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Abstract 

A program has been developed for the dynamic simulation 

of large scale chemical processes. The simulator has a 

highly modular structure and an explicit integration routine 

which is capable of handling large systems of stiff ordinary 

differential equations. The use of an explicit method 

reduces computer storage requirements and greatly simplifies 

the writing of new modules. 

Unit subroutines have been written which are capable of 

describing multicomponent distillation columns without 

resorting to,, conventional thermodynamic equilibrium calcula-

tions. The absence of these iterative routines reduces com-

putation time and allows tray efficiencies to be handled in 

a more natural manner than is possible with Murphree effi-

ciencies. The program also includes an advanced thermo-

dynamic property package based on the Peng Robinson equation 

of state. 

An industrial process consisting of two distillation 

columns with a total of seventy-five mass transfer stages, 

has been successfully simulates and the computed results 

have been compared with dynamic data collected from plant 

tests. 
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A constant (used in Chapter 6 as area) 

Ax crossectional area 
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B constant 

c constant 

Cp heat capacity 

d constant 

D diameter 

E energy 

Em Murphree tray efficiency 

f partial molar fugacity 

h time step 

H enthalpy 

h ow height of liquid over the weir 

h weir height of the weir 

HTC hydrauic time constant 

I property package input vector 

J Jacobian matrix 

k constant 

constant (used in Chapter 6 as 

a mass transfer coefficient) 

K1 integral controller constant 

K proportional controller constant 

L molar 1iquid flow 



m constant 

IA  bubbles per unit time 

N moles 

nc number of components 

0 property package output vector 

P absolute pressure 

absolute critical pressure 

Q heat flow 

R ideal gas constant 

S Richard Lanning Torrey method correction factor 

t time 
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t c overall bubble time constant 

v number of derivative evaluations 

V volume 
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W weighting factor 

x liquid mole fraction 

y dependent variable 
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e angle between derivative vectors 
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p molar density 



constant used in approximation of fugacity 

Subscripts and Superscripts 

i index (used in Chapters 5 and 6 to 

denote component number) 

j index 

L liquid 

M denotes Modified Euler terms 

n index (used to denote time level in Chapter 3 

and tray number in Chapter 6) 

P bubble 

o initial condition 

' time derivative 

* ideal state 



CHAPTER 1 

1.1 Introduction 

In recent years increased environmental consciousness 

and rapidly rising energy costs have resulted in a dramatic 

increase in the use of sophisticated control systems in the 

fluid processing industry. These complex systems can be 

difficult and costly to design and tune, especially when the 

dynamic behaviour of the process to be controlled is not 

well understood. Researchers have addressed themselves to 

this problem by developing a wide variety of dynamic simula-

tion methods for fluid processes. 

1.2 Dynamic Simulation 

For the purposes of this thesis, dynamic simulation 

shall refer to the modelling of time varying physical 

processes. This involves the numerical integration of a 

system of differential equations: 

t 
Y = f(y,t) d  

t 
0 



A dynamic process simulator is a computer program which 

provides the framework and the numerical routines necessary 

to solve systems such as equation 1.1. Equation oriented 

simulators require that the entire system of algebraic and 

differential equations be provided in the program data set 

(Table 1.1). Modular simulators contain libraries of small 

specialized models which can be called and interconnected by 

means of the input data to form the desired overall system. 

A chemical engineering simulator would typically contain 

library routines for heat exchangers, tanks, reactors and 

other unit processes which could be assembled by the user to 

form a simulation of an entire plant. This thesis deals 

with the use of this type of simulator in the study of 

hydrocarbon distillation. 

1.3 Project Rationale and Scope 

The relatively primitive methods that have been used in 

dynamic simulators to evaluate thermodynamic properties, 

mist surely have a detrimental effect on their results. 

This is particularly true for those processes which involve 

mass transfer. The light hydrocarbon industry is fortunate 

to have at its disposal, modern equations of state which 

very accurately predict multicomponent properties over all 

ranges of industrial interest. These property calculations 

have already been implemented in steady state programs 
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(Shah,1975), so it seemed to be a natural step to test their 

feasibility in a dynamic simulation program. 

The initial work was done using the DYNSYS 2.0 simula-

tion program and conventional distillation models, but the 

complexity of the property calculations and the size of the 

simulation necessary to simulate a full scale industrial 

problem made this approach untenable. 

In succeeding phases of the work the DYNSYS 2.0 program 

was modified radically, new integration routines were intro-

duced and a novel concept for distillation modelling was 

developed. The final phase of the work involved comparing 

the model to results taken from tests at an industrial 

plant. 



CHAPTER 2 

2.1 Modular Dynamic Simulation 

Since the late sixties a large number of modular 

dynamic simulators have been developed for use in the fluid 

processing industry. A list of the more well known of these 

would include: 

DYFLO - (Franks,1972) 

DYNSYS 2.0 - (Barney,1975) 

OSt3SIM - (Koenig, 1972) 

REMUS - (Ham,1971) 

PRODYC - (Inge1s,1970) 

The first two of these had by far the greatest impact on 

this project and while the others all have their own unique 

features (for instance PRODYC is written as a subset of the 

equation oriented simulation language, CSMP, and OSUSIM 

makes elaborate provisions for the solution of the steady 

state case and implicit recycle loops) they are all at least 

similiar in concept to DYNSYS. For this reason only DYFLO 

and DYNSYS will be discussed in detail. 



2.2 DYFLO 

This package consists of a collection of FORTRAN sub-

routines which provide the user with various process models, 

fluid property calculations, numerical integration methods 

and simple output routines. The user must write his own 

input and executive programs which call library routines in 

the appropriate order and with the appropriate arguments to 

create the simulation. This is in distinct contrast to 

other simulators which use fairly elaborate executive rou-

tines to read the input data and from that construct the 

calling sequence for the modules. 

DYFLO communicates between routines principally by 

means of references to common block variables. The main 

process variable is the stream matrix, STRM(I,J), where each 

I represents a different stream of material and information 

flowing between process units. Typically a stream would 

have compositions, temperature, pressure and perhaps 

enthalpy stored as its J variables. When a process subrou-

tine is called its header list contains the identification 

numbers of the streams flowing in and out of it, as well as 

any unit parameters such as vessel capacity, which might be 

needed. It is this stream and node concept which allows 

large simulations to be easily constructed from elementary 

models. It is a fundamental concept which appears in one 
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form or another in all modular simulators. 

DYFLO only offers first, second and fourth order Runge 

Kutta integration methods and all of these have fixed time 

steps and no error estimates. The simplicity of these 

integration methods allows modules to be written in a very 

straightforward manner. The basic integration operation 

only requires the statement: 

CALL INT(X,DX) 

where DX is the calculated derivative and X is the solution 

value returned. A second routine INTl is called from the 

executive after all the derivative evaluations for a single 

time step have taken place, that is after all calls to INT 

have been completed. INTl must also be called at the begin-

ing of the integration to establish the range of integra-

tion, the step size, the order of the integration and other 

such parameters. A flag is passed to the modules to indi-

cate the first pass, which is done without integration to 

allow initialization of variables. An interesting feature 

of this integration routine is that it can be used indepen-

dently of the rest of the simulator. 



Although the primitive DYFLO system might not seem as 

desirable as the more elaborate programs available, this 

author can attest to the value of its great flexibility and 

simplicity. The flexibility stems from its very lack of a 

rigid executive and from the relatively independent manner 

in which its routines may be used. In as much as possible 

Franks has attempted to allow routines or groups of routines 

to be used independently of the rest of the package. As a 

result any engineer familiar with FORTRAN would have little 

difficulty in performing a simulation with DYFLO since there 

are few rules to remember other than basic FORTRAN. 

is often the case, the user wishes to create his own 

modules, the explicit integration routines permit the 

modules to be written in a simple and brief manner. 

If, as 

A disadvantage of the method is that for even small 

changes in the process, it is usually necessary to change 

some of the code and recompile the program. Perhaps a more 

serious difficulty is the inability of its unsophisticated 

integration methods to cope with the stiff differential sys-

tems which will be discussed in Chapter 3. 

7 



2.3 DYNSYS 2.0 

DYNSYS was first introduced in 1970 by A.I. Johnson and 

associates at the University of Western Ontario. In 1975 

Barney incorporated the sophisticated Gears integration 

package for stiff systems into the program and appended the 

2.0 suffix to the name. Since that time it has been used in 

several research projects (Millares,1975; Pulido,1975; 

Hui,1977) with varying degrees of success. 

Unlike DYFLO, the DYNSYS simulator has a sophisticated 

executive routine which controls the reading of data, the 

program flow and the printing of results. This requires a 

slightly more complex data structure to allow for the 

storage of the plant configuration and the necessary equip-

ment parameters (Figure 2.1). The S(K,I,J) matrix is simi-

liar to DYFLOs STRM matrix but it has another dimension to 

allow the stream variable from the previous time step to be 

stored. This is necessary to accomodate the predictor-

corrector integration methods that DYNSYS uses. The plant 

structure is stored in the HP (Module Parameter) matrix. 

Each row of the matrix contains a unit identification 

number, a unit type number and a list of the streams flowing 

in and out of the unit. DYNSYS uses the convention that 

negative stream numbers indicate outfiowing streams. The 

last parameter is an index to a block of extra storage, 
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EX(I), which can be used by those modules which require 

large amounts of input. The EP (Equipment Parameter) matrix 

is used to store input information such as vessel capacities 

or heat transfer coefficients that might be required in the 

module calculations. 

During execution the program marches down the MP matrix 

row by row calling the routines designated by the type 

number. A parameter indicating which row of the MP and EP 

matrices to reference, is passed to the module by means of a 

common block so that the same routine may be called several 

times per time step in different contexts. 

The 2.0 version of DYNSYS used the Gears technique for 

its numerical integration. While this has proved to be a 

powerful tool for the solution of stiff systems of differen-

tial equations, it complicates module writing and makes 

debugging difficult. The suitability of this technique for 

modular simulators is discussed further in the next chapter. 

2.4 CRITERIA FOR A DYNAMIC SIMULATOR 

When in the course of the project it became clear that 

DYNSYS would have to be extensively modified, it was decided 

to set forth certain criteria which would form a basis for 

evaluating the merits of proposed changes to the program: 

9 



1) In accordance with the nature of chemical plant 

simulations, the program must be able to handle large 

and possibly stiff systems efficiently. 

2) In as much as possible the modular approach should 

be carried over into the executive. It should be rela-

tively easy for the user to replace any routine with 

his own version to suit a particular circumstance. 

Input and output routines are particularly good exam-

ples of where this is desirable. 

3) In the same spirit as above, all variables included 

in a common block should have some common purpose (i.e. 

all property values should be in "property" common 

blocks) . This reduces the number of common blocks that 

individual routines need to reference. 

4) Most applications of a dynamic simulator require 

the creation of at least some specialized modules. It 

is therefore important that new modules can be written 

and debugged in a straightforward and easy manner. 

Only a elementary knowledge of numerical methods should 

be necessary. 

5) Modules should represent relatively elementary 
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processes. For instance, in the distillation problem 

which concerns this study, modules which represent 

individual trays rather than entire columns make better 

use of the advantages of the modular approach. 

How closely these criteria can be met depends to large 

degree on the requirements of the numerical integration rou-

tine. Therefore discussion of the program structure will be 

deferred until numerical integration has been considered. 



CHAPTER 3 

The Numerical solution of Differential Equations 

This discussion will be limited to the solution of 

first order ordinary nonlinear differential equations which 

have defined initial values. Partial differential equations 

which arise from process simulations are usually transformed 

into nonlinear ordinary differential equations by finite 

difference approximations. Higher order equations may 

always be rewritten as a system of first order equations and 

boundary value problems require special iterative methods 

which will not be considered. Despite these limitations the 

subject remains too broad to be covered in any depth in this 

thesis, so only a brief review of terms and a consideration 

of the special problems of stiff systems and the methods for 

dealing with them will be given. 

3.1 Single Step Methods 

These methods do not require any information prior to 

(t,y) to calculate y. The general single step equation is 

(Barney, 1975) 

V 

n+l = y + - W.K. 
1]. 

i=l 
(3.1) 

where 
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i-i 
K. = hf(t + c.h, y + . d. .K.) 
1 fl 1 fl  j= 1 1J J 

When v, the number of derivative evaluations, is equal 

to one, equation 3.1 reduces to the simple Euler method: 

n+i 'n + hf(t,y) 

This is also the simplest method in the widely used family 

of Runge Kutta techniques. Typical of the higher order 

methods of this type is the fourth order Runge Kutta: 

where 

K 1 + 2K 2 + 2K 3 + K4 
Yn+1Y n +  6 

K1 = hf(t,y) 

K 
K = hf(t + y + 
2 n 

K 

K = hf(t + 'n + 3 n 

(3.2) 

(3.3) 

K4 = hf(tn + h, y + K3) 

3.2 Multi Step Methods 

These methods require information from points preceding 

(t n ,y n ) in order to calculate Usually this informa-

tion is used to generate the coefficients for an interpolat-

ing polynomial which is used in approximating the next 

point. The general forrilula is (Burden,1978): 
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k k 
= - a1y 1 . + h . B.f(t 

1 n+l-i ' 
1=1 i=O 

where a. and B. are constants. 

(3.4) 

A minor disadvantage of multi step methods is that they 

are not self starting, and therefore require auxiliary 

methods to generate the first n+l-k points. 

3.3 Implicit and Explicit Methods 

When the value of B0 in equation 3.4 is not equal to 

zero Y+. appears on both sides of the equation and in gen-

eral can only be solved for iteratively. Such methods are 

termed implicit while methods which allow y to be deter-

mined directly from previously calculated values are called 

explicit. 

When implicit systems of equations must be solved some 

variation of the Newton Raphson iterative technique is fre-

quently used. Although this usually results in rapid con-

vergence, it requires that the Jacobian matrix of partial 

differentials be calculated. For example the three equation 



system: 

y_1 = 

y••2 = 

y_3 = 

has as its Jacobian matrix: 

i i i 

2 

f3 f3 f3 

(3.5) 

(3.6) 

In large and complex systems evaluating this Jacobian 

can be a formidable task. 

3.4 Predictor-Corrector Methods 

Implicit methods require some estimate of the 

values before their formulas can be applied. Normally an 

explicit formula is used to predict y while the implicit 

formula is used to correct this estimate; hence the name 

predictor-corrector. The number of corrector iterations 

depends on the method being used and the properties of the 

system to be solved. In simple systems it is common to take 
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only a single corrector pass, while in systems that tend to 

be unstable the corrector may be iterated on until it con-

verges to within some error tolerance. 

3.5 Accuracy 

Virtually all numerical integration techniques are 

based either directly or indirectly on a Taylors series 

expansion: 

f 1 (t ° ) (t-t 2 

o o o 2 
f(t) = f(t ) + f'(t )(t-t ) + ° + 

f(t) (t-t0 )' 
+   + R (t) 

n! n 
(3.7) 

where R(t) represents the error which is incurred by trun-

cating the n+l terms. A numerical integration technique is 

said to be nth order if in a single step from to to t it 

generates a truncation error no larger than a nth order Tay-

lor series would. (i.e. no larger than Rn(t)) Since this 

error is generated in a single time step it is called the 

local truncation error (L.T.E.), while the overall deviation 

from the true solution is called the global truncation error 

(G.T.E.). The global error is usually very difficult or 

impossible to numerically estimate, but for many types of 

integration methods the local truncation error is roughly 

proportional to huh1 where n is the order of the integra-

- 16 - 



tion. This suggests that even the simple Euler's method 

could provide any desired accuracy if a small enough time 

step could be used. Unfortunately the use of very small 

time steps can result in round off errors during computa-

tions, but this is not a common problem in chemical 

engineering applications. 

The strong dependence of error on integration order 

usually allows higher order methods to use much larger time 

steps; so much larger in fact that for many applications the 

higher order techniques are much more efficient than low 

order methods despite the jreater amount of computation 

needed on each step. 

3.5 Variable Step Sizes 

If a simulation is to be useful there must be some 

method of controlling the error. The simplest approach is 

to perform the entire simulation with a fixed time step and 

thei re)eat it with the step size hlve1. If the user feels 

that the res11t3 for the two runs are significantly dif-

ferent, the step size is reduced and the procedure repeated. 



Franks (1972) makes a strong argument for the utility 

of this method in engineering calculations. He claims that 

it is more practical to have an engineer exercise his judge-

ment about what constitutes an acceptable error than to 

attempt to quantify this criteria in a program. He presents 

Figure 3.1 as an interesting example of where human judge-

ment may be preferred to machine error control. 

Despite the merits of this argument, the procedure is 

tedious since in complex simulations considerable time is 

spent comparing results and making repetitive runs. There-

fore most advanced integration techniques have built in 

methods of estimating the local truncation error at each 

time step. If this error exceeds some absolute or relative 

maximum, the step size is reduced and the step is repeated. 

Besides convenience, automatic error control has the advan-

tage of only taking small time steps when needed, rather 

than using the smallest necessary time step for the entire 

simulation. 

3.6 Stiffness and Stability 

A stiff differential equation is one which has an exact 

solution which contains a function of the form eat. When 

"a" is large and negative the exponential part of the func-

tion decays rapidly to zero and as a result the numerical 
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integration method must use a very small time step in order 

to follow the solution. Consider the simplest stiff equa-

tion: 

= ay 

y(0) = b 

Using Eulers method to integrate this results in the 

difference equation: 

so that 

yi+l = y + hy. 

= (1 + ha)y. 

Ym = b(l + ha )m 

(3.8) 

(3.9) 

(3.10) 

When the sign of a is negative and the magnitude of h is 

much smaller than 11/a l, the ym values will closely approxi-

mate the true solution: 

Y = ))(eat 

(3.11) 

As the step size h is increased the accuracy of the approxi-

mation will decrease until h = 11/al is used and all result-

ing y will equal zero at times greater than zero. At 

larger values of h the sign of y will change on each step, 

but as long as h is less than I2aI the solution y will 
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decay to zero at large values of m. If however h is larger 

than 2a the magnitude of y will grow exponentially while 

its sign continues to oscillate on each step. 

If equation 3.8 was the only component in the system 

being integrated, its stiffness would cause no problem, 

since the very small step size required to approximate the 

curve accurately would be balanced by the very small range 

of integration necessary to follow the solution to steady 

state. However systems having more than one exponential 

term in their solutions can create difficulties when they 

have time constants with considerably different values. 

Even if the accuracy of the components with the small time 

constants is not important, the step size must be kept small 

enough to prevent errors in the approximation of these com-

ponents from growing so large that they dominate the solu-

tion. Unfortunately the range of integration is usually 

determined by the components with large time constants since 

these require the longest time to approach steady state. 

The result is that a great many time steps are required to 

integrate the function and this of course requires excessive 

computer time. It is usually this situation which is 

referred to when the term "stiff system" is used. 



It may be of benefit to consider a simple example which 

illustrates how stiffness can arise in process systems. The 

holdup of the two tanks depicted in Figure 3.2 can be 

described by the following differential equations: 

dv i 

dt = F1 - F2 

= F1 - K 1 h 1 

K1V1 

=F1 Ax  

dV K 1 V K 2 V 2 

- Ax 1 Ax  

Let us assume the following initial values: 

V1 = 900 

K1 = 1000 

Ax  = 1000 

V2 = 1 

K2 = 1000 

Ax  = 1 

F1 = 1000 

Then 

- 21 - 



dt = 100 

dV 2 

If an Euler step of 0.1 was used, then after the first step: 

t=0.l, V=9l0 and V2=-9. In order to avoid such physically 

unreasonable results a step size of about 0.001 would be 

required, but then V1 would creep towards its final value 

very slowly. It is very possible that the rapidly varying 

volume of the small tank is of little interest in the 

overall simulation. It could for instance simply represent 

a vertical section of pipe in the line leading away from the 

large tank. In this simple case a solution would simply be 

to use a less detailed model which did not contain the 

second tank. 

A somewhat less drastic approach is to assume that 

since the small tank approaches equilibrium rapidly, it may 

be considered to always be effectively at steady state. 

Equation 3.13 then reduces to 

0 - K1V1 K 2 V 2 

Ax 1 Ax  

K1Ax 2 

- K2Ax1 l 

(3.14) 

This approach, termed the pseudo steady state method, is 
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very effective but it can generate incorrect results unless 

it is used with considerable care. 

3.7 Stiff Integration Techniques 

Over the last dozen years there has been a great proli-

feration of integration methods intended for use with stiff 

systems. These techniques have varied considerably in their 

effectiveness, practicality and flexibility. Many methods 

work well under certain circumstances but are inefficient or 

fail in other cases. As a result there has not been, to 

this authors knowledge, a comprehensive testing of a wide 

variety of stiff integration techniques over a broad range 

of conditions. In particular, no testing has been reported 

on large ( >100 differential equations) stiff systems. How-

ever there have been several smaller testing programs and in 

the face of the great variety of techniques available, it 

has been necessary to limit consideration to those tech-

niques included in these surveys. In view of the rapid 

advances in this field, only those comparisons done since 

1970 have been considered. 



3.7.1 Testing of Stiff Techniques 

3.7.1.1 Seinfeld, Lapidus and Hwang (1970) 

Lapidus and Seinfeld (1971) 

Tests were done on four systems having from one to 

three differential equations and ranging from moderately to 

very stiff. Their conclusions were: 

i) 4th Order Runge Kutta 

Adams Predictor-Corrector 

These methods were very accurate but were inef-

ficient at handling stiff systems. 

ii) Midpoint Method 

This performed poorly. 

iii) Treanor's Method (Treanor, 1966) 

This stiff explicit method was usually, but not 

always, faster than the Runge Kutta routine. 

They felt it was only suitable for systems that 

had diagonally dominant Jacobians. 

iv) Trapezoidal Rule 

Calahans Method (Calahan, 1968) 

Liniger Willoughby Methods (Liniger, 1967) 

These implicit methods were found to be superior 
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to the explicit methods in both efficiency and 

accuracy. The two methods by Liniger and Wil-

loughby were preferred for very stiff systems. 

A trapezoidal rule with extrapolation was also 

tested but was found to be very inefficient. 

3.7.1.2 Brandon (1974) 

Brandon compared his own method with the methods tested 

by Lapidus and Seinfeld and found his method to be superior. 

He used two test exam2les. 

3.7.1.3 Hronsky and Martens (1973) 

Five tests were conducted on systems having from two to 

seven differential equations. Their results: 

i) Runge Kutta Merson (Merson, 1957) 

This was their choice for nonstiff systems. 

ii) Runge Kutta Newton 

This was fast, but since it is a form of Llie 

steady state approach, it requires mani-

pulations of the original equations. 



iii) Treanors Method (Treanor, 1966) 

This was their choice for large stiff systems 

since it did not need large Jacobian matrices. 

iv) Liniger Willoughby (Liniger, 1967) 

This was their choice for small stiff systems 

where the Runge Kutta Newton method was not 

applicable. 

v) Backward Difference Formula (Brayton, 1972) 

r2llis is a modification of Gear's method by Bray-

ton. Hronsky and Martens found it to be reli-

able, but inefficient. 

3.7.1.4 Enright and Hull (1976) 

These authors have been active in the field of integra-

tion technique testing for several years and have developed 

quite elaborate testing procedures. In this most recent 

paper on stiff techniques, they tested three backward 

difference methods, the original Gear's routine DIFSUB 

(Gear, 1971), a revised Gear's routine GEAR.REV3 (Hindmarsh, 

1974), and EPISODE (Byrne, 1975), as well as a generalized 

Runge Kutta by Lawson (1972), the trapezoidal rule with 

extrapolation and a variable order second derivative mul-

tistep method called SDBASIC (Enright, 1974). 
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Only the backwards difference formulas and SDBASIC were 

considered to give acceptable performances. GEAR.REv3 was 

considered the best of these by a small margin, while 

SDBASIC was considerably slower than the others. Howeverit 

was better than backwards difference formulas at solving 

problems which have eigenvalues of the Jacobian matrix close 

to the imaginary axis. 

3.7.1.5 Barney (1975) 

In the course of performing his revisions to DYNSYS, 

Barney tested a wide variety of integration methods on 

eleven different problems. The results of his testing are 

reproduced in Table 3.1. The different variations on Gears 

routine resulted from implementing the basic method with 

various types of matrix solvers. 

The GEAR-TRGB combination appeared to be the best 

overall routine for the systems tested, but the explicit 

Richard Lanning Torrey method (Richards et al, 1966) per-

formed surprisingly well despite its tendency to give rather 

large errors in the small components. The Runge Kutta Her-

son method was clearly superior to all others in the limited 

testing of non-stiff systems (tests VIII - XI) 
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3.8 Integration Methods for Modular Simulators 

The tests reviewed in the previous section suggest that 

the implicit backwards difference integration methods such 

as the Gear routines, are the best choice for stiff systems. 

On this basis Barney chose to install the GEAR-TRGB package 

in the DYNSYS 2.0 simulator and was able to demonstrate its 

power on a number of problems. However it is this author's 

opinion that the rather special nature of modular simulation 

was not adequately reflected in either the surveys or in 

Barney 's choice of integration method. 

The key difficulty in using an implicit method such as 

Gears, is that it must be supplied with the system Jacobian 

matrix if it is to operate efficiently on stiff systems. In 

a modular simulator it is not possible to supply an analyti-

cal Jacobian for the entire system since the configuration 

of the problem is only established at execution time by the 

arrangement of the various modules. Numerical evaluation of 

the Jacobian would only be practical for very small systems. 

Barney attempted to circumvent this difficulty by con-

sidering each module as an independent system for the pur-

pose of corrector iteration. Unfortunately this scheme is 

only effective if stiff components do not arise from the 

interaction of modules. The simple tank problem mentioned 
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earlier could not be handled in this manner because the 

stiffness results from interactions between the tanks. 

Therefore the entire system would have to be written as a 

single module. This puts considerable limitations on the 

manner in which modules can be written. For the problem at 

hand it is desirable to construct the basic module as a mass 

transfer stage from which distillation, absorption and 

stripping columns of any configuration could be built. With 

DYNSYS 2.0 efficient operation could only be achieved if the 

entire tower, possibly including its control system, was 

written as a single module. Even when large self contained 

modules are written it is by no means obvious, especially to 

the casual user, when module interactions will occur which 

will lead to system stiffness and the resulting failure of 

the integration. The net result is a considerable loss in 

the inherent flexibility and simplicity of the modular sys-

tem. 

It is also of significance that the largest system used 

in the comparison of integration methods had only 33 ecjua-

tions. Very large systems can occur in process simulation 

(examples in this thesis will have over 550 ordinary non-

linear differential equations), so the relative performance 

of a method as the system size increases is of considerable 

importance. All the implicit routines have matrix calcula-
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tions whose overhead increases with the cube of the number 

of derivative evaluations. Since the overhead of explicit 

methods generally increases only linearly with system size, 

the performance of these techniques may improve relative to 

implicit methods in large simulations. However these gains 

may be offset by the great complexity of the derivative 

evaluations in process simulators which penalizes the small 

step size explicit methods much more than the implicit 

methods. 

An example of the type of difficulty that can be 

experienced can be found in the work of Pulido (1975) in 

which DYNSYS 2.0 was used to reproduce a simulation of a 

simple distillation which Franks (1972) used as an example 

for the DYFLO simulator. Pulido reported an execution time 

of 4 minutes and 48 seconds for this simulation while on 

runs by this author on the same type of machine (a CDC Cyber 

172) the DYFLO simulator required less than 15 seconds. 

While this ex.•.ile is not very stiff (it was not even neces-

sary to invoke Franks psuedo steady state assumptions), it 

does suggest that difficulties can be encountered with the 

DYNSYS 2.0 approach. It should be noted that in Pulido's 

work all the trays except the reboiler and condenser were 

represented by a single module. 
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The Gear system also makes the writing of modules con-

siderably more complex in DYNSYS 2.0 than it is in DYFLO. 

The DYNSYS user must make provisions for supplying the 

module Jacobian, for doing different calculations on the 

predictor and corrector passes and for identifying corrector 

convergence. While none of this is particularly difficult, 

it does add considerable opportunity for error which coupled 

with the vagueness of the integrator error messages makes 

debugging very difficult. The result has been comments by 

many users (Pulido, 1975; Hui, 1977; Bush, 1978) on the high 

levels of overhead involved in the creation of new modules. 

In light of these difficulties it was decided the use 

of Gears method was not suitable for the current project 

and that alternate techniques would have to be found. To 

aid in the selection of these techniques the following cri-

teria were established: 

1) The routine should be simple to use an1 if posi.bl' 

siuld achieve the simplicity and flexibility of the 

DYFLO system. 

2) There should be no requirement for Jacobian evalua-

tions. This essentially eliminates implicit methods. 
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3) Since process models themselves, by the nature of 

the assumptions made in their formulation, are not 

extremely accurate, there is little benefit to be 

gained from highly accurate integration routines. This 

suggests lower order routines are probably satisfactory 

for most process simulations. However simplicity of 

operation would be enhanced by a system which retains 

automatic step sizing. 

4) The method should be able to handle a wide variety 

of problems without failing. When a failure does occur 

sufficient information should be output to allow a 

module writer to determine where the roble lies. 

5) The program must run in a reasonable amount of time 

for the given problem. 

3.9 The Choice of Integration Methods 

Based on the above criteria the choice of a method for 

nonstiff systems was obvious. The Runge Kutta Merson had 

been clearly superior in the tests surveyed and it was sim-

ple to use and program. It was also one of the first Runge 

Kutta methods to incorporate an effective approximation of 

the local truncation error. The method is a fourth order 

Runge Kutta with a fifth step being taken to determine the 
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error. The difference equations describing it are: 

K1 = hf(t ' 

K 
K = hf(t + , + 
2 n 

K K2 

3 3 6 
K = hf(t + , y + + 

n n  

k 3K 
h 1 2 

K = hf(t + - 'n + + 
4 n 2 

K = hf(t + Ii , 'n + - 3K 3  + 2K4) 
5 n 

= yn + 

K1 + 41( 4 + 1\ 5 

6 

where the local truncation error is estimated from: 

L.T.E. = 

K1 - 4.5K 3 + 41( 4 - 0.51( 5 

15 

(3.15) 

(3.16) 

If the largest error is greater than the allowable 

error the step size is halved and the step is repeated. If 

the largest error is less than one tenth the allowable error 

the next step size is calculated from: 

h 1 
old allowable error 4 

hnew = 11 largest error 
(3.17) 



The selection of a stiff technique was not as obvious. 

The first choice was to simply use the psuedo steady state 

technique in a manner similiar to Franks. Although this 

appeared to work well, there has been criticism of the 

method (Emanuel, 1967; Koibrack, 1967; Snow, 1966) in which 

it has been pointed out that unless caution is used in mak-

ing the assumptions serious errors can result. Since these 

errors may not be immediately obvious to the user, there is 

a certain risk involved in the use of the method. Also the 

criterium of simplicity in module writing is violated since 

some "juggling" must be done to determine when a component 

is becoming stiff. 

The most promising alternative was the explicit Richard 

Lanning Torrey method (RLT) which had performed so well in 

Barney 's tests. However this had no direct way of control-

ling truncation error, and while the main components of the 

simulation always seemed to remain fairly accurate, there 

was a certain uneasiness associated with its use. Neverthe-

less it was decided to incorporate it into the simulator and 

attempt to add a truncation error control. 



The empirical observation that instability in numerical 

integration is accompanied by sudden reversals in the direc-

tion of the derivative vector, is used in the RLT technique 

to predict the onset of instability in a simple EulerTh 

method. This is done by simply taking the dot product of 

the current and last valid derivative vectors. The cosine 

of the angle between the two vectors is calculated from sim-

ple trigonometry: 

cos e = 
I I' n I I • I tf 1 I 

• 
n n+1 

(3.18) 

If this cosine is less than -1/8 the step is repeated with a 

new time step and solution vector calculated from: 

h =h xS 
new old 

new old 
y1 = 'n + S(y 1 - 

s= 

- 

n n+1 

Hf n+i - f' nit 
(3.19) 

When the stability criterion is met a simple Euler step is 

taken with a step size equal to: 

I I y I 
h = beta x 

I I -  I n 
(3.20) 

where the n subscripts indicate the new valid values (i.e. 
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the n+l values used in the stability calculation) Beta is a 

tunable parameter but 0.01 proved to be a satisfactory value 

for all the tests conducted. 

Since the method is essentially Eulers method, there 

was little difficulty in adding an error estimation algo-

rithm to it. The Euler method 

yn+1 = Y n + hf(t n 
(3.21) 

is first order correct and so can be assumed to generate 

second order errors. The second order Modified Euler 

method: 

M M M 
h[f(t , y ) + f(t n+i ' n + hf(t , 

= 'n +   2 
(3.22) 

only generates third order errors. The difference between 

the two methods will be approximately equal to the second 

order errors generated by the simple Euler method: 

err 14= 1 n+l - 

h[f(t , M) + f M (t , y +hf(t ' Y M n)H 
iy + M n n+l n n 

=  n 2 

Assuming 

- yn n - hf(t , I 
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then 

err - 

2 
(3.25) 

M 
yn = yn 

hlf(t n+l , y n + hf(t n , y n )) - f(t n 

(3.24) 

Since the first term inside the absolute value operator is 

simply the derivative resulting from the last Euler estimate 

and thus the derivative to be used in the next Euler calcu-

lation, no additional function evaluations are necessary to 

obtain the error estimates. More detailed discussions of 

Euler error estimates may be found in Burden et al (1978) on 

pages 249 through 251 and in Franks (1972) on pages 49 and 

50. 

The largest calculated error is used in the following 

equation to estimate a new step size: 

1 

h h 
error allowed 

= 
new old 2 x largest error 

(3.26) 

If the allowable error has been exceeded the step is 

repeated with this new step size, otherwise the minimum of 

this step size or the one predicted in equation 3.20 is used 

for the next step. If the stability criterion is not met 

the entire estimation is skipped. 



A failing of the original RLT algorithm was the exces-

sive execution times that resulted when a simulation 

approached steady state. The derivative vector would by 

definition become very small, until its value was mainly 

comprised of small random inaccuracies generated by the 

model calculations. As a result the direction of the 

derivative vector changed more or less randomly from step to 

step, which the routine perceived as the onset of instabil-

ity and so reduced step sizes accordingly. The solution to 

this problem was to simply ignore the stability calculation 

if the norm of the derivative vector was less than an arbi-

trary value calculated from 1/2 beta times the solution vec-

tor norm. For situations where this permits too much steady 

state noise the value of beta could be reduced. 

In addition to the RKM and RLT routines a simple Euler 

method was included for debugging purposes and in case it 

was required for use with a psuedo steady state approach. 

3.10 Implementation of the Integration Package 

In both DYFLO and DYNSYS the modules communicate with 

the integration methods by means of subroutine calls which 

pass the derivatives to the integrator and receive solutions 

by means of the header list. Even with the explicit DYFLO 

routines the placement of these call statements in the 
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module can be slightly confusing. Since the RLT routine 

cannot provide new estimates for the solution variables 

until all the derivative evaluations for the particular time 

step have been completed a more sensible and convenient 

method is to call the integration routine from the executive 

once per time step and let the modules communicate with it 

by means of a common block. In the new integration package 

the DIF common block was created to contain all the integra-

tion variables that a module would normally require access 

to. The variables are: 

JSTART - a flag which has a value of 0 on the first 

pass only. 

TIME the independent variable. 

H - the current step size. 

NDEQ - the number of differential equations 

already evaluated on the current time 

step. 

Y(600) - the solution vector array. 

DY(600) - the derivative vector array. 

A routine using the integration package would calculate 

the DY values from supplied values of 1, TIME and perhaps H. 

If more than one subroutine is calculating derivatives (as 

is the case in the process simulator) NDEQ is used as an 

index to the arrays. In any event, NDEQ is incremented by 
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the number of differential equations that the routine added 

to the system. The JSTART flag allows the routines to 

assign initial values to the Y vector on the first pass. 

A second common block, DIF2, contains the variables 

which the executive routine needs to control the integra-

tion: 

TMAX - finishing point for the integration. 

(default = 1.0) 

lEND - flag which is set to one when the integra-

tion is finished. 

(default = 0) 

ICC - when set to 0 this flag results in two 

derivative evaluations being done on each 

step before the integration is attempted. 

(default = 0) 

ICONV - flag set to 1 when integration step has 

failed and is being repeated with a 

smaller step size. 

(default = 0) 

IlMIN - the smallest allowable step size. 

(default = 10 - 10 

HMAX - the largest allowable step size. 

(default = 0.1) 

BETA - RLT tuning parameter. 
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(default = 0.01) 

EPS - largest allowable local truncation error. 

(default = 0.001; on an absolute basis) 

IORDER - selects integration method 

1 = Euler 

2 = RKM 

3= RLT 

(default = 3) 

TPR - this is the interval between outputs. At 

the begining of the run and at every 

interval TPR after that the integration 

routine calls a subroutine called OUTPUT. 

Step sizes are adjusted to achieve proper 

matching with the output times. 

MM - this is a counter which is used when the 

ICC flag is 0. It has a value of 1 on the 

first pass of the two pass series and a 

value of 0 on the second pass. 

A key requirement of the RLT routine is that the values 

of the derivative vector depend solely on the independent 

variable and the solution vector values. It is particularly 

important that the derivative values not be a function of 

previously attempted steps. This can occasionally cause 

problems with simulations where modules react counter-
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currently. 

Consider the two units in Figure 3.3. It may be 

assumed that all streams entering or leaving a module influ-

ence the calculation of that modules derivatives, and in 

addition that the integrated values of those derivatives 

affect the values of all streams leaving the module. Thus 

if module A is executed first, the values in the stream 

going from B to A will represent the values of the previous, 

perhaps invalid, integration step. With the ICC parameter 

set to 0 this problem is avoided since an extra pass is made 

to ensure all streams reflect the new solution vector 

values. If desired, some modules could use the IDIF value 

to skip the calculation of derivatives on the first pass and 

the interpretation of tte solution vector on the second. 

Although this approach is somewhat crude, it decreased run 

times on the stiff distillation problems studied in this 

project and eliminated the occasional failures of the 

integration routine caused by this problem. 

A similiar difficulty can arise with the numerical dif-

ferentiations in the calculations. Often the error produced 

by these calculations will increase significantly as the 

integration routine reduces the step size in order to 

achieve stability or error limits. In addition a discon-
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tinuity in the solution (such as introducing a step change 

to some variable) creates havoc with numerical derivatives. 

If possible numerical derivatives should be avoided, but 

when this is not possible they should be calculated with 

special filtering routines to minimize the problems they 

create. Despite these potential problems, no trouble was 

experienced in using the RLT routine on DYFLO simulations 

containing crude numerical differentiations. 

Since the error tolerance used in the integration pack-

age is an absolute error limit it is the users responsibiliy 

to scale the derivatives and solution vector variables 

appropriately. This usually consists of normalizing vari-

ables much larger than 1. This also has an effect on the 

RLT stability calculation since large elements will dominate 

the vector directions. 

Both the RKM and the RLT routines will stop with a mes-

sage should they be unable to achieve the desired tolerance 

at the minimum step size. With the RKiv1 method this could be 

indicative of instabilities induced by a stiff system, but 

with the small minimum time steps used with the RLT method 

it usually means there is an error in the problem formula-

tion or that some variable is improperly scaled. The RLT 

routine will also fail if it cannot meet its stability 
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requirements. This is invariably caused by the failure of 

the calculation to return the last valid set of derivatives 

as the step size is reduced. Except in the case of an 

extremely stiff system this indicates inconsistencies in the 

calculation. To aid in finding these problems the RLT rou-

tine prints out the derivative and solution vectors of the 

last valid step and the last (fatal) attempted step whenever 

it fails. 



CHAPTER 4 

4.1 Program Structure 

The integration routine discussed in the previous 

chapter permitted the developement of a generalized integra-

tion package which accepts the simulation problem in the 

form of specially named subroutines. Each of these subrou-

tines has an intended function which is relatively indepen-

dent of the rest of the simulation: 

DT A - an input and initialization routine which 

is executed only at the beginning of the 

simulation. 

EXEC - a derivative evaluation routine which cal-

culates the derivative vector as a func-

tion of the independent variable. 

OUTPUT - a printing routine which produces output 

at desired intervals of the independent 

variable. (This was discussed in chapter 

'3) 

SW-17? - this routine is called following each 

valid time step and is intended for the 

storage of variables for subsequent plot-

ting. 

END(ISW)- this routine is called at the end of the 

simulation and performs any final 
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processing required. If the ISW flag has 

its value changed from 0 the entire simu-

lation is repeated. 

Figure 4.1 illustrates the flow of the program through 

these routines. This structured approach makes the integra-

tion method and its effects on program flow completely tran-

sparent to the writer of a simulation, while still permit-

ting virtually all the flexibility that would be possible by 

writing an entire executive. As a result the integration 

package serves as a convenient basis for problems ranging 

from simple equation oriented simulations requiring only a 

few lines per subroutine, up to and including very large 

modular simulators. One benefit of this flexibility is that 

it is particularly easy to write DYFLO simulations in a form 

acceptable to the package. This is further simplified by a 

small library of utility routines which includes a routine 

to mimic the action of the DYFLO INT routine. Other library 

routines aid in plotting variables, solving implicit equa-

tions and taking numerical derivatives. 

4.2 The DYNSYS Process Segment 

When this segment is combined with the integration 

package that was just discussed, the result is effectively a 

modified DYNSYS simulator. Although reconfigured 
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extensively, the basic input, output and module calling rou-

tines as well as the primary data structure would be fami-

liar to a DYNSYS user. Although it is not feasible to dis-

cuss all the changes which were made the major modifications 

will be briefly reviewed. 

4.3 Data Structure 

The main process variables from DYNSYS 2.0 have been 

retained in a modified form in the common block MAT: 

IM - Module pointer 

number of the module currently being pro-

cessed. Same usage as in DYNSYS 2.0 

MP(100,10) - Module Parameter matrix 

row length was reduced to 10 since the 

emphasis on more elemental modules 

requires fewer streams per module. This 

also led to the dropping of the extra 

parameter array EX. 

- the convention of negative output stream 

numbers was dropped. 

- the first element in the row is now the 

type number and the second element is the 

unit number. 

EP(loo,10) - Equipment Parameter matrix 
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S(175,I4) - Stream matrix 

- the explicit integration routine does 

not require the retention of previous time 

step values so the third dimension has 

been dropped. 

- stream enthalpy is now stored in posi-

tion 6 of the stream vector. 

SIG(50) - SIGnal array 

- in the original DYNSYS a full stream 

vector was used to carry a single signal 

variable. To increase storage efficiency 

this signal array was created. 

In order to permit a large selection of components in 

the property package without greatly increasing the size of 

the stream matrix, the PROP common block was created. Its 

variables are: 

NCOMP - the number of components used in the 

current simulation. At the present time 

this is limited to a maximum of 8, but 

this can be changed with redimensioning. 

NCALL - a rarely used index to temporary storage 

in the property routine. (see chapter 5) 

NC? (8) - this is a list of the components to be 

used in the current simulation. Fifteen 
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different components are presently avail-

able in the property routine (Table 4.1) 

and additional components can easily be 

added. The first NCOMP elements of the 

NCP array represent the components whose 

mole fractions are stored in the stream 

vector positions 7 to 6 + NCOMP. 

The unit common block contains the parameters NE, NS 

and NSIG, which store the total number of units, streams and 

signal streams used in the simulation. The OUT common block 

stores a series of flags which specify the types of output 

to be generated. 

4.4 I/O Routines 

The I/O routines use the same style as the original 

DYNSYS, but permit free format inputs and have a number of 

features to aid in inputting the data and in controlling the 

appearance of the output. The most important new I/O 

feature is the restart capability. 



Whenever the simulation is completed the program 

creates a data file which contains sufficient information to 

allow the program to resume the simulation at that point in 

time. Since the restart file is designed to be read and 

modified by the user between runs, adjustments can be made 

to the simulation as it proceeds. It also provides a useful 

debugging tool since it is created following any failure of 

the integration routine, thereby providing an accurate 

snapshot of the state of the simulation when if failed. 

4.5 Module Writing 

Module writing is significantly simpler in the new pro-

gram than it was in DYNSYS 2.0. This is best illustrated by 

considering the coding of a simple module representing a 

proportional integral (P1) controller. The P1 control algo-

rithm can be written as: 

t 
output signal = K(err + K1 j err at) 

(4.1) 

where 

err = setpoint - measured value 

As in DYNSYS all modules have entry names of the form TYPEn 

where n is an integer. Thus the module might begin: 

SUBROUTINE TYPE1 
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COMMON /NAT/IM,MP (100,10) ,EP(loo,10), 

& ,S(175,14) , SIG (50) 

COMMON /DIF/ JSTART,TIME,NDEQ,Y(600),DY(600) 

where the common blocks MAT and DIF communicate with the 

rest of the simulator. Normally these would be the only 

common blocks that a module would need to reference. 

The MP array can be used to store the numbers of the 

input and output signal streams while the setpoint and the 

tuning parameters can be stored in the EP array. It is 

important to note that the first two positions of the MP 

array are reserved for unit identification. 

IN = MP(IM,3) 

lOUT = MP(IM,4) 

SETPT = EP(IM,l) 

XKD = EP(IM,2) 

XKI = EP(IM,3) 

The error can now be calculated: 

ERROR = SETPT - SIG(IN) 

If this is the first time step the initial value of the 

integrated variable must be set. On the first pass the 

parameter JSTART is equal to 0. Since the NDEQ parameter 

carries the value of the number of elements already used in 
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the solution array Y and the derivative array DY: 

IF(JSTART.EQ.0)Y(NDEQ+l)=(SIG(IoUT)/xKp-ERROR)/xKI 

The initial value was determined by rearranging equation 4.1 

and solving for the integral term. The new output signal 

can now be calculated from the integrated value of Y: 

SIG(IOUT)=XKP*(ERROR+XKI*Y(NDEQ+l)) 

and the new derivative value is calculated: 

DY (NDEQ+1)=ERR0R 

All that remains is to advance NDEQ by the number of equa-

tions added by the module: 

NDEQ=NDEQ+l 

RETURN 

END 

Some slight additions to this code might be necessary 

to properly scale the derivatives and solution values to 

agree with the desired error limits. Scaling of all such 

values to near unity is advisable for consistency between 

modules. 



CHAPTER 5 

5.1 The Thermodynamic Property Package 

It is common for chemical engineering process simula-

tors to calculate thermodynamic properties from polynomial 

expressions. This has the advantage of allowing the user to 

include any substance for which there is sufficient data to 

generate the necessary coefficients. Unfortunately the 

results often do not accurately represent the physical sys-

tem and this can result in serious difficulties with phase 

and reaction equilibrium calculations. 

The light hydrocarbon industry is fortunate to have 

accurate equations of state at its disposal. These equa-

tions of state are parametric correlations capable of 

describing the pressure, temperature and specific volume 

behaviour of both liquid and vapour mixtures containing any 

combinations of the components of interest. Relatively sim-

ple thermodynamic calculations (Balzhiser et al, 1972, ch. 

9) can be used with equations of state to predict mixture 

fugacity, enthalpy, entropy and heat capacity deviations 

from the ideal state. Since fugacities represent the chemi-

cal driving force for mass transfer and reaction processes, 

an equation of state can provide an accurate means of per-

forming equilibrium calculations. 

- 53 - 



In recent years the two parameter equation of state has 

achieved widespread acceptance in the light hydrocarbon 

industry. These equations are relatively simple to imple-

ment and in the case of the Soave Redlick Kwong (SRK) and 

the Peng Robinson (PR) equations, they are very accurate 

across a wide range of conditions. For this project the 

Peng Robinson equation was chosen because it appears to 

exhibit slightly better performance in difficult situations. 

(Peng, 1976; Bishnoi, 1978) Due to the structural similiar-

ity of the equations it would not be difficult to incor-

porate the SRK equation into, the package. 

The basic Peng Robinson equation is surprisingly simple 

considering its accuracy: 

RT 

V - b V(V + b) + b(V - b) 

where the parameters are: 

c( O.45724R 2T2 
a= 

c 

1 
T (1 + K (1 - (-) 2 ) 
c 

K = 0.37464 + 1.5422w - 0.2699w 2 
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b= 
O.0778RT 

C 

When multicomponent properties are being calculated, the 

mixture parameters are calculated from the pure component 

parameters with the following mixing rules: 

n n 
a= ≥ X.X.a.. 

i=l j=l 1 J :LJ 

1 

a.. = (1 - 6. .) (a.a.)2 

n 
b = i X. b. 

11 
i1 

(5.2) 

where 6 ij is a binary interaction coefficient characterizing 

the binary formed by component i and component j. 

where 

Equation 5.1 can be rewritten as: 

B)Z 2 + (A - 3B 2 - 2B)Z - (AB - B2 - B3) = 0 

(5.3) 

a  

R'T 

B bP 
RT 

Z 
RT 
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In practice it is usually simpler to perform the ther-

modynamic calculations in terms of the compressibility fac-

tor Z. When equation 5.3 is solved for Z and three positive 

real roots occur the largest root is chosen for a vapour 

mixture while the smallest is chosen for a liquid mixture. 

In all cases the middle root is ignored. 

This simulator only requires the calculation of fugaci-

ties, enthalpies, densities and heat capacities. The par-

tial molar fugacity of a component i in a mixture can be 

calculated from: (Balzhiser et al, 1972, p373) 

= - )dP 

(5.4) 

Since the Peng Robinson equation is pressure explicit it is 

useful to rearrange 5.4 with the help of Maxwell relations 

to: 

RT in(  - 4 - RT —IdV - RT in( j PvRT ) 

i V 1 (5.5) 

The partial derivatives can be evaluated using the Peng 

Robinson equation and then 5.5 can be integrated to yield: 

b. 
= -(Z - 1) - ln(Z - B) 
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2X .a.. 
j j1. b. 

A  j  1 Z+2.414B 
2.828B a b 1n(Z - O.4l4B 

(5.6) 

where the transformation to the Z variable was made to sim-

plify the final equation. 

In a similiar manner the thermodynamic equation: 

* 

H - H = RT(Z - 1) + J [T(—) - P]dv 
00 

can be transformed using the PR equation of state into: 

* Ta  +  2.4l4B --a 
11 dT   

- H = RT(Z - 1) + 2.828b ln( - O.4l4B 

(5.7) 

(5.8) 

Heat capacity deviations may be calculated from the tempera-

ture derivatives of the enthalpy expression. The ideal 

state enthalpies and heat capacities are calculated from 

correlations by Passut and Danner (1972) 

Since the properties discussed can be calculated expli-

citly, implementation was straight forward. Phase equili-

brium calculations present greater problems because these 

require the solution of a set of highly nonlinear implicit 

equations: 

= 

3. 
i = 1,2,3, 
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n 
- X. = 1 

i=l 1 

n 
- Y. = 1 

i=l 1 
(5.9) 

Routines based on a conventional iterative approach 

taken from Evelein (1977) were written for the package, but 

these proved to be too inefficient and unreliable for use in 

dynamic simulation. To overcome this problem a new approach 

was taken to distillation simulation which eliminated the 

need for phase equilibrium routines. This approach will be 

detailed in the next chapter. 

Although iterative property calculations are not neces-

sary, the explicit calculations are still quite involved and 

may be required literally hundreds of thousands of times in 

a large and complex simulation. In order to reduce the time 

spent in the calculation of these basic properties, a rou-

tine was developed which linearizes the properties with 

respect to their partial derivatives. If the input to the 

property can be represented by a vector I where: 

X.,T,P 
1 

and where the output vector can be represented by: 
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then it is possible to approximate 0 by 

(5.12) 

where 0' is the exact solution at I. 

Although the Jacobian of partial derivatives could be 

evaluated analytically, the potential savings in execution 

time were not considered to be worth the loss of generality 

and simplicity that was possible with numerical derivatives. 

The Jacobian is recalculated if the temperature changes by 

more than five degree Kelvin, the pressure changes by more 

than five percent or the following condition is not met 

X, - 

< 0.025 

(5.13) 

This eliminates Jacobian re-evaluations for large percentage 

changes in small components. If these limits are set too 

high there will be a significant difference in the returned 

properties from before and after the Jacobian evaluation. 

This can cause serious difficulties with the numerical 

integration routine since it introduces discontinuities into 

the simulation. If the tolerances are set too low, the con-

tinual re-evaluation of the Jacobians will be more expensive 

than just evaluating the properties directly each time. The 

tolerances chosen are arbitrary but have given good perfor-
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manc e. 

Because the Jacobians can require a substantial amount 

of storage provision was made for similiar streams to share 

Jacobians. When the NCALL parameter of the PROP common 

block has a value of 2 the values stored in the second posi-

tion of the stream vectors serve as indexes to the Jacobian 

storage. Streams with the same index would use the same 

Jacobian. Since an excessive numberof Jacobian evaluations 

will occur if the same Jacobian is used for streams which 

differ significantly this feature was not used in any of the 

simulations and should only be considered if core limita-

tions are a problem. 



CHAPTER 6 

6.1 Process Models 

During the course of this project a number of process 

models were developed for use with the modified simulator. 

(Table 6.1) No attempt will be made to discuss the simpler 

models which are based on well established principles, but 

the more unconventional approaches used in the distillation 

and heat transfer models will be discussed in detail. 

6.2 Distillation Simulation 

In this study distillation simulation is carried out by 

assembling various types of modules in a manner which 

approximates the physical situation. The most important of 

these modules is the counter current vapour-liquid mass 

transfer stage depicted in Figure 6.1. In all cases this 

module must determine the properties of the outgoing liquid 

and vapour streams, given the time dependent variables of 

the input stream and certain information about the charac-

teristics of the tray. 



The dynamic behavior of the stage is determined by the 

rates at which it accumulates material and energy. Assuming 

perfect mixing in both phases and the absense of chemical 

reactions, the mole balances can be written as: 

dN 
i,n 

i 
+ Y - LX. -'Y i . dt = L X +i ,n+i n-i ,n-1 n i,n n i,n 

The corresponding energy balance is: 

dE 
n L 

= L+i n+1 n-i n-i n n n n 

(6.1) 

(6.2) 

In order to use these equations to determine the output 

stream variables, assumptions must be made, and it is in 

these assumptions that the model developed in this study 

differs significantly from the conventional equilibrium 

model. In order to put this approach in perspective, it 

will be of benefit to review the development of a simple 

conventional model. 

The Simple Equilibrium Model 

To develop the simplest of these models requires that 

the following assumptions be made: 

1) Assume the vapour leaving a stage is in thermo-

dynamic equilibrium with the liquid on that stage. 

- Although this assumption is never truly valid it is 
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often a reasonable approximation. In some cases how-

ever, particularly for absorption and stripping, it is 

grossly in error. Two methods are commonly used to 

circumvent this problem, the simplest of which is to 

use a ratio of simulated ideal trays to actual trays 

which roughly corresponds to the observed tower effi-

ciency. ( ie. a 20 tray tower that is approximately 

50% efficient would be simulated with a model having 

only 10 trays) 

A somewhat more sophisicated approach is the use of 

Murphee tray efficiencies. These are defined as: 

Em = (Y Y i,n-1 -  i,n 
* 

(Y -Y. 
i,n-1 

(6.3) 

* 

where Y represents the composition of the vapour in 

equilibrium with the tray liquid. Although commonly 

used, these have little in the way of a theoretical 

basis. 

2) Assume the vapour holdup is negligible. 

- For the vast majority of situations this assumption 

is reasonable, but inaccuracies can occur in high 

pressure towers where the liquid vapour density ratio 

is small. For instance the density ratio in a column 
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operating at atmospheric pressure and room temperature 

would be of the order of 1000 to 1, while ratios of 

less than 10 to 1 are common in gas plant absorbers. 

Thus the vapour holdup in the gas plant absorber 

represents a much larger fraction of the total holdup 

than is the case with the atmospheric column. 

3) Assume the total holdup on the plate is consta -t 

- This assumption is quite reasonable for small excur-

sions from steady state, particularly if it is the 

volumetric holdup which is held constant while the 

molar holdup floats with changes in the liquid den-

sity. Simonsmeier (1977) compared simulations which 

had large differences in the value of the assumed 

holdup and found only slight variations in the results. 

4) Assume the total plate enthalpy does not change. 

- This is applicable only if assumption (3) has been 

made and even then it may introduce considerable error 

if the liquid composition changes markedly during the 

course of the simulation. 



Assumption (1) allows the composition of the vapour 

stream leaving the tray and the temperature of both output 

streams to be calculated from a bubble point temperature 

calculation. Since assumption (2) implies that the liquid 

composition is the same as the total holdup composition it 

may be determined from the integrated values of equation 

6.1. Assumption (3) permits the writing of an overall mass 

balance as: 

L =L +(/ 
n n+l n-i - 

Vn 
(6.4) 

A second equation is necessary to solve for the two unknowns 

L and This is provided by rewriting equation 6.2 with 

assumption (4) 

L +i (I HL i + H  L HL + (I  
n-i n-i n n n n 

Rearranging yields: 

Vn 

= L H + (/ H  - L HL 
n-i n-i n n 

n 

Substituting (6.4) into (6.6) and rearranging gives: 

vn 
= HV_HL 

n n 

L1HL1 + V H  - (L + V )HL 
n-i n-i n+l n-i n  

(6.5) 

(6.6) 

(6.7) 

There are now sufficient relations to define the system. 

- 65 - 



The normal calculation procedure is: 

1) calculate the bubble temperature and vapour 

composition from the liquid composition and pres-

sure. 

2) determine the vapour and liquid enthalpies at 

the bubble temperature. 

3) determine V from equation 6.7 

4) determine L from equation 6.4 

5) calculate derivatives from 6.1 

6) perform a numerical integration to determine 

the liquid compositions at the new time level. 

Note that equation 6.2 is no longer a differential 

equation. 

7) Go to step 1 



Most distillation simulators use some variation of this 

simple model. For example it is possible to determine the 

liquid flow by integrating the following equation: 

dL L +(1 • -L -' 
n n+1 n-i  n n 

dt - HTC 
(6.8) 

where HTC is the hydraulic time constant for the liquid on 

the tray. This allows the liquid holdup to float to some 

degree and this variation in holdup can be represented by: 

dN 
11 

+(' -L -v t n+i n-i n n 
(6.9) 

Since the total energy holdup E is a product of the molar 

liquid enthalpy H and the total molar holdup N the energy 

derivative can be written as: 

dE dN HL 
n H L n + n 

d dt ndt nt 
(6.10) 

By substituting equation 6.10 into 6.2 the vapour flow may 

be calculated from: 

1. 
dN dH 

L +lHL L L +l + Vn_iH 11 
n 

_i + Q - L n n 
rI - 'n dt N 

Vn HV 

n 
(6.11) 

While dN/dt can be determined from equation 6.9 the 

enthalpy derivative must be determined by numerical dif-

ferentiation. This technique, used by Svrcek (1967) and 

Distefano (1968), was considered a significant improvement 
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over the simple method, since it allowed the tray energy 

dynamics to be approximated in the model while still permit-

ting the vapour flow to be calculated explicitly. It is 

possible to assume the numerical derivative is zero on some 

non important trays (Franks 1972) in which case those trays 

are effectively calculated by the simple model equation 6.7 

A minor variation on these models arises with the 

introduction of a hydraulic correlation to calculate the 

liquid downflow. Typically the Francis weir formula is 

used, but Simonsmeier (1977) recommends the A.I.C.H.E. bub-

ble cap formula. 

A Non-Equilibrium Model 

The inability of equilibrium models to handle absorbing 

and stripping problems, the tendency for numerical differen-

tiation calculations to introduce instabilities into the 

integration, and in particular the large amounts of computa-

tion time required for phase equilibria calculations, made 

conventional distillation models impractical for this pro-

ject. 



Mass transfer on a distillation tray is a complex pro-

cess taking place in a poorly defined mixture of vapour, 

liquid and froth, and despite considerable research (Bernard 

et al, 1966; Thorogood, 1963 ; Strand, 1963; DArcy,1978) 

these processes are not well understood. In the following 

pages an analysis of a very simple and idealized system will 

be used to suggest the form of a pseudo-empirical approach 

to the distillation problem. 

Consider a small bubble of gas rising through a liquid 

and assume the rate of mass transfer of component i from the 

liquid to the bubble may be described by: 

dN. 
i,P - KA(fL 

dt - i,n i,p 

The vapour fugacity may be assumed to be: 

(6.12) 

(6.13) 

The partial pressure may be evaluated from the ideal gas 

law: 

N i  RT 
= ,P  

i VP 
(6.14) 

If the diameter of the bubble is D then equation 6.15 may be 

rewritten as: 
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dN 6.N :L. RT 
K11D (fL i. ,P 

at in 3 
liD 

(6.15) 

If it is assumed that D remains constant with respect to 

time, equation 6.15 can be rearranged and integrated to: 

where 

and 

N. 
dN. t 

i,P 
S Sa - SbN 5dt 
N° i,p 0 
i,P 

Sa = KiiD2f 

6Kc. RT 
Sb= - 

D 

(6.16) 

The lower integration limit N represents the number of 

moles of component i present in the bubble when it enters 

the layer of liquid at time zero. The upper integration 

bound N. represents the number of moles of component i in 
IfP 

the bubble after a contact time t. The result of this 

integration is: 

N. - 

Sa - (Sa - SbN0 ) e (-Sb t) 
i,P 

Sb 
(6.17) 



If the total volume of vapour entering the liquid is V0 

and it is all carried in bubbles of diameter D, then the 

number of bubbles flowing through the liquid per unit time 

will be: 

M =  6V 
p 

p 7F  

0 

(6.18) 

The number of moles -of component i initially in a bubble 

will be: 

oo oV0 3 
0 j Yp liD 

'iPM 6 

(6.19) 

and the number of moles in the bubble after a contact time t 

will be: 

Np 

VY. 
1 

(6.20) 

Substituting these relations into (6.17) and rearranging 

results in: 

FL 

VY. = V0 1 1 1  Y°) -Dt  

P RT 
1 ØRT . exp RT 1 

. p . 1 (- i  

(6.21) 



This equation makes it possible to calculate both the 

composition and the total molar flow rate of the vapour 

leaving a liquid layer,as long as the inlet vapour flow and 

composition are known. However an assumption of constant 

volumetric flow rate through the liquid is implicit in the 

assumption of constant bubble diameter, and while the change 

in volumetric flowrate across a single tray would normally 

be small, it is advantageous to devise a means of overcoming 

this limitation. 

One possible method is to divide the liquid into a 

large number of thin layers and then apply equation 6.21 to 

each layer in turn; with the output from one layer serving 

as the input to the next layer. Over the course of any one 

layer the amount of material transferred into the bubble 

would not be enough to significantly alter the internal 

pressure of the bubble and hence the mass transfer rates 

would not be affected. This is equivalent to readjusting 

the number of bubbles after each layer. 

Since the rate of total mass transfer is simply the sum 

of the component equations 6.21, it may be assumed to 

exponentially decay with contact time and it is even possi-

ble to roughly estimate its time constant. This information 

can be used to greatly reduce the number of liquid layers 
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necessary to essentially eliminate the constant volume 

assumption. 

Four liquid layers,with contact times of 1/30, 4/30, 

9/30, and 16/30 of the total contact time, were used in this 

study. Although some attempt was made to compensate for the 

shape of the exponential curve, these intervals were chosen 

more or less arbitrarily. The total contact time, which can 

be calculated from 

0 nc 
V 0 

N. 
in-i 

t =  i=1  
C L 

V 
n- li n 

(6.22) 

is limited to maximum of 4.5 times the estimated time con-

stant to ensure that the approximations are applied to the 

critical part of the exponential curve. 

Implementation of the Distillation Model 

The method just outlined provides a straight forward 

means of evaluating the flow and composition of the vapour 

leaving a tray. Due to the empirical nature of the method 

the constants K and D are amalgamated into a single user 

supplied parameter K=K/D . By varying this parameter the 

model can be made to closely approximate anything from an 

equilibrium stage to a grossly inefficient stripper or 
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absorber. Vapour holdup is neglected, but if a situation 

required it, vapour 

the tray modules. 

tank modules could be placed between 

The liquid composition is determined by the integration 

of equation 6.1 and the liquid flow rate is calculated from 

the Francis weir formula: 

L = 481.82 L P  nw D h15 
n ow 

(6.23) 

where the height of liquid over the weir is calculated from: 

N 
h = h 
ow LA weir 

In x 
(6.24) 

By rearranging equation 6.2 a differential equation in 

terms of the liquid temperature can be obtained: 

dT L HL + 
n n+l n+l 

dt 

The vapour outlet 

transfer analogue 

simplicity it has 

p erature. 

+ Q - , 
n  

Cp N 
n 

dN 
- HL(__ + L 

ndt n 

(6.25) 

temperature could be determined by a heat 

to the masstransfer procedure, but for 

merely been set equal to the liquid tem-



In its final form the model avoids most of the assump-

tions inherent in the equilibrium models, while enjoying a 

considerable advantage in efficiency as a result of not 

requiring the convergence of iterative phase equilibrium 

calculations. 

6.5 The Reboiler Model 

In this simulator the reboiler was represented by two 

modules; one for the heat transfer characteristics, and a 

second for the calandria. This second module is essentially 

an equilibrium stage with no vapour inlet stream, and this 

posed a problem for the new stage model, which requires an 

inlet vapour flow for its calculation. Use of a conven-

tional equilibrium model for this one stage was attempted, 

but the results were not satisfactory. 

The problem was resolved by the observation that the 

liquid and vapour outlet streams calculated by the new tray 

model were essentially at equilibrium at the liquid bubble 

point when large mass transfer parameters were used. This 

allows the bottoms stage to be handled as a normal stage 

with the vapour inlet composition being guessed by a Wilson 

equation prediction. The inlet flow rate is based on a tray 

energy balance similiar to that used in an equilibrium 

stage, but the passage through the liquid with high mass 
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transfer parameters trims both vapour composition and 'flow 

rate to more accurate values. 

6.6 Heat Transfer Model 

The same type of analysis which was used to develop the 

mass transfer model can be used in the creation of a heat 

transfer model. Let us consider a simple counter current, 

sensible heat transfer device such as the double pipe 

exchanger depicted in Figure 6.2. The problem is to predict 

the fluid outlet temperatures TA2 and TB2, given the inlet 

temperatures and the initial tube wall temperatures 

Tti and Tt2. Several assumptions are made which facilitate 

the solution of the problem: 

1) That there is sensible heat transfer only. 

- elimination of this constraint will be necessary in 

the future development of condensor and evaporator 

modules. 

2) That the fluid holdup is negligible. 

- This results in the exchanger dynamics being con-

trolled by the thermal capacity of the tube wall. 

- A time lag module could be incorporated into the sys-

tem if fluid delays were important. 

3) That the tube metal has a linear temperature 
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profile. 

- In reality the tube will have an exponential tempera-

ture profile, but the error introduced should be 

acceptable for most process simulations. 

- When greater accuracy is required, several heat 

exchange modules could be joined together in series to 

provide a very good representation of an actual 

exchangers profile. 

4) That there is negligible heat transfer by conduction 

axially down the tube. 

- This is justified by the small cross sectional area 

of the conduction path axially as compared to the 

radial path. 

With these assumptions the module calculations are reduced 

to a relatively simple procedure: 

1) Calculate the fluid outlet temperature as a function 

of the fluid properties, the inlet temperature, the 

inlet flow rate and of the tube wall temperature pro-

file. 

2) With all four fluid temperatures known, it is possi-

ble to calculate the net rate of heat transfer to the 
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tube wall at any position. It is therefore possible to 

calculate the rate of change of Tti and Tt2 with 

respect to time. The integration routine supplies the 

updated values of Tti and Tt2 which in turn establishes 

the new temperature profile. 

The implementation of these procedures will now be con-

sidered in more detail. 

For a differential distance down the device, the heat 

transfer to one of the fluids may be represented as: 

Noting that 

Q = (Tt - T)UD dz 

dA = D dz 

(6.26) 

(6.27) 

where A is the heat tranfer area, allows the generalization 

of equation 6.26 to 

Q = (Tt - T) UdA 

If T  is assumed to be a linear function of A, 

Tt = a + bA 

(6.28) 

(6.29) 

where a and b are constants with respect to A. Equation 

6.28 can now be written as: 
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Q = (a + bA - T) UdA 

(6.30) 

We know that this heat flow will cause a change in the fluid 

temperature as described by: 

Q = CP fWfdT 

(6.31) 

Note that this assumes only sensible heat transfer takes 

place. Equating 6.30 and 6.31 and rearranging yields: 

dT 
aT + BT = (a + bA)B 

(6.32) 

where 

B   
- CP fWf 

As this is a linear first order differential equation, the 

general solution may be applied to yield: 

BA BA (BA BA Te =ae + - -l)e +C 

(6.33) 

Using the boundary condition T = T at A = 0 allows the 

evaluation of the integration constant: 

C = T + - a 

(6.34) 

Substituting (6.34) and B into (6.33) gives the final 

result: 

bCPfWf - UA bCPfWf 
T= (T a+ U )exp( 

o  CpfWf + a + bA 

(6.35) 
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With this expression it is possible to evaluate the instan-

taneous fluid outlet temperatures for the two sides of the 

exchanger. This information allows the time derivative of 

the tube wall temperature to be calculated. For Tt1 we can 

write: 

Q cp tWt dT ti 

A A dt 

= (T Al 
- Tt i) Ua + (T -T B2 ti )Ub 

(6.36) 

It is important to note that all parameters must be refer-

enced to the same area (i.e. tubeside or sheilside) 

This model served as a basis for a variety of heat 

transfer modules developed during the course of this pro-

ject. A simple variation which assumes a constant fluid 

temperature on one side of the exchanger served to model the 

heat transfer characteristics of the column reboiler. 



CHAPTER 7 

7.1 Model Testing 

One of the goals of this project was to use industrial 

rather than laboratory data for the testing of the models. 

This, however, presents a number of difficulties: 

- the test system cannot be isolated from external 

disturbances as is possible in the lab. This can 

result in many test attempts being made before 

good data are collected. 

- data gathering systems will almost always be 

more primitive in industrial plants than in spe-

cialized laboratory setups. 

- Economic, environmental and safety concerns all, 

limit the size of upset which can be tolerated in 

an industrial plant test. 

- perhaps the most serious difficulty is in find-

ing an industrial firm which will permit one of 

its plants to be used for such tests. 

Offsetting these difficulties is the greatly increased 

utility of a model which has demonstrated its ability to 

handle in industrial problem. In our case, we were 

extremely fortunate to have the complete cooperation of 

Chevron Standard Limited in conducting dynamic response 
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tests on their Fort Saskatchewan, Alberta natural gas plant. 

The test system consisted of two fractionators operating in 

series, as shown in Figure 7.1. A feed stream consisting 

mainly of propane through hexane is fed to the first column 

where the propane is removed as overhead product. The 

remaining bottoms stream is used as feed to the second 

column which produces a butane overhead product and a C5+ 

condensate stream. The depropanizer has 43 mass transfer 

trays while the clebutanizer has only 30. Both columns use 

hot oil reboilers and flooded air cooled overhead con-

densers. 

What makes this plant particularly valuable for test 

purposes is that it is one of the few light hydrocarbon 

plants which has a process control computer. This machine 

and its on-line chromatographhs provide effortless and con-

tinuous monitoring of the test variables. 

Although several tests were done only two sets of data 

were sufficiently free of outside disturbances to permit 

them to be modelled. During these tests all feed forward 

elements in the control system were switched off but local 

controllers were allowed to maintain their variables at the 

given setpoints. 
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The first test involved a composition pulse of 30 

minutes duration. This was accomplished by pumping butane 

product from storage into the feed stream to raise the total 

butane content of the feed from 35 to 50 percent. Total 

feed rates were held constant. The second test consisted of 

a 10% step increase in hot oil flow to the reboiler of the 

depropani zer. 

The first obstacle in modelling these tests was the 

sheer size of the problem. 

necessary for the property 

had a combined total of 73 

At least six components were 

calculations and the two towers 

stages. A second problem 

involved achieving the same steady state the plant was at 

when the test began with the simulator. Several parameters 

such as heat transfer coefficients were not accurately known 

and had to be deduced by trial and error matching with 

steady state data Since there were no provisions for per-

forming steady state calculations with the new models, all 

changes had to be made by driving the simulation from one 

state to another dynamically. 

When the first test was modelled it became apparent 

that the plant data lagged the simulation by approximately 

six minutes. This was apparently the result of the butane 

addition to the feed stream being done a considerable dis-
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tance upstream of the depropanizer. A second problem was 

the tendancy of the model to react much quicker than the 

actual towers. This was largely resolved when the liquid 

holdup in the tray downcomers was taken into consideration. 

The results of the final simulation are compared to plant 

data points in Figures 7.2 through 7.10. 

When the second test was modelled the lag problem did 

not occur, which supports the piping lag assumption for the 

first test. The results of the simulation and the plant 

test are compared in Figures 7.11 to 7.21. 

For the most part the model was able to match the 

experimental data reasonably well. In many variables the 

majority of the error was a result of failing to exactly 

match the steady state values at the beginning of the run. 

Figure 7.6 shows this problem. It is also obvious from some 

of the results that the plant itself was not completely at 

steady state ( see Figure 7.5 ) at the beginning of the 

tests. Considering these factors in light of instrument 

error tolerances, the model has performed considerably 

better than was originally hoped for. 



The execution times for these simulations were on the 

order of 2 to 2.5 times real time, when performed on a 

Honeywell DPS Level 2 computer. Preliminary runs on a CDC 

Cyber 172 required execution times on the order of real 

time. 

7.2 Model Testing of Control Systems 

Although a comprehensive review of control systems 

could not be undertaken within the scope of this project, a 

few simulations of the Chevron depropanizer and its feed 

forward control system were run to demonstrate the potential 

ability of the program. Typical results from these runs are 

depicted in Figures 7.22 to 7.27 where the response of the 

depropanizer to a series of disturbances is depicted. First 

the feed C5+ concentration is increased from 35 to 50 per-

cent for a 15 minute period (time 0 to 15). This is fol-

lowed 45 minutes later by a ramped decrease of 33 percent in 

the feed flow rate over a 15 minute period (time 60 to 75) 

which is in turn followed by another 15 minute composition 

pulse identical to the first one. One of the controlled 

variables was the iC4 in the overhead, which is compared to 

its set point in figure 7.23. Since details of the control 

system can not be disclosed, these results cannot be dis-

cussed further in any detail. 
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CHAPTER 8 

8.1 Conclusions 

8.1.1 The flexibility and simplicity of modular simu-

lation is seriously compromised by the use of implicit 

integration methods. Whenever possible explicit routines 

should be used in these applications. 

8.1.2 Suitably modified the Richard Lanning Torrey 

method is capable of integrating quite stiff systems of dif-

ferential equations with reasonable efficiency. This is 

true even for very large systems where integration methods 

which require the system Jacobian become inefficient. 

8.1.3 A distillation tray model has been developed 

which does not require the assumption of stage equilibrium 

or the calculation of numerical derivatives. 

8.1.4 The Peng-Robinson equation of state can be used 

with the above distillation model to produce a representa-

tion of the dynamic behavior of industrial distillation 

columns. Due to the complexity of the equation of state 

calculations, efficient algorithms are necessary if execu-

tion times are to be reasonable. 

- 86 - 



8.2 Recommendation For Future Study 

The following areas should be considered for future 

study: 

1) More complete testing of present models, in 

the form of further industrial tests, would be 

useful to establish the range of validity of the 

new models. Off particular interest would be 

dynamic tests on absorbers and strippers, since it 

is hoped that the new models would able to handle 

these with ease. 

2) The main purpose of a simulator of this type 

is to permit evaluation of various types of con-

trol systems in a convenient manner. Although 

some runs have been done with the control system 

from Chevrons depropanizer no systematic study of 

control system performance could be undertaken 

within the scope of this project. 

3) It would be interesting to evaluate the poten-

tial utility of the new distillation models in 

steady state calculations. 

4) Further effort should be spent on increasing 

the efficiency of the property calculations. 

Several fairly simple modifications could be made 

which would make a substantial difference in the 

simulators overall execution time. 
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Table 1.1 

Equation-Oriented Executive Programs For Dynamic Simulation 

(From Barney, 1975) 

Acronym Date Institution Where Developed 

MIMIC 1965 Wright Paterson AFB 

CSMP 1967 IBM 

IMP 1972 University of Connecticut 



Table 3.1 

TEST 
SYSTEM 

METHOD 
EULER 

STEP 
SIZE 

ERROR AMOS ERROR RKM ERROR GEAR 
MOM- 
STIFF 

ERROR 

I 0.006 1.9x10 3 9.50x10 4 0.872 1.88x10 3 0.301 3.72x10 4 2.30 1.13x10 3,, 

XI 71.7 .9x10 6 9.51x10 8 866.0 1.01x10 300.3 1.36x10 4 2188.0 3.81x10 4 

III 0.325 1.9x10 3 4.28x10 3 2.06 4.29x10 3 1.18 3.55x10 3 4.90 4.05x10 3 

XV 1.47 1.9x10 3 9.62x10 6 9.09 5.65x10 4 6.02 7.27x10 6 36.4 2.89x10 5 

V 17.1 5.0x10 4 3.91x10 5 240.0 114.6 79.0 154.6 431.6 0.368 

(4.70x10 3) (5. 21x10 4) (3.95x10 4) 

VI U1 2.5x10 4 4.21x10 4 >1500 9.95x10 3 >1000 1.99x10 4 1925.0 1.86x10 4 
23.0 101.0 48.0 
(0-10) 1.0xlo (0-10) (0-10) 

VII 37.6 6.0x10 3 4.55x10 3 353.0 0.8552 167.8 7.94x10 2 656.0 8.80x10 3 

VIII 0.530 2.0x10 3 9.58x10 3 0.059 6.69x10 3 0.021 1.89x10 3 0.101 8.15x10 4 

XX 1.04 5.0x10 3 9.48x10 3 0.107 9.62x10 3 0.041 1.56x10 2 0.213 6.67x10 3 

X 0.636 2.0x10 3 9.75x3.0 3 0.059 3.48 0.022 0.394 0.164 4.39x10 2 

(1.81x10 4) (6.05x10 4) 

XI 1.39 2.5x10 3 9.45x10 3 >320 0.263 4.87x10 4 1.30 2.25x10 4 

unstable 

2 on1' extremely small components inaccurate 

TEST 
SYSTEM 

METHOD 
RLT ERROR NIGRO 

STEP 
SIZE ERROR TREANOR ERROR 

FOWLER 
WARTEN ERROR 

I 0.092 4.83x10 3 0.144 1.8x10 3 5.35x10 3 0.384 2.24x10 4 0.495 2.24x10 3 

XI 0.068 5.03x10 4 26.5 1.0x10 5 2.15x10 2 0.393 8.90x10 7 49.1 3.98x10 2 
III 3.32 3.81x10 3 0.498 1.8x10 3 6.13x10 3 1.38 5.09xl0 1.48 7.49x10 5 

IV 0.356 5.03x10 3 0.817 5.0x10 3 6.88x10 3 6.90 1.85x10 3 0.317 1.79x10 2 
V 0.078 343.0 18.5 l.0x10 3 1.06xl0 2 0.505 3.56x10 3 0.624 8.42x10 3 

(6.58x10 4) 

VI 36.5 8.862 464.0 1.0x10 3 3.35x10 2 U1 4.41.x10 2 117.0 2.48x10 2 
44.5 
(0-10) 

VII 3.58 2.032 46.5 10x10 2 1.73x10 2 219.0 8.24x10 2 75.2 1.41x10 2 
VIII 0.159 8.61x10 2 1.24 2.0x10 3 9.72x10 3 0.927 1.97x20 5 0.080 2.64x10 2 
IX 0.317 5.45x10 2 2.02 4.0x10 3 1.05x10 2 2.69 3.13x10 9 0.077 7.07x10 3 
X 0.118 0.630 1.36 2.5x10 3 2.64x10 2 2.36 2.46x10 4 0.060 1.83x10 3 

(2.81x19 2) 

XI 0.744 3.00x10 2 5.65 l.0x10 2 1.63x10 2 5.07 4.06x10 5 0.666 1.86x10 4 

Unstable 

'large components reasonably accurate 
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Table 3.1 (continued) 

TEST 
SYSTEM 

METHOD 
(L0P 

DAVIS 
ERROR 

SAND 
SCM • ERROR BRANDON ERROR GEAR ERROR 

I 2.27 5.85x10 4 0.274 1.21x10 2 0.124 1.22x10 3 0.139 1.07x10 3 

XI >1000 5.00x10 8 0.276 7.10x10 4 0.268 3.98x10 4 0.196 1.01x10 4 
385.0 
(0-10) 

III 7.11 2.67x10 3 0.788 4.64x10 2 4.24 3.97x10 3 0.318 3.77x10 3 

IV 39.2 5.90x10 6 1.75 9.41x10 4 1.11 5.66x10 4 0.505 1.16x10 5 

V 845.0 0.267 0.117 1.27x10 4 0.459 3.10x10 5 0.168 4.57x10 5 

(7.56x10 3) 

VI >1000 >1000 .83x10 3 >1500 7.72x10 4 81.7 8.47x].0 3 
(0-10) 626.0 761.0 

(0-10) (0-10) 

VII >1000 442.0 0.133 299.0 1.86x10 2 42.0 1.71x10 2 
(0-10) 

VIII 0.760 0.206 0.721 0.204 0.294 0.308 0.078 3.23x10 3 
(0.023) 

IX 0.788 0.335 0.830 0.316 0.546 9.68x10 3 0.192 8.07x10 2 

X 0.473 0.936 0.455 0.870 0.313 8.13x10 3 0.119 1.38 

(3.0x10 2) (2.94x10 2) (2.74x10 3) 

XI 29.1 3.78x10 2 29.1 3.75x10 2 2.41 1.77x10 4 1.03 4.85x10 5 

TEST 
SYSTEM 

METHOD 
GEAR 
MIWV 

GEAR 
DECOMP- 
SOLVE 

GEAR 
TRGB 

ERROR IMP ERROR 

I 0.139 0.148 0.162 1.07x10 3 0.1391 1.85x].&3 
IX 0.196 0.216 0.235 1.01x10 4 0.3731 2.84x104 
XII 0.318 0.294 0.315 3.77x10 3 3.72 1 1.06x10 5 
IV 0.505 0.489 0.656 1.16x10 5 0.9671 2.69x102 
V 0.168 0.165 0.182 4.57x10 5 27.3 2 391jO 5 
VI 81.7 20.0 7.58 8.47x10 3 >1000 
VII 42.0 12.3 6.05 1.71x10 2 30.22 0.169 
VIII 0.078 0.079 0.080 3.23x10 3 0.2581 0.344 
IX 0.192 0.197 0.292 8.07x10 2 0.5842 2.37x1O3 
X 0.119 0.128 0.130 1.38 1.12' 5.27x10 3 

(2.74x10 3) 

XI 1.03 0.897 0.980 4.85x1O 5 11.5 1 0.967 
0.753(TRI) 

1Crout elimination, variable order, variable or constant banded matrices 

2Gauss-Seidel 
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Table 4.1 

Components Available in the Property Package 

1 Methane 

2 Ethane 

3 Propane 

4 iso-Butane 

5 normal Butane 

6 iso-Pentane 

7 normal Pentane 

8 Hexane 

9 Heptarie 

10 Octane 

11 Nonane 

12 Nitrogen 

14 Carbon Dioxide 

15 Hydrogen Sulphide 



Table 6.1 

Process Modules Used in Simulations 

Type Number Function 

1 Simple Valve 

2 Counter Current Heat Exchanger 

3 Stirred Tank 

4 P.I.D. Controller 

6 Mass Transfer Stage 

8 Reboiler Kettle 

14 Tee-Junction 

17 Total Overhead Condenser 

22 Rehoiler Heat Transfer Model 
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