processor which changes its

processing from one job to another.

(2) A waste interval(or simply waste) in a schedule S of P is a time interval

[t1, t2} C [0, t] on some specific machine, during which this machine is idle.

(a)

Poset P

10

A BB C D

F A F E

0=tO t1t2 t3 t4t5 tG

(b)

A preemptive schedule of P

fig 1.3.1

t7 = t

As shown in fig 1.3.1, each (ti, t1+1), 0 ≤ i ≤ 6, is a shift in S, and [4, 41 is a

waste interval on machine 2.

A useful technique concerning the preemptive scheduling of antichain is the wrap-

ping method:

Let C = {Ci, C2,. .. , C,,} be an antichain, ICI the number of nodes in C, and m

the number of machines. If m < JCJ, then we can wrap all nodes(or tasks) in the

following way: we first schedule ICI - (lClmod(m)) - m nodes into LJ - 1 unit

blocks, then "wrap" the remaining nodes' into a block of length 1 + (ldtm:1(m)) as

shown in figure 1.3.2 below for m = 2:

Ci Ca 0 0 0 Cn-iG

C2 C4 0 0 0 G3 Cn-2

C={Ci,C2. Gi}

fig 1.3.2

Lemma 1.3.1 The wrapping method produces an optimal schedule S for the an-

tichain C.

Proof. It is trivial since S has no waste in it. o

11

Actually, the wrapping lemma(Lamme 1.3.1) can be generalized into tasks of

unequal size[26].

We say a schedule S of poset P is optimal if and only if the length of S is less

than or equal to the length of any other schedule S' of P. We observe:

(1). if ISI = ICI where C is a maximum chain in P, then S is optimal, since for

any other schedule S', ISl ≥ id.

(2). if S contains no waste, then S is optimal.

Let function W(S) denote the sum of waste time in a schedule S of P. More

generally, we have this lemma:

Lemma 1.3.2 Let S and 5' be two schedules of F, if W(S) W(S')then ISI ≤ IS'i.

Proof. It is trivial to see that ISI = (IPI + W(S))/m where m is the number of

machines used in this schedule. So W(S) ≤ W(S') implies ISI ≤ IS'i. o

Corollary 1.3.1 If W(S*) is minimum among all schedules S for P, then S is

optimal for P.

§1.4. Methodology

Actually, a preemptive scheduling problem is a combinatorial optimization prob-

lem, where one attempts to find an optimal solution among numerous options.

Here is the general setting for a combinatorial optimization problem:

(*) Given a finite set S and a function f : S -p R, find an s* E S
such that f(s*) <f(s) for all s E S.

Apart from "How does one find a good algorithm to produce the other central

question we want to answer is "How can one know that a certain s' E S is optimal,

12

without examining all of S?".

Generally, there are two standard ways to approach such problems, mm-max

methods and transformation methods

For any combinatorial optimization problem(as in (*)),suppose there is some

other set T, derived from the structure underlying S, and a function g : T —+ R

such that g(t) ≤ f(s) for all t E T and s E S. Hence, all the values g(t) are a priori

lower bounds for the optimal value of f(s).

Theorem 1.4.1(Min-max) [22] For the situation above, if we have the equality

f(s*) = g(t) for some S and t E T, then s" is optimal. And further we have

minSEsf(s) = maxtETg(t) and f(s*) = min$Esf(s).

Proof. Suppose there exists s' E S such that f(s') < f(s*). But f(s*) = g(t), so

f(s') <g(t) which is contrary to our assumption. o

Mm-max results are very attractive goals in any mathematical endeavor dealing

with optimization. One reason is that they always seem to go with good algorithms,

and the second is they allow elegant proofs of optimality. We shall supply the details

for one such optimization problem in Chapter Two.

The transformation methods we will discuss later involve the transformation of

one solution of a combinatorial optimization problem to another solution for the

same problem. Usually, this will be done by means of an algorithm. Such techniques

can serve several purposes: they can be part of an algorithm to find an optimal

solution; they can also be used to show that certain proposed algorithms do what

they ought to; and finally, they can be used to prove a general statement on the

13

behavior of the objective function or the optimality of a solution.

The most interesting application of transformations would be an algorithm trans-

forming any given s E S into an optimal? E S. Suppose a subset S' C S has the

property that it is substantially smaller than S and is guaranteed to contain an op-

timal element. This reduces the number of cases to look at and can be very valuable

if the problem is known to be very hard, for example NP-complete. In this case, the

proof that S' contains an optimal element will typically use some transformation to

show that "without loss of generality", it is enough to look at S'.

Another application of transformation methods arises when one wants to show

that every element of 5' is optimal. Typically, S' will consist of the elements of

S that are outcomes of a proposed algorithm. This situation can be handled by

devising an algorithm transforming any optimal element of S into any given element

of 8' without increasing the objective function.

For most problems, it would be too optimistic to hope to find powerful mm-max

results. Transformation techniques and new scheduling heuristics, which provide

good schedules or improve existing schedules for a broad class of problems, seem to

be needed for many practical scheduling problems.

14

CHAPTER TWO

Single-machine Scheduling Problems

In this chapter, we will discuss some of the known results for single-machine

scheduling problems. In particular, we present a detailed application of the mm-

max method to the Jump Number Problem.

2.1 Some Known Results

Theorem 2.1.1. The general one machine, n task scheduling problem to minimize

makespan is polynomial.

Proof. It is trivial to see that any linear extension of the task set P provides an

optimal schedule of P, and the following algorithm provides such an extension in

polynomial time:

Algorithm 2.1.1. Let P be a poset, and IPI =

.1) Choose any node a1 E P, ij E {1, 2,... , n}, which has no successor,

let a(aj) = 1 where a is a permutation function mapping nodes in P to a positive

integer set {1,2,. .. ,n}.

2) Suppose we have chosen k—i nodes {a 1, a2,. . . , akl} in P by assigning a(a 3) =

j, 1 < j < k - 1. Let function S(a) denotes the set of successors of a in P.

Let Q = P - U1≤≤k_1S(a1) - {a, : 1 ≤ j ≤ k - i}. Take arbitrary nodes b

with S(b) = 0 in Q, and then let a(b) = k.

3) Replace k by k + 1, repeat step 2) until all nodes in Q have been chosen.

The algorithm above(Algorithm 2.1.1), which provides a linear extension, is

15

clearly polynomial. 0

In 1973, Lawler [15] has given a result based on the following situation for one-

machine scheduling problems: Let P = {J1, J2,.. . , J} be the set of tasks, and

c (t) = the cost of task J2 completed at time t. The problem is to minimize the total

cost Cmax Ei<z<n C (ti) where tj is the completion time of task Ji in the respective

schedule S of P. The following algorithm given by Lawler generates a permutation

such that (J,r*(l),... ,J11.*()) is an optimal solution to this problem.

Algorithm 2.i.2[15].

procedure nlcmax(p, ir*) ;

begin local S,k,i;

S:={1,...,n};k:=n;

while S 54 0 do

begin i :E {ili E S,cj(EflEgpg) = minhEs{ch(Eg€spg)}};

:=

k:=k-1;S:=S--.{i}

end

end nlcmax

Theorem 2.1.2 Algorithm 2.1.2 provides an optimal solution to the problem of

Lawler above.

Proof. If J1 is chosen instead of J2 with cf(EflEspg) > minhEsch(EflEspfl), then in-

terchanging Ji with the tasks following it, up to and including J1, will not increase the

total cost Cma,, since cj(EflEspg) < cf(g€spg) and cf(Efl,95 p9) ≤ Cf(EgEsPg).

16

0

An important criteria for practical scheduling problems is based on the concept

of due dates. Suppose we have fixed a due date d1 for each task J2 E P. Taking as

the cost function c2 (t) = t - d, we define the lateness Li by L, = C2 - d2 where C2

• is the completion time a task J2 in a specified schedule S of P. Then we obtain the

optimization criteria corresponding to the minimization of the maximum lateness

Emax, the sum of lateness or total lateness E L2.

Theorem 2.1.4 [18] The one-machine scheduling problem with due dates and opti-

mization criteria Lma, is polynomial.

The proof of this theorem is based on Smith's theorem on permutation func-

tion(see detailed proof in [18]).

§2.2 The Jump Number Problem

In this section, we present Duffus, Rival and Winkler's results [7] on the Jump

Number Problem as an application of Mm-max methods, and reproduce the proofs

of their results. We consider a single machine which performs sequentially a set P

of jobs, one at a time. P is an ordered set: any job can only be scheduled after all

its predecessors in P have been scheduled. Any job, which is performed immediately

after a job which is not constrained to precede it, requires some additional expense,

called a "jump". The problem is to schedule the jobs to minimize the number of

jumps.

Let L be a linear extension of P, that is , a total ordering of the underlying set

17

of P such that a < b in L whenever a < b in P.

Let f(L) = of jumps in L, and f(P) = min{f(L)IL is a linear extension of

P}. Let w(P) be width of P, that is the size of a maximum antichain in P.

Lemma 2.2.1. [7] If A C (P, ≤) is an antichain and (L, ≤*) is a linear extension of

(P, ≤), then

f(L)≥ JAI —1.

Proof. Let IAI = m. Suppose A = jai, a2,... , a,,} is this antichain of (P, :5), and

suppose we have a1 ≤* a2 ≤* ≤* an in some linear extension L of P.

Let Ci be a chain in P, such that a1 is an element of C1, for any i = 1, 2,. .. ,n.

Let Bi be a chain in L so that C1 <* B2 <* 1 for i = 1,2,•.. ,n 1.

Claim 1. If B1 is empty then there is a "jump" between C1 and C1+1. Otherwise,

a2 <a1+i.

Claim 2: If B2 is not empty, then there is at least one "jump" in the chain, C, <*

B1 <* 1• If there is no jump, then G1 <* B2 <* G1+1 must be a chain in

and hence produce the same contradiction, ai <a1+i.

So, the linear extension (L, :5*) contains at least n - 1 = IAI - 1 jumps.D

(P,≤),

Now, let us see how we can apply the mm-max method: here we are given a set

S = {LIL is a linear extension of P}, and function f(L) = # of "jumps".

Let T = {AIA C P is antichain }, and function g(A) = IAI - 1.

We know that f(L) ≥ g(A) for any L E S, and A E T(by Lemma 1). In order

to use the mm-max method, if we can find a linear extension L* E S such that

f(L*) = g(A) for some A E T, then L* is an optimal linear extension according to

4-cycle

18

Theorem 1.4.1, and we have the equality:

min(f (L)) = max(g(A))

To carry out this plan, we next proceed to investigate a special class, cycle-free,

of posets to which a polynomial algorithm has been found efficient to obtain such

linear extension L* E S.

By cycle-free, here we mean that there exists no substructure in P which is

isomorphic to any of the following structures (2n-cycles):

6-cycle

fig 2.2.1

2n-cycle

We shall see that the optimal linear extension can be determined from the width

of poset P, which can itself be computed by a polynomial algorithm. And the proof

which follows illustrates the use of the mm-max approach. We begin by giving the

algorithm we shall need, and establishing some properties which assume that the

algorithm can be executed as it is described.

Algorithm 2.2.1: [7]

(1). find a maximal antichain a1, a2,. . . ,am in P.

(2). extend ai into some maximal chain Ci in P such that P = Ci U C2 U ... UCm. (This

can be done in polynomial time by Dilworth's Theorem, 1950 [6])

(3). Let P = C -

19

(4). put a relation "-+" on {C1Ii = 1,2,. . . , m} as follows: C -+ C3 if there is

an element E P and E C5 — Ci such that > yin (P,≤).

(5). we claim there exists at least one index i E {1, 2, . . . , m} such that C -/-+ C5

for all e {1, 2,.. . , m}. We may suppose here i = 1, i.e., C1 —/-+C5 for all

j. (See Lemma 2.2.2 for proof).

(6). let d1 = max(Pi = C1— U 2C). DI = {x E CiIx ≤ d} and Q = P - D1.

(7). suppose Q has an optimal linear extension EQ (our induction hypothesis, since

the case of w(P) = 2 is easy to solve), and w(Q) = w(P) - 1, (see Lemma 2.2.3

for proof).

(8). we claim that L* = EQ. is an optimal linear extension of P. (See Lemma

2.2.4 for proof).

(9). by inductively applying step .1 to step 6 to the poset Q, we obtain D2, D3,. . . , Dm.

... ED Dm, where D1 is a chain in P and there is one jump

between each pair(D, D+1).

The assertions made in (5), (7) and (8) above which assume that the algorithm

can be executed are established in the following three lemmas.

Lemma 2.2.2 The claim made in step (5) above is valid.

Proof. Suppose to the contrary that there exists no such Ci E {C1, C2,... ,

such that C --A C where j e 11727 ... , w(p)J. Then there exist some loops in

CI, C2, . . . , C(p). Suppose, after proper re-labelling, 1,2,.. . , n is the smallest se-

quence so that C1 4 C2 -+ -* C -+ C1.

By

the minimality of n, xi > yi for each i, 1 <i < n. Clearly, {x1, Yi, x2, Y2,. . . , x, y,}

20

forms a 2n-cycle. To prove that it is an embedding into P, we need to verify the

relationships in claim 1 - 4 below.

Claim 1. x x2. If not, let x > x1 in C5 and x is not comparable with xi (since

xi E F2, hence xi 0 C5). And there exists y < x3 in C3 which is not comparable with

then {x, x, y+,, y} is an embedded 4-cycle. See fig 2.2.2 below.

Xi Xi+1

Y j+i

cJ+1

Claim 2. yj 0 yj if i j. Otherwise, C_1 -+ C1 contradicting the minimality of n.

Claim 3. y y. If yj 0 C3, then there is y < yj in G1 incomparable with y, so

{x3..1, x1, y, y} is a 4-cycle. If yj E C5 then C_1 -+ C3, again contradicting the

minimality of n. See fig 2.2.3 below.

Cj_1 CI Ci

fig 2.2.3

Claim 4. x yj where i 54 j and j 54 i+ 1. Since yj is incomparable with y, yj 0 C,

so C -* C5 which is contrary to the. minimality of n.

Claim 5. x y3. Otherwise yj <y3 which has been proved impossible in Claim 3.

21

These prove that C1, C2,.. . , C is an embedding of 2n-cycle into P. o

Lemma 2.2.3. The claim made in step (7) above is valid.

Proof. Suppose there exists an antichain a1, a2,. . . , a,,(p) of the length w(P).

For the covering C1 - D1 U C2 U U C(p) of P, if ai E C3(or C1 - D1) then

aj 0 Q, (orC1 - Di), since ai is incomparable with a.

Hence a1, a2,. . . , a,(p) belongs to chains C1 - D1, C2.. .. , Suppose a1 €

C1 - D1, since {C1 - D1} fl P1 = 0, so there exists some j E {, 2,. . . , w(P)} such

that a is comparable with a1. o

Lemma 2.2.4. The claim made in step (8) above is valid.

Proof. If there exist x E D1, Y E Lq(hence y € such that x > y, then

d1 ≥ x > y implies C1 - C. o

We are now in a position to observe that:

Theorem 2.2.1[7] If P is a cycle-free ordered set, then f(P) = w(P) - 1, i.e., the

jump number for P is one less than the width of P.

The proof of the Theorem follows directly from lemmas 2.2.1 - 2.2.4. Recall,

Lemma 2.2.4. tells that Algorithm 2.2.1 produces an optimal linear extension which

means there is a minimal number of jumps in this extension.

22

CHAPTER THREE

Two-Machine Scheduling Problems

In this chapter, we will discuss some known results of interest for our research

in several two-machine scheduling problems. Further, we provide an alternative

proof for the general two-machine preemptive scheduling problem, suggested by an

algorithm we designed. Finally, we explore the use of transformation methods in

preemptive scheduling problems by drawing a brief plan for the proof of a lemma

originally given by Muntz and Coffman [20], for which no complete proof has ever

been published.

§3.1 Some Known Results

In 1969, Muntz and Coffman gave an algorithm which produces an optimal sched-

ule for two-machine preemptive scheduling problems on unit-execution-time task

sets. Later, in 1972, this result was extended to non-preemptive case by Coffman

and Graham.[5]

§3.1.1. Preemptive Scheduling on Two-processor Systems

Our development of the algorithm for optimal preemptive scheduling with two

processors proceeds by first defining a subclass of preemptive schedules which is

shown to contain at least one minimal length schedule. We then show how to con-

struct an optimal schedule for this subclass.

To describe this subclass of preemptive schedules, we must first introduce the

notion of a subset sequence. A subset sequence for a graph ,G of a poset P is a

(a): Graph G of P

23

sequence of disjoint subsets of nodes of G, Si, S2,. . . , 5 m such that:

1) if a is a node of G, then a E Sifor some

2) if a, b are nodes of G, with a E S, b E Si and a > b, then i <j.

Thus, Si,... 5m forms a partition of G which respects the order of P.

The following figure gives a subset sequence of a poset P which produces an

optimal schedule:

{ni}, {n2, fl}, {n5, no, n7}, {n8, n4}
{No, no), {n11} is an optimal

subset sequence of G

(b)

fig 3.1.1

The subclass of preemptive schedules we are going to construct is based on this

notion of subset sequence. We call these schedules subset schedules.

Muntz and Coffman designed an algorithm to produce such an optimal subset

schedule:

Algorithm 3.1.1: If P has height L,

Step 1) Set index = 1.

Step) Let Aj be the set of all nodes which have not yet been assigned to subsets and

are at level L - j + 1. Assign all nodes in Aj to S. If lAI = 1 then go to

24

step 4).

Step 3) If j = L then stop, otherwise, set j = j + 1 and go to step 2).

Step 4) Let w = {qj} be the set of all nodes which have not been assigned to subsets,

but all of whose predecessors are contained in S1 U S2 U ... U Sj_i. If w = 0

then go to step 3). If w =A 0 then assign q, to S where the level l(q) satisfies

I (q) = maxq1w {l(qj)}, and go to step 3).

Theorem 3.1.la [20] Each optimal preemptive subset schedule is an optimal sched-

ule.

Their theorem tells us that the optimal solution in the subclass, subset schedules,

is optimal in the whole class. That proof is based on the following lemma:

Lemma 3.1.1 Let G be the Hasse diagram of a poset F, and assume that all tasks

have unit-execution-times. Then any two-machine preemptive schedule S for P can

be transformed into a new schedule S' no longer than S, which has one of the three

forms shown in fig 3.1.2. Here A, B, C are three tasks, and the shadowed block

stands for waste.

A

B

A B/2

C

fig 3.1.2

A

Theorem 3.1.lb Algorithm 3.1.1 produces an optimal preemptive schedule. (For

proof, c.f. [20]).

A detailed proof of Lemma 3.1.1 was not provided in Muntz and Coffman's paper.

We will present a proof of that lemma in 3.3, as an application of transformation

25

methods.

3.1.2. Non-preemptive Scheduling on Two-processor Systems

In 1969, the two machine non-preemptive scheduling problem for unit-execution-

time task sets was proved to be polynomially solvable by Fujii, Kasami, and Ninomiya

[10]:

Theorem 3.1.2(Fujii, Kasami, and Ninomiya) The general two-processor non-preemptive

scheduling problem on a unit-execution-time task set is polynomial.

They showed that an optimal schedule can be constructed from a maximal match-

ing for the incomparability graph of the given partial order. The best published

algorithm for a graph on n vertices is of the order of fl,4 [8].

In 1971, Coffman and Graham [5] solved the same problem by using the list

schedule strategy: first produce a list of tasks in P, then assign the tasks by scanning

for the first available task in this list which is ready to be executed. A polynomial

algorithm was designed to produce the list. But before we introduce the algorithm,

we need the following definition:

We linearly order decreasing sequences of positive integers as follows. If N =

(ni, n2,... , flt) and N' (n', n2,',... , m) are decreasing sequences of positive inte-

gers(where possibly t=0) we shall say that N < N' if either

(i) for some i ≥ 1, we have nj = fl for all j satisfying 1 < j ≤ i 1 and n

or

(ii) t < t' and nj =n, 1 ≤j ≤t.

Let r denote the number of tasks in P. Let S(T) denote the set of successors

26

of each task T. Coffman and Graham's algorithm (Algorithm 3.1.2) produces a list

L* of the tasks in P by assigning an integer a(T) E {1, 2, .. . , r} to each task T, as

follows:

Algorithm 3.1.2

Step .1. Pick an arbitrary task To with S(To) = 0. Then let a(To) = 1.

Step 2. Suppose for some k ≤ r, the integers 1, 2,. . . , k - 1 have been assigned.

For each task T for which a has been defined on all elements of S(T),

let N(T) denote the decreasing sequence of integers formed by ordering

the set {a(T') IT' E S(T)}. At least one of these tasks T* must satisfy

N(T*) ≤ N(T) for all such tasks T. Choose one such T* and define

a (T*) to be k.

Step 3. We repeat the assignment in Step 2 until all tasks of P have been assigned

some integer in {1, 2,..., r}.

Finally, the list L* is defined by Algorithm 3.1.2, that is (To, T1, . . . , T,_ 1), where

= i + 1,0 ≤ i < r - 1. Now the optimal schedule of P is the list schedule S

based on P. Of course, precedence constraints on P are obeyed in the list schedule

S.

Theorem 3.1.3[Coffman and Graham]Algorithm 3.1.2 produces an optimal two

machine non-preemptive schedule S for any unit-execution-time task set P.

The proof of this theorem (see details in [5]) is based on a tower structure iden-

tified in the schedule S produced by the list L*(defined by Algorithm 3.1.2). We

shall use this notion of a tower structure to give a direct, and simpler proof of the

27

optimality of an algorithm for the general two-machine scheduling problem. This

provides a complete alternative proof of the Coffman and Graham's result.

§3.2 A Proof for the General Two-Machine Preemptive Scheduling Prob-

lem

Let P be any given partially ordered set, and a € P be any node in P.

Recall the following definitions from Chapter One: Ca = {BIB C C, where C is

a maximal chain containing a and for any c e C, c> a}, Ca = {BIB C C, where C

is a maximal chain and for any c E C, c < a}. Our schedule will make use of both

the level and height:

<1>. 1(a) = level of a = max(ICI : C € C").

<2>. H = height of P = maximal chain inPi.

<3>. h(a) = the height of a = max(ICI : C E Ca).

We will also require the concept of a block throughout this Chapter: A block in

a schedule S of poset P is a smallest closed time interval I such that, if there is a

task T with [cr(T),'r(T)} fl I o 0, then [o(T),r(T)] C I.

Algorithm 3.2.1:

(1). Label all nodes in P by level.

(2). Let S = {a € P11(a) = H - 1}, and assign the nodes in level H - 1 as follows:

Case 1: ISI ≥ 2, wrap S in the following way, with the total length of

completion time = ISI

28

Ti T3 0 0 o Tn..1

T2 T4 0 ° Tn.

S={T1,T2, Tn}

fig 3.2.1

Case 2:ISI=1. Let aES,

hi1 = max(k: 8c E P - {a} such that 1(c) = k, k < H - 1 and h(c) = 0)

SH1 ={all(a) =lii and h(a)=0},

pick b E Sff1, assign a and b into a unit block(see below). Let P = P - {a, b}.

a
000 000

b

fig 3.2.2

(3). Suppose all nodes in level k have been assigned.

Let S = {a E P11(a) = k - 1}.

case 1: ISI 2, wrap them into blocks as in fig 3..1 above. The length of

completion time is M. Replace P by P - S.

case : ISI = 1. Say ak_i E S.

= max (k* : 3a E P - {ak_i} s.t. 1(a) = k*, k* <k - 1 and h(a) <

Let Sk_1 = {all(a) = 1k—i and h(a) < h(ak_1)},

pick b E Sk-i, schedule ak_i, b into a unit block as in fig 3..2.

(4). Replace k by k - 1. Go to (3) until all tasks have been scheduled.

Theorem 3.2.1. For any partially ordered set (P, ',>), the algorithm above(Algorithm

3.2.1) produces an optimal preemptive scheduling of P on two parallel machines.

29

Proof. For the poset P, Algorithm 3.2.1 produces a schedule S of P.

Observe: (1) Any maximum chain can be scheduled into unit blocks accord-

ing to Algorithm 3.2.1.

(2) Any block with waste in it must be a unit block, and there is

exactly one unit of waste in it.

(3) All blocks occur in one of following forms whose Gantt Charts appear

in fig 3.2.3.

A

B

A B/2

C

fig 3.2.3

Our task is only to prove that S is optimal.

A

Let 5(P) = (p*, ≥*) be the order extension of (P, ≥) induced by S. First look at

the lowest(in terms of level) block BT, with waste in it. By observation (2), it must

be a unit block.

Claim 1. Let T1 be the job scheduled in this block B1, P1 = It E Pit >* T1}, and

Q={tE Pit ≤*Tl}. So, P=PiUQ and PiflQ=O. Then, for any dEQ,T1<d.

This can be easily seen since Algorithm 3.2.1 uses the level labelling to assign

jobs. The jobs on the lowest level will always be assigned first before the jobs on

higher levels are dragged down to fill up some waste. Suppose there is some d € Q

and d < T1, thus 1(d) > l(1'). By Algorithm 3.2.1, d E P1. But P1 fl Q = 0, so

d 54 T1. Suppose there is some D C Q and every member in D is incomparable with
T1, then there is always some d E D which can be assigned to block B1 together with

T1. So there is no waste in block BT,.

30

Claim 2. For this P1 C P, the induced schedule for P1 given by the schedule S

for P is optimal on P1.

Look at the schedule for (Pi, ≥*) in S. Let B = B1 ED B2 B3 Bm where

Bm = BT,, and Bi is a block in (P1, ≥*). We then define a tower structure as follows:

Suppose 8t1 e P1 with t1 in block B 1, such that 3s1 E B 1 with i(si) ≤ 1(T1).

Choose such a t1 with 1(t1) maximal , and let TW1 = It € (P, ≥)Iti ≥ t}. Here we

use TW to denote "tower".

Then let P1' = P1 - {BIB < B1 }. We repeat the construction of a tower on P:

we can find t2 E P11 S2 E P1' and define TW2 as above, and so on. Since IPil ≤ No,

the process will stop after finite many steps. Note, t1 might be equal to T1, in this

case TW1 = P1.

Then P1 = TW1 U {si} U TW2 U {S2} U ... U TWm. Observe TWm contains T1,

hence there exists no sm . Moreover the restriction of S to P1 and the towers satisfies

IS: PiI— IS: TWi+ IS: TW2I+"+ IS: TWmI.

We claim that S : P1 is optimal for P1.

Firstly, for any task a E TW1 and b E TWj with i <j, we have a < b. Suppose,

to the contrary, there exists a job a' E TW and Y E TW with i < j, and a' > b',

then l(a') < l(b'). But this is contrary to Algorithm 3.2.1, since this algorithm is

always schedule tasks with greater level first. Suppose there exist a' E TW and

E TW, so that a' and b' are incomparable. By Algorithm 3.2.1, b' > T. This

implies a and T are incomparable and 1(a) > 1(T2). So, there exists some c such that

c> a and 1(c) = 1(T2). So c could be scheduled with T by Algorithm 3.2.1. But this

is not the case since the task si which is scheduled with T in S has level far smaller

than the level of T.

31

Secondly, Si, S2,... Sm are all those which can be "dragged" down below T, (i.e.

to levels greater than 1(T1)). And IS : P1 I = IS : (P1 L {si, S2... S",})1. This is

simply because the tower structure has a height which is independent of s2.

Thirdly, S: (P1 - {si, 2, . .. , Sm}) is optimal on P1 - {si, S2... . , Sm}. Since each

TW1 has to be performed after T W1_1 (i> 1) has been finished, optimal scheduling

on the tower structure depends on minimization of completion time of each TW

which is always greater than or equal to IT14i+1 So E- (ITWI+1) would be the

minimum completion time of P1 - {si, s2, ... , Sm}. But we have

IS: P11 = IS: (P1 - {si, s2,. . . , s}) =E (IT4I+1)

by Algorithm 3.2.1. So S: P1 is optimal.

By claims 1 and 2, since Q has to be scheduled after T1 has been finished, and

all jobs(s1, 82,• . ., Sm_i) which are scheduled in S : P1 but have levels less than 1(Ti)

will not prolong the completion time of P1 - {si, S2,. .. , Sm}, SO S(P1) is optimal.

Inductively we can assume that S(Q) is also optimal since height of Q is less than

the height of P, and thus S is also optimal. o

We observe that this algorithm demonstrates:

Proposition 3.2.1. Any maximum chain C in P can be scheduled into unit blocks

in some optimal two machine preemptive schedule S of P.

§3.3 Application of Transformation Methods in the Two-machine Preemp-

tive Scheduling Problem

This section gives an alternative proof of a lemma due originally to Muntz and

Coffman [20] on two machine preemptive scheduling.

32

A

B

A B/2

BA C
A

A, B, C are three different tasks and waste unit are shaded

fig 3.3.1

Lemma 3.3.1: If (P, ≥) is any poset, (S, ≥) is any two machine preemptive schedul-

ing of P, then there exists another scheduling S* such that 5* schedules all tasks in

the forms in fig 3.3.1, and S* can be obtained by using transformation methods on

S with ISI ≥ IS-1.

This lemma can be easily proved by following the plan below:

1) Let 8(P) be the order extension of P induced by the given schedule S of P.

2) Apply Algorithm 3.2.1 on S(P), we obtain a schedule S' of P which schedules

all tasks in the forms shown in fig 3.3.1.

3) Theorem 3.2.1 proves that IS'I ≤ IS!.

But this proof involves no transformation technique. The following algorithm

provides a solution which is different from the proof above. Suppose S(P) = (p*, ≥*

) C (F, ≥) is the order extension of P induced from S.

Algorithm 3.3.1 Consider * = S(P),

Step 1., Let a1 be the first task completed in S. Let r(ai) = t1.

Step 2. We construct a storage pool G which is designed to contain those uncompleted

tasks in the interim stage of this transformation, and a function g : C —+ (0, 1)

which denotes the portion of a task remaining in C. At this time, let G = 0.

33

Step 3. We define two pointers, pi and P2, which give the status of these two ma-

chines. We set P1, P2 E R. (real numbers), where P1 = j means machine i is idle at

time j. We first let p' = P2 = 0.

Step 4. Look at the interval [0, t1].

Case 1. If there is only one task, say a1, finished in this interval, then we reschedule

this interval as follows: schedule a1 to block [0, 1] on the first machine, then put all

others into pool G, and assign a real number to each task in C by the function g

which represent the completed proportion of each task. Let Pi = 1. P2 = 1.

Case 2. If there are exactly two tasks, say a1, a2, finished in this block, then we

schedule these two tasks into a unit block [0, 1] on these two machines, and put all

others into pool G, and reassign values, reflecting the completed portion, to each task

by function g. Let Pi = 1. P2 remains the same.

Step 5. Suppose we have reached t1, i.e., we have scheduled the i'th completed task.

Let tH1 be the time when we find the next task completed.

Case 1. If there is only one task, say b, completed at ti,. First, we delete b from G.

If Pi > P2, then schedule b to the block [p2,p2 + 1] on machine w, and move the

pointer P2 forward by replacing P2 by P2 + 1. Put other tasks in the interval [t1, t1,]

to pool G, and reassign g(a) for a e G if necessary. Go to Step 6.

If Pi = P2, look at the interval [t1,t1+i}:

If there are tasks scheduled in the interval [t1, t1+,] other than b, then put these

tasks into pool G, reassign g(a) for a € C if necessary. Then schedule b into the

interval [p1, p, + 1] on the first machine. Replace Pi by Pi + 1. Go to Step 6.

If there is no task other than b scheduled in the interval [ti, t4.1], then look at two

34

tasks, say c, d, in the interval IN - 1, Pi]:

If b is independent to both of these two tasks, c and d, in the interval IN -

1, pi], then we reschedule b, c, d by wrapping them into block [Pu - 1, p, + 0.5] on both

machines. Replace P1 by p1 + 0.5, P2 by P2 + 0.5. Go to Step 6.

If b is not independent to c or d in the interval IN - l,pi], then schedule b into

the interval IN, Pi + 1]. Replace p by p + 1. Go to Step 6.

Case 2. If there are exactly two tasks, say b, c, completed at First, we delete b, c

from G. Put all other tasks in this interval [ti, t 1] into pool G. Reassign g(a) for

a E G if necessary. Then look at the two pointers P1, P2:

If pi > P2 and Pu - P2 ≥ 2, then we schedule b, c into intervals [p2, p2 + 1] and

[p2 + 1,P2 + 2] respectively. Replace P2 by P2 + 2. Go to Step 6.

If Pu > P2 and pi - P2 = 1, then check the task, say d, scheduled in the interval

If b, c, d are independent, then wrap them into block [p1 - 1, p, + 0.5] on both

machines. Replace P1 by p + 0.5, P2 by P2 + 0.5. Go to Step 6.

If both b, c are greater than d in *, then schedule b, c into block [pi, pi + 1], and

replace p by p, +1, P2 byp2+2. Go to Step 6.

If only one of them, say b, is greater then d in *, then schedule c into block

[p2,p2 + 1] on machine 2. Schedule b into block [pi,pi + 1] on machine 1. Replace

p1byp1+1,p2byp2+1. Goto Step 6.

If Pi = P2, then schedule b, c to the block [pi, pi + 1] on both machines, and replace

pi byp1 + 1, P2 byp2 + 1. Go to Step 6.

Step 6. Replace i by i + 1, go to Step 5 until all tasks have been rescheduled.

35

The algorithm above obviously produces the required schedule S' of P with all

blocks in the forms presented in figure 3.1.2.

Proposition 3.3.1 For any two-machine preemptive schedule S of poset F, Algo-

rithm 3.3.1 produces a two-machine preemptive schedule 5' of P with IS'I ≤ 15 1.

Proof. If schedule S' contains no waste, obviously, 5' is optimal by Corollary 1.3.1,

hence I8'l ≤ 181.

Suppose the first waste occur in block B1 in which task a1 E P is scheduled.

Claim 1. For any task b E P with r(ai) o, (b) and any task c E P with 'r(c) ≤ r(a1),

c <* b in order extension 5(P) = (.P*, ≤*) of P induced from the given schedule S.

If c >* b then c should have been scheduled before b in S' by Algorithm 3.3.1. If c

is incomparable with b, then c should have been scheduled with a1 which is contrary

to our assumption that there is a waste in block B1 which contains a1.

Then we can find the next block B2 with a unit waste in it, and a2 scheduled in

this block. Since P is finite, then we will construct a finite sequence B1, B2,... , Bm.

Let T = {a E PIr(a) ≤ r(a) and o(a) ≥ r(a_1)}, 1 ≤ i < m, and a0 is the first

task scheduled on machine 1. So, o(ao) = 0.

Claim 2. Sequence T1, T2,. .. ,Tm forms a tower structure

The same argument applies here as in the proof of Theorem 3.2.1 in 3.2.

Trivially, by the properties of tower structure, IS'I ≤ jsj. o

Remark: The proof of Lemma 3.3.1 also shows that any maximum chain can be

scheduled in unit blocks in some optimal schedules for every two-machine preemptive

scheduling problem.

36

CHAPTER FOUR

Multi-Machine Scheduling Problems

The multi-processor scheduling problem is much more complicated than the cor-

responding one or two processor problems. Some problems have been found to be

NP-hard(see Chapter Five), and deterministic algorithms have been developed for

only a small class of posets for precedence constrained task scheduling. In this chap-

ter, we discuss some of the known results for identical processor scheduling problems

over independent as well as dependent task sets.

§4.1. Identical Processors and Independent Tasks

The specific model for this problem in terms of our general scheduling model is:

- Resource: m processors

- Tasks: n independent tasks with processing time t1, 1 ≤ j ≤ n

- Scheduling Constraints: preemptive/non-preemptive

- Performance Measure: makespan

In the basic one-processor model, the makespan is easy to treat: it is always a

constant with respect to a specific task set. In the multi-processor case, however,

the makespan problem is no longer trivial.

We know that for any multi-processor problem, there is a lower bound for the

minimum makespan, M:

M =

A fundamental result for the makespan problem was presented by McNaughton

[19] when the jobs are independent and preemption is allowed.

Here is the algorithm given by McNaughton:

37

Algorithm 4.1.1: [19]

Step 1. Select some job to begin on machine 1 at time zero.

Step 2. Choose any unscheduled job and schedule it as early as possible on the

same machine. Repeat this step until the machine is occupied beyond

time M (or until all jobs are scheduled).

Step 3. Reassign the processing scheduled beyond M to the next machine instead,

starting at time zero. Return to Step 2.

It is quite easy to see that this algorithm produces an optimal schedule over the

task set, since the resulting schedule has zero waste(see Corollary 1.3.1).

If job preemption is prohibited, the problem of minimizing makespan is some-

what more difficult. No efficient algorithm has been developed for calculating the

optimal makespan or for constructing an optimal schedule in the general case for

three or more processors. A simple yet efficient heuristic procedure for constructing

a schedule involves the use of the longest processing time(LPT) for individual tasks

as a dispatching mechanism.

Algorithm 4.1.2:

Step 1. Construct a linear LPT ordering of the jobs, with the longest job first.

Step 2. Schedule the jobs in order, each time assigning a job to the machine with

the least amount of processing already assigned.

The LPT heuristic procedure does not guarantee an optimal makespan(See Ex-

ample 4.1.1). Actually, this problem is NP-complete, since it is in fact a partition

problem, and we discuss this problem further in Chapter Five.

38

Example 4.1.1 Given task set P is {T1,. . . ,Tio} where the execution times of these

tasks form the LPT sequence: 12, 11, 10, 9, 8, 6, 5, 4, 4, 1. Figure 4.1.1(a) gives

the schedule S which is produced by Algorithm 4.1.2. Figure 4.1.1(b) is an optimal

schedule S' of P. Easy to see S is not optimal, since ISI = 36 > 35 =

12 9 8 4 1

11 10 6 5 4

The schedule produced by Algorithm 4.1.2

(a)

12 10 8 41
11 9 6 5 4

An optimal schedule of P

(b)

fig 4.1.1

§4.2. Identical Processors and Dependent Tasks

When the job set is dependent, the problem of minimizing makespan may be

considerably more difficult. The fundamental results for such a situation are: Hu's

algorithm on tree structures[13]; Muntz and Cofi'man's extension of Hu's results to

the preemptive case[20]; and Sauer and Stone's algorithm for interval ordered job

set[25].

§4.2.1. Multi-processor Scheduling on Forest

The general problem for n unit-execution-time jobs on m identical machines has

been found to be NP-hard. But this problem can be solved in polynomial time [13]

if the precedence constraints are in the form of a rooted tree or even forest.

39

Hu's algorithm is actually a level scheduling using the following strategy:

Level strategy: whenever a processor becomes available, assign it an unexecuted

available task at the greatest "level" (see Definition 1.3.1).

Algorithm 4.2.1(Hu) [13]:

(1) label all tasks in P by level.

(2) take a linear extension L of P according to descending level.

(3) schedule next the first unexecuted available task in the list L.

Example 4.2.1 Using the level strategy on three processors, for the task system in

Fig 4.2.1 (a), the schedule in Figure 4.2.1 (b).

Partially ordered task set P

(a)

The schedule S of P produced by Algorithm 4.2.1

(b)

fig 4.2.1

Theorem 4.2.1 If the unit-execution-time task set P is a dual tree, then Algorithm

4.2.1 produces an optimal non-preemptive schedule for P.

Proof: The proof of this theorem pursues the following plan:

40

1. Suppose the level strategy is not optimal. Then there is a smallest(in the

number of tasks) task system P for which the schedule S produced by Algorithm

4.2.1 is not optimal.

2. Let S(the schedule provided by Algorithm 4.2.1) be of length w. Since S is not

optimal, there must be an idle processor during time w - 2 according to Algorithm

4.2.1

3. Consider the task set F' formed by deleting the root of dual tree P and all

its immediate predecessors. A level schedule S' for F' can be formed from S by

replacing the deleted tasks by idle periods.

4. The length of 5' is w - 2.

5. Convert the dual forest F' to a dual tree P" by adding a new task Tr that is

an immediate successor of exactly the terminal points of F'. A level schedule S" for

F" is of length w - 1.

6. Since F" has been formed from P by deleting two levels and adding one, P"

must have at least one less task than P. But this level schedule S" for P" can not

be optimal.

Since we have found a task system smaller than P for which a level schedule is

not optimal, we have contradicted the minimality of IPI. The theorem follows. o

Remark: Theorem 4.2.1 can be extended by duality to trees, as well as to dual forests

and forests, and the same algorithm (Algorithm 4.2.1) will give an optimal schedule

for these structures (here we define a forest as the union of trees).

§4.2.2. Preemptive Extension of Hu's Algorithm

41

Hu's results can be extended to the preemptive case by methods due to Muntz and

Coffman [20]. They consider a unit-execution-time task set P which is a forest. We

describe the algorithm which they show produces an optimal preemptive rn-machine

schedule for P.

Algorithm 4.2.2 [20] For a dual forest F:

(1) label all tasks in P by level.

(2) produce a list L according to the level: tasks with greater levels get arranged

earlier in the list.

(8) Use the following strategy to schedule list L: always assign tasks in £ with

the greatest level first. If there are more than m tasks with the same level,

wrap them into a block[c.f. Lemma 1.8.11. Also, of course, precedence

constraints must be obeyed during such assignment.

Theorem 4.2.2[20] If the unit-execution-time task set P is a dual forest, then

Algorithm 4.2.2 produces an optimal preemptive schedule for P.

For a detailed proof for this theorem, see Muntz and Cofi'man's Preemptive Scheduling

of Real- Time Tasks on Multiprocessor Systems[20].

p4.2.3. Multi-processor Scheduling for Interval Ordered Tasks

Recall that an interval ordered set (I, -<) is a poset which is isomorphic to some

finite set (IR, -<) of open intervals on a real line with the natural order: for intervals

A, B E 'R, if A fl B 54 0, then A and B incomparable; otherwise, we say A - B if

a < b for all a E A and b e B. In interval [a,.b], we call a the left endpoint, b the

right endpoint.

42

Interval ordered sets play a very important role in scheduling theory for the

following reasons:

(1). Every schedule S for a poset P induces an order S(P) which is an interval

extension, of P.

(2). The rn-machine unit-execution-time scheduling on arbitrary interval ordered

tasks has a polynomial solution.

(3). Every poset has an appropriate interval extension which may provide a

heuristic approach to multi-machine scheduling problems.

(4). An independent job set with release times and due times actually forms an

interval ordered set with respect to these constraints.

The initial work on interval ordered job sets was done by Papadimitriou and

Yannakakis [23] on multi-machine unit-execution-time scheduling for interval ordered

job sets, for the non-preemptive case.

Theorem 4.2.3[Papadimitriou and Yannakakis] For any fixed integer in, there is

a polynomial time algorithm which provides for each interval ordered set of unit-

execution-time tasks P an optimal rn-machine (non-preemptive) schedule.

We reproduce their algorithm below for rn-machine optimal non-preemptive sched-

ule for unit-execution-time task set P with arbitrary interval order constraints:

Algorithm 4.2.1

(1) Sort tasks in P in order of increasing right endpoints. This gives a list L(P)

of P.

() We schedule tasks in P according to this list L(P): schedule next the first

available task in L(P).

Actually, the algorithm given above is a list schedule. But this algorithm works

43

only for non-preemptive scheduling constraints. For the preemptive case, Sauer and

Stone proved the following result:

Theorem 4.2.2 For each fixed positive number m, there is a polynomial time algo-

rithm which provides for each interval ordered set of task P an optimal m-machine

preemptive schedule.

Before we introduce the details of the polynomial algorithm given by Sauer and

Stone as they appear in [25], we need the following notations and lemma:

For any interval order P, and a fixed positive integer m, let

[p]_<m = {B C P; IBI ≤ m, B antichain}

We call this set an rn-set. Now we define a binary relation < on [P]≤m, by taking

B < B' for B, B' E [P]≤m if there exists b in B and there exists b' in B' such that b

is less that b' in P. We call the relation < which is defined in this way that induced

by P on [p]≤m

Lemma 4.2.1 [25]. For any interval order P, the binary relation < induced on

[p]≤m by P is a partial order.

Proof. It suffices to check that < is transitive and irrefiexive. Assume P = {I,... , I}

is a set of open interval representation for P on the real line, where 'k < Ij means:

VxEIk,VyEIj,x<y. Then for B,BIE[P]≤m, observe B<B=..flB<flB.

Thus, from B <B' <B" we have flB < flB' < flB", hence flB < flB" and B <B".

Thus < is transitive. Observe that B < B is impossible since B is itself an antichain

in P. Thus, <is a partial order on [p]≤m. o

Next let < * be any linear extension of the order < induced on [P]<m. Now, look

at the following linear programming problem:

44

The Variables a, are indexed by the rn-set i E I = [P]≤m. The objective function

to be minimized is E a, subject to the boundary condition:

Vp E .P,EPEEJa1= 1,a1 ≤ 0 for all i El

This is a linear programming problem in standard form. Let S be an optimal

preemptive rn-machine schedule for P which schedules P over intervals Ii,. . . , I,

where the tasks assigned to each machine do not vary within each I. By taking aj =

the width of the interval Ij, we have a feasible solution to the problem, and more

recently Khachian and others have given polynomial time algorithms for finding such

solutions. Employing a polynomial solution for the linear programming problem, we

then have the following polynomial solution to the preemptive scheduling problem

for an interval order P with fixed number of machines m:

Algorithm 4.2.2.(Sauer & Stone)

(1) construct the partial order on [P]_<m by P.

(2) Take a linear extension < * of the order induced on [P]≤m by P.

(8) Solve the linear programming problem using a polynomial algorithm: min Zi a

subject to EEEI ai = 1 with ai ≥ 0 for all i E [p]≤m.

(4) Schedule P with each shift i E [P]≤m scheduled for duration a, with the shifts

ordered as in < *.

(5) The result is an optimal schedule for P.

Remark: Sauer and Stone's result can also be extended to the variable completion

time case: we just modify the linear programming problem in the Algorithm 4.2.2

by requiring for all p E P that FIPEi ai = ti,, where t is the time required for each of

45

the machines to complete job p.

The general multi-processor scheduling problem has been proved to be NP-hard

(see [4] and [28]). Several special classes of posets are shown above to have a polyno-

mial time solution. Most other multi-processor scheduling results focus on a heuris-

tic approach. We will, in the following chapters, investigate a heuristic method for

multi-processor scheduling based upon an effort to schedule maximum chains in unit

blocks, as first step in achieving an optimal schedule. We will explore both the

limitations and the potential for this heuristic in providing optimal scheduling for

certain classes of precedence constrained tasks.

46

CHAPTER FIVE

The Complexity of Scheduling Problems

In the field of scheduling theory, as in many other areas, we come across nu-

merous problems that can be solved relatively easily, while other, similar problems

appear quite hard. For example, the optimal scheduling on two processors of n unit-

execution-time tasks can be solved in O(n2)steps(i.e. the required number of steps

in the solution is bounded by a polynomial of degree 2). However, the same problem

with three processors appears to require time that is exponential in n.

There is no known way to prove that exponential time is required for the three

processor unit-execution-time problem, or for many other basic scheduling problems,

for that matter. What, we can do is to show that there is a large class of problems,

called "NP-complete" problems, for which either all or none of them have polynomial-

time solutions. The NP-complete problems include many well-known problems, such

as the traveling salesman problem or the general m-processor, n-task scheduling

problem.

As a,, consequence, it becomes important to determine whether or not a given

problem is NP-complete; for if so, we very likely can obtain results which provide

at best only a heuristic which gives useful approximations to the optimal solution.

None of the results we present here is new, however we provide our own proof for NP-

completeness of the two machine non-preemptive scheduling problem on independent

task set. These results provide a general overview of computational complexity for

scheduling problems.

47

5.1 An Introduction to NP-completeness Theory

As a matter of convenience, the theory of NP-completeness is most often described

in the literature with reference to decision problems. Such problems have only two

possible solutions, either the answer "yes" or the answer "no". So we can simply

describe a decision problem as a finite set of "instances" plus a yes-no question.

Example 5.1.1:

Instance: A finite set of n numbers T = {ki, k2,... , k,}.

Question: Does there exists a subset T' of T so that the sum of the numbers in

T' is equal to a half of the sum of the numbers in T.

Example 5.1.2:

Instance: A finite poset P of tasks, and a three machine schedule S of P.

Question: Is S is optimal? (i.e., does there exist another three-machine schedule

5' of P such that the makespan of S' is less than S?).

The reason that the theory of NP-completeness is usually restricted to decision

problems is that they have a very general and simple pattern, which is very suitable

to study in mathematical "language". This language is defined in the following way:

For any finite set E of symbols, we denote by the set of all finite strings of

symbols from E. If x is a string, we denote by jxj the length of x. For example, if

= {O, 1} then E* consists of the empty string e, the string 0, 1, 00, 111, 011,

and all finite strings of 0's and l's. If £ is a subset of E*, we say that £ is a language

over the alphabet E. Thus {01, 001,111, 1010} is a language over {0, l}.

The correspondence between decision problems and languages is brought about

48

by the encoding schemes we use for specifying problem instances whenever we intend

to compute with them. An encoding scheme S for a problem P provides a way of

describing each instance of P by an appropriate string of symbols over some fixed

alphabet E. Thus the problem P and encoding scheme S for P partition E* into

three classes: (1) those that are not encoding of instances of?; (2) those that encode

instances of P for which the answer is "no" (3) those that encode instances of P for

which the answer is "yes".

Obviously, language consists of encoded instances, and the size of the instance is

just the length of the string which is the encoding code of this instance under some

encoding scheme. Hence different encoding schemes will produce different languages

even for the same problem. For convenience of study, we generally use some "widely

accepted" encoding scheme for each specific problem.

§5.1.1 Deterministic Turing Machine and Class P

In order to formalize the notion of an algorithm which is used to solve a problem,

we will need to fix a particular model for computation which will provides a standard

measure to determine the complexity of the algorithm, and tells exactly how many

steps it will take to solve a problem. The model we choose is the deterministic one-

tape Turing machine(briefiy DTM), which is pictured in figure 5.1.1. It consists of

a finite state control, a read-write head, and a tape made up of a two-way infinite

sequence of tape squares, labeled .. . ,-2,-1, 0, 1,2,3,

49

Finite
State
Control

1-111
Tape Read-write Head

-4 -3 -2 -1 0 1 2 3 4

Schematic representation of a DTM

fig 5.1.1

A program for a DTM specifies the following information:

(1) A finite set r of tape symbols, including a subset E C r of "input symbols"

and a distinguished "blank symbol" b E r - E.

(2) A finite set Q of states, including a distinguished "start-state" q0 and two

distinguished "halt-state" qy and qr.

(3) A transition function 5: (Q - {qy, qp,}) x r —4 Q x r x {-1, +1}.

The operation of such a program is straightforward. The input to the DTM is

a string x E E*. The string x is placed on the tape in positions 1 through lxi, one

symbol per square. The program starts its operation in state q, with the read-

write head scanning tape square 1. Then the processing continues according to the

transition function 5. If the current state q is either qy or qN then the computation

has ended. Otherwise, the machine will continue to run.

Time complexity of a DTM program M on an input x is measured by the number

of steps occurring in that computation until a halt state is entered.

Let x be an input of a program M on a DTM, where lxi = n. Suppose computation

of M on input x takes time m, then the time complexity function: TM : Z+ ,' Z+

is given by:

50

TM(n) = max{m: m is computation time of M on x with lxl = n}

Such a program M is called a polynomial time DTM program if there exists a

polynomial p such that, for all n E Z,TM (n) ≤ p(n).

Now we can define an important class of problems (or languages), the Class P.

P = {C: there is a polynomial time DTM program M for which £ = .CM}

where £M is the language for program M on DTM using some encoding scheme, i.e.,

a set of strings for which the halt state of M is qy.

We say an algorithm for a given problem is a polynomial time algorithm if the

algorithm produces a DTM program, under some encoding scheme, which solves the

problem in polynomial time.

§5.1.2 Non-deterministic Computation and the Class NP

A Non-Deterministic one-tape Turing Machine(NDTM) has exactly the same

structure as a DTM, except that it is augmented with a guessing module having its

own write-only head, as illustrated in figure 5.1.2:

Tape

Finite
State
Control

Guessing Head Read-write Head

Schematic representatin of an NDTM

fig 5.1.2

An NDTM program is specified in exactly the same way as a DTM program,

including the tape alphabet r, input alphabet E, blank symbol b, state set Q, initial

51

state qo, halt states qy and qN and a transition function. The computation procedure

of an NDTM program is different from that for a DTM program. It takes place in

two distinct stages: the first stage is the guessing stage, the second is the checking

stage.

Example 5.2.1 (The Traveling Salesman Problem)

Instance: A finite set C = ICI C2,. .. . Cm} of "cities", a "distance" d(c, c) E Z+

for each pair of cities c, Cj E C, and a bound B € Z+ (where Z+ denotes

the positive integers).

Question: Is there a "tour" of all the cities in C having total length no more than

B, that is, an ordering < C,(l) C.(2),. .. 7 C,,.() > of C such that

{Ej1 d(C,rj, C.(i))} + d(Cir(m), C,,.(i) ≤ B ?

A non-deterministic algorithm for the Traveling Salesman Problem could be con-

structed using a guessing stage that simply guesses an arbitrary sequence of the given

cities and a checking stage that provides a polynomial "proof verifier" to check that

the sequence of cities is presenting a valid tour, and to determine whether the tour

has length less than or equal to B.

Note that the time of a NDTM program used to "solve" a problem is just the

number of steps which leads the program halting at state qy. We do not count the

steps which leads to state qj,r. A NDTM program is polynomial time program if the

program can verify a instance to be true in polynomial time.

Finally, the class NP is formally defined as:

NP = {.C: there is a polynomial time NDTM program M for which £ = LM

Informally, we say a problem belongs to the class NP if there exists a non-

52

deterministic checking algorithm which can verify any specific instance of the problem

in polynomial time. A non-deterministic algorithm is the counterpart of an NDTM

program, which also has two stages: guessing and checking.

Based on the above discussions, we observe that P C NP. Every decision prob-

lem solvable by a polynomial time deterministic algorithm is also solvable by a poly-

nomial time non-deterministic algorithm. Since any deterministic algorithm can be

used as the checking stage of a non-deterministic algorithm, where the guessing stage

is ignored in this circumstance. It is a well known, long outstanding and very difficult

problem to determine whether P = NP or not.

§5.1.3 NP-completeness

If P differs from NP, then the distinction between P and NP-P is meaningful and

important. All problems in P can be solved by some polynomial time algorithms,

whereas all problems in NP-P are said to be intractable because a polynomial solution

to any problem in NP-P would necessarily show P = NP. Thus, for a given problem, it

is important to distinguish which of these two possibilities holds for the problem, and

to seek primarily heuristic approaches only for problems known to be NP-complete.

Thus unless we can prove that P 54 NP, there is no hope of showing that a specific

problem II belongs to NP-P. For this reason, NP-completeness theory focuses on

proving weaker results of the form: "if P 54 NP, then II ENP-P", e.g., "If P 54 NP

then "The Partition Problem" belongs to NP-P.

To approach such conditional results might appear as difficult as the correspond-

ing unconditional results. A key technique, polynomial transformation, was devel-

53

oped to make it more straightforward.

A polynomial transformation from a language .C1 C E to a language £2 C E is

a function f : -p that satisfies the following two conditions: (1) there is a

polynomial time DTM program that computes function f; (2) for all x E , x E Lj

if and only if f(x) E £2.

If there is a polynomial transformation from L to £2, we write L oc £2, read as

"L1 transforms to £2" (we can omit "polynomial" here which is to be understood.)

The significance of polynomial transformations comes from the following results:

Theorem 5.1.1 If)C1 oc £2, then £2 E P implies Cl E P(and, equivalently, Cj 0 P

implies £2 0 P)

Theorem 5.1.2 If f-1 oc £2 and £2 cc £3, then Cj cc £3.

Proofs of these two theorems are trivial ,but can be found for example in [11].

We say that two languages Li and £2(or two decision problems Hi and 112) are

polynomially equivalent whenever both Cj cc £2 and £2 cc 4 (or, respectively, both

I11 cc 112 and 112 cc 11k).

The NP-completeness class is defined as follows: a language £ is NP-complete if

£ e NP and, for all other languages £' €NP, £' cc L. Informally, a decision problem

11 is NP-complete if 11 E NP and, for all other decision problems IF E NP, IF cc 11.

Theorem 5.1.3 If Cj and £2 belong to NP, Cj is NP-complete, and C1 cc £2, then

£2 is NP-complete.

Proof: Since £2 E NP, all we need to do is show that, for every £' E NP, £' cc £2.

54

Consider any £' E NP. Since Ll is NP-complete, it must be the case that £' cc £.

The transitivity of cc and the fact that 4 cc £2 then imply that £' cc £2. 0

This theorem provides us a way to prove that a certain problem is NP-complete,

once we have at least one known NP-complete problem. Such a problem is provided

by Cook's fundamental theorem [3].

The so-called "first" NP-complete problem originates in a decision problem from

Boolean logic, which is usually referred to as the SATISFIABILITY problem. The

terms we shall use to describe it are defined below.

Let U - {'ui, U2, . . . ,ttm} be a set of Boolean variables. A truth assignment for

U is a function t : U - IT, Fl. If t(u) = T we say that u is "true" under t; if

t(u) = F we say that u is "false". If u is a variable in U, then u and ii are literals

over U. The literal u is true under t if and only if the variable u is true under t; the

literal ii is true if and only if the variable u is false.

A clause over U is a set of literals over U, such as {u1, i13, u8}. It represents

the disjunction of those literals and is satisfied by a truth assignment if and only if

at least one of its members is true under that assignment. The clause above will

be satisfied by t unless t(ui) = Ft(U3) = T, and t(us) = F. A collection C of

clauses over U is satisfiable if and only if there exists some truth assignment for U

that simultaneously satisfies all the clauses in C. Such a truth assignment is called

a satisfying truth assignment for C. The SATISFIABILITY problem is specified as

follows:

SATISFIABILITY:

Instance: A set U of variables and a collection C of clauses over U.

55

Question: Is there a satisfying truth assignment for C?

Theorem 3.1.4(Cook's Theorem): SATISFIABILITY problem is NP-complete.

Proof: A complete proof is given in [3].

Cook's theorem provides for us a way to show a new problem is NP-complete

by proving that it is polynomially transformable from a known NP-complete prob-

lem, such as the SATISFIABILITY problem. There are some other well-known

NP-complete problems such as the PARTITION problem, and the TRAVELLING

SALESMAN problem.

5.2 Computational Complexity of Scheduling Problems

Throughout Chapter One to Chapter Four, we have encountered many schedul-

ing problems that are quite hard. Complexity analysis may suggest that we avoid

attempts to solve some intractable scheduling problem in polynomial time, and put

more energy toward developing heuristic approaches to optimal or suboptimal solu-

tions of some tough problems. Some of the most well known NP-complete scheduling

problems are described below.

Theorem 5.2.1 The general scheduling problem is NP-complete.

Proof. The lengthy proof can be found in [14] and [4].

More specifically, we have following small classes of scheduling problems which

have been found NP-complete:

Theorem 5.2.2 The general two machine scheduling problem on an independent

56

job set with arbitrary execution times is NP-complete.

Proof. This problem, denoted in the literature as P2IICmav, can be easily trans-

formed from the partition problem which is a well-known NP-complete problem.

Here is the general language of the Partition Problem:

Instance: Finite set A and a size s(a) E N for each a, E A where N is the set
of positive integers.

Question: Is there a subset A' C A such that Ea.EA' s(a) = Ea.EA_-A' s(a) ?

Given any instance of Partition Problem defined by the set of positive integers {s(a)

ai E A}, we define a corresponding instance of the decision counterpart of P2IICTTha2,

as follows: assume job set P = {b1, b2,. . . , b,,} where n = IAI, the execution time

p1 of job b1 = s(a1) for j = 1,2,... , n, and the threshold value of schedule length

Y = (1/2) Eaj€A s(a1). It is obvious that there exists a subset A' with the desired

property for the instance of Partition Problem if, for the corresponding instance of

P2llCmaa,, there exists a schedule with Cma,, ≤ y, and the theorem follows. o

Theorem 5.2.3 The general scheduling problem of ii unit-execution-time tasks on

m processors is NP-complete.

For detailed proof, see [29] or [4].

57

CHAPTER SIX

Scheduling Maximum Chains in Unit Blocks

In Chapter Five (Complexity of Scheduling Problems), we have seen that many

general sèheduling problems are NP-hard. Only heuristic approaches therefore pro-

vide practical approaches to work on for such problems. Here in this chapter and

the following chapters, we will explore a new heuristic method, scheduling maximum

chains in unit blocks, to approach the multi-machine preemptive scheduling problem.

We exam the conjecture that each task in a maximum chain can be scheduled in unit

time in some optimal preemptive schedule.

6.1 Schematic Representations

In order to simplify the Hasse Diagram of a poset, we introduce the concept of

schematic structure of a poset which will be adopted in the following chapters.

(1) A binary equivalence relation on a poset P is defined for a, b E P by a 's-' b

ifFc <a == c< band a < d b < d, where c,d E P.

(2) A schematic structure of a poset P is P/ '. In this structure, we partition

the poset P into equivalence classes Pi,... ,Pm. A box with only a positive integer

= I P I in it stands for the block P2 (it is actually an antichain of size n). Two boxes

with one above another denotes a "bipartite" graph in which all nodes in the upper

poset are above all nodes in the lower poset. For example:

58

n

m

 >

m nodes

fig 6.1.1

(3) A revised schematic structure of a poset P is a simplified schematic structure

of P by using a box with a uppercase word in it which stands for a special structure

we have specified before. For example, we will frequently use the 3-S/S structure

in fig 6.1.2 (a). It can also be represented schematically in fig 6.1.2 (b), and as an

element in other revised schematic structures as shown in fig 6.1.2(c).

A3

A2

Aic5 Z5B 5C

original poset P

(a)

schematic structure of P

(b)

3-S/S

revised schematic structure of P

(c)

fig 6.1.2

§6.2 A Counterexample

Partially Ordered Set P

(a)

59

Part of the early motivation for this thesis was to investigate and prove or disprove

the following conjecture: For any poset P, and any maximum chain C1 <...<C

in F, there exists a optimal scheduling S, such that r(C) —o(C) = 1, for 1 ≤ i ≤ n.

In our early efforts to prove this conjecture, we attempted to use transformation

methods. The question is "Can we obtain such scheduling S by locally rearranging

some other optimal scheduling S'?". By "local rearrangement", we mean a rear-

rangement of the block which contains all tasks scheduled simultaneously with some

Ci in C. We found the answer is no, and an example is given in fig 6.2.1:

Cl

C2

C3

C4

C5

Co

C7

Schematic structure of Poset P

(b)

fig 6.2.1

Indeed, the conjecture itself is generally false. Not only is it impossible to rear-

range some optimal schedules locally, but there are actually posets P in which every

maximum chain C has to be split for some member Ci E C in order for a schedule

to be optimal. An example of such a poset is shown below in fig 6.2.4.

It is known (see [24]) that the optimal schedule of 3-S/S in fig 6.1.2 is (up to the

order isomorphism on S(P)) unique:

60

Al A2 A3 F/6

B

C/D/D/rd2AGE/

The Optimal Schedule for 3-S/S

fig 6.2.2

An optimal schedule S* of P in fig 6.2.1 is shown below in fig 6.2.3:

Co
3-S/S 35/5

Q1 c31 c41 c 021 c
G2 C32 C42 Q2 C62 022

C23 Q3 c c c c3

Schedule for P in fig 6.2.1

fig 6.2.3

In the above scheduling S* of the poset F, C1 is scheduled together with two

identical structures, 3 - S/S. It splits into two halves to fix two intervals of waste

found in the schedules for these two copies of 3 - S/S. One proves easily that node

Ci on the maximum chain C of P cannot be locally rearranged so that optimality

can be maintained and C1 scheduled into a unit block.

The above example shows that for some specific schedule S* of P, some tasks in a

maximum chain will be required to be scheduled in pieces. However for the example

in fig 6.2.1, there do exist some other optimal schedules of P which schedule C1 in a

unit block(as well as all other tasks in the maximum chain C).

The following example shows that for some posets P, certain tasks in some or

even all maximum chains have to be scheduled in non-consecutive pieces in order to

61

get an optimal scheduling. This is one of the major results of our thesis. It disproves

a natural conjecture, and shows that any successful heuristic based on scheduling

maximum chains in unit blocks will necessarily apply only to a restricted class of

posets.

1 D11

D12

D14

2

2

fig 6.2.4

2

1

3

3

3

3

3

C12

C13

C14

C15

C16
Cl7

as

Cie

C20
C21

Proposition 6.1. Every optimal 3-machine preemptive schedule S for the poset

shown in fig 6.2.4 schedules C1 in non-consecutive pieces, with r(CI) - u(Ci) > 1,

and every maximum chain in P contains C1.

Proof: First, let us investigate some of the obvious properties of the poset P. From

the schematic structure of P, we can see, for three-machine preemptive scheduling:

62

1). C1 is on any maximum chain of P.

2). there are at least two units waste for any scheduling of P. Two of them occur

during the processing of Co.

3). there is a pattern shown in the structure of P: IDil + IC2I = ID2I +.C3 =

= IDi4I + ICi5I = 3. These fourteen levels can be easily scheduled in fourteen unit

blocks with no waste. The tasks after the last level (D14 + C15) can also be scheduled

with no waste by three parallel machines.

4). the substructure 3—S/S in fig 6.2.4 has been discussed in [24] ; the waste has

to appear in the middle of the structure if optimally scheduled by three machines.

To schedule P, from our observations 1) to 4) above, if C1 can fix the waste which

may occur when we schedule two copies of 3—S/S structure, then we are done. We

have found an optimal scheduling, by Corollary 1.2.2, since two units of waste is best

possible.

Co

3-S/S 3-S/S C2

C2 C3 C4 Cs D21

C3 C4 C5 •.. D21

C,/2 D1 D2 D3 D4 .. D21

fig 6.2.5

Let us consider all the possible situations where C1 might be scheduled into a

unit block in some scheduling. We shall see no such schedule is optimal. It then

follows that every optimal schedule S for P splits the task C1 (which occurs in every

maximum chain) into non-consecutive pieces. For convenience, we denotes the copy

of the structure 3 - S/S near Co A, the other copy B.

1). If we schedule C1 ahead of A and B, then from Observation 4), there will

63

be some idle time period on some machines when we schedule A and B into three

machines, which will make this scheduling not optimal.

So, C1 has to be scheduled with the 3 - S/S near Co. It may or may not be

scheduled with the other copy of 3 - S/S, since we can schedule C2 with this copy,

or even C3, C4,

2). If we schedule part of C2 with A B, and the remainder of C2 with D1. To

avoid extra waste with D1, we need to pull part of C3 back to schedule with D1, and

part of C4 back with D2, and so on. Finally, when we're trying to pull C13 back to

schedule with D11, we find we can't avoid occurrence of additional waste.

So, either C2 has to be scheduled ahead of B, or completely with A ED B.

2.1) If C2 is scheduled completely with A B, then we have to move C3 up at

least with D1, and C4 at least to D2, and finally, C6 at least to D4. Then we may

create waste during the schedule of C13 C14 C15-

2.2). There are only two ways to fix waste created by scheduling of C13 ED C14 C15:

one is to use D12 D13 @ D14; another is to use A B. If we use the first option, it

will force C1 to be split. If we use the second, we will find it is impossible for A B

to fix all waste created by C1 C2 a... ED C15. There are in total 19 units of waste

when we schedule C1 ED ... C15 into three machines. But these two copies of the

3-S/S structure have only 18 tasks.

3). If we schedule D14 after part of C15, then we create waste. So, D14 has to be

scheduled with or before C15.

4). If we schedule part of D14 before C15, and the remainder of D14 with C15,

then we need to pull D13 back to schedule with C15, and then D2 back with C14,

and finally we find waste cannot be avoid when we are trying to pull D11 back to

64

schedule with C13.

So, D14 has to be scheduled with C15. This completes the proof of Proposition

6.1.

Extension to the n-machine case, n > 3

In order to construct a counterexample for the n-machine preemptive scheduling

case, first, we introduce a poset n-S/S similar to the 3-S/S structure in fig 6.1.2:

n+1
 A

n-S/S structure
(a)

schematic structure of n-S/S
(b)

fig 6.2.6

Any optimal preemptive schedule of the above poset will force a half unit waste

in the middle of the Gantt Chart(see fig 6.2.7 below). The argument for this is very

similar to that in [24].

1:

n-i:
n:

Bi

wrap n+1/2 unit tasks into

a block of length n+1/(2n)

An-1 An-1 C+1
AnIAn+i A//

An optimal preemptive schedule
of n-S/S structure

fig 6.2.7

65

Next, we construct a counterexample for the n-machine case similar to that for

3-machine case given in fig 6.2.4:

fig 6.2.8

For the dual counterpart of the poset shown in fig 6.2.8, each optimal preemptive

schedule S must split the task C1 into two separate shifts which cannot be scheduled

consecutively. The only optimal schedules for this poset are essentially those shown

in fig 6.2.9 below:

66

1:G

n-i:

n:

n-S/S

92

n-S/S

9'2

D2 D3 Cl9 Go

cc4 C19 GO

020

An optimal n-machine preemptive schedule of poset in fig 6.10

fig 6.2.9

Proposition 6.2. Every optimal n-machine preemptive schedule S for the poset

shown in fig 6.2.8 schedules C1 in non-consecutive pieces, with 'r(C1) - a(Ci) > 1,

and every maximum chain in P contains Ci.

The proof of this proposition is quite similar to that of 3-machine case.

Remark: For the example shown in fig 6.2.4 and fig 6.2.8, we observe for the order

extension S(P) of P induced by a schedule S:

5(P) = S'(P) where S, S' are any two optimal schedules of the given poset.

This shows that any optimal preemptive schedule S of poset P in fig 6.2.8 , for

example, will produce the same order extension 5(P) with same maximum chains

in it. And further, the maximum chains in this order extension S(P) can always

be rescheduled in unit blocks, as we shall see. Thus, although maximum chains in

P cannot be scheduled in unit blocks in any optimal schedule for this poset P

maximum chains in the order extension 8(P) for any optimal schedule S, can be so

scheduled. We look further into the problem of scheduling maximum chains of S(P)

in unit blocks in the next chapter.

67

CHAPTER SEVEN

Rescheduling Maximum Chains in S(P)

In Chapter Six, we have shown that maximum chains in a poset P can not

necessarily be scheduled in unit blocks in any optimal schedule. Moreover, even for

a particular task, local transformation will fail, in certain schedules, to provide us

with a way to locally adjust the given schedule so that this "fragmented" task can

be rescheduled locally into a unit block. We now investigate problems encountered

in rearranging the schedule itself, with respect to scheduling tasks in unit blocks.

§7.1 Observations

We will investigate several cases as follows:

(1). One-machine preemptive scheduling.

It is trivial to see that any linear extension of a poset P forms a (preemptive)

optimal schedule of P in which each task, in particular any maximum chain in P, is

easily scheduled into unit blocks.

(2). Two-machine preemptive scheduling.

For the two machine case, Algorithm 3.1.1 and Algorithm 3.2.1 in Chapter Three

have given two-machine preemptive optimal schedules of P which schedule any cho-

sen maximum chain into unit blocks.

(3). Multi-machine preemptive scheduling.

In Chapter Six, we have given a counterexample which shows that, for some

posets, there exists no multi-machine optimal schedule which assigns any maximum

chain in unit blocks.

68

The counterexamples given in Chapter Six suggest that we explore another prob-

lem: whether or not maximum chains in S(P) can be rescheduled into unit blocks,

without lengthening the schedule S.

In 1990, Sauer and Stone showed in a paper presented at the Second International

Congress on Scheduling at Compiegne, France [23], that every optimal schedule S

contains a maximum chain in the induced order S(P) which can be rescheduled in

unit blocks, without increasing the makespan. But the remaining question is how to

identify this maximum chain, a priori, and whether each maximum chain in S(P)

can be rescheduled into unit blocks.

Example 7.1.1 We have shown in Chapter Six that the poset P shown in fig 6.6

has the following properties:

(1) any maximum chain in P can not be scheduled into unit blocks in order for

the schedule to be optimal; C1 must be split as shown in fig 6.7.

(2) any chosen maximum chain in S(P) can be rescheduled into unit blocks in

some optimal schedule. Without loss of generality, we may choose for example the

maximum chain CO > A3 > A2 > A1 > C2 > ... > C14. It is scheduled into unit

blocks in the schedule S shown in fig 6.7.

Example 7.1.2 We present still another example below in fig 7.1.1. The poset P

given in fig 7.1.1 has an optimal schedule 5, shown in (b). Then, based on the

schedule 5, we have an order extension S(P) of P, shown in (c). Now, look at the

maximum chain p <j < f < c < a in 8(P). It is not scheduled into unit blocks in

(b), but is rescheduled into unit blocks in (d).

69

p

Partially ordered task set P

(a)

n j I f c a

o k f g d b

P I g h e m

An optimal preemptive schedule S of P

(b)

flop

The order extension S(P) of P induced

by the schedule S

(c)

p j f L_±
g

c a

o k I d b

fi I g h e m

A rescheduling of S(P)

(d)
fig 7.1.1

70

§7.2 Rescheduling Maximum Chains in S(P)

In order to approach this problem, we provide some necessary definitions below:

Definition 7.2.1 For any specific preemptive schedule S of some poset P,

(1) A shift in S of P is a closed time interval in which there is no change from

one task to another on any processor, and not contained in any larger such interval.

(2) shift(S) = set of all shifts in the schedule S of P. For instance, if P

is a singleton with one unit-execution-time task a, then for any schedule S of P,

shift(S) = {[0,1]} = {[cr(a),r(a)]}.

(3) If T is a task in P, H(T) = {T1 is a part of T: 2I € shift(S) such that

[o(T), r(T)] = I}. For example, let A E P be a task which appears in n shifts of a

schedule S of P. For this scheduling S of P, we have H(A) = {A', A2.. .. Az} where

[o(A1), 'r(A)] E shift(S).

(4) Let I = [a, b] be a interval in the schedule S of P, then we denote by T1

all tasks which are performed (partially or totally) in the interval I C [0, ISI]. And

further, we use function g1(a) E (0, 1] to represent the portion of the task a T1

completed in the interval I, when the interval I is clearly understood.

We now identify a certain maximum chain, called "critical sequence" in 5(P) for

some schedule S of poset P:

Algorithm 7.2.1: Let H(P*) = m. Let * = S(P) be the interval extension of poset

P induced from the schedule S of P. We represent (P*, :5*) by a set of intervals:

{[cr(a),r(a)] : a E P}

Step 1. First we label all nodes in P" by levels and heights(see double-labeling

above).

71

Step .LetAi={aeP:l(a)=m-1,h(a)=O}

Step 3. Let c1 E A1 be the first nodes in the "critical sequence" CL satisfying

'r(ci) ≤ r(b) for all b E A1.

Step 4. Suppose we have constructed c1, c2,. . . , Ck. Let Ak+1 = {a E P 1(a) =

m - (k + 1), h(a) = k,cr(a) ≥ r(ak)}. Choose ck+1 from Ak+1 such that rck+1 ≤ Tb

for all b E Ak+1.

Step 5. Replace k by k + 1. Go to Step 4 until we find the last node for the

"critical sequence" in P.

Lemma 7.2.1. The "critical sequence" c1, C2,... ,Cm produced by Algorithm 7.2.1

is a maximum chain in P.

Proof. First the length of the sequence is the same as the length of any maximum

chain in *• Second, the sequence is a chain in P' since r(c) ≤ o(c1+i) for 1 ≤ i <m.

0

Lemma 7.2.2 [26] (Extended Wrapping Lemma) Let A be a set of independent tasks

of different length, and laj denotes the length of a task a in A. If EaEA IaI ≥

(maxaEA(IaI) * m), then we can always always schedule all these tasks in A in a block

of length EaA al by "wrapping" any linear extension of A into this block.

We say that a task a E P is complex with respect to a direct successor a' of a in

S(P) for a schedule S of P if for any b E P, rs(b) ≤ as (a) implies o,,5 (b) ≥ as (a).

Lemma 7.2.3[Stone] For any poset P and any preemptive 3-machine schedule S of

P, if a1, a2, . . . , a(n> 1), is a maximum chain in S(P) and a1 is complex respect

to a2, then there exists a schedule S' such that IS'I ≤ 181 and these two schedules

72

agree on intervals [0, crg(ai)] and [crs(a2), ISI]•

Proof. Let Io = [0, crs(a1)], 11 = [crs(ai), Ors(a2)1, and 12 = [os(a2), ISI]. Let W =

{ W4W is. a continuous waste interval [cr(W), r(W)] c i1 on some machine }. Let

T11 denote the tasks performed in I, and recall that function g (a) E (0, 1] stands

for the portion of task a performed in the interval I.

d(a i)

S:

fix

this

part

Jo 1. Ii t2
12

The preemptive schedule S of poset P

fig 7.2.1.

Let Q = {a E T11 : Ts(a) as(a2)1, R = {a E T11 : rs(a) > 0 s(a2)1, and

D={aER:bEQ such that b<ainS(P)}.

Note that, for any a E Q, [as (a), rg(a)] ç I, i.e. gi (a) = 1 for all a € P. Since

al is complex respect to a2, we have either us(a) > rg(ai) or rg(a) < 0g(ai). But

this is contrary to the maximality of chain al, . . . , a in S(P).

The plan is: first, fix the interval 10, and then re-arrange the interval 11 so that

a1 will be scheduled in unit time without preemption.

We suppose D 0 0. Otherwise Q U R U W is an antichain, we can easily use

the Extended Wrapping Lemma to get S rescheduled so that a1 is scheduled in unit

time. Let d1 E D be a task such that gi1 (d1) ≥ gj, (d) for any d E D.

We first empty the interval I, then refill the interval according to the following

plan:

73

1) pack tasks in D to the very end of the interval which produces a partially

completed schedule S' of P:

Case 1. If EdD1l (ci) g11 (di) then then we wrap all tasks in D into block

[0s(a2) E1,'1 , US (a2)] as in figure 7.2.2. below:

c5(a1) c5-(a2)

Wrap all tasks in 0 to the end of the interval Ii

fig 7.2.2

Case 2. If (CO <gi' (di), then wrap all tasks in D in one of the following

forms as shown in figure 7.2.3 below:

di

(a)

c1(ai)

di

(c)

(ai)

di

(b)

di

(d)

fig 7.2.3

2). Wrap all tasks in Q U (R - D) U W into the remaining blank space in the

interval I. This will produce a complete rescheduling S" of P.

74

Claim 1. Tasks in D can always be rescheduled as stated in 1) case 1 and 2.

Since D is an antichain, case 1 can be easily seen be applying the Extended

Wrapping Lemma(Lemma 7.2.2); for case 2, we attempt to arrange d1 into the third

machine and fill the second machine as far as we can to make a even edge with the

third machine.

Claim 2. Let t = us, (b) so that us, (b) us, (Y) for any b' E D. Then t—crg(ai) ≥

1.

Suppose the form of S' : D is as in figure 7.2.2 and t - as (a,) <1. Let e € P be

such that TS(e) <os(di), then then at least one d e D such that as (d) <t. This is

impossible since there exists some a E Q such that us (a) > o5(ai) and rs(a) <crg(d)

which implies rs(a) - us (a) < 1.

Suppose the form of S' : D is one of the forms shown in fig 7.2.3. Then it is easy

again to see that t - us(al) ≥ 1. Otherwise the tasks preceding d1 would not be

completed in the interval I.

Claim 3. The tasks in Q U (R— D) U W can be always wrapped into the remaining

blank space in the interval I.

Suppose S' : D is as in fig 7.2.2. Since Q U (RD) U W is an antichain, by the

Extended Wrapping Lemma, they can be wrapped perfectly into the block [crg (ai), t]

and a1 can be scheduled in unit time.

Suppose S' : D is as in fig 7.2.3(a) or (b) or (c), then we can also wrap all tasks in

Q U (RD) U W into the blank space while a1 is scheduled in unit time by this process

by the first machine.

Suppose S' : D is as in fig 7.2.3(d). First pick a task a € Q U (RD) U W such

that a 54 a1 and a is Jong enough to make the right edge of the blank space in the

75

second and third machine even by rescheduling enough portion of a to the second

machine. (If there exists no task longer enough, we can use several tasks to achieve

this.) Then we start wrapping from the task a, end with task ai(as shown in the fig

7.2.4 below).

cT(ai) y(a2)

ai

a

di

Wrapping tasks in Q U (R-D) U W

fig 7.2.4

Now we see IS" I = IS! and a1 is rescheduled into a unit block in 5", and 5", S

agree on the interval 10. Note, in the wrapping process, we regard each waste interval

W as a partial task. Actually, a proper wrapping with decreased amount of waste

may decrease the makespan of S" with respect to S. o

We say that a critical sequence, ell ... , c,, is a complex critical sequence if ci is

complex respect to c 1 for 1 ≤ i <n.

Theorem 7.2.1[Stone & Li]. For any poset P and any scheduling S of F, if c1 <

C2 < ... < Cm is a complex critical sequence in S(P) ,the order extension of P

induced by S, then there exists a schedule S* of P with JS*I ≤ ISI and c1, C2,. . . Cm

each scheduled by S* in unit blocks. Moreover, 8* and S agree on the time interval

[0, as (CO].

Proof. By induction on m.

The basic case. If m = 1, by Lemma 7.2.1, c1 is a maximum chain in S(P). So,

76

S(P) is an antichain. Fix the scheduling before cr(ci), then reassign the unprocessed

tasks in the following way: schedule c1 on the first machine after 0S(Ci), then wrap

the other tasks (together with waste as in Lemma 7.2.3) around by using the Extended

Wrapping Lemma(Lemma 7.2.2).

CT (Q)

this part

of S

is fixed

Cl

wrap remaining tasks
h..--

fig 7.2.5

Next, for the inductive step: assume for all m ≤ k for some fixed k ≥ 1, that the

statement made by the Theorem is true. We wish to establish the statement for the

case m = K + 1.

Consider a poset P, a scheduling S of P, and a complex critical sequence c1, c2,.. . , Ck,

Ck+1 in 5(P).

S:
fix

this

part

CII

10

C21

12

C,: piece of 0 scheduled 1st C1: piece of Qscheduled 1st

fig 7.2.6

In the Gantt Chart above, let t1 = o(ci), t2 = o(c2). Consider intervals I =

[0,1S11, 10 = [O,t1], 11 = [t1,t2], and 12 = 1-10-11-

77

First fix the interval 10, then reschedule block I so that c1 is scheduled in a

unit time in a new schedule S' of P and IS' ≤ ISI by Lemma 7.2.3. This can be

accomplished, since c1,. . . , is a maximum chain in S(P) by Lemma 7.2.1, and

c1 is complex respect to c2.

Next we apply our inductive assumption to the interval 12 = [og(c2), ISI]. Then

T12 is a poset of height k, and c2,. . . , ck+1 is a complex critical sequence and maximum

chain in T12. S' : T12 is a schedule for T12. By assumption, we can reschedule

[os'(c2), S'] so that c2, . .. , cj 1 is scheduled into unit blocks. This gives a new

schedule S" on T12.

Now, let S* = (S : lo) ED (S' : Ii) (S" : 12). S* agrees on 10 with S and

S ISI, and the complex critical sequence c1,.. . , Ck+1 is scheduled in unit blocks

in S*.

Poset P

78

CHAPTER EIGHT

K-Structure Task Sets

In this chapter, we first identify a new interesting poset called K-structure. We

then characterize some special properties of this structure and design an algorithm

for three machine preemptive scheduling for arbitrary K-structures based on the

heuristic of scheduling a critical path in unit blocks. We conjecture that this algo-

rithm produces an optimal schedule for any K-structure. The establishment of the

optimality of this algorithm is one direction for further research in this area.

§8.1 K-Structures

Definition 8.1.1 A poset P is loop-free if and only if for all sequences a < b < c

and a < d < c while a, b, c, d in P, we have either b> d or b < d.

A poset P is a K-structure if and only if P is connected, loop-free and there exists

maximum chain(we call it the backbone) Cp g P such that for any a € P and any

maximal chain C containing a, c fl Cp o 0.

09

b. 01

a

Alternative presentation of P

fig 8.1.1

79

The above graph gives an example of what K-structure posets look like. The

maximum chain a < b < c < ... <h is the "backbone". We can interpret this graph

as an industry process control stream in which some small workshop chains provide

supplies or parts for main stream production(for example, node "h" in fig 8.1.1 is

the end-product of the main stream production), and in some stages, there are by-

products(such as node 8 in fig 8.1.1) produced which may be further used to make

much more sophisticated by-products (such as node "9" in fig 8.1.1). For this purpose,

we can divide all branches in P into two groups: supply-provider(shown as the left-

wing in the second graph in fig 8.1.1: 2,3,4,5,7) and by-product-producer (shown as

the right-wing in the second graph in fig 8.1: 1, 6, 8, 9), in addition to the main-

stream which produces an end-product h.

In the above example(fig 8.1.1), the dominant role of the "backbone", Cp, in the

K-structure P is apparent. Some observations below provide a much clearer picture

of the nature of K-structures.

Lemma 8.1.1 Let P be a K-Structure. For each a E P—Cp, there exists a partition

P1 U P2 = Cp, where P2 is not empty for i = 1, 2, so that a is incomparable with P1

but either less than or greater than all members in P2.

Proof: For any a E P, there always exists a partition P1 U P2 = Cp of Cp with the

properties stated in the lemma. Suppose P1 is empty. This means a is either greater

than or less than every element of P2. This is contrary to the maximality of Cp.

Also, P2 is always nonempty, since P is connected, and there is always some chain,

which contains a, intercepting Cp. 0

Definition 8.1.2 Let P be a poset, a E P. Then Pa = {b E PIb ≥ a} is the order

80

ideal above a, and pa = {b e PIb ≤ a} is the order ideal below a.

Lemma 8.1.2. If P is a K-structure, then for any a E P, Pa and pa are trees(or

dual trees).

Proof. Due to the duality of K-structures, we shall only prove that Pa is a tree. We

know that any order ideal Pa with no loop is a tree with root a: Suppose b E Pa (b 54 a)

has two predecessors, say d1, d2. Since all task in Pa is comparable (greater than) a,

there exist at least two different paths, say C1 and C2, in Pa, starting from a to b.

This is impossible since Pa is loop-free o

Based on these two observations, we can see that although a K-structure is not

a tree or a dual tree, it does have some relation with trees: every tree is a K-

structure; and every K-structure is amalgamated from a set of trees or dual trees. By

amalgamation, we mean to the union of two or more graphs obtained by identifying

certain common subgraphs which are imbedded into each of these graphs.

§8.2 Double-Labeling

To approach the scheduling for K-structures, let us recall Hu's results on schedul-

ing trees or dual trees[13]:

Given m machines, if P is a tree, then non-preemptive level scheduling S of P is

optimal.

From Chapter One, we recall that level scheduling works like this: first we labeling

all tasks in P(suppose P is a dual tree) by levels (as defined in Chapter One); then

we schedule the dual tree by levels assigned to each task in the following way:

1) always schedule tasks with greatest level first

81

2) if a set of tasks have the same level, and we only need some of them for the

scheduling, then we arbitrarily pick as many as we need for the current unit time

interval.

Here is an example showing how level scheduling works:

For the dual tree P in fig 8.2.1, we first label the nodes in P by levels(shown in

fig 8.2.1 as coordinates of each node).

i (2)

f (3)

b(4)

Single-labeling of the dual tree P

fig 8.2.1

Fig 8.2.2 gives the level scheduling of the poset P in fig 8.2.1:

a d g j r

b f h k

c e j I

level scheduling of dual tree P

fig 8.2.2

82

Hu's Theorem establishes that level scheduling will produce optimal schedules for

any tree or dual tree. We have shown in Lemma 8.1.1 and 8.1.2 that K-structures

have some common properties with trees. We will present an algorithm which ap-

pears to produce an optimal preemptive schedule for any K-structure on three ma-

chines.

Before we introduce the algorithm, we need some notations and concepts. Double-

labeling means to assign two-dimensional coordinates to each task in P, where the

first coordinate denotes the level of the task, and the second the height.

Fig 8.2.3 double-labels the poset P in fig 8.2.1:

r (0,4)

k(1,3)

h(2,2)

e (3,0)

1(1,3)

1(2,0)

f(3,1)

b (4,0)

Double labeling of poset P in fig 8.2

fig 8.2.3

§8.3 An Algorithm for K-Structures

The following is a deterministic algorithm which produces a three-machine pre-

emptive schedule for any K-structure. This algorithm will schedule tasks from both

ends of the graph P working toward the middle, using double-labeling.

83

Algorithm 8.3.1

(1). First associate all nodes a E P with coordinates (1(a), h(a)) . (double-labelling all

nodes by levels and heights).

(2). LetT1 ={aE P11(a) =0,h(a) =H-1},Bi ={aEPlh(a) =0,1(a) =H-1}.

Then T1 and B1 are both antichains.

(3). Let T=Ti.

('V. Scheduling of T:

Case 1. If ITI ≥ 3, then wrap all tasks in T into a block of length ITI/3 with no

waste.

Case 2. If ITI < 3 then we look at the set Q = {a E P11(a) = 0} —T. If

IQI ≤ 3 - TI, then schedule T U Q into a unit block. If IQI > 3 - ITI then we

choose a subset Q' C Q from Q with IQ'I = 3 - ITI and h(a) ≥ h(b) for any

a E Q', b E Q - Q', i.e., we choose tasks with greatest height first. Then schedule

T U Q' into a unit block.

(5). Let B=Bi.

(6). Scheduling of B.

Case 1. If IBI ≥ 3 then wrap all tasks in B into a block without waste as in (4)

case 1.

Case 2. If IBI <3, then look at the set = {a E PIh(a) = 0}—B. If IQl ≤

3— IBI, then schedule BUQ into a unit block. If IQI > 3— IBI, then we choose subset

Q' C Q from Q with IQ'I = 3— IBl and 1(a) ≥ 1(b) for any a E Q',b E Q -

we choose tasks with greater level first. Then we schedule B U Q' into first unit block.

(7) Now delete all tasks from P which have been assigned in stage (4) and (6), then

relabel P by levels and heights.

84

(8) Suppose we have scheduled Tm, Bm and 2m < H.

Let Tm+i = {a E P11(a) = 0, h(a) = H - 2m - 1}.

Let T = Tm+i, do (4).

If all tasks in P have been scheduled, go to (11)-

(9). Let Bm+1{aEPIh(a)0,l(a)H2ml}.

Let B=Bm+i, do (6).

If all tasks in P have been scheduled, go to (11).

(10). Replace in by in + 1, go to (7).

(11). Terminate the program. Now the schedule is constructed as B1 ED B2 EB... ED

T2EBT1.

For the K-structure given in figure 8.1.1, the schedule given by Algorithm 8.3.1

appears in fig 8.3.1 below:

a b c e f g h

4fj78 9

16

fig 8.3.1

Properties of Algorithm 8.3.1:

From the definition of the K-structure, we know that if a poset P is a K-structure

then there exists a maximum chain GYp in P such that for any a E P and any maximal

chain C containing a, c fl Cp 0.

Let S be the schedule of P produced by Algorithm 8.3.1. For any a E P, recall

that a(a) is used to denote the starting time of a in a schedule S of P; r(a) is the

85

completion time of a in S. So for any a E P, r(a) - o(a) ≥ 1. Let 151 = t.

Observation 1. The backbone Cp is scheduled into unit blocks in S produced by

Algorithm 8.3.1, i.e. 'r(c) - o(c) = 1 for each a E Cp.

Observation 2. If there exists an idle interval (i.e. waste) [i, i] C [0, t] in 5, then

there must be a unique c e Cp such that [i, j] g [a(c), r(c)] and r(c) - o(c) = 1.

Algorithm 8.3.1 appears to produce an optimal schedule S of the K-structure P.

We provide a brief discussion regarding the nature of schedules produced by

Algorithm 8.3.1 as follows.

Suppose S is the schedule produced by Algorithm 8.3.1 for K-structure P, where

the height of P is n. If there are no waste intervals in 5, by Corollary 1.3.1, S is op-

timal. Suppose B1 is the first block which contains a waste interval. By Observation

2 above, B1 must be a unit block in which a task, say c, in Cp is scheduled. Suppose

Li contains the only waste interval in S. Let c1 <c2 < ... <c2_1 <c2 < ... <c,,

be the "backbone" (i.e. Cp) of the K-structure P. Let S(P) = (P*, ≤*) be the

order extension of P induced from schedule S. Let A = {a E P*Ia < c} and

B = {a E P*Ia > c}. Obviously, S : A and S : B are both optimal by Corollary

1.3.1., and {ci,. . . , c2_1} C A and {c+i,... , c,} C B. Suppose 5' is an optimal

schedule of P. Let o(c) = s and r(c) = t. If IS'I < 181, then 5' contains less waste

than S. The only choice is to schedule some portions of tasks in A U B together

with c, and at the same time shorten the intervals [0, cr(c)] and [r(c), 181]. But

or(C) ≥ i — i and ISI - r(c) ≥ n - i. The only chance to shorten [0, o(c)] in S occurs

when we wrap more than three tasks into a block, for example a, b, c, d and c € CF.

And at this time any tasks, say a, in this wrapped block will have the same level or

86

height with some task c in Cp. And by Lemma 8.1.2, Pa and pa are each a tree or

a dual tree. So any shifting of these tasks(if we try to schedule some tasks with c)

in [0, cr(c)] may cause the height of the order in P: [r(c), ISI] of P" become bigger.

Similarly, any shift of these tasks(trying to schedule some tasks with c) may cause

the height of poset on [0, o(c)] prolonged. Hence the length of S' may be prolonged.

8.4 Directions for Further Research

Each K-structure is a loop-free poset with a special maximum chain(backbone)

Cp. We have investigated the relation between K-structures and trees. This relation

provides an idea for an algorithm to schedule the K-structures. There is also a

common feather imbeded in both loop-free structures and K-structures, that is: given

any task c E P where (P, :5) is a loop-free or K-structure poset, then Q = {a E

Pla ≤ c} is a tree(dual tree), and Q' = {a E Pla ≥ c} is also a tree(dual tree).

This commonality between K-structures and loop-free posets suggests a possible

extension of the algorithm to rn-machine preemptive scheduling for loop-free' posets.

The optimality for Algorithm 8.3.1 for K-structures, and an investigation of a similar

approach to loop-free posets are directions for further research.

87

Bibliography

[1] K. R. Baker(1974), Introduction to Sequencing and Scheduling, John

Wiley & Sons, Inc.

[2] Jacek Blazewicz(1987), Selected Topics in Scheduling Theory, Annals of Discrete

Math. 31 p1-60.

[3] E.G. Coffman, Jr(1976), Computer and Job-shop Scheduling Theory,

John Wiley & Sons, Inc.

[4] E.G. Coffman Jr. and R.L. Grham(172),Optimal Scheduling for Two Processor

Systems, Acta Informatica, 1(3), p200-213.

[5] S.A. Cook(1971), The Complexity of Theorem-proving Procedures, Proc. 3rd

Annual ACM Symp., Theory of Computing, p151-158.

[6] R. P. Dilworth(1950), A Decomposition Theorem for Partially ordered Sets, Ann.

of Math. 51, p161-166.

[7] D. Duffus, I, Rival and P. Winkler(1982) Minimizing Setups for Cycle-free Or-

dered Sets, Proc. Amer. Math. Soc. 85, p509-513.

[8] J. Edmond(1965), Paths, Trees, and Flowers, Canad. J. Math. 17, p449-467.

[9] M.L. Fisher(1982), Worst-case Analysis of Heuristic Algorithms for Scheduling

and Packing, M.A.H. Dempster et al(eds.) Deterministic and Stochastic

Scheduling, p15-34. D. Reidel Publishing Co.

88

[10] M. Fujii, T. Kasami, and K. Ninomiya(1969) Optimal Sequencing of Two Equiv-

alent Processors, SIAM Journal on Appi. Math. 17(3), p784-789

[11] M.R. Garey and D.S. Johnson(1979), Computers and Intractability: a

Guide to the Theory of NP-completeness, Freeman, San Francisco.

[12] L.G. Hacijan(1979), A polynomial Algorithm in Linear Programming, Soviet

Math. Dokl. 20(1), p191-194.

[13] T.C. Hu(1961), Paralle Sequencing and Assembly Line Problems, Operations

Research 9, p841-848.

[14] J.R. Jackson(1955), Scheduling a Production Line to Minimize MaximumTardi-

ness, Research Report No. 43, Management Sciences Reserach Project, U.C.L.A.

[15] R.M. Karp(1972), Reducibility Among Combinatorial Problems, Complexity

of Computer Computation, R.E. Miller and J.W. Thatcher(eds.), p85-104.

Plenum Press.

[16] E.L. Lawler(1982), Preemptive Scheduling of Precedence Constrained Jobs

on Parallel Machines, M.A.H. Dempster et al. (eds.), Deterministic and

Stochastic Scheduling, p101-123. D. Reidel Publishing Co.

[17] E.L. Lawler (1973),Optimal Sequencing of a Single Machine Subject to Prece-

dence Constraints, Management Science, 19, p544-546.

[18] E.L. Lawler and J.K. Lenstra(1982), Machine Scheduling with Precedence Con-

straints, I. Rival(ed.), Ordered Sets, p655-675.

89

[19] R. McNaughton(1959), Scheduling with Deadlines and Loss Functions, Manage-

ment Science, 6(1).

[20] R.R. Muntz and E.G. Coffman, Jr(1969), Preemptive Scheduling of Real-time

Tasks on Multiprocessor Systems, Journal of the Association for Computing

Machinery, 17(2) , p324-338.

[21] C.H. Papadimitriou and M Yannakakis(1979), Scheduling Interval-ordered

Tasks, SIAM J. Computing, 8(3), p405-409.

[22] W. Poguntke(1986), Order Theoretic Aspects of Scheduling, AMS Contemp.

Math. 57, p1-32.

[23] N.W. Sauer and M.G. Stone(1990), A Normal Form for Preemptive Three Ma-

chine Scheduling, Proceedings, 2nd International Workshop on Proj. Manage-

ment and Scheduling, p92-94.

[24] N.W. Sauer and M.G. Stone(1989) Preemptive Scheduling, I. Rival(ed.), Algo.-

rithms and Order, p307-323, by Kluwer Academic Pub.

[25] N.W. Sauer and M.G. Stone(1989), Preemptive Scheduling of Interval Orders is

Polynomial, Order 5, p345-348.

[26] N.W. Sauer and M.G. Stone (1987),Rational Preemptive Scheduling, Order 4,

p195-206.

[27] J.D. Ullman(1975), NP-complete Scheduling Problems, J. Comput. Syst. Sci. 10,

p384-393.

90

[28] J.D. Ullman(1973), Polynomial Complete Scheduling Problems, Operating Sys-

tems Review, 7(4), p96-101.

